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ABSTRACT

In their publication, Charalambidis et al. propose a Higher-order version of Prolog with
Extensional Semantics (HOPES). One of the suggestions in the paper for further research
is to create a modification for WAM capable of running HOPES. Such an implementation
is described in this thesis.
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ΠΕΡΙΛΗΨΗ

Στη δημοσίευσή τους, οι Χαραλαμπίδης κ.ά. παρουσιάζουν μία εκδοχή της Prolog η οποία
βασίζεται σε λογική υψηλότερης τάξης με Extensional Semantics (HOPES). Μία από τις
προτάσεις της δημοσίευσης για περαιτέρω έρευνα είναι η δημιουργία μίας τροποποιημένης
εκδοχής της WAM, ικανής να εκτελέσει τη HOPES. Μία τέτοια υλοποίηση περιγράφεται
στην εργασία αυτή.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Λογικός προγραμματισμός
ΛΕΞΕΙΣΚΛΕΙΔΙΑ: Λογικός προγραμματισμός ανώτερης τάξης, Ενδιάμεση αναπαράσταση,
Μεταγλωττιστές, WAM, Επεκτασιμότητα
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WAM extensions for implementing higher order logic languages

1. INTRODUCTION

1.1 Objective

The purpose of this thesis is to create an extension of theWarren Abstract Machine [14] (an
abstract machine consisting of a memory layout and an instruction set tailored to execut-
ing Prolog programs) so as to improve the performance of extensional higher-order logic
languages. More specifically, the work presented here is intended to provide an extended
version of WAM for the programming language HOPES, developed by Charalambidis et
al. [7].

The version of the WAM presented here does not cover the entirety of the HOPES lan-
guage; there exist a few edge cases (which we’ll describe later on) which the extended
WAM is not able to execute and produce results that abide by the SLD-resolution algorithm
presented for HOPES in [7].

1.2 Motivation

Although Prolog is the most well-known programming language with regards to the logic
programming paradigm, an obvious limitation of it is the fact that it is first order. To remedy
this, there have been attempts at incorporating higher-order features into logic program-
ming, mainly λProlog [11], HiLog [3] and a framework developed by Wadge [13] called
”the definitional subset of higher-order Horn logic”. More recently, Charalambidis et al
introduced the H programming language [7] and Koukoutos [9] introduced polyHOPES,
an extensional higher-order superset of Prolog.

Higher-order logic programming is divided into intensional and extensional logic program-
ming. In intentional higher-order logic programming, two predicates are considered equal
if they have the same name, whereas in extensional higher-order logic programming two
predicates are considered equal if they succeed for the same set of instances. The for-
mer category already demonstrates a couple of implementations [12] [6] (albeit partial),
while the latter category currently only demonstrates an implementation by Charalambidis
in Haskell [2]. In [7], a few optimizations to the implementation are proposed as part of a
future work, one of which is to devise and implement a WAM-based implementation.

In 1983, David Warren [14] designed an abstract machine for the execution of Prolog,
which consisted of a memory layout and an instruction set. This design is known as the
Warren Abstract Machine and has become the de facto standard target for Prolog com-
pilers and interpreters. Apart from the fact that it is a lower-level instruction set, additional
optimizations have been proposed and implemented on it [5].

Given the popularity of the WAM and the research performed into it to optimize Prolog
programs, it is appealing to construct one for higher-order logic programming. However,
since the WAM is designed around the premise that Prolog programs will be translated
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into it, it lacks any concepts related to higher-order logic languages. As such, we need
to incorporate concepts such as partial appication and higher-order variables into it in
an efficient manner, while adhering to the design philosophies of the WAM as close as
possible; this thesis demonstrates that the above is actually feasible and in an efficient
manner.

1.3 Outline of this thesis

The rest of this thesis is organized as follows: In chapter 2, we introduce the WAM, its
semantics and how a Prolog program is transformed to a WAM equivalent. In chapter 3,
we present HOPES, its traits, as well as what programs it cannot support. In chapter 4, we
present our extension to theWAM, its implementation details and examples of compilation.
In chapter 5, we discuss our implementation against other implementations of the WAM
(or any other instruction set intended for logic languages). Finally, in chapter 6, we present
our conclusions and provide suggestion for future work.

A. Tasos 11
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2. HOPES

In this chapter, we introduce HOPES (Higher-order Prolog with Extensional Semantics),
an extensional (that is, instead of considering two predicates equal if they have the same
name, it considers two predicates equal if they succeed for the same for the same in-
stances) higher-order language. We, then analyze the issues of using HOPES as-is to
extend classical Prolog and, then, introduce polyHOPES, which is a strict superset of
classical Prolog with extensional semantics.

2.1 An overview of HOPES

HOPES (Higher-order Prolog with Extensional Semantics) is an extensional developed
by Charalambidis et al. [7]. The language features support for higher-order predicates,
i.e. predicates that are allowed to receive other predicates as parameters. For instance,
considering the following predicate (in a Prolog-esque syntax):

closure(R, X, Y) :- R(X, Y).
closure(R, X, Y) :- R(X, Z), closure(R, Z, Y).

And given the following fact database:

friends(jake, sarah).
friends(lina, jake).

friends(john, nathan).
friends(lester, nathan).

Then by specifying the goal ?- closure(friends, jake, X), we can find all transitively
mutual friends of Jake:

X = lina
X = sarah

We are also allowed to apply currying to predicates. For instance, consider the predicates:

filter([], P, []).
filter([X|Xs], P, [X|Xs]) :- P(X), filter(Xs, P, Xs).
filter([X|Xs], P, Xs) :- filter(Xs, P, Xs).

unify(X, X).

Then, we can compute a list of all elements that do not unify with constants a, b, respec-
tively, by giving the goals:

A. Tasos 12
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?- filter([a, e, d, a, c, b, e], unify(a), X).
X = [a, a]
?- filter([a, e, d, a, c, b, e], unify(b), X).
X = [b]

Since HOPES supports higher order variables, given the following clauses:

p(Q) :- Q(0), Q(s(0)).

The answer we receive, assuming the goal is ?- p(R), will be

R = {0, s(0)}

In [7] Charalambidis et al. do not provide a formal definition of HOPES. What they do,
however, is provide a formal definition of a higher-order extensional language called H,
then provide a means of tansforming HOPES programs to H equivalent ones.

Not all programs in classical Prolog are translatable to HOPES. For instance, given a
binary relation P , we cannot construct a higher-order predicate commutative(P ) which
succeeds if and only if P is a commutative relation. The culprit is the fact that it is impos-
sible to express a universal quantification in H, and that negation in expressions is not
supported. Thus, HOPES programs are only a strict superset of positive first order logic
programming.

2.2 The higher-order language H

The H language defined in [7] is based on a type system that supports two base types:
The booleans domain, which is denoted by o and the individuals domain (domain of data
objects), which is denoted by ι. Composite types are partitioned into functional (assigned
to function symbols and deonted by σ), predicate (assigned to predicate symbols and
denoted by ρ) and argument (assigned to predicate parameters types and denoted by π).
They are defined, respectively, as:

σ := ι|(ι→ σ)

ρ := ι|π
π := o|(ρ→ π)

We will also give an abridged version of the syntax of H. Assuming that:

• X are variables (of type π or of type ι)

• c are constants (of type π or of type ι)

• f are functional symbols of every functional type σ ̸= ι

A. Tasos 13
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Then the following are the positive expressions of H:

1. Every predicate variable and predicate constant (with a type of π).

2. Every individual variable and individual constant (with a type of ι).

3. The constants true and false (with a type of o).

4. Given positive expressions E1, . . . , En of type ι, fE1 . . . En (with a type of ι).

5. Given positive expressions E1 of type ρ→ π, E2 of type ρ, E1E2 (with a type of π).

6. Given argument variabel V of type ρ and positive expression E of type ρ→ π, λV.E
(with a type of ρ→ π).

7. Given positive expressions E1, E2 of type π, E1 ∧p iE2, E1 ∨π E2 (with a type of π).

8. Given positive expressions E1, E2 of type ι, E1 ≈ E2 (with a type of o).

9. If E an expression of type oand V argument variable of type ρ, ∃pV E (of type o).

The clausal expressions of H are as follows:

• If p a predicate constant of type π and E a closed positive expression of type π, then
p←π E is a clausal expression of H, also called a program clause.

