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ΠΕΡΙΛΗΨΗ

Στην παρούσα πτυχιακή εργασία παρουσιάζουμε μια δομή δεδομένων (με τη μορφή
γράφου),  η οποία αναπαριστά τις   κλάσεις ισοδυναμίας δεικτών που  βρίσκονται σε κάθε
σημείο του προγράμματος, κάτι που είναι χρήσιμο για βελτιστοποιήσεις στη μεταγλώττιση
και για την κατανόηση του προγράμματος.

Σκοπός της εργασίας αυτής είναι η επανα-υλοποίηση σε γλώσσα Java, της αρχικής
υλοποίησης ενός δηλωτικού μοντέλου της ανάλυσης σίγουρης-ισοδυναμίας δεικτών πάνω
σε  μονοπάτια  πρόσβασης,  γραμμένου  σε   Datalog,  που  χρησιμοποιείται  ήδη  από  το
framework  του  Doop.  Η  νέα  υλοποίηση  κατασκευάζει  μια  βελτιστοποιημένη  δομή
δεδομένων  η  οποία  κρατά  πολλές  σχέσεις  ισοδυναμίας  δεικτών  και  μονοπατιών
πρόσβασης σε ένα μόνο γράφο και  ξεπερνά σε ταχύτητα εκτέλεσης της ανάλυσης την
αρχική υλοποιήση.

Ως είσοδο και έξοδο, χρησιμοποιούμε αρχεία, τα οποία περιλαμβάνουν σχέσεις που
ανταποκρίνονται στα χαρακτηριστικά της ενδιάμεσης γλώσσας που χρησιμοποιείται από το
Doop.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Στατική Ανάλυση Προγραμμάτων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: σίγουρη ισοδυναμία, άνεφ συμφραζομένων ανάλυση δεικτών, Java



ABSTRACT

In this thesis we present a graph-based data structure for representing alias pairs
that  hold  in  each  program  point,  which  is  useful  for  optimizations  and  program
understanding.

The purpose of this project was to re-implement in Java, the original implementation
of a declarative model of a must-alias analysis over access paths, written in Datalog and in
use in the Doop framework. The new implementation manufactures an optimized data
structure that encodes multiple alias sets, and aliasing relations over longer access paths,
in a single graph and outperforms in speed the original implementaion. 

We  use  as  input  and  output  files  with  relations  that  correspond  to  Doop's
intermediate language features.

SUBJECT AREA: Static Programming Analysis

KEYWORDS: must alias, context-insensitive points-to analysis, Java
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Graph-based data structure for representation of must-alias analysis inferences

1. INTRODUCTION

Pointer analysis is a static analysis (analysis performed without actually executing
programs) that models heap behavior. It is divided in two subsets, points-to analysis and
alias analysis, that are closely related but not actually equivalent.

Points-to  analysis, establishes  which  pointers,  or  heap  references,  can  refer  to
which variables, or storage locations.

Alias analysis is used to determine if a storage location may be accessed in more
than one way. Note that aliasing refers to the situation in which a data location in memory
can  be  accessed  through  different  symbolic  variables  in  a  program.  Therefore,  two
pointers are said to be  aliased if they point to the same location. To simplify,  points-to
analysis finds the heap objects that variables may point to, and alias analysis computes
expressions that may alias.

Most pointer analyses are may-analyses. That is, they over-approximate the precise
result, to be guaranteed that all possible alias pairs or heap objects are found. However, in
that way, spurious inferences may be included. Thus, when two memory references are
said to have a may-alias relation, their aliasing is not certain that exists, likewise when an
abstract object belongs to a may-point-to set of a heap reference, their connection is also
questionable.  But if two variables do not belong in a may-alias or may-point-to set, it is
certain that they do not alias, or they do not reference to each other. The may information
is usually used to prove the absence of bugs in a program.

On the contrary, must-analysis under-approximates the accurate result, at the cost
of not including all inferences. The facts that are said to have a must-alias or a must-point-
to relation are guaranteed to always hold during program execution. The  must-analysis
can be used to prove the existence of bugs in a program. For that reason it is priceless for
bug detection (because of  the minimized false-warning rate),  as well  as for  automatic
optimizations and for better program understanding.

