
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Design and Synthesis of Efficient
Circuits for Quantum Computers

Archimedes D. Pavlidis

ATHENS

DECEMBER 2016

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Σχεδίαση και Σύνθεση Αποδοτικών
Κυκλωμάτων για Κβαντικούς Υπολογιστές

Αρχιμήδης Δ. Παυλίδης

ΑΘHNA

ΔΕΚΕΜΒΡΙΟΣ 2016

PhD THESIS

Design and Synthesis of Efficient
Circuits for Quantum Computers

Archimedes D. Pavlidis

SUPERVISOR: Dimitris Gizopoulos, Professor

THREE-MEMBER ADVISORY COMMITTEE:
Dimitris Gizopoulos, Professor
Antonis Paschalis, Professor
Dimitris Syvridis, Professor

SEVEN-MEMBER EXAMINATION COMMITTEE

(Signature) (Signature)

Dimitris Gizopoulos, Antonis Paschalis,
Professor NKUA Professor NKUA

(Signature) (Signature)

Dimitris Syvridis, Angela Arapoyanni,
Professor NKUA Professor NKUA

(Signature) (Signature)

Manolis Floratos, Kiamal Pekmestzi,
Professor Emeritus NKUA Professor NTUA

(Signature)

Dimitris Soudris,
Associate Professor NTUA

Examination Date 20/12/2016

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Σχεδίαση και Σύνθεση Αποδοτικών
Κυκλωμάτων για Κβαντικούς Υπολογιστές

Αρχιμήδης Δ. Παυλίδης

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Δημήτρης Γκιζόπουλος, Καθηγητής ΕΚΠΑ

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:
Δημήτρης Γκιζόπουλος, Καθηγητής ΕΚΠΑ
Αντώνης Πασχάλης, Καθηγητής ΕΚΠΑ
Δημήτρης Συβρίδης, Καθηγητής ΕΚΠΑ

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

(Υπογραφή) (Υπογραφή)

Δημήτρης Γκιζόπουλος, Αντώνης Πασχάλης,
Καθηγητής ΕΚΠΑ Καθηγητής ΕΚΠΑ

(Υπογραφή) (Υπογραφή)

Δημήτρης Συβρίδης, Αγγελική Αραπογιάννη,
Καθηγητής ΕΚΠΑ Καθηγήτρια ΕΚΠΑ

(Υπογραφή) (Υπογραφή)

Μανώλης Φλωράτος, Κιαμάλ Πεκμεστζή,
Ομότιμος Καθηγητής ΕΚΠΑ Καθηγητής ΕΜΠ

(Υπογραφή)

Δημήτρης Σούντρης,
Αναπληρωτής Καθηγητής ΕΜΠ

Ημερομηνία Εξέτασης 20/12/2016

ABSTRACT
The recent advances in the field of experimental construction of quantum computers with
increased fidelity components shows that large-scale machines based on the principles
of quantum physics are likely to be realized in the near future. As the size of the fu-
ture quantum computers will be increased, efficient quantum circuits and design methods
will gradually gain practical interest. The contribution of this thesis towards the design
of efficient quantum circuits is two-fold. The first is the design of novel efficient quantum
arithmetic circuits based on the Quantum Fourier Transform (QFT), like multiplier-with-
constant-and-accumulator (MAC) and divider by constant, both of linear depth (or speed)
with respect with the bits number of the integer operands. These circuits are effectively
combined so as they can perform modular multiplication by constant in linear depth and
space and consequently modular exponentiation in quadratic time and linear space. Mod-
ular exponentiation and modular multiplication operations are integral parts of the impor-
tant quantum factorization algorithm of Shor and other quantum algorithms of the same
family, known as Quantum Phase Estimation algorithms. Important implementation prob-
lems like the required high accuracy of the employed rotation quantum gates and the local
communications between the gates are effectively addressed. The second contribution
of this thesis is a generic hierarchical synthesis methodology for arbitrary complex and
large quantum and reversible circuits. The methodology can handle more easily larger
circuits relative to the flat synthesis methods. The proposed method offers advantages
over the standard hierarchical synthesis which uses Bennett’s method of ”compute-copy-
uncompute”.

SUBJECT AREA: Quantum Computing
KEYWORDS: Quantum Computer Architectures, Quantum Arithmetic Circuits, Quantum
Fourier Transform, Quantum Circuits Synthesis, Reversible Circuits Synthesis

ΠΕΡΙΛΗΨΗ
Οι πρόσφατες εξελίξεις στον τομέα της πειραματικής κατασκευής κβαντικών υπολογιστών
με εξαρτήματα αυξημένης αξιοπιστίας δείχνει ότι η κατασκευή τέτοιων μεγάλων μηχανών
βασισμένων στις αρχές της κβαντικής φυσικής είναι πιθανή στο κοντινό μέλλον. Καθώς το
μέγεθος των μελλοντικών κβαντικών υπολογιστών θα αυξάνεται, η σχεδίαση αποδοτικό-
τερων κβαντικών κυκλωμάτων και μεθόδων σχεδίασης θα αποκτήσει σταδιακά πρακτικό
ενδιαφέρον. Η συνεισφορά της διατριβής στην κατεύθυνση της σχεδίασης αποδοτικών
κβαντικών κυκλωμάτων είναι διττή: Η πρώτη είναι η σχεδίαση καινοτόμων αποδοτικών
αριθμητικών κβαντικών κυκλωμάτων βασισμένων στον Κβαντικό Μετασχηματισμό Fourier
(QFT), όπως πολλαπλασιαστής-με-σταθερά-συσσωρευτής (MAC) και διαιρέτης με στα-
θερά, με γραμμικό βάθος (ή ταχύτητα) ως προς τον αριθμό ψηφίων των ακεραίων. Αυτά
τα κυκλώματα συνδυάζονται αποτελεσματικά ώστε να επιτελέσουν την πράξη του modulo
πολλαπλασιασμού με σταθερά με γραμμική πολυπλοκότητα χρόνου και χώρου και συνε-
πώς μπορούν να επιτελέσουν την πράξη της modulo εκθετικοποίησης (modular exponen-
tiation) με τετραγωνική πολυπλοκότητα χρόνου και γραμμική πολυπλοκότητα χώρου. Οι
πράξεις της modulo εκθετικοποίησης και του modulo πολλαπλασιασμού είναι αναπόσπα-
στα μέρη του σημαντικού κβαντικού αλγορίθμου παραγοντοποίησης του Shor, αλλά και
άλλων κβαντικών αλγορίθμων της ίδιας οικογένειας, γνωστών ως κβαντική εκτίμηση φά-
σης (Quantum Phase Estimation). Αντιμετωπίζονται με αποτελεσματικό τρόπο σημαντικά
προβλήματα υλοποίησης, που σχετίζονται με την απαίτηση χρήσης κβαντικών πυλών πε-
ριστροφής υψηλής ακρίβειας, καθώς και της χρήσης τοπικών επικοινωνιών. Η δεύτερη
συνεισφορά της διατριβής είναι μία γενική μεθοδολογία ιεραρχικής σύνθεσης κβαντικών
και αντιστρέψιμων κυκλωμάτων αυθαίρετης πολυπλοκότητας και μεγέθους. Η ιεραρχική
μέθοδος σύνθεσης χειρίζεται καλύτερα μεγάλα κυκλώματα σε σχέση με τις επίπεδες με-
θόδους σύνθεσης. Η προτεινόμενη μέθοδος προσφέρει πλεονεκτήματα σε σχέση με τις
συνήθεις ιεραρχικές συνθέσεις που χρησιμοποιούν την μέθοδο ”υπολογισμός-αντιγραφή-
αντίστροφος υπολογισμός” του Bennett.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κβαντική Υπολογιστική
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Αρχιτεκτονικές Κβαντικών Υπολογιστών, Κβαντικά Αριθμητικά Κυκλώ-
ματα, Κβαντικός Μετασχηματισμός Fourier, Σύνθεση Κβαντικών Κυκλωμάτων, Σύνθεση
Αντιστρέψιμων Κυκλωμάτων

Στην μνήμη των γονιών μου
Δήμου και Ιφιγένειας,
στην Κατερίνα και στους
Δημοσθένη και Φίλιππο.

Ἐὰν ταῖς γλώσσαις τῶν ἀνθρώπων λαλῶ καὶ τῶν ἀγγέλων, ἀγάπην δὲ µὴ ἔχω,
γέγονα χαλκὸς ἠχῶν ἢ κύµβαλον ἀλαλάζον. Καὶ ἐὰν ἔχω προφητείαν καὶ εἰδῶ τὰ
µυστήρια πάντα καὶ πᾶσαν τὴν γνῶσιν, καὶ ἐὰν ἔχω πᾶσαν τὴν πίστιν, ὥστε ὄρη
µεθιστάνειν, ἀγάπην δὲ µὴ ἔχω, οὐδέν εἰµι. καὶ ἐὰν ψωµίσω πάντα τὰ ὑπάρχοντά
µου, καὶ ἐὰν παραδῶ τὸ σῶµά µου ἵνα καυθήσοµαι, ἀγάπην δὲ µὴ ἔχω, οὐδὲν
ὠφελοῦµαι.

ΕΥΧΑΡΙΣΤΙΕΣ
Τη σημερινή εποχή του μεγάλου ανταγωνισμού μεταξύ των ερευνητικών ομάδων για δη-
μοσίευση αποτελεσμάτων αλλά και αναζήτησης χρηματοδοτούμενων ερευνητικών προ-
γραμμάτων, απαιτείται η στόχευση σε εξειδικευμένες περιοχές όπου η ερευνητική ομάδα
έχει αποκτήσει σημαντική εμπειρία αλλά και η δημιουργία κρίσιμης μάζας απασχολούμε-
νων ερευνητών. Με αυτήν την έννοια η ερευνητική ενασχόληση με θέματα σχετικά αλλά
όχι και στο κύριο ρεύμα ενδιαφερόντων της ομάδας θεωρείται πολλές φορές σπατάλη
χρόνου.

Γι’αυτό το λόγο ευχαριστώ τον Καθηγητή του Τμήματος Πληροφορικής και Τηλεπικοινω-
νιών κο Δημήτρη Γκιζόπουλο για την εμπιστοσύνη που μου έδειξε και δέχθηκε να επι-
βλέψει την παρούσα διατριβή. Η εμπιστοσύνη αυτή συνεχίστηκε καθ’όλη τη διάρκεια της
διατριβής όπου μου άφησε πολλούς βαθμούς ελευθερίας κινήσεων ως προς την κατεύ-
θυνση της διατριβής, ακόμα και όταν υπήρχαν πρόσκαιρα προβλήματα σχετικά με την
αποδοχή των δημοσιεύσεων. Η εμπειρία, η επιμονή και η αφιέρωση χρόνου από μέρους
του ήταν κρίσιμα στοιχεία για την σωστή παρουσίαση των αποτελεσμάτων ώστε να γί-
νουν αποδεκτά από τους κριτές των περιοδικών και συνεδρίων όπου αποστάλθηκαν για
δημοσίευση. Ο ενθουσιασμός του, συχνά μεγαλύτερος από τον δικό μου, έδινε θάρρος
για την συνέχεια της προσπάθειας. Το σημαντικότερο όμως στοιχείο που συνέβαλε στην
ολοκλήρωση της διατριβής ήταν η προσωπικότητά του, η οποία επέτρεψε να υπάρχει
αγαστή συνεργασία μεταξύ μας και μετέτρεψε την διαδικασία εκπόνησης της διατριβής σε
μία ευχάριστη ενασχόληση.

Ευχαριστίες οφείλονται και στον Καθηγητή του Τμήματος Φυσικής κο Μανώλη Φλωράτο.
Η συνεργασία που ξεκίνησε μαζί του περίπου στο μέσο της εκπόνησης της διατριβής
άνοιξε νέες κατευθύνσεις για την εκμετάλλευση των μεθοδολογιών που αναπτύχθηκαν
και συνεισέφερε στην ψυχολογική ενθάρρυνση για την περάτωσή της.

Επίσης, ευχαριστώ τους Επίκουρους Καθηγητές του Πανεπιστημίου Πειραιώς Μιχάλη Ψα-
ράκη και Γιώργο Πιτσέλη για την κριτική ανάγνωση τμημάτων της διατριβής.

Η διατριβή αυτή ολοκληρώθηκε χάρη στην υπομονή και ανοχή που έδειξε η οικογένειά
μου, Κατερίνα, Δημοσθένης και Φίλιππος, όλα αυτά τα χρόνια και για αυτό θέλω να τους
ευχαριστήσω, ιδιαίτερα όμως την Κατερίνα που επωμίστηκε το μεγαλύτερο βάρος.

PUBLICATIONS LIST
• A. Pavlidis and D. Gizopoulos, ”Fast Quantum Modular Exponentiation Architecture

for Shor’s Factoring Algorithm,” Quantum Information & Computation, vol. 14, no
7&8, pp. 649-682, May 2014 (also in https://arxiv.org/abs/1207.0511)

• A. Pavlidis and D. Gizopoulos, ”Hierarchical Synthesis of Quantum and Reversible
Architectures,” Proc. 12th ACM International Conference on Computing Frontiers
(CF’15), Ischia, Italy, May 2015, pp. 13:1-13:8 (Best Paper Award Runner-up)

• A. Pavlidis and D. Gizopoulos, ”Hierarchical Synthesis of Quantum and Reversible
Architectures,” International Journal of Parallel Programming, vol. 44, no 5, pp. 1028-
1053, October 2016 (Special Issue; Extended version of the previous work)

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ
Η Θεωρία Κβαντικής Πληροφορίας και η Κβαντική Υπολογιστική είναι διακλαδικά ερευ-
νητικά πεδία που συνδυάζουν με διαφορετικά βάρη τις επιστήμες της Φυσική, της Πλη-
ροφορική και των Μαθηματικών, ανάλογα με την οπτική γωνία που θέλει κάποιος να τα
προσεγγίσει. Η Κβαντική Υπολογιστική θεωρείται σχετικά πρόσφατο ερευνητικό πεδίο, αν
και η Θεωρία Κβαντικής Πληροφορίας έχει ξεκινήσει να αναπτύσσεται εδώ και 40 χρό-
νια, μετά από σημαντικά αποτελέσματα σύνδεσης της κλασικής Θεωρίας Πληροφορίας
με την Κβαντική Μηχανική (ανισότητες κβαντικών εντροπιών [1, 2, 3], φράγματα Holevo
για χωρητικότητα καναλιών κβαντικής πληροφορίας [4, 5], φράγμα Bekenstein [6], κ.α.).

Η θεωρητική σύνδεση Κβαντικής Μηχανικής με τη Θεωρία Υπολογισμού έγινε τη δεκαε-
τία του 1980 [7, 8], και επιπλέον ώθηση δόθηκε τη δεκαετία του 1990 με την επινόηση
αποδοτικών Κβαντικών Αλγορίθμων [9, 10, 11], δηλαδή αλγορίθμων που εκτελούνται σε
υπολογιστικές μηχανές (Κβαντικούς Υπολογιστές) που εκμεταλλεύονται βασικές κβαντικές
ιδιότητες της φύσης όπως η υπέρθεση (superposition), και ο εναγκαλισμός ή διεμπλοκή
(entanglement). Οι αποδοτικοί κβαντικοί αλγόριθμοι μπορούν να επιφέρουν σημαντική
μείωση της χρονικής πολυπλοκότητας, ώστε σε αρκετές περιπτώσεις, προβλήματα που
δεν επιδέχονται λύση σε πολυωνυμικό χρόνο με τους ως τώρα γνωστούς αλγορίθμους για
κλασικούς υπολογιστές, να επιλύονται σε πολυωνυμικό χρόνο από έναν κβαντικό υπο-
λογιστή που εκτελεί έναν κβαντικό αλγόριθμο. Ένα γνωστό παράδειγμα με σημαντικές
εφαρμογές στην Κρυπτογραφία είναι η παραγοντοποίηση ενός σύνθετου ακεραίου στους
πρώτους παράγοντές του (αλγόριθμος παραγοντοποίησης του Shor) [10]. Άλλα σημα-
ντικά παραδείγματα είναι η αποδοτική προσομοίωση της συμπεριφοράς κβαντικών φυ-
σικών συστημάτων με αρκετούς βαθμούς ελευθερίας (όπως ένα σύνθετό χημικό μόριο),
υπολογισμός που είναι πρακτικά ανέφικτος με συμβατικούς υπολογιστές [12].

Η φυσική υλοποίηση ενός κβαντικού υπολογιστή, ενώ θεωρητικά είναι εφικτή, απαιτεί μία
πολυσύνθετη τεχνολογική προσπάθεια που οφείλει να αντιμετωπίσει διάφορα πρακτικά
προβλήματα. Ένα σημαντικό πρόβλημα είναι ότι οι φορείς της κβαντικής πληροφορίας, τα
qubits (quantum bits), είναι πολύ ευαίσθητα στην επίδραση του περιβάλλοντος και είναι
πολύ δύσκολο να διατηρηθούν σε μία δεδομένη κατάσταση για ένα αξιοποιήσιμο χρο-
νικό διάστημα. Οι φυσικοί φορείς της πληροφορίας μπορεί να είναι φωτόνια, άτομα, ιόντα,
πυρήνες και γενικά μικροσκοπικά θεμελιώδη συστήματα στα οποία μπορούν να παρατη-
ρηθούν κβαντικά φαινόμενα 1. Tο πρόβλημα της ευαισθησίας των φορέων στην επίδραση
του περιβάλλοντος είναι γνωστό ως αποσυμφωνία (decoherence) που ουσιαστικά μπορεί
να θεωρηθεί σαν το αποτέλεσμα θορύβου του περιβάλλοντος. To πρόβλημα της αποσυμ-
φωνίας εντείνεται όσο αυξάνεται το πλήθος των qubits της μνήμης του κβαντικού υπολο-
γιστή. Επίσης, οι βασικές μονάδες επεξεργασίας των qubits, γνωστές και ως κβαντικές
πύλες (quantum gates), εισάγουν έναν επιπλέον παράγοντα αλλοίωσης της κβαντικής
πληροφορίας διότι η λειτουργία τους πολλές φορές προσεγγίζει την ιδανική θεωρητική
συμπεριφορά τους με σφάλμα που δεν επιτρέπει την κατασκευή κβαντικών υπολογιστών
μεγάλου πλήθους qubits. Το σφάλμα αυτό μπορεί να θεωρηθεί επιπλέον θόρυβος που
εισάγεται από το περιβάλλον και μετατρέπει τις ιδανικές πύλες σε «θορυβώδεις». Έτσι,
παρ’ όλο που από τα τέλη της δεκαετίας του 1990 μέχρι και σήμερα έχουν επιδειχθεί πραγ-
ματικοί κβαντικοί υπολογιστές χρησιμοποιώντας διάφορες τεχνολογίες (φωτόνια, παγίδες
ιόντων, επαφές Josephson κ.α.), αυτοί περιορίζονται σε περίπου 10 qubits [15, 16, 17, 18].

Το πρόβλημα της αποσυμφωνίας έχει αντιμετωπιστεί θεωρητικά από την δεκαετία του
1990 εφαρμόζοντας και επεκτείνοντας ιδέες από την κλασική Θεωρία Κωδίκων Διόρθω-

1Τα πιο ελπιδοφόρα από αυτά είναι οι παγίδες ιόντων (ion traps) [13] και οι μικροσκοπικοί υπεραγωγοί
Josephson [14]

σης Σφαλμάτων και αποτέλεσμα την επινόηση Κβαντικών Κωδίκων Διόρθωσης Σφαλμά-
των [19, 20, 21]. Τέτοιοι κώδικες μπορούν να χρησιμοποιηθούν έτσι ώστε να συνδυα-
στούν πολλές «θορυβώδεις» φυσικές κβαντικές πύλες για να συνθέσουν μία ιδανική κβα-
ντική λογική πύλη, δηλαδή να επιτρέψουν τη δημιουργία κβαντικών πυλών ανθεκτικών σε
σφάλματα (fault tolerant gates). Αυτό μπορεί να γίνει κάτω από κάποιες προϋποθέσεις,
σημαντικότερη από τις οποίες είναι ότι το ποσοστό του θορύβου που εισάγει η λειτουρ-
γία της κάθε φυσικής πύλης πρέπει να είναι κάτω από ένα κατώφλι (Κβαντικό Θεώρημα
Κατωφλίου – Quantum Threshold Theorem) [22]. Σε μία τέτοια περίπτωση με τη χρήση
πλεονασμού χώρου (spatial redundancy), δηλαδή με χρήση πολλών φυσικών κβαντικών
πυλών, μπορεί να κατασκευαστεί μία ιδανική λογική κβαντική πύλη. Τα τελευταία χρόνια
έχει ενταθεί η προσπάθεια για την κατασκευή κβαντικών πυλών υψηλής αξιοπιστίας, τέ-
τοιας που να επιτρέψει την κατασκευή κβαντικών υπολογιστών ικανοποιητικού μεγέθους
στο κοντινό μέλλον. Τα αποτελέσματα αυτών των προσπαθειών είναι πολύ ενθαρρυντικά.

Η διδακτορική συνεισφέρει σε δύο σημαντικά θέματα της Κβαντικής Υπολογιστικής:

• Σχεδίαση καινοτόμων και αποδοτικών κβαντικών κυκλωμάτων (συστοιχίες διασυν-
δεδεμένων κβαντικών λογικών πυλών), για βασικές αριθμητικές πράξεις ακεραίων
καθώς και τον συνδυασμό τους σε υψηλότερο επίπεδο ιεραρχίας για την υλοποίηση
κυκλωμάτων πιο σύνθετων αριθμητικών πράξεων. Η καινοτομία των κυκλωμάτων
που προτάθηκαν έγκειται στην επεξεργασία των ακεραίων αφού έχει προηγηθεί κα-
τάλληλος κβαντικός μετασχηματισμός Fourier (QFT), επιτυγχάνοντας έτσι βελτιω-
μένη απόδοση σε όρους ταχύτητας (ή ισοδύναμα βάθους του κυκλώματος). Προ-
βλήματα που σχετίζονται με τη χρήση του QFT σε αριθμητικά κυκλώματα όπως η
απαίτηση για πύλες υψηλής ακρίβειας και η έλλειψη τοπικότητας στις επικοινωνίες
μεταξύ των qubits, επίσης αντιμετωπίζονται αποτελεσματικά με τις μεθόδους που
προτάθηκαν στα πλαίσια της διατριβής.

• Πλήρης και αποδοτική μεθοδολογία ιεραρχικής σύνθεσης κβαντικών και αντιστρέ-
ψιμων αρχιτεκτονικών. Η πλειονότητα των μεθόδων αυτοματοποιημένης σύνθεσης
είναι επίπεδες, δηλαδή λειτουργούν στο χαμηλότερο επίπεδο των λογικών πυλών
και έχουν το μειονέκτημα ότι δεν είναι κατάλληλες για μεγάλα κυκλώματα αφού έχουν
εκθετικές απαιτήσεις μνήμης και χρόνου εκτέλεσης της σύνθεσης. Η ενσωμάτωση
ιεραρχικής σύνθεσης σε εργαλεία που χρησιμοποιούν επίπεδες μεθόδους σύνθεσης
χρησιμοποιεί τη συνήθη μεθοδολογία του Bennett. Η μέθοδος του Bennett εφαρμόζει
διαδοχικά κανονικούς υπολογισμούς, αντιγραφή των επιθυμητών αποτελεσμάτων
σε ξεχωριστούς καταχωρητές και κατόπιν αντίστροφους υπολογισμούς που επα-
ναφέρουν όλους τους καταχωρητές, εκτός από αυτούς της αντιγραφής, στις αρχικές
τους καταστάσεις. Με αυτόν τον τρόπο τα τυχόν ενδιάμεσα αποτελέσματα έχουν μη-
δενιστεί με αντιστρέψιμο τρόπο. Η μέθοδος του Bennett επιφέρει επιβάρυνση στην
χρησιμοποιούμενη μνήμη και την ταχύτητα του τελικού κυκλώματος. Η προτεινόμενη
μέθοδος ιεραρχικής σύνθεσης κβαντικών και αντιστρέψιμων κυκλωμάτων προσφέ-
ρει πλεονεκτήματα σε όρους ταχύτητας και απαιτούμενης μνήμης του παραγόμενου
κυκλώματος, έναντι αυτών της βιβλιογραφίας που χρησιμοποιούν τη μέθοδο Ben-
nett. Σε κάποιες περιπτώσεις το πλεονέκτημα είναι περίπου μισή μνήμη και διπλάσια
ταχύτητα.

Στο πλαίσιο της διατριβής, οι πύλες που χρησιμοποιούνται θεωρούνται αξιόπιστες (λογικό
επίπεδο) που έχουν προκύψει από βασικές φυσικές πύλες με χρήση οποιασδήποτε τε-
χνικής διόρθωσης σφαλμάτων. Επομένως, η διατριβή αφορά το λογικό επίπεδο και όχι το

χαμηλότερο φυσικό επίπεδο της κατασκευής των βασικών κβαντικών πυλών σε μία συ-
γκεκριμένη τεχνολογία. Συνεπώς οι μέθοδοι που προτείνονται στη διδακτορική διατριβή
μπορούν να εφαρμοστούν σε οποιαδήποτε φυσική τεχνολογία κατασκευής.

Ως βασικό κριτήριο της απόδοσης των μεθόδων που προτάθηκαν στη διδακτορική δια-
τριβή χρησιμοποιείται η ταχύτητα του υπολογισμού, γνωστή και ως βάθος του κυκλώμα-
τος (circuit depth), δηλαδή ο αριθμός των βημάτων που απαιτούνται για να ολοκληρωθεί
ο κβαντικός υπολογισμός. Αυτό είναι ένα σημαντικό κριτήριο απόδοσης όταν μελλοντικά
θα είναι εφικτή η κατασκευή κβαντικών υπολογιστών μεγάλου μεγέθους σε όρους μνή-
μης. Στην περίπτωση της προτεινόμενης μεθόδου ιεραρχικής σύνθεσης πλεονεκτήματα
σε όρους μνήμης, εκτός της ταχύτητας, επίσης επιτυγχάνονται.

Τα προτεινόμενα κβαντικά υποσυστήματα αφορούν βασικές αριθμητικές πράξεις ακεραίων,
όπως πολλαπλασιασμό σταθεράς με ακέραιο και συσσώρευση (multiply-and-accumulate
– MAC) και διαίρεση ακεραίου με σταθερά (εύρεση πηλίκου και υπολοίπου) που χρησι-
μοποιούνται σε σημαντικούς κβαντικούς αλγορίθμους. Η υλοποίηση επιτυγχάνεται χρησι-
μοποιώντας εναλλακτικές αναπαραστάσεις των ακεραίων στο πεδίο Fourier (δηλαδή με
χρήση του Κβαντικού μετασχηματισμού Fourier – QFT), αντί της συνήθους αναπαράστα-
σης στην υπολογιστική βάση. Κβαντικά κυκλώματα που χρησιμοποιούν μετασχηματισμό
Fourier είναι γνωστά στη βιβλιογραφία, αλλά περιορίζονται μόνο σε αθροιστές διαφόρων
τύπων [23], ενώ η προφανής υλοποίηση ενός MAC με αναπαράσταση Fourier χρησιμο-
ποιώντας τέτοιους αθροιστές [24] είχε τετραγωνικό βάθος ως προς το μέγεθος των ακε-
ραίων. Αντίθετα, ο προτεινόμενος MAC έχει μόνο γραμμικό βάθος, ιδιαίτερα σημαντική
ιδιότητα για μεγάλους (άρα και πρακτικά χρήσιμους) κβαντικούς αριθμούς. Ως προς τα
κυκλώματα διαίρεσης, ελάχιστοι διαιρέτες εμφανίζονται στη βιβλιογραφία και κυρίως είναι
περιορισμένοι για ειδικές περιπτώσεις (π.χ. για σώματα Galois GF(2m), δηλαδή διαιρέτες
πολυωνύμων με συντελεστές 0 και 1). Ένας διαιρέτης βασισμένος σε μετασχηματισμό
Fourier που είναι γνωστός [25], έχει κυβικό βάθος ενώ αν η διαίρεση γίνει με σταθερά
τότε το βάθος ελαττώνεται σε τετραγωνικό. Ο προτεινόμενος στην διδακτορική διατριβή
διαιρέτης με σταθερά έχει και πάλι μόνο γραμμικό βάθος.

Τα δύο παραπάνω κυκλώματα, κατάλληλα συνδυασμένα, μπορούν να χρησιμοποιηθούν
για κατασκευή άλλων πιο σύνθετων κυκλωμάτων χρήσιμων σε διάφορους σημαντικούς
κβαντικούς αλγορίθμους. Στην παρούσα διατριβή καταδεικνύεται ότι είναι δυνατή η κα-
τασκευή πολλαπλασιαστή modulo N ο οποίος είναι βασικό συστατικό για την πράξη της
ύψωσης σε δύναμη modulo N ή αλλιώς εκθετικοποίησης modulo N (modular exponenti-
ation). Η ύψωση σε δύναμη είναι η πιο χρονοβόρα πράξη σε έναν από τους πιο σημα-
ντικούς κβαντικούς αλγορίθμους, τον αλγόριθμο παραγοντοποίησης του Shor, αλλά και
σε αλγορίθμους της ίδιας οικογένειας. Η προτεινόμενη σχεδίαση επιτυγχάνει βάθος O(n2)
ενώ η πλειοψηφία των κυκλωμάτων της βιβλιογραφίας βρίσκεται στην περιοχή μεταξύ
O(n2 log n) και O(n3) και συνεπώς η προτεινόμενη σχεδίαση προσφέρει ιδιαίτερα μεγάλα
πλεονεκτήματα ταχύτητας για μεγάλους κβαντικούς αριθμούς. Κάποια κυκλώματα τετρα-
γωνικού βάθους ή μικρότερου έχουν το μειονέκτημα είτε της αύξησης της απαιτούμενης
μνήμης κατά τάξη μεγέθους, είτε του υπολογισμού κατά προσέγγιση ενώ η σχεδίαση της
διατριβής παρέχει ακριβή υπολογισμό.

Για την εκτίμηση της αποδοτικότητας ενός κυκλώματος (είτε ως προς το χρόνο είτε ως
προς το χώρο) πρέπει να λαμβάνονται υπ’ όψιν και τα χαρακτηριστικά της φυσικής υλο-
ποίησής του στο χαμηλότερο επίπεδο. Ένα τέτοιο χαρακτηριστικό είναι η ύπαρξη δυνατό-
τητας για καθολική αλληλεπίδραση μεταξύ των qubits που συμμετέχουν στον υπολογισμό
ή αντίθετα ο περιορισμός της αλληλεπίδρασης σε γειτονικά qubits μόνο, για παράδειγμα σε
υλοποίηση μονοδιάστατης γραμμικής συστοιχίας qubits όπου το κάθε ένα μπορεί να αλλη-

λεπιδράσει μόνο με τα δύο γειτονικά του (1D-LNN,1D Linear Nearest Neighbourhood). Η
προτεινόμενη αρχιτεκτονική για τον αλγόριθμο του Shor, παρ’ όλο που εκ πρώτης όψεως
φαίνεται να απαιτεί καθολικές επικοινωνίες μεταξύ των qubits, αποδεικνύεται ότι μπορεί
να προσαρμοστεί σε φυσικές μηχανές τοπικής αλληλεπίδρασης με σταθερή επιβάρυνση
στο βάθος, δηλαδή δεν υπάρχει αύξηση του αρχικά υπολογισμένου τετραγωνικού βάθους.
Αντίθετα, οι περισσότερες αρχιτεκτονικές χαμηλού βάθους O(n2 log n) όταν περιοριστούν
σε μηχανή που απαιτεί γειτονικές επικοινωνίες αυξάνουν το βάθος (π.χ. O(n3) σε 1D-LNN
ή O(n2

√
n) σε 2D-LNN) [26].

Η επεξεργασία στο πεδίο Fourier που εφαρμόζουν τα προτεινόμενα κυκλώματα έχουν
σαν αποτέλεσμα τη χρήση ελεγχόμενων κβαντικών πυλών περιστροφής (controlled ro-
tation quantum gates) με συγκεκριμένες γωνίες. Ένα γνωστό μειονέκτημα τέτοιων πυ-
λών είναι ότι δεν ανήκουν στην κατηγορία των πυλών που μπορούν να γίνουν ανθεκτικές
στα σφάλματα, εκτός και αν αποδομηθούν σε ακολουθία πυλών που είναι ανθεκτικές σε
σφάλματα (π.χ. σε πύλες H, T). Μία τέτοια αποδόμηση όμως θα συνεπαγόταν σημαντική
επιβάρυνση στο βάθος του συνολικού κυκλώματος εκθετικοποίησης κατά μία τάξη μεγέ-
θους, δηλαδή από O(n2) σε O(n3). Μπορεί όμως, όπως δείχνει η διατριβή, η επιβάρυνση
να γίνει πολύ μικρότερη με ένα τελικό βάθος O(n2 log n), με τη διαφορά όμως ότι οι υπο-
λογισμοί θα γίνονται προσεγγιστικά, αλλά επιτρέποντας στην εφαρμογή (αλγόριθμος του
Shor) να λειτουργήσει με ελάχιστη υποβάθμιση ως προς την πιθανότητα επιτυχίας. Έτσι,
η προτεινόμενη αρχιτεκτονική είναι μία από τις πιο ανταγωνιστικές ως προς το βάθος,
ιδιαίτερα αν εφαρμοστεί σε 1D-LNN ή 2D-LNN φυσικές μηχανές, που είναι και πιο πιθανό
να υλοποιηθούν στο μέλλον.

Η σχεδίαση κβαντικών κυκλωμάτων υιοθετεί ιδέες από τη σχεδίαση κλασικών λογικών κυ-
κλωμάτων που μπορούν να συνδυαστούν μεταξύ τους. Μικρά κυκλώματα ή κυκλώματα
που έχουν επαναληπτικές μικρές δομές μπορούν να σχεδιαστούν είτε κατά περίπτωση
(ad hoc) είτε με συστηματικές μεθόδους σύνθεσης με βάση τις προδιαγραφές λειτουργίας
(π.χ. πίνακες αλήθειας). Στην περίπτωση των κβαντικών κυκλωμάτων υπάρχουν ανάλο-
γες μέθοδοι κατασκευής με βάση προδιαγραφές που στη γενική περίπτωση είναι τετρα-
γωνικοί μοναδιαίοι πίνακες [27, 28]. Σε ειδικές περιπτώσεις όπου ένα κβαντικό κύκλωμα
περιγράφεται από πίνακα με στοιχεία αποκλειστικά 0 και 1, μπορούν να χρησιμοποιη-
θούν μέθοδοι σύνθεσης αντιστρέψιμων2 (reversible) λογικών κυκλωμάτων [30]. Τέτοιες
περιπτώσεις κβαντικών κυκλωμάτων συναντώνται όταν το κύκλωμα υπολογίζει μία αριθ-
μητική ή λογική συνάρτηση στην υπολογιστική βάση (π.χ. πρόσθεση).

Σε όλες αυτές τις περιπτώσεις οι μεθοδολογίες αυτές είναι κατάλληλες για μικρά κυκλώ-
ματα μόνο, γιατί η υπολογιστική ισχύς και η μνήμη που απαιτείται για την εφαρμογή τους
αυξάνεται εκθετικά με το μέγεθος του προβλήματος. Η προφανής λύση είναι η ιεραρχική
σχεδίαση που εφαρμόζεται και σε κλασικά κυκλώματα. Στην ιεραρχική σχεδίαση, εφ’ όσον
η επιθυμητή λειτουργία μπορεί να περιγραφεί σαν συναρμογή απλούστερων λειτουργιών,
η σχεδίαση ξεκινάει από το χαμηλότερο επίπεδο και προχωράει προς το υψηλότερο. Η
εφαρμογή μίας τέτοιας μεθόδου σε κβαντικά κυκλώματα είναι δυνατή αλλά απαιτεί ιδιαί-
τερη μεταχείριση των ενδιάμεσων αποτελεσμάτων του υπολογισμού τα οποία δε χρειάζο-
νται στο τέλος. Η ιδιαιτερότητα οφείλεται στο γεγονός του ότι τα ενδιάμεσα αποτελέσματα
δεν μπορούν απλώς να αγνοηθούν στο τέλος διότι γενικά βρίσκονται σε κβαντική διε-
μπλοκή με τα επιθυμητά αποτελέσματα. Αυτό που πρέπει να γίνει είναι να επανέλθουν
στην αρχική τους κατάσταση μέσω αντίστροφου υπολογισμού. Η μέθοδος του Bennett
[31] είναι μία γνωστή μέθοδος τέτοιου αντίστροφου υπολογισμού που διατηρεί τα επιθυ-
μητά αποτελέσματα μέσω αντιγραφής. Το κύριο χαρακτηριστικό της είναι ότι διπλασιάζει

2Στα αντιστρέψιμα λογικά κυκλώματα από κάθε πιθανή έξοδο είναι δυνατή η εξαγωγή της αντίστοιχης
εισόδου, δηλαδή δεν υπάρχει απώλεια πληροφορίας [29].

τα βήματα υπολογισμού (ευθύς υπολογισμός, αντίστροφος υπολογισμός) και απαιτεί επι-
πλέον μνήμη, όση απαιτούν τα τελικά αποτελέσματα, λόγω της αντιγραφής.

Η μέθοδος ιεραρχικής σχεδίασης που προτάθηκε στη διδακτορική διατριβή προσφέρει
πλεονεκτήματα σε σχέση με τη μέθοδο Bennett σε όρους τόσο ταχύτητας όσο και μνήμης
του τελικού κυκλώματος. Οι προδιαγραφές του κυκλώματος που πρόκειται να συντεθεί
παρέχονται σαν μία ακολουθία συναρτήσεων (αριθμητικών ή λογικών). Οι συναρτήσεις
αποτελούν μέρος μία βιβλιοθήκης κβαντικών υπο-κυκλωμάτων. Η βιβλιοθήκη αυτή μπο-
ρεί να δημιουργηθεί με χρήση άλλων μεθόδων σύνθεσης χαμηλότερου επίπεδου (πύλης),
να περιέχει γνωστά από την βιβλιογραφία παραμετροποιημένα ως προς το μέγεθος κυ-
κλώματα (π.χ. αθροιστές) ή να εμπλουτιστεί με νέα κυκλώματα από την ίδια ιεραρχική
μέθοδο. Επίσης, η βιβλιοθήκη περιέχει και τα αντίστροφα κυκλώματα για τις ανάγκες που
περιγράφηκαν νωρίτερα. Το τελικό αποτέλεσμα της σύνθεσης σε μορφή κατευθυντικού
ακυκλικού γράφου περιγράφει το επιθυμητό κύκλωμα, όπου οι κόμβοι του γράφου ανα-
παριστούν τα έτοιμα υποκυκλώματα της βιβλιοθήκης και οι ακμές περιγράφουν τις διασυν-
δέσεις μεταξύ των υποκυκλωμάτων. Η μέθοδος σύνθεσης απαιτεί πολυωνυμικό χρόνο και
μνήμη σε σχέση με τον αριθμό των συναρτήσεων που χρησιμοποιούνται και σε κάθε πε-
ρίπτωση παράγει κυκλώματα καλύτερης ή ίδιας απόδοσης βάθους και μνήμης σε σχέση
με τη βασική μέθοδο του Bennett.

Η δομή της διδακτορικής διατριβής είναι η ακόλουθη: Το Κεφάλαιο 2 είναι μία εισαγωγή
στην περιοχή της Κβαντικής Υπολογιστικής ενώ το Κεφάλαιο 3 συνοδευόμενο από το
Παράρτημα A είναι η αναλυτική περιγραφή του αλγορίθμου του Shor. Η συνεισφορά της
διατριβής ξεκινάει στο Κεφάλαιο 4 όπου περιγράφονται τα γρήγορα κβαντικά αριθμητικά
κυκλώματα που βασίζονται σε αναπαράσταση ακεραίων με χρήση του κβαντικού μετα-
σχηματισμού Fourier. Το Κεφάλαιο 5 περιγράφει τη μεθοδολογία προσέγγισης αυτών των
κυκλωμάτων με κβάντιση γωνίας καθώς και την προσαρμογή τους σε φυσική μηχανή μο-
νοδιάστατης διάταξης γειτονικών επικοινωνιών. Το Κεφάλαιο 6 περιγράφει την μεθοδολο-
γία ιεραρχικής σχεδίασης κβαντικών κυκλωμάτων. Τέλος, το Κεφάλαιο 7 είναι μία ανασκό-
πηση συμπερασμάτων και πιθανές μελλοντικές κατευθύνσεις έρευνας στα συγκεκριμένα
θέματα της διατριβής.

TABLE OF CONTENTS

PREFACE . 37

1 EXTENDED SUMMARY . 39

2 INTRODUCTION TO QUANTUM COMPUTING 43
2.1 Classical Computing . 43

2.1.1 Complexity Classes . 43

2.1.2 Irreversible and Reversible Computing 45

2.2 Quantum Mechanics and Computation . 47

2.2.1 State of a closed quantum system . 48

2.2.2 Unitary evolution of a closed quantum system 50

2.2.3 Projective Measurement . 50

2.2.4 Composition of closed systems . 51

2.2.5 Entanglement . 52

2.2.6 Quantum Turing Machine . 53

2.3 Quantum Circuit Model and Quantum Gates 53

2.3.1 Single Qubit Gates . 54

2.3.2 Two-Qubit Gates . 55

2.3.3 Three-Qubit Gates . 57

2.3.4 Measurement . 58

2.3.5 Universal Gates and Synthesis of Quantum Circuits 58

2.3.6 Quantum Circuit Characterization . 60

2.4 Quantum Algorithms . 60

2.4.1 Deutsch’s algorithm . 60

2.4.2 Generalizations - Phase Estimation Algorithms 62

2.4.3 Other quantum algorithms and applications 64

2.4.4 Quantum Complexity . 67

2.5 Physical Implementations . 68

3 SHOR’S ALGORITHM . 75
3.1 Preprocessing: Reduction of Factoring to Period Finding 75

3.2 Quantum Fourier Transform . 76

3.3 Discrete Fourier Transform and Periods . 77

3.4 Quantum Period Estimation . 82

3.5 Post-Processing: Retrieval of the exact period 85

3.6 Decomposition of Quantum Modular Exponentiation 86

3.7 Generalizations and the Hidden Subgroup problem 87

4 FAST QUANTUM MODULAR EXPONENTIATION 89

4.1 Background and related work . 89

4.1.1 Modulo adder,constant adder and controlled constant adder 90

4.1.2 Controlled modulo multiplier . 92

4.1.3 Prior Work . 93

4.1.4 QFT adders . 94

4.1.5 Fourier Multiplier/Accumulator - ΦMAC 98

4.2 Depth-Optimized Fourier Multiplier/Accumulator - ΦMAC 100

4.3 QFT Divider by constant - GMΦDIV . 104

4.3.1 Building blocks and registers of the quantum divider. 106

4.3.2 Forward computations of the quantum divider. 107

4.3.3 Ancilla Resetting. 111

4.4 Generic Modular Multipler/Accumulator and Modular Multiplier 112

4.4.1 Generic QFT Modular Multiplier/Accumulator - ΦMAC_MOD1 112

4.4.2 Generic QFT Modular Multiplier - ΦMUL_MOD1 113

4.5 Optimized Modular Multipler/Accumulator and Modular Multiplier 114

4.6 Complexity Analysis . 116

4.7 Divider Improvement and Extension . 122

5 IMPLEMENTATION ISSUES OF QFT BASED ARITHMETIC CIRCUITS 125

5.1 Angle Quantization of Rotation Gates . 125

5.1.1 Definitions and basic properties . 126

5.1.2 Approximation of the multiplier/accumulator ΦMAC. 129

5.1.3 Approximation of the Fourier adders and QFT. 130

5.1.4 Approximation of the whole modular exponentiation. 131

5.2 Communications Localization . 132

6 HIERARCHICAL SYNTHESIS OF QUANTUM AND REVERSIBLE ARCHITEC-
TURES . 139

6.1 Background and related work . 139

6.2 Methodology Basics . 140

6.2.1 Initial Specifications and Library . 141

6.2.2 Quantum Dependence Graph . 142

6.3 Forward QDG Synthesis . 144

6.3.1 Representation of Classical Algorithm 144

6.3.2 Forward Synthesis Algorithm . 144

6.4 Reversible QDG Synthesis . 145

6.4.1 Node Inversion . 145

6.4.2 Global Considerations . 147

6.4.3 Deadlocks Resolution . 148

6.4.4 Reversing Algorithm . 152

6.5 Synthesis Examples . 153

6.6 Features and Comparison . 159

6.7 Conclusions . 161

7 CONCLUSIONS AND FUTURE WORK . 163
7.1 QFT based arithmetic circuits . 163

7.2 Hierarchical Synthesis . 164

7.3 Future Directions . 166

A APPENDIX ON SHOR’S ALGORITHM . 167
A.1 Factorization reduction to order finding . 167

A.2 Continued Fraction Expansion . 171

A.3 Success Probability of Quantum Period Finding 173

A.4 Quantum Fourier Transform Circuit . 176

A.5 Quantum Phase Estimation . 177

REFERENCES . 180

LIST OF FIGURES

2.1 Symbols for NOT, CNOT and Toffoli reversible gates 46

2.2 Representation of a qubit on the Bloch sphere 49

2.3 An example of quantum circuit model . 54

2.4 Symbols for various single qubit gates . 54

2.5 Symbols for CNOT gate, controlled rotation gate and general controlled gate. 56

2.6 SWAP gate and an implementation using three CNOT gates. 56

2.7 Symbols for Toffoli gate, general c2-U gate and Fredkin (controlled SWAP)
gate . 57

2.8 Symbol for the computational basis measurement gate. 58

2.9 Quantum circuit for Deutsch’s algorithm . 61

2.10 Quantum circuit for Deutsch-Josza algorithm 63

2.11 Quantum circuit for Simons’s algorithm . 64

2.12 Quantum circuit for Grover’s algorithm. Dashed boxes are the Grover oper-
ator while G is the Grover diffusion operator. 65

2.13 The suspected relations among various classical complexity classes and
BQP. 67

2.14 Ions Trap microfabricated chips: (i) Sandia National Laboratories. [89], (ii)
Department of Physics, Oxford University. [90] 71

2.15 Nine superconducting qubits integrated circuit fabricated at University of
California - Santa Barbara [100]. 72

2.16 D-Wave Systems 1000 qubits quantum annealing processor. 74

3.1 Quantum Fourier Transform circuit on n qubits. The normalization factor
1√
2 is not shown at the output states. The order of the qubits must be reversed

at the end. 77

3.2 Comb sequence of length L = 128 and period r = 8 (top), magnitude of the
corresponding DFT (bottom). 78

3.3 Comb sequence of length L = 128 and period r = 6 (top), DFT of magnitude
sequence (bottom). 80

3.4 Modified Comb sequence of length L = 128 and period r = 6 (top), DFT of
magnitude sequence (bottom). 81

3.5 Quantum circuit for period finding algorithm 82

3.6 Measurement probabilities of period finding algorithm for L = 1024 and pe-
riod r = 6 (top), zoom in the range k = 844 . . . 862 (bottom). 84

3.7 Shor’s integer factoring algorithm flowchart. The algorithm is divided into the
three grayed shades submodules; the probabilistic reduction of the factoring
problem to period finding, the quantum computation for the period finding
and the exact extraction of the period using the continued fraction expansion
method (Appendix A.2). 85

3.8 Decomposition of the quantum modular exponentiation into quantum mod-
ular multiplication in Shor’s algorithm. 87

3.9 Quantum circuit of the discrete logarithm algorithm 88

4.1 Quantum circuit for controlled constant addition. 91

4.2 Quantum circuit for modular addition. The white circle of the second CNOT
gate denotes inversion of its target qubit iff the control qubit is |0⟩. Control
qubits of both CNOT gates emerge from the most significant qubit of the
register on which they are attached. Ancilla qubits of the various adders
used in this figure are hidden inside their symbols. 91

4.3 Quantum circuit for controlled accumulation of modular multiplication. An-
cilla qubits of the modular adders used in this figure are hidden inside their
symbols. 92

4.4 Quantum circuit for controlled modular multiplication. Ancilla qubits are not
shown in the symbols of the two blocks. 93

4.5 Design of modular exponentiation circuit using only one qubit to control the
modular multipliers. The phase shift gates R depend on all previous mea-
surement results and implement the inverse QFT, while the X gates are
negations conditioned on the result of the previous measurement. 93

4.6 ΦADD adder circuit of depth 1. This circuit adds a constant integer a to the
quantum integer b, when b is already in the Fourier domain. The value of
integer a is hardwired in the angles of the phase shift gates Aj, j = 0 . . . n−1
as defined in Eq. (4.10) . 95

4.7 CΦADD controlled adder circuit of depth n. This circuit adds the constant a
to the quantum integer b when the control qubit |c⟩ is |1⟩. Again, the constant
value a is hardwired in the controlled rotation gates as defined in Eq. (4.10). 95

4.8 The doubly-controlled adder circuit CCΦADD of depth n. This is an exten-
sion of the CΦADD circuit where the addition is performed when both the
control qubits |c1⟩ and |c2⟩ are |1⟩. 96

4.9 Generic adder ΦADD circuit and its symbol. The top bus consists of the
qubits |a0⟩, . . . , |an−1⟩ that control the rotation gates. 96

4.10 Symbols for the four introduced QFT adders. (i) Adder with constant a, (ii)
controlled adder with constant a, (iii) doubly controlled adder with constant
a and (iv) adder of two quantum integers a and b. 97

4.11 Block level design of the multiplier/accumulator unit ΦMAC and its symbol.
The basic blocks depicted here are the CCΦADD units of Figure 4.8. A
detailed diagram of the above circuit is provided in Figure 4.12. 98

4.12 Detailed design of the initial multiplier/accumulator ΦMAC unit which has a
depth of 2n2. The depth improvement of this circuit is described in Section
4.2 and the improved ΦMAC is depicted in Figure 4.15. 99

4.13 Doubly controlled three-qubit gate decomposition to a network of two-qubit
gates. 101

4.14 (i) The jth ΦADD subcircuit of the ΦMAC, (ii) the rearrangement of the jth
ΦADD subcircuit after exploiting the decomposition of Figure 4.13. 102

4.15 Fully decomposed and rearranged ΦMAC unit with linear depth of 8n for
the case n = 3. In this case it requires 8 · 3 = 24 timesteps as shown in the
figure. The rotation gates angles are determined by the constant a (see Eq.
(4.18), (4.19) and (4.20)). 103

4.16 The GMΦΦDIV circuit (first part) for 8 or 4 qubits dividend and constant
divisor d = 5. Intermediate variables are shown at places where they have
been computed (in computational basis or QFT transformed). 109

4.17 The GMΦDIV circuit (second part) for 8 or 4 qubits dividend and constant
divisor d = 5. Shaded areas indicate computations for resetting the ancilla
qubits. 110

4.18 The symbol of the GMΦDIV1. It receives an n qubits dividend to divide it
by the constant divisor d of n bits. The underlying circuit uses 7n+ 1 qubits,
including 5n+ 1 ancilla qubits which are not shown. 111

4.19 (i) The full diagram of the generic controlled modular multiplier/accumulator
ΦMAC_MOD1 and (ii) its symbol. A total of 6n + 1 qubits are shown, but
there are 10n+ 1 more ancilla qubits not shown in the GMΦDIV1 symbol. . 113

4.20 Generic modular multiplier ΦMUL_MOD1. The circuit requires 16n+1 qubits,
where 14n of them are ancillae hidden in the blocks of the lower levels of
hierarchy. 114

4.21 Symbol of GMΦDIV2 that receives a dividend of 2n qubits, subject to the
constraint that the quotient is less than 2n. The underlying circuit uses 7n+1
qubits. 115

4.22 The optimized controlled modular multiplier/accumulator ΦMAC_MOD2 and
its symbol. A total of 4n+1 qubits are shown in this figure, but there are 5n+1
more ancilla qubits not shown in the GMΦDIV1 symbol. 115

4.23 Optimized modular multiplier ΦMUL_MOD2. The circuit requires the 4n+ 1
qubits shown in the diagram, plus 5n+ 1 ancilla qubits hidden in the divider
units. 116

4.24 Improved GMΦDIV circuit of space complexity 6n+ 1 qubits for the case of
8 or 4 qubits dividend and constant divisor d = 5. 123

4.25 Controlled GMΦDIV circuit of space complexity 6n+2 qubits for the case of
8 or 4 qubits dividend and constant divisor d = 5. The controlling qubit is |c⟩. 124

5.1 Left circuit A = I ⊗ U approximated by the right circuit B = I ⊗ V. The
distance ∥A− B∥2 between the two five-qubits circuits is the same as the
distance between the two gates alone ∥U− V∥2. 127

5.2 Equivalence of a five qubits circuit A′ containing a two-qubit gate c-R acting
in some of the middle qubits (left) to another five qubits circuit A in which
the same gate acts on the two lowest qubits. Swap gates are used to inter-
change the order of the qubits. 128

5.3 The left circuit is approximated by the right circuit by replacing gate U with V.129

5.4 Qubits interleaving using local interactions. 133

5.5 Exchange of two quantum registers using local interactions. 133

5.6 Shifted control circuit ”sc”. Two-qubits gates (denoted with vertical lines with
dots at their ends) are applied consecutively between qubit c and aj 134

5.7 Shifted control circuit ”scc” for commuting gates. The gates applied between
qubit c and aj mutually commute. 134

5.8 Rotating pattern control circuit ”rc” using local interactions. 135

5.9 ΦMAC circuit using local communications. 135

5.10 ΦADD on two 6 qubits integers using local communications. 136

5.11 QFT on 6 qubits using local communications. 136

5.12 These two circuits have almost equal depth. 137

6.1 High level description of the proposed synthesis methodology. 140

6.2 Representation of a quantum functional block in the QDG notation. (i) Func-
tional block showing all the qubits taking part in the operation along with
their input and output states, (ii) the same block with the qubits organized in
buses connected to ports, and (iii) the abstract notation of the same block
as a node with arcs and their labels. The question marks mean that the re-
spective label depends on the specific connections of the node relative to
the other nodes of the QDG. 142

6.3 Mapping between the standard notation (i) and the QDG notation (ii). Af-
fected arcs have width >0, while control arcs have width=0. 143

6.4 Part of an example forward QDG node. Attached at the tail of the solid arcs
is the output state and at the head of the arcs is the width of the arc (0 for
control arc). Inside the circles of the nodes the port numbers for each case
of affected input, affected output and control input arcs are shown. 146

6.5 Inversion of node A of the example forward QDG shown in Fig. 6.4. Legend
of arc and node labels is similar as that of Fig. 6.4. 146

6.6 First type of deadlock resolution. Nodes A and B are ancilla, nodes C1 and
C1 are non-ancilla and M1,M2,N1,N2,O1,O2 are the nodes added to prevent
the deadlock. Next to each arc is shown its width. Ports are shown inside
the circles of some nodes. 149

6.7 Second type of deadlock. Nodes A,E,F,G,H are non-ancilla whereas nodes
B,C,D are ancilla. Nodes M,N,O added to prevent the deadlock. Width of
each arc is shown. 151

6.8 Quantum or reversible architecture result in the form of QDG (forward and
reverse) for the controlled modular multiplier. Inside each node the function
type and the id are shown. Next to each arc the state it carries is shown.
Thick and thin arcs are affected and control arcs, respectively. Ports num-
bering is shown inside the node, when necessary. 155

6.9 Splitter (i) and Combiner (ii) blocks. 156

6.10 Forward Synthesis result for the conditional mutltiply/accumulate example. 157

6.11 Deadlock II resolution for the conditional mutltiply/accumulate example. . . 157

6.12 Deadlock I resolution for the conditional mutltiply/accumulate example. . . . 158

6.13 Complete synthesis of the conditional mutltiply/accumulate example after
the final reversion procedure. 158

6.14 Comparison of two circuits computing the conditional multiply/accumulate
example. (i) Circuit derived by the compute-copy-uncompute method and
(ii) circuit derived by the proposed method. 159

6.15 Input and output wires definitions of a reversible/quantum circuit U (input ar-
gument x, ancilla input and output 0, desired output f(x) and garbage output
g(x)) and garbage elimination (except the input argument) using Bennett’s
trick of copying the output and applying the inverse U−1. 161

LIST OF TABLES

2.1 Truth tables for NOT, Controlled-NOT and Toffoli reversible gates. 46

2.2 Embedding of the irreversible AND function into a reversible function. 47

3.1 Probabilistic algorithm to factorize an odd, non prime power integer, N by
finding the period of sequence ax mod N. The output p is a factor of N. The
probability of success can be made arbitrary close to 1 with a constant num-
ber of iterations. 75

4.1 Granlund-Montgomery division-by-constant algorithm [122]. Comments, af-
ter //, in some of the lines show equivalent arithmetic operations. 105

4.2 Explanation of the various logical operations and data types used in the clas-
sical version of the division by constant algorithm. 105

4.3 Units used in the ΦMUL_MOD1 design, depth of each unit, number of gates
in each unit, number of units used for each type, gates contribution and depth
contribution of each unit type to the total quantum cost and depth of the mod-
ular multiplier. 117

4.4 Units used in the ΦMUL_MOD2 design, depth of each unit, number of gates
in each unit, number of units used for each type, gates contribution and depth
contribution of each type of unit to the total quantum cost depth. 117

4.5 Comparison of various modular exponentiation quantum circuits in terms of
qubits requirement (width), speed (depth), number of gates used (quantum
cost) and depth-width product. Second column succinctly describes the ar-
chitecture and the basic block used (usually the kind of adder), third column
shows the interactions requirement and the fourth column distinguishes be-
tween exact or approximate calculations performed. For the depth and gates
estimations we have assumed that whenever Toffoli gates are used, they
contribute five times the quantum cost and depth of two or single qubit gates. 119

6.1 Example functions of a Quantum Library. 141

6.2 Forward QDG Synthesis Algorithm . 145

6.3 Node Inversion Algorithm . 148

6.4 Detection and Resolution of Deadlock I Algorithm 150

6.5 Detection of Deadlock II Algorithm . 152

6.6 Reversing Algorithm . 153

6.7 Specifications of a controlled modular multiplier 154

6.8 Specifications of a conditional multiplier/accumulator. Bit widths of the vari-
ables x, z, y, s are n, n, n, 1 respectively. 156

PREFACE
This thesis was conducted in the Department of Informatics and Telecommunications of
the National and Kapodistrian University of Athens during the period 2011-2016.