• If E a closed positive expression of type π, then false←o E is a clausal expression
of H, also called a goal clause.

A convenient property of H is that it every HOPES program can be transformed into an
equivalent program into H with a trivially derived set of transformations. For example,
given:

closure(R, X, Y) :- R(X, Y).
closure(R, X, Y) :- R(X, Z), closure(R, Z, Y).

We can convert this HOPES program into H (and the resulting program will look lke the
following):

closure←π λR.λX.λY.(RXY )

closure←π λR.λX.λY.∃z ((RXZ) ∧ (RXY ))

An example of an ill-defined program in HOPES is the following:

foo(H) :- H = a, H(a).

A. Tasos 14
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The above program will be converted into H as follows:

foo←π λH.((H ≃ a) ∧ (Ha))

Given rule 6, we deduce from (H ≃ a) that H is of type ι. In addition, given rule 3, we
deduce that in the expression (Ha), the type of the experssion should be π and the type
of H should be ρ→ π. We have reached a contradiction, hence the above program is not
a legal H program.

2.3 Limitations of H (and HOPES)

When it comes to extending the classical Prolog, although H satisfies the properties of
completeness and soundness, there exist a few issues that make it impossible to integrate
H and, subsequently, HOPES into a classical Prolog implementation.

The first of these issues is name aliasing. In classical Prolog definition of predicates with
different arities is allowed. There is no confusion during the runtime of which predicate
should be invoked, since there is no partial application. However, in a higher-order setting,
partial applications may introduce aliases. For example:

p.
p(0).
q(X) :- X(p).

There is an ambiguity as to what the parameter p represents (the predicate p/0, the predi-
cate p/1 or the structure p/0). HOPES works this ambiguity around by disallowing aliased
names. This strategy, however, is incompatible with programs that are written in classical
Prolog.

Another issue is that we cannot tell whether or not the parameter p is an partial application,
that is whether or not the argument p is actually the predicate p/1 or a partially applied
p/2, p/3, etc. HOPES offers a simple partial application mechanism, which ignores arity.
Thus, creating a higher-order language that allows classic Prolog porgrams without any
modifications should have this mechanism redesigned.

A third issue is the fact that H offers no parametric polymorphism. That is, consider the
closure predicate defined in the previous section. Then, the type inference mechanism
of H would infer that closure’s type is (ι→ ι→ o)→ ι→ ι→ o. However, this type is not
the most general possible type (we would like to he able to have closure handle relations
on any argument type.

Due to these, we will introduce polyHOPES [9], introduced by Koukoutos, which explicitly
deals with the issues above.

A. Tasos 15
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2.4 polyHOPES

polyHOPES is an extensional higher-order language that is also a strict superset of Pro-
log. Due to the fact that the subset of Prolog described in [1] does not introduce any con-
cept of operators or, for instance, clauses with no predicate name (such as :- op(500,
yfx, '-'), we can assume that there exists a lowering pass that transforms regular Prolog
programs to programs described by the syntax in [1].

Thus, the grammar of ”lowered” polyHOPES will not contain operators or anonymous
predicates (as these can be emulated), hence it will be as follows:

• The syntax of expressions will be:

E ::= V |c|num|pred c[/m]|E(E1, ..., En)||list|(E)

list ::= []|[E1, ..., En[|(V |list)]]

• While the syntax of sentences and programs will be:

Sentence ::= Clause|Goal|Dir

Program ::= Sentence+

Clause ::= Head[ImplBody].

Head ::= AppHead|c/n
AppHead ::= c|AppHead(E1, ..., En)

Impl ::=: −| < −
Body ::= E

The three additional features, compared to the Prolog subset defined in [1] are the follow-
ing:

• The fact that a partial application can be constructed out of an existing variable, as
well as called (assuming the type is correct).

• The pred keyword, which defines a partial application of a predicate (so as to avoid
ambiguity between a partial application between a predicate p/m and defining a
functional term of the form p(E1, . . . , Em).

• The fact that the arguments in predicates can be grouped together (for instance
foo(X)(Y, Z) :- ...). This is actually something we do not need to take into
consideration; this syntax only ensures that the first partial application must consist
of exactly k1 parameters (where k1 is the number of parameters in the syntactically
first set of parentheses), the second partial application must consist of exactly k2
parameters (k2 is defined in the same manner as for k1) and so on. This syntax does
not alter the fact that the predicate foo has an arity of 3.

A. Tasos 16
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We also need to assume that each higher-order variable will be a:

• First-order variable

• Higher-order variable of an arbitrary order, as long as it is located on the head of a
clause. Thus all higher order variables which will be requested to be generated will
be located either on the clause body (and not on the clause head) or on the goal.

The rationale for this limitation will be discussed in the next chapter, where we introduce
our modified WAM.

We will see in the next chapter how to transform this subset of polyHOPES to the WAM
and what modifications to the WAM we need to perform in order to actieve this.

A. Tasos 17
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3. A WAM PRIMER

The Warren Abstract Machine (WAM) is an abstract machine designed by Warren in 1983
[14] with the intent of creating an instruction set and a memory layout model for the exe-
cution of Prolog programs. The instruction set of the WAM consists of 49 instructions, as
well as 5 different memory segments, which shall be explained later on in detail.

The purpose of this chapter is to provide a breve introduction to the WAM. The concepts
and explanations given are derived from [1] and presented in such a way so that someone
unfamiliar with the WAM can be brought up to speed. For those who wish to delve further
into the WAM itself should consider referring to [1] and [14].

TheWAM is a register-based ISA, that is, unlike stack-based architectures, whose instruc-
tions manipulate a stack as well its elements when executed (such as the Java bytecode
specification [10]), operate on a finite or an arbitrarily large amount of registers. In the
case of the WAM it is presumed that the abstract machine can make use of an arbitrarily
large amount of them. All registers are also callee-saved, that is any clause can clobber
an unspecified amount of registers (thus the calling clause has to store the register values
that need to be preserved during a function call to a stack).

The naming convention used in [1] to refer to registers is to use the labels X1, X2, ...,
Xn. When passing arguments between clauses, the first k registers are used to store the
arguments. As such, the first k registers are also aliased to the labels A1, ..., Ak.

The abstract machine is also expected to be able to reserve a finite number of slots on
the stack in order to deal with preserving register values etc. If, during the compilation
of a clause, it is deemed that m slots need to be allocated on the stack, then the labels
Y1, ..., Ym shall refer to their corresponding slots. When dealing with reading from
and writing to a stack slot for each instruction, the abstract machine shall perform the
appropriate memory access on the stack under the hood (hence, when it comes to the
WAM ISA, stack variables and registers are treated in the vast majority of cases in the
same way).

3.1 Creating terms

In order to perform unification in the WAM, we first need to find a suitable representation
for terms in memory (that is variables and functors with any arity possible). Our ideal
memory representation and allocation scheme would be one that fulfills all of the following
criteria:

• It allocates only the absolute minimum of memory every time.