Intuitively, a  may analysis of a procedure represents a property guaranteed to be
true  in  all  executions  of  that  procedure,  while  a  must  analysis represents  witness
executions of the procedure that are guaranteed to exist.

The majority of must analyses for pointers are must-alias analyses, instead of must-
point-to. The reason is, that alias facts are easier than point-to facts to establish. In this
project,  we present a graph-based data structure to re-implement a simple declarative
model  of  a  must-alias  analysis over  access  paths  (i.e.,  expressions  of  the  form
“variable(.field)*  ”  ),  configured  for  the  Doop  framework.  The  model  we  introduce
compresses a fully-fledged implementation into a few declarative rules written in Datalog,
so that the concept of the analysis is easily understandable.

Based  on  the  above  model,  each  instruction  maintains  a  set  of  alias  classes.
Namely, it keeps a non-connected directed-graph with variables and access paths that are
certain to be aliased at the specific program point.

The operations performed over the graphs are:
• creating  a  new  component  (aka  alias  class)  in  the  graph  and  adding  a  single

variable or access path;
• removing a variable or an access path from a connected component and adding it

to another;

Nefeli Prokopaki - Kostopoulou 13
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• producing a new graph (aka set of alias classes) by intersecting two others.
We show that our new implementation of the declarative analysis model achieves dramatic
speedup compared to the original (mentioned above and written in Datalog).

The rest of the thesis is organized as follows:
• In chapter 2 we give a background of must-alias analysis in Datalog.
• In chapter 3 we present the logic behind our graph-based data structure.
• In chapter 4 we perform an evaluation of our implementation in Java by comparing

it with the Datalog implementation.
• In chapter 5 we give our conclusions.

Nefeli Prokopaki - Kostopoulou 14
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2. BACKGROUND

Our data structure is based on an inter-procedural must-alias analysis algorithm
used by the Doop framework. 

2.1  Example for Must-Alias Reasoning

In Figure 2.1 below, we introduce a small  example, written in Java, to  illustrate
some basic concepts of must-alias reasoning. This example is also used in later chapters
to showcase our structure and the algorithms used in it.

1 class A {
2    A field1;
3    B field2;
4
5    A(A field1, B field2) {
6       this.field1 = field1;
7       this.field2 = field2;
8    }
9 }
10
11 class B extends A {
12    A member1;
13
14    B(B b) {
15       this.field1 = b;
16    }
17 }
18
19 public class Main {
20    public static void main(String[] args) {
21       B b1 = new B(null);
22       B b2 = b1;
23       A a2;
24       A a1 = new A(a2, b1);
25       if(args == null)
26          a2 = new A(a1, b1);
27       else
28          a2 = new B(a1);
29       b1.member1 = a2;
30       a1.field2.member1 = a1;
31    }
32 }

Fig. 2.1: Simple illustration of must-alias inferences.

Nefeli Prokopaki - Kostopoulou 15
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As  said  before,  a  must-alias  analysis is  invaluable  for  providing  information  in
executions that reach a specific program point. For example, in Figure 2.1, the alias pairs
a1.field2 ~ b1 and a1.field1 ~ a2 established on line 24, hold for almost the
entire body of method main. On line 26 (i.e., right after line 26), a2.field1 is an alias for
a1 and a2.field2 for b1,  while on line 28,  a2.field1  is  aliased to a1.  We can
compute alias pairs by variable assignments (e.g. b2 ~ b1 on line 22) or by loads and
stores, as in the above mentioned aliases.

Due to the fact that the derived must-alias pairs undoubtedly point  to the same
object,  we  need  to  invalidate  aliases  that  no  longer  hold,  on  store  or  method  call
instructions that may interfere with objects within the alias pair. Thus, line 30 invalidates
pair b1.member1   ~   a2  and  validates  b1.member1   ~   a1,  alongside  with
a1.field2.member1 ~ a1.  That way the analysis remains accurate.

Some instructions in the program require special treatment. For instance, on lines
24, 26 and 28 we need to use inter-procedural reasoning to handle method calls. On line
29 we have to use intersection of the predecessors (i.e.,  lines 26 and 28). Both these
cases are decomposed on chapter 3.