Design and Synthesis of Efficient Circuits for Quantum Computers

1. EXTENDED SUMMARY
Quantum Information Theory and Quantum Computing are interdisciplinary research fields
that combine different doses of Physics, Informatics and Mathematics depending on which
aspect someone focuses. Quantum Computing is a relatively recent research field, al-
though Quantum Information Theory has already been developed for the last 40 years,
after important results which connect classical Information Theory to Quantum Mechan-
ics (quantum entropies inequalities [1, 2, 3], Holevo bounds for capacities of quantum
channels [4, 5], Bekenstein bound [6], etc.)

The theoretical connection of Quantum Mechanics to the Theory of Computation achieved
in the 80’s [7, 8], while more boost came in the 90’s with the invention of efficient quantum
algorithms [9, 10, 11], which can be executed on computing machines (quantum comput-
ers) exploiting fundamental quantum properties of nature, like superposition and entan-
glement. Such efficient algorithms can achieve important reduction of time complexity, so
that in many instances, problems that cannot be solved in polynomial time on a classi-
cal computer with the currently known algorithms, can be solved in polynomial time on
a quantum computer. A famous example, with important applications in Cryptography, is
the factorization of a composite integer into its prime factors (Shor’s algorithm)[10]. An-
other important example is the efficient simulation of quantum physical systems with many
degrees of freedom (like a complex chemical molecule), a computation which is not prac-
tically achievable in a classical computer [12].

The physical realization of a quantum computer, while in principle is feasible, requires a
complex technological effort to overcome practical problems. An important problem is that
the carriers of quantum information, the qubits, are very fragile under the influence of their
environment and it is very difficult to maintain them in a constant state for a long enough
duration so as they can perform a useful computation. The physical carriers of informa-
tion can be atoms, ions, nuclei and in general any microscopic system on which quantum
mechanical effects can be observed1. The disturbance effect on the qubits under the envi-
ronment influence is known as decoherence and can be thought as an environment noise
effect. Decoherence problems increase as the number of qubits increases. Additionally,
the basic processing elements of qubits, the quantum gates, introduce another factor of
disturbance of quantum information, because usually their operation approximates the
ideal theoretical operation with errors which don’t allow the construction of useful large
quantum computers. These introduced errors can be thought as an additional environment
induced noise, converting the ideal gates to noisy or erroneous ones. Thus, although real
quantum computers have been already developed using various technologies (photons,
ion traps, Josephson junctions), they are limited to about 10 qubits [15, 16, 17, 18].

The decoherence problem has been theoretically addressed in the 90’s by exploiting and
extending results from classical Error Correcting Codes Theory, leading to the invention
of Quantum Error Correcting Codes [19, 20, 21]. Such codes can be applied by combining
many noisy quantum physical gates so as to build an ideal quantum logical gate, that is
they allow the construction of fault tolerant quantum gates. This can be accomplished un-
der some conditions, of which the most important is that the noise percentage introduced
by each physical quantum gate is lower than a threshold (Quantum Threshold Theorem)
[22]. In such a case, an ideal quantum logical gate can be constructed by using redun-
dancy, that is using many physical gates. During the recent years, the effort to build high
reliability quantum gates has been intensified, so as to permit the construction of quantum
computers of adequate size in the near future. Results of these efforts are very encourag-

1Currently, some of the most promising are ion traps [13] and Josepshon junction superconductors [14]

39 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

ing.

This thesis contributes two-fold:

• Design of novel efficient quantum circuits (arrays of interconnected quantum logical
gates) for integer arithmetic operations and their combination to a higher hierarchy
level to achieve more complex arithmetic operations, like modular exponentiation
which is an integral part of Shor’s algorithm and important algorithms of the same
class. The novelty of the proposed circuits lays in the usage of Quantum Fourier
Transform (QFT) on the integers states prior to their processing, resulting in im-
proved efficiency in terms of speed. Problems related to the usage of QFT in arith-
metic circuits, such as the requirement for high precision quantum gates and the lack
of communications locality between the qubits, are also effectively addressed.

• A generic hierarchical quantum and reversible circuits synthesis methodology. The
majority of existing automatic synthesis methods are flat; they operate on the lowest
level of gates and while in many cases they lead to optimal or suboptimal results, they
have the disadvantage of not being suitable for large circuits as they have exponen-
tial requirements in memory usage and run time. The straightforward incorporation
of hierarchical synthesis methods into tools of flat methods uses the methodology of
Bennett. In contrast, the proposed hierarchical method offers advantages in terms
of derived circuit speed and memory, relative to the few hierarchical ones of the
literature.

In the context of this thesis, the used gates are assumed to be reliable (logical level) which
have been derived from elementary physical quantum gates incorporating any method of
error correction. Thus, the thesis concerns the logical level of quantum gates and not the
lower level of physical gates. Therefore, the proposed methods of this doctoral thesis can
be applied to any technology of physical realization and fault tolerant implementation of
logic gates.

We adopt the computation speed, which is known as circuit depth, as the main criterion
of efficiency of the proposed methods in this thesis, and it is the number of required steps
to complete the computation. This is an important efficiency criterion when construction of
large size, in terms of memory, quantum computers become feasible in the future. In the
case of the proposed synthesis method, advantage in terms of memory (qubits require-
ment), except of speed, are also achieved.

The proposed quantum subsystems concern basic arithmetic operations on integers, like
multiplication of a constant with an integer and accumulation (MAC) and division by con-
stant (quotient and remainder calculation) which are used in important quantum algo-
rithms. The implementations is accomplished by using alternative representation of inte-
gers in the Fourier domain (that is we use the Quantum Fourier Transform) instead of the
usual representation in the computational basis. Quantum circuits using QFT exist in the
literature, but they are limited to various kind of adders only [23], while the straightforward
implementation of a MAC with Fourier representation using such adders [24] has quadratic
circuit depth relative to the integer size. In contrast, the proposed MAC offers linear depth,
a considerably important property for large (and thus practically useful) quantum numbers.
Regarding the division circuits, just a few quantum dividers exist in the literature and they
are chiefly limited to special purposes (e.g. for Galois fields GF(2m), that is dividers of poly-
nomials with coefficients 0 and 1). A known general quantum divider based on QFT [25]
has a cubic depth, while if the divisor is constant its depth can be reduced to be quadratic.
The proposed constant divider in this thesis offers a linear depth.

A.Pavlidis 40

Design and Synthesis of Efficient Circuits for Quantum Computers

The above two circuits, effectively combined, can be used to construct other more com-
plex circuits useful in various important quantum algorithms. In this thesis we show how
it is possible to construct a multiplier modulo N, which is a fundamental element for the
operation of modular exponentiation. Modular exponentiation is the most time consuming
operation in one of the most important quantum algorithms, the factorization algorithm of
Shor, and also in other algorithms of the same family. The proposed design achieves a
circuit depth of O(n2), while the majority of the circuits in the literature ranges between
O(n2 log n) and O(n3), and consequently the proposed design offers important speed ad-
vantage for large numbers. Some of the circuits in the literature offering quadratic or less
depth have the disadvantage of increasing excessively the required space (number of
qubits) in order or they have the disadvantage of performing approximate calculation.

In the estimation of the circuit efficiency (being in time or space) we must take into account
the physical implementation constraints. Such a constraint is the capability of global inter-
actions between the qubits or the limitation of this interaction to neighborhood qubits only,
e.g. in a linear one-dimensional array implementation of qubits, where each one can inter-
act only with its two neighbors (1D-LNN, 1D-Linear Nearest Neighborhood). The proposed
architecture for Shor’s algorithm, while at first sight seems to require global communica-
tions between the qubits, it can be adapted in physical machines requiring local interac-
tions with constant overhead in depth, as we show. That is, we don’t have any increase
in the quadratic order of depth. In contrast, most of the low O(n2 log n) depth architectures
when applied in a machine that requires local communications increase the depth (e.g. to
O(n2
√
n) in 2D-LNN or to O(n3) in 1D-LNN) [26].

The Fourier domain processing of the proposed circuits requires the usage of controlled
rotation quantum gates with specific angles. A known drawback of such gates is that they
do not belong to the category of gates that may constructed fault tolerantly, unless they
are decomposed in a sequence of fault tolerant capable gates (e.g. H and T gates). But,
such a decomposition implies considerable overhead in the depth of the whole modular
exponentiation circuit up to an order, that is to O(n3) from O(n2). Yet, it is possible, as it
will be shown, to have a much lesser overhead of O(n2 log n) by permitting approximate
computation which allow the Shor’s algorithm to operate with minor degradation concern-
ing the probability of success. Therefore, the proposed architecture is one of the most
competitive in terms of depth, especially if it is applied to 1D-LNN or 2D-LNN physical
machines, which are the most probable to be implemented in the future.

Design of quantum circuits adopts ideas from classical logical design. Small circuits or
circuits with repetitive structure can be designed either ad hoc or with formal synthesis
methods based on specifications (e.g. truth tables). In the case of quantum circuits there
exist similar synthesis methods based on specifications which in the general case are uni-
tary matrices [27, 28]. In special cases where a quantum circuit is described by a matrix
with elements exclusively 0 and 1, then reversible circuits2 synthesis methods can be ex-
ploited [30]. Such quantum circuits cases are met when the circuit computes an arithmetic
or logical function in the computational basis (e.g. integer addition).

In such cases, these methodologies are suitable for small circuits only, because the re-
quired computation power and memory required for their application increases exponen-
tially with the circuit size. The obvious solution is the hierarchical bottom-up design which
is applied in classical circuits. In the hierarchical method, if the desired operation can be
described as a splicing of simpler operations, the design starts from the lowest level of

2In a reversible circuit, for every possible output, the respective input can be derived, that is no information
erasure happens [29].

41 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

simpler operations towards the higher level of the more complex operations. The applica-
tion of the hierarchical method to quantum circuits is possible but requires special handling
of the intermediate computation results that are not useful at the end. The particularity is
caused due to the fact that these intermediate results cannot be simply discarded at the
end because, in general, they are quantum entangled with the desired results. They must
be reset to their initial state by inverse computation. Bennett’s method is a well known
method that keeps the desired results through copying and resets the intermediate re-
sults through uncomputation [31]. Its main characteristic and drawback is that it doubles
the computation steps (forward computation and the reverse computation) and it also re-
quires more memory space, equal to the space needed by the desired results due to the
copying.

The hierarchical design method we propose in the doctoral thesis offers advantages rela-
tive to Bennett’s method in terms of speed and memory of the target circuit. The specifica-
tions of the synthesizable circuit are given as a sequence of arithmetic or logic functions.
These functions are supposed to be part of a library of quantum circuits. The library can be
constructed by using other lower level synthesis methods, or contain known parametrized
circuits of the literature (e.g. adders) or be populated with new circuits of the same hierar-
chical method. Also, the library contains the inverse circuits due to the necessity described
above. The end result of the synthesis in the form of directed acyclic graph describes the
target circuit, where the nodes of the graph represent the modules of the library and the
arcs of the graph represent the interconnections between the modules. This synthesis
method requires polynomial execution time and memory space in relation to the number
of the functions of the specifications and in any case it produces circuits of equal or better
performance in terms of depth and space in compared to the basic Bennett’s method.

The structure of the doctoral thesis is as follows: Chapter 2 is an introduction to Quantum
Computing, while Chapter 3 accompanied with Appendix A is a detailed description of
Shor’s algorithm. The contribution of the thesis begins in Chapter 4 where the fast quantum
arithmetic circuits based on the Fourier representation of integers is presented. Chapter
5 describes the approximation methodology of these circuits with angle quantization and
their adaptation on a physical machine of one-dimensional linear array of nearest neigh-
borhood interactions. Chapter 6 describes the hierarchical synthesis method of quantum
and reversible circuits. Finally, Chapter 7 is a review of conclusions and potential future
research directions in the subjects of the thesis.

A.Pavlidis 42

Design and Synthesis of Efficient Circuits for Quantum Computers

2. INTRODUCTION TO QUANTUM COMPUTING
An impressive progress in every field of computer science has been observed since the
invention of the first digital computers in the 40’s: hardware, algorithm design, software
applications and networking. Moore’s law, introduced in 1965 [32], predicted a doubling in
the transistor density every two years with nearly equivalent consequences in computa-
tion power, energy decrease per computation step, etc. Moore’s law has remained invari-
ant until today, but various technological problems, such as power consumption, process
variation, electromigration, etc., raise doubts if such a rate will continue. E.g. a power con-
sumption related law known as Dennard’s law [33] stated that, similarly to Moore’s law, the
computation power per energy unit would raise exponentially as time passed. But this law
is no longer valid from about 2006, mainly due to current leakages. Apart from the various
technological problems, there are fundamental limits that prohibit the ongoing miniatur-
ization as quantum mechanical effects will come to forefront. E.g. the silicon dioxide gate
insulator used in MOS transistor has a thickness of about 5 silicon atoms and the quantum
mechanical effect of electron tunneling leads to current leakage towards the channel of
the transistor raising the power consumption.

Besides hardware limitations, there are fundamentals software limitations, because there
exist problems that classical algorithms cannot solve efficiently (in polynomial time with
respect to the problem size). Quantum computing is a fundamentally different approach,
both in hardware and algorithm design, which can exploit quantum mechanical effects to
solve efficiently problems that are hard to be solved using classical computers.

2.1 Classical Computing
The formal notion of algorithm can be described by the definition of the Turing machine
(TM) introduced in 1936 and the Universal Turing Machine (UTM) which is a general TM
that can simulate any TM [34]. Essentially, UTM corresponds to a programmable com-
puter for which any given problem is solved by a different program. Any problem that can
be solved by an existing algorithm can be also treated by a Turing machine designed to
solve the particular problem (or a UTM that has been programmed to solve this problem).
Conversely, for any given problem which can’t be solved by an existing TM, no algorithm
exists . This is known as Church-Turing thesis. A problem that can be solved by a TM is
said to be computable or decidable, otherwise it is said to be non-computable or unde-
cidable. The Halting problem1 is a well known example of an undecidable problem [34].
Thus, the Church-Turing thesis partitions the various problems in the two broad classes
above.

2.1.1 Complexity Classes
Although TM is an abstract mathematical/logical model of computation, it contains some
inevitable physical assumptions such as space, time and power requirements for its oper-
ation. Space requirements are related to the tape cells2 consumption, while time require-
ments are related to the finite transition time in each step. Power requirements are related
to the possible information erasure when writing a cell. Computational complexity deals
with partitioning problems into various classes depending on these requirements [35, 34].

Time and space requirements are defined with respect to the input size n of the problem
to be solved. A broad class consists of problems that are efficient or tractable to solve on
a TM. These problems need at most polynomial time in n and the set of all these problems

1The Halting problem is the problem to decide whether a given algorithm fed with a particular input will
terminate or not.

2Tape cells in a TM are analogous to the memory in a conventional classical computer

43 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

define the P complexity class. E.g., the greatest common divisor of two n-digit integers can
be found by the Euclid algorithm in time which is proportional to n2.

A technique to solve some problems outside the P class, in polynomial time, is to introduce
randomness in an algorithm. In the TM model this is accomplished by extending the model
so that it becomes indeterministic and the transition function is dependent on a probability
distribution function (probabilistic TM). The Boundary Probability Polynomial class (BPP) is
the class of problems that are solved in polynomial time on such a probabilistic TM. Thus,
P ⊆ BPP, although it hasn’t been proven that the inclusion is not strict. The introduction of
the BPP class led to a new definition of the Church-Turing thesis [36].

Definition 2.1. (Strong Church-Turing thesis) Any reasonable model of computation is
efficiently simulated by a probabilistic TM.

Thus, any problem in the P or in the BPP class is efficiently solvable in any reasonable
model of computation as this model is asserted to be polynomially simulated by a proba-
bilistic TM.

Problems for which no efficient algorithm is known to exist are said to be hard or inefficient.
The Non-deterministic Polynomial complexity class, or NP, falls in the category of hard
problems. The NP problems are defined as the ones that have polynomial time verifiability,
meaning that even if there is no known polynomial time algorithm to solve them, yet a
solution can be verified in polynomial time. An example is the factorization problem of
an integer into its prime factors. The best known factorization algorithm is the General
Number Field Sieve, which has complexity O(exp(3

√
64
9 n)exp(log n)

2
3), where n is the bits

length of the integer. However, a possible factor can be verified in polynomial time using
the division algorithm.

An equivalent definition of an NP problem is that it can be solved in polynomial time
by a non-deterministic Turing Machine (NTM), justifying the name NP (Non-deterministic
Polynomial). A NTM (not to be confused with the probabilistic TM) is a modified TM in
which each transition may lead to different configurations of the machine by replicating
the machine itself. A NTM is believed not to be physically realizable model of computa-
tion. It can be proven that any TM cab be simulated on a NTM in polynomial time, thus
P ⊆ NP, though the relation between NP and BPP is not known.

A subclass of NP problems are the NP− complete problems. These are the ”hardest” prob-
lems of the NP class in the sense that the solution of any NP problem can be reduced
in polynomial time to the solution of an NP − complete problem. Consequently, if any of
the NP− complete problems is proven to be in P then every NP would be in P, resulting in
NP = P.

Concerning the space complexity, an important class is the PSPACE. This class consists
of problems that can be solved using polynomial space (computer memory or TM cells)
with respect to the size of the problem. It can be proven that P ⊆ PSPACE and NP ⊆
PSPACE. Thus, the following ordering of classes is known to be valid, without any proof if
any inclusion is strict or not.

P ⊆ NP ⊆ PSPACE (2.1)

In Section 2.4 another complexity class relevant to the quantum computing will be asso-
ciated with the above defined classes.

A.Pavlidis 44

Design and Synthesis of Efficient Circuits for Quantum Computers

The abstract model of TM is usually realized on computers as a digital logic sequential
circuit. Moreover, it is proven that a TM is equivalent to combinational digital logic circuits
(circuits that have no memory element and feedback) with polynomial cost in space and
time [37, 38, 39]. Thus, the efficiency of a problem is preserved if it is solved on a com-
binational circuit. A similar equivalence holds for the quantum computation case between
the Quantum Turing Machine model (subsection 2.2.6) and the Quantum Circuit model
(section 2.3) of computation.

2.1.2 Irreversible and Reversible Computing
The energy resources required by a computation are directly related to the information
loss that takes place during the computation. Landauer [40] showed that there is a fun-
damental lower limit of energy loss (Landauer limit) when information processing is done
in an irreversible manner. For each bit of information loss at least kT ln 2 Joules of energy
are dissipated, where T is the environment absolute temperature in Kelvin and k is the
Boltzmann constant (≈ 1.38 · 10−23 Joules/Kelvin). Conventional computing is done irre-
versibly as it is based on irreversible operations. For example, a NAND gate irreversibly
processes information because the information of two inputs is lost as it cannot be re-
covered by the knowledge of the output. Thus, the power loss due to information loss is
irrelevant to implementation technology aspects. The general TM computation model also
suffers from information loss because two transitions may lead to the same configuration
of the machine, thus it is an irreversible model of computation.

The question whether computations can be done in a reversible manner, that is without
information loss, was answered by Bennett [31] when he introduce the Reversible Turing
Machine (RTM). He proved that any irreversible TM can be simulated by a RTM with
polynomial cost in space and time. Namely, an irreversible TM with O(T) and O(S) time
and space requirements, can be simulated by a RTM with O(T) and O(ST) time and space
requirements.

A more practical model for reversible computation is the reversible circuit introduced by
Toffoli [29]. A reversible circuit is a logic combinational circuit implementing a function
f : Bn → Bn, where B{0, 1}, n is the number of input and outputs and f is a bijective function
or equivalently a permutation. This means that there is an inverse function f−1 : Bn → Bn,
which for each x giving f(x) = y then f−1(y) = x. A reversible circuit is constructed by
combining logic reversible gates selected from a reversible library. In a reversible circuit
no fanout is allowed at the output of each gate (each output line must be connected to
only one input of another gate). Also, as in the conventional combinational circuits, no
feedback connections are allowed.

Reversible circuit designs find application in a variation of emerging technologies and
computation paradigms, such as low power design [29], quantum computation [41], opti-
cal computing [42], DNA computing [43]. E.g., optical computing could exploit sooner the
zero energy loss of reversible computing compared to computing using conventional elec-
tronics. The reason is that the power loss occurring due to other non fundamental reasons
(technological imperfections) in optical devices is lower than the respective power loss of
semiconductor devices.

The libraries used to build reversible circuits often contain the following reversible gates:
NOT,Controlled-NOT (CNOT) and Toffoli. These are one, two and three bit gates, respec-
tively, with truth tables shown in Table 2.1 and symbols depicted in Figure 2.1.

The first input and output line c of the CNOT gate is called the control bit, while the second

45 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

Table 2.1: Truth tables for NOT, Controlled-NOT and Toffoli reversible gates.

in out
0 1
1 0

cin tin cout tout
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

cin1 cin2 tin cout1 cout2 tin
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

in out cin • cout cin1 • cout1
tin tout cin2 • cout2

tin tout

Figure 2.1: Symbols for NOT, CNOT and Toffoli reversible gates

line t is called the target bit. The operation of a CNOT gate is to invert the target bit iff3
the control bit has logical value 1, while the control bit remains unaffected. The inverse
computation, that is to extract the input from the output, is accomplished by connecting a
second CNOT gate to the outputs of the first gate as the inverse CNOT is itself.

Toffoli gate is an extension of the CNOT gate to three bits. Now, the first two lines c1 and c2
carry the control bits while the last line t is the target bit. Its operation is to invert the target
bit iff both control bits have a logic value 1, while both the control bits remain unaffected.
The inverse gate of a Toffoli gate is itself. Toffoli gate is a universal gate in the sense that
any reversible circuit can be constructed using exclusively Toffoli gates. A Toffoli gate can
emulate the irreversible AND gate, if its target input is set to 0. Then the target output will
be the logical AND of its two control bits. Similarly, by appending two NOT gates to each
control input of a Toffoli gate and setting its target to 1 we can simulate an OR gate.

Sometimes, the function to be emulated in a reversible circuit does not have equal number
of inputs and outputs or it is not bijective, thus it is irreversible. E.g. The original irreversible
AND gate has two inputs and one output. Its reversible emulation requires the addition
of two more input lines and one output line, as the Toffoli gate is a mapping of three
inputs to three outputs. The above emulation of an irreversible function by a reversible
one can be generalized. In general an irreversible function has the form f : Bn → Bm,
where m < n and/or there are k > 1 input vectors xi ∈ Bn, i = 1 . . . k mapped to the
same output combination, that is f(x1) = . . . = f(xk). Such an irreversible function can
be transformed to a reversible one by embedding it into another constructed reversible
function g : Bn+c → Bm+g having c additional inputs and g additional outputs relative to the
irreversible function f. The reversibility requirement of equal number of inputs and outputs
leads to the relation n + c = m + g. The n inputs and m outputs are the primary ones,
while the additional g outputs are the garbage ones. The possible addition of c constant
variables due to the requirement of the addition of garbage outputs leads to the increment
of lines carrying these variables in the implemented circuits. These lines are the ancillae
of the circuit. The ancilla lines must be reset back to a known constant state, usually the 0
state, in order to be reused later as a constant input to a larger circuit, otherwise they are

3”iff” stands for ”if and only if”

A.Pavlidis 46

Design and Synthesis of Efficient Circuits for Quantum Computers

Table 2.2: Embedding of the irreversible AND function into a reversible function.

a x y z g1 g2
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 1 1

part of the garbage lines set.

A simple embedding example is shown in Table 2.2 for the AND irreversible function,
where the embedded AND function subtable is shown in bold. In this case the number
of inputs (x and y) is n = 2 and the the number of outputs (z) is m = 1 . Observe that
three different input combinations (00,01 and 10) of x and y lead to the same output value
z = 0. For this reason it is not adequate to add only one output to satisfy the requirement
of equal number of inputs and outputs. Instead, two garbage outputs g1 and g2 are added
to discriminate these three different input combinations. With the additional two garbage
outputs an additional constant input a is required to keep the number of inputs equal to the
number of outputs. The garbage output values are chosen so as to be different in each
input combination that leads to the same output value (z = 0) and the rest of the output
values are chosen so as no same pattern appears twice in the truth table [29].

Quantum computation is inherently reversible, as it will be discussed in the next section.
Thus there is a relation between reversible computation and quantum computation. Re-
versible computing is a subset of quantum computing and procedures used in reversible
design can be used in the design of quantum algorithms. However, a major difference be-
tween reversible and quantum computation is that, a possible garbage generation during
the quantum computation cannot be simply discarded at the end of the computation as
could be done in the reversible case (with the cost of energy loss), as this would affect the
outcome of the computation because of the entanglement (see subsection 2.2.5) of quan-
tum bits. For this reason, proper handling of garbage outputs is important in the quantum
computation.

2.2 Quantum Mechanics and Computation
Inherent in the assumption of the Strong Church-Turing thesis for the efficient solution
of problems is that the operation of a TM (being deterministic or probabilistic) relies on
the classical view of the physical laws. This may pose restrictions on the computational
power capabilities of the TM model. However, the laws of physics are quantum mechanical
in principle. Feynman [44] noted that the simulation of an arbitrary quantum mechanical
system by a classical computer (TM) is in general inefficient as it requires exponential
resources with respect to the size of the system. Thus, he conjectured that if somehow
computers based on the quantum mechanical laws could be build, then they would offer
an advantage of computational power relative to classical computers.

The incorporation of the quantum mechanical way that nature works in an abstract man-
ner into the computational processes requires a minimum mathematical framework. This
framework will be briefly given in the form of four postulates [41, 45].

47 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

2.2.1 State of a closed quantum system
Postulate 2.1. Every closed physical system is associated to a complex Hilbert space
known as state space of the system. At any time the system is completely described by
its state vector of unit norm in the state space.

Definition 2.2. (Hilbert Space) A complex Hilbert space is a complete complex vector
space with inner product.

Dirac’s ket notation |ψ⟩ will be used extensively in this thesis to denote an element (vector)
of a Hilbert space. In matrix notation, an element |ψ⟩ of a d-dimensional Hilbert space Hd

is a vector of the form [a0, a1, . . . , ad−1]T where ai ∈ C (C is the set of complex numbers)
and the symbol T denotes transposition.

Definition 2.3. (Computational Basis) The set of vectors in Hd

B =

|0⟩
.
=


1
0
...
0

 , |1⟩ .
=


0
1
...
0

 , . . . , |d⟩ .
=


0
0
...
1


 (2.2)

is a basis of Hd and it is called the computational basis.

Any state vector of the form |ψ⟩ = [a0, a1, . . . , ad−1]T can be written as a linear superposition
of basis states vectors as

|ψ⟩ = a0|0⟩+ a1|1⟩+ · · ·+ ad−1|d− 1⟩ (2.3)

where the complex coefficients ai are called the amplitudes of the superposition.

Definition 2.4. (Inner product) An inner product in a complex vector spaceHd is a function
of two vector arguments from this space which takes complex values, that is (·, ·) : Hd ×
Hd → C, with the following properties:

Linearity (|ψ⟩,
∑

i ci|φi⟩) =
∑

i ci(|ψ⟩, |φi⟩)

Conjugate Symmetry (|ψ⟩, |φ⟩) = (|φ⟩, |ψ⟩)∗

Positivity (|ψ⟩, |ψ⟩) ≥ 0 (equality iff |ψ⟩ = 0).

Note that the linearity holds for the second argument only. The first argument has the
property of the anti-linearity.

The dual vector of [a0, a1, . . . , ad−1]T is defined as its complex conjugate transpose in matrix
notation, that is [a∗0, a∗1, . . . , a∗d−1]. The bra notation is used for this vector, that is ⟨ψ| .= (|ψ⟩)†
where the symbol † denotes conjugate transposition. Using the bra-ket notation for vectors,
one can define an inner product of two state vectors |ψ⟩ and |φ⟩ as (|ψ⟩, |φ⟩) .

= ⟨ψ|φ⟩, which
satisfies the above three properties.

Definition 2.5. (Norm) The 2-norm of a state vector is defined as ∥ψ∥ .
=
√
⟨ψ|ψ⟩.

The unit norm requirement of Postulate 1 when applied in Eq. (2.3) gives
∑

i |ai|2 = 1
which is related to the probabilities interpretation of quantum measurement in Postulate
2.3.

A.Pavlidis 48

Design and Synthesis of Efficient Circuits for Quantum Computers

|0�

|1�

|��

�

�

�

	

Figure 2.2: Representation of a qubit on the Bloch sphere

The completeness requirement of a set likeHd means that any sequence of vectors in this
space converges to a vector belonging to the same space. A counterexample is the set
of rational numbers Q which is not complete, as the sequence (1 + 1/n)n ∈ Q, ∀n ∈ N,
while lim

n→∞
(1+ 1/n)n = e = 2.718 . . . /∈ Q.

Note that Postulate 2.1 applies to closed systems only; systems that don’t interact with
their environment. Yet, it is general enough to be used to study open systems if the open
system together with its environment is thought to be another closed system.

The simplest quantum physical system is the one associated to a two dimensional Hilbert
space H2. Such a system is called qubit or quantum bit and its state can be described as

|ψ⟩ = a|0⟩+ b|1⟩ =
[
a
b

]
, a, b ∈ C, |a|2 + |b|2 = 1 (2.4)

The constraint |a|2 + |b|2 = 1 permits the equivalent representation

|ψ⟩ = eiω
(
cos

θ
2
|0⟩+ eiφ sin

θ
2
|0⟩
)
, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π (2.5)

The factor eiω is physically unobservable by any measurement and thus the unit state
vector of a qubit depends only on the two real parameters θ and φ and consequently lies
on the surface of a unit radius sphere called the Bloch sphere [41]. Figure 2.2 depicts the
Bloch sphere, the basis vectors |0⟩, |1⟩ (located on the North Pole and the South Pole
respectively) and an arbitrary state vector |ψ⟩. Bloch sphere is a useful visualization tool
for understanding the operation of various single qubit gates such as the ones discussed
in next section.

The physical realization of a qubit can take various forms. E.g. a qubit can be realized
as the spin of an electron or the energy level of an atom. In the former case a spin up
would correspond to |0⟩ state and a spin down to |1⟩ state. Similarly, the ground state
of an atom would correspond to |0⟩, while the first excited state would correspond to |0⟩.
Some examples of physical realizations of qubits are discussed in section 2.5 .

49 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

2.2.2 Unitary evolution of a closed quantum system
The change of a closed quantum system over time can be stated in its most general form
with the following.

Postulate 2.2. The time evolution of a closed system is defined by a unitary transformation
U applied on its state vector as

|ψf⟩ = U|ψi⟩ (2.6)

where |ψi⟩ and |ψf⟩ are the initial and final states, respectively.

Unitarity of operator U means that U†U = U†U = I and this implies that every quantum
evolution is reversible as for each operator U its inverse always exists and it holds U−1 =
U†. The unitary operator U is compatible with the dimensions of the state and for a d-
dimensional system it can be expressed by a unitary matrix of dimension d× d.

The above formulation is known as the Schrödinger picture because its continuous time
restatement has essentially the solution form of the Schrödinger equation [41]. An alter-
native formulation is the Heisenberg picture of quantum mechanics where the state is
constant and the operator is time dependent, although the two forms are equivalent [46].
The Schrödinger picture is more convenient for the quantum circuit model to be introduced
in the next section, as the operator U corresponds to various quantum gates used in the
model.

2.2.3 Projective Measurement
The first two postulates deal with closed systems. Except from being an ideal model, a
closed system is not useful from the computational perspective. If someone is to obtain
computation results then he/she has to interact with the system and perform a measure-
ment through establishing correlations of ”his/her own” system to the system under mea-
surement. The third postulate sets the measurement issue in the quantum mechanical
view.

Postulate 2.3. A quantum measurement of a physical system is described by a set of
projective matrices Pm,m = 1 . . . n satisfying the completeness equation

n∑
m=1

Pm = I (2.7)

If the state of the system before the measurement is |ψ⟩ then the result after the measure-
ment will be m with probability

Pr(m) = ⟨ψ|Pm|ψ⟩ (2.8)

and the post-measurement state of the system will be

|ψm⟩ =
Pm|ψ⟩√
Pr(m)

=
Pm|ψ⟩√
⟨ψ|Pm|ψ⟩

(2.9)

The transformation of the state before the measurement state to the post-measurement
state is a non unitary transformation and is also called state collapse or state reduction.

The dimensions of the projective matrices are compatible (d × d) with the dimension d of
the system under measurementHd. The completeness relation (2.7) assures that the sum
of probabilities is 1. The projectivity property of Pm means that (i) P2m = Pm and (ii) P†

m = Pm
(Hermitian matrix). The first property assures that a second measurement immediately

A.Pavlidis 50

Design and Synthesis of Efficient Circuits for Quantum Computers

after the first gives the same result with probability 1. Two states like |ψ⟩ and eiφ|ψ⟩ which
differ by a global phase factor eiφ are unobservable by any measurement because the
measurement probability remains unaltered; Pr(m) = ⟨ψ|e−iφ|Pm|eiφ|ψ⟩ = ⟨ψ|Pm|ψ⟩ for any
projector Pm.

The above kind of measurements are known as projective measurement or Lüders mea-
surement [45]. When each projection operator leaves the post-measurement state to a
one-dimensional subspace of Hd, meaning that rank(Pm) = 1, then we have a complete
measurement. In this case, the completeness relation (2.7) forces the equality n = d,
that is the number of different measurement results equals the dimension of the system.
This could happen if the projectors were of the form Pm = |ψm⟩⟨ψm| where |ψm⟩ form an
orthonormal basis ofHd like the one of Eq. (2.2). This special case of projective measure-
ment is called von Neumann measurement. Throughout this thesis the measurements are
assumed to be von Neumann on the computational basis of Eq. (2.2).

2.2.4 Composition of closed systems
Postulate 2.4. The state space Hd of a composite closed system consisting of n subsys-
tems with state spaces Hdi

i , i = 1 . . . n is their tensor product Hd = Hd1
1 ⊗H

d2
2 ⊗ · · · ⊗ Hdn

n .
Moreover, if each subsystem is in the state |ψi⟩, i = 1 . . . n, then the state of the composite
system is the tensor product |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩.

The dimension of the composite system is d = d1d2 · · · dn. The tensor product of two vectors
in column format |a⟩ = [a1a2 . . . ap]T and |b⟩ = [b1b2 . . . bq]T is defined through the Kronecker
product

|a⟩ ⊗ |b⟩ .
=


a1
a2
...
ap

⊗


b1
b2
...
bq

 =


a1|b⟩
a2|b⟩

...
ap|b⟩

 =



a1b1
a1b2

...
a1bq

...
apb1
apb2

...
apbq


(2.10)

The generalization to tensor products of more than two vectors is straightforward through
the associativity law |a⟩ ⊗ |b⟩ ⊗ |c⟩ = |a⟩ ⊗ (|b⟩ ⊗ |c⟩) = (|a⟩ ⊗ |b⟩) ⊗ |c⟩ which holds for
tensor products. Equation (2.10) can be used to define a basis for the composite system
Hd from the bases of the subsystems Hdi

1 .

The above definition can be extended to tensor products of operators acting on the sub-
systems. Then, the tensor product is the equivalent operator that acts on the composite
system. For example, let A and B be operators acting on subsystems Hp

1 and Hq
2, respec-

tively. Then, U is the equivalent operator acting on the composite system Hpq = Hp
1 ⊗H

q
2

and it is given in matrix block form as

A⊗ B .
=


A11B A12B . . . A1pB
A21B A22B . . . A2pB

...
...

Ap1B Ap2B . . . AppB

 (2.11)

51 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

where Aij are the elements of matrix A. The generalization to tensor product of more than
two matrices is again straightforward using the associativity law.

Some useful identities that will be used extensively in this thesis are the following, assum-
ing that c is a scalar complex, |x⟩, |x1⟩, |x2⟩ ∈ Hp

1, |y⟩, |y1⟩, |y2⟩ ∈ H
q
2, A,C operators in Hp

1
and B,D operators in Hq

2

c(|x⟩ ⊗ |y⟩) = (c|x⟩)⊗ |y⟩ = |x⟩ ⊗ (c|y⟩) (2.12)
(|x1⟩+ |x2⟩)⊗ |y⟩ = |x1⟩ ⊗ |y⟩+ |x2⟩ ⊗ |y⟩ (2.13)
|x⟩ ⊗ (|y1⟩+ |y2⟩) = |x⟩ ⊗ |y1⟩+ |x⟩ ⊗ |y2⟩ (2.14)
(A⊗ B)(|x⟩ ⊗ |y⟩) = A|x⟩ ⊗ B|y⟩ (2.15)
(A⊗ B)(C⊗ D) = AC⊗ BD (2.16)

A composite system consisting of n qubits is essentialy associated to a Hilbert space of
2n dimensions. The computational basis of this system consists of the tensor products of
all the possible combinations of state basis vectors of each qubit. The 2n computational
basis states of the composite system are

|0⟩ = |0⟩ ⊗ · · · ⊗ |0⟩ ⊗ |0⟩ = |0 . . . 00⟩
|1⟩ = |0⟩ ⊗ · · · ⊗ |0⟩ ⊗ |1⟩ = |0 . . . 01⟩
|2⟩ = |0⟩ ⊗ · · · ⊗ |1⟩ ⊗ |0⟩ = |0 . . . 10⟩
|3⟩ = |0⟩ ⊗ · · · ⊗ |1⟩ ⊗ |1⟩ = |0 . . . 11⟩

...
|2n − 2⟩ = |1⟩ ⊗ · · · ⊗ |1⟩ ⊗ |0⟩ = |1 . . . 10⟩
|2n − 1⟩ = |1⟩ ⊗ · · · ⊗ |1⟩ ⊗ |1⟩ = |1 . . . 11⟩

(2.17)

Thus the basis state |k⟩ where k = 0 . . . 2n − 1 of n qubits is the tensor product of the qubit
basis states |0⟩ and |1⟩ arranged so as to reflect the binary representation of integer k.
In Eq. (2.17) shorthand notations |ψ1⟩|ψ2⟩ and |ψ1ψ2⟩ are introduced for tensor product of
states, instead of |ψ1⟩ ⊗ |ψ2⟩. These three notations for tensor product states are used
interchangeably in the literature and throughout this thesis text.

The exponential growth 2n of the composite system dimensions as a function of its size n
is the reason why, in general, no efficient simulation of a quantum system can be achieved
by a classical computer. It is also one of the reasons for the power of quantum computation
as it is shown subsequently.

2.2.5 Entanglement
Postulate 4 states that when the subsystems states |ψi⟩ that compose a larger system
are known, then the state of this larger system is the tensor product of these states, e.g.
⊗n

i=1|ψi⟩. The opposite is not true. That is, it is not always possible to write down the state
of a composite system as a tensor product state. E.g. the bipartite system state |ψ⟩AB =
1
2(|00⟩+|01⟩+|10⟩+|11⟩) can be written in product form as |ψ⟩AB = 1√

2(|0⟩+|1⟩)
1√
2(|0⟩+|1⟩).

On the other hand, the state |Φ+⟩AB
.
= 1√

2(|00⟩+ |11⟩) cannot be decomposed in a product
state (it is always a sum of product states). This is an example of entanglement. The
entangled state |Φ+⟩AB is one of the so called four Bell states [41].

Definition 2.6. (Entangled state) Two subsystemsHdA andHdB composing a larger system
HdS whose state is |ψS⟩ are said to be in entangled state when the state of the larger system

A.Pavlidis 52

Design and Synthesis of Efficient Circuits for Quantum Computers

is not of the product form, that is it cannot be expressed as |ψS⟩ = |ψA⟩ ⊗ |ψB⟩ where
|ψA⟩ ∈ HdA and |ψB⟩ ∈ HdB .

Entangled states occur when the subsystems are allowed to interact. The non-separability
property of an entangled state means that even if the closed whole system is in a defi-
nite state, its subsystems aren’t in a definite state in the sense of Postulate 1, and this
is understandable because these parts are no longer closed due to their interaction. This
phenomenon has no classical counterpart. Entanglement, which is a manifestation of su-
perposition, is believed to be one for the reasons for the power of quantum computation.

A system can always be partitioned in two partsHp
A andHq

B, where p and q are the dimen-
sions of the two subsystems, and its state can be expressed as

|ψ⟩AB =

p∑
i=0

ai|φi⟩A|yi⟩B (2.18)

where |φi⟩A is an orthonormal basis of Hp
A, |yi⟩B have unit norm and

∑p
i=0 |ai|2 = 1. Then,

a projective measurement on the orthonormal basis of subsystem A alone would give a
result m with probability |am|2 and leave the state of the whole system in |φm⟩A|ym⟩B. Thus,
the state of the system after the measurement is unentangled and both the subsystems
are in a definite state, provided the result of the measurement is known, even if only one
of the subsystems was measured. The instantaneous influence on one of the subsystems
(definite state after measurement) by acting on the other subsystem (measure) was con-
sidered first as a thought experiment by Einstein-Podolsky-Rosen [47] and thus pairs of
qubits in states such as 1√

2(|00⟩+ |11⟩) are referred as EPR pairs.

Entanglement is not only exploited in the design of quantum algorithms but also in quantum
cryptography [48], quantum teleportation [49], quantum error correction [50] etc.

2.2.6 Quantum Turing Machine
Deutsch in [7] proposed that Church-Turing thesis should be modified so as to define that
computable functions (algorithms) are the ones that can be computed by a real physical
system. Then a TM should be modified so as to take into account the quantum mechanical
laws of nature. He introduced the Quantum Turing Machine (QTM) by incorporating the
above postulates in its operation. He proved that this machine can simulate any TM and
that it can also simulate any finite physical system. He also showed that this machine
could perform parallel processing exploiting the superposition principle but he pointed
out that it couldn’t outperform a classical TM from the complexity point of view, as these
computations could offer only one result at the end due to the measurement collapse. The
QTM model was improved in [36] and it was shown that it could simulate any classical TM
with polynomial cost.

2.3 Quantum Circuit Model and Quantum Gates
The universal QTM model of computation, although useful as a theoretical study model, is
still cumbersome and can’t easily lead to practical implementations of algorithms. Deutsch
in [8] introduced the quantum circuit model and later [51] its equivalence with the QTM
model was shown .

The quantum circuit model of quantum computation is a directed acyclic graph whose
nodes correspond to quantum gates operating on one or more qubits and the edges cor-
respond to the qubits themselves. A quantum circuit model is a one-to-one mapping of
a sequence consisting of unitary evolutions and measurements which operate on qubits

53 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

U1 U2 U3

A
B

C

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩
Figure 2.3: An example of quantum circuit model

to a graphical representation like the one shown in the example of Figure 2.3. The initial
joint quantum state |ψ1⟩ of the qubits evolves in time from left to the right of the figure and
becomes |ψ4⟩ = U|ψ1⟩. The unitary evolution U is a product of unitary operators Ui, where
each operator acts on a snapshot of the joint state |ψi⟩. In the example shown in Figure
2.3, U = U3U2U1. The unitary operators Ui then, are tensor products of the operators act-
ing on each qubit or set of qubits in the respective snapshot. When no such operator acts
on some of the qubits (simple wire) the identity operator I is implied. Thus, U1 = A⊗ I⊗ I,
U2 = B⊗ I, U3 = I⊗ I⊗C and the whole evolution of the quantum circuit in Figure 2.3 can
be decomposed as

U = (I⊗ I⊗ C)(B⊗ I)(A⊗ I⊗ I) (2.19)

A, B and C are quantum gates acting on one,two and one qubits, and can be described
by unitary matrices of dimensions 2 × 2, 4 × 4 and 2 × 2, respectively. Below we define
a set of quantum gates used frequently in quantum circuits descriptions. These gates are
categorized depending on the number of qubits they act on.

2.3.1 Single Qubit Gates
The Pauli gates I, X, Y and Z are defined by their respective matrices as

I .
=

[
1 0
0 1

]
X .
=

[
0 1
1 0

]

Y .
=

[
0 −i
i 0

]
Z .
=

[
1 0
0 −1

] (2.20)

The identity gate I takes no action on a qubit (that is simply a wire that leaves a state
intact). The X gate (also called NOT gate) is the quantum analog of a classical NOT gate
on the computational basis of one qubit; it evolves |0⟩ X−→ |1⟩ and |1⟩ X−→ |0⟩. The operation
of the X gate on a superposition is a|0⟩ + b|1⟩ X−→ b|0⟩ + a|1⟩. The other two gates have

X Y Z

Rx(θ) Ry(θ) Rz(θ)

S T H

Figure 2.4: Symbols for various single qubit gates

A.Pavlidis 54

Design and Synthesis of Efficient Circuits for Quantum Computers

no classical analog and their operation on a superposition is a|0⟩ + b|1⟩ Y−→ −ib|0⟩ + ia|1⟩
and a|0⟩+ b|1⟩ Z−→ a|0⟩ − b|1⟩. The operations of the X,Y and Z gates can be visualized on
the Bloch sphere in Figure 2.2 as angle π rotations about the x,y and z axes, respectively,
justifying thus their names. The inverses of these gates are the gates themselves, because
it holds X2 = I, Y2 = I and Z2 = I.

A generalization of the above three non trivial Pauli gates X,Y and Z are the single qubit
rotation gates Rx(θ), Ry(θ) and Rz(θ) where the angle θ specifies rotation about the x,y and
z axes, respectively. They are defined by the matrix exponentials

Rx(θ)
.
= e

−iθX
2 =

[
cos(θ2) −i sin(θ2)
−i sin(θ2) cos(θ2)

]
(2.21)

Ry(θ)
.
= e

−iθY
2 =

[
cos(θ2) − sin θ

2)
sin(θ2) cos(θ2)

]
(2.22)

Rz(θ)
.
= e

−iθZ
2 =

[
e−i θ2 0
0 ei θ2

]
(2.23)

The inverse gates of the three rotation gates are the gates themselves but with the oppo-
site sign in their angles, e.g. R−1

a (θ) = Ra(−θ), where a ∈ {x, y, z}.

Two special cases of the Rz(θ) gate are the Phase gate and the π/8 gate, also encountered
as S and T gates, respectively. Their matrices are defined as

S .
=

[
1 0
0 i

]
T .
=

[
1 0
0 e iπ

4

]
(2.24)

It is obvious that they occur as Rz(θ) gates with θ = π/4 and θ = π/8, respectively, if we
ommit a global phase of ei π2 and ei π4 , respectively. We have seen that such a global phase
on a quantum state is unimportant with respect to measurement.

Finally, the Hadamard gate H is another important single qubit gate used frequently and
it is defined as

H .
=

1√
2

[
1 1
1 −1

]
(2.25)

The Hadamard gate when applied to a computational basis state of a qubit results in an
equiprobable superposition, |0⟩ H−→ 1√

2(|0⟩+ |1⟩) and |1⟩ H−→ 1√
2(|0⟩ − |1⟩). The inverse of H

is itself, as H2 = I.

The symbols for the various single qubit gates introduced above are shown in Figure 2.4

2.3.2 Two-Qubit Gates
The two-qubit gates allow interaction between two qubits. The most important two-qubit
gate is the CNOT gate (or controlled-NOT gate). The CNOT gate acts on two qubits called
control and target. On the computational basis state of both qubits, it inverts (applies the
NOT gate) the state of the target qubit iff the control qubit is |1⟩, otherwise it leaves the
target intact. In compact form |c⟩|t⟩ CNOT−−−→ |c⟩|c ⊕ t⟩ where the ⊕ symbol denotes modulo-
2 addition and c and t take values of 0 or 1, corresponding to the states of control and
target qubit. Linearity of the operator extends this operation to superpositions. E.g. (a|0⟩+

55 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

• • •

Rk U

Figure 2.5: Symbols for CNOT gate, controlled rotation gate and general controlled gate.

b|1⟩)(c|0⟩+ d|1⟩) CNOT−−−→ ac|0⟩|0⟩+ ad|0⟩|0⟩+ bc|1⟩|1⟩+ bd|1⟩|0⟩. The unitary matrix definition
for the CNOT gate is

CNOT .
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.26)

It holds that CNOT−1 = CNOT.

The notion of a general controlled two-qubit gate can be easily understood if one recog-
nizes that Eq. (2.26) can be written in block structure form as

CNOT .
=

[
I 0
0 X

]
(2.27)

where I is the 2×2, 0 are zero 2×2matrices and X is the matrix describing the X gate. We
can replace X with any unitary operator on a qubit and define any controlled-U gate (c-U).
Such a c-U gate would apply the operator U on the target qubit iff the control qubit is in the
state |1⟩, otherwise it leaves the target qubit unaffected. In the computational basis of the
control qubit, it can be stated that |c⟩|ψ⟩ CNOT−−−→ |c⟩Uc|ψ⟩ where c = 0, 1. As in the previous
cases, linearity extends this operation to superpositions states.

Unitarity of U and the structure of Eq. (2.27) assure the unitarity of the c-U gate. Its inverse
c-U−1 has the same form of Eq. (2.27) if we replace U with U−1 = U†.