• It allocates objects in memory as close as possible address wise to each other (so
that the issue of memory fragmentation is minimized and cache locality turns out to
be as much of a free lunch as possible).
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WAM extensions for implementing higher order logic languages

• If possible, we would like to get away with not using a GC at all and just get away
with simple methods of performing memory management.

The memory layout presented in [1] fulfills all of the above.

The heap is implemented as a growable vector of memory cells. Two state registers are
also specified, H and S, where the former indicates the end of the heap (hence if the heap
was represented as a growable vector, the state register H would correspond to the vector
size and not the capacity, while the S status register is essiential in unification, as we will
see below.

Memory cells are also typed; each memory cell can have one of the following types:

• Term name - arity tuple, such as f/2 (TRM)

• Reference to the beginning of a structure: Term name followed by its arguments
(STR).

• Refererence to another variable (REF).

• Reference to a list term (LIS). The list term is, essentially, a term with an arity of 1
optimized to consume less memory space than any other term with the same arity.

• Reference to a constant (term with 0 arity) (CON).

Due to the way the instructions are implemented in [1], references on the heap will point
from higher addresses to lower addresses (except for the case of unbounded variables,
which we will be discussed a bit later on).

Representing the term s(X, Y) on the heap, for instance, is shown in figure 3.1.

..

..0 ..TRM ..s/2

..1 ..REF ..1

..2 ..REF ..2

Figure 3.1: In-memory representation of s(X, Y)

The reason there exists a self loop in the aforementioned figure is because a variable in
WAM can be either:

• Unbounded, i.e. not yet unified with anything (in which case it will point to itself).

• Bounded, i.e. unified with another variable or a structure (in which case it will point
to the relevant cell).
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Variable unification in the WAM is represented as a disjoint-set data structure [4] [1]. That
is, given two variables allocated as two distinct cells on the heap, they will be considered
as unified if they belong to the same disjoint set (i.e. we can find a heap cell h such that
subsequent dereferences of the two cells will yield the address of h).

An example that clarifies the distinction between unbounded and bounded variables for
the term p(Z, h(Z, W), f(W)) is shown in figure 3.2:

..

..0 ..TRM ..h/2

..1 ..REF ..1

..2 ..REF ..2

..3 ..TRM ..f/1

..4 ..REF ..2

..5 ..TRM ..p/3

..6 ..REF ..1

..7 ..STR ..0

..8 ..STR ..3

Figure 3.2: In-memory representation of p(Z, h(Z, W), f(W))

Z andW are represented by cells 1 and 2. Should either of them become bounded during
the program execution, all other (direct/indirect) respective references to them will also
become bounded. In addition, heap cells 6 and 4 bind to heap cells 1 and 2, respectively,
which are, as we just mentioned, the locations of the corresponding unbound variables Z
and W.

To create structures on the heap, we use the following 5 instructions:

1. put_structure f/n, Xi: Create a new term on the heap

2. put_list Xi: Create a new list term on the heap

3. set_variable Xi: k-th term parameter is unbounded and Xi points to it.

4. set_value Xi: k-th term parameter points to where Xi currently points at.

5. set_constant c: k-th term parameter points to the constant c.

6. set_void n: Starting from the k-th term parameter, the next n term parameters are
unbounded (deals with the underscore parameter).

The first instruction (put_structure) simply creates a new functor on the heap by allocat-
ing n+1memory cells, setting the type of the first cell to be of type STR, then making the S
status register point to the second cell of the heap (put_list works in the same number,
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except for the fact that no STR cell is created). Afterwards, all set instructions perform
their corresponding operation to the k-th term, which the status register S points to, then
increment the S status register (except for the set_void instruction, which will increase
the value of S by a variable amount).

As an example, creating the term f([X, a], _, X, g(Y, X)), would result in the following
code to be emitted:

put_list X1 % X1 = [_|_]
set_constant a % X1 = [a|_]
set_constant [] % X1 = [a]
put_list X2 % X2 = [_|_]
set_variable X3 % X2 = [X3|_]
set_value X1 % X2 = [X3|X1], X1 = [a]
put_structure g/2, X4 % X4 = g(_, _)
set_variable X5 % X4 = g(X5, _)
set_value X3 % X4 = g(X5, X3)
put_structure f/4, X6 % X6 = f(_, _, _, _)
set_value X2 % X6 = f(X2, _, _, _)
set_void 1
set_value X3 % X6 = f(X2, _, X3, _)
set_value X4 % X6 = f(X2, _, X3, X4)

When executed (the instructions are executed in a sequential order), the heap should
math the layout of figure 3.3.

3.2 Unification

Unification of variables requires adding the concept of read and write mode: If a term
unification is performed against an unbounded variable, then the term corresponding to
the unified variable has to be reconstructed on the heap. Determining which mode we
should enter is performed in the get_structure and get_list instructions, by checking if
Xi is bounded or not and, then, enter read or write mode accodringly.

To perform unification, the WAM ISA introduces the following instructions:

1. get_structure f/n, Xi

2. get_list Xi

3. unify_variable Xi

4. unify_value Xi

5. unify_constant c
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..

..0 ..CON ..[]

..1 ..LIS ..0

..2 ..CON ..a

..3 ..LIS ..1

..4 ..REF ..4

..5 ..TRM ..g/2

..6 ..REF ..6

..7 ..REF ..4

..8 ..TRM ..f/4

..9 ..REF ..3

..10 ..REF ..10

..11 ..REF ..4

..12 ..STR ..5

Figure 3.3: In-memory representation of f([X, a], _, X, g(Y, X))

6. unify_void n

Since these instructions have semantics that correspond to the semantics of the instruc-
tions mentioned above, we shall not delve into them.

For instance, given the predicate foo(f(X), g(X, a)). assuming that the argument
parameters are X1 and X2, the following code would be emitted:

foo:
get_structure f/1, X1 % X1 = f(_, _)
unify_variable X3 % X1 = f(X3, _)
unify_variable X4 % X1 = f(X3, X4)

get_structure g/2, X2 % X2 = g(_, _)
unify_value X3 % X2 = g(X3, _)

M1: unify_constant a % X2 = g(X3, a)

There also exist two additional unification intsructions, called get_variable and get_value.
Both of these instructions take a source and a destination variable as arguments. The
first simply copies the contents of the source to the destination. The second one per-
forms recursive unification (which can also be an occurs-check unification). To perform
a recursive unification, the WAM ISA reserves a memory segment called the PDL, which
is, essentially, just a scratch buffer used by the depth-first search unification algorithm.
The purpose of this instruction is to handle cases where performing an arbitrary amount
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of heap allocations in one instruction is necessary, such as when unifying the terms
f(a(X, b), Y ), f(Z, h(Z, a)), where it turns out that Z = a(X, b), Y = h(Z, a) and X is a
(possibly) unbound variable.

3.3 Predicate invocation

Just like in procedural languages, when a predicate is invoked in the WAM, a stack frame
is created, where it stores its own registers to be saved during inter-predicate calls, as
well as status registers so that it can return control to the predicate that called it.

The stack frame of a predicate in the WAM has the layout described in figure 3.4. There
are two registers we need to consider here: The frame pointer(referred to as the environ-
ment register (E) in the WAM), which points to the beginning of the stack frame and the
instruction pointer, which points to the current instruction being executed (refered to as
the program counter in the WAM).

It is not necessary for a predicate invocation to allocate a stack; a leaf predicate (that is,
a predicate that calls no other predicates can simply perform its execution and return.

..

..Saved frame pointer (CE)

..Saved instruction pointer (CP)

..Number of local variables (n)

..Local variable 1

.....

..Local variable n

.

E

.