2.2  Example for SSA and phi

 The input we use in this project is on a minimal single-static assignment (SSA)
intermediate representation, as well as the intermediate language in which we present our
algorithm.

   ...
24    A a2, a3, a4;
25    if(args == null)
26       a2 = new A(a1, b1);
27    else
28       a3 = new B(a1);
29    a4 = φ(a2, a3);
30    b1.member1 = a4;

   ...

Fig. 2.2: Part of Figure 2.1 with SSA.

Figure 2.2 is a part of the main method of Figure 2.1 written in SSA form, so that
each  variable  is  assigned  exactly  once.  Due  to  the  above,  we  are  introduced  to  the
concept of a φ (phi) function, in order to decide which of the newly created variables to
use. For instance, the use of φ function in Figure 2.2 is to choose which value to give a4,
between a2 or a3, depending on which path was followed.

Nefeli Prokopaki - Kostopoulou 16
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3. GRAPH-BASED DATA STRUCTURE

In this chapter we first give the background (i.e., the must-alias analysis model) on
which we relied on to develop this project, and second we introduce the main subject of
this thesis, the optimized data structure.

3.1  Must-Alias Analysis Model

The  model  of  the  inter-procedural  must-alias  analysis  algorithm  we  use  is
expressed in Datalog. This language is truly declarative and ideal for iteration until fixpoint.
Datalog has rules of the form “H(x,z)   P(x,y), Q(z,y)← .” which means that if there
exist  values x,y,z,w  so  that  predicates P(x,y)  and Q(z,y)  are  both  (the  “,”
suggests conjunction) true at the same time, then H(x,z) is inferred. On the left-hand
side of the left arrow (←) is the head of the rule (i.e., the inferred facts) and on the right the
body (i.e., the previously established facts). 

Some  syntactic  sugar  is  also  used,  to  simplify  the  rules  and  keep  them brief.
Multiple predicates are permitted in a rule head, as well as disjunction (“;”) and negation
(“!”)  in  the  rule  body.  In  addition  to  the  existential  quantifier,  which  is  implied  in
conventional Datalog, the rules also employ universal quantifier (∀), to be able to express
the meaning of “for all”. Note that the existential quantifier is interpreted as being outside
the  universal  one.  For  example,  the  expression  “ x:   P∀ (x,y)     Q(x,y,z)→ .”  is
interpreted as “there exist y,z such that for all x that P(x,y) holds then Q(x,y,z) also
holds”.  Finally,  symbol  “*”  signifies  that  the  relation  on  which  it  applies  is  reflexively,
symmetrically and transitively closed.

3.1.1  Analysis Relations

Figure  3.1  shows  the  domain  of  the  must-alias  analysis  and  three  groups  of
relations. The language used to show the algorithm is a SSA intermediate language.

Input Relations:

As  shown  in  the  comments  written  next  to  each  relation, MOVE represents
instructions that assign a  local variable to another, LOAD and STORE display instructions
with  assignments  between heap object  fields and local  variables (i.e.,  reading/writing),
CALL stands for virtual  calls and PHI captures φ instructions useful for the SSA form.
Finally, the NEXT relation gives the control-flow graph (CFG) successor of an instruction.

Other relations are more complex. Both FORMALARG and ACTUALARG show which
variable is a formal/actual argument of a certain method/invocation at a certain index.

We assume that for each method the intermediate language program is in a single-
return form. So, the FORMALRET encodes which variable is returned from the given method

Nefeli Prokopaki - Kostopoulou 17
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at  the  given  instruction,  and ACTUALRET indicates  the  return  variable  at  the  given
invocation site.

THISVAR returns  the this variable  of  a  function.  LOOKUP shows  the  method
inferred from a specific signature and type. INMETHOD returns the containing method of a
given instruction.

Relation RESOLVED keeps the variables that only point to an object with a unique
dynamic type, for virtual calls to be resolved. It is computed by a may-point-to analysis.
The predicate ROOTMETHOD holds the user-selected methods to be analyzed first.