The controlled rotation gates are special cases where the Rz(θ) unitary matrices take the
place of the general U matrix of Eq. (2.27). Namely we define

c-R(θ) .
=

[
I 0
0 Rz(θ)

]
(2.28)

The controlled rotation gates are used in the Quantum Fourier Transform circuit and they
are used frequently throughout this thesis text as components for various arithmetic cir-
cuits. In such cases, the alternative notation c-Rk, k ∈ N is used instead of c-R(2π2k). Sym-
bols for the CNOT gate, the controlled rotation gate c-Rk and the general c-U gate are
shown in Figure 2.5.

The SWAP gate is a special gate that exchanges the states of two qubits. It performs
the transformation |ψ1⟩|ψ2⟩

SWAP−−−→ |ψ2|ψ1⟩. The SWAP gate symbol is shown in Figure 2.6.

× • •
× •

Figure 2.6: SWAP gate and an implementation using three CNOT gates.

A.Pavlidis 56

Design and Synthesis of Efficient Circuits for Quantum Computers

Depending on the physical realization, it can be implemented using three CNOT gates
(depicted on the right of the Figure) or by physical movements of the qubit carriers (e.g.
movement of ions).

2.3.3 Three-Qubit Gates
Extending the notion of the CNOT gate to three qubits (two of them acting as control and
one as target qubit) someone can define the Toffoli gate as |c1⟩|c2⟩|t⟩

Toffoli−−−→ |c1⟩|c2⟩|c1c2⊕t⟩.
The target qubit is inverted iff both the control qubits are in state |1⟩. Toffoli gate is also
called CCNOT. In matrix form its definition is given by

CCNOT .
=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(2.29)

or in block form

CCNOT .
=

[
I 0
0 X

]
(2.30)

where I is the 6 × 6 identity matrix and 0 are zero matrices of appropriate dimensions.
Like in the case of two qubits, this block form leads naturally to the definition of a double
controlled-U gate (c2-U) if X is replaced by any unitary 2 × 2 matrix U. The definition of a
double controlled rotation gate is

c2R(θ) .
=

[
I 0
0 Rz(θ)

]
(2.31)

Finally, the Fredkin gate (or controlled-SWAP gate) acts on one control and two target
qubits by swapping the states of the two target qubits iff the control qubit is in the |1⟩ state.
In the computation basis of the control qubit it can be described with the transformations
|0⟩|ψ1⟩|ψ2⟩

Fredkin−−−→ |0⟩|ψ1⟩|ψ2⟩ and |1⟩|ψ1⟩|ψ2⟩
Fredkin−−−→ |1⟩|ψ2⟩|ψ1⟩. The Fredkin gate can be

decomposed into three Toffoli gates, like the SWAP gate is decomposed into three CNOT
gates.

Symbols for the Toffoli gate, the general c2-U gate and the Fredkin gate are shown in
Figure 2.7.

• • •

• • ×

U ×

Figure 2.7: Symbols for Toffoli gate, general c2-U gate and Fredkin (controlled SWAP) gate

57 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

2.3.4 Measurement
The quantum circuit model contains special measurement gates to extract classical re-
sults of the quantum computation. The symbol of the one qubit measurement gate for the
complete projective measurement on the computational basis {|0⟩, |1⟩} is shown in Figure
2.8. Classical results of the measurement are denoted with the double line wire after the
measurement gate and can be used when they classically control a quantum gate after
the measurement.

Figure 2.8: Symbol for the computational basis measurement gate.

2.3.5 Universal Gates and Synthesis of Quantum Circuits
The quantum circuit model, being equivalent to the QTM model, is adequate for any quan-
tum computation task. The next question is which are the required gates to be used in the
composition of any quantum circuit. These gates form a set called universal set of gates,
the same way as the NAND or the NOR gate is a universal gate for the classical logic
circuits.

Definition 2.7. A set of quantum gates G = {G1,G2, . . . ,Gn} is called universal set if it can
approximate with arbitrary low error any quantum circuit.

The notion of the above definition is that a sequence of gates drawn from this set can be
used to approximate a quantum circuit represented by a unitary matrix U so as the derived
circuit Û is as close to U, e.g. it has the property ∀ε > 0,∃Û : max|ψ⟩ ∥⟨ψ|(U− Û)|ψ⟩∥ < ε.

The introduction of the quantum circuit model in [8] was accompanied with the proof of
the existence of a universal gate, called Deutsch gate. This is a three-qubit parametrized
gate defined in block matrix form by

Q(a) .
=

[
I 0
0 D(a)

]
(2.32)

where

D(a) .
=

[
i cos(πa2) sin(πa2)
sin(πa2) i cos(πa2)

]
(2.33)

and a is an irrational number. Thus, this universal set is G3 = {Q(a)} for some a ∈ R−Q.

DiVincenzo in [52] improved this result proving that a family of two-qubit gates are uni-
versal. This universal set is G2 = {X, c-Rx(θ), c-Ry(θ), c-Rz(θ) | θ ∈ R}. In this set, c-Rx(θ),
c-Ry(θ) and c-Rz(θ) are controlled rotation gates of the form 2.31 with the substitutions
Rx(θ), Ry(θ), Rz(θ) in place of the lower right block, respectively. This is an important result
from the implementation perspective, because quantum gates with more than two qubits
usually involve the interaction of more than two physical subsystems at a time instance,
something which is hard to achieve in a controlled manner.

A result that narrowed down a possible universal set proved by Barenco et al. in [53] states
that the set G1,CNOT = {CNOT,Rx(θ),Ry(θ),Rz(θ)|θ ∈ R} is universal. This set consists of
single-qubit rotation gates of Eq. (2.21), (2.22), (2.23) and the CNOT gate. This result

A.Pavlidis 58

Design and Synthesis of Efficient Circuits for Quantum Computers

contributes to practical realizations of quantum circuits because only one kind of two-qubit
gate is required and the single qubit gates are relatively easily implemented.

The set G1,CNOT is uncountable (there is no one-to-one mapping with any subset of the
natural numbers). This may pose implementation problems as in a particular technology
only a finite set of gates may be realizable. Moreover, fault tolerance requirements com-
pels the usage of a finite discrete universal set. For this reason, it would be desirable to
approximate with arbitrary low error any quantum circuit with a sequence of discrete set of
gates. Indeed, it has been shown [54, 55] that almost any two-qubit gate is universal (one
member set). Yet, this universality comes at a large cost in the number of the required
gates, .e.g. exponential with respect to the required accuracy log(1/ε).

Solovay-Kitaev theorem [56, 57] and improvements [58, 59, 60] come to resolve this sit-
uation. Expressly, these results can be used to approximate any single qubit gate of the
set G1,CNOT with a sequence of single qubit gates drawn from a discrete set at a polynomial
cost in log(1/ε). A discrete set of gates frequently used to synthesize a quantum circuit is
the GF1 = {H, T,CNOT} because these three gates can be relatively easily built in a fault
tolerant manner [50], although other discrete sets can be used as well. The design of a
quantum circuit satisfying a particular specification can exploit these results.

The specification of an n qubits circuit can be in the form of the unitary matrix U with dimen-
sions 2n×2n. Then, the design can be accomplished with an automatic quantum synthesis
procedure taking as input the specification and giving as output a network consisting of
quantum gates drawn from a universal set and a connection between them. Usually, such
a synthesis is performed in two steps: First, the large matrix U is gradually decomposed
in a sequence (products and tensor products) of smaller dimension matrices up to reach-
ing the dimensions covered by the universal set (single and two-qubit gates). This step is
an exact low-level synthesis down to the primitive quantum gates of the universal set. If
the universal set used is an uncountable one then a second step follows to transform the
continuous set of gates to an approximation with a sequence of gates from a discrete set.
This kind of synthesis incorporating these two steps can be described as flat synthesis
and the approach is a top-down one.

The are some other approaches to design a quantum circuit. Quantum circuit synthesis
differs from reversible circuit synthesis in the specifications and the set of gates used
to synthesize the circuit. Boolean specifications in the computational basis are adequate
when the target circuit is an arithmetic one or a logical one due to the linearity and the
superposition principle. Thus, reversible circuit methodologies can be used and then gate
transformation can be applied to convert the reversible set of gates to a quantum set
of gates (if they differ). For example, the design of a quantum adder circuit of two n-bit
integers a and b can be specified by the input-output mapping |a⟩|b⟩ → |a⟩|b + a⟩ when
|a⟩ and |b⟩ are states in the computational basis {|0⟩, |1⟩, . . . , |2n − 1⟩} without mentioning
its unitary matrix. The quantum adder circuit can be designed using well known results
from classical digital circuits (taking into account reversibility requirements) or classical
reversible circuits using gates such as CNOT, Toffoli etc. Adders in [61, 62] are examples
of such designs.

Other design methods exploit the availability of already designed blocks and combine
them ad-hoc or automaticaly to gradually build larger circuits climbing the complexity lad-
der . These methods fall in hierarchical synthesis category. A novel hierarhical synthesis
method will be described in Chapter 6.

Important characteristics (defined in next subsection) of a particular synthesis method re-
lated to the circuits generated are the quantum cost, the depth of the circuit, the ancilla and

59 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

the possible garbage generated. Another important factor to account for is the execution
time and memory requirements of the synthesis algorithm itself.

2.3.6 Quantum Circuit Characterization
Elementary gates are the ones that can be easily implemented in a given technology and
they must form a universal set. Not all the elementary gates have the same implementation
cost in terms of area, speed operation and other resources in a given technology. E.g.
single qubit gates are more easily constructed in various technologies. This estimation
changes if one takes into account the fault tolerant implementation requirement. In this
case single qubit gates X,Y,Z,S,H and CNOT gates can be assumed to have roughly the
same cost, while the T gate is thought to be harder to implement, as its fault tolerant version
is more complicated.

The performance study of various quantum circuits and architectures involves several
metrics. The most important and most frequently used ones are:

Width Total number of qubits used in the circuit, including ancilla ones.

Quantum Cost A weighted sum of the elementary gates used. The weight of each gate is
related to its fault tolerance implementation cost. A unit cost is assigned
to the less costly gate.

Depth The largest weighted sum of elementary gates acting on any input-output
path where the calculated weight is related to the speed of the gate. This
metric is related to the latency of the circuit. A unit weight is assigned to
the faster gate of a particular physical implementation.

Ancilla The number of qubits that participate in the intermediate steps of the com-
putation but are not part of the input nor of the end results. They are the
analogous of the temporary variables in classical computation. A qubit
is characterized as ancilla if its state before and after the computation is
constant (usually zero) and irrelevant to the input given to the quantum
circuit.

2.4 Quantum Algorithms
Computation based on the quantum mechanics laws offers parallelism due to the super-
position of basis states (2n states for n qubits) that are allowed in principle. The evolution
principle then, leads the state to a superposition of states, where each state of the super-
position is the value of a function corresponding to a different basis state. However, the
measurement postulate prevents us from reading all these results. The first evidence that
we can exploit this exponentially grown parallelism was shown by the Deutsch algorithm
[7] which is a very simple algorithm with no practical application.

2.4.1 Deutsch’s algorithm
The statement of the problem that Deutsch’s algorithm solves is the following: Given a
function f : {0, 1} → {0, 1} find if f is constant, f(0) = f(1), or balanced, f(0) = f(1). The
complexity metric will be how many times it is required to call the function evaluator, which
is called oracle. In a classical computer two such evaluations are needed.

Figure 2.9 shows the quantum algorithm to solve Deutsch’s problem in the form of a quan-
tum circuit. Two qubits are used in this circuit, three Hadamard gates, a measurement gate,
and a two-qubit quantum oracle Uf whose internal structure doesn’t concern us here. The
purpose of this oracle is to evaluate the function f in a unitary manner so as to satisfy the

A.Pavlidis 60

Design and Synthesis of Efficient Circuits for Quantum Computers

unitarity evolution postulate. The operation of the unitaryUf can be described in the compu-
tational basis of the two qubits asUf(|x⟩|y⟩) = |x⟩|y⊕f(x)⟩where x, y ∈ 0, 1 and⊕ is the sym-
bol for addition modulo 2. Clearly, Uf is unitary as UfUf(|x⟩|y⟩) = |x⟩|y⊕ f(x)⊕ f(x)⟩ = |x⟩|y⟩,
thus Uf = U−1

f . Also, U∗
f = Uf and we conclude that Uf = U†

f .

The initial state for top and bottom qubit is |0⟩ and |1⟩ , respectively. The joint initial state
is their tensor product |ψ0⟩ = |0⟩|1⟩. The evolution through the two left Hadamard gates
leads to

|ψ1⟩ = (H⊗ H)|ψ0⟩
= H|0⟩ ⊗ H|1⟩

=
1√
2
(|0⟩+ |1⟩) 1√

2
(|0⟩ − |1⟩)

(2.34)

The action of Uf when the top qubit is in one of the computational basis states |x⟩, x = 0, 1
and the bottom qubit is in the state 1√

2(|0⟩ − |1⟩) is described by

Uf

(
|x⟩ 1√

2
(|0⟩ − |1⟩)

)
= |x⟩ 1√

2
(|0⊕ f(x)⟩ − |1⊕ f(x)⟩)

= |x⟩ 1√
2
(−1)f(x)(|0⟩ − |1⟩)

= (−1)f(x)|x⟩ 1√
2
(|0⟩ − |1⟩)

(2.35)

In the last equality of Eq. (2.35) the phase factor (−1)f(x) is transfered from the amplitude of
the second qubit to the amplitude of the first one, due to the tensor product property of Eq.
(2.12). This phase transfer is referred to as phase kick-back and will be used repeatedly.

Now the state |ψ2⟩ on Figure 2.9 can be calculated by combining Eq. (2.34) and (2.35) as

|ψ2⟩ = Uf|ψ1⟩

= (−1)f(0) 1√
2
|0⟩
(
1√
2
(|0⟩ − |1⟩)

)
+ (−1)f(1) 1√

2
|1⟩
(
1√
2
(|0⟩ − |1⟩)

)
=

1√
2
(
(−1)f(0)|0⟩+ (−1)f(1)|1⟩

) 1√
2
(|0⟩ − |1⟩)

= (−1)f(0) 1√
2
(
|0⟩+ (−1)f(0)⊕f(1)|1⟩

) 1√
2
(|0⟩ − |1⟩)

(2.36)

The last step before the measurement is to apply a Hadamard gate on the top qubit and
this gives the joint state

|0⟩ H
Uf

H

|1⟩ H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩
Figure 2.9: Quantum circuit for Deutsch’s algorithm

61 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

|ψ3⟩ = (H⊗ I)|ψ2⟩

= (−1)f(0)H
(
1√
2
|0⟩+ (−1)f(0)⊕f(1)|1⟩

)
⊗ (|0⟩ − |1⟩)

= (−1)f(0)|f(0)⊕ f(1)⟩ 1√
2
|0⟩ − |1⟩

(2.37)

Observe that when the function f is constant, then f(0)⊕ f(1) = 0 and (−1)f(0)⊕f(1) = 1, while
when the function f is balanced, then f(0)⊕ f(1) = 1 and (−1)f(0)⊕f(1) = −1.

The measurement of the top qubit gives the result 0 with probability 1 if f(0)⊕f(1) = 0which
occurs iff f is constant, otherwise it gives the result 1 with probability 1 if f(0)⊕f(1) = 1which
occurs iff f is balanced. (The global phase (−1)f(0) is unobservable in the measurement
process). We conclude that Deutsch’s algorithm decides with certainty if the function f is
constant or balanced using only one evaluation of f whereas a classical algorithm uses
two evaluations.

The presented formulation of Deutsch’s algorithm is an improvement that appeared in [63].
The original formulation of [7] lacks the Hadamard gate on the lower qubit, thus the state
fed to the Uf is 1√

2(|0⟩+ |1⟩)|0⟩ and then after the application of the Uf two Hadamard gates
were used to both qubits before a measurement of both of them, instead of a single qubit
measurement. This resulted in a 1

2 probability to decide if f is constant or balanced and
another 1

2 probability to fail, which is no succesful decision. This result could be proba-
bilistically obtained on a classical computer as well, with only one evaluation of f and so
the original Deutsch’s formulation offered no advantage relative to a probabilistic classical
computation.

2.4.2 Generalizations - Phase Estimation Algorithms
Deutsch’s algorithm has no practical application, nor does it offer any significant speed-
up (one evaluation of the oracle instead of two). Nevertheless, through its generalization
it opened the way to more useful algorithms such as Shor’s algorithm. Below, some key
aspects of Deutsch’s algorithm that remain invariant in a whole family of algorithms, known
as phase estimation algorithms, are presented [63].

Superposition In Deutsch’s algorithm the state of the top qubit is set to a superposition
of the computational basis state |0⟩ and |1⟩ using a Hadamard gate. In
general a collection of n control qubits, collected as a control register,
are set in a superposition of their computational basis states 1√

2n
∑2n−1

x=0 |x⟩
using n Hadamard gates, each one operating on a qubit of this control
register.

Target
Register

The bottom qubit can be generalized in a collection of m qubits, called the
target register.

Oracle A quantum subcircuit Uf that operates on both the control and target reg-
ister is used, and its purpose is to evaluate a function f of the state of the
control register |x⟩ by altering the target register accordingly, in general
as Uf|x⟩|y⟩ = |x⟩|g(y, f(x)⟩. In Deutsch’s algorithm g(·, ·) = (· ⊕ ·).

Eigenvalue &
Phase
Kick-Back

Observe that in Eq. (2.35) the state 1√
2 (|0⟩ − |1⟩) of the target register is an

eigenstate of the operator Uf, if this operator is thought as an operator act-
ing on target register only and controlled by the control register. Moreover,

A.Pavlidis 62

Design and Synthesis of Efficient Circuits for Quantum Computers

the eigenvalues depend on f(x) and in the particular Deutsch’s algorithm
they are (−1)f(x). These eigenvalues are kicked-back on the control regis-
ter as amplitudes on the superposition of the computational basis states
|x⟩.

Interference &
Phase
Estimation

Deutsch’s problem can be defined as a problem of estimating amplitude
phases of the control register superposition as shown in Eq. (2.36). E.g.
the state of the control register can be written as 1√

2

∑1
x=0 ei2πωx|x⟩ and the

phase parameter ω takes values 0 or 1/2, depending on if the function
f is constant or balanced, respectively. Thus, the problem is reduced to
the estimation of the phase parameter ω. This estimation is done by in-
terfering the parallel branches of the computation that occur due to the
superposition and combining the various amplitudes so as to enhance or
cancel them. In Deutsch’s algorithm this interference is accomplished with
the Hadamard gate on the right, just before the measurement. In a gen-
eral setting of quantum phase estimation, as it will be shown in Chapter
3, the interference is accomplished using the Quantum Fourier Transform
(QFT). In Deutsch’s special case, the Hadamard gate performs the QFT
on just one qubit.

The Deutsch-Josza algorithm [64] is an example that uses a non trivial control register.
This problem is described as follows: Given a Boolean function f of n variables f : Bn → B
and the promise that it is constant or balanced (half of its values are 0 and the other half
are 1), decide in which one of the two categories it falls in. The quantum algorithm shown
in quantum circuit representation is depicted in Figure 2.10. The oracle Uf applies the
transformation |x⟩|y⟩

Uf−→ |x⟩|y ⊕ f(x)⟩ where x ∈ Bn, that is a string of bits representing the
n qubits computational basis or equivalently an integer between 0 and 2n − 1. An analysis
similar to the previous case of the simple Deutsch’s algorithm leads to the conclusion that
a measurement of the control register gives the integer 0 with certainty, iff f is constant,
while it gives with certainty a value different from 0, iff f is balanced. Thus, with only one
invocation of Uf the problem can be solved with certainty.

On a classical computer the same problem would be solved with 2n−1 + 1 queries, in the
worst case. Yet, it can be shown that there is a classical probabilistic algorithm that solves
this problem with n + 1 queries and 1

2n probability of error. An arbitrary low probability of
error can be achieved with linear number of queries, thus this problem is not considered
as a hard problem, even if deterministically it needs exponential number of queries as a
function of its size n.

|0⟩ H

Uf

H

|0⟩ H H

...
...

...

|0⟩ H H

|1⟩ H H

Figure 2.10: Quantum circuit for Deutsch-Josza algorithm

63 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

|0⟩ /n H⊗n

Uf
H⊗n

|1⟩ /m H⊗m

Figure 2.11: Quantum circuit for Simons’s algorithm

One of the problems that showed a clear superiority of quantum relative classical com-
putation in terms of complexity was Simon’s problem [9]. This problem is described as
follows: We are given a function f : Bn → Bm with m ≥ n and the property that f is xor
invariant under some mask s, that is ∀x ̸= x′,∃s ∈ Bn : f(x) = f(x′) ⇔ x′ = x ⊕ s. The ⊕
symbol is now the operation of bitwise XOR. The problem is to find the mask s. Note that,
in the case of s = 0 the function f is 1-1.

Figure 2.11 shows the circuit for the quantum part of Simon’s algorithm. Qubit lines of con-
trol and target registers are not shown individually, but instead, they are shown collectively
as a single line with the width of each register attached to it (n and m for the control and
target register, respectively). The notation H⊗n is the tensor product of n Hadamard gates,
each one acting in paallel on one qubit of the respective register. The oracle Uf computes
|x⟩|y⟩

Uf−→ |x⟩|y⊕ f(x)⟩ where ⊕ stands for the bitwise XOR operation.

Simon’s algorithm consists of a repeated execution of the quantum part depicted in 2.11
about n times and then classical post processing of the measurements results with O(n3)
complexity. It has been proven that it can solve with success probability at least 2/3 the
problem of bitwise XOR masking as posed above. On the contrast it can be proven that
any classical algorithm solves the same problem with success probability at least 2/3 using
Ω(2n/3). Thus, Simon’s problem was one of the first problems that showed a superpolyno-
mial superiority of the quantum computation relative to classical computation.

At the same time, Shor announced [10] his famous quantum algorithm which, among
others, solves the hard problem of factoring an integer into its prime factors in polynomial
time. This algorithm belongs to the same family of quantum phase estimation algorithms
and it is extensively discussed in Chapter 3. Variations of this algorithm solve the discrete
logarithm problem and the more general hidden subgroup problem.

An important point about these algorithms is that their circuits must be efficient. Until now,
the oracles were presented as black boxes without mentioning their inner implementation
details. Fortunately, it is proven that such oracles can be constructed efficiently (polyno-
mial circuit cost,depth etc). In Chapter 4 a set of novel efficient quantum arithmetic circuits
(multipliers/accumulators, multipliers, dividers,etc) is presented and the way they can be
combined to build a fast quantum modular exponentiator circuit which is an integral part
of Shor’s algorithm and the quantum phase estimation algorithm in general, is shown.

2.4.3 Other quantum algorithms and applications
While Shor’s algorithm offered a superpolynomial speed-up in relation to classical algo-
rithms, its applications are restricted mainly in cryptanalysis and algebraic problems. A
quantum algorithm that is general enough and applies to a varied field of applications is
Grover’s algorithm [11]. This is a quantum search algorithm in an unstructured ”database”.
The database consists of a large numberN of ”objects” indexed by an integer k = 0 . . .N−1.
Each object has a property that is satisfied or not. An oracle is available which, given an
index k of the object, it can answer whether the object has the satisfying property, e.g. it
computes the function f : {0 . . .N− 1} → {0, 1} where f(k) = 1 if the k indexed object is a
solution, otherwise f(k) = 0. The problem is to find all the objects (indexes) in the database

A.Pavlidis 64

Design and Synthesis of Efficient Circuits for Quantum Computers

←− O(
√
N) iterations −→

|0⟩ /n H⊗n

Uf
G · · ·

Uf
G

|1⟩ H · · ·

Figure 2.12: Quantum circuit for Grover’s algorithm. Dashed boxes are the Grover operator while G
is the Grover diffusion operator.

that satisfy the required property.

Figure 2.12 depicts Grover’s algorithm in a very abstract level. The top n qubits register,
with n chosen such as that 2n ≥ N, is the index register whose state after the n Hadamard
gates becomes 1√

2n
∑2n

k=0 |k⟩. The oracle is fed with this superposition and the state 1√
2(|0⟩−

|1⟩) om the lower qubit. The operation of the oracle is to compute the function f as follows:

|k⟩ 1√
2
(|0⟩ − |1⟩)

Uf−→ (−1)f(k)|k⟩ 1√
2
(|0⟩ − |1⟩) (2.38)

Thus, the solution is again encoded in the phases of the first register while the lower qubit
remains unaltered. Assuming that s is the only solution, then after the application of Uf
on the superposition states of the first register and ignoring the lower qubit as it stays
unaltered, we have the following state for the index register

|ψ⟩ = 1√
2n

−|s⟩+ N−1∑
j=0, j ̸=s

|j⟩

 (2.39)

The amplitude of the basis state |s⟩ which belongs to the solution is − 1√
2n while the ampli-

tudes of every other basis state are 1√
2n . The purpose of the G operators (Grover’s diffusion

operator) in Figure 2.12 is to gradually increase the absolute amplitude of the solution
state’s |s⟩ while at the same time to decrease the other amplitudes of the non solution
states |k⟩, k ̸= s. This procedure is called amplitude amplification. The detailed operation
of the diffusion operator G is not explained in this thesis, but it is enough to give its defini-
tion as G = H⊗n(2|0⟩⟨0| − I)H⊗n. Each dashed box in Figure 2.12 which contains Uf and G
is called Grover’s operator. It can be proven that an iteration of O(

√
N) Grover’s operators

(and thus the same number of Uf oracle invocations) is adequate to amplify the absolute
value of the solution state |s⟩ so as at the end, a measurement gives the solution s with
high probability.

A classical algorithm must query the oracle N times to find the desired objects. On the
contrast Grovers’s algorithm finds the solution by invoking O(

√
N) queries. Although this

quadratic speed-up is not as dramatic as the superpolynomial speed-up of Shor’s algo-
rithmm, this search algorithm is quite general. E.g. it can be applied to various NP problems
having a complexity of O(2n) to lower it to O(2n/2), an improvement which may be adequate
for many applications.

Another family of quantum algorithms which are related to Grover’s search algorithm are
the quantum walks algorithms. These are the quantum analogue of classical random walk
algorithms and they find applications in various problems. They offer superpolynomial
(welded-tree [65], hidden non-linear structures [66]) or polynomial speed-up (triangle prob-

65 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

lem [67], element distinctness [68], verifying matrix products [69], etc.) compared to clas-
sical computation. Overwiews of quantum walks algorithms can be found in [70] and [71].

In general, the various quantum algorithms developed for specific problems fall into two
broad categories: Quantum Phase Estimation like Shor’s algorithm and search based like
Grover’s and quantum walks algorithms. An updated collection of quantum algorithms with
references can be found on-line at [72].

Simulation of quantum systems (quantum physics,quantum chemistry) will probably be the
most promising application of quantum computation. Anyway, the simulation of physical
systems at the quantum mechanical level was the initial stimulus for the study of whether
quantum computers as exposed by Feynman and others are feasible. The purpose of the
simulation of a quantum system is to predict its time evolution given some initial state. The
time evolution of a closed system as predicted by Eq. (2.6) of Postulate 2 is essentially
the solution of the Schrödinger differential equation

i~
d
dt
|ψ(t)⟩ = H|ψ(t)⟩ (2.40)

where |ψ(t)⟩ is essentialy the wave function, ~ is Planck’s constant and H is the so called
Hamiltionian of the system which represents its energy. The solution given in Eq. (2.6) is
valid for the initial condition |ψi⟩ = |ψ(0)⟩ and gives the final state |ψf⟩ = |ψ(t)⟩ for every
t. The unitary matrix U is related to the Hamiltonian as U = ei~Ht for some specific t. The
difficulty of such a simulation in a classical computer arises from the fact that the dimension
of system’s state |ψ(t)⟩ grows exponentially as system’s size n, namely 2n, as implied by
Postulate 4. This means that there is an exponential requirement of memory resources.
Moreover, the dimension of the Hamiltonian H grows also exponentially (2n × 2n) which
means that the matrix exponentiation and multiplication needs exponential running time.

The simulation of quantum systems by a quantum computer based on the quantum circuit
model can be done efficiently on the conditions that (i) the initial state |ψi⟩ can be prepared,
(ii) the unitary matrix U corresponding to the particular Hamiltonian H can be efficiently ex-
pressed in a polynomial cost and depth quantum circuit, and (iii) useful information can be
extracted by an efficient measurement of the final state |ψf⟩. Fortunately, due to existence
of local interactions in many physical systems it is pointed out that such simulations are
feasible [12, 73, 74, 75, 76, 77].

Although the simulation of a variety of quantum systems can be done efficiently on a quan-
tum computer, at the end some measurement must be performed to retrieve useful results,
but this measurement lead to the collapse of the state vector. Thus, only part of the infor-
mation simulated up to the moment of the measurement is available. Yet, this information
may be related to properties such as energy gaps, eigenvalues and eigenvectors, corre-
lation functions and spectra. If the full quantum state estimation is required then quantum
state tomography [41] methods could be used but they have the disadvantage that they
scale exponentially on the problem size.

The applications of quantum simulations lie on a very wide field (nuclear physics, atomic
physics, condensed matter physics,quantum field theory, cosmology, quantum chaos,
quantum chemistry,etc.). Reviews on the subject of quantum simulation can be found in
[78] and [79]. The quantum simulation of physical systems is a very promising application
of quantum computation and in fact it will be the first application of quantum computers.
The reason is that a few tens of qubits are adequate to simulate physical systems of in-
terest outperforming the current classical computer capabilities. In contrast, to factor a

A.Pavlidis 66

Design and Synthesis of Efficient Circuits for Quantum Computers

1000 bits integer using Shor’s algorithm would require (accounting the necessary error
correction involved) some millions of qubits. In Section 2.5 recent advances on some ex-
perimental set-ups related to this promising application are summarized.

2.4.4 Quantum Complexity
The evidence that quantum computation may solve problems that are believed to be in-
tractable for classical quantum computation brings the need to define a new complexity
class related to quantum computation. This class is called Bounded-error Quantum Poly-
nomial time or BQP [36].

Definition 2.8. (BQP complexity) The Bounded-error Quantum Polynomial time complex-
ity class consists of all the problems that can be solved in polynomial time on a quantum
computer with probability of error at most 13 for all instances of the problem.

The probability of 1
3 is arbitrary and in fact every real number 0 < k < 1

2 leaves the BQP
set imperishable. The above definition is the quantum analog of the classical BPP class.
The proven relations between BQP and other complexity classes are that BPP ⊆ BQP
and BQP ⊆ PSPACE [36]. Figure 2.13 shows the relations of BQP class to other classical
complexity classes. In this figure all of the inclusions are shown as strict (otherwise all
the classes would collapse to only one), although the fact that these inclusions are proper
is not yet proven, but it is widely believed to be so. An exception is the conjecture that
P = BPP.

Some consequences of possible proofs of whether some of the above inclusions are strict
or not follow. The most important one is that if the suspected superior power of quantum
computers compared to classical ones is proven (BPP ̸= BQP and consequently P ̸= BQP)
then P ̸= PSPACE, which is a problem that remains unsolved until today. The proof that
BQP ̸= BPP would also invalidate the Strong Church-Turing thesis. On the other hand, if it
will be ever proven that P = PSPACE then this would automatically mean that P = BPP =
BQP and thus a quantum computer would not offer any computational power advantage
over a classical computer.

Observe that it is not known even if BQP ⊆ NP. The problem of Recursive Fourier Sampling
[36] gives indications that it may not be so and for this reason part of the ellipsis denoting
the BQP class lies outside the circle of the NP class. If, on the other hand, it holds that
BQP ⊆ NP then the rigorous proof of the quantum computation advantage BPP ̸= BQP
would lead to the conclusion P ̸= NP.

PSPACE

NP-complete

BQP

NP

P

BPP

PSPACE

NP-complete

BQP

NP

P

BPP

Figure 2.13: The suspected relations among various classical complexity classes and BQP.

67 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

Looking for the inverse relation between BQP and NP, it is not known whether every NP
problem can be solved efficiently on a quantum computer. In fact none of the efficient
quantum algorithms in the literature solve any NP − complete problem. If any efficient al-
gorithm will ever be proposed for any NP − complete problem then this would mean that
NP ⊆ BQP.

2.5 Physical Implementations
The feasibility of building real devices that perform quantum information processing tasks
relies on the choice of a particular quantum mechanical system capable to process and
store quantum information. In the last thirty years much progress has been made in experi-
mental realization of quantum information processing devices and even some commercial
products have appeared, but they are limited to small scale blocks. E.g. quantum cryptog-
raphy systems, quantum teleportation demonstrations, quantum gates implementations
and quantum computers of a few qubits. Yet, the physical implementation of a large scale
quantum computer operating on thousands of qubits is still away from current technologi-
cal capabilities.

The physical representation must meet some minimum requirements if it is to be consid-
ered a candidate for a large scale quantum computer implementation. DiVincenzo [80]
introduced five criteria that must be met by any implementation technology. These criteria
are briefly exposed below

1. Scalable physical system with well-characterized qubits.

Usually, the physical system representing the qubit may lie in a Hilbert space which
is larger than the desired dimension of the qubit which is two dimensional. E.g. if
the energy state of the atom is chosen to represent a qubit, with the mapping of the
ground state to |0⟩ and of the first excited state to |1⟩, there is still a much larger space
on this system corresponding to the higher energy states. The ”well-characterization”
requirement means that this system must not make a transition to any other dimen-
sion except the required ones, that is |0⟩ and |1⟩. Also, the selected physical system
for the representation of the qubit must be easily expanded to a large number of
qubits and additionally each qubit must be easily handled individually and indepen-
dently.

2. Ability to initialize the state of the qubits to a simple fiducial state, e.g. |00 . . . 0⟩.
This requirement comes due to the quantum circuit model definition which mandates
the initialization of a quantum register or storage element to a definite state before
any computation takes place. Except from the preparation of a quantum register
to a definite state at the initialization of the computation, such a preparation is also
required during the whole computation run by the error correcting procedures applied
to the circuit.

3. Long relevant decoherence times, much longer than the gate operation time.

Decoherence or quantum noise is the undesirable degradation of a quantum state,
due to non unitary evolution, to a statistical mixture of states. A qubit is a very fragile
entity, whatever its implementation may be, as it unavoidably interacts in an uncon-
trollable way with its environment and other neighboring qubits. The quantum circuit
model assumes only unitary evolution (except at the final measurements) and thus it
is an idealization of a real quantum circuit. In a real quantum circuit the evolution be-
comes non-unitary because the system can no longer be assumed a closed system.

A.Pavlidis 68

Design and Synthesis of Efficient Circuits for Quantum Computers

The consecutive accumulation of errors in a real quantum circuit during the computa-
tion makes the final result useless. Decoherence increases as time evolves, leading
to the notion of decoherence time which can be thought as the time that transforms
a well defined state to a completely mixed state. This implies that long processing
tasks would be impossible due to the accumulation of errors. Thus, it is important
that the decoherence time is long enough so as at the end of the computation the
accumulated decoherence in each timestep of computation does not degrade the
final state excessively.

Fortunately, various quantum error correction codes have been invented which make
the restoration of a distorted state of one or more qubits possible, at the expense of
using redundancy [19, 21, 20]. Nevertheless, it is not obvious that the usage of error
correcting codes can lead to fault-tolerant quantum gates because the entailed re-
dundancy may introduce more errors during the error correction than the errors cor-
rected. The incorporation of fault tolerance to quantum computation is achieved by
(i) choosing a quantum error correcting code, (ii) applying directly on the codewords
the quantum operations corresponding to the usual elementary gates like X,Z,CNOT,
etc, as well as measurements and state preparations and (iii) applying error cor-
rection after each operation. The operations on the encoded states must be done
without the errors spread on more qubits than the code can handle. As an example,
when using the Steane [[7, 1, 3]] code, one encoded logical qubit (quantum code-
word) is represented by seven physical qubits. The basis states of a logical qubit are
represented by the seven qubit states

|0⟩L =
1√
8
(|0000000⟩+ |1010101⟩+ |0110011⟩+ |1100110⟩

+ |0001111⟩+ |1011010⟩+ |0111100⟩+ |1101001⟩)
(2.41)

and

|1⟩L =
1√
8
(|1111111⟩+ |0101010⟩+ |1001100⟩+ |0011001⟩+

+ |1110000⟩+ |0100101⟩+ |1000011⟩+ |0010110⟩),
(2.42)

respectively, while a general superposition state of a logical qubit is a|0⟩L + b|1⟩L.
The distance of this code is 3 and it can detect and correct any kind of error in any
one of its seven qubits, but no more than one error. The correction on a codeword is
achieved by suitable syndrome extraction circuits using ancilla qubits and measure-
ments on them so as to orchestrate the recovery of the correct codeword. Special
care must be taken so as the ancilla are prepared faithfully and the measurements
are applied fault tolerantly without introducing new errors.

The computation is achieved by applying logical gates on each logical qubit on the
condition that they are fault tolerant, that is they don’t propagate an error appearing
on anyone of the seven physical qubits to another physical qubit of the same block
code, as this code cannot correct more than one error in a codeword. An example of
a fault tolerant gate on this code is the X gate which can be implemented transver-
sally by applying seven X gates on each physical qubit as XL = X⊗X⊗· · ·⊗X. Clearly,
an error on anyone of the seven physical qubits cannot propagate to another qubit.
Similar constructions can be accomplished other elementary gates as well as for
the logical CNOT gate where seven CNOT qubit gates are applied qubit-wise be-
tween two seven qubit codewords. Not all members of a universal set of gates can

69 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

be implemented transversally. An example is the T gate where its fault tolerant im-
plementation requires additional ancilla qubits specially initialized and verified and
fault tolerant measurements. Thus, the T gate is counted as a more costly gate than
the transversal gates H,X,Z,S and CNOT.

After the application of each logical fault tolerant gate, fault tolerant error correction
is applied on each code block being part of the logical gate operation. Also, error
correction must be applied periodically on idle logical qubits. The above coarsely
described scheme of error correction can be applied recursively at a higher level
leading to concatenated coding. E.g. seven logical qubits of the first level error cor-
rection are combined to offer a second level logical qubit consisting of 72 = 49 phys-
ical qubits, etc, until an adequate probability of error can be reached for a particular
computation.

An important result known as Quantum Threshold Theorem [22] gives the adequate
condition for fault tolerant quantum computation. This may be simplified as follows
[50]: A quantum computation of arbitrary duration can be done with arbitrary small
error probability in the presence of noise and using imperfect quantum gates if the
storage of qubits and the physical gates used to perform the computations have
error probabilities less than a threshold value Pa known as the accuracy threshold.
The higher the lower bound is for the accuracy threshold, the less challenging is
the actual physical gate construction relative to induced decoherence . The exact
lower value of this threshold depends on various assumptions for the error model,
the error control codes used etc. Some improvements on the initially estimated lower
bound for this threshold can be found in [81] giving a threshold of 2.73 · 10−5 for the
simple Steane [[7, 1, 3]] 7 qubits - distance 3 code [21], or in [82] giving a threshold
of 1.32 · 10−3 for a Golay [[23, 1, 7]] 23 qubits - distance 7 code.

Topological or surface codes suggest another promising method for fault tolerant
quantum computation [83, 84]. Recent results [85] suggest an accuracy threshold of
about 1.4 · 10−2 for these kind of codes. An additional advantage of these codes is
that they require local interaction only between the qubits in the block code, relaxing
the communication cost requirement.

4. Ability to implement a universal set of quantum gates.

In Section 2.3.5 the notion of a universal set of gates was introduced and it was also
noted that a discrete set of gates supporting fault tolerance can be used to approxi-
mate any quantum gate with arbitrary accuracy. The chosen physical representation
must support the operation of this set of gates and also implement them so as its re-
liability or fidelity (small probability of error) is under the accuracy threshold defined
above.

In general, interaction between two systems, each one representing a qubit, is more
difficult to be controlled in a manner corresponding to a two-qubit gate than the con-
trol of a single qubit gate. This may pose restrictions to the architecture of the system,
such as allowing local interactions only. Another restriction which may have impor-
tant impact to fault tolerance and speed of the circuit is the ability of performing
parallel operations of the gates.

5. A qubit-specific measurement capability.

At the end of the quantum computation, classical results must be extracted by mea-
suring particular qubits on a particular basis. Except from this, measurement is also

A.Pavlidis 70

Design and Synthesis of Efficient Circuits for Quantum Computers

involved in the error correction used in the fault tolerance. For this reason the mea-
surement must be reliable and fast.

An additional requirement, as noted in [80] is reliable quantum communication from one
place of the quantum computer to another. This could be accomplished with real transport
of the physical carrier of the qubit or using quantum teleportation.

A particular technology cannot always sufficiently fulfill all the above requirements and in
fact some of them may contradict each other. E.g. the requirement to build a two-qubit
gate means that these two qubits can easily come to an interaction. On the other hand
this means that they can be easily decohered. A striking example is the usage of photons
which can very robustly represent a qubit but cannot easily be involved in a two-qubit gate
construction.

In general, trade-offs between various architecture parameters must be accounted for in
order to study whether the proposed architecture is feasible for a future quantum computer.
These parameters may be the number of qubits available, the physical gates operation
and decoherence times, error control codes used, the particular quantum algorithm imple-
mentation targeted, communication costs, total running time, etc. The interplay of all these
parameters is complicated enough so as to make any analytical study on performance vs
resource requirements of a candidate quantum computer on a particular physical imple-
mentation. For this reason various software tools have been developed to make feasibility
studies [86, 87, 88].

A brief presentation of various technologies that have been proposed and tested as im-
plementation candidates on various aspects follows:

Trapped Ions The physical carrier of quantum information is the energy level of charged
atoms which are confined in a small area with the help of static electri-
cal potential and radio frequency radiation. The ions are kept in an ultra-
vacuum, ultra-cold environment to minimize their kinetic energy and in-
teraction with other atoms. Laser pulses of appropriate wavelength and
duration can initialize the state, perform one qubit gate operation and mea-
sure a particular ion. The ions can form one dimensional chain and the
Coulomb interaction between them combined with laser pulses can be
exploited for a two-qubit gate implementation as first proposed in [13].
Recent experiments [91] have shown that ion traps can offer excellent fi-

(i) (ii)

Figure 2.14: Ions Trap microfabricated chips: (i) Sandia National Laboratories. [89], (ii) Department
of Physics, Oxford University. [90]

71 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

delity of initialization and measurement with probability of error 7 · 10−4,
single qubit gate operation with error probability 10−6, while the two-qubit
gate is implemented with an error of about 10−2.
In the last 20 years extensive experimentation with trapped ions has de-
livered promising results concerning the scalability of these systems. En-
tanglement of six qubits was observed in [92] and [93]. Trapped ions were
demonstrated on semiconductor fabrication MEMS technology in [94].
Universal quantum simulation with ion traps of six qubits was demon-
strated in [95]. Shor’s algorithm with three qubits (Kitaev’s version) ex-
perimentally worked on ion traps [96]. Entanglement of 14 qubits was
achieved in [97]. Number 15 was factored in its primes using 11 qubits
as reported in [15].

Superconduct-
ing
qubits

A Josephson junction is formed when two superconductors are coupled
with a thin insulator. Current can flow through the insulator in the absence
of any applied voltage, while microwave current oscillations, whose fre-
quency depends on the voltage applied, appear. Resonant microcircuits
(LC) are formed with their inductances (L) implemented as superconduc-
tors with Josephson junctions. These microcircuits behave as individual
atoms in the sense that their stored energy is quantized representing thus
a superconducting qubit [14]. Microwave pulses can alter the quantum
state and electrical measurements are used to perform quantum mea-
surements.
Universal set of high fidelity quantum gates based on Josephson junc-
tions reported in [98]. Probability of error 8 ·10−4 for single qubit gates and
6 · 10−3 for two-qubit gates were measured. Also, entanglement on five
qubits was demonstrated. Together with the ability to prepare and mea-
sure a state with high fidelity, these results show that combined with the
usage of surface codes, this technology is viable for large scale quantum
computation.
In [99], Shor’s algorithm was implemented using three Josepshon junc-
tions qubits and succesfully factored integer 15. Simulation of fermionic
systems was reported in [16] using four qubits.

Figure 2.15: Nine superconducting qubits integrated circuit fabricated at University of California -
Santa Barbara [100].

A.Pavlidis 72

Design and Synthesis of Efficient Circuits for Quantum Computers

Optical
Photons

Photons of optical wavelengths can be another qubit carrier. The polar-
ization of the photons or their path can represent the qubit value. Mirrors,
beam splitters, phase shifter crystals etc. can be used to implement any
single qubit gate. Photons are very robust qubit carriers as they do not
have strong interactions between them and with matter. Yet, this is also a
drawback, as the construction of two-qubit gates becomes difficult. Indi-
rect interaction between photons could be achieved with Kerr crystals to
build two-qubit gates, but this method leads to low fidelity gates. Another
problem faced with photon implementations for quantum computation is
the requirement for single photon sources for state preparation and single
photon detectors with high efficiency for the measurement.

A scheme that uses only linear optics (Kerr crystals are non-linear) and
teleportation is presented in [101]. The linear optics implementation pro-
posal requires single photon detection on demand and high efficiency sin-
gle photon detectors.

Shor’s algorihm was implemented to factor integer 15 with linear optics
and using four qubits in [102] and [103]. A similar experimental setup was
demonstrated in an integrated silicon photonic chip [17]. Integer 21 was
factored in [104] using only one qubit and a qutrit (a qutrit operates on
three dimensions instead of two).

Nuclear
Magnetic
Resonance

Nuclear magnetic resonance manipulation is a well established method to
direct manipulate nuclear spins using magnetic fields and radio frequency
radiation. Due to the tiny strength of the inherent magnetic field produced
by an individual nucleon, a sample of many molecules is used, in con-
trast to the case of trapped ions. Every molecule in the sample is a tiny
quantum computer and each average behavior is manipulated. The inter-
actions between the nuclei in each molecule are exploited to define the
quantum gates. Effectively, the architecture of the quantum computer is
hardwired in a molecule. The drawback here is that this scheme does not
scale well. Trivial implementation of Grover’s algorithm using NMR was
shown in [105]. An implementation of Shor’s algorithm using seven qubits
was reported in [18].

These were but a few proposals to real quantum computation. Many other proposals are
under investigation (cavity quantum electrodynamics, neutral atoms etc. [106, 107]). Only
recently a two-qubit CNOT gate was demonstrated using quantum dots in conventional
silicon fabrication [108].

Another approach to computation and simulation is the adiabatic quantum computation
[109]. It is a special purpose method which solves specific global optimization problems
using quantum annealing. Quantum annealing is computationally more efficient than clas-
sical simulated annealing.

D-Wave Systems announced in 2011 a product which was claimed to be the first com-
mercial quantum computer. In fact it is a system that performs modest quantum annealing
and it is not a programmable quantum circuit model computer. The first computer named
D-Wave One was a 128 qubits computer (sold to Lockheed Martin). In 2013, D-Wave
Two version was released incorporating 512 qubits (sold to Google) and in 2015 more
than 1000 qubits were announced for the D-Wave 2X product. Superconducting qubits
are used in all three products but without any fault tolerance incorporated.

73 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

Criticism has been raised concerning D-Wave Systems machines, in two aspects, in re-
lation with each other. The first is whether these machines are real quantum computers
in the sense that entanglement, which is believed to be a prerequisite for quantum com-
putation, is observed. A study [110] showed entanglement in groups of eight local qubits,
but not throughout the machine, and this is due to the low fidelity of the qubit operations
and the lack of error correction. The other question is whether any quantum speed-up
is offered. While some studies showed that D-Wave outperforms classical solution (but
in constant factors) [111], others showed no real quantum speed-up [112, 113]. It is un-
clear yet if any of the machine’s outperformance to solve some problems instances can
be attributed to quantum entanglement as this entanglement is not global.

Figure 2.16: D-Wave Systems 1000 qubits quantum annealing processor.

The progress achievements of the last years, both in theory and experimentally, bring
closer the possibility of the appearance of practical quantum computers in the near future
(at least for simulation purposes), something that a few years ago was not surefooted.
Still, much effort remains to be devoted.

A.Pavlidis 74

Design and Synthesis of Efficient Circuits for Quantum Computers

3. SHOR’S ALGORITHM
While Simon’s problem [9] was the first one that manifested a super-polynomial speed-up
of a quantum computer relative to a classical one, it had no practical applications. At the
same time, Peter Shor inspired by Simon’s work, introduced a quantum algorithm that of-
fered super-polynomial speed-up and had also important applications [10], [114]. Shor’s
algorithm deals with the problems of integer factorization and discrete logarithm. Both of
them find applications in the cryptanalysis domain that is to decrypt an encrypted message
without prior knowledge of the decryption key. The security of many public key cryptogra-
phy systems [115] rely on the assumption that the integer factorization and discrete log-
arithm problems are intractable for a classical computer. Shor’s quantum algorithm, com-
bined with classical pre-processing and post-processing, achieves to solve these prob-
lems in polynomial time with respect to the problem size, which is the bits length of the
number to be factored. In the following subsections we describe the algorithm in detail.

3.1 Preprocessing: Reduction of Factoring to Period Finding
The factorization problem of a composite odd integer N, which is not a prime power, can
be reduced to a period finding problem (see Appendix A.1 for proofs). Namely, given the
integer N, a random integer a is chosen such that 1 < a < N and the greatest common
divisor gcd(a,N) is calculated. If gcd(a,N) ̸= 1 then, by the definition of GCD, a factor
p = gcd(a,N) of N is found and the algorithm finishes. If on the other hand gcd(a,N) = 1
holds, then the smallest period r of the sequence f(x) = ax mod N is calculated. If r happens
to be even and also a r

2+1 mod N ̸= 0, then the a factor of N is p = gcd(a r
2 − 1,N) and the

algorithm finishes with success. If r is not even or a r
2+1 mod N = 0, the previous steps are

repeated by choosing another random a.

The above steps are shown compactly in Table 3.1. The subroutines used in the algorithm
are gcd, modular exponentiation and the period finding of a sequence FindPeriod . Euclid’s
algorithm is a polynomial complexity algorithm which can be used for the calculation of
the greatest common divisor. The modular exponentiation can also be calculated with
polynomial complexity. The algorithm of Table 3.1 successfully finds factors of N with a

Table 3.1: Probabilistic algorithm to factorize an odd, non prime power integer, N by finding the
period of sequence ax mod N. The output p is a factor of N. The probability of success can be made
arbitrary close to 1 with a constant number of iterations.

1: INPUT N
2: a = Random(1, . . . ,N− 1)
3: g = gcd(a,N)
4: IF g ̸= 1 THEN
5: p = g
6: ELSE
7: r = FindPeriod(ax mod N)
8: IF r mod 2 = 0 AND a r

2+1 mod N ̸= 0 THEN
9: p = gcd(a r

2 − 1,N)
10: ELSE
11: GOTO LINE 2
12: END IF
13: END IF
14: OUTPUT p

75 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

probability arbitrary close to 1 with constant number of iterations, on the condition N is
odd and not a prime power, that is not of the form N = pm where p is a prime (this case
can be solved efficiently using a classical algorithm). Thus, the presented factorization
algorithm can factorize an integer efficiently on the condition that the period finding routine
is efficient. There is not known efficient classical algorithm for the period finding procedure,
yet an efficient quantum algorithm for the period finding can be used instead and thus
the problem of factoring can be solved efficiently on a quantum computer. This is the
contribution of Shor’s algorithm.

3.2 Quantum Fourier Transform
The Quantum Fourier Transform (QFT) of size L is a linear transformation fromHL to itself.
It transforms a general superposition state |ψ⟩ = x0|0⟩+ x1|1⟩+ · · ·+ xL−1|L− 1⟩ to another
state |φ⟩ = y0|0⟩+ y1|1⟩+ · · ·+ yL−1|L− 1⟩ according to

|ψ⟩ QFT−−→ |φ⟩ =
L−1∑
k=0

(
1√
L

L−1∑
j=0

xjωjk
L

)
|k⟩ (3.1)

where ωL = ei 2πL is the L-th primitive root of unity. The parenthesis in Eq. (3.1) is the
amplitude yk of the transformed state |φ⟩, that is

yk =
1√
L

L−1∑
j=0

xjωjk
L (3.2)

and this is a modified definition1 of the Inverse Discrete Fourier Transform (IDFT) applied
on the {xj} sequence; yk = IDFT{xj}.

The transform in Eq. (3.1) is unitary and its inverse is given by

|φ⟩ QFT−1−−−→ |ψ⟩ =
L−1∑
j=0

(
1√
L

L−1∑
k=0

ykω−jk
L

)
|j⟩ (3.3)

Similarly, the amplitudes of |ψ⟩ superposition are given by the Discrete Fourier Transform
(DFT) of the {yk} sequence; xj = DFT{yk} which is given by

xj =
1√
L

L−1∑
k=0

ykω−jk
L (3.4)

Thus, the QFT and its inverse are essentially IDFT and DFT applied on the amplitudes of
a superposition. When working with n qubits, the size L of the QFT is L = 2n. Then, any
computational basis state |j⟩, j = 0 . . . 2n − 1 can be written as |j⟩ = |j1⟩|j2⟩ · · · |jn⟩ where
(j1j2 . . . jn) is the binary representation of j, that is j = j12n−1 + j22n−2 + · · · + jn20. It can
be proven (see Appendix A.4) that the application of QFT to any basis state |j⟩ can be
described as the n qubits product state [116]

1Usually, in Signal Processing literature the DFT is defined by DFT{xj} = 1
L
∑L−1

j=0 xjω
−jk
L , while the IDFT is

defined by IDFT{yk} =
∑L−1

j=0 ykω
jk
L . In the Quantum Computation context the pairs of Eq. (3.4) and (3.2) are

used instead, mainly due to the amplitude normalization requirement; the initial state |ψ⟩ and the transformed
state |φ⟩ must have unit norm.