E + n + 2

Figure 3.4: Stack frame layout

The end of the stack frame need not be saved; it can be inferred from the frame pointer
E and the number of local variables that it is SP = E + n+ 2.

The following instructions deal with calling and parameter passing:

• Calling and returning:

– call p/n: Calls the predicate p/n.
– execute p/n: Assuming the predicate p/n is the last one in the current clause,
performs a tail call optimization by passing the arguments to the corresponding
registers and then trimming the stack so that p/n takes control.

– allocate n: Allocates a stack frame with n local variables. First instruction that
must be executed from a predicate as soon as it’s called (if it is necessary to
allocate a stack frame).
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– deallocate: Cleans up the current stack frame ( if the predicate did alloate one)
and returns to the parent.

• Parameter passing:

– put_variable Vn, Xi: Binds Vn, Ai to a new (unbounded) heap cell (akin to
its one argument counterpart).

– put_value Vn, Xi: Assigns the contents of Vn to Ai.
– You can also use put_structure, put_list, as well as put_constant (which
has the same behaviour as its set counterpart).

– get_variable Vn, Xi: Assigns the contents of Ai to Vn.
– get_value Vn, Xi: Performs a deep unification of Vn, Ai. A special segment
of memory (called the PDL is reserved for deep unification). Notice that deep
unification can also be performed by using, for instance, an occurs-check.

– The instructions get_structure, get_list, and get_constant can also be
used as well.

For instance, the rule p(X, Y) :- q(X, Z), r(Z, Y). would be translated into the
following:

p/2:
allocate 2
get_variable Y1, A1
get_variable Y2, A2
put_value Y1, A1
put_variable Y3, A2
call q/2
put_value Y3, A1
put_value Y2, A2
call r/2, 0
deallocate

A tail-call optimized version of the above would be the following:

p/2:
allocate 2
get_variable Y1, A1
get_variable Y2, A2
put_value Y1, A1
put_variable Y3, A2
call q/2
put_value Y3, A1
put_value Y2, A2
deallocate
execute r/2
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3.4 Backtracking

To implement backtracking in WAM, we need to introduce the concept of a choice point. A
choice point is a memory segment that contains all the relevant information so that should
the current goal be unattainable, the control flow will use the choice point data to perform a
reversion. When allocated, the layout of a choice point frame adheres to the one described
in figure 3.5. A keen observer will notice the trail pointer in the frame layout; we will ignore
this saved register for now.

..

..Number of arguments (n)

..Argument register 1

.....

..Argument register n

..Saved instruction pointer (CE)

..Saved stack pointer (CP)

..Previous choice frame (B)

..Next clause (BN)

..Trail Pointer (TR)

..Heap Pointer (H)

.

B

.

B + n + 6

Figure 3.5: Choice point frame layout

Thus, whenever we enter a predicate with multiple choices for the first time, we create
a choice point by saving the relevant information in it, then we perform the typical stack
allocation boilerplate.

While this concept might look similar to stack-based exception handling, there is a sig-
nificant catch: Even after returning from the predicate, we should be able to unwind the
program execution to the point after the choice point has been created.

For instance, consider the following Prolog snippet:

a :- b(X), c(X).
b(X) :- e(X).
e(X) :- f(X).
e(X) :- g(X).
c(1).
f(2).
g(1).

A choice point is created when e is invoked (figure 3.6), but if we discard the choice point
because f(2) succeeds (figure 3.7), we’ll abort with failure instead of returning with the
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correct answer, which is X = 2.

..

..Stack frame of f

..Stack frame of e, 1st branch

..Choice point of e, 1st branch

..Stack frame of b

..Stack frame of a

.

E

. B

Figure 3.6: Creation of choice point for e

..

..Stack frame of c, failure

..Stack frame of a

. E

Figure 3.7: Deallocation of choice point of e yields no answer

To remedy this, WAM adds the following additional rules regarding choice points:

• When allocating a stack frame, allocate it after the latest choice point.

• When deallocating a stack frame, don’t deallocate its corresponding choice point.
Instead, just deallocate your stack frame and leave the choice point on its own.

• Upon failure, the choice point will resurrect all stack frames that were deallocated
and drop all stack frames allocated after it, because they correspond to an execution
that must be rewound.

After applying these rules, when a choice point is created when e is invoked (figure 3.8),
but we keep the stack frame of predicate b allocated even when it has finished executing
(figure 3.9). Thus, even if b is deallocated and then c is called (figure 3.10), we’ll be able
to backtrack successfully when f is called (which will fail for f(1)), we will be able to yield
the correct answer by backtracking to the second branch of predicate e (figure 3.11 , and
that answer is X = 2.

The WAM has 3 choice point instructions:

• try_me_else L: Allocate and initialize a new choice point such that in case of a
backtrack, the instruction at label L will be executed.

• retry_me_else L: Reset all information corresponding to the current choice point
and set the instruction upon backtrack to be at the label L.

• trust_me: Reset all information corresponding to the current choice point and deal-
locate it.
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..

..Stack frame of f

..Stack frame of e, 1st branch

..Choice point of e, 1st branch

..Stack frame of b

..Stack frame of a

.

E

. B

Figure 3.8: Creation of choice point for e

..

..Choice point of e

..(Dead) Stack frame of b

..Stack frame of a

.

E

.
B

Figure 3.9: Creation of choice point for e, after applying choice point rules

For example, for the following program:

p(X, a).
p(b, X).
p(X, Y) :- p(X, a), p(b, Y).

Is translated into the following:

p/2: try_me_else L1
allocate 0
get_constant a, A2
deallocate

L1: retry_me_else L2
allocate 0
get_constant b, A1
deallocate

L1: trust_me
allocate 1
get_variable Y1, A2
put_constant a, A2
call p/2
put_constant b, A1
put_value Y2, A2
call p/2
deallocate
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..

..Stack frame of c

..Choice point of e, 1st branch

..(Dead) Stack frame of b

..Stack frame of a

.

E

. B

Figure 3.10: Choice point of e is still allocated

..

..Stack frame of f

..Stack frame of e, 2nd branch

..Choice point of e, 2nd branch

..Stack frame of b

..Stack frame of a

.

E

. B

Figure 3.11: Aborting properly resurrects stack frame of b

There is still an additional issue we have to deal with: When unwinding to a choice point,
we also have to reset all variables that were modified by the instructions executed between
the choice point creation and the instruction that forced the unwinding to occur. This is
defined as the trail in the WAM, which stores all changes in variable values. The trail is,
essentially, a memory segment where, whenever a variable is changed, the old value is
pushed to the top of it, while when it is necessary to backtrack, all values from the top
of the trail to the choice point trail pointer (TR) are stored. We can do better, however:
According to [], instead of storing all values, we only need to store all variables that were
initially unbound when modified, thus significantly reducing the size of the trail.

The trail defines two functions, called trail and unwindTrail, which append a stack or
heap address to the trail and unwind the trail up to a certain point, respectively. These
functions are defined in figure 3.12.

Function trail(addr, higherOrder):
if addr < HB or (H < a and a < B) then

TRAIL[TR] = addr;
TR = TR + 1;

end
Function unwindTrail(addr1, addr2):

foreach i = addr1 to addr2− 1 do
STORE[val] = (REF, val);

end
return

Figure 3.12: Trail utility operations
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3.5 Additional constructs

This is not a full-featured presentation of the WAM. There are still features not presented
here, such as cutting (implementation of the cut in classical Prolog), as well as indexing
(which is, essentially, amethod of minimizing the number of choice points we are supposed
to create by peeking at an argument register’s tag and value. A reader willing to learn
about the implementations of cut and indexing is free to refer to [1].
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4. EXTENDING THE WAM TO EXECUTE POLYHOPES PROGRAMS

As it stands right now, WAM is not a fit candidate for translating polyHOPES programs
into it. There are two reasons for this:

• We are currently lacking any concept of callable variables (such as function pointers,
as defined by the C standard [8]). The call and execute instructions only allow term
names as invocation targets.