V is a set of program variables     M is a set of method identifiers
S is a set of method signatures (name+type)   F is a set of fields
I is a set of instructions     T is a set of types
C is a set of contexts     A is a set of access paths: V(.F)*
ℕ is the set of natural numbers

MOVE(i:I, to:V, from:V) # i: to = from
LOAD(i:I, to:V, base:V, fld:F) # i: to = base.fld
STORE(i:I, base:V, fld:F, from:V) # i: base.fld = from
CALL(i:I, base:V, sig:S) # i: base.sig(...) 
PHI(i:I, to:V, from1:V, ...) # i: to = φ(from1, ...)
NEXT(i:I, j:I) # j is CFG successor of I

FORMALARG(meth:M, n: , arg:Vℕ ) ACTUALARG(invo:I, n: , arg:Vℕ )
FORMALRET(instr:I, meth:M, ret:V) ACTUALRET(invo:I, var:V)
THISVAR(meth:M, this:V) LOOKUP(type:T, sig:S, meth:M)
INMETHOD(instr:I, meth:M) RESOLVED   (var:V, type:T)
ROOTMETHOD   (meth:M)

MUSTALIAS(instr:I, ctx:C, ap1:A, ap2:A)
MUSTCALLGRAPHEDGE(invo:I, ctx:C, toMth:M, toCtx:C)
REACHABLE(ctx:C, meth:M)
REBASEATCALL(instr:I, ctx:C, fromVar:V, toVar:V)
REBASEATRETURN(instr:I, ctx:C, fromVar:V, toVar:V)

AP(access path expression) = ap:A
RebaseAP(ap:A, fromVar:V, toVar:V) = newAp:A
NewContext(invo:I, ctx:C) = newCtx:C

Fig.  3.1:  The  analysis  domain,  input  relations  (MOVE,  ...),  computed  relations
(MUSTALIAS, ...) and constructors (AP, ...).

Computed Relations:

The main output  of  the analysis,  relation MUSTALIAS,  demonstrates that  access
path ap1 and access path ap2 have a must-alias relation (a.k.a. form an alias pair) right
after instruction instr under context ctx.

The predicate MUSTCALLGRAPHEDGE holds the resolved virtual calls: invocation site
invo under context ctx will call method toMth under context toCtx.

The REACHABLE relation displays which functions and under what context can be
accessed.  Eventually,  REBASEATCALL and REBASEATRETURN hold  the  caller  and  callee

Nefeli Prokopaki - Kostopoulou 18
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variable pair to be remapped at a call site.

Constructors:

The constructor AP produces access paths and keeps information about them. For
instance, “ AP(a1.field2.member1) = ap ” means that access path ap has length 3
and its elements are a1, field2 and member1.

RebaseAP changes the base variable (in the example above the element a1) of
the original access path to a new one.

Finally, NewContext produces contexts, after checking that the maximum context
depth has not been reached. If that is not the case, it does not return a value.

3.1.2  Analysis Rules

Figure 3.2, below, shows the Datalog rules that are used for the must-alias analysis
algorithm. They are separated into four groups.

Base rules:

The former rule decides the first reachable methods: methods to be analyzed under
the special context value All (i.e., unconditionally).

The next four rules handle MOVE, PHI, LOAD and STORE instructions. The MOVE rule
establishes an alias relation between variables to and from, PHI between variable to
and the result of φ function, and finally LOAD and STORE create alias pairs that consist of
the expression base.fld and the variable to or from, respectively.

The latter  rule  says that MUSTALIAS is  reflexively, symmetrically  and transitively
closed.

Inter-procedural propagation rules:

The  first  rule  infers MUSTCALLGRAPHEDGE predicates,  at CALL instructions,  from
previously established RESOLVED,  LOOKUP and REACHABLE relations, should the context
depth allow it.

The next four rules are similar to the first. The REBASEATCALL rule computes re-
mappings from actual to formal arguments and from the base variable of the call to the
variable this of the callee. REBASEATRETURN computes the reverse mappings, as well as
the mapping between the actual and the formal return value.

The  next-to-last  rule  (that  is,  the  first  appearance  of  the MUSTALIAS predicate)
handles  the  first  instruction  of  each  method.  All  the  alias  pairs  that  hold  for  every
predecessor of  the calling instruction are  re-based, remapped and inferred for the first
instruction  of  the callee.  Additionally, the last  rule  handles  the  last  instruction  of  each
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method. All the alias pairs that hold at the return instruction are re-based, remapped and
inferred for the invocation site of the caller.