A.Pavlidis 76

Design and Synthesis of Efficient Circuits for Quantum Computers

|j1⟩ H R2 · · · Rn−1 Rn |0⟩+ ei2π0.j1j2...jn|1⟩

|j2⟩ • H · · · Rn−2 Rn−1 |0⟩+ ei2π0.j2...jn|1⟩
...

|jn−1⟩ • • · · · H R2 |0⟩+ ei2π0.jn−1jn|1⟩

|jn⟩ • • · · · • H |0⟩+ ei2π0.jn|1⟩⟩
Figure 3.1: Quantum Fourier Transform circuit on n qubits. The normalization factor 1√

2
is not shown

at the output states. The order of the qubits must be reversed at the end.

|j⟩ QFT−−→ 1√
2n
(
|0⟩+ ei2π(0.jn)|1⟩

) (
|0⟩+ ei2π(0.jn−1jn)|1⟩

)
· · ·
(
|0⟩+ ei2π(0.j1j2...jn)|1⟩

)
(3.5)

In Eq. (3.5) the binary notation (0.jljl+1 . . . jn) is used to represent the fractional number
jl
2 +

jl+1
4 + · · ·+ jn

2n−l+1 .

The above product form representation helps to construct a circuit (see also Appendix
A.4) which computes the QFT on n qubits [117] as shown in Figure 3.1. The controlled Rk
gates (k = 2 . . . n) depicted are c-Rz(θ) gates, where the abbreviation Rk = Rz(

2π
2k) is used.

Observe that the output product state of the circuit is given in reverse order, e.g. the state
|0⟩+ei2π(0.jn)|1⟩ results at the bottom qubit instead of the top one. A reordering of the qubits
using n

2 SWAP gates is not shown in this figure.

The circuit of the inverse QFT can be easily built by mirroring horizontally (flipping about
the vertical axis) the whole QFT circuit (including the SWAP gates) and using opposite
signs in the c-Rz(θ) gates.

3.3 Discrete Fourier Transform and Periods
We define the comb sequence of finite length L and period r as

Combr,L(j)
.
=

⌊L/r⌋−1∑
n=0

δ(j− nr), 0 ≤ j ≤ L− 1 (3.6)

where δ(j) is the impulse sequence defined by

δ(j) =

{
1, j = 0
0, j ̸= 0

(3.7)

Proposition 3.1. The DFT of a comb sequence of length L and period r, when r di-
vides L, is another comb sequence of length L and period L

r . That is, DFT{Combr,N(j)} =
CombN

r ,N
(k)

77 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2
Comb sequence

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

DFT magntitude of comb sequence

Figure 3.2: Comb sequence of length L = 128 and period r = 8 (top), magnitude of the corresponding
DFT (bottom).

Proof.

yk = DFT{Combr,L(j)}

=
1√
L

L−1∑
j=0

L/r−1∑
n=0

δ(j− nr)ω−jk
L

=
1√
L

L/r−1∑
n=0

e−i 2πrnkL

=

{
1√
L

∑L/r−1
n=0 1, rk mod L = 0

1√
L

∑L/r−1
n=0 e−i2πnl rk mod L = l ̸= 0

=

{√
L
r , rk mod L = 0
0, rk mod L ̸= 0

=

√
L
r

r−1∑
n=0

δ(k− n
L
r
)

= Comb L
r ,L
(k)

(3.8)

In other words, the impulses of the DFT appear at integer multiples of L/r, when r divides
exactly the length L of the initial comb sequence. These impulses have equal values (as
well as absolute values or magnitudes)

√
L
r .

A.Pavlidis 78

Design and Synthesis of Efficient Circuits for Quantum Computers

A comb sequence of length L = 128 and period r = 8 and its respective DFT magnitude
is depicted in Figure 3.2. The DFT has a period of L/r = 16 and the magnitude of the
impulses occuring at integer multiples of 16 is |

√
L
r | ≈ 1.414.

If someone knows the index k of any DFT peak, then together with the knowledge of L,
he may possibly find the period r. From Eq. (3.8), this index is of the form k = L

r n for
n = 0 . . . r−1. Then, k

L = n
r . Reducing the fraction k

L into its lower terms p and q so as k
L = p

q
leads to q = L

gcd(k,L) and thus the period is r = q = L
gcd(k,L) . This is valid on the condition that

n
r is already expressed into its lower terms or equivalently that gcd(n, r) = gcd(rkL , r) = 1.
In the example of Figure 3.2 the knowledge of k = 48 (fourth peak) leads to the correct
estimation 128

gcd(48,128) = 128
16 = 8 for the period because it holds gcd(8·48128 , 8) = 1. But when

k = 32, an incorrect estimation r = 128
gcd(32,128) =

128
32 = 4 is extracted because gcd(8·32128 , 8) =

2 ̸= 1.

In the more general case where the period r of a comb sequence does not fit exactly its
length L (r does not divide L), its DFT still shows peaks at about integer multiples of the
ratio L/r, however the overall pattern is somehow distorted. The DFT for this case follows
by defining s = ⌊L/r⌋

yk = DFT{Combr,L(j)} =

=
1√
L

L−1∑
j=0

s−1∑
n=0

δ(j− nr)ω−jk
L

=
1√
L

s−1∑
n=0

ω−nrk
L

=
1√
L
ω−rks

L − 1
ω−rk

L − 1

=
1√
L
e−i2πrk

L ⌊L/r⌋ − 1
e−i2πrk

L − 1

(3.9)

It is easy to see that the above DFT reduces to Eq. (3.8) if r|L. Figure 3.3 depicts a comb
sequence as defined in Eq. (3.6) with length L = 128 and period r = 6. In the same figure
the magnitude of its DFT is shown. Although r does not divide L, large amplitudes are
concentrated close to integer multiples of L/r = 21.33 . . . and this concentration can be
exploited to infer the period r as it will be shown later.

It is useful to define a slightly modified version of the comb sequence in Eq. (3.6) so as to
contain one more impulse :

Comb′
r,L(j)

.
= Combr,L(j) + δ(⌊L/r⌋r), 0 ≤ j ≤ L− 1

=

⌊L/r⌋∑
n=0

δ(j− nr), 0 ≤ j ≤ L− 1
(3.10)

Taking into account that DFT{δ(j− ⌊L/r⌋r)} = 1√
Lω

−rsk, where again s = ⌊L/r⌋, and using
Eq. (3.9), the DFT of this modified comb sequence can be found

79 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Comb sequence

0 20 40 60 80 100 120
0

0.5

1

1.5

2

DFT magntitude of comb sequence

Figure 3.3: Comb sequence of length L = 128 and period r = 6 (top), DFT of magnitude sequence
(bottom).

yk = DFT{Comb′
r,L(j)}

=
1√
L
ω−rks

L − 1
ω−rk

L − 1
+

1√
L
ω−rsk

=
1√
L
ω−rsk − 1+ ω−rkω−rsk − ω−rsk

ω−rk − 1

=
1√
L
ω−r(s+1)k

L − 1
ω−rk

L − 1

(3.11)

The pair of the modified comb sequence and its DFT is shown in Figure 3.4. The DFT of this
sequence is slightly different from the one of Figure 3.3, but the qualitative observations
about the location of the peaks still holds. Namely, the peaks appear near integer multiples
of the ratio L/r, except that all the terms of the derived DFT sequence are up-level shifted
by an amount 1√

L ≈ 0.088 because of the extra term δ(⌊L/r⌋r) in Eq. (3.10).

A useful property of the DFT is its magnitude invariance under cyclic shift. If xj is any
sequence of length L, then the same sequence shifted by an amount λ is defined to be
x(j−λ) mod L. It can be proven that

DFT{x(j−λ) mod L} = e
−i2πλ

L DFT{xj} (3.12)

and consequently the DFT magnitudes of the original and the shifted sequence are the
same; |DFT{x(j−λ) mod L}| = |DFT{xj}|

A.Pavlidis 80

Design and Synthesis of Efficient Circuits for Quantum Computers

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Modified Comb sequence

0 20 40 60 80 100 120
0

0.5

1

1.5

2

DFT magntitude of modified comb sequence

Figure 3.4: Modified Comb sequence of length L = 128 and period r = 6 (top), DFT of magnitude
sequence (bottom).

A more general definition of a comb sequence of length L and period r that takes into
account possible shifts by an amount λ in the range 0 . . . r − 1 is given below where t =
L mod r

Combr,L,λ(j)
.
=

s−1∑
n=0

δ(j− nr− λ) + δ(j− nr− λ)

=

{
Comb′

r,L((j− λ) mod L), 0 ≤ λ ≤ t− 1
Combr,L((j− λ) mod L), t ≤ λ ≤ r− 1

(3.13)

Thus, the generalized definition of the comb sequence is the cyclic shift by λ of the comb
sequences of Eq. (3.6) or Eq. (3.10), depending on the value of λ. The DFT of the gener-
alized comb of Eq. (3.13) can be obtained by combining Eq. (3.9) and Eq. (3.11) with the
DFT shift property of Eq. (3.12)

yk =DFT{Combr,L.λ(j)} =


1√
Lω

−λk ω
−r(s+1)k
L −1
ω−rk
L −1

, 0 ≤ λ ≤ t− 1
1√
Lω

−λk ω
−rks
L −1

ω−rk
L −1

, t ≤ λ ≤ r− 1
(3.14)

Thus, the magnitude of the DFT of a generalized comb sequence of length L = 128 and
period r = 6 for a shift of λ = 0, 1 is the one depicted in Figure 3.4, while for a shift of
λ = 2 . . . 5 is depicted in Figure 3.3.

81 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

The reason for the definition of the generalized comb sequence of Eq. (3.13) is that its DFT
of Eq.(3.14) corresponds to superposition amplitudes of a quantum register just before the
measurement in the quantum part of the order finding algorithm and this fact will be used
in the next section.

3.4 Quantum Period Estimation
The purpose of the quantum part of Shor’s algorithm is to find efficiently the period r of
the modular exponentiation sequence f(x) = ax mod N, x ∈ N, for given integers N and
a. Quantum superposition is exploited to compute f(x) in a superposition of x values, and
then interference using QFT is used to find the period with a constant probability.

A high level quantum circuit for the period finding problem is shown in Figure 3.5. The bot-
tom (target) register |ψB⟩ consists of n qubits, while the top (control) register |ψT⟩ consists
of 2n qubits, where n = ⌈log2 N⌉. The Uf quantum subcircuit acts on both registers and
computes the modular exponentiation function as follows

Uf(|x⟩|z⟩) = |x⟩|zax mod N⟩ (3.15)

Initially, the two registers are in the states |0⟩ and |1⟩. The first step is to apply 2nHadamard
gates to each qubit of the top register and obtain the superposition

|ψT⟩1 =
1√
L

L−1∑
x=0

|x⟩ (3.16)

for L = 22n. The same state could be obtained by applying the forward QFT because of the
particular initial state |0⟩. Thus, a symmetry on Figure 3.5 could be observed. The state
of the bottom register remains |ψB⟩1 = |1⟩ and the application of the Uf block on the joint
state of both registers results in

|ψT⟩2|ψB⟩2 = Uf(
1√
L

L−1∑
x=0

|x⟩|1⟩)

=
1√
L

L−1∑
x=0

|x⟩|f(x)⟩

=
1√
L

L−1∑
x=0

|x⟩|ax mod N⟩

(3.17)

The above equation can be reformulated, exploiting the periodicity property of f, in a form
which is more convenient for the application of the QFT at next step. The running index
0 ≤ x ≤ L−1 can substituted by two indices m = 0 . . . r−1 and l = 0 . . . s−1 as x = lr+m,
where r is the period of f, s = ⌊L/r⌋ and t = L mod r. Then Eq. (3.15) becomes

|0⟩ /2n H⊗2n

Uf

QFT−1

|1⟩ /n

Figure 3.5: Quantum circuit for period finding algorithm

A.Pavlidis 82

Design and Synthesis of Efficient Circuits for Quantum Computers

|ψu⟩2|ψl⟩2 =
1√
L

(
r−1∑
m=0

s−1∑
l=0

|lr+ m⟩|f(lr+ m)⟩+
t−1∑
m=0

|sr+ m⟩|f(sr+ m)⟩

)
=

1√
L

(
r−1∑
m=0

s−1∑
l=0

|lr+ m⟩|f(m)⟩+
t−1∑
m=0

|sr+ m⟩|f(m)⟩

)
=

1√
L

r−1∑
m=0

L−1∑
x=0

(
s−1∑
l=0

δ(x− lr− m) + δ(x− sr− m)

)
|x⟩|f(m)⟩ =

1√
L

r−1∑
m=0

L−1∑
x=0

Comb(x)r,L,m|x⟩|f(m)⟩

(3.18)

The second line of the above equation is due to the periodicity of f. The third line is derived
because the superposition amplitudes of the top register are zero except for the states
|lr+m⟩ and |sr+m⟩. The last line results by the definition of the generalized comb sequence
given in Eq. (3.13).

The next step, which is the applications of the inverse QFT on the top register, can be
derived by exploiting Eq. (3.14) which gives the DFT of the generalized comb sequence.
Thus, the joint state of both registers after this step is

|ψT⟩3|ψB⟩3 =(QFT−1 ⊗ I)
1√
L

r−1∑
m=0

L−1∑
x=0

Comb(x)r,L,m|x⟩|f(m)⟩ =

1√
L

r−1∑
m=0

QFT−1

(
L−1∑
x=0

Comb(x)r,L,m|x⟩

)
|f(m)⟩ =

1
L

L−1∑
k=0

(
t−1∑
m=0

ω−mkω
−r(s+1)k
L − 1
ω−rk

L − 1
+

r−1∑
m=t

ω−mkω
−rks
L − 1

ω−rk
L − 1

)
|k⟩|f(m)⟩

(3.19)

The last step is the measurement of the top register in the computation basis {|k⟩, k =
0 . . .L− 1}. The superposition amplitudes ck,m of both registers in Eq. (3.19) are

ck,m =


1
Lω

−mk ω
−r(s+1)k
L −1
ω−rk
L −1

, m = 0 . . . t− 1
1
Lω

−mk ω
−rks
L −1

ω−rk
L −1

, m = t . . . r− 1
(3.20)

and consequently the probability to obtain the result k is Prob [k] =
∑r−1

m=0|ck,m|2. This
probability can be calculated analytically by taking into account the trigonometric identity
|eiθ − 1| = 4 sin2(θ2)

Prob [k] =
t−1∑
m=0

∣∣∣∣∣1Lω−mkω
−r(s+1)k
L − 1
ω−rk

L − 1

∣∣∣∣∣
2

+
r−1∑
m=t

∣∣∣∣1Lω−mkω
−rks
L − 1

ω−rk
L − 1

∣∣∣∣2 =
t sin2

(πrk
L (s+ 1)

)
+ (r− t) sin2

(πrks
L

)
L2 sin2

(πrk
L

) (3.21)

83 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2
Probability of measurement

844 846 848 850 852 854 856 858 860 862
0

0.02

0.04

0.06

0.08

0.1

0.12
Probability of measurement (zoom)

853.333

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2
Probability of measurement

844 846 848 850 852 854 856 858 860 862
0

0.02

0.04

0.06

0.08

0.1

0.12
Probability of measurement (zoom)

853.333

Figure 3.6: Measurement probabilities of period finding algorithm for L = 1024 and period r = 6 (top),
zoom in the range k = 844 . . . 862 (bottom).

As it was in the case of the DFT amplitudes of modified comb sequences, the probability
is high for indices k that are close to integer multiples of L/r. If such a k is obtained by a
measurement, then together with the knowledge of the L value, the period r can be found
with constant probability of success using the method of continued fraction expansion
(CFE) which is explained in section 3.5 and further analyzed in Appendices A.2 and A.3.

For the special case where r divides L the probabilities are

Prob [k] =
1
r

r−1∑
n=0

δ(k− n
1
r
) =

1
r
Comb 1

r ,L
(k) (3.22)

which are the squared DFT values of Eq. (3.8), ignoring the normalization factor 1/r.

Figure 3.6 depicts the measurement probabilities when applying Shor’s period finding
quantum algorithm with parameters a = 2 and N = 21. In this case 26 mod 21 = 1 and
thus the period is r = 6. The top register which is measured after the inverse QFT con-
sists of 2n = 10 qubits as n = ⌈21⌉ = 5, consequently the range of the measurements
results is between 0 and 1023. Clearly, the peak probabilities occur close to integer mul-
tiples of L/r = 1024/6 = 170.66 . . . , namely 0, 171, 341, 512, 683 and 853. A zoom of the
probabilities is shown at bottom of Figure 3.6 near the last probability peak that occurs at
k = 853, which is close to 5 · 1024/6 = 853.33 . . . The period r = 6 can be extracted by the
knowledge of the measurement k = 853 together with the knowledge of L = 1024, using
the CFE method.

A.Pavlidis 84

Design and Synthesis of Efficient Circuits for Quantum Computers

3.5 Post-Processing: Retrieval of the exact period
The continued fraction expansion representation of a given rational number ξ is given by

c0 +
1

c1 + 1
c2+ 1

···+ 1
CR

(3.23)

which is symbolized in compact form as [c0, c1, . . . , cR]. The j−th convergent of the CFE
is the rational ξ j = [c0, c1, . . . , cj] , j = 0 . . .R and it can be always written in fraction
form ξ j =

ej
dj . The period r is found by searching through trial an error over all the con-

vergents’ denominators dj of CFE representation for k/L. In the example above, where
k/L = 853/1024 the convergents are

0
1
,
1
1
,
4
5
,
5
6
,
424
509

,
853
1024

.

The denominator of the fourth convergent is the desired period r = 6.

NO

INITIALIZE
INPUT N

gcd(α,N)=1

RANDOMLY
CHOOSE
1 < a < N

r mod 2 = 0
&

α

r/2 mod N ≠-1

p=gcd(αr/2-1,N)

YES

YES

p=gcd(α,N)

NO

INITIALIZE

1
1 1

0
∑
−

=

=

L

x
BT x

L
ψψ

COMPUTE

COMPUTE

MEASURE k

0,, 000 =−













=













= jc
k

L

k

L
c ξ

j=j+1
COMPUTE

ξj

j=j+1
COMPUTE
pj,qj : pj/qj=ξj

r=qj

ar mod N =1

YES

NO

QUANTUM PERIOD
FINDING

CONTINUED FRACTION
EXPANSION

REDUCTION TO
ORDER FINDING

NO

NO

()TQFT ψ

1−

∑
−

=

=

1

0

mod
1 L

x

x
BT Nax

L
ψψ

Tψ

Figure 3.7: Shor’s integer factoring algorithm flowchart. The algorithm is divided into the three
grayed shades submodules; the probabilistic reduction of the factoring problem to period finding,
the quantum computation for the period finding and the exact extraction of the period using the
continued fraction expansion method (Appendix A.2).

85 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

The CFE computation can be accomplished using a classical computer in polynomial time
with respect to n, where n is the number of bits which are adequate to represent the mod-
ulus N of the function f(x) = ax mod N.

Not every peak leads to a succesful retrieval of the period r. In Appendices A.2 and A.3
the sufficient conditions and the probability of successful retrieval is given. Moreover, the
random nature of the measurement does not guarantee a k that is close to an integer
multiple of L/r. Thus, the success probability of the quantum part of the period finding
algorithm depends on these factors, and it is shown that it has a lower bound of Ω(1

log logN).
Consequently, O(log logN) = O(log n) iterations of the quantum part are adequate to lead
to a constant probability of success to find the unknown period.

The quantum part essentially consists of the QFT which has polynomial space and time
complexity with respect to n and the modular exponentiation part which also has polyno-
mial complexity. Thus, the quantum algorithm combined with classical calculations can
solve the period finding problem in polynomial time and consequently it can factor an in-
teger N in polynomial time with respect to the number of its digits.

The summary of Shor’s factoring algorithm combining both classical and quantum com-
putations is shown in the flowchart of Figure 3.7.

3.6 Decomposition of Quantum Modular Exponentiation
The efficient implementation of the quantum period finding circuit shown in Figure 3.5
requires that the modular exponentiation circuit Uf described by Eq. (3.15) can be imple-
mented polynomially both in space and time with respect to n. A step towards the imple-
mentation of Uf is to consider that the modular exponentiation function ax mod N can be
decomposed as

ax mod N = (a20 mod N)x0 · (a21 mod N)x1 · · · (a22n−1 mod N)x2n−1 mod N (3.24)

where xj, (j = 0 . . . 2n−1) are the bits of the x’s binary expansion, that is x = (x2n−1 . . . x1x0).
Each factor of Eq. (3.24) has the exponent xj, and thus takes the form of (a2j mod N) if
xj = 1, or the constant 1 if xj = 0. Consequently, the operation of Uf given by Eq. (3.15)
can be reformulated in the computational basis as

Uf(|x⟩|z⟩) = |x2n−1 . . . x1x0⟩|(a2
2n−1

mod N)x2n−1 · · · (a20 mod N)x0z mod N⟩ (3.25)

The definition of n+ 1 qubits controlled modular multipliers c-Ua2j with control qubit |c⟩ and
n qubits target register |y⟩, which operate in the computational basis as

CUa2j (|c⟩|y⟩) = |c⟩|(a
2j)cy mod N⟩ (3.26)

leads to the equivalent design for quantum period finding algorithm shown in Figure 3.8.

The above modular exponentiation decomposition not only helps to construct the Uf op-
erator by reducing the problem to the construction of controlled modular multipliers, but
also offers an alternative interpretation of Shor’s algorithm as a quantum phase estimation
procedure [118],[63], which is explained briefly in Appendix A.5.

The efficient implementation of the modular multipliers of Eq. (3.26) is the subject of Chap-
ter 4 where an overview of the literature is given and various efficient quantum arithmetic
circuits are proposed, which when combined together they can offer fast quantum modular
exponentiation.

A.Pavlidis 86

Design and Synthesis of Efficient Circuits for Quantum Computers
←− Uf −→

|0⟩ H •

QFT−1
...

...
|0⟩ H •

|0⟩ H •

|0⟩

Ua20 Ua21 Ua2n−1
... · · ·
|0⟩
|1⟩

Figure 3.8: Decomposition of the quantum modular exponentiation into quantum modular multipli-
cation in Shor’s algorithm.

3.7 Generalizations and the Hidden Subgroup problem
In [10], Shor also described a quantum algorithm which solves efficiently the discrete log-
arithm problem. This problem can be stated as follows: Given two elements a and b = ak
of a the multiplicative group GN, where k is an integer, find k. In general, no efficient clas-
sical algorithm is known for this problem. This problem can be reduced to period find-
ing problem, where the periodic function has now two arguments. Namely, the function
f(m, n) .

= bman = akm+n mod N is periodic in its arguments m and n, with period (1,−k) be-
cause f(m+1, n−k) = amk+k+n−k = f(m, n). Thus, the extraction of the period (1,−k) directly
leads to the discrete logarithm of b in the base a.

A high level quantum circuit description of the discrete logarithm algorithm is given in
Figure 3.9. It consists of two control registers (top) and a target register (bottom). The
size n of the registers depends on the order r of the base b. The blocks Ua and Ub that
are controlled by the two top registers are quantum modular exponentiators of modulus
N with parameters a and b respectively, and they can be decomposed as a sequence of
controlled modular multipliers. Inverse QFT is applied on the control registers and then
measurement of both can lead to the answer k.

Quantum algorithms such as Deutsch’s, Deutsch-Josza, Simon’s, Shor’s period finding
and discrete logarithm can be described in a common framework under the Hidden Sub-
group Problem.

Definition 3.1. (Hidden Subgroup Problem) Let G is a finite generated group, and f a
function with domain the group G and with range another set X. If f is constant and dis-
tinct in each coset gH, the hidden subgroup problem is to find the subgroup H through its
generators.

The cosets gH of the subgroup H with respect to the element g are defined as gH =
{gh : h ∈ H}.

In Deutsch’s problem the group is G = {0, 1} and it has two subgroups H1 = {0} and
H2 = G. If the function f is balanced then f is constant and distinct in each coset of H1,
while if f is constant, then f is constant in each coset of H2. The problem to decide if f is
balanced or constant is to find the subgroup H1 or H2, respectively.

In Shor’s quantum period finding, the groupG is Z and the subgroupH is rZ = {0, r, 2r, . . .},
where r is the period of f. The function f(x) = ax mod N is constant with distinct values in

87 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

|0⟩ /n H⊗n • QFT−1

|0⟩ /n H⊗n • QFT−1

|1⟩ /n Ua Ub

Figure 3.9: Quantum circuit of the discrete logarithm algorithm

each coset rH and the generator of rZ is r itself, which is the period.

In the discrete logarithm problem, the group G is Zr × Zr and the hidden subgroup is H =
{(m, n) ∈ G : km+ n = 0 mod r}. A generator of H is (1−, k) which reveals the logarithm k.

Some other problems that can be also casted under the Hidden Subgroup formulation are
the Hidden Linear functions [119] and the Abelian Stabilizer problem [118]. The common
characteristic of all these problems is that in their Hidden Subgroup formulation the group
is Abelian (commutative). In this particular case of Abelian groups, general procedures
that lead to efficient quantum algorithms exist [120] and the structure of their circuits is
similar to that of Figure 3.9. The Hidden Subgroup problem for non-Abelian groups can
be solved only for some special cases of groups. A review of this non-Abelian Hidden
Subgroup problem can be found in [121].

A.Pavlidis 88

Design and Synthesis of Efficient Circuits for Quantum Computers

4. FAST QUANTUM MODULAR EXPONENTIATION
This Chapter, which is our first contribution in this thesis, is devoted to quantum arithmetic
circuits, especially those that are useful in modular exponentiation, which is the most com-
putational intensive part of the very important Shor’s factoring and discrete logarithm al-
gorithms. An overview of elementary quantum arithmetic and modular exponentiation de-
signs is provided and novel elementary quantum arithmetic circuits are proposed. These
novel circuits are based on the representation of an integer in the Fourier domain using
QFT and they can be integrated together to offer fast quantum modular exponentiation
with quadratic depth and linear space. Expressly, the proposed modular exponentiation
circuit has a depth of about 700n2 and requires 9n + 2 qubits (or 8n + 2 in an improved
version discussed in section 4.7), where n is the number of bits of the integer. The total
quantum cost of the proposed design is 400n3 for single or two-qubit gates counting. These
characteristics refer to the case where the modular exponentiation is applied to Shor’s al-
gorithm. A general case modular exponentation circuit exposed in section 4.4 has inferior
characteristics in cost, space and time. The main contributions of this Chapter are :

• A QDT based quantum controlled multiplier/accumulator by constant, based on pre-
vious work done by Draper [23] and Beauregard [24], offering the advantage of linear
depth instead of the original quadratic. This reduction is achieved by exploiting the
fact that one factor of the product is constant, decomposing doubly controlled rota-
tion gates to simply controlled rotation gates [53] and then suitably rearranging them
so as many of them can be executed concurrently.

• A quantum divider by constant based on the division by constant classical algorithm
proposed by Granlund and Montgomery [122]. The quantum divider incorporates
QFT based arithmetic blocks like adders and the uncontrolled version of the previ-
ous multiplier/accumulator. This quantum divider has also linear depth. A controlled
version of the quantum divider is also presented.

• By combining the two previous building blocks we achieve to build a quantum con-
trolled modular multiplier with linear depth which is then used as the basic building
block for the quantum modular exponentiation circuit of quadratic depth.

We provide detailed complexity analysis both in terms of space and time along with com-
parisons with other circuits presented in the literature. Implementation difficulties related
to fault tolerance and local interactions between the qubits are also discussed and proce-
dures to address them are given in Chapter 5.

4.1 Background and related work
We have already shown in section 3.6 how to decompose the quantum modular expo-
nentiation part into a sequence of controlled modular mutlipliers defined with Eq. (3.26).
Similar decompositions are used to break the controlled modular mutlipliers to simpler cir-
cuit stages down to quantum adders. These intermediate circuits may use ancilla qubits
for the computation of some temporary results. It is of crucial importance that all these
ancilla qubits are reset back to a constant state (e.g. |0⟩) so as the end result of modular
exponentiation does not contain garbage information. This is because the derivation of Eq.
(3.18) relies on the fact that an equal superposition of |x⟩ states is entangled with states
given by a periodic function |f(x)⟩. If garbage states |g(x)⟩ are generated additionally to
the modular exponentiation computation |f(x)⟩, then the joint state |f(x)⟩|g(x)⟩ is no longer
periodic with respect to x and the superposition

89 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

|ψ⟩ = 1√
2

L−1∑
x=0

|x⟩|f(x)⟩|g(x)⟩ (4.1)

cannot lead to any period extraction by applying an inverse QFT on the left register.

4.1.1 Modulo adder,constant adder and controlled constant adder
Any abstract quantum adder design from the literature, e.g [61, 62, 123], can be used
to describe the usual design hierarchy of these controlled modular multipliers. This ab-
stract adder has two operating registers of n qubits, initially in the states |a⟩ = |an−1 . . . a0⟩
and |b⟩ = |bn−1 . . . b0⟩. Usually, another ancilla n qubits register is needed for the carries
calculations, although designs with no ancilla have appeared [123, 23]. This register is
initialized in the zero state and through uncomputation goes back again to the zero state.
The adder operation is to leave the first register intact in the state |a⟩, and write the sum
(modulo 2n) to the second register, that is

ADD(|a⟩|b⟩) = |a⟩|(b+ a) mod 2n⟩ (4.2)

This operation is unitary, and the inverse operation ADD−1 which is subtraction (modulo
2n),

ADD−1(|a⟩|b⟩) = |a⟩|(b− a) mod 2n⟩ (4.3)

can be easily implemented by reversing the order of gates used in the adder circuit and
using in their place, the respective inverse ones.

When the two n qubits integers are considered unsigned, the most significant qubit |bn−1⟩
of the second register could be used as an overflow indicator for the range

[
0 . . . 2n−1 − 1

]
,

in a subtraction operation. Consequently, the subtractor could be used as a comparator
too, by checking this most significant qubit.

The adder of two integers a and b can be transformed to a controlled constant adder; it
adds a constant integer N to a register initially in state |b⟩ conditioned on a control qubit
|c⟩ as

c-ADDN(|c⟩|b⟩) = |c⟩|(b+ cN) mod 2n⟩ (4.4)

The modulo 2n operation will be implied from now on in an adder or subtractor operating
with n bits numbers. Figure 4.1 shows the transformation of a general adder to a controlled
constant adder. The controlled blocks c-N act on an n qubits target register and perform
the operation |x⟩ → |x⊕ cN⟩ where |c⟩ is the control qubit state. When |x⟩ is initially |0⟩, on
the condition that |c⟩ = |1⟩, the register is loaded with the value |N⟩, otherwise it remains
|0⟩. It can be realized by using up to n CNOT gates depending on the binary representation
of constant N. Thus, N is hardwired in the internal structure of c-N. On the other side, the
action of a c-N circuit on a register with initial state |N⟩ is to reset it to the state |0⟩, when
the control qubit is |1⟩. When the control qubit of Figure 4.1 is |1⟩, the top register of the
adder ADD which is initially in state |0⟩ is fed with the constant value N and afterwards is
reset again to |0⟩. The lower register contains the sum b+ cN, that is b if c = 0, or b+ N if
c = 1.

A similar construction can be employed to build a constant adder without any control. E.g.,
a normal adder fed with the constant value N on one register and afterwards reseting this

A.Pavlidis 90

Design and Synthesis of Efficient Circuits for Quantum Computers

|c⟩ • • |c⟩

|0⟩ /n N
ADD

N |0⟩

|b⟩ /n |b+ cN⟩

Figure 4.1: Quantum circuit for controlled constant addition.

register with suitable arranged X gates. Another option would be to discard the register
carrying the constant value and reorganize the internal structure of the adder depending
on this constant value.

Normal adders, constant adder and controlled constant adder can inter-operate as shown
in Figure 4.2 to build a modulo N adder whose operation is defined by

c-ADDMN(|a⟩|b⟩) = |a⟩|(b+ a) mod N⟩ (4.5)

Two n qubits registers and an ancilla qubit are shown in this construction. It is assumed that
n is chosen so that 0 ≤ a, b < N < 2n−1. The first adder alters the state of the two register
to |a⟩|b+a⟩. The constant inverse adder ADD−1

N , which is effectively a constant subtractor,
evolves the state of the second register to |a + b − N⟩. The most significant qubit of the
second register gives an indication whether an overflow has occurred, that is a + b < N.
In such a case its state would be |1⟩, otherwise (when a+ b ≥ N) it state would be |0⟩. The
CNOT gate targeting the single ancilla qubit at the bottom of the circuit is controlled by this
most significant qubit. Thus, a state |1⟩ on the ancilla qubit indicates overflow, while a state
|0⟩ indicates no overflow. The ancilla qubit containing the overflow information, controls the
constant adder ADDN, altering the second register state to |b+a−N+N⟩ = |b+a⟩ if a+b < N,
or to |b+a−N⟩, if a+b ≥ N. Both states are equal to |b+a mod N⟩, due to the assumption
0 ≤ a, b < N. At this point the joint state of the circuit is |a⟩|b + a mod N⟩|⌈(b+ a)/N⌉⟩,
where notation ⌈(b+ a)/N⌉ indicates the undeflow information.

The purpose of the last two adders and the CNOT gate is to reset the ancilla qubit holding
this overflow information back to |0⟩ without disturbing the two registers. The effect of the
inverse adder and the last adder on both registers is the identity operation (no effect) and
consequently both registers wiil remain at the state |a⟩|b + a mod N⟩ at the end. Yet, in
between these last adders, the state of the second register is |((b+ a) mod N)− a⟩. Thus,
its most significant qubit is in state |0⟩ if an overflow had occurred previously, as long as
in such a case (b + a) mod N = b + a, ((b + a) mod N)− a = b and b < N by assumption.
The modified CNOT gate with the white circle on the control qubit (which is again the most
significant qubit of the register) resets the ancilla state back to |0⟩ and thus the ancilla qubit

|a⟩ /n

ADD ADD−1 ADD
|a⟩

|b⟩ /n ADD−1
N • ADDN |a+ b mod N⟩

|0⟩ • |0⟩

Figure 4.2: Quantum circuit for modular addition. The white circle of the second CNOT gate denotes
inversion of its target qubit iff the control qubit is |0⟩. Control qubits of both CNOT gates emerge from
the most significant qubit of the register on which they are attached. Ancilla qubits of the various
adders used in this figure are hidden inside their symbols.

91 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

can be reused. If no overflow occured, again the ancilla qubit remains in state |0⟩ as the
control qubit of the white circled CNOT gate is |1⟩.

4.1.2 Controlled modulo multiplier
The controlled modular multiplier of Eq. (3.26) can be broken down to a sequence of
modular adders. For each modular multiplier CUa2j , defined in Eq. (3.26), the argument y
to be multiplied by the constant a2j can be expanded as y = 2n−1yn−1+2n−2yn−2+· · · 2y1+y0,
where (yn−1yn−2 . . . y1y0) is the binary representation of y. After this observation, we define
a controlled modular multiplier/accumulator CVa2j with

CVa2j (|c⟩|y⟩|z⟩) = |c⟩|y⟩|z+ (a2j)cy mod N⟩
= |c⟩|2n−1(z+ a2j)cyn−1 + 2n−2(a2

j
)cyn−2 + · · · (a2

j
)cy0 mod N⟩

(4.6)

The above equation suggests a conditionally iterated modulo N addition of the constants
Ak

.
= 2ka2j mod N, for k = 0 . . . n−1 to an n qubits register initialized to zero. The condition to

execute the addition of Ak is that both c and yk must be 1. A step towards this construction is
the circuit of Figure 4.3. A modulo N adder is sandwiched between two double-controlled
Ak blocks which are controlled by qubits |c⟩ and |yk⟩. They affect the first register of the
modulo N adders, which is initialized to |Ak⟩ before each addition and reset back to |0⟩
after each addition. The implementation of the doubly controlled Ak circuit is similar to the
implementation of the simply controlled blocks c-N used in the constant adder of Figure
4.1, but it requires Toffoli gates instead of CNOT gates.

The circuit of Figure 4.3 implements a slightly different operation from the desired one
described in Eq. (3.26). It can achieve the controlled modular multiplication if the register
that contains the |y⟩ argument is reset to zero and the last register is initialized to |z⟩ = |0⟩.
If constant a is co-prime with N, which is the case in Shor’s algorithm, then there exist its
inverse a−1 so as a · a−1 mod N = 1. An inverse of a2j also exists, namely a−2j. The circuit
CVa2j combined with its inverse CV−1

a−2j
can be used to implement the desired controlled

modular multiplier of Eq. Eq. (3.26). This inverse block subtracts instead of adding and
has parameter a−2j, thus it computes

CV−1
a−2j

(|c⟩|y⟩|z⟩) = |c⟩|y⟩|z− (a−2j)cy mod N⟩ (4.7)

Figure 4.4 shows a combination of CVa2j with its inverse CV−1
a−2j

and a Fredkin gate that
derives the controlled modular multiplication which is essential for the modular exponenti-
ation circuit as decomposed in Figure 3.8. When the control qubit is |0⟩ the circuit outputs

|c⟩ • • • • • • |c⟩
|yn−1⟩ • • |yn−1⟩

... ...
|y1⟩ • • |y1⟩
|y0⟩ • • |y0⟩
|0⟩ /nA0

ADDMN
A0 A1

ADDMN
A1 · · · An−1

ADDMN
An−1 |0⟩

|z⟩ /n · · · |z+ cay mod N⟩
Figure 4.3: Quantum circuit for controlled accumulation of modular multiplication. Ancilla qubits of
the modular adders used in this figure are hidden inside their symbols.

A.Pavlidis 92

Design and Synthesis of Efficient Circuits for Quantum Computers

|c⟩ • • • |c⟩
|y⟩ /n

Va2j
×

V−1
a−2j

|a2jcy mod N⟩
|0⟩ /n × |0⟩

Figure 4.4: Quantum circuit for controlled modular multiplication. Ancilla qubits are not shown in
the symbols of the two blocks.

the state |y⟩ on the top register and |0⟩ on the bottom register. When the control qubit is
|1⟩, the two registers after the CVa2j block evolve in the joint state |y⟩|a2jy mod N⟩. Fredkin
gate swaps the contents of the two registers and the CV−1

a−2j
block evolves its swapped

input joint state |a2jy mod N⟩|y⟩ to |a2jy mod N⟩|y− a−2ja2jy mod N⟩ = |a2jy mod N⟩|0⟩.

The standard modular exponentiation decomposition, for modulus N which has a length
of n bits, needs O(n) controlled modular multipliers. Each controlled modular multiplier
needs in turn O(n) adders, thus O(n2) adders are required for the modular exponentiation.
The total depth of the quantum modular exponentiation for the standard decomposition
described above depends on the particular adder implementation and in general it ranges
between O(n2 log n) and O(n3).

The space cost (number of qubits required) of the standard modular exponentiation is 7n+1
qubits, of which 4n+1 qubits are ancilla. These ancilla are broken down as follows: n qubits
for the internal carries of each adder, 1 qubit for the sign extraction for modular addition,
n qubits for the constant N, n qubits for the constants 2ka2j mod N and last, n qubits for the
conversion of the controlled modular MAC in Figure 4.3 to the controlled modular multiplier
in Figure 4.4. The working qubits consist of a 2n qubits register holding the superposition of
x’s while an n qubits register holds the computation of the modular exponentiation ax mod
N. The number of the ancilla registers could be reduced if we exploit the fact that some
of them are fed with constant values depending on N and a. This reduction is possible if
these constants are ”hardwired” inside each adder by suitably reorganizing its structure.
In this case the space requirements can be reduced to 5n + 2 qubits. Usage of adders
which have no ancilla qubits for the internal carries (like the ones in [123, 23]) leads to
circuits of 4n+ 2 width for the modular exponentiation.

Further reduction of the space can be achieved by exploiting the semi-classical QFT im-
plementation and the fact that the controlled modular multiplier blocks CUa2j mutually com-
mute. Therefore, the circuit of Figure 3.8 can be re-designed into that of Figure 4.5 which
uses only one qubit for controlling 2n CUa2i gates instead of using 2n different control qubits
[24, 120, 124].

|0⟩ H • H Xm0 • H R0 Xm1 · · · • H R2n−1
m0 m1 m2n−1

|1⟩ /n Ua20 Ua21 · · · Ua22n−1

Figure 4.5: Design of modular exponentiation circuit using only one qubit to control the modular
multipliers. The phase shift gates R depend on all previous measurement results and implement the
inverse QFT, while the X gates are negations conditioned on the result of the previous measurement.

4.1.3 Prior Work
Several designs for quantum exponentiation have been proposed in the literature. In gen-
eral, they adopt the top-down approach of the previous subsection which reduces the
construction down to adders. For this reason, most of the effort in the literature has been

93 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

devoted to the design of the quantum equivalent of a digital adder and its improvement in
terms of complexity: reduction of the total number of required quantum gates and qubits
(ancilla and working) and reduction of the circuit depth (total number of steps required to
complete the computation).

Many of the quantum addition circuits introduced in the literature are inspired from their
known classical counterparts through the design of reversible versions of them. The most
important of these approaches are the Vedral-Barenco-Ekert (VBE) ripple-carry adder
[61], the Beckman-Chari-Devabhaktuni-Preskill (BCDP) ripple-carry adder [62], the Cuc-
caro-Draper-Kutin-Moulton (CDKM) ripple-carry adder [125], the Draper-Kutin-Rains-Svo-
re (DKRS) carry-lookahead adder [126], the Takahashi-Kunihiro (TK) ripple-carry adder
[123], the Gossett carry-save adder [127], the Zalka carry-select adder [128] and the Van-
Meter-Itoh (VI) carry-select adder and conditional-sum adder [129]. Some of the above
proposals for quantum addition circuits emphasize on minimizing the number of required
qubits, while other methods try to minimize the circuit depth. Other efforts concentrate
on building architectures restricted on the condition of local communications between the
qubits either in 1D-NTC (1-Dimension, linear Nearest-neighbour, Two qubit gates, Concur-
rent execution) such as those of Fowler-Devitt-Hollenberg (FDH) [130] and Kutin’s [131],
or in 2D-NTC such as those of Choi-VanMeter (CV) [132] and Pham-Svore (PS) [133].

The method to build a complete modular exponentiation circuit based on a particular ad-
dition circuit is not unique, and various studies concerning the trade-off between space
(number of required qubits) and time (depth of the circuit) have been reported as in [129].
Not all previous publications provide a complete modular exponentiation circuit, but as-
suming we can build one using the previously discussed hierarchy (adder)-(modular ad-
der)-(modular multiplier)-(modular exponentiator), we can make rough approximations
about the design complexity in each case and comparisons with our proposed exponen-
tiation design (see Section 4.6 for the comparisons).

Notable exceptions of the above top-down trend that builds a complete modular expo-
nentiation circuit from the quantum equivalent of classical binary adder are circuits that
use the Draper’s QFT adder [23] like Beauregard’s circuit [24], Fowler-Devitt-Hollenberg
circuit (FDH) [130], and Kutin’s first circuit of [131]. These three circuits implement the ad-
dition of two integers by converting one of them in the Fourier domain using QFT and then
converting the sum back to the binary representation. Another method which surpasses
the common hierarchy of computation is Zalka’s FFT multiplier [128] that implements a
multiplier using the FFT method of computing a convolution sum.

4.1.4 QFT adders
We first describe the four QFT adders [23] that will be extensively used in our modular
exponentiation design. Since in every iteration of Shor’s algorithm the randomly picked
number a in Eq. (3.15) remains constant, we need an adder receiving a quantum inte-
ger (that is a potential superposition of integer x as required by the algorithm) as its first
operand and a constant classical integer as its second. Three variations of this adder
are required for the multiplier/accumulation unit: the constant QFT adder (ΦADD), the
controlled constant QFT adder (CΦADD) and the doubly controlled constant QFT adder
(CCΦADD). A generic QFT adder for adding two quantum integers will be also used sub-
sequently in the quantum divider circuit. These four QFT adders will be denoted in all
figures with ΦADD as they can be easily differentiated by the quantum wires connected
as inputs and outputs on their symbols. Figure 4.6 shows the simple (uncontrolled) con-
stant QFT adder ΦADD. It adds the n-bit constant integer a to an n-qubit quantum integer
|b⟩ = |bn−1⟩ · · · |b1⟩|b0⟩ = |bn−1⟩ ⊗ · · · ⊗ |b1⟩|b0⟩. Integer b must be already transformed in

A.Pavlidis 94

Design and Synthesis of Efficient Circuits for Quantum Computers

|φn−1(b)⟩ An−1 |φn−1(b+ a)⟩

|φn−2(b)⟩ An−2 |φn−2(b+ a)⟩

...
...

...

|φ0(b)⟩ A0 |φ0(b+ a)⟩

Figure 4.6: ΦADD adder circuit of depth 1. This circuit adds a constant integer a to the quantum
integer b, when b is already in the Fourier domain. The value of integer a is hardwired in the angles
of the phase shift gates Aj, j = 0 . . . n− 1 as defined in Eq. (4.10)

.

the Fourier domain by a QFT block before entering the ΦADD block through the relation:

|b⟩ QFT−→ |φ(b)⟩ = |φn−1(b)⟩|φn−2(b)⟩ . . . |φ0(b)⟩ =
1√
2n

2n−1∑
k=0

ei
2π
2n bk|k⟩ (4.8)

The individual jth qubit |φj(b)⟩ of the quantum Fourier transformed integer is given (see
also Eq. (3.5))by the relation:

|φj(b)⟩ =
1√
2
(|0⟩+ ei

2π
2j
b|1⟩) (4.9)

The single qubit gates shown in Figure 4.6 are rotation quantum gates described by the
equation (with Rk is denoted the phase shift gate Rz(2π/2k)):

Aj =
j+1∏
k=1

Raj+1−k
k , Rk =

[
1 0
0 ei

2π
2k

]
(4.10)

Therefore, it can be shown that the output of the ΦADD circuit is |φ(b + a)⟩, the quantum
Fourier transformed sum b+ a. The sum can be recovered in the computational basis by
applying an inverse QFT afterwards. Excluding the forward and inverse QFT, the circuit

|c⟩ • • • |c⟩

|φn−1(b)⟩ An−1 |φn−1(b+ ca)⟩

|φn−2(b)⟩ An−2 |φn−2(b+ ca)⟩

...

|φ0(b)⟩ A0 |φ0(b+ ca)⟩

Figure 4.7: CΦADD controlled adder circuit of depth n. This circuit adds the constant a to the quan-
tum integer b when the control qubit |c⟩ is |1⟩. Again, the constant value a is hardwired in the con-
trolled rotation gates as defined in Eq. (4.10).

95 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

|c1⟩ • • • |c1⟩

|c2⟩ • • • |c2⟩

|φn−1(b)⟩ An−1 |φn−1(b+ c1c2a)⟩

|φn−2(b)⟩ An−2 |φn−2(b+ c1c2a)⟩

...

|φ0(b)⟩ A0 |φ0(b+ c1c2a)⟩

Figure 4.8: The doubly-controlled adder circuit CCΦADD of depth n. This is an extension of the
CΦADD circuit where the addition is performed when both the control qubits |c1⟩ and |c2⟩ are |1⟩.

has a complexity of n qubits and a depth of 1 because the rotation gates can all operate
in parallel.

An extension of the constant adder ΦADD circuit can be done if we use controlled rotation
gates with same rotation angles as those defined in Eq. (4.10). This circuit is depicted in
Figure 4.7. It has a common controlling qubit |c⟩ for each rotation gate and performs the
following transform

|an−1⟩ • |an−1⟩

|an−2⟩ • • |an−2⟩

... . . . · · · ...

|a1⟩ • • |a1⟩

|a0⟩ • • • • |a0⟩

|φn−1(b)⟩ R1 R2 Rn−1 Rn |φn−1(b+ a)⟩

|φn−2(b)⟩ R1 R2 Rn−1 |φn−2(b+ a)⟩

... · · · ...

|φ1(b)⟩ R1 R2 |φ1(b+ a)⟩

|φ0(b)⟩ R1 |φ0(b+ a)⟩

Steps: 1 2 · · · n-1 n

Figure 4.9: Generic adder ΦADD circuit and its symbol. The top bus consists of the qubits
|a0⟩, . . . , |an−1⟩ that control the rotation gates.

A.Pavlidis 96

Design and Synthesis of Efficient Circuits for Quantum Computers

CΦADDa(|c⟩|φ(b)⟩) = |c⟩|φ(b+ ca)⟩ (4.11)

The CΦADD circuit performs the addition only when the controlling qubit |c⟩ is |1⟩ giving the
result |φ(b+a)⟩, otherwise the result is the input |φ(b)⟩. The CΦADD adder uses n+1 qubits
and its depth is n (excluding the required QFT and inverse QFT) because the controlled
rotation gates must operate sequentially as they have a common controlling qubit.

A further extension is shown in Figure 4.8, which is the doubly-controlled ΦADD circuit
(CCΦADD). The circuit is similar to the CΦADD, but it uses doubly controlled rotation
gates. The two controlling qubits of each rotation gate are |c1⟩ and |c2⟩. The CCΦADD
circuit applies the transform:

CCΦADDa(|c1⟩|c2⟩|φ(b)⟩) = |c1⟩|c2⟩|φ(b+ c1c2a)⟩ (4.12)

That is, it computes the addition only when both the controlling qubits |c1⟩ and |c2⟩ are |1⟩
and gives |φ(b + a)⟩, otherwise the result is the input |φ(b)⟩. The CCΦADD adder uses
n+ 2 qubits and like the CΦADD has a depth of n because the doubly-controlled rotation
gates must operate sequentially as they have common controlling qubits.

Finally, we give in Figure 4.9 the circuit diagram of the generic QFT adder (ΦADD) which
adds two quantum integers. The circuit diagram of Figure 4.9 is the parallel version of the
adder and it has depth n. The operation of the circuit is to add two quantum integers, each
one of n qubits, and is described by Eq. (4.13):

ΦADD(|a⟩|φ(b)⟩) = |a⟩|φ(b+ a)⟩ (4.13)

Φ
A

D
D

a

()bn 1−ϕ

()bn 2−ϕ

()b0ϕ

()abn +

−1ϕ

()abn +

−2ϕ

()ab +0ϕ

Φ
A

D
D

a

()bn 1−ϕ

()bn 2−ϕ

()b0ϕ

()cabn +

−1ϕ

()cabn +

−2ϕ

()cab +0ϕ

c c

Φ
A

D
D

a

()bn 1−ϕ

()bn 2−ϕ

()b0ϕ

()accbn 211 +

−

ϕ

()accbn 212 +

−

ϕ

()accb 210 +ϕ

2c 2c

1c 1c

Φ
A

D
D

a

()bn 1−ϕ

()bn 2−ϕ

()b0ϕ

()abn +

−1ϕ

()abn +

−2ϕ

()ab +0ϕ

0a

2−na

1−na

2−na

1−na

0a

(i) (ii)

(iii) (iv)

Φ
A

D
D

a

()bn 1−ϕ

()bn 2−ϕ

()b0ϕ

()abn +

−1ϕ

()abn +

−2ϕ

()ab +0ϕ

Φ
A

D
D

a

()bn 1−ϕ

()bn 2−ϕ

()b0ϕ

()abn +

−1ϕ

()abn +

−2ϕ

()ab +0ϕ

Φ
A

D
D

a

()bn 1−ϕ

()bn 2−ϕ

()b0ϕ

()cabn +

−1ϕ

()cabn +

−2ϕ

()cab +0ϕ

c c

Φ
A

D
D

a

()bn 1−ϕ

()bn 2−ϕ

()b0ϕ

()cabn +

−1ϕ

()cabn +

−2ϕ

()cab +0ϕ

c c

Φ
A

D
D

a

()bn 1−ϕ

()bn 2−ϕ

()b0ϕ

()accbn 211 +

−

ϕ

()accbn 212 +

−

ϕ

()accb 210 +ϕ

2c 2c

1c 1c

Φ
A

D
D

a

()bn 1−ϕ

()bn 2−ϕ

()b0ϕ

()accbn 211 +

−

ϕ

()accbn 212 +

−

ϕ

()accb 210 +ϕ

2c 2c

1c 1c

Φ
A

D
D

a

()bn 1−ϕ

()bn 2−ϕ

()b0ϕ

()abn +

−1ϕ

()abn +

−2ϕ

()ab +0ϕ

0a

2−na

1−na

2−na

1−na

0a

Φ
A

D
D

a

()bn 1−ϕ

()bn 2−ϕ

()b0ϕ

()abn +

−1ϕ

()abn +

−2ϕ

()ab +0ϕ

0a

2−na

1−na

2−na

1−na

0a

(i) (ii)

(iii) (iv)

Figure 4.10: Symbols for the four introduced QFT adders. (i) Adder with constant a, (ii) controlled
adder with constant a, (iii) doubly controlled adder with constant a and (iv) adder of two quantum
integers a and b.

97 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

The top input bus of the circuit consists of the qubits |a0⟩, . . . , |an−1⟩ that control the rota-
tion gates Rk. These qubits remain unaltered by the ΦADD unit. As shown in Figure 4.9
and Eq. (4.13) one of the integers must be already transformed in the QFT domain prior
the application of the circuit and then inverse QFT transformed to deliver the sum in the
computational basis. The depth of the generic adder is also n.

Figure 4.10 shows the symbols of the four QFT adders that will be used throughout this
Chapter for the construction of more complex arithmetic units. The thick bars on the right
of each symbol denote addition. Inverse version of the four adders (that is subtractors)
can be built by using opposite sign in the angles of each rotation gates used in each one
of the circuits. These inverse blocks will be denoted with a thick bar on the left side of each
symbol.