• Even if we did have a concept of callable variables, we also require the ability to
represent the result of a partial application. For instance, consider the following
polyHOPES program:

foo(P)(A, B, C) :- ap(P(A))(B), ap(P(A))(C).
ap(Q)(X) :- Q(X).
bar(s, t).

?- foo(pred bar)(s, t, u).

If we had to transform this program into a WAM-esque one, it would be mandatory
to represent the fact that when the predicate foo is being executed, two subsequent
partial applications are performed on the predicate P, with corresponding arguments
A and B.

• We are also lacking a means of representing the set corresponding to a higher order
variable. For instance, in a hypothetical scenario where we had support for higher
order variables, while executing the following program:

map(P)([], []).
map(P)([X|Xs], [Y|Ys]) :- P(X, Y), map(P)(Xs, Ys).

?- map(X)([2, 3, 5, 7, 11], [1, 2, 3, 4, 5]).

The set S corresponding to the higher-order variable X during each resursive invo-
cation of map/3 would be {(2, 1)}, then {(2, 1), (3, 2)}, then {(5, 3)}, etc.

• When backtracking, it is necessary to also revert the current set corresponding to a
higher-order variable, if necessary. For instance, in the following program:

foo(X)(A, B) :- X(A), fail.
foo(X)(A, B) :- X(B).

?- X(s), foo(X)(t, u).
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When the predicate foo is executed, the higher-order variable X is first set to {s, t},
then the fail predicate is invoked, which will cause a backtracking (since the fail
predicate is obviously non-existent) hence X will be reverted to {s} and, finally, when
the second branch is executed, X will be assigned to {s, u}.

In order to extend the WAM so that it can also run programs written for HOPES, we have
to incorporate partial application, as well as the introduction of higher order variables and
treating them as callables. We also need to ensure that classic Prolog programs still
execute as intended when these extensions are added.

4.1 Introducing partial application support

An approach of introducing partial application support in WAM is by introducing two new
heap cell types, called APP and APPSTR (derived from ”partial application” and ”partial
application structure”, respectively).

Just like the REF and STR types, a APP cell is parameterized by an address value, which
points to the heap where the partial application is stored. An APPSTR cell, on the other
hand, is parameterized by an integer n, which is the number of parameters that have been
passed to the partial application.

A partial application is represented on the heap as follows: Let n be the number of ar-
guments to a partial application. Then a sequence of n + 2 contiguously-allocated cells
represent the partial application allocation as follows:

• The first heap cell parameter has a tag of APPSTR, along with the value n. If n = 0,
then the partial application is, essentially, a no-op partial application.

• The second heap cell parameter can have a tag of type APPSTR (to denote a partial
application applied to another partial application), TRM, (along with the correspond-
ing predicate name and arity, such as pred/3), REF or HOV (higher-order variable),
which we shall delve into later on.

• For 3 ≤ k ≤ n + 2, the k-th cell corresponds to the n − 2-th parameter in the partial
application.

For instance, consider the following polyHOPES program:

ap(X)(Y) :- X(Y).
q(X, Y).

?- ap(q(a))(b).

When passing the first parameter to the predicate ap, the heap layout, as well as the value
of the register X1 will look like the one depicted on figure 4.1.
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..

..0 ..APPSTR ..1

..1 ..TRM ..q/2

..2 ..CON ..a

.

..X1 ..APP ..0

Figure 4.1: Heap representation of partial application q(a)

We will also demonstrate an example of chained partial application. Given the following
polyHOPES program:

ap(P)(X) :- P(X).
ap2(P)(X, Y) :- ap(P(X))(Y).
q(A, B, C).

?- ap2(q(a))(b, c).

When passing the first parameter to the predicate ap, the heap layout, as well as the value
of the register X1 will look like the one depicted on figure 4.2:

..

..0 ..APPSTR ..1

..1 ..TRM ..q/3

..2 ..CON ..a

..3 ..APPSTR ..1

..4 ..APP ..0

..5 ..CON ..b

.
..X1 ..APP ..3

Figure 4.2: Heap representation of chained partial application (q(a))(b)

An astute observation is that it may be necessary to also retain the number m of parame-
ters in the final predicate (where n ≤ m), so that an error is raised if the partial application is
called with a superfluous or an insufficient number of arguments. However, this is actually
unnecessary: If more than n arguments were passed to an n-ary predicate, higher-order
variable or an existing partial application of other, the polyHOPES type system would have
caught it for us in the first place. Additionally, if an n-ary predicate, higher-order variable
or existing partial application is called with strictly less than n arguments, then the type
system will also reject it.

We have introduced all of the appropriate heap concepts for partial application (barring
higher-order variables). We also need to introduce commands to invoke partial applica-
tions. We, thus, define the following commands:

• put_application m Yi, f/n: Constructs a partial application of predicate f/n with
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an arity of m on the heap and stores its address into variable Yi, along with a tag of
APP.
Just like when allocating structure types on the heap, putting the partial application
arguments is performed with the usual set instructions.
To construct the partial application into the heap, the algorithm shown on 4.3 is per-
formed:

HEAP[H] = (APPSTR, m);
HEAP[H + 1] = (TRM, f/n);
S = H + 2;
Yi = (APP, H);
H = H + m + 2;
P = P + instrSize(P);

Figure 4.3: Partial application of predicate

• put_application m Yi, Yj: Constructs a partial application of the value pointed to
by the variable Yj with an arity of m on the heap and stores its address into variable
Yi, along with a tag of APP.
There is a culprit we have to mitigate, though: If Yj is an unbound stack variable,
we have to bind it to a newly allocated variable on the heap, otherwise, there is a
hazard of introducing a reference from the heap to the stack, which is forbidden by
the WAM. As we will see later on, this hazard will be introduced when we delve into
higher-order variables, thus it is mandatory that we deal with it at this point.

Just like when allocating structure types on the heap, putting the partial application
arguments is performed with the usual set instructions.
To construct the partial application into the heap, the algorithm shown on 4.4 is ex-
ecuted.

• call_variable Xi, N: Similarly to call, it invokes the variable Xi, with N stack
variables remaining on the caller’s frame. The variable Xi must be of tag of either
APPSTR, REF or HOV; if it’s not, an error is issued (although this case will never happen,
since it will be caught by the type checker.

The call_variable command is, also, required to extract the arguments from the
partial application chain and apply them in a right-to-left order (arguments of first
partial application in a chain correspond to the last arguments in the invocation, etc).

We will assume that the partial application is applied to a predicate (and describe
later on the case for a higher-order variable). The algorithm for performing the in-
vocation is as follows in 4.5 (where ExecuteCall can be assumed to be the function
that handles the call f/n.

• execute_variable Xi: Similar to call_variable, except that it replaces the stack
frame of the caller with the callee’s one.
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addr = deref (E + j + 1);
if addr < E then

HEAP[H] = (REF, H);
H = H + 1;
bind(addr, H);
addr = H;

end
HEAP[H] = (APPSTR, m);
HEAP[H + 1] = addr;
S = H + 2;
H = H + m + 2;
Yi = (APP, H);
P = P + instrSize(P);

Figure 4.4: Partial application of register or stack variable

For example, consider the following program:

p(a, b, c).
ap(P)(A, B) :- ap(P(A))(B).
ap(P)(A) :- P(A).

?- ap2(pred p(a))(b, c).