REACHABLE(ctx, m)   ← ROOTMETHOD   (m), ctx = All. 
MUSTALIAS(i, ctx, AP(from), AP(to))   ←
  MOVE(i, to, from), INMETHOD(i, m), REACHABLE(ctx, m). 
MUSTALIAS(i, ctx, ap, AP(to))   ←
  (∀from: PHI(i, to, …, from, ...)   → MUSTALIAS(i, ctx, AP(from), ap)), 
  INMETHOD(i, m), REACHABLE(ctx, m). 
MUSTALIAS(i, ctx, AP(to), AP(base. fld))   ←
  LOAD(i, to, base, fld), INMETHOD(i, m), REACHABLE(ctx, m). 
MUSTALIAS(i, ctx, AP(from), AP(base. fld))   ←
  STORE(i, base, fld, from), INMETHOD(i, m), REACHABLE(ctx, m). 
MUSTALIAS(i, ctx, _, _)   ← MUSTALIAS*(i, ctx, _, _). 

MUSTCALLGRAPHEDGE(i, ctx, toMth, toCtx)   ←
  CALL(i, base, sig), INMETHOD(i, m), RESOLVED   (base, type), 
  LOOKUP(type, sig, toMth), REACHABLE(ctx, m), NewContext(i, ctx) = toCtx . 
REBASEATCALL(i, ctx, var, toVar)   ←
  MUSTCALLGRAPHEDGE(i, ctx, toMth, _), 
  ((FORMALARG(toMth, n, toVar), ACTUALARG(i, n, var)); 
    (THISVAR(toMth, toVar), CALL(i, var, _))). 
REBASEATRETURN(i, ctx, var, toVar)   ←
  MUSTCALLGRAPHEDGE(i, ctx, toMth, _), 
  ((ACTUALRET(i, toVar), FORMALRET(_, toMth, var)); 
    (ACTUALARG(i, n, toVar), FORMALARG(toMth, n, var)); 
    (CALL(i, toVar, _), THISVAR(toMth, var))). 
MUSTALIAS(firstInstr, toCtx, ap1, ap2)   ←
  MUSTCALLGRAPHEDGE(i, ctx, toMth, toCtx), 
  INMETHOD(firstInstr, toMth), (∀k   !→ NEXT(k, firstInstr)), 
  (∀j : NEXT(j, i)   → MUSTALIAS(j, ctx, callerAp1, callerAp2)), 
  REBASEATCALL(i, ctx, var1, toVar1), RebaseAP(callerAp1, var1, toVar1) = ap1, 
  REBASEATCALL(i, ctx, var2, toVar2), RebaseAP(callerAp2, var2, toVar2) = ap2. 
MUSTALIAS(i, ctx, ap1, ap2)   ←
  MUSTCALLGRAPHEDGE(i, ctx, toMth, toCtx), FORMALRET(ret, toMth, _), 
  MUSTALIAS(ret, toCtx, calleeAp1, calleeAp2), 
  REBASEATRETURN(i, ctx, var1, toVar1), REBASEATRETURN(i, ctx, var2, toVar2), 
  RebaseAP(calleeAp1, var1, toVar1) = ap1, 
  RebaseAP(calleeAp2, var2, toVar2) = ap2. 

REACHABLE(ctx, meth), REACHABLE(toCtx, toMeth)   ←
  MUSTCALLGRAPHEDGE(i, ctx, toMeth, toCtx), INMETHOD(i, meth). 
MUSTALIAS(i, ctx, ap3, ap4)   ←
  MUSTALIAS(i, ctx, ap1, ap2), AP(ap1.fld) = ap3, AP(ap2.fld) = ap4. 

MUSTALIAS(i, ctx, ap1, ap2)   ←
  !STORE(i,_,_,_), !CALL(i,_,_), (∀j : NEXT(j, i)   → MUSTALIAS(j, ctx, ap1, ap2)).

Fig. 3.2: Datalog rules for must-alias analysis.

Reachability and access path expansion:

The first rule in this group expands the reachable methods. When the containing
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method of the invocation site is reachable, then the target function becomes reachable too,
if the context depth allows it.

The  second  rule  introduces  extended  access  path  aliases.  If  two  variables  or
access path form an alias pair, then their  extended access paths (with the same field
suffix), if they exist, form an alias pair too.