4.1.5 Fourier Multiplier/Accumulator - ΦMAC
In this section we describe a quantum circuit given in [24], which from this point onwards
we name ΦMAC; it utilizes the CCΦADD adders described in the previous subsection and
accumulates the product of a constant n-bit integer a with a quantum n-qubit integer, |x⟩ to
a quantum 2n-qubit integer |b⟩, giving the accumulation result |b + ax⟩. Furthermore, the
circuit has a controlling qubit |c⟩, that enables (when |c⟩ = |1⟩) or disables (when |c⟩ = |0⟩)
the accumulation operation (in the latter case the result is |b⟩). Hence, the circuit uses a
total of 3n+ 1 qubits and its operation can be described as:

ΦMACa(|c⟩|x⟩|b⟩) = (|c⟩|x⟩|b+ cax⟩) (4.14)

Taking into account the binary expansion of integer x = (xn−1, . . . , x1, x0), we can write the
product ax as:

ax = x0a+ x12a+ · · ·+ xn−12n−1a (4.15)

Therefore, the accumulation of the product ax with b can be achieved by the successive
addition of n constant integers a, 2a, . . . , 2n−1a, each one being added conditionally on the
qubit value xj, j = 0, 1, . . . , n − 1, respectively. Hence, the ΦMAC circuit can be built as

2−nx

1−nx

c

Φ
A

D
D

a

()bn 12 −

ϕ

()bn 22 −

ϕ

()b0ϕ

0x

1x

Φ
A

D
D

2a

Φ
A

D
D

2n-2a

Φ
A

D
D

2n-1a

2−nx

1−nx

c

()caxbn +

−12ϕ

()caxbn +

−22ϕ

()caxb +0ϕ

0x

1x

(i) (ii)

Φ
M

A
C

a

2−nx

1−nx

c

Φ
A

D
D

a

Φ
A

D
D

a

()bn 12 −

ϕ

()bn 22 −

ϕ

()b0ϕ

0x

1x

Φ
A

D
D

2a

Φ
A

D
D

2a

Φ
A

D
D

2n-2a

Φ
A

D
D

2n-2a

Φ
A

D
D

2n-1a

Φ
A

D
D

2n-1a

2−nx

1−nx

c

()caxbn +

−12ϕ

()caxbn +

−22ϕ

()caxb +0ϕ

0x

1x

(i) (ii)

Φ
M

A
C

a

Φ
M

A
C

a

Figure 4.11: Block level design of the multiplier/accumulator unit ΦMAC and its symbol. The basic
blocks depicted here are the CCΦADD units of Figure 4.8. A detailed diagram of the above circuit is
provided in Figure 4.12.

A.Pavlidis 98

Design and Synthesis of Efficient Circuits for Quantum Computers

C
C

Φ
A

D
D

C
a

C
C

Φ
A

D
D

C
2a

C
C

Φ
A

D
D

C
2n

−
1 a

|c
⟩

•
•

•
•

•
•

•
•

•
|c
⟩

|x
n⟩

•
•

•
|x

n⟩

. . .
··
·

. . .

|x
1⟩

•
•

•
|x
1⟩

|x
0⟩

•
•

•
|x
0⟩

|φ
2n

−
1(
b)
⟩

A(
0) 2n
−
1

A(
1) 2n
−
1

A(
n−
1)

2n
−
1

|φ
2n
−
1(
b
+
ca
x)
⟩

. . .

. . .

. . .
··
·

. . .

. . .

|φ
1(
b)
⟩

A(
0) 1

A(
1) 1

A(
n−
1)

1
|φ
1(
b
+
ca
x)
⟩

|φ
0(
b)
⟩

A(
0) 0

A(
1) 0

A(
n−
1)

0
|φ
1(
b
+
ca
x)
⟩

Figure 4.12: Detailed design of the initial multiplier/accumulator ΦMAC unit which has a depth of
2n2. The depth improvement of this circuit is described in Section 4.2 and the improved ΦMAC is
depicted in Figure 4.15.

99 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

shown in Figure 4.11, assuming that the lowest 2n qubits (those that participate in the ac-
cumulation) are already transformed in the QFT representation by a previous QFT block.
Actually, the circuit comprises a series of CCΦADD blocks described in the previous sub-
section, each one adding in succession the integers a, 2a, . . . , 2n−1a, and controlled by their
two controlling qubits. The first controlling qubit |c1⟩ is common to all the CCΦADD blocks
and becomes the controlling bit for the ΦMAC block. The second controlling qubit |c2⟩ of
the jth adder CCΦADD corresponds to input qubit |xj⟩, j = 0, . . . , n− 1 of the ΦMAC.

The detailed design of the ΦMAC block that consists of doubly controlled rotation gates,
is depicted in Figure 4.12. The jth CCΦADD block adds the constant integer c(j) = 2ja to
the 2n qubits that hold the accumulation result (in the QFT field). The bits cjl corresponding
to the binary expansion of c(j) = 2ja are given by:

c(j)l = al−j, l = 0, . . . , 2n− 1, j = 0, . . . , n− 1 (4.16)

assuming that a−1, a−2, . . . , a−n = 0. Taking into account Eq. (4.10) we can deduce that the
doubly controlled rotation gates A(j)

l in Figure 4.12 affect the lth qubit of the accumulation
register by using the following rotation matrix (if both the controlling qubits are in state |1⟩.

A(j)
l =

l+1∏
k=1

Rc(j)l+1−k
k =

l+1∏
k=1

Ral+1−k−j
k =

 1 0

0 e
i2π

l+1∑
k=1

al+1−k−j
2k

 , l = 0, . . . , 2n− 1, j = 0, . . . , n− 1

(4.17)

Thus, constant number a parametrizes each adder of the ΦMAC unit through Eq. (4.17),
by determining the rotation angle of its doubly controlled rotation gates.

4.2 Depth-Optimized Fourier Multiplier/Accumulator - ΦMAC

In this Section we improve the ΦMAC unit which is one of the basic bulding blocks of
the proposed modular exponentiation design. We modify the multiply/accumulate circuit
reducing its depth from O(n2) to O(n).

The circuit of Figure 4.12 is composed of n CCΦADD adders, each consisting of 2n doubly-
controlled rotation gates with rotation matrix A(j)

l as described by Eq. (4.17), requiring a
total of 2n2 such gates. All these gates have one common control qubit |c⟩, which is the
control qubit of the ΦMAC unit. Apparently, this fact restricts the execution of all these
gates to be sequential and thus leads to a O(n2) depth. However, if we decompose each
doubly controlled rotation gate into a network of single controlled gates [53] as depicted
in Figure 4.13, we can re-arrange the rotation gates of the whole circuit so as to have a
revised circuit with smaller depth.

Figure 4.14(i) depicts this decomposition applied on the j-th CCΦADDC adder of the
ΦMAC unit, while 4.14(ii) depicts the re-arrangement that leads to the smaller depth.
Matrices V(j)

l and V(j)†
l of the controlled rotation gates in Figure 4.14 correspond to the

decomposition of matrices A(j)
l , and they are given by the following equations:

V(j)
l =

√
A(j)
l =

 1 0

0 e
iπ

l+1∑
k=1

al+1−k−j
2k

 , l = 0, . . . , 2n− 1, j = 0, . . . , n− 1 (4.18)

A.Pavlidis 100

Design and Synthesis of Efficient Circuits for Quantum Computers

• • • •

• = • •

U V V† V

V =
√
U

Figure 4.13: Doubly controlled three-qubit gate decomposition to a network of two-qubit gates.

V(j)†
l =

√
A(j)
l

†
=

 1 0

0 e
−iπ

l+1∑
k=1

al+1−k−j
2k

 , l = 0, . . . , 2n− 1, j = 0, . . . , n− 1 (4.19)

A closer look of the subcircuit of Figure 4.14(i) that corresponds to the adder of constant
a2j (the subcircuit corresponding to qubits |c⟩, |xj⟩, |φ2n−1⟩, . . . , |φ1⟩, |φ0⟩) reveals that all the
“first” 2n V(j)

l gates controlled by qubit |xj⟩ can be moved to the left of the subcircuit of
Figure 4.14(ii), because they are all controlled by the same qubit |xj⟩ upon which a CNOT
gate controlled by qubit |c⟩ has acted an even number of times. This is equivalent to no
CNOT gate acting. Similarly, all the “odd numbered” 2n CNOT gates that correspond to
the decomposition of each A(j)

l gate can be replaced by exactly one CNOT gate affecting
qubit |xj⟩ and controlled by qubit |c⟩.

Next, all the V(j)†
l gates controlled by qubit |xj⟩ can be moved exactly after the CNOT gate

as shown in Figure 4.14(ii), because their control is done by the qubit |xj⟩, upon which a
CNOT gate controlled by qubit |c⟩ has acted an odd number of times. This is equivalent to
only one CNOT gate. Also, the “even numbered” group of 2n CNOT gates corresponding
to the decomposition of each A(j)

l gate are merged to a simple CNOT gate exactly after the
grouping of the controlled V(j)†

l gates. Finally, using the same arguments as before we can
merge the “last” 2n V(j)

l gates controlled by qubit |c⟩ at the right of the subcircuit of Figure
4.14(ii).

After these transformations, we can combine the n quantum adders CCΦADD in a highly
parallel circuit as depicted in Figure 12 for the case n = 3. Figure 12 refers to the case
of multiplying a three bit integer constant a with a three qubits quantum integer |x⟩ and
accumulating the resulting product into a six qubits quantum register. This circuit is built by
successively connecting n CCΦADD blocks and exploiting the fact that all the controllable
rotation gates commute. Furthermore, the last V(j)

l gates acting upon qubit |φl⟩ can be
merged (as long as they are all controlled by qubit |c⟩) to a single controlled gate Wl, with
rotation matrix:

Wl =
n−1∏
j=1

V(j)
l , l = 0, . . . , 2n− 1 (4.20)

101 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

|c
⟩

•
•
•

•
•
•

•
•
•

|c
⟩

|x
j⟩

•
•

•
•

•
•

|x
j⟩

|φ
2n

−
1(
b)
⟩

V(
j) 2n
−
1

V(
j)
†

2n
−
1

V(
j) 2n
−
1
|φ
2n
−
1(
b
+
ca
x)
⟩

. . .

. . .

. . .

|φ
1(
b)
⟩

V(
j) 1

V(
j)
†

1
V(

j) 1
|φ
1(
b
+
ca
x)
⟩

|φ
0(
b)
⟩

V(
j) 0

V(
j)
†

0
V(

j) 0
|φ
0(
b
+
ca
x)
⟩

(i)

|c
⟩

•
•

•
•

•
|c
⟩

|x
j⟩

•
•

•
•

•
•

|x
j⟩

|φ
2n

−
1(
b)
⟩

V(
j) 2n
−
1

V(
j)
†

2n
−
1

V(
j) 2n
−
1
|φ
2n
−
1(
b
+
ca
x)
⟩

. . .

. . .

. . .
··
·

. . .

. . .

|φ
1(
b)
⟩

V(
j) 1

V(
j)
†

1
V(

j) 1
|φ
1(
b
+
ca
x)
⟩

|φ
0(
b)
⟩

V(
j) 0

V(
j)
†

0
V(

j) 0
|φ
0(
b
+
ca
x)
⟩

(ii
)

Figure 4.14: (i) The jth ΦADD subcircuit of the ΦMAC, (ii) the rearrangement of the jth ΦADD subcircuit
after exploiting the decomposition of Figure 4.13.

A.Pavlidis 102

Design and Synthesis of Efficient Circuits for Quantum Computers

1

 2

 3

4

 5

6

 7

8

 9

 1

0

11

 1
2

 1
3

14

 1

5
 1

6
 1

7

18

19

 2
0

21

22

 2

3

24

S

te
ps

:

)
(

0
b

ϕ

)
(

1
b

ϕ

)
(

2
b

ϕ

)
(

3
b

ϕ

)
(

4
b

ϕ

)
(

5
b

ϕ

)
(

0
ca

x
b
+

ϕ

)
(

1
ca

x
b
+

ϕ

)
(

2
ca

x
b
+

ϕ

)
(

3
ca

x
b
+

ϕ

)
(

4
ca

x
b
+

ϕ

)
(

5
ca

x
b
+

ϕ

0x1x2xc

0x1x2xc

†)0(0
V

)0(0
V

)2(2
V

)1(2
V

)0(2
V

)1(1V
)0(1V

)2(3
V

)1(3
V

)0(3
V

)2(4
V

)1(4
V

)0(4
V

)2(5
V

)1(5
V

)0(5
V

)2(1V

)2(0
V

)1(0
V

†)0(1V

†)1(2
V

†)0(2
V

†)1(3
V

†)0(3
V

†)2(4
V

†)1(4
V

†)0(4
V

†)2(5
V

†)1(5
V

†)0(5
V

†)2(0
V

†)1(0
V

†)2(1V
†)1(1V

†)2(2
V

†)2(3
V

2
W

0
W

1
W

5
W

3
W

4
W

1

 2

 3

4

 5

6

 7

8

 9

 1

0

11

 1
2

 1
3

14

 1

5
 1

6
 1

7

18

19

 2
0

21

22

 2

3

24

S

te
ps

:

)
(

0
b

ϕ

)
(

1
b

ϕ

)
(

2
b

ϕ

)
(

3
b

ϕ

)
(

4
b

ϕ

)
(

5
b

ϕ

)
(

0
ca

x
b
+

ϕ

)
(

1
ca

x
b
+

ϕ

)
(

2
ca

x
b
+

ϕ

)
(

3
ca

x
b
+

ϕ

)
(

4
ca

x
b
+

ϕ

)
(

5
ca

x
b
+

ϕ

0x1x2xc

0x1x2xc

†)0(0
V

)0(0
V

)2(2
V

)1(2
V

)0(2
V

)1(1V
)0(1V

)2(3
V

)1(3
V

)0(3
V

)2(4
V

)1(4
V

)0(4
V

)2(5
V

)1(5
V

)0(5
V

)2(1V

)2(0
V

)1(0
V

†)0(1V

†)1(2
V

†)0(2
V

†)1(3
V

†)0(3
V

†)2(4
V

†)1(4
V

†)0(4
V

†)2(5
V

†)1(5
V

†)0(5
V

†)2(0
V

†)1(0
V

†)2(1V
†)1(1V

†)2(2
V

†)2(3
V

2
W

0
W

1
W

5
W

3
W

4
W

Figure 4.15: Fully decomposed and rearranged ΦMAC unit with linear depth of 8n for the case n = 3.
In this case it requires 8 · 3 = 24 timesteps as shown in the figure. The rotation gates angles are
determined by the constant a (see Eq. (4.18), (4.19) and (4.20)).

103 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

A circuit depth analysis for the ΦMAC unit of Figure 4.15 shows that if the two-qubit gates
acted upon and controlled by different qubits operate in parallel, then for the “first” V(j)

l
gates a total of 2n computation steps are required, for the “odd group’ CNOT gates and
the V(j)†

l , 3n more computations steps are required, for the “even group” CNOT gates n
more computation steps are required, and for the Wl gates, 2n more computation steps
are required. Consequently, the total computational steps required for the proposed im-
plementation of the multiplier/accumulator unit is linear in size and has a depth of 8n. The
total quantum cost is 4n(n+ 1) gates. The proposed circuit uses exclusively two-qubit ro-
tation gates, instead of three-qubit gates, making it more suitable for physical realizations
[52, 134, 135, 136, 137]. Fault tolerance aspects of the circuit depth are not taken into
account. This point is separately addressed in Section 4.6 and section 5.1.

A ΦMAC unit with no control is easily obtained by discarding the control qubit of Figure
4.12 and using simply controlled rotation gates, instead of two-qubit controlled gates. In
this case, the described decomposition is not needed to achieve the depth reduction. A
re-ordering of the gates shown in 4.12, so as n gates are applied at each instance, gives
a depth of 2n. The quantum cost for the uncontrolled ΦMAC is 2n2 gates.

4.3 QFT Divider by constant - GMΦDIV
The proposed modular exponentiation design does not use a modular adder to construct
the multiplier/accumulator unit but it is rather based on simple adders. For this reason, we
are forced to implement the modular operation after the multiplication by incorporating a
divider module. Dividers are the most complex elementary arithmetic operation circuits in
terms of computation time, but for our Shor’s algorithm circuit design we can again take
advantage of the fact that only divisions by the integer to be factored, N, are required.
Integer N is constant throughout each quantum iteration of Shor’s algorithm and thus a
simpler division module suffices.

There are a few quantum dividers known, among them there are some [138, 139] which
are suitable for multiplicative inversion in the Galois field GF(2m) with depth of O(n3) and
O(nlog2n), respectively. Another divider suitable for integer division appears in [25], it is
based in QFT and offers depth of O(n3). This divider receives two quantum integers and
gives the quotient and the remainder. If one tries to convert it to a divider by constant then
its depth can be reduced to O(n2).

We searched the literature for constant division classical algorithms that could offer im-
proved time complexity over the general division algorithms. Various algorithms for classi-
cal division of an integer by constant have been appeared in the literature, such as those
in [122] and [140]. In this section we describe a quantum version of an algorithm proposed
by Granlund and Montgomery in [122]. This algorithm divides a 2n bits integer by an n bits
constant integer and generates an n bits quotient and an n bits remainder, subject to the
constraint that the quotient is less than 2n. The algorithm can be easily modified to an un-
constrained algorithm that divides an n bits integer by an n bits constant integer by simply
resetting the upper n bits of the dividend. The algorithm in [122] utilizes multiplications,
additions, logical operations such as shifting and bit selections. It has a constant time
complexity. Table 4.1 shows the algorithm in pseudocode format as presented in [122].

This division algorithm takes as input the unsigned integer z (dividend) and divides it by
the constant unsigned integer d (divisor) giving as results the quotient q and the remainder
r. The three computation steps of the initialization (lines 1-3 of Table 4.1) are to be done
once, as they depend only on the constant divisor d. These initialization steps are “hard-
wired” in the quantum version of the algorithm and reflect a particular divisor which is the

A.Pavlidis 104

Design and Synthesis of Efficient Circuits for Quantum Computers

Table 4.1: Granlund-Montgomery division-by-constant algorithm [122]. Comments, after //, in some
of the lines show equivalent arithmetic operations.

/* Declaration of input and output variables */
udword z; // Dividend (input)
uword q; // Quotient (output)
udword r; // Remainder (output)
const uword d; // Divisor (constant)
/* Initialization (given uword d, where 0 < d < 2n) */

1: uword l = 1+ ⌊(log2 d⌋; // 2l−1 ≤ d < 2l
2: uword m′ = ⌊(2n(2l − d)− 1)/d⌋; // m′ = ⌊(2n+1 − 1)/d⌋ − 2n
3: uword dnorm = SLL(d, n− l); // Normalized divisor d · 2n−l

/* Start of main procedure */
4: uword n2 = SLL(HIGH(z), n− l)+SRL(LOW(z), l);
5: uword n10 = SLL(LOW(z), n− l);
6: sword n1 = −XSIGN(n10);
7: uword nadj = n10+AND(−n1, dnorm − 2n); // nadj = n10 + n1 · (dnorm − 2n)
8: uword q1 = n2+HIGH(m′ · (n2 + n1) + nadj);
9: sdword dr = z− 2n · d+ (2n − 1− q1) · d; // dr = z− q1 · d− d,−d ≤ dr < d

10: q =HIGH(dr)− (2n − 1− q1) + 2n ; // Add 1 to quotient if dr ≥ 0
11: r =LOW(dr)+ AND (d− 2n, HIGH (dr)) ; // Add d to remainder if dr < 0

number to be factored. The computation steps of the main division procedure (lines 4-11)
are executed whenever a new dividend must be divided by the constant divisor, that is
at each iteration of the quantum part of Shor’s algorithm for each new random number a.
An explanation of the meaning of the variables and data types of the algorithm along with
the various logical operations follows in Table 4.2. Also, the required number of ancillae
is shown for each operation, so that it can be done reversibly.

The three shift operations (SLL, SRA, SRA) can be easily implemented reversibly (without
discarding any bit) with the help of an ancilla register initialized with value 0. As shown in
lines 4 and 5 of the algorithm, the result of the shifting must be added to a value 0 or added

Table 4.2: Explanation of the various logical operations and data types used in the classical version
of the division by constant algorithm.

Operation Meaning Input Output Ancilla
Data Type (# of bits) (# of bits) (# of bits)
SLL (x, i) Logical left shift of x by i bits n n n
SRA (x, i) Arithmetic right shift of x by i bits n n n
SRL (x, i) Logical right shift of x by i bits n n n
XSIGN (x) -1 if x < 0, 0 if x ≥ 0 n 1 1
AND (x, y) Bitwise logical AND of x and y n n 0
HIGH (x) Upper half of integer x 2n n 0 or n
LOW (x) Lower half of integer x 2n n 0
uword n bits unsigned integer
sword n bits signed integer
udword 2n bits unsigned integer
sdword 2n bits signed integer

105 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

one after the other to a value 0, thus we can just select the desired bits to drive the control
input of the generic ΦADD unit of Figure 4.9, while the QFT transformed input of the same
ΦADD unit is the ancilla register. The original input to be shifted will remain intact in the
initial register. Of course the ancilla register has to be set back to the zero value somehow
at a later time when the shifted value has been used at a following computation step.

The XSIGN operation is simply a copying of the most significant bit (the sign bit) of a register
holding a signed integer, to an ancilla qubit. Similarly, this ancilla has to be reset later.

The AND operations are implemented as the arithmetic operations shown in the comments
of lines 7 and 11 of the algorithm of Table 4.1, that is additions on condition of the value
of n1 and dr, respectively.

The LOW operations at lines 4 and 5 of the algorithm are just the selection of the relevant
bits to be “shifted” and then added by the QFT adders as described above. The third LOW
in line 11 of algorithm is done implicitly as an addition shown in the comment of line 11.

The HIGH operation at line 4 is implemented with the help of an ancilla register, initially in
value 0. The upper half bits are copied via CNOT gates to the ancilla register and later
this ancilla must be reset to the zero value. The HIGH operation at line 11 is accomplished
similarly to the LOW as the addition shown in the comment.

A quantum division by constant circuit implementing the algorithm of [122] is depicted in
the two diagrams of Figures 4.16 and 4.17 (subsequently referred as Figures 4.16-4.17).
A quantum circuit for this algorithm needs a few ancilla qubits because of the intermediate
variables used in its classical counterpart, like m′, dnorm, n2, n10, n1, nadj, q1, dr and these
ancilla qubits must be reset again (assuming initial zero state) at the end of the computa-
tion, since we want to reuse them for subsequent computations. Figures 4.16-4.17 show
a quantum circuit that implements the algorithm of Table 4.1 for the case n = 4 and for a
constant divisor d = 5. The extension for other sizes of n and different constant divisors d
is straightforward; we refer to such division circuits as GMΦDIV.

4.3.1 Building blocks and registers of the quantum divider.
A generic GMΦDIV circuit will have a total of 7n+ 1 qubits, 5n+ 1 of which are the ancilla
qubits. The GMΦDIV unit uses the following blocks and their inverses (inverses are noted
with the same symbol with the thick bar on its left side instead of its right side):

• QFT for computing the quantum Fourier transform.

• Three types of adders ΦADD, that is adder with quantum integer, adder with con-
stant and controlled adder with constant. Their inverses are simply the reverse circuit
(signal flow from output to input) with the angles of rotation gates having the opposite
sign.

• Multiplier/accumulator ΦMAC with no control and its inverse which is simply the re-
verse circuit with opposite sign angles in its rotation gates.

• CNOT, X (NOT) gates and SWAP gates (implied by the rerouting of the registers
around the third ΦMAC unit).

The input qubits of the GMΦDIV circuit are grouped in a 2n qubits register (Reg0:Reg1),
five n qubits registers (Reg2,. . .,Reg6), most of which are ancillae, and a single ancilla
qubit (Aqbit) as shown in Figures 4.16-4.17. We give below a description of the purpose
of each register:

A.Pavlidis 106

Design and Synthesis of Efficient Circuits for Quantum Computers

• Reg0:Reg1: We distinguish two cases:

1. In the generic divider case, where we divide an n qubits integer by an n bits
constant, this register initially contains the dividend z in the qubits of its lower
half, while the upper half is initially set to zero. This way we conform to the
constraint that the quotient must be less than 2n. At the end of the computation,
this register will contain the remainder r in its lower half and zero in its upper
half. The upper half acts essentially as an ancilla register.

2. In the special case where we divide a 2n qubits integer by an n bits constant,
under the restriction that the quotient is known to be less than 2n, both Reg0
and Reg1 will contain the upper and lower part of dividend, respectively. Since
both cases of division differ only in the permitted type of initialization in registers
Reg0 and Reg1, otherwise they have the same circuit network, we distinguish
these cases by different symbols as shown later.

• Reg2: This register contains the quotient q at the end of the computation. It is initial-
ized in the zero state.

• Reg3: Ancilla register holding the intermediate variable q1. Initialized and end up in
zero state.

• Reg4: Ancilla register used to successively hold the values n2, n2 + n1, n2, 0, n1, 0.
Initialized and end up in zero state.

• Reg5: Ancilla register used to hold the value HIGH(m′(n2 + n1) + nadj). Initialized and
end up in zero state.

• Reg6: Ancilla register used to successively hold the values n10, nadj, LOW(m′(n2+n1)+
nadj).

• Aqbit: Ancilla qubit used to hold the sign n1. Initialized and end up in zero state.

Next a brief description of the whole circuit is given. Part of the circuit is dedicated to for-
ward computations, while another part is dedicated to “restoring” the ancilla qubits back
to the zero state, so as the whole circuit is reversible without generating any garbage.
The latter part stands out as the gray shaded area. We begin describing the forward com-
putations. For simplicity we refer to the values of the registers as integers regardless of
being integers in the computational basis or being their respective values in the quantum
Fourier transform domain, in other words we ignore in the description the various QFT
blocks present in the register buses. In essence QFT and inverse QFT blocks are needed
at the buses before and after, respectively, each arithmetic block that process integers
in the Fourier domain. These are: one of the bus of each adder (ΦADD, CΦADDC) and
the accumulator bus of each ΦMAC block. Whenever two adders are connected one after
the other in order to successively add different values to a quantum integer, there is no
need to transform from the QFT domain back to the computational basis and then again
perform the forward transform. The schematic diagram is adequate to distinguish when a
bus has an integer in the computational basis or in the Fourier domain.

4.3.2 Forward computations of the quantum divider.
Initialization steps (Lines 1, 2, 3, of the Algorithm)

As noted before, the circuit of Figures 4.16-4.17 refers to the case of d = 5. The initializa-
tion steps in lines 1, 2 and 3 of the algorithm of Table 4.1 result in the following values of

107 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

l = 3, dnorm = 10 (and dnorm − 2n = −6) and m′ = 9. The initialization is computed “offline”
and these values are “hardwired” in the circuit, i.e. m′ = 9 is hardwired as the constant
parameter of the first ΦMAC unit, dc = dnorm−2n = −6 is hardwired as the constant param-
eter in some of the CΦADD units and l = 3 is hardwired in the logical shift section. The
logical shift sections are indicated by dashed arrows pointing from the logical operation to
the adders performing the shift.

Computation of n2, n10, n1. (Lines 4, 5, 6 of Algorithm)

The first operation in the diagram is to compute the value of SLL(HIGH(z), n− l) = (z6z5z40)2
and then added to Reg4. Indeed, we select these three qubits of from Reg0 along with
a zero qubit from ancilla Reg5 and add them to Reg4 through the use of a ΦADD unit.
(This operation is to be done only in the special case -2- of the divider mentioned above
where both halves of the dividend may contain non-zero values. In the general case -
1- where the upper half contains zero values this operation becomes gratuitous). The
next adder affecting Reg4 is the one that selects three zero qubits from Reg5 as most
significant qubits and the qubit z3 from Reg4 to add them, that is to add SRL(LOW(z),l)=
SRL(LOW(z), 3) = (000z3). This way we have computed in Reg4 the quantity n2. In the same
manner we compute in Reg6 the value of n10. Having computed n10, it is straightforward to
compute the sign n1 in the Aqbit by using a CNOT gate controlled by the most significant
qubit of Reg6 and targeting the Aqbit.

Computation of nadj, q1 (Lines 7,8 of Algorithm)

Now, we add the constant dc (that is dnorm − 2n) to Reg6 (which already has the value n10)
conditioned on the value of n1, thus forming the quantity nadj. Also, we add n1 to Reg4,
forming the value n2 + n1. Now the first ΦMAC(m′) unit has at its accumulator input (high
qubits at Reg5, low qubits at Reg6) the value nadj and has at its multiplicand input (Reg4)
the value n2 + n1. Thus, the ΦMAC outputs have Reg4=n2 + n1 and (Reg5:Reg6)=m′(n2 +
n1) + nadj. By copying with CNOT gates the content of Reg5 to Reg2 we have at Reg2 the
value HIGH(m′(n2 + n1) + nadj). Then we can add to Reg2 the value of Reg4, which is still
n2 + n1 and then we subtract n1 leaving as end result the desired q1 = n2 + HIGH(m′(n2 +
n1) + nadj).

Computation of dr (Line 9 of Algorithm)

The second ΦMAC(-d) unit has at the accumulator input (Reg0:Reg1) the dividend z and
at the multiplicand input (Reg2) the value q1, forcing the output (Reg0:Reg1) to be z−d ·q1
and after subtracting the constant d becomes dr = z− d · q1 − d.

Computation of the quotient q (Line 10 of Algorithm)

Now that we have computed the dr value we are ready to proceed to the last steps of
the algorithm of Table 4.1 doing a sign check to the quantity dr as these steps suggest
and this is equivalent to checking the most significant qubit of Reg0:Reg1. For this reason
we add the integer 1 to the Reg2 conditionally on the inverted most significant qubit of
Reg0:Reg1. This way we have formed at the Reg2 the quotient q, because if dr ≥ 0 then
its inverted most significant qubit will be 1 thus adding the value 1 to q1, otherwise it adds
nothing.

Computation of the remainder r (Line 11 of Algorithm)

Meanwhile q1 has been copied to Reg3 by CNOT gates and becomes the multiplicand
input of the third ΦMAC(d) unit. Its accumulator register Reg0:Reg1 has become again
z − d · q1 after the addition of d, and the end result for the accumulator register after the
third ΦMAC(d) is to restore its initial value of the dividend z. The last ΦMAC(−d) unit

A.Pavlidis 108

Design and Synthesis of Efficient Circuits for Quantum Computers

7
z

6
z

5
z

4
z

3
z

2
z

1
z

0
z0000000000000

Φ ADD

Φ ADD

QFT

)
),

(
(

l
n

z
H

IG
H

SL
L

−

)
),

(
(

l
n

z
LO

W
SL

L
−

0000

)
),

(
(

l
z

L
O

W
SR

L

X
X

0 0 00 0000000

Reg0Reg1Reg2Reg3Reg4Reg5Reg6Aqbit

Continued to next Figure

0000

3
z

2
z

1
z

0
z GMΦDIV1

GMΦDIV2

n
2

n
2 +

n
1

n
10

n
1

n
a

dj

q
1

zq

n
adj +

m
’(n

2 +
n

1)

QFT

Φ ADD

Φ ADD1

QFT

QFT

Φ ADD

d
c

QFT

QFT QFT

Φ MAC

m
’

QFT

QFT

QFT

Φ ADD

ΦADD1

QFT

ΦMACd

dr

ΦADDd

QFT

Φ ADD

d

QFT

Φ ADD

1

QFT
q

QFT

Φ MAC

d

QFT

7
z

6
z

5
z

4
z

3
z

2
z

1
z

0
z0000000000000

Φ ADD

Φ ADD

QFT QFT

)
),

(
(

l
n

z
H

IG
H

SL
L

−

)
),

(
(

l
n

z
LO

W
SL

L
−

0000

)
),

(
(

l
z

L
O

W
SR

L

X
X

0 0 00 0000000

Reg0Reg1Reg2Reg3Reg4Reg5Reg6Aqbit

Continued to next Figure

0000

3
z

2
z

1
z

0
z GMΦDIV1

GMΦDIV2

n
2

n
2 +

n
1

n
10

n
1

n
a

dj

q
1

zq

n
adj +

m
’(n

2 +
n

1)

QFTQFT

Φ ADD

Φ ADD1

QFTQFT

QFTQFT

Φ ADD

d
c

QFT QFT

QFTQFT QFT QFT

Φ MAC

m
’

Φ MAC

m
’

QFT QFT

QFTQFT

QFT QFT

Φ ADD

ΦADD1

QFT

ΦMACd

dr

ΦADDd

QFT

Φ ADD

d

QFT

Φ ADD

1

QFT
q

QFT

Φ MAC

d

QFT

Figure 4.16: The GMΦΦDIV circuit (first part) for 8 or 4 qubits dividend and constant divisor d = 5.
Intermediate variables are shown at places where they have been computed (in computational basis
or QFT transformed).

109 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

3
q

2
q

1
q

0
q

3
r

2
r

1 r0
r0000 0000000000000

)
),

(
(

l
n

z
H

IG
H

SL
L

−

)
),

(
(

l
n

z
L

O
W

SL
L

−)
),

(
(

l
z

L
O

W
SR

L

0000

Continued from previous Figure

QFT

QFT

ΦADD

1

Φ ADD

QFT

ΦMACm
’

QFT QFT
ΦADD1

ΦADD

ΦADD

QFT

ΦADDd
c

QFT

ΦADD

Φ ADD

QFT

QFT

ΦADD

QFT QFT

ΦMACd

QFT

zq

H
I
G
H

(n
adj +

m
’(n

2 +
n

1))
0

0n
adj

0
n

10

0

0

0

3
q

2
q

1
q

0
q

3
r

2
r

1 r0
r0000 0000000000000

)
),

(
(

l
n

z
H

IG
H

SL
L

−

)
),

(
(

l
n

z
L

O
W

SL
L

−)
),

(
(

l
z

L
O

W
SR

L

0000

Continued from previous Figure

QFTQFT

QFT QFT

ΦADD

1

Φ ADD

QFTQFT

ΦMACm
’

QFT QFT QFTQFT
ΦADD1

ΦADD

ΦADD

QFTQFT

ΦADDd
c

QFT QFT

ΦADD

Φ ADD

QFT QFT

QFTQFT

ΦADD

QFT QFT QFT

ΦMACd

QFT

zq

H
I
G
H

(n
adj +

m
’(n

2 +
n

1))
0

0n
adj

0
n

10

0

0

0

Figure 4.17: The GMΦDIV circuit (second part) for 8 or 4 qubits dividend and constant divisor d = 5.
Shaded areas indicate computations for resetting the ancilla qubits.

A.Pavlidis 110

Design and Synthesis of Efficient Circuits for Quantum Computers

acts on this register again, subtracting the product q · d, giving thus the remainder r at its
lower half (Reg1) while its upper half (Reg0) becomes zero, thus completing the forward
computations. Note that in both the generic case (dividend of n qubits) and in the special
case (dividend of 2n qubits subject to the constraint that the quotient is known to be less
than 2n) the upper half (Reg0) becomes zero.

4.3.3 Ancilla Resetting.
It remains to show the computations that reset the ancilla qubits. The ancilla qubits to be
reset are those in registers Reg3, Reg4, Reg5, Reg6 and the single qubit Aqbit.

• Reg3: The first reset occurs at Reg3 which contains q1. This is accomplished if we
subtract from it the quantity n2 + n1 (stored in Reg4) and adding n1 (stored in Aqbit)
leaving a value of HIGH(m′(n2 + n1) + nadj). But this value is already stored in Reg5,
consequently a “qubitwise” CNOT operation controlled by Reg5 and targeted to Reg3
effectively resets Reg3.

• Reg5: Then we reset Reg5 through the usage of an ΦMAC(−m′), that is we add
to the accumulator registers (Reg5:Reg6) containing m′(n2 + n1) + nadj the quantity
−m′(n2 + n1) leaving the result nadj. But nadj is an uword and consequently the upper
register (Reg5) becomes zero. The lower accumulator register (Reg6) contains nadj.

• Reg4: Next we reset Reg4 by subtracting from it the quantities n2 and n1. Quantity
n10 is formed again easily from Reg0:Reg1 which now contains again the dividend
z, by using the same method of shifting and additions we used in the forward com-
putations. The value of n10 is needed to reset the Aqbit as described below. Then by
substracting n10 we end up in the zero value in Reg4.

• Reg6: This register, which contains nadj, is reset by subtracting the constant dc con-
ditioned on n1 and subtracting n10.

• Aqbit: To reset qubit Aqbit we use the value n10 formed in Reg4 at the step just before
we reset it for the second time and use its most significant qubit as the control of the
CNOT gate targeting the Aqbit.

Note that the proposed QFT divider does not include any controlling qubit, but this is not
required for the construction of the modular multiplier as it will be shown. A symbol for the
GMΦDIV for the generic case, that is dividend and divisor of n bits wide, is shown in Figure
4.18 with the name GMΦDIV1. This symbol shows only the qubits used for input (dividend
with the upper qubits having initial value of zero) and outputs (quotient and remainder),

G
M
Φ

D
IV

1

1−nz

0z

0

0

1−nr

0r

1−nq

0qd

G
M
Φ

D
IV

1

1−nz

0z

0

0

1−nr

0r

1−nq

0qd

Figure 4.18: The symbol of the GMΦDIV1. It receives an n qubits dividend to divide it by the constant
divisor d of n bits. The underlying circuit uses 7n+ 1 qubits, including 5n+ 1 ancilla qubits which are
not shown.

111 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

leaving hidden the other ancilla qubits. In section 4.7 a modification of the circuit is given
that converts it to a controlled divider.

Regarding the GMΦDIV circuit, a thorough depth analysis leads to a depth of 74n− 6 (the
initial depth of 244n− 8 reported in [141] was an overestimation mainly due to miscalcula-
tions in QFT depths and ignoring the fact that uncontrolled ΦMAC are used). In this study
we have take in account the following facts. Each QFT unit has a depth of 2n− 1 (through
parallelization of its rotation gates), the constant adder ΦADD has a depth of 1, the con-
trolled CΦADD and the adder ΦADD have a depth of n and the uncontrolled ΦMAC as
analyzed in the previous section has a depth of 2n . In this depth analysis we have also
taken into account that many of the blocks can be executed in parallel. Total number of
gates used in the GMΦDIV is 44n2 + 76. Fault tolerance and implementation aspects are
discussed in a separate paragraph in section 4.6 and in section 5.1.

4.4 Generic Modular Multipler/Accumulator and Modular Multiplier

In this Section we employ the blocks described in the previous subsections to build two
quantum circuits; the generic QFT based controlled modular multipler/accumulator and
then we proceed to a generic quantum controlled modular multipler which can be used as
the basic building block for the modular exponentiation circuit as shown in Figure 4.5.

4.4.1 Generic QFT Modular Multiplier/Accumulator - ΦMAC_MOD1
Controlled modular multipliers/accumulators can be built using the ΦMAC and GMΦDIV1
units as their basic blocks. Such blocks can realize Eq. (4.21), and then can be used
as described in subsection 4.4.2 to realize a controlled modular multiplier as that of Eq.
(3.26). When the multiplicand input of the ΦMAC unit is n qubits wide its accumulator is 2n
qubits wide. These 2n qubits must be fed as input to the dividend input of the GMΦDIV1 to
compute the modulo N result. Therefore, the size of the GMΦDIV1 unit must such that it
can receive a dividend of 2n qubits, which means that the dividend input must be 4n qubits
wide and its upper half 2n qubits should be zero. Therefore the required ancillae number
for the GMΦDIV1 grows from 5n+ 1 to 10n + 1. Note that a simple interconnection of the
two units,ΦMAC and GMFDIV1, in succession is not adequate to give a result that follows
Eq. (4.21) because the GMΦDIV1 unit gives at its outputs both the remainder which is the
useful part of the computation and the quotient which contains garbage qubits that must
be coherently reset to keep the garbage-less reversibility of the circuit and then reused at
a later time.

ΦMAC_MOD1a,N(|c⟩|y⟩|0⟩) = |c⟩|y⟩|cay mod N⟩ (4.21)

The proposed architecture of the generic controlled modular multiplier/accumulator by
constant, named ΦMAC_MOD1, is shown in Figure 4.19. This circuit diagram shows 6n+1
qubits, but there are 10n+1more “hidden” qubits in the GMΦDIV1 symbol (the ancillae of
the first divider can be reused in the second one, as the second one cannot be operated
in parallel to the first) which we don’t show for the clarity of Figure 4.19. The input lines
with a slash symbol in the figure correspond to “buses” of n qubits. It is straightforward
for the reader to understand the equivalence between the symbols with individual qubits
presented in previous sections with the ones in Figure 4.19 having buses as inputs and
outputs. Apart from the two basic blocks and the QFT units there is a group of CNOT
gates in this diagram. These units operate on a “qubitwise” basis, i.e. the first qubit of the
controlling bus controls the CNOT of the first qubit of the target bus, etc. An analysis of
this circuit follows for the two cases of the controlling qubit |c⟩ = |1⟩ and |c⟩ = |0⟩. As in the
previous section, we will not care of the various QFT blocks present in the register buses

A.Pavlidis 112

Design and Synthesis of Efficient Circuits for Quantum Computers

Q
F

T

Φ

M
A

C

a

Q
F

T

Q
F

T

Φ

M
A

C

a

Q
F

T

c

y

0

0

0

0

0

c

y

0

0

0

0

Ncay mod

G
M

Φ

D
IV

1

N

G
M

Φ

D
IV

1

N

Φ
M

A
C

_M
O

D
1

a, N

c

y

0

c

y

Ncay mod

n

n

n

n

n

n

n

n

(i) (ii)

Q
F

T
Q

F
T

Φ

M
A

C

a

Φ

M
A

C

a

Q
F

T
Q

F
T

Q
F

T
Q

F
T

Φ

M
A

C

a

Q
F

T
Q

F
T

c

y

0

0

0

0

0

c

y

0

0

0

0

Ncay mod

G
M

Φ

D
IV

1

N

G
M

Φ

D
IV

1

N

G
M

Φ

D
IV

1

N

G
M

Φ

D
IV

1

N

Φ
M

A
C

_M
O

D
1

a, N

c

y

0

c

y

Ncay mod

nn

nn

nn

nn

nn

nn

nn

nn

(i) (ii)

Figure 4.19: (i) The full diagram of the generic controlled modular multiplier/accumulator
ΦMAC_MOD1 and (ii) its symbol. A total of 6n + 1 qubits are shown, but there are 10n + 1 more
ancilla qubits not shown in the GMΦDIV1 symbol.

and we give the integers values as if they were not QFT transformed.

For the case of |c⟩ = |1⟩ both ΦMAC units are enabled. Initially all the n ancilla qubit buses
are in state |0⟩ while the value y, the number to be multiplied by the constant a, is fed
to the multiplicand input of the first ΦMAC(a) unit. After the operation of this ΦMAC(a)
unit the multiplicand qubits are still |y⟩ while the 2n qubits of its accumulator go to state
|0+ay⟩ = |(ay)⟩U|(ay)⟩L, where subscripts U and L denote upper and lower register qubits,
respectively. These 2n qubits feed the dividend input of the GMΦDIV1(N) giving as outputs
the remainder |(ay mod N)⟩U|(ay mod N)⟩L = |0⟩|(ay mod N)⟩L and the quotient |q⟩U|q⟩L,
where N is again the number to be factored. It is assured that the upper 2n− n = n qubits
of the remainder are zero because N is n bits wide. The remainder is copied with the aid
of the CNOT gates group to the bottom n qubits bus and then becomes the output of the
ΦMAC_MOD1 block. The original remainder bus is fed to an inverse GMΦDIV1(N) unit
whose other input is the quotient |⌊(ay)/N⌋⟩ computed by the first GMΦDIV1(N) unit. Such
an inverse divider can be easily designed by reversing the signal flow of the normal divider
and setting the angle of every rotation gate of the inverted GMΦDIV1 to the opposite of
the original angle. By feeding the quotient and the remainder in an inverse GMΦDIV1
we have available at its output the input that would give this remainder and quotient, that
is |ay⟩ at the top 2n qubits and |0⟩ at the bottom 2n qubits (an inverse divider effectively
becomes a multiplier). The second ΦMAC(−a) unit, which is the inverted ΦMAC(a), takes
as multiplicand input the state |y⟩ and as accumulator input the output of the previous
inverted GMΦDIV1(N), |ay⟩. Similarly, the outputs of this inverted ΦMAC(a) are the inputs
that would lead a normal ΦMAC unit to give as outputs the inputs being fed to the inverted,
that is |y⟩ at the top n qubits and |0⟩ at the lower 2n qubits. This way we achieved to clear
the useless, in our application, quotient. At the same time, we have the desired remainder
|(ay mod N)⟩ available along with the initial input |y⟩.

The case of setting the control qubit |c⟩ = |0⟩ is simpler than the previous one. Both the
ΦMAC units are disabled and they simply pass their inputs unmodified to their outputs.
Also, the dividend input of the first divisor is zero. Therefore, input |y⟩ traverses the circuit
through the ΦMAC units while the ancilla buses remain in the zero state.

4.4.2 Generic QFT Modular Multiplier - ΦMUL_MOD1

The last step in the construction of the modular multiplier required by Shor’s algorithm is
to reset the state |y⟩ at the output of the modular multiplier/accumulator so that we can
successively connect several modular multiplier units as shown in Figure 4.5. Figure 4.20

113 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

Φ

M
A

C
_M

O
D

1

c

y

0

c

0

Nyac modn

a, N

Φ

M
A

C
_M

O
D

1

a -1, N
n Φ

M
A

C
_M

O
D

1

c

y

0

c

0

Nyac modnn

a, N

Φ

M
A

C
_M

O
D

1

a -1, N
nn

Figure 4.20: Generic modular multiplier ΦMUL_MOD1. The circuit requires 16n+ 1 qubits, where 14n
of them are ancillae hidden in the blocks of the lower levels of hierarchy.

shows a method for clearing the undesired |y⟩ [24, 62, 61]. Two ΦMAC_MOD1 units are
used in this diagram, with a block of controlled SWAP gates (Fredkin gates). The second
ΦMAC_MOD1 unit is a reverse unit with multiplication parameter a−1, where the inverse
a−1 is defined with respect to the operation of multiplication modulo N, that is it must hold
a · a−1(modN) = 1. Such an inverse always exists, because the randomly picked number
a is selected based on the restriction that it must be co-prime with N.

The analysis of this circuit for the case of |c⟩ = |0⟩ is very simple as both the ΦMAC_MOD1
units and the CSWAP gates are disabled. Thus, input state |y⟩ remains unmodified and
passes to the output, while all the ancilla qubits remain in the zero state. In the case of |c⟩ =
|1⟩, the first ΦMAC_MOD1(a,N) unit gives as result the input |y⟩ and the remainder |r⟩ =
|ay mod N⟩. This remainder is then fed, through the CSWAP gates, to the multiplicand input
of the second ΦMAC_MOD1(a−1,N) unit, while the accumulator input of this second unit
is |y⟩. This way the multiplicand output of ΦMAC_MOD1(a−1,N) becomes the remainder
|r⟩ while the accumulator becomes |y− a−1(ay mod N) mod N⟩ = |y− y⟩ = |0⟩.

Combining the two case of |c⟩ = |0⟩ and |c⟩ = |1⟩ we have the transformation :

ΦMUL_MOD1a,N(|c⟩|y⟩|0⟩) = |c⟩|acy(modN)⟩|0⟩ (4.22)

which has exactly the same form as Eq. 3.26, if the ancilla qubits are not taken into account.
The final result is that we can combine many ΦMUL_MOD1 units of Figure 4.20 as shown
in Figure 4.5 to build a quantum modular exponentiation circuit.

4.5 Optimized Modular Multipler/Accumulator and Modular Multiplier
Exploitation of the specific application where the modular multiplier is to be used can be
advantageous in terms of both depth and space requirements. The following paragraphs
present optimized versions of the modular multiplier/accumulator and modular multiplier.

The second version of the modular multiplier / accumulator, which we denote as ΦMAC_-
MOD2, applies to Shor’s factorization algorithm. As shown in Figure 4.5, each modulo
N multiplier unit takes as input the output of its previous unit which is again a modulo N
multiplier block (or the integer 1 for the first unit) and thus this input is always less than N.
This input is to be multiplied by an integer which is again always less than N. Therefore,
the product of these two integers, being less than N2, has to be divided by N to calculate
the remainder. The quotient of this division is of course again less than N. Taking as
n = ⌈log2 N⌉ the number of qubits for the division circuit we can see that for this specific
case the quotient is less than 2n. In other words, the restriction imposed for the operation
of the Granlund-Montgomery division algorithm holds. For this reason we can use the

A.Pavlidis 114

Design and Synthesis of Efficient Circuits for Quantum Computers

G
M
Φ

D
IV

2

12 −nz

nz

1−nr

0r

1−nq

0q

1−nz

0z d

G
M
Φ

D
IV

2

12 −nz

nz

1−nr

0r

1−nq

0q

1−nz

0z d

Figure 4.21: Symbol of GMΦDIV2 that receives a dividend of 2n qubits, subject to the constraint that
the quotient is less than 2n. The underlying circuit uses 7n+ 1 qubits.

division circuit of Figures 4.16-4.17 with a size of only n bits, that is a dividend of 2n qubits
(the upper half is not necessary to be zero) and quotient and remainder sizes of n qubits,
instead of using the double sized generic divider of the previous section.

We introduce a new symbol for the same divider in Figure 4.21, merely reflecting the fact
that all of the 2n qubits are reserved for the dividend, in contrast to the symbol of Figure
4.18 where half of them where set to zero in order to comply with the restriction of the
quotient being less than 2n. All the other internal aspects of the GMΦDIV2 are the same
as of GMΦDIV1. This second version of the divider is to be used exclusively in a Shor’s
quantum algorithm architecture where the quotient is expected to be always less than 2n,
while the first version of the divider can be used whenever a general quantum divider by
constant is needed.

The proposed architecture of the second version of controlled modular multiplier / accumulator
by constant, named ΦMAC_MOD2, is shown in Figure 4.22. The circuit diagram shows a
total of 4n + 1 qubits but there are 5n + 1 more “hidden” qubits in the GMΦDIV2 symbols
which are not shown for the shake of clarity of Figure 4.22. Again, the input lines with a
slash symbol in the figure correspond to buses, each bus consisting of n qubits. Using
similar arguments as in the previous section we give a brief analysis of this circuit.

For the case of |c⟩ = |1⟩ both ΦMAC units are enabled. The accumulator register output
of the first ΦMAC(a) unit is in state |ay⟩U|ay⟩L, while its multiplicand register still holds the
multiplicand |y⟩. The product |ay⟩U|ay⟩L is then fed to the first GMΦDIV2(N) to produce
the remainder (upper bus of GMΦDIV2(N)) and the quotient (lower bus of GMΦDIV2(N)).
The remainder is copied to the bottom bus which is the output ΦMAC_MOD2 circuit. The
quotient and the original remainder buses are fed to an inverted GMΦDIV2(N) unit, giving
again |ay⟩U|ay⟩L at its output. The second (inverted) ΦMAC(a) unit has then at its multi-
plicand input the |y⟩ and at its accumulator input |ay⟩U|ay⟩L, setting its accumulator out-

Q
F

T

Φ

M
A

C

a

Q
F

T

Q
F

T

Φ

M
A

C

a

Q
F

T

c

y

0

0

0

c

y

0

0

Ncay mod

G
M

Φ

D
IV

2

N

G
M

Φ

D
IV

2

N Φ
M

A
C

_M
O

D
2

a, N

c

y

0

c

y

Ncay mod

n

n

n

n

n

n

(i) (ii)

Q
F

T
Q

F
T

Φ

M
A

C

a

Φ

M
A

C

a

Q
F

T
Q

F
T

Q
F

T
Q

F
T

Φ

M
A

C

a

Q
F

T
Q

F
T

c

y

0

0

0

c

y

0

0

Ncay mod

G
M

Φ

D
IV

2

N

G
M

Φ

D
IV

2

N

G
M

Φ

D
IV

2

N Φ
M

A
C

_M
O

D
2

a, N

c

y

0

c

y

Ncay mod

nn

nn

nn

nn

nn

nn

(i) (ii)

Figure 4.22: The optimized controlled modular multiplier/accumulator ΦMAC_MOD2 and its symbol.
A total of 4n+ 1 qubits are shown in this figure, but there are 5n+ 1 more ancilla qubits not shown in
the GMΦDIV1 symbol.

115 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

Φ

M
A

C
_M

O
D

2

c

y

0

c

0

Nyac modn

a, N

Φ

M
A

C
_M

O
D

2

a -1, N
n Φ

M
A

C
_M

O
D

2

c

y

0

c

0

Nyac modnn

a, N

Φ

M
A

C
_M

O
D

2

a -1, N
nn

Figure 4.23: Optimized modular multiplier ΦMUL_MOD2. The circuit requires the 4n+1 qubits shown
in the diagram, plus 5n+ 1 ancilla qubits hidden in the divider units.

put to state |0⟩. Now, as in the case of ΦMAC_MOD1, we have the desired remainder
|(ay mod N)⟩ available along with the initial input |y⟩. Similarly, the case of |c⟩ = |0⟩ leads
the top qubits bus to have the initial input |y⟩, while all the other buses are set to the zero
state.

A design of a modular multiplier based on the optimized multiplier/accumulator ΦMAC_-
MOD2 is shown in Figure 4.23. This design is very similar to the generic case of subsection
4.4.2 using the generic ΦMAC_MOD1 unit and for this reason we don’t analyze the circuit.

4.6 Complexity Analysis
In this section we analyze the depth (speed), width or space (the required number of
qubits) and the quantum cost (total number of single or two-qubit gates) of a quantum
modular exponentiation circuit, when implemented using either the ΦMUL_MOD1 unit, or
the optimized ΦMUL_MOD2 unit. We also compare the two proposed designs with other
designs proposed in the literature, in terms of depth and width. The derived complexities
are with respect to n = ⌈log2 N⌉, the bits size of the factorizable integer N.