A WAM translation that uses the concepts we just defined is the following:

p/3: get_constant a, X1
get_constant b, X2
get_constant c, X3

ap/3: put_application 1 X1, X1
set_variable X2
put_variable X3, X2
execute ap/2

ap/2: put_application 1 X1, X1
set_variable X2

appl: execute_variable X1
main: put_application 2 X1, p

set_constant a
put_constant b, X2
put_constant c, X3
execute ap/3

When the appl label is reached, the layout of the heap and registers will look like the
representation on figure 4.6.
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args = [];
addr = HEAP[Xi];
while true do

addr = deref (addr);
switch val do

case (REF, _) To be discussed later on
case (HOV, _) To be discussed later on
case (APP, m)

addr = addr + 1;
args = [HEAP[addr + 2], ..., HEAP[addr + m + 2]] + args;
continue;

end
case (TRM, f/n)

foreach i in 1 .. len(args) do
Xi = args[i];
ExecuteCall(f/n, N);

end
end

endsw
end

Figure 4.5: Procedure for calling a variable

4.2 Integrating higher order variables

An issue that has not been discussed yet is the fact that we have not settled on what
should happen in a top-down implementation of polyHOPES when we encounter a call
to an unbounded or higher-order variable. Luckily for us, this issue can be answered by
referring to the definition of SLD-resolution of the language H, as demonstrated in [7].
From the SLD-resolution of H, we can determine that:

• If an unbound variable is called, then we need to create a new higher order variable
to the heap and make the former point to the latter. The arity n of that variable is
equal to the number of arguments passed to it.

• If a higher-order variable of arity n is called, then a list of the parameters that were
called have to be stored as a tuple alongside the variable, so as to be displayed as
a set when the solution is found and presented to the user.

• It must be possible to remove argument tuples from the higher-order variable should
it be deemed necessary due to backtracking in a last-to-first manner(stack-esque).

Consider, for example, the HOPES program:
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..

..0 ..APPSTR ..1

..1 ..TRM ..p/3

..2 ..CON ..a

..3 ..APPSTR ..1

..4 ..APP ..0

..5 ..CON ..b

. ..X1 ..APP ..0
..X2 ..CON ..c

Figure 4.6: Heap representation of a more complex partial application

closure(R, X, Y) :- R(X, Y).
closure(R, X, Y) :- R(X, Z), closure(R, Z, Y).

?- closure(Q, a, b).

Then, by applying the SLD-resolution algorithm, we can get an arbitrary number of an-
swers for the program, such as {(a, b)}, {(a, Z1), (Z1, b) etc. A hypothetical top-down im-
plementation that executed the above program would first yield the answer Q = {(a, b)},
then backtrack from the first branch to yield the answer Q = {(a, Z1), (Z1, b)} and
so on (hence a successful implementation of higher-order variables should not only allow
the appending of tuples, but also the removal of them).

For a representation to be suitable for dealing with higher-order variables, it should, prefer-
ably, comply to the following:

• It should be simple to implement from an implementor’s point of view.

• Adding and removing of items should be done in a stack-esque manner.

• It should be easy to integrate to the WAM memory layout (i.e. it should not require
any additional memory segments to be defined for the WAM or, if so, those new
memory segments should be minimized).

• It should minimize the amount of memory required.

Given these criteria, we come to the conclusion that a linked-list based stack implementa-
tion is the best answer. Someone could also implement a more sophisticated data struc-
ture, such as a linked hash set (hash map that retains the insertion order of elements), so
that duplicate tuples (tuples whose heap cell contents are equal for each n-th cell) will be
removed. Should they decide to do so, however, they will start running into issues: Since
a hash set is usually backed by a resizable contiguous array [4], performing a resize on
the hash map will result in heap fragmentation. We could introduce more sophisticated
logic to the WAM memory allocation scheme, but, unlike our decision, it will complicate
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the allocation and freeing of cells from the heap. We may need to introduce a garbage col-
lector in the process, whereas simply using a linked linked-list backed stack only requires
a stack-esque allocation scheme.

Thus, we shall introduce two new heap cell types to implement higher-order types: HOV and
HOVATY (standing for ”higher-order variable” and ”higher-order variable arity” respectively).
A HOV cell is parameterized by an address value, while a HOVATY type is parameterized by
an integer that denotes the arity of the higher-order variable. An astute observer will re-
mark that cells of type HOVATY are unnecessary, since we can always know the eventual
number of parameters from a partial application and the type system of polyHOPES will
reject a program if the invocation arity differs for the same higher-order variable. How-
ever, when it comes to displaying the answer to the user, we will not be able to tell the
number of arguments. Thus, although superfluous during normal execution, HOVATY cells
are important for displaying answers back to the user.

A higher-order variable is represented on the heap as follows: Let n be the variable’s arity.
Then, a sequence of 2 contiguously-allocated cells represent the higher-order variable as
follows:

• The first cell has a tag of HOVATY and a value of n.

• The second cell has a type of REF, whose address is greater than or equal to this
cell’s address on the heap. In case of equality, the higher-order variable is deemed
to be an empty relation, otherwise it is deemed to me a non-empty relation.

A higher-order variable relation tuple is represented on the heap as a contiguously-allocated
segment of n + 1 heap cells (assuming that the higher-order variable has an arity of n).
The contents of the cells are as follows:

• The first cell has a type of REF, which references the first cell of the previous tuple
stored in the higher-order variable relation. If the relation is unitary, then the ref-
erence points to the second cell (reference to last element in the relation) of the
higher-order variable representation.

• The rest n types represent the argument tuple.

A heap cell, register or stack variable with a cell type of HOV simply refers to a higher-order
variable.

For example, if P is a higher-order variable with arity 2 which is stored in register X3,
then assuming that {(a, b), (c, d), (e, f)} (and they have been added in the order they are
displayed on this thesis), then the in-memory representation should match that of figure
4.7.
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..

..20 ..HOVATY ..2

..21 ..REF ..28

..22 ..REF ..20

..23 ..CON ..a

..24 ..CON ..b

..25 ..REF ..22

..26 ..CON ..c

..27 ..CON ..d

..28 ..REF ..25

..29 ..CON ..e

..30 ..CON ..f

.

..X3 ..HOV ..20

Figure 4.7: Heap representation of higher-order variable relation

What remains to be done is to incorporate the stack operations into the relevant parts of
the WAM implementation. There are two cases we need to consider:

• When executing a call_variable instruction, we have to possibly initialize an un-
bound variable on the heap to one binding to a higher-order variable on the heap,
then perform a push operation onto the stack.

We will not delve into pushing into an already existing stack; this can be performed
trivially [4]. What we need to delve into is that the variable we bind a newly-created
higher-order variable to has been already allocated on the heap and that the correct
number of arguments have been passed.

Thankfully, for us, this becomes a non-issue thanks to the way put_applicationwas
implemented. Whenwewrote the implementation for the aforementioned instruction,
we took special care to bind the argument to an unbound heap variable (if it was an
unbound stack argument).

In addition, the only way of invoking a higher-order variable is to perform a partial
application first (through the put_partial) set of instructions, then call the partial
application through call_variable, thus all arguments will be located on the heap
(and be traversable as a singly linked list of partial applications).

The (now complete) implementation of call_variable (minus the stackmanipulation
boilerplate) is shown in figure 4.8.

• When backtracking from a call, we have to undo all stack pushes we performed from
the point we entered the stack frame up to the point the backtracking was initiated.

We can solve this issue by looking at the WAM trail: As a reminder, the trail is simply
a separate memory segment where whenever a binding is performed to an unbound
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variable, this is recorded on the trail so that it can be reverted in case of backtracking.

We, thus, modify the trail so that it can accept both unbound variable addresses and
higher-order variables on the heap (with each case being represented by a different
tag).