From one instruction to the next:

The last rule of Figure 3.2 propagates an alias pair to an instruction, when it is not a
store instruction or virtual call, and the alias pair holds for all its predecessors. 

3.2  Overview of Data Structure

The purpose of this project is to find the certain aliases over variables and access
paths of the program-under-analysis. To do so, we represent the alias information at each
instruction as a directed-graph. The nodes of the graph contain the aliased variables at the
specific  point  of  the  program,  and  the  labeled-edges  show  the  connections  between
access paths.

In every instruction, we apply the instruction semantics on the graph that holds right
before the instruction and we return its altered version. Therefore, each instruction type
(e.g. move, load, store) is handled differently.

Below we introduce some of the handling of these instructions. Note that, in each
case, we most likely need to move a variable from a node to another. So, the import of a
variable to a node, implies its removal from the former container node.

Move Instruction: 

If the right-hand side variable already exists in a node, we add the left-hand side variable
to the same node. If not, we create a new node with both variables.

Phi Instruction: 

becomes:

while becomes:

Fig. 3.3: Handle phi instruction x = y, x = w of alias graphs.

If the right-hand side variables of the phi instruction are all in the same node, then we also
add the left-hand side variable to it. Otherwise, if they are in disjoint nodes, we just remove
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the left-hand side variable from the node in which it  previously belonged, as shown in
Figure 3.3 above (e.g. phi instruction x = y, x = w, or else x = φ(y, w)).

Load Instruction: 

A load instruction has the form to = base.field.
First, find the node a in which the base variable (right-hand side) exists, or, else, create a
new one. Afterwards, find the node shown by an outgoing edge with label field from
node a, or create it, and move the left-hand side variable, to, in it.

Store Instruction: 

Store is the reverse action of load (i.e., base.field = from), but is handled similarly.
First, find the node a in which the base variable (left-hand side) exists, or, else, create a
new one. Second, find the node b in which the right-hand side variable, from, exists, or,
else, create a new one. Last, create or move the existing edge of node a with label field
to point to node b.

Call Instruction: 

It is divided in two categories, the unresolved and the resolved call instructions. 

Unresolved:  An  unresolved  call  instruction  invalidates  everything.  This  means  that  it
inherits no graph from the previous instruction. 

Resolved call:  A resolved call, however, includes two cases. If the current context
depth  (i.e., number of nested methods that have been followed) is the maximum allowed,
then  the  call  instruction  inherits  only  local  aliases  and  discards  heap  aliases  of  the
previous instruction's graph.

Else, if the current context depth is smaller that the maximum context depth, the call
instruction  is  handled  in  two  steps.  The  first  step  happens  at  the  call  site.  The  first
instruction of the callee inherits the graph that holds right before the call instruction. In the
latter  step,  at  a  return  instruction,  the  call  instruction  inherits  the  graph  of  the  last
instruction of the callee after all the local variables are removed from the aliases.

A remapping of arguments takes place at call instructions, so that actual and formal
arguments refer to the same object in memory. The same happens for return values at
return instructions. 

Briefly, the graph of a call  instruction is inherited from the last instruction of the
callee and from the previous instruction in any other case. However, we do not propagate
information  from predecessors  in  stores  and unresolved calls,  because we cannot  be
certain about the changes they might make to the heap.
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3.3  Main Algorithms

Algorithm: all-aliases (ap, k)

Step 1: Find target node that access path  ap points to, following the edges that match
each field of ap.
Step 2: Going backwards k–1 directed edges, find all access paths (of length k) that can
reach the target node.

For example, in Figure 3.4, which shows the alias graph after line 29 of our example
in section 2.1, we can find all aliases of access path b1.member1 of length 3 by following
edge member1 from node b1 (and so reaching node a2) and then finding all paths with
length  2  (that  is  to  go  backwards  2  directed  edges)  that  reach  the  same node  (e.g.
a2.field1.field1 and a1.field2.member1).

field1
  member1

    field1

  field2

Fig. 3.4: Example of alias graph.