We begin the depth analysis for the case of the ΦMUL_MOD1 controlled modular multiplier
as top level unit for the modular exponentiator. The ΦMUL_MOD1 block consists of the
two ΦMAC_MOD1 units and controlled SWAP gates (Fredkin), while each ΦMAC_MOD1
unit consists of the units QFT, ΦMAC, GMΦDIV1, whose depths are already analyzed,
and CNOT gates. Figure 4.19 indicates that none of these units can operate in parallel,
because each one gets its inputs from the previous one, so the depth of this modular
multiplier/accumulator is merely the sum of each unit’s depth. We note here that the depth
of the CNOT unit used in ΦMAC_MOD1 is 1 since the gates of this unit can operate in
parallel and the depth of the CSWAP unit used in ΦMUL_MOD1 is about 5n (a CSWAP
gate consists of two CNOT gates and a Toffoli gate). The size of the four QFT units used
is 2n qubits and the size of the two GMΦDIV1 units is for 2n bits dividend even if the
divisor N is n bits wide, therefore the depths of the QFT and GMΦDIV1 units used in the
ΦMUL_MOD1 unit are 2 · 2n− 1 = 4n− 1 and 74 · 2n− 6 = 148n− 6, respectively.

In Table 4.3 we summarize the depth of each unit used in the modular multiplier unit (we
have take into account that each modular multiplier unit uses two multiplier/accumulator
units), the number of units of each type that are used, the depth contribution of each
type of unit and finally we calculate the total depth for the controlled modular multiplier
ΦMUL_MOD1 which is 661n− 30. Since the complete modular exponentiator circuit con-
sists of 2n ΦMUL_MOD1 blocks successively connected in series, its depth is about
2n ·661n ≈ 1300n2. Discrepancies between Table 4.3 and the respective Table of [141] are
due to miscalculations in the GMΦDIV unit (both in depth and cost) and miscalculation of

A.Pavlidis 116

Design and Synthesis of Efficient Circuits for Quantum Computers

Table 4.3: Units used in the ΦMUL_MOD1 design, depth of each unit, number of gates in each unit,
number of units used for each type, gates contribution and depth contribution of each unit type to
the total quantum cost and depth of the modular multiplier.

Unit Depth/unit Cost/unit # of units Cost Depth
QFT(2n) 4n− 1 2n2 + 3n 8 16n2 + 24n 32n− 8
ΦMAC(n) 8n 4n2 + 4n 4 16n2 + 16n 32n
GMΦDIV1(2n) 148n− 6 176n2 + 152n 4 704n2 + 608n 592n− 24
CNOT(n) 1 n 2 2n 2
CSWAP(n) 5n 5n 1 5n 5n
Total 736n2 + 655n 661n− 30

the QFT cost which was overestimated.

Concerning the number of qubits required for the complete modular exponentiator circuit
(ΦEXP1), we see that in the case of the ΦMUL_MOD1 unit, it requires the same number
of qubits as the controlled modular multiplier, that is 6n + 1 qubits plus the hidden ancilla
bits of the GMΦDIV1 not shown in Figure 4.19. The ancilla qubits for a GMΦDIV1 unit of
size 2n is 10n+ 1 qubits, so the total qubits required for the circuit is 16n+ 2.

The quantum cost for the ΦMUL_MOD1 modular multiplier calculated from Table 4.3 is
about 750n2, and thus the cost of the first modular exponentiation circuit ΦEXP1 is about
1500n3.

A similar depth analysis for the second, optimized design of the complete modular ex-
ponentiator ΦEXP2, which utilizes the ΦMUL_MOD2 is presented in Table 4.4. When
the optimized modular multiplier is used, we get an improved depth for ΦEXP2 of about
2n · 365n ≈ 700n2, that is about half the depth when using the generic ΦMUL_MOD1 mul-
tiplier.

However, the most important gain in using the ΦMUL_MOD2 is that the required qubits
are only the 4n + 1 qubits shown in Figure 4.22 plus the 5n + 1 qubits hidden inside the
symbol of GMΦDIV2, that is a total of 9n + 2, a significant improvement over the 16n + 2
qubits if using the ΦMUL_MOD1 modular multiplier.

Similarly, the quantum cost for the ΦMUL_MOD2 modular multiplier is about 200n2, hence
the quantum cost for the modular exponentiator circuit ΦEXP2 is about 400n3.

We compare the two proposed designs to various quantum modular exponentiation cir-
cuit designs found in the literature. Table 4.5 shows the abbreviated names of the basic

Table 4.4: Units used in the ΦMUL_MOD2 design, depth of each unit, number of gates in each unit,
number of units used for each type, gates contribution and depth contribution of each type of unit
to the total quantum cost depth.

Unit Depth/unit Cost/unit # of units Cost Depth
QFT(2n) 4n− 1 2n2 + 3n 8 16n2 + 24n 32n− 8
ΦMAC(n) 8n 4n2 + 4n 4 16n2 + 16n 32n
GMΦDIV2(n) 74n− 6 44n2 + 76n 4 176n2 + 304n 296n− 24
CNOT(n) 1 n 2 2n 2
CSWAP(n) 5n 5n 1 5n 5n
Total 208n2 + 351n 365n− 30

117 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

building blocks for each exponentiation circuit as given in subsection 2.2, a description of
its main iterated building block, the number of qubits required for the full modular expo-
nentiation circuit and an estimation of its depth. The two circuits proposed in this paper
are referred in Table 4.5 as ΦEXP1 and ΦEXP2. The design ΦEXP1 is the modular ex-
ponentiation circuit built from the generic components GMΦDIV1 and ΦMAC_MOD1 and
has inferior performance to the ΦEXP2 because it doesn’t exploit the property mentioned
in Section 4.5. It appears to the comparison table just for reference.

Regarding the circuit depth, it is referred to the depth of single qubit gates or two qubits
gates. Whenever three-qubit gates are encountered (e.g. Toffoli gates) their depth is rough
approximated to an equivalent depth of one-qubit or two-qubits gates by assuming each
three-qubit gate can be replaced by five one-qubit or two-qubits gates. Not all designs of
the literature provide a full circuit; thus some estimations are rough and they are based on
[129, 132] and our assumptions. For example to calculate the depth of a full exponentiation
circuit based on an particular adder if a full circuit for the exponentiation operation is not
given, we made the assumption that a modular adder for the exponentiation circuit needs
five normal adders to be built as described in Section 4.1. At this point we have to warn
that some depths referred by some authors are not to be taken as is, as these authors tend
to make their calculation not by counting single qubit, two qubit gates and converting the
depth of the Toffoli gates to an equivalent depth, but they rather group together various
gates and count computation steps for each group. Also, in some of the previous works
the depth is calculated as two qubit interactions, e.g. an arbitrary sequence of gates on
two adjacent qubits is measured as having depth 1. This assumption, depending on the
specific physical implementations, may not hold. For the above reasons (not full or detailed
circuit given, adjacent qubit gates depth assumption), some entries of Table 4.5 have
depth measures in O(·) notation instead of expressions with leading order constants.

Similar remarks apply for the estimation of the width (number of qubits) and especially the
quantum cost (total number of gates) of the circuits.

We can see in Table 4.5 that the ΦEXP2 circuit outperforms in terms of speed in most
cases all the circuits that are based on ripple carry adders, carry look-ahead adders and
outperforms Beauregard’s, Fowler-Devitt-Hollenberg and Takahasi-Kunihiro QFT based
circuits, while at the same time requires qubits of the same size order.

Algorithms D, E and F of Van Meter and Itoh (VI) try to improve the depth by applying
various techniques such as better depth modulo calculation, indirection [129] but the main
improvement is done by operating in parallel many modular multipliers at the cost of a
respective increase of the qubits. As many tuning parameter are used in the VI algorithms,
the expressions giving the qubits number and the depth are complicated. In Table 4.5 we
show the asymptotic depth when the largest number of qubits (2n2) can effectively be
used by these algorithms [142] that is when we take advantage of the highest offered
concurrency. In this case algorithms D and E can achieve a depth of O(nlog2n) which is
asymptotically better than the proposed ΦEXP2 design but this improvement will require
O(n2) space. Algorithm F has for the same number of qubits (2n2) a depth of 100n2log2n
which is asymptotically worst than the proposed design. If we relax the space requirements
of the three VI algorithms D, E and F to be linear O(n), then algorithms D and E offer an
asymptotical depth O((nlog2n)(n/s+ log2s)) where s is the number of concurrent multipliers
used and algorithm F offers a depth of O((nlog2n)(n/s+ log2s)). These depths are worst in
order than the asymptotical depth of the ΦEXP2 architecture if s is set constant.

A.Pavlidis 118

Design and Synthesis of Efficient Circuits for Quantum Computers

Ta
bl

e
4.

5:
C

om
pa

ris
on

of
va

rio
us

m
od

ul
ar

ex
po

ne
nt

ia
tio

n
qu

an
tu

m
ci

rc
ui

ts
in

te
rm

s
of

qu
bi

ts
re

qu
ire

m
en

t(
w

id
th

),
sp

ee
d

(d
ep

th
),

nu
m

be
r

of
ga

te
s

us
ed

(q
ua

nt
um

co
st

)a
nd

de
pt

h-
w

id
th

pr
od

uc
t.

Se
co

nd
co

lu
m

n
su

cc
in

ct
ly

de
sc

rib
es

th
e

ar
ch

ite
ct

ur
e

an
d

th
e

ba
si

c
bl

oc
k

us
ed

(u
su

al
ly

th
e

ki
nd

of
ad

de
r)

,t
hi

rd
co

lu
m

n
sh

ow
s

th
e

in
te

ra
ct

io
ns

re
qu

ire
m

en
ta

nd
th

e
fo

ur
th

co
lu

m
n

di
st

in
gu

is
he

s
be

tw
ee

n
ex

ac
to

ra
pp

ro
xi

m
at

e
ca

lc
ul

at
io

ns
pe

rf
or

m
ed

.F
or

th
e

de
pt

h
an

d
ga

te
s

es
tim

at
io

ns
w

e
ha

ve
as

su
m

ed
th

at
w

he
ne

ve
r

To
ffo

li
ga

te
s

ar
e

us
ed

,t
he

y
co

nt
rib

ut
e

fiv
e

tim
es

th
e

qu
an

tu
m

co
st

an
d

de
pt

h
of

tw
o

or
si

ng
le

qu
bi

t
ga

te
s.

N
am

e
A

rc
h.

/B
as

ic
B

lo
ck

In
te

ra
ct

io
ns

C
al

cu
la

tio
ns

W
id

th
D

ep
th

G
at

es
D

ep
th

x
W

id
th

V
B

E
[6

1]
R

ip
pl

e
C

ar
ry

D
is

ta
nt

E
xa

ct
∼
4n

..
.7
n
∼
50
0n

3
O
(n
3)

O
(n
4)

B
C

D
P

[6
2]

R
ip

pl
e

C
ar

ry
D

is
ta

nt
E

xa
ct

∼
4n

..
.7
n
∼
28
0n

3
O
(n
3)

O
(n
4)

C
D

K
M

[1
25

]
R

ip
pl

e
C

ar
ry

D
is

ta
nt

E
xa

ct
∼
3n

..
.6
n
∼
20
0n

3
O
(n
3)

O
(n
4)

D
K

R
S

[1
26

]
C

ar
ry

Lo
ok

-A
he

ad
D

is
ta

nt
E

xa
ct

∼
5n

..
.8
n
∼
40
0n

2
lo
g
n

O
(n
3)

O
(n
3
lo
g
n)

TK
1[

12
3]

R
ip

pl
e

C
ar

ry
D

is
ta

nt
E

xa
ct

3n
+
2

∼
50
0n
3

O
(n
3
lo
g
n)

O
(n
4)

TK
2[

14
3]

Q
FT

D
is

ta
nt

E
xa

ct
2n

+
2

O
(n
3)

O
(n
4)

O
(n
4)

V
I-a

lg
oD

[1
29

]
C

on
di

tio
na

lS
um

D
is

ta
nt

E
xa

ct
2n

2
∼
45
n(
lo
g
n)
2

O
(n
3)

O
(n
3
lo
g
2
n)

V
I-a

lg
oE

[1
29

]
D

K
R

S
D

is
ta

nt
E

xa
ct

2n
2

∼
55
n(
lo
g
n)
2

O
(n
3)

O
(n
3
lo
g
2
n)

V
I-a

lg
oF

[1
29

]
C

D
K

M
1D

-L
N

N
E

xa
ct

2n
2

∼
10
0n

2
lo
g
n

O
(n
3)

O
(n
4
lo
g
n)

B
ea

ur
eg

ar
d

[2
4]

Q
FT

D
is

ta
nt

E
xa

ct
2n

+
3

∼
10
0n

3
O
(n
4)

O
(n
4)

G
os

se
t[

12
7]

C
ar

ry
S

av
e

D
is

ta
nt

E
xa

ct
 8
n2

O
(n

lo
g
n)

O
(n
3)

O
(n
3
lo
g
n)

Za
lk

a
1

[1
28

]
C

ar
ry

S
el

ec
t

D
is

ta
nt

A
pp

ro
x.

5n
∼
30
00
n2

O
(n
3)

O
(n
3)

Za
lk

a
2

[1
28

]
FF

T
M

ul
tip

lie
r

D
is

ta
nt

E
xa

ct
24
n
..
.9
6n

∼
21
9 n
1.
2

21
9 n
1.
2

22
1 n
1.
2

FD
H

[1
30

]
Q

FT
1D

-L
N

N
E

xa
ct

∼
2n

O
(n
3)

O
(n
4)

O
(n
4)

K
ut

in
1

[1
31

]
Q

FT
1D

-L
N

N
A

pp
ro

x.
∼
3n

O
(n
2)

O
(n
3)

O
(n
3)

K
ut

in
2

[1
31

]
C

D
K

M
1D

-L
N

N
A

pp
ro

x.
∼
3n

O
(n
2
lo
g
n)

O
(n
3)

O
(n
3
lo
g
n)

C
V

[1
32

]
C

ar
ry

Lo
ok

-A
he

ad
2D

-L
N

N
E

xa
ct

∼
5n

..
.8
n
∼
75
0n

2√
n

O
(n
3)

O
(n
3√

n)
P

S
[1

33
]

C
ar

ry
S

av
e

2D
-L

N
N

E
xa

ct
O
(n
4)

O
((
lo
g
n)
2)

O
(n
4)

O
(n
4
lo
g
n)

Φ
E

X
P

1
[1

41
]

Q
FT

A
dd

/M
A

C
/D

iv
1D

-L
N

N
E

xa
ct

16
n
+
2

∼
13
00
n2

O
(n
3)

O
(n
3)

Φ
E

X
P

2
[1

41
]

Q
FT

A
dd

/M
A

C
/D

iv
1D

-L
N

N
E

xa
ct

9n
+
2

∼
70
0n

2
O
(n
3)

O
(n
3)

119 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

Gosset’s carry save adder circuit has smaller depth than ΦEXP2 circuit but with a large
penalty in space because the number of qubits bits it requires depends quadraticaly on
the size of the number to be factored.

The same applies for the Pham and Svore (PS) two-dimensional architecture which has
a O(log2n)2 depth but requires a tremendous O(n4) space. The second two-dimensional
architecture (CV) which requires space of about 4n has also asymptotically worst depth of
O(n2
√
n).

Zalka’s FFT multiplier circuit performs better than ΦEXP2 but only for numbers to be fac-
tored with more than 10kbits in size due to its big depth constant. Also it uses much more
qubits than ΦEXP2. Zalka’s first circuit (using carry select adder) is comparable to ΦEXP2
in terms of both depth and qubits required, the ΦEXP2 being faster but using twice the
qubits number of Zalka’s circuit. At this point we have to mention that Zalka’s first circuit
makes only approximate calculations of the modular exponentiation function.

The other architecture which has comparable asymptotical depth to ΦEXP2 is Kutin’s one-
dimensional architecture based on QFT addition, being an approximate calculation circuit
like Zalka’s first circuit. The second one of Kutin’s circuit is slightly worse in terms of depth
and makes the same approximation as its first.

To conclude the complexity analysis, the ΦEXP2 circuit has the lowest asymptotical depth
among the circuits that require a linear number of qubits smaller than 10n and are based
on exact (as opposed to approximate) calculations.

The ΦEXP2 circuit natively uses almost exclusively two-qubit gates (the only exception
are the CSWAP gates which use Toffoli gates). This is an advantage over most of the
architectures of Table 4.5 (apart from Beauregard’s circuit which can be also transformed
to use almost exclusively two qubit gates) because physical implementations of quantum
gates of three qubits is difficult [52]. Even recent proposals of Toffoli gate implementation
in various technologies [134, 135, 136, 137] essentially resolve this problem by decom-
position into two qubit gates.

Of particular interest is the depth-width product metric, which is related to the fault toler-
ance demands of the circuit, the smaller this product is the smaller the error correction
demanding [144]. The proposed circuit has among the smallest depth-width products, of
the order O(n3), among the circuits which perform exact calculations. The only circuits
that have the same depth-width product are the ones of Zalka’s and Kutin’s which perform
approximate calculations.

On the other hand, concerning the implementation, the proposed architecture seems to
have two major weaknesses. The first comes from the fact that it uses extensively con-
trolled rotation gates and there are known problems concerning the fault tolerance ca-
pability of such gates [129] and their implementation if small rotation angles are desired.
The rotation gates used in the described arithmetic circuits may have very small angles
like 2π/2n and it is difficult to realize physical gates of such accuracy. Also, the rotation
gates are not included in the family of gates that can be realized in a fault tolerant manner
using known quantum error correcting codes, e.g. Steane codes. But even if they are not
inherently fault tolerant capable they can become such, if a decomposition into a set of
fault tolerant gates is applied to them exploiting the Solovay-Kitaev theorem [56].

The problem of decomposing an arbitrary quantum single qubit gate into a pre-determined
set of fault tolerant gates is important because for such a decomposition a cost have to be
paid related to the sequence length of gates to realize the decomposition and consequently
it is related to a depth increment of the total circuit. The Solovay-Kitaev theorem states that

A.Pavlidis 120

Design and Synthesis of Efficient Circuits for Quantum Computers

given a small constant ε, an arbitrary gate U can be approximated by a finite sequence of
gates equivalent to a gate S up to an approximation error ε (that is d(U, S) < ε, where d
is a distance function), the length of this sequence being O(logc(1/ε)). The constant c is
somewhere between 1 and 2. As the smallest rotation angle in the rotation gates of the
proposed architecture is of the order π/2n, the required approximation error is of the same
order (otherwise we would use the identity gate instead [145]) and the depth cost is of the
order nc.

Much research has been done in the area of this problem. Some of this work is oriented
to improve the constant factor c, that is to improve the cost and depth of the decomposed
circuit. In [145, 146] a decomposition of a controlled rotation gate into two single qubit
rotation gates and a CNOT gate is applied, and then the single qubit rotation gate is ap-
proximated, up to an error constant ε, by a sequence of H and T (π/8) gates. It is shown
that this approximation sequence has a length linear in O(log(1/ε)), that is the constant c
is equal to 1, but the major drawback of this method is the synthesis time required, which
is exponential in 1/ε.

Recently, a very intense research activity has been observed in the area of efficiently
synthesizing arbitrary gates using fault tolerant primitive gates. Some work is oriented
in trading-off circuit complexity with synthesizing time complexity, other work is diverted
between building arbitrary gates with and without ancillae, and some other work is directed
to using not standard primitive gate set. A non exhaustive list of such work includes [60,
59, 147, 148, 60, 149]. In summary, these results show that an arbitrary gate can be
approximated with linear length with respect to log(1/ε) and with linear synthesis time with
respect to log(1/ε). The constant factor in the complexity of the approximation circuit is
about 10 for the most promising proposals. As the desired error ε is of the order of the
smallest angle 2π/2n, the depth overhead factor is of the order O(n). Thus, the depth of
the overall modular exponentiation circuit would become O(n3).

Nevertheless we could achieve a better depth performance if we relax the approximation
error requirement. In section 5.1 we show that by permitting ε in the order of O(1/2t log n) =
O(1/nt) for a suitable constant t, we could still achieve adequate probability of success in
the quantum period finding. This choice of ε leads to an overall depth of O(n2 log n) for the
quantum modular exponentiation.

The second weakness of the proposed architecture seems to be at first sight that it does
not account for the possible constraints on the communication distance between the qubits
that may imposed by the underlying physical implementation. For example in [26] it is
shown that the physical mapping of any quantum adder ofΩ(log2n) depth to a k-dimensional
nearest neighbors architecture limits its theoretical depth to Ω(k

√
n). Such depth limitations

are due to the additional SWAP gates needed to convert from the abstract concurrent
architecture to the nearest neighbor architecture.

This is not the case for the proposed architectures ΦEXP1 and ΦEXP2. Section 5.2 gives
an adaptation procedure to an one dimensional linear array physical machine with parallel
gates execution capability (1D-NTC) which leaves the overall depth to O(n2) before the
fault tolerance transformations discussed previously and detailed in section 5.2.

Other models of quantum computation more suitable for long distance communication
between gates are the measurement based quantum computation (MBQC) [150] where
the interaction between distant qubits can be accomplished in constant time. In [151] the
DKRS carry look-ahead adder is redesigned in the MBQC context and it is shown that
its logarithmic depth can be maintained but with a substantial overhead in space require-
ments. Surface code quantum computing is another promising scalable architecture which

121 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

also permits long distance interactions [152, 153, 154].

In general, the estimation of area and speed of a quantum algorithm is a cumbersome task
when considering the real physical implementation of the algorithm, including the error-
correcting codes which achieve the required fault-tolerance. In this view, the comparison
between the various designs exposed in Table 4.5 is only indicative for their performance.

It is important to note that the ΦEXP2 circuit can be made about three times faster if the
approximate QFT method of performing the additions [23, 155, 156] is utilized. This hap-
pens because significant part of the constant divider GMΦDIV consists of QFT adders and
the constant divider has the dominant depth contribution. This gate pruning may be incor-
porated as part of the approximation procedures described in section 5.1. Unfortunately,
the approximate QFT method can not be applied to the the ΦMAC blocks because the
angles in every rotation gate in this block is a sum of angles in a range from the bigger to
smaller angle, depending on the numbers to be multiplied (see Eq. (4.17)).

In conclusion, even if the modular exponentiation architectures ΦEXP1 and ΦEXP2 seem
to have the two disadvantages mentioned above in relation to the fault tolerance and their
usage in a local interaction physical implementation, they can address these disadvan-
tages as proposed in Chapter 5 and still achieve a low depth of O(n2 log n). In contrast,
some seemingly O(n2 log n) depth architectures that are based on fast adders of depth
O(log n) loose their depth advantage when applied on 1D-NTC or 2D-NTC architectures.
We think, as these results suggest, that the proposed fast quantum modular exponentia-
tion could be a candidate architecture in the future if someone gives priority to depth, i.e.
the performance of the circuit.

4.7 Divider Improvement and Extension
After the publication of [141] it was realized that a more efficient design of the proposed
quantum divider by constant can be achieved. This improved divider is shown in Figure
4.24 and requires 6n+1 qubits, instead of the 7n+1 of the original design exposed in Fig-
ures 4.16-4.17. Depth and quantum cost are similar to the original divider. The incorpora-
tion of this improved divider into the proposed architecture for the modular exponentiation
leads to space requirements 8n+ 1 qubits for Shor’s algorithm.

A slight modification of this circuit, with the addition of one more qubit, leads to a controlled
version of a divider. Figure 4.25 is the modified circuit of the controlled divider GMΦDIV,
where the control qubit is added on the top of the figure and denoted with |c⟩. The operation
of this circuit is to give the quotient and the remainder if |c⟩ = |1⟩, otherwise it gives the
dividend |z⟩ in their place. The control qubit affects the two top buses (the one which
normally would deliver the quotient and the bus of the dividend high qubits) as follows: The
CNOT gates copying the |q1⟩ state on the top bus are promoted to Toffoli gates controlled
additionally by the added control qubit of the divider. Also, the two X gates operating on the
most significant qubit of the dividend are promoted to CNOT gates and they are additionally
controlled by the same control qubit of the divider. It is easy to ascertain that the case
|c⟩ = |1⟩ leads to identical operation as in the case of an uncontrolled divider. On the
other side, when |c⟩ = |0⟩, the top bus normally carrying the quotient at the end of the
computation, remains in its zero initial state. This is because the Toffoli gates are disabled
and the same applies for the controlled adder of constant 1, as the most significant qubit
of the dividend is always zero, both in the case of GMFDIV1 and GMΦDIV2 modes of
operation. The ancilla buses remain in their initial states of zero due to the symmetry of
the computation - uncomputation effect. The dividend bus remains in the iniitial state due
to this symmetry and the fact that the last ΦMAC unit has no effect on it, as the top bus
remains in zero state.

A.Pavlidis 122

Design and Synthesis of Efficient Circuits for Quantum Computers

7
z

6
z

5
z

4
z

3
z

2
z

1
z

0
z000000000

)
),

(
(

l
n

z
H

IG
H

SLL
−

)
),

(
(

l
n

z
LO

W
SLL

−

0000

)
),

(
(

l
z

L
O

W
SR

L

0 0 00 0000000

0000

3
z

2
z

1
z

0
z

GMΦDIV1

Φ ADD

n
2

QFT

Φ ADD

Φ ADD

n
10

QFT

n
1

Φ ADD

1

n
2 +

n
1

Φ ADD

d
c

n
a

dj

QFT

QFT

QFTQFT

QFT

Φ MAC

m
’

QFT

n
adj +

m
’(n

2 +
n

1)

QFT

Φ ADD

ΦADD1

q
1 +

n
1

QFT

q
1

ΦMACd

dr
1

ΦADDd

QFT

dr

X
X

QFT

Φ ADD

1

QFT

q

QFT

Φ ADD

d

ΦMACd

dr
1

QFT

GMΦDIV2

z

QFT

Φ ADD

1

ΦADD

q
1 +

n
1

n
a

dj

QFT QFT

ΦMACm
’

QFT QFT

n
2 +

n
1

n
2

ΦADD1

QFT

Φ ADD

d
c

QFT

QFT

0

ΦADD

QFT ΦADD

ΦADD

)
),

(
(

l
n

z
H

IG
H

SLL
−

)
),

(
(

l
n

z
LO

W
SLL

−)
),

(
(

l
z

L
O

W
SR

L

n
10

QFTQFT QFT

ΦMACd

QFT

3
q

2
q

1
q

0
q

3
r

2
r1 r0
r 000000000000 00000

7
z

6
z

5
z

4
z

3
z

2
z

1
z

0
z000000000

)
),

(
(

l
n

z
H

IG
H

SLL
−

)
),

(
(

l
n

z
LO

W
SLL

−

0000

)
),

(
(

l
z

L
O

W
SR

L

0 0 00 0000000

0000

3
z

2
z

1
z

0
z

GMΦDIV1

Φ ADDΦ ADD

n
2

QFT QFT

Φ ADDΦ ADD

Φ ADDΦ ADD

n
10

QFTQFT

n
1

Φ ADD

1

Φ ADD

1

n
2 +

n
1

Φ ADD

d
c

Φ ADD

d
c

n
a

dj

QFT QFT

QFTQFT

QFTQFTQFTQFT

QFT QFT

Φ MAC

m
’

Φ MAC

m
’

QFT QFT

n
adj +

m
’(n

2 +
n

1)

QFTQFT

Φ ADDΦ ADD

ΦADD1

ΦADD1

q
1 +

n
1

QFTQFT

q
1

ΦMACd

ΦMACd

dr
1

ΦADDd

ΦADDd

QFT QFT

dr

XX
XX

QFTQFT

Φ ADD

1

Φ ADD

1

QFT QFT

q

QFTQFT

Φ ADD

d

Φ ADD

d

ΦMACd

ΦMACd

dr
1

QFT QFT

GMΦDIV2

z

QFTQFT

Φ ADD

1

Φ ADD

1

ΦADD ΦADD

q
1 +

n
1

n
a

dj

QFTQFT QFT QFT

ΦMACm
’

QFT QFT QFTQFT

n
2 +

n
1

n
2

ΦADD1

ΦADD1

QFTQFT

Φ ADD

d
c

Φ ADD

d
c

QFT QFT

QFT QFT

0

ΦADD ΦADD

QFTQFT ΦADD ΦADD

ΦADD ΦADD

)
),

(
(

l
n

z
H

IG
H

SLL
−

)
),

(
(

l
n

z
LO

W
SLL

−)
),

(
(

l
z

L
O

W
SR

L

n
10

QFT QFTQFT QFT QFTQFT

ΦMACd

ΦMACd

QFT QFT

3
q

2
q

1
q

0
q

3
r

2
r1 r0
r 000000000000 00000

Figure 4.24: Improved GMΦDIV circuit of space complexity 6n+1 qubits for the case of 8 or 4 qubits
dividend and constant divisor d = 5.

123 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

7z 6z 5z 4z 3z 2z 1z 0z 0 0 0 0 0 0 0 0 00 0 0 0 000 00 0 0 0 0 0 0

0 0 0 0 3z 2z 1z 0z

GMΦDIV1

ΦADD

n 2

QFTΦADD

ΦADD

n 10

QFT

n 1

ΦADD

1

n 2
+

n 1

ΦADD

d c

n a
dj

QFT

QFT

QFT QFT

QFT

ΦMAC

m
’

QFT

n ad
j+

m
’(

n 2+
n 1)

QFT

ΦADD

Φ ADD 1

q 1+
n 1

QFT

q 1

Φ MAC d

dr
1

Φ ADD d

QFT

dr

QFT

ΦADD

1

QFT

q QFT

ΦADD

d

Φ MAC d

dr
1

QFT

GMΦDIV2

z

QFT

ΦADD

1

Φ ADD

q 1+
n 1

n a
dj

QFTQFT

Φ MAC m
’

QFTQFT

n 2+
n 1

n 2

Φ ADD 1

QFT

ΦADD

d c

QFT

QFT

0

Φ ADD

QFT

Φ ADD

Φ ADD

n 10

QFT QFTQFT

Φ MAC d

QFT

3
q

2
q

1
q 0
q 3r 2r 1r 0r0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0

c
1

=
c

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0

1
=

c

7z 6z 5z 4z 3z 2z 1z 0z

0 0 0 0 3z 2z 1z 0z

GMΦDIV1

GMΦDIV2

7z 6z 5z 4z 3z 2z 1z 0z 0 0 0 0 0 0 0 0 00 0 0 0 000 00 0 0 0 0 0 0

0 0 0 0 3z 2z 1z 0z

GMΦDIV1

ΦADD ΦADD

n 2

QFTQFTΦADD ΦADD

ΦADD ΦADD

n 10

QFT QFT

n 1

ΦADD

1

ΦADD

1

n 2
+

n 1

ΦADD

d cΦADD

d c

n a
dj

QFTQFT

QFT QFT

QFT QFT QFT QFT

QFTQFT

ΦMAC

m
’ΦMAC

m
’

QFTQFT

n ad
j+

m
’(

n 2+
n 1)

QFT QFT

ΦADD ΦADD

Φ ADD 1Φ ADD 1

q 1+
n 1

QFT QFT

q 1

Φ MAC dΦ MAC d

dr
1

Φ ADD dΦ ADD d

QFTQFT

dr

QFT QFT

ΦADD

1

ΦADD

1

QFTQFT

q QFT QFT

ΦADD

d

ΦADD

d

Φ MAC dΦ MAC d

dr
1

QFTQFT

GMΦDIV2

z

QFT QFT

ΦADD

1

ΦADD

1

Φ ADDΦ ADD

q 1+
n 1

n a
dj

QFT QFTQFTQFT

Φ MAC m
’

QFTQFTQFT QFT

n 2+
n 1

n 2

Φ ADD 1Φ ADD 1

QFT QFT

ΦADD

d cΦADD

d c

QFTQFT

QFTQFT

0

Φ ADDΦ ADD

QFT QFT

Φ ADDΦ ADD

Φ ADDΦ ADD

n 10

QFTQFT QFTQFTQFT QFT

Φ MAC dΦ MAC d

QFTQFT

3
q

2
q

1
q 0
q 3r 2r 1r 0r0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0

c
1

=
c

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0

1
=

c

7z 6z 5z 4z 3z 2z 1z 0z

0 0 0 0 3z 2z 1z 0z

GMΦDIV1

GMΦDIV2

Figure 4.25: Controlled GMΦDIV circuit of space complexity 6n+2 qubits for the case of 8 or 4 qubits
dividend and constant divisor d = 5. The controlling qubit is |c⟩.A.Pavlidis 124

Design and Synthesis of Efficient Circuits for Quantum Computers

5. IMPLEMENTATION ISSUES OF QFT BASED ARITHMETIC
CIRCUITS

In this Chapter we address the two major weaknesses of the proposed arithmetic quantum
circuits which are based on the QFT representation of an integer. First, the fact that the
requirement to implement fault tolerant rotation gates of high accuracy angle of order
(1/2n) 1, leads to a depth increase from O(n) to O(n2) for components like ΦMAC and
GMΦDIV, and consequently to an overall depth increase from O(n2) to O(n3) for the whole
quantum modular exponentiation. In section 5.1 we show that we can relax the angle
accuracy requirement, using angles of accuracy O(1/n) instead of (1/2n) and accomplish
depths of O(n log n) for the ΦMAC and GMΦDIV, leading to a depth of O(n2 log n) for the
whole modular exponentiation. This accuracy relaxing does not degrade significantly the
operation of the quantum period finding algorithm in terms of success probability, as we
show.

The second implementation issue is the interaction topology between the qubits. The ba-
sic arithmetic blocks proposed in the previous Chapter imply distant interactions between
qubits (e.g. up to a distance of 3n for the ΦMAC). Yet, the physical implementations in
various technologies are usually one-dimensional or two-dimensional arrays of qubits re-
stricted to nearest neighbors interactions (1D-LNN or 2D-LNN). In section 5.2 we show
that the various blocks like ΦMAC and GMΦDIV can be mapped to such local interactions
topologies through the usage of SWAP gates and still achieve depths of the same order,
that is overhead of constant factor.

5.1 Angle Quantization of Rotation Gates
The problem with the small angles rotation gates usage has been investigated in the con-
text of QFT application [156, 155, 145, 146], because QFT is an integral part of Shor’s al-
gorithm. Those works study the effect on the performance of the period finding algorithm,
in terms of success probability to find the period, that has the usage of the approximated
QFT. In an approximated QFT with parameter b, all the rotation gates with angle smaller
than 2π/2b+1 are discarded. This elimination of gates is also called QFT banding due to
the shape of the remaining gates in the resulting approximated QFT circuit. An approxi-
mated QFT with banding b = n − 1 of the n qubits QFT corresponds to the regular QFT
(all the gates are present), while at the other edge a banding b = 0 corresponds to a QFT
circuit in which only the Hadamard gates are left. The above works concluded more or
less that using a b = O(log n) is adequate to extract the period with acceptable probability
of success. These results were also refined and verified with simulations in more recent
works [157, 158, 159].

Recently, an interest appeared to extend the method of pruning rotation gates to other cir-
cuits as well, and studied the effect on their performance in terms of probability of success.
Beauregard’s design [24] for period factoring algorithm is such an example. It implements
the modular exponentiation part by using Draper’s QFT adder of Figure 4.9 as a basic
building block in order to successively build the modular adder and the modular multiplier
of the usual hierarchy described in Section 4.1. The works in [158, 160] study the effect
of simultaneously eliminating small angles rotation gates of both QFT and Draper’s adder
used in the Beauregard’s design.

In [158] a full quantum gate level simulation of Bauregard’s design was performed to factor
integers up to N = 57. The simulations covered various random a parameters of the mod-
ular exponentiation ax mod N. The results showed that if all the rotation gates with angles

1See for example Eq. (4.18), (4.19) and (4.20).

125 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

smaller than π/2b are discarded, using b = 4 and b = 5 for the QFT part and the modular
exponentiation part, respectively, the algorithm still succeeds to factorize with degradation
of about 70% relative to the algorithm operation if no gate pruning would happen. These
results were extended in [160] where both banding in the QFT and Draper’s adder is ap-
plied and at the same time the remaining gates are allowed to have defects modeled as
fluctuations about their real angles values.

All the above results suggest a significant robustness of circuits that have a QFT like struc-
ture to both banding and gate defects. The proposed architecture of Chapter 4 is based
almost exclusively on building blocks that have such a QFT like structure. In the following
sections it is shown that this architecture is robust to another kind of approximation, which
we call angle quantization of rotation gates. In this procedure, the angle value of each rota-
tion gate is changed to the nearest value of the set {2π2b j : j = 0 . . . 2

b−1}. This is equivalent
to permit an angle error of at most π/2b in each gate. It is shown that if parameter b of this
quantization is chosen logarithmic in n, where n is the length of the factorisable integer,
then adequate probability of success is maintained.

The consequence of this result is that the gate and depth overhead of the circuit super-
vened due to the required conversion of the rotation gates to sequence of gates that admit
fault tolerant implementation, is logarithmic, instead of linear as it would seem at first sight.
Thus, including the conversion to a fault tolerant set of gates, the modular exponentiation
circuit analyzed in Chapter 4 has a depth O(n2 log n) instead of O(n3) that it would have if
not using the proposed angle quantization method.

5.1.1 Definitions and basic properties
The induced 2-norm of an operator U acting on a d-dimensional Hilbert spaceHd is defined
by

∥U∥2
.
= sup

|ψ⟩

∥U|ψ⟩∥2
∥|ψ⟩∥2

= max
|ψ⟩
∥U|ψ⟩∥2

=
√
λmax(U†U)

(5.1)

where ∥·∥2 is the 2-norm of a state vector in Hd defined by

∥|ψ⟩∥2 =
√
⟨ψ|ψ⟩ (5.2)

and λmax(·) denotes the largest eigenvalue of an operator.

The above operator norm will be used to quantify the distance between a target quantum
gate or circuit U when it is approximated by another gate or circuit V. The approximation
error between the two circuits U and V is defined by

E(U,V) .
= ∥U− V∥2 (5.3)

This definition is justified by the fact that the distance between the probability distributions
ProbU[k] and ProbV[k] (k = 0 . . . 2d − 1) generated at the outputs of the two circuits for
the same projective measurement is at most the approximation error E(U,V), where the
distance between probability distributions is the Total Variation Distance [161]

A.Pavlidis 126

Design and Synthesis of Efficient Circuits for Quantum Computers

TVD(ProbU,ProbV)
.
=
1
2

2d−1∑
k=0

∣∣ProbU[k]− ProbV[k]
∣∣ (5.4)

Thus, we have

TVD(ProbU,ProbV) ≤ E(U,V) (5.5)

It can be proven [161, 41] that if a sequence of d-qubits gatesU1, . . . ,Uk is approximated by
another sequence of gates V1, . . . ,Vk with approximation errors between each pair E(Uj,Vj)
for j = 1 . . . k, then the total error between each product of the sequence is at most the
sum of errors of each pair

E(UkUk−1 · · ·U1,VkVk−1 · · ·V1) ≤
k∑

j=1

E(Uj,Vj) (5.6)

A large quantum circuit of d qubits can be thought as a sequence of d qubits gates U1 . . .Uk
as described above, but usually the elementary gates used in the circuits act on a single or
two qubits alone. A first step to handle this case is to consider that an elementary gate U
of n qubits is embedded to a larger circuit of d = m+ n qubits, in which it acts on the lower
n qubits and the identity gate acts on upper m qubits as shown in left of Figure 5.1. Let
A = I⊗m⊗U be the embedding of U and V is the approximation of U. Then the embedding
B = I⊗m ⊗ V of V has the same distance to A as has V to U,

∥∥I⊗m ⊗ U− I⊗m ⊗ V
∥∥
2 = ∥U− V∥2 (5.7)

Proof. By Eq. (5.1), the value of ∥I⊗m ⊗ U− I⊗m ⊗ V∥2 is the largest eigenvalue of (A −
B)†(A− B). The calculation of (A− B)†(A− B) follows (for simplicity I⊗m will be denoted by
I)

(A− B)†(A− B) = (I⊗ U− I⊗ V)†(I⊗ U− I⊗ V)
= (I⊗ U†)(I⊗ U)− (I⊗ V†)(I⊗ U)− (I⊗ U†)(I⊗ V) + (I⊗ V†)(I⊗ V)
= I⊗ U†U− I⊗ V†U− I⊗ U†V+ I⊗ V†V
= I⊗

(
U†U− V†U− U†V+ V†V

)
= I⊗ (U− V)†(U− V)

(5.8)

U V

Figure 5.1: Left circuit A = I⊗U approximated by the right circuit B = I⊗V. The distance ∥A− B∥2 be-
tween the two five-qubits circuits is the same as the distance between the two gates alone ∥U− V∥2.

127 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

The eigenvalues of I⊗(U−V)†(U−V) are the same with the eigenvalues of (U−V)†(U−V)
as the eigenvalues of I are all 1. Consequently, λmax((I ⊗ (U − V)†(U − V)) = λmax((U −
V)†(U− V)) and thus ∥I⊗m ⊗ U− I⊗m ⊗ V∥2 = ∥U− V∥2

It is easy to generalize the above result by allowing the n qubits of U and V gates to
correspond to any qubits of the largest n+m qubits circuit, instead to be the least significant
qubits as Figure 5.1 implies. This is accomplished by inserting suitable SWAP gates at the
beginning and at the end of the original circuit A and the approximating circuit B to derive
the corresponding A′ = P−1 · A · P and B′ = P−1 · B · P circuits. The P operator and its
inverse P−1 are permutations that correspond to the effect of SWAP gates inserted at the
beginning and at the end of circuit. Figure 5.2 is an example of this equivalence where c-R
is used as an example of a two-qubits gate U.

It is easy to see that

∥A′ − B′∥2 =
∥∥P−1 · A · P− P−1 · B · P

∥∥
2 = ∥A− B∥2 (5.9)

because P and P−1 are unitary.

In the same line of reasoning, if C1 . . .Cp,Cq . . .Cr are unitary operators and U is approxi-
mated by V, then

∥C1 · · ·CpUCq · · ·Cr − C1 · · ·CpVCq · · ·Cr∥2 = ∥U− V∥2 (5.10)

TheU and V in the above equation may be of the form of A′ and B′ of Eq. (5.9), respectively.

Combining the previous results we can state the following

Proposition 5.1. Let Q a quantum circuit and Q̂ an approximating quantum circuit which
is derived from Q by replacing some of its gates U1,U2, . . .Uk with the respective gates
V1,V2, . . .Vk. The 2-norm distance between Q and Q̂ is upper bounded as

∥∥∥Q− Q̂
∥∥∥
2
≤

k∑
j=1

∥Uj,Vj∥2 (5.11)

Proof. The proof is straightforward taking into account Eq. (5.6),(5.9), (5.10) and the fact
that every quantum circuit is represented by a product of tensor products of unitary oper-
ators.

• × ×

=

R ×× • ××

× R ×

Figure 5.2: Equivalence of a five qubits circuit A′ containing a two-qubit gate c-R acting in some of
the middle qubits (left) to another five qubits circuit A in which the same gate acts on the two lowest
qubits. Swap gates are used to interchange the order of the qubits.

A.Pavlidis 128

Design and Synthesis of Efficient Circuits for Quantum Computers

L L
U V

M M

Figure 5.3: The left circuit is approximated by the right circuit by replacing gate U with V.

An example of the previous results is shown in Figure 5.3. The left circuit is A = (I⊗2 ⊗
M)(P−1UP)(L⊗I⊗2) and it is approximated by the right circuit A = (I⊗2⊗M)(P−1VP)(L⊗I⊗2)
where P is a suitable permutation matrix which models the fact that U and V gates act on
the two middle qubits. The distance of these two circuits is ∥A− B∥2 = ∥U− V∥2.

5.1.2 Approximation of the multiplier/accumulator ΦMAC.
The ΦMAC presented in Section 4.2 is a basic bulding block for both the modular multiplier
ΦΜUL_MOD and the divider by constant GMΦDIV used in the modular exponentiation.
It consists of 4n2 controlled rotation gates given by Eq. (4.18) and (4.19), 2n controlled
rotation gates given by Eq. (4.20) and 2n CNOT gates. These equations show that each
one of these rotation gates has an angle φ which is a sum of angles between 2π/2m, m =
1 . . . 2n and the sum depends on the multiplication constant a, so that each angle φ is an
integer multiple of 2π/22n. Thus, there isn’t any set of these gates guaranteed to have small
angles so as to apply the banding procedure as it can be applied to the approximated QFT
case or the QFT adder of two quantum integers.

Instead, we can uniformly ”quantize” the φ angles with quantization step of 2π/2b so as
they are all multiples of 2π/2b instead of 2π/22n, for a suitable constant b ≪ n. Namely, a
controlled rotation gate c-Rz(φ) is approximated by the gate c-Rz(φ̂) using the relation

φ̂ = round

(
φ
2b

2π

)
2π
2b

(5.12)

It is clear from the above relation that the distance between the desired angle φ and its
quantized value φ̂ is half the quantization step,

|φ− φ̂| ≤= π
2b

(5.13)

The distance between a desired controlled rotation gate c-Rz(φ) and its approximation
c-Rz(φ̂) is

∥c-Rz(φ)− c-Rz(φ̂)∥2 = max
|ψ⟩

∥∥diag (0, 0, 0, eiφ − eiφ̂
)
|ψ⟩
∥∥
2

=
∣∣eiφ − eiφ̂

∣∣
≤ |φ− φ̂|

≤ π
2b

(5.14)

We choose the quantization parameter b to scale logarithmically with respect to n, e.g.
b = c log n. By applying Proposition 5.1 we can estimate the distance of the original ΦΜΑC
and the approximated ΦMAC with the following upper bound

129 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

∥∥∥ΦMAC− Φ̂MAC
∥∥∥
2
≤

4n2+2n∑
k=1

∥Uk − Vk∥2

≤
4n(n+1)∑
k=1

π
2c log n

≤ 5π
nc−2

(5.15)

In the above formula, Uk are all rotation gates of the original ΦMAC embedded in the whole
Hilbert space H3n of ΦMAC, that is they are modeled with

Uk = P−1
k (I⊗ c-Rz(φk))Pk (5.16)

The Vk gates are the respective ones for the approximation ΦMAC circuit and are given
similarly as

Uk = P−1
k (I⊗ c-Rz(φ̂k))Pk (5.17)

5.1.3 Approximation of the Fourier adders and QFT.
Similar analysis can be applied to the two kind of adders used in the quantum divider
and the QFT. In all the cases, the angles of all the rotation gates used in each block
are approximated with quantization parameter b = c log n. The distance between each
original block and its approximation is related to the quantum cost of each block as stated
in Proposition 5.1.

The controlled constant adder CΦADD of n qubits uses n rotation gates and consequently
its distance to the approximating circuit is

∥∥∥CΦADDC− ̂CΦADDC
∥∥∥
2
≤ π

nc−1
(5.18)

The distance for the general adder ΦADD of two quantum integers of n qubits is

∥∥∥ΦADD− Φ̂ADD
∥∥∥
2
≤ π

nc−2
(5.19)

because it conists of n(n+1)
2 rotation gates.

Similarly, the distance for any QFT (and its inverse) of n qubits is

∥∥∥QFT− Q̂FT
∥∥∥
2
≤ π

nc−2
(5.20)

Note that in the last two cases (adder of two quantum integers and QFT) the angle quan-
tization with parameter b corresponds to banding, because the angles of all the rotation
gates are of the form 2π/2m for m = 1 . . . n, instead of sum of such angles as it was the
case of ΦMAC.

A.Pavlidis 130

Design and Synthesis of Efficient Circuits for Quantum Computers

5.1.4 Approximation of the whole modular exponentiation.
The GMΦDIV divider consists mainly of a constant number of blocks like QFT, ΦADD,
CΦADD, ΦMAC that can approximated as described in the previous sections, and some
constant number of other gates that are not approximated.

Taking into account Eq. 5.15,5.18,5.19 and 5.20 which give the approximation error if the
quantization of angles with b = c log n is adopted, we derive the approximation error of the
whole divider as

∥∥∥GMΦDIV− ̂GMΦDIV
∥∥∥
2
≤ Cdn2−c (5.21)

Constant Cd depends on the number of the various blocks used in the divider, but it is
estimated to be somewhere above 89, because the dominant contribution to the error
comes from the ΦMAC, ΦΑDD and QFT blocks (order of n2−c) and a GMΦDIV block uses
5 ΦMAC units, 8 ΦADD units, 16 QFT units of n qubits and 10 QFT units of 2n qubits.

Error of the same order is found for the controlled modular multiplier CΦMUL_MOD as
this block consists of two dividers and two ΦMAC

∥∥∥CΦMUL_MOD− ̂CΦMUL_MOD
∥∥∥
2
≤ Cmn2−c (5.22)

Similar reasoning, leads to an estimation of the Cm near to 2× Cd + 2 · 5 ≈ 198. Thus, the
total approximation distance of the whole modular exponentiation circuit ΦEXP is

∥∥∥ΦEXP− Φ̂EXP
∥∥∥
2
≤ Cen3−c (5.23)

because it uses 2n modular multipliers, where Ce is above 2× Cm = 396.

The whole Shor’s algorithm circuit includes a QFT at the end which can be approximated
too, with error O(n2−c). Thus, taking into account Eq. (5.23) which gives the dominant
distance, the Total Variation Distance for the approximated Shor’s circuit proposed is given
by

TVD(ProbShor,ProbŜhor) ≤ Csn3−c (5.24)

for Cs above 396. The above upper bound for this distance can be arbitrary low for large n.
It is a measure of quality between the probability of success for the quantum period finding
using the original circuit and the approximated one. (The probability of success is about
4/π2 as shown in Eq. (A.14)). Let Kg be the set of the ”good” measurements (the peaks
appeared after the final QFT), Probsucc the probability of success when using the original
circuit and Probŝucc the probability of success when using the approximating circuit. Then,

131 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

Probsucc − Probŝucc =
∑
k∈Kg

ProbShor[k]− ProbŜhor[k]

≤
∑
k∈Kg

∣∣ProbShor[k]− ProbŜhor[k]
∣∣

≤
∑
k

∣∣ProbShor[k]− ProbŜhor[k]
∣∣

= 2 · TVD(ProbShor,ProbŜhor)

≤ 2Csn3−c

(5.25)

A choice of c > 3 for any n leads to the conclusion that if the angle quantization step 2π/2b
is smaller than 2π/n3, then the probability of success of Shor’s algorithm can be as close
we want (depending on the choice of constant c) to the original one if no angle quantization
is applied. In more detail, let the desired difference between the probabilities of success
be smaller than δP. This can be accomplished if 2Csn3−c < δP. A little algebra leads to the
requirement that

n3−c <
δP
2Cs

=⇒ c > 3− log δP− log 2Cs

log n
(5.26)

Then, the quantization parameter b = c log n must be at least 3 log n + log 2Cs − log δP.
E.g. for δP = 0.1 (no more than 10% degradation in probability of success) a choice
of b > 3 log n + 9.7 + 3.3 = 3 log n + 13.0 is adequate, while for δP = 0.01 we derive
b > 3 log n+ 16.3.

The proposed angle quantization does not need to be performed explicitly. Instead, it can
be integrated to the Solovay-Kitaev like synthesis algorithms incorporated to the physical
realization design flow which transforms the rotation gates to a sequence of gates ad-
mitting fault tolerant realization. In this case, the error parameter ε of the approximation
synthesis algorithm is set to about the half the quantization step, ε ≈ π/nc. An efficient
synthesis algorithm, like these of [59, 60, 149], approximates the rotation gates with a se-
quence of length O(log 1/ε) = O(log n). In other words, a logarithmic overhead of depth is
feasible (instead of linear) related to the length of integer to be factored n, if fault tolerance
aspects are taken into account.

5.2 Communications Localization
The various modules used in the construction of the modular exponentiation based on
Fourier arithmetic can be converted to modules that use local communications only; they
can use local interactions between neighboring qubits. In particular, the proposed trans-
formation is adapted for an one dimensional linear array of qubits, in which each qubit
interacts with its two neighboring qubits only, while concurrent execution of gates applied
on different qubits is allowed (1D-NTC architecture). SWAP gates are used extensively to
circulate the different qubits around the array. The depth overhead in the basic modules
with local communications compared to the depth of the original modules with global com-
munications is linear in the number of the qubits, that is a constant multiplicative factor.
For example, the QFT, ΦADD, ΦMAC and GMΦDIV modules retain their linear depth,
although with a larger multiplicative constant. Thus, the overall depth of the modular ex-
ponentiation ΦEXP1 or ΦEXP2 circuits remains quadratic.

Some basic blocks are introduced to describe the localization of the ΦMAC. The ”inter-
leave” block shuffles 2n qubits initially in the order an−1, . . . , a0, bn−1, . . . , b0 so that their

A.Pavlidis 132

Design and Synthesis of Efficient Circuits for Quantum Computers

a5
a4
a3
a2

a1
a0
b5

b4
b3
b2

b1
b0

a5

a4

a3

a2

a1

a0

b5

b4

b3

b2

b1

b0

in
te

rle
av

e

a5
a4
a3
a2

a1
a0
b5

b4
b3
b2

b1
b0

a5

a4

a3

a2

a1

a0

b5

b4

b3

b2

b1

b0

in
te

rle
av

e
in

te
rle

av
e

Figure 5.4: Qubits interleaving using local interactions.

order becomes an−1, bn−1, an− 2, bn−2, . . . , a0, b0. The example shown in Figure 5.4 is for
the case n = 6. The generalization to other values of n is straightforward. The SWAP gates
from now on will be denoted by crossing qubit wires (X symbol) to better keep track the
exchanging of qubits in the array. The inverse block is the same circuit reflected vertically.
The depth of the ”interleave” is n− 1 steps.

Another useful block is the ”exchange” block which exchanges the first n qubits of a group
of 2n qubits with the last n qubits. Figure 5.5 shows the ”exchange” block for the case n = 6.
Observe that the ”exchange” block consists of an ”interleave” and an inverse ”interleave”
block which have n SWAP gates between them. The depth of the ”exchange” block is
2n− 1.