The modifications to the trail procedures, as well as the utility functions we need to
introduce are shown on figure 4.9.

Since mutation of the tuples of a higher order variable relation is now simply a matter of
pushing and popping into a stack, we now modify call_variable to also support higher-
order variables, as shown in figure 4.8.
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args = [];
addr = HEAP[Xi];
while true do

addr = deref (addr);
switch val do

case (REF, ptr)
/* ptr is an unbound variable */
STORE[ptr] = (HOV, H);
bind(ptr, H);
HEAP[H] = (HOVATY, len(args));
HEAP[H + 1] = (REF, H + 1);
H = H + 2;
appendTuple(ptr, args); break;

end
case (HOV, ptr)

appendTuple(ptr, args);
break;

end
case (APP, m)

addr = addr + 1;
args = [HEAP[addr + 2], ..., HEAP[addr + m + 2]] + args;
continue;

end
case (TRM, f/n)

foreach i in 1 .. len(args) do
Xi = args[i];

end
ExecuteCall(f/m, N);
break;

end
endsw

end

Figure 4.8: Procedure for calling a variable, revisited

A keen observer will point out that the algorithm presented in 4.8 does not cover all cases
regarding the invocation of a higher-order variable. For instance, given:

nat(0).
nat(s(X)) :- nat(X).
?- P(nat).

A correct implementation should print all natural numbers, starting from zero.
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This case is the reason we made the following assumptions for our programs (which en-
sures that algorithm 4.8 will be correct) in chapter 3, that is all higher order variables can
be:

• First-order variables

• Higher-order variables of an arbitrary order, as long as they are located on the head
of a clause. Thus all higher order variables which will be requested to be generated
will be located either on the clause body (and not on the clause head) or on the goal.

Function trail(addr, higherOrder):
if addr < HB or (H < a and a < B) then

TRAIL[TR] = (addr, higherOrder);
TR = TR + 1;

end
Function unwindTrail(addr1, addr2):

foreach i = addr1 to addr2− 1 do
(val, higherOrder) = TR[i];
if higherOrder then

removeHeadTuple(addr);
else

STORE[val] = (REF, val);
end

end
return
Function appendTuple(addr, args):

headPtr = STORE[addr] + 1;
HEAP[H] = (REF, HEAP[headPtr]);
foreach i = 1 to len(args) do

HEAP[H + i] = args[i];
end
HEAP[headPtr] = (REF, H);
H = H +n+ 1;

return
Function removeHeadTuple(addr):

headPtr = deref (addr) + 1;
(_, prev) = HEAP[headPtr]; HEAP[headPtr] = (REF, prev);

return

Figure 4.9: Utility operations for higher-order variable manipulation

An example of execution using higher-order variables will now be shown. Given the fol-
lowing program:
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foo(P)(A, B, C, D) :- P(A, B), fail.
foo(P)(A, B, C, D) :- P(C, D).
?- foo(P)(a, b, c, d).

The WAM instruction outputted will be the following:

foo/5: try_me_else L2
put_application 2 X1, Y1
set_variable X2
set_variable X3

M0: call_variable X1, 0
M1: execute fail/0
L2: trust_me

put_application 2 X1, X1
set_variable X4
set_variable X5

M2: execute_variable X1
main: put_variable X1, X1

put_constant X2, a
put_constant X3, b
put_constant X4, c
put_constant X5, d
execute foo/5

Then:

• Before the label M0 is executed, the heap representation will match that of figure
4.10.

• Before the label M1 is executed, the heap representation will match that of figure
4.11, the higher-order variable will consist of 1 tuple. The variable will also exist
on the trail twice: Once as an unbound variable and once as an already existing
higher-order variable.

• After the label M1 is executed, a backtracking will occur. The backtracking will cause
the higher-order variable to be an empty one, then, because the variable that pointed
to it was also an unbound variable before the stack frame was executed, it will also
become unbound, hence before L1 is executed, the heap will be empty.

• Just like in the case of label M0, before the label M2 is executed, the heap represen-
tation will match that of figure 4.12.
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..

..0 ..REF ..0

..1 ..APPSTR ..2

..2 ..REF ..0

..3 ..CON ..a

..4 ..CON ..b

. ..X1 ..APP ..0

Figure 4.10: Heap representation of higher-order backtracking, state 1

..

..0 ..HOV ..5

..1 ..APPSTR ..2

..2 ..REF ..0

..3 ..CON ..a

..4 ..CON ..b

..5 ..HOVATY ..2

..6 ..REF ..7

..7 ..REF ..6

..8 ..CON ..a

..9 ..CON ..b

.

..X1 ..REF ..0

Figure 4.11: Heap representation of higher-order backtracking, state 2

..

..0 ..HOV ..5

..1 ..APPSTR ..2

..2 ..REF ..0

..3 ..CON ..c

..4 ..CON ..d

..5 ..HOVATY ..2

..6 ..REF ..7

..7 ..REF ..6

..8 ..CON ..c

..9 ..CON ..d

.

..X1 ..REF ..0

Figure 4.12: Heap representation of higher-order backtracking, state 3
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We also observe a convenient property after incorporating the trail to track higher-order
variable relations: In the classical WAM, addresses on the heap point to heap elements
of a lower address, thus deallocating part of the heap by decrementing the heap pointer
is a non-issue. This is, on first sight, not possible in our case, because it is possible for
references to point to heap cells of a higher address. However, thanks to the addition of
higher-order variable cleanup by the trail, this becomes a non-issue, hence there is no
necessity in incorporating a more complex allocation scheme.

4.3 Conclusion

We now have seen that it is possible to extend the WAM to allow execution of polyHOPES
programs, without introducing a significant number of changes to the WAM itself. A major
question arising from this is whether or not existing Prolog programs translated into the
classical WAM will continue to run unmodified. The answer is affirmative; if a polyHOPES
program does not make use of partial application and/or higher-order variables, none of
the instructions defined in this chapter will be executed, thus no partial application or higher
order variable constructs will be present on the heap. Thus, the modification of the WAM
shown in this chapter is a strict subset of the classical WAM.
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5. RELATED WORK

In this chapter, we will describe the work performed on Teyjus [12] (a λProlog interpreter)
and XSB (which partly implements HiLog) [6].

5.1 Teyjus

Just like the case in this thesis, the abstract machine implemented in Teyjus is based on
the WAM. What differs, compared to our own implementation, is that an extended WAM
that is going to be used by Teyjus must also fulfill the following requirements:

• The language contains primitives that can alter the name space and the definitions
of procedures in the course of execution. This means, in particular, that unification
has to pay attention to changing signatures and that the solution to each (sub)goal
has to be relativized to the relevant program context.

• In contrast to other languages, lambda terms are used in Lambda Prolog as data
structures. A representation must therefore be provided for these terms that permits
their structures to be examined and compared in addition to supporting reduction
operations efficiently.

• Higher-order unification is used in an intrinsic way in the language. This operation is
conceptually more complex than the unification operation of Prolog and a practical
way of supporting it must be found. In doing this, it may sometimes be necessary
to delay the solution of unification problems. For this reason, a mechanism must be
devised for representing unification problems explicitly.

• In addition to having a role in determining program correctness, types could be rele-
vant to the dynamic behavior of programs. A scheme must therefore be designed for
reducing the runtime impact of types and this must be augmented by a good mech-
anism for carrying types along into computatations when this cannot be avoided.

• Programming in the language is done relative to modules. In realizing this feature, it
is necessary to support certain operations for composing different modules. More-
over, if modularity is to be genuine, a mechanism must be devised for realizing sep-
arate compilation.