Algorithm: intersect (g1, g2)

Step 1: For every nodes i, j of the original two graphs g1 and g2, we create new node (i,j)
whose variables are the intersection of the variables of i and j.
Step 2: For every label f, if g1 has an edge (i,k) with label f, and g2 has an edge (j, l), also
with label f, the intersection result has an edge ((i,j), (k,l)) with label f.

The algorithm establishes all possible combinations with nodes from both graphs
and creates all edges that still hold and connect the emerged nodes.

We use this algorithm to create an alias-graph for instructions that have multiple
predecessors (i.e.,  instruction after an if-then-else or a while clause). First  we find the
intersection of two graphs, then we intersect the result with a third graph, and so on.

For instance, on line 29 of our example in section 2.1, after the if-then-else clause,
we need to intersect the graphs of lines 26 and 28. While all the other alias pairs continue
to hold, a2.field2 ~ b1 is invalidated.

It is common for many produced nodes to have empty variable sets. The example in
Figure 3.5 illustrates why.
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f   g      f  g   f     g

Fig. 3.5: Intersection of alias graphs.

In  some  cases,  like  the  above,  the  existence  of  the  empty  node  is  essential,
because it encodes that access paths x.f and w.g are aliased, while in other cases the
produced node has no use and will be discarded by the gc algorithm.

Algorithm: gc (g)

Garbage-collection algorithm, eliminates all nodes in graph g that either
- contain a single variable and have no incoming or outgoing edges
- contain no variables and have zero incoming edges or have only one incoming and no
outgoing edges

We use this algorithm to garbage-collect empty nodes and nodes that no longer
denote access path aliasing. Such nodes can arise duo to node intersection. This way we
establish maximum efficiency throwing away useless information. 

Algorithm: remove-local-variables (g)

Step 1: From every node that contains variables to be remapped (i.e., arguments, return
variable, “this”), we remove all variables that will not be remapped.
Step 2: We keep all nodes that connect with a remapping node. That is, they have at least
one incoming or outgoing edge to a remapping node or to a node that connects to them.
Step 3: We remove all the remaining nodes.

The algorithm is used for return instructions to get rid of the local-variable-aliases
that  only  stand inside the callee function.  We use this  to  remove from graph useless
information about variables that no longer exist.

Nefeli Prokopaki - Kostopoulou 24

x,yx,z

u

ww

v

x w



Graph-based data structure for representation of must-alias analysis inferences

3.4  Input Files

To express the analysis in Java (same as in Datalog) we represent the program-under-
analysis as input relations that encode environment information (i.e., program instructions,
CFG information etc).

As  said  above  (section  2.2),  we  assume  that  our  input  is  on  a  minimal  SSA
intermediate representation, so that each variable is not assigned more than once.

The input relations used in our Java implementation are basically the same with
most of the analysis relations presented in section 3.1.1.

3.5  Output Files

The Figure  3.6,  below, shows the  output  relations  that  our  program exports  to
introduce  the  alias  results,  using  the  domain  of  the  analysis  used  in  our  Java
implementation (as well as in the Datalog implementation) shown in Figure 3.1.

NODES(i:I, nodeId:ℕ, var:V)
EDGES(i:I, nodeId1:ℕ, nodeId2:ℕ, fld:F)
MUSTALIASPAIRS(i:I, var1:V, var2:V)
ACCESSPATHPAIRS(i:I, ap1:A, ap2:A)

Fig. 3.6: Output relations that encode CFG information.

The  NODES shows all  variables  that  exist  in  each  node of  the  graph,  for  every
instruction.

The EDGES presents all pairs of nodes and the label of the edge that connect them,
for every instruction.

The MUSTALIASPAIRS relation returns all variable pairs that are aliased at a specific
instruction. That is, it shows all variables that belong to the same node in the same graph.

Finally, the ACCESSPATHPAIRS presents  all  aliased access  path  (AP)  pairs  of  a
specific depth that hold at a particular instruction. The desirable depth is given by the user
as a configuration parameter.
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4. EXPERIMENTAL RESULTS

4.1  Setup

We use a 64-bit machine with an Intel Core i5-5200U 2-core CPU at 2.20GHz. The
machine has 8GB of RAM.

We experiment with the DaCapo benchmark programs v.2006-10-MR2 under JDK
1.7.. We use the LogicBlox Datalog engine, v.3.10.14.