The shifted control block ”sc” can be used when n different two-qubit gates must be suc-
cessively applied to pairs of a common qubit c and n different qubits an−1 . . . , a0 in order.
The qubits an−1 . . . , a0 must successively appoach c before the respective two qubit inter-
action. Figure 5.6 shows how this can be accomplished in 3n − 2 steps. The two-qubit
gates are denoted with a vertical line with two dots between two neighboring qubits. The
initial order of the qubits c, an−1, . . . , a0 is settled down at the end. At each step is shown
the qubit that has become neighbor of c. The symbol of the shifted control shown con-
tains a parameter A⃗ which is a vector the matrices determining the n two-qubit gates, e.g.
A⃗ = (A1, . . .An).

When the two-qubits gates A1, . . .An mutually commute, their execution order is irrelevant
so that a smaller 2n depth circuit like the ”scc” of Figure 5.7 can be constructed. Such a
case occurs when the gates are controlled rotation gates or when the gates are CNOT
gates.

Equipped with the above localized modules we can proceed to transform the Fourier based
multiplier/accumulator ΦMAC of Section 4.2 so as it operates using local communications
only. Figure 4.15 shows that in general, the ΦMAC operates on 3n+1 qubits in five stages.

a5
a4
a3
a2

a1
a0

b5

b4
b3
b2

b1
b0

b5

b4
b3
b2

b1
b0
a5
a4
a3
a2

a1
a0

interleave interleave-1

ex
ch

an
ge

a5
a4
a3
a2

a1
a0

b5

b4
b3
b2

b1
b0

b5

b4
b3
b2

b1
b0
a5
a4
a3
a2

a1
a0

interleave interleave-1

ex
ch

an
ge

ex
ch

an
ge

Figure 5.5: Exchange of two quantum registers using local interactions.

133 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

c

a5
a4
a3
a2
a1
a0

a5 a4 a3 a2 a0a1

c

a5
a4
a3
a2
a1
a0

→

A

sc

c

a5
a4
a3
a2
a1
a0

a5 a4 a3 a2 a0a1

c

a5
a4
a3
a2
a1
a0

→

A

sc

Figure 5.6: Shifted control circuit ”sc”. Two-qubits gates (denoted with vertical lines with dots at
their ends) are applied consecutively between qubit c and aj

.

To simplify the notation, we rename the n qubits carrying the multiplicand |x⟩ in Figure 4.15
as a2, a1, a0 and the qubits of the accumulator as b5, . . . , b0. With this notation in mind, the
five stages of the ΦMAC operations are as follows:

1. Rotation gates applying V(j)
l to the target qubit bl and controlled by qubit aj for l =

0, . . . , 2n− 1 and j = 0, . . . , n− 1.

2. Sequence of n CNOT gates having a common control qubit c which target the differ-
ent n qubits an−1, . . . , a0.

3. Rotation gates applying V(j)†
l to the target qubit bl and controlled by qubit aj for l =

0, . . . , 2n− 1 and j = 0, . . . , n− 1.

4. Sequence of n CNOT gates having a common control qubit c which target the differ-
ent n qubits an−1, . . . , a0.

5. Sequence of rotation gates Wl for l = 0, . . . , 2n− 1 having a common control qubit c
which target the different 2n qubits b2n−1, . . . , b0

Stages 2,4 and 5 have the same pattern of operation: a common qubit c successively
controls n or 2n qubits which are adjacent each other. This pattern of operation can be
performed with local communications as shown in Figure 5.7 where CNOT gates are used
in stages 2 and 4, while controlled Wl gates are used in stage 5, and Wl is given by Eq.
(4.20)

Stages 1 and 3 have a different pattern of operation. Namely, the n qubits an−1, an−2 . . . , a0
concurrently interact with the n qubits bn−1⊕l, bn−2⊕l, . . . , b0⊕l in 2n steps where l = 0 . . . 2n−1
denotes the step. The ⊕ symbol denotes addition modulo 2n. On other words, all the al
qubits interact with n qubits bj in a rotating pattern, e.g. for a2 control qubit the sequence
of the target qubits is b2, b3, b4, b5, b0, b1.

The above concurrent operation of gates in rotating pattern can be accomplished with
local interaction and in linear depth with the circuit ”rc” of Figure 5.8 for the case n = 3.

c

a5
a4
a3

a2

a1
a0

a5 a3 a1 a0 a2 a4

c

a5
a4
a3

a2

a1
a0

sc
c

→

A

c

a5
a4
a3

a2

a1
a0

a5 a3 a1 a0 a2 a4

c

a5
a4
a3

a2

a1
a0

sc
c

→

A

Figure 5.7: Shifted control circuit ”scc” for commuting gates. The gates applied between qubit c
and aj mutually commute.

A.Pavlidis 134

Design and Synthesis of Efficient Circuits for Quantum Computers

b5
b4
b3
b2

b1
b0

a2
a1
a0

b3

a0

b4

a1

b5

a2

a0

b0

b5

b2

b4
b3

a2
b1

a1

b4

a0

b3

b2

b1

b0

a2

b5

a1
b4

a0

b3

b2

b1

b0

a2

b5

a1

b4
a0

b3

b2
b1
b0

a2
b5
a1

b2
b1
b0

a0

a2
a1in

te
rle

av
e

ex
ch

an
ge

ex
ch

an
ge

in
te

rle
av

e
-1 ex

ch
an

ge

ex
ch

an
ge

b4

b3

b5

b2
b1
b0

a0

a2
a1

b4

b3

b5

b5

b4
b3
b2

b1
b0

a2
a1
a0

rc

[]Ab5
b4
b3
b2

b1
b0

a2
a1
a0

b3

a0

b4

a1

b5

a2

a0

b0

b5

b2

b4
b3

a2
b1

a1

b4

a0

b3

b2

b1

b0

a2

b5

a1
b4

a0

b3

b2

b1

b0

a2

b5

a1

b4
a0

b3

b2
b1
b0

a2
b5
a1

b2
b1
b0

a0

a2
a1in

te
rle

av
e

ex
ch

an
ge

ex
ch

an
ge

in
te

rle
av

e
-1 ex

ch
an

ge

ex
ch

an
ge

b4

b3

b5

b2
b1
b0

a0

a2
a1

b4

b3

b5

b5

b4
b3
b2

b1
b0

a2
a1
a0

b5
b4
b3
b2

b1
b0

a2
a1
a0

b3

a0

b4

a1

b5

a2

a0

b0

b5

b2

b4
b3

a2
b1

a1

b4

a0

b3

b2

b1

b0

a2

b5

a1
b4

a0

b3

b2

b1

b0

a2

b5

a1

b4
a0

b3

b2
b1
b0

a2
b5
a1

b2
b1
b0

a0

a2
a1in

te
rle

av
e

ex
ch

an
ge

ex
ch

an
ge

in
te

rle
av

e
-1 ex

ch
an

ge

ex
ch

an
gein

te
rle

av
e

ex
ch

an
ge

ex
ch

an
ge

in
te

rle
av

e
-1 ex

ch
an

ge

ex
ch

an
ge

b4

b3

b5

b2
b1
b0

a0

a2
a1

b4

b3

b5

b5

b4
b3
b2

b1
b0

a2
a1
a0

rc

[]A

rc

[]A

Figure 5.8: Rotating pattern control circuit ”rc” using local interactions.

The first ”interleave” block interleaves the upper b5, b4, b3 qubits with the a2, a1, a0 qubits.
The first triad of two-qubit gates correspond to the gates V(2)

5 ,V(1)
4 ,V(0)

3 of Figure 4.15. The
three following SWAP gates allow the local interaction between the three pairs of qubits
a2− b4, a1− b3 and a0− b2, that is the local operation of gates V(2)

4 ,V(1)
3 ,V(0)

2 of Figure 4.15,
etc. This sequence of swapping and concurrent gates application cannot proceed further
so as to allow the interaction of a2 with b1 and b0. Also, it remains for qubit a1 to interact
with qubits b0 and b5, while for qubit a0 to interact with qubits b5 and b4. The purpose of the
next two ”exchange” blocks is to reshuffle the qubits in order to achieve this. The inverse
”interleave” blocks and the two ”exchange” blocks at the end reorder all the qubits in their
initial configuration.

The topology of Figure 5.8 can be used for both stages 1 and 3 of the ΦMAC with suitable
choice of two-qubits controlled rotation gates. The depth of this rotating pattern control
circuit is 12n− 10.

The parameter [A] of the symbol ”rc” is a matrix of n × 2n blocks, where each block is a
4× 4 matrix representing a two-qubits gate. In the case of stages 1 or 3, the element [A]jl
corresponds to the matrix of controlled rotation described by V(j)

l of Eq. (4.18) or V(j)†
l of

Eq. (4.19), respectively.

Combining the previous results we can build a ΦMAC circuit that uses local communi-
cations as depicted in Figure 5.9. The first stage is implemented with a rotating pattern
control circuit ”rc” with parameter [V]jl = diag(I,V(j)

l) as described above. The second stage
is an ”scc” block with parameter X⃗ = (CNOT, . . . ,CNOT). The third stage is an ”rc” block
with parameter [V]jl = diag(I,V(j)†

l) and the fourth stage is the same as the second. It
remains to apply the fifth stage which can be implemented with an ”scc” block with pa-
rameter W⃗ = (W2n−1, . . . ,W0) where Wl is given by Eq. (4.20). Yet, the qubits order must
be rearranged so as the b qubits of Figure 5.9 are adjacent to the control qubit c. This is
accomplished by the two ”exchange” blocks that precede the last ”scc” block. The two last
”exchange” blocks finalize the order of the qubits in their initial position.

b0

b1

b2

b3

b4

b5

a0

a1

a2

c

rc

sc
c

ex
ch

an
ge

ex
ch

an
ge ex

ch
an

ge

b0

b1

b2

a0

a1

a2

b3

b4

b5

c

a0

a1

a2

b0

b1

b2

b3

b4

b5

c

ex
ch

an
ge

b0

b1

b2

a0

a1

a2

b3

b4

b5

c

b0

b1

b2

b3

b4

b5

a0

a1

a2

c

sc
c

→

W

sc
c

→

X
→

X

rc

[]V []†V

b0

b1

b2

b3

b4

b5

a0

a1

a2

c

rc

sc
c

ex
ch

an
ge

ex
ch

an
ge ex

ch
an

ge

b0

b1

b2

a0

a1

a2

b3

b4

b5

c

a0

a1

a2

b0

b1

b2

b3

b4

b5

c

ex
ch

an
ge

b0

b1

b2

a0

a1

a2

b3

b4

b5

c

b0

b1

b2

b3

b4

b5

a0

a1

a2

c

sc
c

→

W

sc
c

→

X
→

X

rc

[]V []†V

Figure 5.9: ΦMAC circuit using local communications.

135 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

a5
a4
a3

a2
a1

b4
b3
b2

in
te

rle
av

e

a0
b5

a5

a4

a3

a2

a1
b1

b2

b3

b4

b5 a4
a3
a2

a1

a0

b2

b1

b0

b4
b3

a0
b0

b1

b0

b5

a5a5
a4
a3

a2
a1

b4
b3
b2

in
te

rle
av

e

a0
b5

a5

a4

a3

a2

a1
b1

b2

b3

b4

b5 a4
a3
a2

a1

a0

b2

b1

b0

b4
b3

a0
b0

b1

b0

b5

a5

Figure 5.10: ΦADD on two 6 qubits integers using local communications.

The depth of the localized ΦMAC of Figure 5.9 is 40n− 4 compared to the depth 8n of the
original ΦMAC of Figure 4.15, that is about five times deeper.

In order to retain the linear depth of the modular multipliers of Chapter 4 when imple-
menting them in a 1D-NTC architecture, localization of other blocks except the ΦMAC
is essential. The GMΦDIV block which is used in the modular multipliers consists of the
ΦMAC and also of QFT,ΦADD (adder of two quantum integers) and CΦADDC (controlled
adder of a quantum integer with a constant). Below we describe local interaction versions
of the adder ΦADD and the QFT. An inspection of Figure 4.7 shows that the the case
of the ΦADDC is handled with the topology ”scc” of Figure 5.7. This scheme is slightly
different form the one proposed in [130] as we want at the end to retain the qubits order.
Thus, the depth of a localized ΦADDC becomes 2n instead of n.

Figure 5.10 is the localized version of the ΦADD of Figure 4.9 (see also [130]). Controlled
rotation gates c-Rk are applied between pairs of qubits aj and bl for k = 1 . . . n. For a
particular k, n+1−k pairs aj and bl interact, namely the pairs that their index j and l satisfy
j− l = k− 1 and l = k− 1.

The ”interleave” block in the circuit of Figure 5.10 makes adjacent all the pairs aj and bl
with j = l so as all the c-R1 can be applied concurrently. Afterwards, SWAP gates make
adjacent qubits aj and bl with j = l + 1 for j = 0 . . . n − 1 so as to prepare them for the
concurrent application of the gates c-R2. This scheme is repeated until the final application
of the gates c-Rn. The depth of the localized ΦADD is 4n − 2 compared to the depth n of
the original ΦADD.

Finally, a localized version of the QFT [130] is shown in Figure 5.11. Hadamard gates are
included in this design and qubits labeling is attached after each SWAP gate to help keep
track the operation. Observe that this circuit achieves at the same time the required qubit
reversal of QFT. The depth of the localized QFT is 3n− 2.

The localized version of the GMΦDIV dividers (Figures 4.16-4.17 or 4.24) is easily con-
structed by substituting the ΦMAC,ΦADD,ΦADDC and QFT blocks with their localized

H
a1

a4
a5
a6

a2
a3

H H H H H
a2

a4
a5
a6

a1
a3

a2

a4
a5
a6

a3
a1

a3

a1
a5
a6

a2
a4

a3

a5
a1
a6

a4
a2

a4

a2
a6
a1

a3
a5

a4

a6
a2
a1

a5
a3

a5

a3
a2
a1

a4
a6

a5

a3
a2
a1

a6
a4

a6

a3
a2
a1

a5
a4

a6

a3
a2
a1

a5
a4

HHH
a1

a4
a5
a6

a2
a3

HHH HHH HHH HHH HHH
a2

a4
a5
a6

a1
a3

a2

a4
a5
a6

a3
a1

a3

a1
a5
a6

a2
a4

a3

a5
a1
a6

a4
a2

a4

a2
a6
a1

a3
a5

a4

a6
a2
a1

a5
a3

a5

a3
a2
a1

a4
a6

a5

a3
a2
a1

a6
a4

a6

a3
a2
a1

a5
a4

a6

a3
a2
a1

a5
a4

Figure 5.11: QFT on 6 qubits using local communications.

A.Pavlidis 136

Design and Synthesis of Efficient Circuits for Quantum Computers

version exposed above. Also, some additional ”exchange” blocks are needed to make ad-
jacent various registers that are distant during the computation. A rough estimation of the
overall depth of the improved GMΦDIV2 divider for a divisor of n bits is about 400n steps
of which about 40n steps are due to exchange operation of registers.

Similar calculations for the modular multiplier ΦMUL_MOD2 of Figure 4.23 gives a depth
of about 1800n. Consequently, the full localized version of the modular exponentiation
circuit ΦEXP2 becomes 3600n2.

Note that the above depth calculations are over-estimated because they don’t take into
account possible depth absorption of SWAP gates with adjacent two-qubit gates using
canonical decomposition [162, 163, 130]. An example is given in Figure 5.12. The canoni-
cal decomposition of both circuits has almost identical topology; the difference is the angle
parameters used in the single and two-qubit gates of the decomposition. Thus, addition
of a SWAP gate before or after a controlled rotation gate has inappreciable effect on the
depth of the circuit. Such a configuration of SWAP gates is encountered in part of the lo-
calized ΦMAC in Figure 5.8, the localized ΦADD in Figure 5.10 and the localized QFT in
Figure 5.11 .

H × • ×

× R ×

Figure 5.12: These two circuits have almost equal depth.

137 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

A.Pavlidis 138

Design and Synthesis of Efficient Circuits for Quantum Computers

6. HIERARCHICAL SYNTHESIS OF QUANTUM AND REVERSIBLE
ARCHITECTURES

A novel graph-based hierarchical synthesis methodology for arbitrary large and irregular
quantum and reversible architectures is presented in this Chapter. An architecture is pre-
scribed as a sequence of elementary operations that correspond to existing quantum or
reversible components of a library. The library can be populated with new circuits syn-
thesized by the same or other methods in a multilevel hierarchical synthesis setup. This
Chapter closely follows the presentations in [164, 165].

6.1 Background and related work
While a reversible circuit operates on classical bits, e.g. on variables taking discrete values
0 or 1, a quantum circuit operates on qubits taking values in a continuous range (namely
the surface of a sphere called Bloch’s sphere). Moreover, the reversible logic gates are a
subset of the quantum gates (the reversible gates can be described by matrices having
elements the integers 0 or 1). Nevertheless, quantum circuit synthesis can exploit known
reversible circuit techniques as many quantum algorithms use arithmetic and logic op-
erations (they are Boolean). An example is Shor’s algorithm whose main parts are: (a)
a modular exponentiation computation and (b) a quantum Fourier transform (QFT). The
former part can be described in integer arithmetic terms on the computational basis and,
therefore its construction can take advantage of reversible synthesis techniques, some-
thing that cannot be applied to the latter part of the QFT. In the former case a reversible
circuit implementing the function can be invoked and then a transformation to the quantum
circuit can be applied using the available quantum gates.

In general, the reversible synthesis methods can be divided in two families: (a) optimal
or asymptotically optimal and (b) heuristic. The former methods result in a circuit that
minimizes a particular cost factor which is usually the number of gates. Optimal methods
are practical for a few bits only (e.g. 3 or 4 bits) as they demand exponentially grown
memory and time as a function of inputs [166, 167, 168]. Heuristic synthesis methods
behave better referring to the bits handling capacity at the cost of relaxing the optimality
requirement. Transformation [169, 170], search [171], cycle [172] and Binary Decision
Diagrams (BDD) [173] based methods fall under the latter category. A thorough overview
can be found in [30]. In general, most of the methods suffer from limited scalability: they do
not handle large circuits of more than 100 bits due to restrictions of memory and runtime
as they consume exponential resources in arbitrary examples cases.

Quantum synthesis differs from reversible synthesis in the specifications and the libraries
used to synthesize the circuit. Boolean specifications in the computational basis are ad-
equate when the target circuit is an arithmetic one or logical one due to the linearity and
the superposition principle. Thus, reversible circuit methodologies can be used and then
library transformation can be applied to convert from the reversible library to a quantum li-
brary. When the specifications are in the form of a unitary matrixU of dimension 2n×2n for a
circuit consisting of n qubits then decomposition methods can be applied [53, 27, 174, 28].
In such methods the unitary U is decomposed in a sequence of single qubit and two qubit
gates where the specific gates depend on the library. Gates number is exponential in n in
general.

As discussed above the various existing quantum and reversible synthesis methods need
exponential computing resources and thus they do not scale well for large circuits. A step
towards synthesis of large circuits would be the combined use of hierarchical methods
where the circuit, being reversible or quantum, is built level by level using already synthe-

139 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

sized functions of smaller blocks. These blocks can be ad-hoc designed if they correspond
to well known circuits involving regularity (e.g. adders or other arithmetic circuits), auto-
matically synthesized by a synthesis method chosen by the user, or synthesized by the
proposed method if a bottom up design is needed to handle a complex specification. To
our knowledge only a few hierarchical synthesis method have been presented in the lit-
erature [175, 176, 177, 178, 178]. The proposed hierarchical synthesis method applies
to both reversible and quantum circuits and eliminates intermediate bits/qubits without
excessive ancilla usage. It also supports unlimited circuit size handling capability on an
existing library of components. It applies to the quantum case whenever a classically de-
fined ”oracle” arithmetic function must be embodied in the quantum algorithm.

6.2 Methodology Basics
In this section, we present a set of inter-operating algorithmic routines which synthesize
a complex reversible or quantum circuit using abstract functional blocks. Fig. 6.1 outlines
the basic steps of the methodology. The abstract blocks are part of a library and are as-
sumed to be already synthesized (using our method or other lower level methods). The
specifications of the target architecture come in the form of sequence of arithmetic/logical
instructions. The circuit is synthesized progressively in three steps. In the forward syn-
thesis part a directed acyclic graph representing the required computations by the speci-
fications is built by interconnecting various library blocks and possibly by adding ancillae
(whenever temporary variables are used), without taking into account the resetting of the
ancillae. Subsequently, possible deadlocks which prevent the next step are detected and
eliminated. The last step, reversing, is the expansion of the graph so as to reset the ancilla
states

Sequence of
Functions

Specification

Forward
Synthesis

Deadlock
Detection &
Prevention

Reversing
Synthesis

input c
input y
x=0
x=CMACα(x,y,c)
[q,r]=DIVN(x)

Library

Library
Expansion

Sequence of
Functions

Specification

Forward
Synthesis

Deadlock
Detection &
Prevention

Reversing
Synthesis

input c
input y
x=0
x=CMACα(x,y,c)
[q,r]=DIVN(x)

Library

Library
Expansion

Figure 6.1: High level description of the proposed synthesis methodology.

A.Pavlidis 140

Design and Synthesis of Efficient Circuits for Quantum Computers

6.2.1 Initial Specifications and Library
We consider sequences of arithmetic and logical operations describing the reversible cir-
cuit or the quantum oracle of the general form:

x = fi(x, b) (6.1)

Function f affects only one of its two input variables x and b. Index i is an identifier used to
distinguish among the various available functions in the library. Variables x and b are inte-
gers of nx and nb bits, respectively. We call variable x the affected variable and b the control
variable. There are special cases of elementary functions that fall under the description of
Eq. (6.1). In the simplest case there is no control variable (nb = 0) in the computation of
a primitive assignment such as x = NOT(x). In other cases, the bits of the variables are
partitioned into sets, where each set has its own index as shown in equation (6.2).

[
x(out)1 , . . . x(out)k

]
= fi

([
x(in)1 , . . . x(in)l

]
, [b1, . . . bm]

)
(6.2)

In this case, output variable x (denoted as x(out)) is partitioned in k subsets of bits, each one
indexed as variable x(out)i , i = 1, . . . , k and consists of nxi bits. Similar description applies
to variables x(in) and b. As an example consider the function of dividing a 2n bits affected
input variable by a constant integer resulting in an n bits quotient and an n bits remainder
whenever the quotient is less than 2n. In this case k = 2 and l = 1 and the bits representing
the dividend become the quotient and remainder bits of the output.

We assume that a library of quantum or reversible subcircuits implementing the classical
functions in the form of Eq. (6.1) or (6.2) like the one proposed in [179] is available. This
library can be also viewed as the instruction set of a quantum arithmetic logical unit (QALU)
and the result of our synthesis procedure can be viewed as the sequence of executions of
the quantum instructions to various quantum registers of the QALU. An example quantum
library of arithmetic and logical functions is given in Table 6.1. Various quantum circuit
representations of these functions can be found in the literature or can be synthesized

Table 6.1: Example functions of a Quantum Library.

Quantum
Function

Affected Qubits Control Qubits

Input State Output State Size State Size
INP_F - 0 or x n - 0
NOT x x̄ n - 0
CNOT x x⊕ b n b n
COPY x = 0 0⊕ b = b n b n
ADDCa x x+ a(mod2n) n - 0
CADDCa x x+ ca(mod2n) n c 1
ADD x x+ b(mod2n) n b n
CADD x x+ cb(mod2n) n b, c n, 1
MACa x x+ ab(mod22n) 2n b n
CMACa x x+ cab(mod22n) 2n b, c n, 1
DIVa x x/a, x mod a 2n - 0
OUT_F x x n - 0

141 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

with known methods to further populate the library. The library can be arbitrarily extended
by including more complex functions or even new functions synthesized by the algorithm
described in this paper or other methods.

Each function shown in Table 6.1 transforms the quantum state (input state) of a qubits col-
lection to another quantum state (output state). This transformation depends on the state
of some other qubits which remain unaltered. We call the qubits that get transformed af-
fected and the qubits that remain unaltered but influence the affected qubits control qubits,
in correspondence to the affected and control variables of function f in equation (6.1), re-
spectively. In Table 6.1, for each quantum function shown in the first column the following
columns show the number of affected qubits (size), their initial state and the output (trans-
formed) state. The last columns show the state and the number of the control qubits. Since
the state of the control qubits remains unaltered, Table 6.1 does not distinguish between
input and output states for these qubits. The inverses of the functions of Table 6.1 (which
are inherently reversible) are not shown, but are also included in the library.

6.2.2 Quantum Dependence Graph
The synthesized quantum circuit is represented as a directional acyclic graph (Quantum
Dependence Graph or QDG) consisting of nodes corresponding to the quantum subcir-
cuits (blocks) of the library functions and of arcs corresponding to the individual qubits or
groups of qubits (qubit buses) connecting these blocks.

Figure 6.2 clarifies with an example the notation and the labels used in a QDG. Figure
6.2.i is a quantum addition circuit block in standard notation implementing the function
ADD(x, y). Qubits of input y remain unaffected at the output as the block is reversible and
thus they correspond to control qubits. Figure 6.2.ii is the same block in a more compact
form with the qubits organized in buses and connected in different ports. Figure 6.2.iii
represents the same block as a QDG node and its incoming and outgoing arcs. Attached
to the node are the type label which is equal to value ADD and the id label (it depends
on the relative position in a particular QDG). The bottom left arc corresponds to the qubits
carrying the x state and has three labels attached: The width of the arc (width) which is
equal to the number of the qubits n, the port destination label dest which is equal to 1 as
there is only one affected input port for this block and the port source information (source)
which depends on other nodes of the QDG. Similar remarks hold for the rest of the labels

A
D

D

(i)

x0

x1

xn-1

y0

y1

yn-1

y0

y1

yn-1

(x+y)0

(x+y)1

(x+y)n-1

A
D

D

(ii)

x

y y

x+y

n

n

n

n

co
n

tr
o

l i
n

 p
o

rt
 1

af
f.

 in
 p

o
rt

 1

af
f.

 o
u

t
p

o
rt

 1

type=ADD
id=?

(iii)

source=1
width=n
dest=?

source=?
width=n
dest=1

source=?
width=0
dest=1

A
D

D

(i)

x0

x1

xn-1

y0

y1

yn-1

y0

y1

yn-1

(x+y)0

(x+y)1

(x+y)n-1

A
D

D

(ii)

x

y y

x+y

n

n

n

n

co
n

tr
o

l i
n

 p
o

rt
 1

af
f.

 in
 p

o
rt

 1

af
f.

 o
u

t
p

o
rt

 1

type=ADD
id=?

(iii)

source=1
width=n
dest=?

source=?
width=n
dest=1

source=?
width=0
dest=1

Figure 6.2: Representation of a quantum functional block in the QDG notation. (i) Functional block
showing all the qubits taking part in the operation along with their input and output states, (ii) the
same block with the qubits organized in buses connected to ports, and (iii) the abstract notation of
the same block as a node with arcs and their labels. The question marks mean that the respective
label depends on the specific connections of the node relative to the other nodes of the QDG.

A.Pavlidis 142

Design and Synthesis of Efficient Circuits for Quantum Computers

A

B

C
D

0

A

B

D

C

>0 >0 >0

>0 >0 >0

(i) (ii)

A

B

C
DA

B

C
D

0

A

B

D

C

>0 >0 >0

>0 >0 >0

0

A

B

D

C

>0 >0 >0

>0 >0 >0

(i) (ii)

Figure 6.3: Mapping between the standard notation (i) and the QDG notation (ii). Affected arcs have
width >0, while control arcs have width=0.

attached to the other two arcs (control input arc and affected output arc).

The labels id and type can be represented by integers, for each type there is its negative
type which corresponds to the block performing the inverse function. Also, the constant
parameters of some of the blocks (e.g. parameter a of the function MACa) are assumed
to be included in the type label. Later, a third label named anc (integer with values 1 or 0)
will be used also.

The affected qubits (or affected qubit buses) transformed by a node are represented by
arcs incoming to and outgoing from that node. Each affected arc, either incoming or outgo-
ing, must also include the port source (arc tail connection) and port destination (arc head
connection) information, because some nodes may have more than one input and/or out-
put qubits buses and we need to distinguish the various possible ports of each node.

Similarly, the input control qubit buses of a quantum function are represented as incoming
arcs to the corresponding node. Control arcs always have a width of 0 (no matter their real
qubits width) so as to be distinguished from affected arcs. The tail of control arcs emerge
from affected qubits output ports of an ancestor node. As control qubits are not altered by
any node they entered, there is no need to show their exit by an outgoing arc. Similarly
with the case of the affected qubits arcs, we need to include in each control arc the port
source and port destination information.

Input nodes of the graph represent initial qubit states (quantum variables passed to the
quantum algorithm represented by the QDG) or ancilla qubits initially set to a zero state.
For both cases, a node with the special type INP_F is used in the graph. Similarly, output
nodes of the graph represent output qubits states (final results or ancilla states). The an-
cilla states correspond to garbage qubits states or ancilla qubits reset back to their initial
zero state when the reversal procedure described later is applied. The output nodes are
represented with a node of the special type OUT_F which acts as an identity node.

In some of the functions, the control qubits are grouped in different states variables. The
same applies for the affected qubits in some of the functions. As an example, the controlled
adder CADD has the two groups of control qubits b and c, of n qubits and one qubit,
respectively. Also, the divider function DIV has 2n qubits wide input state, but the output
state is grouped in two qubits buses of n qubits, namely the quotient and the remainder. In
general, we allow such qubit grouping in the functions of the library because it facilitates
the initial specifications.

The separation of the qubit buses into affected and control ones simplifies the internal
representation of the circuit and the workings of the synthesis algorithm, especially the

143 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

deadlocks detection developed later. The restriction that a node control input does not
exit the same node does not contradict the standard notation of a quantum circuit; it is just
a remapping of notation as shown in Figure 6.3.

6.3 Forward QDG Synthesis
The first phase (see Fig. 6.1) of the QDG construction is dedicated exclusively to the
forward computations, without taking into account the resetting of the possible ancillae
qubits. This step is trivial and will be explained in short.

6.3.1 Representation of Classical Algorithm
Dependencies among the sequence of functions of the classical algorithm to be mapped
as a quantum oracle exist when a variable in the list of affected output variables of a
function is used as an input variable (affected or control) in a subsequent function. These
dependencies will be reflected in the QDG through the use of an arc connecting two nodes.
Initial values and input variables of the algorithm correspond to affected output ports of
INP_F nodes, while the variables giving the final results (desired and garbage) of the al-
gorithm correspond to affected input ports of OUT_F nodes. Intermediate variables (tem-
porary) used in the algorithm for the calculations of the final results correspond mainly to
ancilla qubits.

An arbitrary classical algorithm using elementary functions of the form of equation (2) can
be equivalently described by arrays of integers and arrays of lists of size L, where L is
the total number of functions comprising the algorithm. An integer array type describes
the type of each function, arrays of lists p, m and c describe the lists of affected output,
affected input and control input variables, respectively. Another array of integers, named
w describes the number of bits used by each variable. Last, array res will discriminate
which of the variables used in the algorithm are the desired final results and which are
intermediate temporary variables. This last array definition is crucial for the final phase of
the synthesis algorithm whose purpose is to reset intermediate garbage.

6.3.2 Forward Synthesis Algorithm
The main data structures used in the synthesis of the forward computations QDG are the
graph structure itself, named forwQDG, and the arrays type,p,m,c,w and res describing the
classical algorithm mentioned in the previous subsection.

The purpose of forward synthesis algorithm is to add nodes to the forwQDG (initially null),
one for each function found in the classical algorithm and connect them with affected and
control arcs based on the dependencies between the variables. In brief, the synthesis
algorithm of the forward QDG consists of the steps shown in Table 6.2 and explained
below. An example of a part of forward QDG built by such an algorithm is shown in Figure
4.

The synthesis algorithm executes the for loop of size L (lines 1,5). For each integer l
(l= 1 . . .L) the following steps build gradually the forward QDG:

Line 2 Add a new node in the forward QDG. This node has a type label equal to the
type of the function (type[l]). A new node id is assigned sequentially for each
node added.

Line 3 Scan the list of control input variables c[l] of this function. Then for each control
variable in the list, find every function k that includes this variable in its output
variable list p[k] and connect with an arc the two respective nodes of the QDG
corresponding to these two functions, l and k. As the arc connecting the two

A.Pavlidis 144

Design and Synthesis of Efficient Circuits for Quantum Computers

Table 6.2: Forward QDG Synthesis Algorithm

Operations
1: FOR each line l DO
2: Add node
3: Add incoming control arcs to node
4: Add incoming affected arcs to node
5: END FOR
6: Add terminal (OUT_F) nodes
7: Record the garbage terminal nodes in a list

nodes is related to a control input connection add a width label of value 0 on
the arc. Add source and destination port labels reflecting the input and output
ports that are connected by this arc. The position of the variable in the lists p[k]
and c[l] is the source and destination port number, respectively.

Line 4 Scan the list of affected input variables m[l] of this function. Then for each
affected input variable find every function that includes this variable in its output
variable list p[k] and connect with an arc the two QDG nodes which correspond
to these two lines, l and k. Add labels on this arc reflecting the number of the
qubits carried by this variable (w[m[l]]) and also the source and destination
port similarly to Step 2 above. If no line with such an output variable is found
then add a new node of type INP_F and make the required connection with the
relevant labels (This means that the input variable is an input argument to the
classical oracle to be synthesized).

After the execution of the loop, two more steps are necessary to prepare the reversing
phase of the synthesis:

Line 5 For all unmatched affected output variables (this means that the variable is a
final desired result or an ancilla output) add a new node of type OUTP_F and
make the required arc connection assigning the relevant width and port labels.

Line 6 Record in a list (GarbageTermList), the terminal node ids of the forward QDG
which carry garbage results, that is non desired final results. This discrimination
is based on the array res mentioned in the previous subsection.

6.4 Reversible QDG Synthesis
The final phase of our synthesis algorithm transforms and expands the forward QDG so
as to reset all ancilla qubits back to their initial constant states.

6.4.1 Node Inversion
The un-computation of the ancilla qubits state back to a constant state can be achieved
by successively inverting the states of ancilla qubits that appear at the output of a terminal
node through all the nodes up the respective input nodes affecting these ancilla qubits.
These terminal nodes have been recorded in GarbageTermList.

To understand the requirements and the procedure to invert the state of the affected output
qubits of a node in a QDG, we refer to Figures 6.4 and 6.5 which represent a segment of
an example forward QDG and its expansion (called revQDG), respectively. The purpose of
the expanded QDG is to uncompute the garbage ancilla states.

In Figure 6.5, nodes A−1,B−1,C−1,D−1 and H−1 are the nodes required to invert the output

145 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

3
A

n1

n2

0

r1
r2

c4

s1
s2

s3

B
C

D

1 2
1

1 2
n4

n5

n6

1

E F G

H

n3

3 2

1

forward QDG

2

3
A

n1

n2

0

r1
r2

c4

s1
s2

s3

B
C

D

1 2
1

1 2
n4

n5

n6

1

E F G

H

n3

3 2

1

forward QDG

2

Figure 6.4: Part of an example forward QDG node. Attached at the tail of the solid arcs is the output
state and at the head of the arcs is the width of the arc (0 for control arc). Inside the circles of the
nodes the port numbers for each case of affected input, affected output and control input arcs are
shown.

reversible QDG expansion

A-1
r1

r2

c4

n1
n2

0

B-1 C-1
D-1

s1

s2 s3

n4

n5 n6

1 2 3
1

1 2

1
H-1

3
2

2

reversible QDG expansion

A-1
r1

r2

c4

n1
n2

0

B-1 C-1
D-1

s1

s2 s3

n4

n5 n6

1 2 3
1

1 2

1
H-1

3
2

2

Figure 6.5: Inversion of node A of the example forward QDG shown in Fig. 6.4. Legend of arc and
node labels is similar as that of Fig. 6.4.

states of node A of the forward QDG in Figure 6.4. Inverting states s1, s2, s3 of the output
qubits of node A means to transform them into the states r1 and r2. Figure 6.4 shows that
node A receives as affected inputs two arcs (with widths n1 and n2) from nodes E and
F being in states r1 and r2, respectively. These are controlled by state c4 (arc of width
0 emerging from node G) and transformed into the output states s1, s2, s3. The inverse
transformation is realized by another node of the reverse QDG, namely node A−1, which
is the inverse of node A (as we have previously mentioned, the quantum library contains
the inverse of every function as well). So, if the affected input ports of node A−1 are fed
with the states s1, s2, s3 and its control input is fed with the state c4 it is obvious that the
required inversed states r1 and r2 become available at the affected output ports of node
A−1.

This inversion implies that states s1, s2, s3 and c4 must be available. In the example we
have shown for the forward QDG states s1, s2, s3 have already been processed by the
successor nodes of A (nodes B,C, D) and the state c4 has been processed by node H.
This necessitates the inversion of nodes B, C, D and H before the inversion of node A.

The incoming arcs connections to node A−1 are as follows. Node A has two ports of af-

A.Pavlidis 146

Design and Synthesis of Efficient Circuits for Quantum Computers

fected input qubits, namely 1 and 2 of respective qubits width n1 and n2, and a unique
control input port labeled as 1. Moreover, it has three affected output ports (1, 2 and 3)
of widths n4, n5, and n6, respectively. The ports of the affected input qubits of the inverted
node A−1 are the ports of the affected output qubits of node A and vice versa. Control
port 1 of A−1 corresponds to the same port (number 1) of node A. When connecting the
incoming arcs of node A−1 the algorithm needs the extra information of which ports are
engaged in these connections.

6.4.2 Global Considerations
The above per-node inversion procedure must be applied by taking global considerations
into account. Some prerequisites and constraints are the following:

• Selection of nodes which require inversion: Only some of the forward computation
QDG nodes need to be inverted. The reversing algorithm must select and label the
nodes of the forward computation that need inversion (using label anc with values 0
or 1 attached at each node). The reversing algorithm begins from the nodes listed in
GarbageTermList and recursively marks all the internal nodes of the forward QDG
that have a path connection to these leaf nodes as the nodes that require inversion.
These paths must comprise exclusively of affected arcs, i.e. it marks only the an-
cestors of the output nodes that directly transform the final ancilla state. The nodes
which need inversion will be called ancilla nodes and their anc label is set to value
1 (the rest of the nodes have a value 0 and will be called non ancilla nodes). This
prerequisite to mark the ancilla nodes of the forward QDG will be taken into account
later, at line 1 of the reversing algorithm shown in Table 6.6.

• Sequence of inversion: the algorithm must check that each candidate node for inver-
sion is ready and allowed for this operation. Only a subset of the ancilla nodes is able
to be inverted at each instance. This is due to the existence of data dependencies
between the various nodes. In the example of Figure 6.4, node A can be inverted only
if its children nodes are already inverted (in case they were ancilla nodes) because
node A−1 requires the states s1, s2, s3. These states are not available as the forward
computation has already transformed these states by applying nodes B, C and D.
The readiness condition just described is given in line 8 of the reversing algorithm in
Table 6.6.

Even if an ancilla node is ready for inversion, a postponement of this action may
be necessary. This may happen if this blocks the inversion of other nodes. E.g. the
candidate node for inversion has a control arc connection towards another ancilla
node which is not yet inverted. The purpose of updating the GarbageTermList in line
11 of Table 6.6 is exactly this.

• Tracking of intermediate states: The inversion algorithm needs to keep track of which
forward QDG node output state corresponds to the new output states computed by
each new inverted node. Referring again to Figure 6.5, when node A−1 is added to
invert node A, the necessary information of where to find the states s1, s2, s3 must
have been recorded. These states have been computed in a previous step of the
algorithm when the inversion of nodes B, C and D took place, by adding nodes B−1,
C−1 and D−1 and their corresponding arcs, so these latter nodes can supply the
required states s1, s2, s3.

An array of lists named revinfo is used for this purpose. A list is assigned to each
node of the forwQDG. Initially, the lists corresponding to the terminal nodes of the

147 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

forwQDG contain as records the same terminal nodes (meaning that the output states
of the terminal nodes are available at the nodes themselves), while the revinfo lists
of the internal nodes are empty (meaning that the states of the internal nodes of the
forwQDG are no longer available as the forward computation has proceeded to the
end). Additionally, the records of a list contain arcs information such as the source
port, destination port and width. During the inversion of the nodes procedure, as
the revQDG is expanded, states of internal nodes of the forwQDG gradually become
available (new terminal nodes in the revQDG appear) while states of other nodes
are no longer available (they become internal nodes of the revQDG). Therefore, the
revinfo lists must be updated anytime a node is inverted and this update becomes
part of the node inversion algorithm shown in Table 6.3.

• Deadlocks resolution: There are cases where it is impossible to invert a given forward
computations QDG without applying a certain transformation on it. These cases are
again related to the data dependencies imposed between two nodes which prevent
the inversion of another node. Treatment of these situations is described in detail in
the following subsection.

Table 6.3: Node Inversion Algorithm

Operations
1: ADD New Node of type A−1 in revQDG
2: ADD affected arcs in revQDG from nodes of

RevInfo(A) list towards node A−1.
3: FIND the ancestors F1,. . .,Fm of node A that have af-

fected arc connections with A.
4: UPDATE the lists RevInfo(F1),. . ., RevInfo(Fm) with

the new added node A−1.
5: FIND all the nodes CA1,. . ., CAn, which control node A.
6: ADD control arc connections in revQDG from nodes

CA1,. . ., CAn to node A−1.

6.4.3 Deadlocks Resolution
There are two possible cases that can lead to deadlock of the reversing algorithm. The
two cases are depicted in Figures 6.6 and 6.7. In both cases we assume that we have
already marked all the nodes of the QDG as ancilla or non ancilla nodes.

The sequence of deadlock resolution algorithms is to first apply the algorithm for the sec-
ond type and afterwards the algorithm for the first type, as it is possible the revocation of
a second type deadlock to generate a first type deadlock, but not vice versa.

Both deadlock resolution algorithm use additional ancilla bits/qubits and copy the output
port states of the nodes that cause the deadlocks to these new ancillae. This is a bitwise
copy operation which is simply performed with CNOT gates having as control the bit state
to be copied and as target the new ancilla in the zero state.

Although a real copy operation is not permitted in the quantum context due to the ”no-
cloning” theorem, the purpose here is to reset an intermediate ancilla state back to zero.
If someone analyzes the global operation of the circuit he can see that as long as the
garbage states ends up in state 0 for every basis input state then the same holds for
every superposition of them. That is the garbage states become 0 and disentangled from

A.Pavlidis 148

Design and Synthesis of Efficient Circuits for Quantum Computers

the other states. Consequently, the circuit operation is the desired one when analyzed
globally (see Section 6.6 for more details).

In both deadlock cases I and II the drawback of adding more ancilla qubits can be counter-
balanced by the reversing of other ancilla qubits which otherwise would be garbage qubits
and could not be reused. This point will be further analyzed in Section 6.6.

Deadlock Type I

The handling of the first deadlock type is depicted in Figure 6.6. Nodes A and B are marked
as ancilla and are connected by an affected arc (width greater than zero). Nodes C1 and
C2 are marked as non-ancilla and the arcs connecting node A with them have also a width
greater than zero (n1 and n2) and emerge from different ports of node A, namely p1 and p2.
It is the affected arc between nodes A and B the fact that gives the ancilla property to node
A and consequently the necessity to invert it; its other children connections are towards
the non ancilla nodes C1 and C2.

The deadlock condition then arises due to the fact that a node like A has affected arc
connections to both ancilla and non ancilla children. It is impossible to invert the ancilla
node A as this requires the prior inversion of nodes C1 and C2, but these nodes must not
be inverted as they are non ancilla nodes and their output results must remain unaltered
up to the end of the computations. This kind of deadlock can be prevented by “copying”
the qubits emerging from ports p1 and p2 and thus releasing node A so as its output states
can be inverted as desired. The detailed required actions to revoke such a deadlock case
are described in Table 6.4 and Figure 6.6.

A

B

M1

N1

>0

n1

n2

0

n1

C1

Ancilla

COPY

INP_F AncillaM2

N2

n2

0

C2
Non
Ancilla

n1 n2

Non
Ancilla

p1
p2

O1 O2

OUT_F

p3 p4

n1 n2

A

B

M1

N1

>0

n1

n2

0

n1

C1

Ancilla

COPY

INP_F AncillaM2

N2

n2

0

C2
Non
Ancilla

n1 n2

Non
Ancilla

p1
p2

O1 O2

OUT_F

p3 p4

n1 n2

Figure 6.6: First type of deadlock resolution. Nodes A and B are ancilla, nodes C1 and C1 are non-
ancilla and M1,M2,N1,N2,O1,O2 are the nodes added to prevent the deadlock. Next to each arc is shown
its width. Ports are shown inside the circles of some nodes.

Deadlock Type II

The second type of deadlock is illustrated in Figure 6.7. Node A which is non-ancilla con-
trols via an arc (width 0) emerging from port p1 of ancilla node B. As the latter node is an
ancilla node it must be inverted. This inversion need means either that the forward com-
putations must not have proceeded beyond node A (towards nodes E, F, G and H) or that

149 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

Table 6.4: Detection and Resolution of Deadlock I Algorithm

Operations
1: FOR each ancilla node A of forwQDG DO
2: IF node A has affected arcs connections to both ancilla and non

anciila children nodes THEN
3: FOR each affected outgoing arc i emerging from node A (port pi)

and leading to a non-ancilla node Ci DO
4: ADD a new node, Mi, of type INP_F initializing ni qubits in

zero state. The number ni is the width of the arc A→ Ci
5: ADD a new node, Ni, of type COPY whose purpose is to

copy the port pi output state of node A
6: ADD an affectecd arc connection from node Mi to node Ni

of width ni (the number of qubits to be copied). The port in-
formation attached to this arc is trivial (1 for both the tail and
head) as an INP_F node has only one output port and a
COPY node has only one affected input port

7: ADD a control arc connection (width 0) from node A to node
Ni. The tail of this arc is port pi of node A and the head is
port 1 as a COPY node has only one control input port

8: ADD an affected arc connection from node Ni to node Ci.
Arc’s destination port is the destination port of arc A → Ci
and its width is ni. The source port of this arc is again 1 as
only one output port exists on any COPY node

9: REMOVE the arc connecting node A with node Ci
10: ADD an OUT_F node
11: ADD arc connection from port pi of node A to node OUT_F
12: MARK node OUT_F as ancilla node
13: END FOR
14: END IF
15: END FOR

the output state of port p1 of A must be available somewhere else in the QDG.

The deadlock condition arises whenever a path like A → E → F → G → H (Path 1
in Figure 6.7) consists exclusively of affected qubits arcs (width greater than zero), the
nodes belonging to the path are non-ancilla and simultaneously exists a second path from
B to H (Path 2 in Figure 6.7) where the subpath B→ D consists of affected arcs while the
last arc D → H is supposed to be a control arc. The nodes belonging to path B − D are
assumed to be ancilla nodes. Both paths must emerge from the same output port (shown
in Figure 6.7 as p1) of node A.

If the last arc D→ H wasn’t a control arc then this case could be handled by the resolution
of type I deadlock because in such case node D, being ancilla node, would have another
outgoing arc of width greater than zero leading to another ancilla node. For the same
reason, node A is supposed to be a non ancilla node, otherwise we would face an ancilla
node having both ancilla and non ancilla children connected through affected arcs.

This second deadlock condition can be justified for the following reasons. If the inversion
of node B is done prior the advancement of the forward computations beyond node A
(towards node H) then the output state of node D will not be longer available and the

A.Pavlidis 150

Design and Synthesis of Efficient Circuits for Quantum Computers

computation on node H could not be done. On the other hand as explained above, if the
forward computation has advanced up to node H (so as node D can be inverted) then the
inversion of node B cannot be done as the output state of node A is no longer available.

An algorithm for detection of second type of deadlocks has been developed and is briefly
described in Table 6.5. A detected deadlock can be revoked with similar actions as those
of the first deadlock case, that is addition of nodes M, N, O and some rearrangement of
arcs as depicted in Figure 6.7. Detailed resolution operations are not exposed in Table
6.5 due to the similarity with first case.

The detection of the second type is as follows: Every non ancilla node A is checked for
engagement in a possible deadlock (lines 1,17). For each such node a list, L0, consisting of
its non ancilla children is built (line 2) and another list, L1, consisting of its ancilla children
is also built (line 3). The purpose of the double loop defined in lines 4,17 and 5,16 is
to check if two arcs emerge from the same port p of node A towards an ancilla and a
non ancilla node (lines 6,15). This is a prerequisite for the deadlock of the second kind
and this condition corresponds to the arcs A → E and A → B in Figure 6.7. If such a
condition is fulfilled then another list, nonAncS, that contains non ancilla nodes is built (line
7). This list contains only the non ancilla successor nodes of node C0 and a modified Depth
First Search procedure can be applied for this retrieval. This modified search procedure
traverses only the affected arcs (the ones with their width greater than zero). Now, every
path from node A to each node S of the list nonAncS corresponds a path similar to Path1
in Figure 6.7. The final check is to find if a second path exists from node C1 to any of the
nodes recorded in list nonAncS (lines 10-13). This path must be composed of affected arcs
only except the last one (line 11) and this could correspond to Path 2 in Figure 6.7. If this
final condition is true then a procedure similar to that one exposed in Table 6.4 is applied
to port p of node A which causes the second kind of deadlock (line 12).

INP_F A

B

M

N

E

F

C

Path 2

D

0

n1

n1 0

n1

G

H

>0

>0

>0

Ancilla

Non
Ancilla

Ancilla

>0

>0

Path 1

Non
Ancilla

COPY

p1

0

O

OUT_F

n1

INP_F A

B

M

N

E

F

C

Path 2

D

0

n1

n1 0

n1

G

H

>0

>0

>0

Ancilla

Non
Ancilla

Ancilla

>0

>0

Path 1

Non
Ancilla

COPY

p1

0

O

OUT_F

n1

Figure 6.7: Second type of deadlock. Nodes A,E,F,G,H are non-ancilla whereas nodes B,C,D are an-
cilla. Nodes M,N,O added to prevent the deadlock. Width of each arc is shown.

Uniqueness of the two deadlock conditions

The previous two deadlock types are the only ones that can arise. This can be justified if
we examine all the possible connection cases of an ancilla node, e.g. B, which must be

151 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

Table 6.5: Detection of Deadlock II Algorithm

Operations
1: FOR each non-ancilla node A of the forwQDG DO
2: Generate a list L0 with the non ancilla children of A
3: Generate a list L1 with the ancilla children of A
4: FOR each node C1 of forwQDG in L1 DO
5: FOR each node C0 of forwQDG in L0 DO
6: IF source(arc(A,C1))=source(arc(A,C0)) THEN
7: nonAncS=DFS1(C0)
8: p=source(arc(A,C0))
9: FOR each S in nonAncS DO

10: path2=FindPath(C1, S)
11: IF path2 ̸= NULL AND all arcs of path2 are

affected except the last one THEN
12: Deadlock found at port p of node A
13: END IF
14: END FOR
15: END IF
16: END FOR
17: END FOR
18: END FOR

inverted. The necessary conditions to invert node B are: (1) its incoming control states be
available at the instance of inversion and (2) its outgoing output states be also available,
as explained previously.

The first condition means to investigate the possible cases of ancestor nodes of B that
have control arcs connected to it. There are two cases: (1a) an ancestor node A is a non
ancilla node and (1b) an ancestor node A is an ancilla node. Case 1a is covered by the
type II deadlock. Case 1b means that at least one of the successors of A, e.g. C, with
affected arc connection from node A is an ancilla node. If such a connection emerges
from the same port as the arc A → B then node B can be inverted only if node C can
be inverted so as this case is reduced to recursively check if node C is engaged in any
deadlock. On the other hand if such a connection emerges from another port of node A
then we can see that we fall back in a type I deadlock.

The second condition can be separated in the following subcases: (2a) All the successors
of node B are ancilla nodes. This means that this condition can be reduced to assure
recursively that the successors are not engaged in any deadlock. (2b) At least one of the
successors is a non ancilla node and this case is handled again by the type I deadlock.

Therefore, all the necessary conditions to invert an ancilla node are covered by preventing
just the two deadlock cases described previously.

6.4.4 Reversing Algorithm
The actions described previously to reset the garbage states are collected together in
Table 6.6. The initialization actions already described are the marking of ancilla nodes of
the forward QDG (line 1, subsection 6.4.2), the application of the two deadlock resolution
algorithms (lines 2,3, subsections 6.4.3 and 6.4.3) and the initialization of the revinfo lists
(line 4, subsection 6.4.2).

A.Pavlidis 152

Design and Synthesis of Efficient Circuits for Quantum Computers

The forwQDG already modified by the two deadlock resolution procedures is then copied
(line 5) to a second QDG called revQDG. New nodes will be progressively added to revQDG,
while at the same time ancilla nodes will be deleted from forwQDG. The final synthesis
product will be the revQDG graph.

The circular list, GarbageTermList, is used to store the ids of garbage terminal nodes of
forwQDG. This list is initialized during the construction of the forward QDG (subsection
6.3) and contains all the terminal nodes of the graph that carry non desired results, that
is it initially contains the terminal nodes carrying garbage. This list is updated during the
reversion algorithm by removing ancilla node ids just inverted and by adding ancilla node
ids which became terminal nodes after the removal of inverted nodes in the forwQDG. The
algorithm scans in a circular manner this list until it becomes empty (lines 6,7,13).

Each node id found (curNode) in the circular list is checked if it is ready for inversion in the
forwQDG (lines 8,12). This has been explained inSequence of Inversion bullet in subsection
6.4.2. In such a case, a new node with inverse type and its relevant arcs are added in the
revQDG (line 9). These steps have been described in detail in subsection 6.4.1.