Work carried out by Nadathur et al [12] in the design of a virtual machine that included
devices for treating all these aspects well. The solution to the problem of changing signa-
tures was based on an scheme for tagging constants and variables and using these tags
in unification.

To realize changing program contexts, a fast method was designed for adding and re-
moving code that is also capable of dealing with backtracking. Code that needs to be
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added may sometimes contain global variables and this possibility was dealt with by an
adaptation to logic programming of the idea of a closure. To facilitate a sensible repre-
sentation of lambda terms, an explicit substitution calculus called the suspension calculus
was designed and deployed in the low-level steps for manipulating lambda term that are
contained in the abstract machine. This abstract machine handled full higher-order uni-
fication, an operation that is characterized by its branching behaviour. Techniques were
developed for treating such branching and also for compiling unification steps and for pri-
oritizing deterministic parts of the unification computation. In treating types, ideas were
introduced for utilizing information available at compile time about their structure to sub-
stantially reduce the effort expended at runtime in creating and analyzing types.

Finally, towards supporting modular programming, a method was designed for realizing
separate compilation with one of the module interaction mechanisms known as module
importation. This mechanism also required the addition and removal of blocks of code.
Techniques for dealing with changing program contexts in the core language could be
used to implement this aspect. However, these methods had to be embellished with new
mechanisms for avoiding redundancy in the added code, something that could only be
determined at runtime.

5.2 HiLog

Unlike Teyjus, an implementation of HiLog incorporates no modifications to the WAM, but,
instead, the HiLog source code is transpiled into Prolog at first [15]. As such, the XSB
implementation of HiLog [6] needs no modifications to the WAM so that it can run.

The rationale for not modifying the WAM specification, according to [15] is as follows:

• All low-level Prolog optimisations and compilation techniques developed throughout
the years would be immediately applicable.

• Prolog programs would not incur the extra cost of the WAM modifications.

• HiLog programs could run on any Prolog implementation.

According to the paper, the WAM should be an adequate abstract machine for the execu-
tion of any logic language with first-order semantics. Thus, [15] focuses on providing:

• A complete solution to the problem of HiLog implementation, which stays within the
WAM framework.

• A formal proof that HiLog programs that do not use any higher-order features execute
at the same speed as Prolog programs, when compiled with the proposed scheme.

• A completely automated call specialisation algorithm that uses global static infor-
mation, but does not require any user supplied annotations, information about the
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queries, or approximation of the dynamic behaviour of HiLog programs using ab-
stract interpretation.
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6. CONCLUSIONS AND FUTURE WORK

We have, thus, presented a modification to the WAM, which is capable of implementing
partial application and higher order variables, thus translating HOPES to WAM can be
done with only a couple of somewhat trivial modifications.

The modifications we made to the WAM are also exteremely memory and execution time
efficient: No significant modifications to the memory allocation schemes of the WAM were
necessary and, except for the case of performing the invocation of a partial application
with n final variables (which is obviously an Ω(n) operation), all other instructions have a
constant running time.

The main limitation of our current implementation is the fact that calling a higher-order
variable with another higher order variable or predicate as an argument is currently not
implemented. We speculate that implementing the case for first-order variables is a task
that is neither trivial nor complex. On the other hand, we speculate that adding support for
second (and higher) order variables may require significant changes to the WAM layout.

The original paper for HOPES [7] suggests looking for approaches regarding adding nega-
tion as failure to the language. An interesting approach for doing so is by adding negation-
call and negation-execute instructions (the latter one being useful for tail call optimization).
The negation-call would proceed as expected for ”normal” calls, whereas for higher order
variables an approach that makes use of three cyclic intrusive (prev and next nodes are
located in the list elements themselves) linked lists, one of which is used to store the affir-
mative clauses, one the negative and all clauses would be in the final list, which contains
all the elements and is used by the trail to perform unwinding.

Another suggestion for improving the implementation presented above is to add closure
support, instead of an ad-hoc partial application. A closure is, essentially, a partial applica-
tion with the exception that instead of being a partial application of a variable, it is a partial
application to a predicate (either labelled or anonymous). In addition, instead of shuffling
registers around to construct the argument list, we can add another register referring to
the captured parameters in the closure. This also enables us to easily add support for
anonymous predicates, with only having to modify the syntax. Closure support would also
make it easier to add typechecking for predicates (anonymous, higher-ordered or even
neither of them). The only minor downside is to invent additional syntax to refer to a pred-
icate with arity n instead of a structure with the same name and with arity n. We can also
invent a syntax to express the creation of an ”empty” higher-order variable with an arity of
n (which is not possible with the current syntax).
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ABBREVIATIONS - ACRONYMS

WAM Warren Abstract Machine

ISA Instruction Set Architecture

HOPES Higher Order Prolog with Extensional Semantics

A. Tasos 49



WAM extensions for implementing higher order logic languages

REFERENCES

[1] Hassan Ait-Kaci. Warren’s abstract machine-a tutorial reconstruction. 1999.

[2] Aggelos Charalambidis. Hopes haskell interpreter. http://code.haskell.org/
hopes/, 2012. [Online; accessed 10-November-2016].

[3] Weidong Chen, Michael Kifer, and David S Warren. Hilog: A foundation for higher-
order logic programming. The Journal of Logic Programming, 15(3):187–230, 1993.

[4] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[5] Vítor Santos Costa. Optimising bytecode emulation for prolog. In International Con-
ference on Principles and Practice of Declarative Programming, pages 261–277.
Springer, 1999.

[6] Luis Fernando P. de Castro. Xsb. http://xsb.sourceforge.net/shadow_site/
manual1/node36.html, 2012. [Online; accessed 10-November-2016].

[7] Angelos Charalambidis Konstantinos Handjopoulos, Panos Rondogiannis, and
William W Wadge. Extensional higher-order logic programming.

[8] ISO ISO. Iec 9899: 2011 information technology—programming languages—c. Inter-
national Organization for Standardization, Geneva, Switzerland, 2011.

[9] Emmanouil Koukoutos. A higher-order extension of prolog with polymorphic type in-
ference.

[10] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Ma-
chine Specification: Java SE 8 Edition. Pearson Education, 2014.

[11] Dale A Miller and Gopalan Nadathur. Higher-order logic programming. In Interna-
tional Conference on Logic Programming, pages 448–462. Springer, 1986.

[12] Gopalan Nadathur and Dustin J Mitchell. System description: Teyjus—a compiler
and abstract machine based implementation of λprolog. In International Conference
on Automated Deduction, pages 287–291. Springer, 1999.

[13] William W Wadge. Higher-order horn logic programming. In ISLP, pages 289–303,
1991.

[14] David HD Warren. An abstract prolog instruction set. Tech. Note 309, 1983.

[15] Konstantinos Sagonas David S Warren. Efficient execution of hilog in wam-based
prolog implementations. In Logic Programming: Proceedings of the Twelfth Interna-
tional Conference on Logic Programming, volume 12, page 349. MIT Press, 1995.

A. Tasos 50

http://code.haskell.org/hopes/
http://code.haskell.org/hopes/
http://xsb.sourceforge.net/shadow_site/manual1/node36.html
http://xsb.sourceforge.net/shadow_site/manual1/node36.html

	CONTENTS
	INTRODUCTION
	Objective
	Motivation
	Outline of this thesis

	HOPES
	An overview of HOPES
	The higher-order language H
	Limitations of H (and HOPES)
	polyHOPES

	A WAM PRIMER
	Creating terms
	Unification
	Predicate invocation
	Backtracking
	Additional constructs

	EXTENDING THE WAM TO EXECUTE POLYHOPES PROGRAMS
	Introducing partial application support
	Integrating higher order variables
	Conclusion

	RELATED WORK
	Teyjus
	HiLog

	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	REFERENCES