4.2  Evaluation

Initial comparison across various benchmarks:

The two must-alias analysis implementations, in Datalog and Java, have only minor
differences in experimental results. They are functionally equivalent. Their major difference
is that in Datalog the aliased access paths can have a finite length, while in Java there is
no such restriction.

Table 4.1: Comparison between Datalog and Java implementation, on speed and number 
of must-point-to pairs.

Benchmark optimized
time (sec)

original time
(sec)

speedup
(%)

#must point-
to (Java)

#must point-
to (Datalog)

antlr 36 1156 32.1 8646 7430

bloat 25 686 27.4 7536 5132

chart 40 1714 42.9 3082 2587

eclipse 30 692 23.1 6311 5423

fop 25 691 27.6 1284 1103

hsqldb 23 700 30.4 930 727

jython 36 832 23.1 10476 10637

luindex 13 469 36.1 1822 1551

lusearch 14 531 37.9 2180 1940

pmd 30 689 23.0 3361 3169

xalan 28 915 32.7 4876 4642

To compare the initial implementation with the optimized data structure, we show
their execution time and the number of must-point-to pairs they infer. In Table 4.1 we run
our analyses for context depth 1 and maximum access path length 2. We refer to the Java
implementation as “Optimized” and to the Datalog implementation as “Original”.
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As can be seen, our Java implementation achieves significant speedups, in average
30.6% (from 23.0% to 42.9%) of the Datalog implementation. Note that, the “optimized”
running time increases by the import and the export time, of the previously concluded facts
and the results of the analysis, respectively. 

Comparison varying access path length:

For further  presentation of  the level  of  improvement with our data-structure,  we
compare the same elements produced with various maximum access path lengths of the
original implementation with the optimized implementation. The restriction of the maximum
access-path length does not affect the “optimized” implementation, as mentioned before.
Its running time and number of must point-to pairs are included just for reference.

Table 4.2 shows the running time for both implementations, as well as the number
of must-point-to pairs for maximum path lengths of 1, 2 (same as in Table 4.1) and 3, for
the xalan benchmark (for which the Java implementation had near to the average speedup
in Table 4.1).

Table 4.2:  Comparison between Datalog and Java implementation (on the xalan 
benchmark) when varying the maximum access-path length.

Access path
length

optimized
time (sec)

original time
(sec)

speedup
(%)

#must point-
to (Java)

#must point-
to (Datalog)

1 28 339 12.1 4876 4640

2 28 915 32.7 4876 4642

3 28 1700 60.7 4876 4642

We observe that  the more the access-path length increases the more the speedup
of the optimized data structure grows. The divergence of the number of must point-to pairs
between the implementations, on the other hand, seems to hold firm.

Comparison varying context depth:

Similarly, we experiment with the context depth. Table 4.3 demonstrates the speed
performance of the two analyses and the number of must-point-to pairs for context depth
0, 1 (same as in Table 4.1) and 2, once more for the xalan benchmark. 

Same as in the above analysis results,  the speedup rises excessively while the
context-depth  increases.  Once  more,  the  number  of  must  point-to  pairs  of  the  Java
implementation remains on the same level with the Datalog implementation.

Nefeli Prokopaki - Kostopoulou 27



Graph-based data structure for representation of must-alias analysis inferences

Table 4.3 Comparison between Datalog and Java implementation (on the xalan 
benchmark) when varying the maximum context depth.

Context
depth

optimized
time (sec)

original time
(sec)

speedup
(%)

#must point-
to (Java)

#must point-
to (Datalog)

0 75 104 1.9 4293 3868

1 28 915 32.7 4876 4642

2 28 1824 65.1 5301 4933
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5. CONCLUSIONS

We presented a graph-based data structure that implements a declarative model of
a must-alias analysis over access paths, that is already implemented in Datalog and in use
in the Doop framework.

Based on our experimental results, this re-implementation improves significantly the
speed, while at the same time increases the quantity of the inferences by being able to
compute aliases for unlimited access path lengths.

Nefeli Prokopaki - Kostopoulou 29



Graph-based data structure for representation of must-alias analysis inferences

ACRONYMS AND ABBREVIATIONS

Abbreviation Full Name

SSA static single assignment

AP access path

CFG control flow graph

gc garbage collect
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