We then remove this curNode from the forwQDG graph (line 10). This removal is necessary
as it may release some other ancilla nodes of the forwQDG with their ids contained in the
GarbageTermList to become ready for inversion in the next execution of the loop. Thus,
this removal will be taken into account in the updating of the GarbageTermList in line 11.
The procedure of updating this list is (i) to remove the curNode and (ii) to add all the ancilla
parent nodes of curNode on the condition hey have no children (this is equivalent that they
indeed have become terminal nodes after the removal of the curNode from the forwQDG).

A last post-processing step that rearranges some of the control arcs is not shown in Table
6.6. This rearrangement changes the head connections of some control arcs so as to
emerge from the new added nodes instead of the original ones and it is based on the
revinfo lists.

Table 6.6: Reversing Algorithm

Operations
1: MARK ancilla nodes of forwQDG
2: CALL Deadlock 2 Detection and Resolution procedure
3: CALL Deadlock 1 Detection and Resolution procedure
4: INITIALIZE revinfo[] lists
5: COPY forwQDG to revQDG
6: WHILE GarbageTermList ̸= NULL DO
7: FIND next curNode in GarbageTermList
8: IF no children of curNode with affected arcs exist in forwQDG THEN
9: CALL node inversion procedure (Table 6.3) for curNode of revQDG

10: REMOVE curNode and its arcs from forwQDG
11: UPDATE GarbageTermList
12: END IF
13: END WHILE

6.5 Synthesis Examples
This section presents two simple but complete arithmetic circuits synthesized by the pro-
posed algorithm to clarify the previously described procedures. The first circuit is a con-
trolled modular multiplier which is an integral part of the modular exponentiation compu-

153 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

tation for Shor’s algorithm. Various proposals exist for the implementation of this circuit,
most of them based on the construction of a modular adder [62, 129]. The example pre-
sented is based on a recent efficient design of Shor’s algorithm [141] where the building
blocks are a multiplier/accumulator by constant and a divider by constant. The example
serves only to present the scalability of the proposed method to automatically build hierar-
chically large circuits given its specification in a classical algorithm and not to evaluate the
resulting circuit in terms of quantum gates, circuit depth or qubits count, as these aspects
depend on the components used in the library and consequently on the low level synthesis
methods employed to generate them.

A controlled modular multiplier calculates the function x = cay mod N where a and N are
constants of n bits. Control variable c is 0 or 1, x is 2n bits wide and y is n bits wide. If
a multiplier accumulator by constant a (CMACa) and a divider by constant N (DIVN) are
available in a synthesis library like that of Table 6.1 then the computation of the above
function can be done as in Table 6.7.

The second column of Table 6.7 is the sequence of the elementary functions while the
last four columns are the initial conditions passed in the synthesis algorithm in the form of
array of lists as described in subsection 6.2.2. Additional to these initial conditions and not
depicted in the table are the array of the variables width and the array defining the final
results. These are initialized as follows : w =[n,n,2n,2n,n,n]andres=[0, 0, 0, 0, 0, 1]; variables
assigned the values 3 and 4 have a width of 2n qubits while the desired result is the
remainder r which is numbered as the 6-th variable.

The synthesized QDG is depicted in Figure 6.8. It consists of the forward part at the left and
the reverse part at the right. Three INP_F nodes are used in the forward part to represent
the initial states c,y and x = 0 with width 1, n and 2n, respectively. Nodes OUT_F with
id 6 and 7 are the output nodes added by the forward synthesis algorithm and carry the
garbage quotient state q and the desired state of the remainder r = cay mod N.

The purpose of the reverse part of the synthesis is to reset the garbage state q back to
a constant zero state. This means reversing node with id 6 and all its ancestors nodes
(1,2,3,4 and 5). All these nodes have been marked as ancilla nodes by the forward syn-
thesis algorithm, but nodes 1,2 and 3 did not need reversion since they are INP_F nodes.
A checking for possible deadlocks must be made before initiating the reverse algorithm.
As can be seen in the figure, a deadlock of type I is found at node 5 as it is an ancilla node
connected through affected arcs to ancilla node 6 and non-ancilla node 7. The actions of
the deadlock algorithm is to add nodes with ids 8, 9 and 10, add some arcs as described
in subsection 6.4.3 and remove the arc 5→7. After these actions take place nodes 1, 2,
3, 4, 5, 6 and 10 become ancilla. Reversion algorithm results in the right part of Figure
6.8. Nodes with ids 11, 12, 13 and 14 are the inverses of 10, 6, 5 and 4, respectively.

Table 6.7: Specifications of a controlled modular multiplier

Algorithm Initial Conditions
Line l Function type[l] p[l] m[l] c[l]
1 input c INP_F 1 - -
2 input y INP_F 2 - -
3 input x = 0 INP_F 3 - -
4 x =CMACa(x, y, c) CMACa 4 3 1,2
5 [q, r] =DIVN(s) DIVN 5,6 4 -

A.Pavlidis 154

Design and Synthesis of Efficient Circuits for Quantum Computers

INP_F

INP_F

INP_F CMAC
α

DIVN

OUT_F

OUT_F

INP_F COPY OUT_F

OUT_F-1

OUT_F-1

DIVN
-1 CMAC

α

-1

c

y

0

0

cax

r

q
q q

cax 0

r

r

r

c
1

2

3 4 5

1 2 21

1

n

2n

n

6

7

2

1

8

11

9

10

r

12

13 14

forward reverse
INP_F

INP_F

INP_F CMAC
α

DIVN

OUT_F

OUT_F

INP_F COPY OUT_F

OUT_F-1

OUT_F-1

DIVN
-1 CMAC

α

-1

c

y

0

0

cax

r

q
q q

cax 0

r

r

r

c
1

2

3 4 5

1 2 21

1

n

2n

n

6

7

2

1

8

11

9

10

r

12

13 14

forward reverse

Figure 6.8: Quantum or reversible architecture result in the form of QDG (forward and reverse) for
the controlled modular multiplier. Inside each node the function type and the id are shown. Next to
each arc the state it carries is shown. Thick and thin arcs are affected and control arcs, respectively.
Ports numbering is shown inside the node, when necessary.

Subsequently, the complete QDG calculates the desired function and the resulted circuit
is identical to controlled modular multiplier accumulator proposed in Figure 4.22.

This example was a trivial one as it does not exhibit any advantage over the standard Ben-
nett’s method discussed in next session. In fact, the circuits derived by the two methods
are identical. A second example follows which exhibits some advantages of the proposed
method.

Assume that the target function to synthesize is defined as

f(x, y) =

{
y+ b · x, y < a
y, y ≥ a

(6.3)

for some constants a and b, essentially being a conditional multiplier/accumulator condi-
tioned on the value of one of the inputs y. Input arguments x and y and the constants a
and b are n bits wide integers, while the output f(x, y) is 2n bits wide and signed integers
are assumed. The above function is not invertible in any of its arguments x or y, thus both
the arguments must be supplied at the output of its reversible implementation.

It seems that the above function requires a controlled multiplier/accumulator block CMACb
and a constant adder block ADD−a operating as a comparator in order to implement the
piecewise function f. The result of the comparison would be the most significant bit of the
subtraction y− a as signed arithmetic is assumed. We introduce two dummy blocks (they
do not perform any computation) that are useful for extraction and combination of group of
bits. The first one is a splitter (called SP) which partitions a group of n ordered bits into two
groups of k and n− k bits, by preserving their order. A splitter node with parameters k and
n− k has an input port of n bits and two output port of k and n− k bits as depicted in Figure
6.9(i). The k most significant bits appear at output port 1 in the same order, while the n− k
least significant bits appear at the output port 2, again in the same order. Its operation can
be rigorously defined as

[y, z] = SPk,n−k(x), x = (xn−1 . . . x0), y = (xn−1 . . . xn−k), z = (xn−k−1, . . . x0) (6.4)

The inverse block of the splitter SPk,n−k is the combiner CBk,n−k which is depicted in Figure
6.9(ii). Equipped with these functions and a COPY function we can specify the input for

155 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

SPk, n-k
2

1
y=(xn-1,…, xn-k)

z=(xn-k-1,…, x0)

x=(xn-1,…, x0)
CBk, n-k
2

1
y=(xn-1,…, xn-k)

z=(xn-k-1,…, x0)

x=(xn-1,…, x0)

(i) (ii)

SPk, n-k
2

1
y=(xn-1,…, xn-k)

z=(xn-k-1,…, x0)

x=(xn-1,…, x0)
CBk, n-k
2

1
y=(xn-1,…, xn-k)

z=(xn-k-1,…, x0)

x=(xn-1,…, x0)

(i) (ii)
Figure 6.9: Splitter (i) and Combiner (ii) blocks.

Table 6.8: Specifications of a conditional multiplier/accumulator. Bit widths of the variables x, z, y, s
are n, n, n, 1 respectively.

Algorithm Initial Conditions
Line l Function type[l] p[l] m[l] c[l]
1 input x INP_F 1 - -
2 input z = 0 INP_F 2 - -
3 input y INP_F 3 - -
4 input s = 0 INP_F 4 - -
5 y =ADD−a(y) ADD−a 5 3 -
6 [yu, yl] =SP1,n−1(y) SP1,n−1 6,7 5 -
7 s =COPY(s, yu) COPY 8 4 6
8 y =CB1,n−1(yu, yl) SP1,n−1 9 6,7 -
9 y =ADDa(y) ADDa 10 9 -
10 y =CBn,n(z, y) CBn,n 11 2,10 -
11 f =CMACb(y, x, s) CMACb 12 11 1,8

the synthesis of function f(x, y) as shown in Table 6.8.

The purpose of lines 5,6 and 7 of Table 6.8 is to extract to variable s the sign bit of the
comparison y − a. This sign bit will discriminate if the multiplier/accumulator is enabled
or not. After the operation of lines 8 and 9, variable y has its initial value and it is almost
ready to be processed by the CMAC function. Before the final processing by the CMAC an
extension of its width from n bits to 2n bits is required. This is accomplished by combining
the n bits variable z, initially in zero state, with y. Line 10 uses a combiner and results in a
variable y of 2n bits wide with the same value as the initial value of the original y. The last
line results in the final value f = y+ bx if s = 1 (y < a), or just y if s = 0 (y > a).

The forward synthesis QDG corresponding to Table 6.8 appears in Figure 6.10. Node
CNOT which carries the sign bit requires inversion. This node is engaged in a deadlock II
as it is controlled by non ancilla node (SP with id 6) and also controls the non ancilla node
CMAC which affects the same qubits with SP.

The QDG after this deadlock II resolution is depicted in Figure 6.11 with the insertion of
one ancilla qubit (node INP_F with id 15).

A deadlock I came to the front after this resolution. This happened because nodes SP (id
6) and ADD−a now became ancilla nodes. The deadlock I is due to node SP which feeds
with affected qubits the non ancilla node CB (id 8). The QDG after this second deadlock
is depicted in Figure 6.12. This resolution needed the insertion of n− 1 bits (node INP_F
with id 18).

A.Pavlidis 156

Design and Synthesis of Efficient Circuits for Quantum Computers

INP_F

INP_F

INP_F

0

y

0

2

3

n

n

1
4

INP_F
x

1
n

ADD-α

y-a

5

CNOT
7

SP1,2n-1
2

1

6
CB1,2n-1
2

1

8

CBn,n
2

1

10

y-a
ADD

α

y

9

y
OUT_F

12
CMACb

f(x)

2

1

11

OUT_F
14

OUT_F
13

s

INP_F

INP_F

INP_F

0

y

0

2

3

n

n

1
4

INP_F
x

1
n

ADD-α

y-a

5

CNOT
7

SP1,2n-1
2

1

6
CB1,2n-1
2

1

8

CBn,n
2

1

10

y-a
ADD

α

y

9

y
OUT_F

12
CMACb

f(x)

2

1

11

OUT_F
14

OUT_F
13

s

Figure 6.10: Forward Synthesis result for the conditional mutltiply/accumulate example.

INP_F

INP_F

INP_F

0

y

0

2

3

n

n

1
4

INP_F 01
15

INP_F
x

1
n

ADD-α

y-a

5

CNOT
7

SP1,2n-1
2

1

6
CB1,2n-1
2

1

8

CBn,n
2

1

10

ADD
α

y

9

y
OUT_F

12

f(x)

2

1

11

COPY
16

OUT_F
17

OUT_F
14

OUT_F
13

s

y-a

CMACb

INP_F

INP_F

INP_F

0

y

0

2

3

n

n

1
4

INP_F 01
15

INP_F
x

1
n

ADD-α

y-a

5

CNOT
7

SP1,2n-1
2

1

6
CB1,2n-1
2

1

8

CBn,n
2

1

10

ADD
α

y

9

y
OUT_F

12

f(x)

2

1

11

COPY
16

OUT_F
17

OUT_F
14

OUT_F
13

s

y-a

CMACb

Figure 6.11: Deadlock II resolution for the conditional mutltiply/accumulate example.

The final stage, which is the reversion, results in the QDG of Figure 6.13. This reversion
step resets the qubit carrying the sign and brings back the argument y. This procedure
used the inverses of nodes OUT_F (it is an identity node) and CNOT which are them-
selves, the inverse of the subtractor (node id 5) which is an adder (node id 27) and the
inverse of the splitter (node id 6) which is the combiner (node id 26).

The required effective blocks (dummy blocks like OUT_F, SP, CB are not counted as
they don’t have any cost) for the implementation of function f in a reversible manner with
the presented method are three constant adders of n qubits, a CMAC and n + 1 CNOT
gates (hidden inside the COPY blocks). The dominant cost and depth contribution is due
to the CMAC block. The standard implementation with Bennett’s method discussed in
next section, would require two CMAC blocks, four adders and n CNOT gates, roughly
doubling the gate cost and the depth of the circuit. Moreover, the space requirement of
the implementation just presented is 4n+ 1 bits, while the standard method would require
5n+ 1 bits.

Figure 6.14 better clarifies the above comparison between the standard Bennett method
and the proposed method. Both subfigures use the standard block notation used through-
out this thesis. Subfigure 6.14(ii) is stripped out from dummy blocks used in the synthesis

157 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

INP_F

INP_F

INP_F

0

y

0

2

3

n

n

1
4

INP_F 01
15

INP_F
x

1
n

ADD-α

y-a

5

CNOT
7

SP1,2n-1
2

1

6
CB1,2n-1
2

1

8

CBn,n
2

1

10

ADD
α

y

9

y
OUT_F

12

f(x)

2

1

11
INP_F 0n-1

18

COPY
16

COPY
19

OUT_F
17

OUT_F
20

OUT_F
14

OUT_F
13

s

y-a

CMACb

INP_F

INP_F

INP_F

0

y

0

2

3

n

n

1
4

INP_F 01
15

INP_F
x

1
n

ADD-α

y-a

5

CNOT
7

SP1,2n-1
2

1

6
CB1,2n-1
2

1

8

CBn,n
2

1

10

ADD
α

y

9

y
OUT_F

12

f(x)

2

1

11
INP_F 0n-1

18

COPY
16

COPY
19

OUT_F
17

OUT_F
20

OUT_F
14

OUT_F
13

s

y-a

CMACb

Figure 6.12: Deadlock I resolution for the conditional mutltiply/accumulate example.

INP_F

INP_F

INP_F

0

y

0

2

3

n

n

1
4

INP_F 01
15

INP_F
x

1
n

ADD-α

y-a

5

CNOT
7

SP1,2n-1
2

1

6
CB1,2n-1
2

1

8

CBn,n
2

1

10

ADD
α

y

9

y
OUT_F

12

f(x)

2

1

11
INP_F 0n-1

18

COPY
16

COPY
19

OUT_F
17

OUT_F
20

OUT_F
14

OUT_F
13

s

OUT_F
21

OUT_F
22

OUT_F
23

OUT_F
24

CB1,2n-1
2

1

26

y-a

CNOT
25

0

ADD
α

y
27

x

y-a

CMACb

INP_F

INP_F

INP_F

0

y

0

2

3

n

n

1
4

INP_F 01
15

INP_F
x

1
n

ADD-α

y-a

5

CNOT
7

SP1,2n-1
2

1

6
CB1,2n-1
2

1

8

CBn,n
2

1

10

ADD
α

y

9

y
OUT_F

12

f(x)

2

1

11
INP_F 0n-1

18

COPY
16

COPY
19

OUT_F
17

OUT_F
20

OUT_F
14

OUT_F
13

s

OUT_F
21

OUT_F
22

OUT_F
23

OUT_F
24

CB1,2n-1
2

1

26

y-a

CNOT
25

0

ADD
α

y
27

x

y-a

CMACb

Figure 6.13: Complete synthesis of the conditional mutltiply/accumulate example after the final re-
version procedure.

procedure like IN_F,OUT_F, SP and CB. The constant adders and the CMAC units are
the ΦADDC and ΦMAC, respectively, introduced in Chapter 4, although other implemen-
tations could be used instead. To simplify the notation, the required QFT and inverse QFT
blocks are absorbed in the ΦADDC and ΦMAC symbols. Thus, the depth of the complete
ΦMAC is 8n + 2 · 4n = 16n (it requires two QFT of width 2n and the depth of an QFT with
width n is 2n) while the depth of the complete ΦADDC is 4n+ 1. Taking these depths into
account, we conclude that the depth of the second circuit is 28n + 6 compared to 48n + 7
of the first one. Similar calculation for the quantum cost gives that the proposed method
derives a circuity with cost 9n2 + 20n compared to 16n2 + 32n of the standard method.

A.Pavlidis 158

Design and Synthesis of Efficient Circuits for Quantum Computers

M
A

C

b

A
D

D

x

0

y

0

0

0

x

0

y

0

),(yxf

n

n

n

n

n

(i)

a

A
D

D

a

msb

M
A

C

b

A
D

D

a

msb

A
D

D

a

M
A

C

b

A
D

D

x

0

0

y

0

y

),(yxf

n

n

n

n

(ii)

a

A
D

D
a

msb

A
D

D

a

msb

x

0

y

M
A

C

b

A
D

D

x

0

y

0

0

0

x

0

y

0

),(yxf

nn

nn

nn

nn

nn

(i)

a

A
D

D

a

msb

M
A

C

b

A
D

D

a

msb

A
D

D

a

M
A

C

b

A
D

D

x

0

0

y

0

y

),(yxf

nn

nn

nn

nn

(ii)

a

A
D

D
a

msb

A
D

D

a

msb

x

0

y

Figure 6.14: Comparison of two circuits computing the conditional multiply/accumulate example.
(i) Circuit derived by the compute-copy-uncompute method and (ii) circuit derived by the proposed
method.

6.6 Features and Comparison
In general, a direct comparison of a hierarchical synthesis method to flat (low-level) syn-
thesis methods in terms of quantum cost, qubits count and circuit depth is not meaningful
because a hierarchical synthesis is based on a previously synthesized library and the re-
sults depend on the particular low-level synthesis methods used to build the library. As
for the execution time of the proposed hierarchical synthesis algorithm, it is obvious that
the hierarchical technique of dividing a large circuit to smaller parts, gives a scalability
advantage over a low-level strategy to handle a large and complicated circuit by a flat
method.

A rough complexity analysis for the synthesis algorithm in terms of the number of lines L
of the specifications follows. It is assumed that the number of input/output ports of a node
is constant and much smaller than L (a reasonable assumption as shown in Table 6.2).
The number of nodes of the forward QDG is L while that of the final reverse QDG is at
most double. With the above assumptions we can estimate that the arcs number is O(L).
We concentrate on the reversing part as the forward part is easily shown to have a com-
plexity O(L) by investigating Table 6.2. The main part of the reversing algorithm consists
of operations in lines 7-11 with constant complexity nested in a while loop scanning the
ancilla nodes. Thus it has a O(L) complexity. It can be seen that the most computation
intensive part is the deadlock II resolution procedure. The algorithm of Table 6.5 consists
of two nested loop each of complexity O(L) (line 1 and 9); the other loops have a constant
complexity due the above assumptions. Combining the nesting of the FindPaths proce-
dure which has a linear complexity too, we conclude that the complexity of deadlock II
detection is O(L3). This is the dominant complexity for the whole synthesis algorithm.

159 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

We present below a different kind of analysis that is related to the garbage generation and
indirectly related to the ancilla requirement. A top level view of a reversible or quantum
circuit U with its respective input and outputs signals is shown in the left part of Figure 6.15.
Input bits/qubits are discriminated in argument input x and ancilla input initially in a constant
state, usually zero. The ancilla qubits are used internally to assist the computation. On the
other hand, output bits/qubits are discriminated in the desired output f(x), that is the target
of the computation, ancilla output which is usually part of the ancilla input being reset back
to its initially state and the garbage output g(x) which depends on the input argument x and
thus is not constant as the ancilla output. The garbage output contains intermediate results
of the computation. When the function embedded in U is not invertible (e.g. addition of two
non-constant inetegers is not invertible) the elimination of the input argument is impossible
[31].

The garbage output is an undesired effect of the computation which is dependent on the
input argument. This means that in the case we refer to a classical reversible circuit it can-
not be simply ”erased” as this would contradict the notion of a reversible circuit. On the
other hand, in the quantum circuit case the garbage output is entangled with the desired
output and a possible quantum measurement to ”erase” it would affect the useful desired
output. The repeated use of a circuit such as that of U then would require an accumulation
of ancilla wires usage. On the other hand, if all the ancilla input wires emerge as ancilla
output wires then they could be reused on successively usage of the circuit block. Con-
sequently, it is important to eliminate the ancilla usage as much as possible because this
means lower cost in terms of wires which is an important factor especially in the quantum
circuit design domain.

A well known technique (Bennett’s trick [31]) to eliminate the garbage, excluding the input
argument, is depicted in Figure 6.15. The output wires of U are copied onto new ancilla
wires and then the inverse circuit U−1 is applied to the outputs (desired, garbage and
ancilla) of U. The final result of this processing eliminates any garbage g(x) as shown
below and leaves only the input argument x:

(x, 0, 0) U−→ (f(x), g(x), 0, 0) copy−−→ (f(x), g(x), 0, g(x)) U−1
−−→ (x, 0, f(x)) (6.5)

In the above formula, x belongs to an orthonormal set (e.g. computational basis) and the
same applies for the states f(x) and g(x) as f and g are unitary transformations in the
quantum case. Although the no-cloning theorem does not allow a general copy operation
for arbitrary states, it allows such an operation for orthonormal states, in our case f(x).
Consequently, as we can eliminate with this method the garbage state g(x) for every input
state x in the computational basis, the same holds for an arbitrary of input superposition
of the computational basis.

Bennett’s method to eliminate intermediate garbage doubles the cost in the number of
gates and depth as the inverse U−1 circuit must be added. Another feature is that as many
ancilla wires as the desired output wires are required to hold the copy this output. This is
an important disadvantage especially in the cases where the number of garbage wires to
be eliminated are smaller the number of the desired output wires. This can happen when
a circuit is broken down in multiple levels of hierarchy for reason already explained.

In contrast, the proposed method selectively copies only the wires that are engaged in
the two kinds of deadlocks described in subsection 6.4.3. Essentially, it applies Bennett’s
trick locally on wires that cause deadlocks to the inversion procedure, instead to apply it
globally on the total number of desired output wires. A study of the conditions leading to

A.Pavlidis 160

Design and Synthesis of Efficient Circuits for Quantum Computers

deadlocks shows that the total number of ancilla wires needed for the deadlocks resolution
is always less than or equal compared to original globally applied Bennett’s trick. Even if
there is no gain in the ancilla usage, it is obvious that there is gain in terms of the circuit
size and its depth, as there is no need for the application of the whole inverted circuit U−1]

but only addition of locally inverted nodes.

The proposed synthesis algorithm has been implemented (initially in MatLab) and suc-
cessfully applied on various examples, including complex and irregular circuits such as
the divider by constant used in the implementation of Shor’s factorization algorithm pre-
sented in Chapter 4. In this specific example no gain has been observed in terms of the
qubits size (6n qubits required for an n bits constant divider) due the presence of a dead-
lock. But compared to the standard Bennett’s trick the quantum cost and depth is reduced
by about 25%.

Studying other hierarchical methods appeared in the literature as part of integrated plat-
forms we can see that the drawback of RevKit [178, 180] is the excessive generation of
garbage bits for intermediate results which are not reset back to constant value [181].
The approaches of [175] (CTQG part of ScaffCC) don’t reduce ancilla significantly and
the connections between the modules must be done by the user in a description language
(structural synthesis approach as opposed to our behavioral synthesis approach). On the
other hand, Chisel-Q [177] and Quipper [176] exploit the globally applied Bennett’s method
on each block of the hierarchy and thus in general it requires more ancilla qubits.

6.7 Conclusions
We have presented a generic hierarchical method for the synthesis of arbitrary large and
irregular arithmetic and logical quantum and reversible architectures. The architecture is
specified as a sequence of elementary operations that correspond to existing quantum or
reversible components of a library. The library can be populated with circuits synthesized
by the proposed method, or by any other method, permitting multilevel hierarchical synthe-
sis of any depth. As parts of the library could be used the synthesis output results of tools
like [178, 180] for the reversible case or tools like [175, 176, 179, 177] for the quantum
case by invoking these tools as back-end and passing them the parameters of the required
parts (function type, input and output size). Another option could be the integration of the
proposed method in the above mentioned tools.

Hierarchical synthesis methods for quantum and reversible architectures offer several ad-
vantages compared to flat gate level methods in the following aspects: (a) easier descrip-

U U-1g(x)

x

0 0

f(x)

����

g(x)
0

f(x) x

0

0 f(x)

U U-1g(x)

x

0 0

f(x)

����

g(x)
0

f(x) x

0

0 f(x)

Figure 6.15: Input and output wires definitions of a reversible/quantum circuit U (input argument
x, ancilla input and output 0, desired output f(x) and garbage output g(x)) and garbage elimination
(except the input argument) using Bennett’s trick of copying the output and applying the inverse
U−1.

161 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

tion of complex circuits, (b) efficient handling of arbitrary large size circuits and (c) short
synthesis run-time even for significantly large circuits. Our hierarchical synthesis method,
when combined with other low-level synthesis methods can deliver architectures in short
time, and compared to previous hierarchical synthesis approaches it has the important
advantage that it does not pollute the synthesized architecture with excessive numbers of
ancilla wires.

A.Pavlidis 162

Design and Synthesis of Efficient Circuits for Quantum Computers

7. CONCLUSIONS AND FUTURE WORK
In this thesis we have proposed novel quantum arithmetic circuits based on the quantum
Fourier transform representation of an integer or a superposition of integers; circuits are
utilized for a novel, depth efficient realization of Shor’s algorithm and can be also utilized
in other algorithms realization such as the Quantum Phase Estimation or the Hidden Sub-
group Problem.

We have also proposed a high level synthesis methodology (by generalizing the tech-
niques used in the design of the quantum arithmetic circuits). We presented a formal
procedure which uses directed acyclic graph descriptions and hierarchically synthesizes
complex high level circuits based on a quantum library of components. This high synthesis
procedure offers advantage over the standard Bennett’s method application applied on a
straightforward hierarchical synthesis.

7.1 QFT based arithmetic circuits
The first circuit is a controlled multiplier by constant and accumulator (ΦMAC) using 3n+1
qubits and having a depth of 8n, where n is the bit width of the multiplication operands. An
uncontrolled version offering a depth of 2n is easily obtained.

The second circuit (GMΦDIV) is a divider by a constant integer which computes both the
quotient and the remainder. This circuit is inspired by an algorithm for classical computa-
tion given by Granlund and Montgomery [122]. The divider circuit can be operated in two
modes:

• Generic divider GMΦDIV1 with no restrictions on the range of the 2n qubits dividend
and the constant n bits divisor. In this mode the depth is about 148n the space re-
quirement is 12n+1 qubits (of which 8n+1 are ancilla qubits). Quantum cost counted
as the number of single or two-qubit gates is about 176n2.

• Constrained divider GMΦDIV2 of 2n qubits dividend and n bits constant divisor. In this
case the quotient must be a priori constrained to be less than 2n. In this special mode
of operation a depth of about 74n can be achieved, whereas the space requirement
is 6n + 1 qubits (of which 4n + 1 are ancilla qubits). Quantum cost counted as the
number of single or two-qubit gates is about 44n2.

The divider can be promoted to a controlled version with a slight modification using one
more controlling qubit. The overhead in cost and depth is minor.

The multiplier/accumulator and the divider can be combined to construct a controlled mod-
ular multiplier. Two kinds of modular multipliers can be derived depending on the choice
of which divider is used:

• A generic controlled modular multiplier (ΦMUL_MOD1) computing |x⟩ → |ax mod N⟩
without restrictions in the range of integer x it gets as input and the constants a and
N. A ΦMUL_MOD1 circuit for n qubits |x⟩ and n bits width constants a and N, has a
depth of about 650n, requires 14n + 2 qubits (of which 8n + 1 are ancilla) and has a
total quantum cost of about 750n2 gates.

• An optimized circuit (ΦMUL_MOD2) suitable for Shor’s algorithm with improved depth
of about 350n, improved qubits requirement of 8n+2 and a total quantum cost of about
200n2 gates.

163 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

The construction of the modular exponentiator block required by Shor’s algorithm using the
optimized controlled modular multiplier (ΦMUL_MOD2) achieves a depth of 700n2 using
8n+ 2 qubits, where n is the bits width of the integer to be factored by the algorithm. Such
a modular exponentiation quantum circuit is among the fastest of the literature requiring
linear space, especially if we are restricted in physical implementations which require the
localized interactions between the qubits. One of the reasons is the regular structure of the
ΦMAC circuit that permits the localization of the interaction with no significant overhead in
depth. The usage of arbitrary angle rotation gates disadvantage with respect to their fault
tolerance capability can be addressed by approximating their angles in a way that the
depth advantage is sustained and still the performance, in terms of probability of success,
remains acceptable.

Quantum arithmetic circuits based on the QFT representation of integers, instead of the
usual computational basis representation, is an alternative implementation that may offer
various advantages if used properly. This is due to the fact that two of the main core blocks
are the constant adder, which has a constant depth of 1 when the computation is carried
out in a datapath that contains an already QFT transformed integer, and the controlled
constant adder which has a linear depth of n. By keeping a sequence of computations in
such a datapath without reverting back to the computational basis it is possible to maintain
a linear depth which otherwise would be impossible. This can be achieved by exploiting
properties of the controlled rotation gates such as commutativity, decomposition and suit-
able rearrangement so as to pipeline their execution. The initial direct QFT and the final
inverse QFT does not alter the linear depth as both transforms can be performed in lin-
ear depth. Thus, a computation level of hierarchy can be climbed onto (e.g. in our case,
addition to multiplication), without any respective time complexity increase.

Another advantage of using QFT based arithmetic is the lower space requirements. This
is manifested in Beauregard’s modular exponentiation [24] , where 2n+ 1 qubits are ade-
quate for the full Shor’s algorithm. The reason is that no carry computations are needed in
the QFT adder as this is done implicitly with the angle additions. While this advantage is
not observed in the proposed modular exponentiation circuit due to the divider complex-
ity, it remains in the multiplier/accumulator ΦΜAC where no ancilla qubit is used. Also,
robustness of such circuits to gate pruning and rotation angle approximation is observed
in various instances.

All these remarks suggest that arithmetic circuits, like the proposed ones, are estimable
as building blocks for larger and more complex arithmetic circuits.

7.2 Hierarchical Synthesis
The construction of a complex and irregular quantum arithmetic circuit, such as the pro-
posed divider by constant GMΦDIV of Chapter 4, was the initial motivation to formalize
the design procedure for such circuits. Usually, a classical algorithm must be transformed
in quantum circuit whose inputs (initial state of the qubits) are fed with the arguments of
the classical algorithm (or a superposition of them) and the outputs are the results of the
classical algorithm (or a superposition of the results). Thus, the description of the quan-
tum circuit can be given as a sequence of elementary arithmetic and logical operations
such as addition, multiplications/accumulations, logical shifts, controlled operations con-
ditioned on the result of a previous operation (if-then-else structures), etc. Provided that,
these elementary operations have a quantum circuit counterpart in a library, it is possible
to transform them into a larger quantum circuit that performs identical computation to the
original classical algorithm in the computational basis. The crucial difference is that while
in the classical case the values of the intermediate variables computed can be simply

A.Pavlidis 164

Design and Synthesis of Efficient Circuits for Quantum Computers

ignored, in the quantum case these values must be reset back in their initial value. The
intermediate variables of the classical algorithm correspond to the ancilla qubits of the
derived quantum circuit. A well established method to reset the ancilla qubits back to their
initial state is Bennett’s trick, that is after the computation, the desired results are copied
in the computational basis in a suitable register, and then the whole forward computation
except the copying is reversed to give back the initial state of the circuit (uncomputation).

The developed method transforms the initial specifications of the quantum circuit which
are given as arrays and arrays of list representing the classical sequence of operation
into a directed acyclic graph called forward Quantum Dependence Graph (QDG). The
nodes of the forward QDG correspond to the components of a quantum library and they
suppose to implement the elementary arithmetic operations. These components could
be known constructions from the literature (adders etc), synthesized by other low level
synthesis method, or populated by the proposed method applied to a lower level. The
arcs connecting the QDG nodes correspond to qubits or quantum registers and they are
discriminated in arcs which are affected by their successor node and the ones that control
their successor node. The final qubits state of the derived forward QDG describes the
desired result along garbage results produced during the computation.

The method adopted to reset the garbage states is to apply uncomputation locally on
each node that really needs such an inversion of computation, instead to apply it globally
as Bennett’s method suggests. Namely, nodes of the forward QDG that are effectively
involved in garbage production are marked (these are the nodes which have paths with
affected arcs towards final garbage states). These marked nodes of forward QDG are
traversed backwards and an inverse of each node is appended to the QDG. The inverse
nodes are part of the library as it contains quantum circuits whose inverses are assured
to exist.

However, data dependencies between the nodes may not always allow such an inversion,
in which case we have a deadlock. Two special procedures are applied to detect and
resolve such deadlocks (type I and II deadlocks) before the uncomputation stage. Both
procedures have the cost to introduce additional ancilla qubits but they never exceed the
additional ancilla qubits that would be needed if Bennett’s method would be applied.

The advantage of the overall proposed method over the usual hierarchical methods is that
the quantum circuit represented by the final QDG may have smaller depth and quantum
cost and may also require less ancilla qubits. The quantum synthesis of a piece-wise func-
tion like the one analyzed in section 6.5 is a striking example where a substantial reduction
of depth and quantum cost is achieved. Also, in the same example a fair reduction qubits
usage is observed.

On the other side, the employment of the proposed synthesis methodology on the con-
struction of the GMFDIV does not exhibit significant improvements in depth and quan-
tum cost compared to the standard method of uncomputation. The extreme case where
both methods produce identical circuits is the construction of the controlled modular multi-
plier/accumulator of Figures 4.19 and 4.22 which correspond to the first synthesis example
of section 6.5. The difference between the first and the second example of section 6.5 is
that, in the former case a deadlock I is detected, while in the latter case a deadlock II is
detected. Moreover, the deadlock II of the second example appears ”early” in the forward
QDG, that is the distance of the first engaged node in the deadlock is near the input nodes,
while the deadlock of the divider GMΦDIV appears near the end of its respective QDG.
Also, the total depth and cost of each node engaged in the deadlock of the piece-wise
function example is a significant proportion of the total QDG depth and cost. This is not

165 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

the case in the GMΦDIV circuit.

These observations lead to the conclusion that the advantage of the proposed synthesis
method arises when deadlocks of type II appear in the forward QDG and this advantage
is proportional to the ”size” of the deadlock and the ”earliest” positioning in the overall
forward QDG.

7.3 Future Directions
The obvious follow up to the QFT arithmetic circuits would be to exploit them to derive
more complex arithmetic circuits, useful for various quantum algorithms, like the constant
divider was for Shor’s algorithm. In the same branch of interest, the subject of the an-
gle quantization discussed in section 5.1 can be further investigated through simulations.
The bounds reported may be loose and better results may be obtained with numerical
simulations. Numerical simulations of the full Shor’s algorithm, like the ones performed in
[158, 159], are difficult for the case of the proposed circuit because of the requirement of
8n + 2 qubits. For example, to factor N = 15 we would need to simulate 8 · 4 + 2 = 34
qubits. The joint state vector of 34 qubits consists of 234 ≈ 16 · 109 complex elements lead-
ing to about 128Gbytes of memory when using single precision floating point, only for the
state vector. Yet, partial simulations can be proven useful. A simulation to derive distances
between the ΦMAC and an approximated ΦMAC are feasible (3n + 1 qubits), or even a
similar simulation for the whole divider (6n+ 1 qubits).

Regarding the hierarchical synthesis method, a next obvious step is to develop a complete
software which would include front-end and back-end submodules. The front-end must
be a compiler accepting the description of the classical algorithm in a suitable language
and transforming it in the internal representation required by the synthesis algorithm as
described in section 6.3. The back-end must combine the final QDG representation with
information stored in the library so as to export the synthesized circuit in a low gate-level
description such as in a quantum assembly format. Equipped with such an integrated tool,
we could do a more systematic comparison with other high level synthesis tools, although
the advantages of the proposed synthesis methodology are clear even without the tool.

A.Pavlidis 166

Design and Synthesis of Efficient Circuits for Quantum Computers

A. APPENDIX ON SHOR’S ALGORITHM
This Appendix supplements Chapter 3 with definitions and proofs concerning (i) the prob-
abilistic reduction of the integer factorization problem that Shor’s algorithm solves to the
problem of period finding, (ii) the method of continued fraction expansion to find the period
from measurements acquired by the quantum period finding algorithm, (iii) the probability
analysis of the quantum period finding algorithm.

It also deals with the QFT circuit construction of Figure 3.1, and the interpretation of the
quantum period finding algorithm as an quantum phase estimation algorithm.

Most of the proofs in this Appendix can be found in [182] and [41].

A.1 Factorization reduction to order finding
Definition A.1. (Order of element and group). The order ord(a) of an element a that be-
longs to the group ⟨G, ∗⟩ is the smallest positive integer k such that ak = a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸

k times

= e,

where e is the identity element of the group.

The order |G| of the group is the number of its elements

It is obvious that in a finite order group, every element of the group has a finite order.

Proposition A.1. (Multiplicative group modulo N). The set GN = {k = 1, . . . ,N − 1 :
gcd(k,N) = 1} equipped with the operation of modular multiplication, a ∗ b .

= (ab) mod N,
is a group. This group contains by its definition all the natural numbers less than and
co-primes with N.

Proof. It is sufficient to prove the following properties:

Closure By definition ∀a, b ∈ GN, gcd(a,N) = 1, gcd(b,N) = 1. Thus, any non-trivial
divisor d of N cannot divide a or b and consequently neither ab. Because
a ∗ b = ab mod N, there exists an integer q such that ab = qN + a ∗ b.
This means that d does not divide a ∗ b (as long as d is not a divisor of ab,
but divides N by assumption). Thus it is proven that gcd(a ∗ b,N) = 1 and
combined with the fact that a ∗ b < N, the conclusion is that a ∗ b ∈ GN.

Associativity ∀a, b ∈ GN, (a∗b)∗c = (((ab) mod N)c) mod N = (abc) mod N = (a((bc) mod
N)) mod N = a ∗ (a ∗ b)

Identity The identity element of ⟨G, ∗⟩ is 1 because ∀a ∈ GN, 1∗a = (1 ·a) mod N =
a mod N = a = (a · 1) mod N = a ∗ 1

Inverse The operation ∗ is injective, that is ∀a, b, c ∈ GN it holds that a∗b = a∗c =⇒
ab mod N = ac mod N =⇒ a(b − c) mod N = 0 =⇒ b = c. The
injective property, together with the fact that the group is finite means that
the operation of a particular element a of the group with any element of
the group performs a permutation of the elements. Thus ∀a ∈ GN,∃a−1 ∈
GN : a ∗ a−1 = a−1a = 1.

According to Definition A.1 and because GN is finite, ∀a ∈ GN, the order r = ord(a) is the
smallest positive integer r for which it holds ar mod N = 1. If f(x) .

= ax mod N, x ∈ N is the
modular exponentiation sequence, then it is easy to see that this sequence is periodic with
fundamental period the order r of the element a, because ∀x ∈ Z

167 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

f(x+ r) = ax+r mod N
= axar mod N
= ((ar mod N)ax) mod N
= ((ar mod N)ax mod N)
= (1 · ax) mod N = f(x)

(A.1)

Proposition A.2. Let r = ord(a) the order of any element a of the multiplicative group GN
defined in Proposition A.1. If r is even and (a r

2 + 1) mod N ̸= 0 (N does not divide (a r
2 + 1),

then gcd(a r
2 − 1,N) ̸= 1 and gcd(a r

2 + 1,N) ̸= 1. (This means that N has common factors
with a r

2 + 1 and a r
2 − 1).

Proof. N divides ar − 1 because r = ord(a) =⇒ ar mod N = 1 =⇒ (ar − 1) mod N = 0.
Moreover, ar−1 = (a r

2 −1)(a r
2 +1) and by assumption r is even, thus (a r

2 −1) and (a r
2 +1)

are integers. Consequently, N divides the product (a r
2 − 1)(a r

2 + 1) and thus there exists
an integer k such that kN = (a r

2 − 1)(a r
2 + 1). But N cannot divide a r

2 − 1 as by definition r
is the smallest positive integer for which N divides ar− 1. Also, N does not divide a r

2 + 1 by
the assumption of the proposition. Proof of the Proposition follows by contradiction.

(i) Suppose that gcd(a r
2 − 1,N) = 1. Then, by Bézout’s identity, there exist integers m and

n such that

m(a
r
2 − 1) + nN = 1 =⇒

m(a
r
2 − 1)(a

r
2 + 1) + nN(a

r
2 + 1) = (a

r
2 + 1) =⇒

mkN+ nN(a
r
2 + 1) = (a

r
2 + 1) =⇒(

mk+ n(a
r
2 + 1)

)
N = (a

r
2 + 1)

which is impossible because contradicts the assumption that N does not divide (a r
2 + 1).

(ii) Similarly, suppose that gcd(a r
2 + 1,N) = 1. Then, there are integers m and n such that

m(a
r
2 + 1) + nN = 1 =⇒

m(a
r
2 + 1)(a

r
2 − 1) + nN(a

r
2 − 1) = (a

r
2 − 1) =⇒

mkN+ nN(a
r
2 − 1) = (a

r
2 − 1) =⇒(

mk+ n(a
r
2 − 1)

)
N = (a

r
2 − 1)

which contradicts too the assumption that N does not divide (a r
2 − 1).

Corollary A.1. Let N be a composite number and GN the multiplicative group of integers
modulo N. If the order r = ord(a) of some a ∈ GN is even and (a r

2 + 1) mod N ̸= 0, then
gcd(a r

2 − 1,N) is a non-trival factor of N.

Proof. By Proposition A.2, gcd(a r
2 −1,N) ̸= 1, thus gcd(a r

2 −1,N) is a factor of N. Moreover
gcd(a r

2 − 1,N) ̸= N because N does not divide a r
2 − 1.

It is the above Corollary that establishes the reduction of the integer factorization problem
to the period finding algorithm of Table 3.1.

A.Pavlidis 168

Design and Synthesis of Efficient Circuits for Quantum Computers

Corollary A.2. Let N a composite number which can be factored into two prime factors p
and q and GN the multiplicative group of integers modulo N. If the order r = ord(a) of some
a ∈ GN is even and (a r

2 + 1) mod N ̸= 0, then the prime factors p and q are given by

p = gcd(a
r
2 + 1,N) (A.2)

q = gcd(a
r
2 − 1,N) (A.3)

Proof. By Proposition A.2, N has common factors with gcd(a r
2 + 1,N) and gcd(a r

2 − 1,N).
In other words, there are natural numbers x > 1 and y > 1, such that x divides both
a r
2 − 1 and N, while y divides both a r

2 + 1 and N, or more compactly x = gcd(a r
2 − 1,N) and

y = gcd(a r
2 + 1,N). Because N is a product of two primes p and q, then it is mandatory that

x = p and y = q.

Definition A.2. The Euler (or totient) function φ : N∗ → N∗ is defined so that φ(n) is the
number of positive integers not greater than n which are co-primes to n.

From the above definition it is clear that φ(p) = p− 1 when p is a prime and that the order
of the multiplicative group GN is |GN| = φ(N− 1). Also, for a prime p, φ(pa) = pa−1(p− 1) =
pa
(
1− 1

p

)
. By convention, φ(1) = φ(2) = 1.

Theorem A.1. (Chinese Remainder Theorem). Let m1, . . . ,mn positive co-prime integers.
The system of n equations x = aj mod mj, j = 1, . . . , n has a unique solution in GM where
M = m1m2 · · ·mn.

Proof. Let Mj = M/mj, then gcd(mj,Mj) = 1 and thus there exists the inverse Nj of Mj(mod
mj), that is MjNj mod mj = 1. The integer x .

=
∑n

j=1 ajMjNj is a solution because x mod mk =

akMkNk mod mk +
∑n

j ̸=k ajMjNj mod mk = ak · 1 +
∑n

j ̸=k aj0, as long as MjNj mod mk = 0 for
j ̸= k.

The uniqueness of the solution up to modulo M = m1m2 · · ·mn follows. If x′ is another
solution then ∀j, x− x′ (mod mj), that is mj divides x− x′. Because gcd(mj,mk) = 1, j ̸= k, it
is clear that m1m2 · · ·mn also divides x− x′ and consequently x = x′ mod M.

A direct consequence of the Chinese Remainder theorem is that there is a bijection be-
tween the multiplicative group GM and the Cartesian product of the multiplicative groups
Gm1 × · · · ×Gmn . This bijection means that for co-primes m1, . . . ,mn, it holds φ(m1 · · ·mn) =
φ(m1) · · · (mn).

The following two propositions establish the efficient probabilistic reduction of the integer
factorization problem to the order finding problem, namely that with arbitrary high proba-
bility of success the integer factorization problem can be solved with a constant iterations
number of the order finding problem.

Proposition A.3. Let p be an odd prime and 2d the largest power of two that divides φ(pa).
Then, with probability 1/2, integer 2d divides the order r (modulo pa) of a uniformly random
chosen element of the multiplicative group Gpa.

Proof. When p is odd, φ(pa) = pa−1(p − 1) is even, and thus the largest power of two
that divides φ(pa) is a least 2 or d ≥ 1. The multiplicative group Gpa is cyclic because pa
is a prime power. For this reason, there exists an element g (the generator) of Gpa such
that any element x of the group can be written as x = gk mod pa for some integer k. Let
x = gk mod pa is the random chosen element of Gpa and r its order; gr = 1 (mod pa).

169 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

If k is odd then xr = gkr = 1 (mod pa). The group Gpa is a cyclic group and its order is |Gpa| =
φ(pa), so it holds that gφ(pa) = 1 (mod pa) with pa the smallest positive integer with this
property, and thus φ(pa) divides kr. By the assumption, 2d divides φ(pa) and consequently
2d divides kr and thus 2d divides r because k is odd.

On the other side, if k is even,
(
gφ(pa)

)k/2
=
(
gk
)φ(pa)/2

= 1 (mod pa). Due to the definition
of r, which is the lowest positive integer having the property

(
gk
)r

= 1 (mod pa) it holds
that r divides φ(pa)/2. By assumption, 2d is the largest power of 2 that divides φ(pa), thus
2d does not divide φ(pa)/2 and consequently 2d does not divide r.

In conclusion, the elements of the set Gpa can be partitioned into two subsets of equal size,
the ones that can be written as gk with k odd and for which 2d divides r, and the ones that
can be written as gk with k even and for which 2d does not divide r.

Proposition A.4. Let N = pm11 pm22 · · · pmn
n be the unique factorization of an odd integer N into

its prime factors. If x is an element chosen at random and uniformly from the multiplicative
group GN, and r is its order, then it holds

Prob
[
r mod 2 = 0 AND xr/2 + 1 mod N ̸= 0

]
≥ 1− 1

2n−1

Proof. An equivalent relation for the above probability expression is that

Prob
[
r mod 2 ̸= 0 OR xr/2 + 1 mod N = 0

]
≤ 1
2n−1

The bijection between the groupsGN andGm1×· · ·×Gmn deduced from the Chinese remain-
der Theorem A.1, permits to randomly choose n-tuples (x1, . . . , xn), from Gm1 × · · · × Gmn ,
instead of directly choosing x, and requiring x = xj mod pmj

j . Let rj be the order of xj, and 2dj
the largest power of 2 that divides the order rj and 2d the largest power of 2 that divides r.

Because r is the order of x, that is xr mod pm11 pm22 · · · pmn
n = 1, it holds that pm11 pm22 · · · pmn

n divides
xr − 1 and the same holds for each pmj

j or equivalently, xr mod pmj
j = 1. But, x = xj mod pmj

j
which gives xr = xrj mod pmj

j = 1.

If the order r is odd, by taking into account, that rj is the least positive integer with the
property xrjj mod pmj

j = 1 the conclusion is that rj divides r and thus rj is odd too, leading to
dj = 0.

The other case occurs when r is even, and thus r/2 is an integer. Then xr/2+ 1 mod N = 0
means that pm11 . . . pmn

n divides xr/2+ 1 and the same holds for pmj
j , that is xr/2 mod pmj

j = −1.
Since x = xj mod pmj

j , this means also that xr/2j mod pmj
j = −1. But rj is the smallest positive

integer with the property xrjj mod pmj
j = 1, consequently rj cannot divide r/2. It is already

proven that rj divides r and because 2dj divides rj, the power of two 2dj divides r also. But,
bu assumption 2d is the largest power of two that divides r and consequently dj < d. On the
other side 2rj cannot divide r and for this reason dj + 1 > d. In conclusion, in this second
case it holds dj = d.

In both cases, r being odd or xr/2 + 1 mod N = 0, the largest power of two 2dj that divides
the orders rj of the randomly chosen xj mod pmj

j is the same for all j. This power of two 2dj
divides also φ(pmj

j). By Proposition A.3, the largest power of two that divides φ(pmj
j) divides

the order of any randomly chosen element of Gp
mj
j

with probability 1/2. Thus, the probability
that 2dj divides the order of any randomly chosen element of some Gp

mj
j

is at most 1/2 and
the probability that 2dj jointly divides the order of any randomly chosen element of all the

A.Pavlidis 170

Design and Synthesis of Efficient Circuits for Quantum Computers

Gp
mj
j

is at most 1/2n, except when n = 1. In this case, where N is a prime power, the
probability is 1; it can never hold that r is even and xr/2 + 1 mod N ̸= 0. The case of N
being a prime power can be excluded from the analysis of Shor’s algorithm because it
can be handled by a classical algorithm to efficiently factorize N. To include this case the
proposition is formulated with the fraction 1/2n−1 instead of 1/2n.

A.2 Continued Fraction Expansion
Definition A.3. The finite continued fraction expansion (CFE) defined by the positive in-
tegers sequence c0, c1, . . . , cR is the rational number

[c0, c1, . . . , cR]
.
= c0 +

1
c1 + 1

c2+ 1
···+ 1

CR

The j-th convergent (j = 0, . . . ,R) to the above continued fraction is the rational number
[c0, c1, . . . , cj]

Proposition A.5. Given a rational ξ = p
q , its continued fraction expansion representation

[c0, c1, . . . , cR] can be computed by the following algorithm which terminates after O(log p)
iterations.

c0 = ⌊ξ⌋
ξ0 = ξ − c0
j = 0
WHILE ξ j ̸= 0 DO
cj+1 = ⌊ 1ξj ⌋
ξ j+1 = 1

ξj
− cj+1

i = i+ 1
END WHILE

Proof. By the definition of the CFE, it is clear that c0 is the quotient q0 of the division
p/q, while the other term, 1

c1+...
, is 1

q/r0
, where r0 is the remainder of the division p/q and

ξ0 = r0/q. Proceeding the same way, c1 is the quotient of q/r0 = 1/ξ0 while the other term
1

c2+...
, is 1

r0/r1
, where r1 is the remainder of the division q/r0 = 1/ξ0. Thus, the coefficients

cj are essentially the partial quotients of the Euclid algorithm initialized with p and q. The
algorithm of Proposition A.5 is the Euclidean algorithm. The time complexity of Euclid
algorithm is known to be O(log p).

The following proposition permits to retrieve all the convergents of a rational ξ from its
CFE representation, in the form ξ j =

pj
qj where gcd(pj, qj) = 1 (numerator and denominator

are coprimes).

Proposition A.6. Each convergent ξ j of ξ = [c0, c1, . . . , cn] can be written in the form pj
qj ,

where pj and qj are coprimes, and the integers pj and qj can be found be the following
recursive relation:

171 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

p0 = c0
q0 = 1
p1 = c1c0 + 1
q1 = a1
FOR j = 2 TO n DO
pj = cjpj−1 + pj−2
qj = cjqj−1 + qj−2

END FOR

Proof. It is clear that the above algorithm is valid for n = 0, 1, 2. Using the compact form
of the CFE representation it can be stated that

[c0, c1, . . . , cn] = [c0, c1, . . . , cn−2, cn−1 + 1/cn] (A.4)

The left hand side is a CFE of n terms while the right hand side is a CFE of n − 1 terms.
Assuming that the algorithm is valid for n−1, it will be proven that it is valid for n by induction.
Let p′

j/q
′
j be the sequence of convergents of the right hand side for j = 0 . . . n− 1 as given

be the algorithm. It will be proven that for the sequence of the respective convergents of
the left hand side pj/qj, it holds that pn/qn = p′

n−1/q
′
n−1.

The terms of the two CFE forms of Eq. (A.4) have equal coefficients from c0 up to cn−2.
Consequently, taking into account the algorithm the following relations are true

p′
n−1

p′
n−1

=
(cn−1 + 1/cn)pn−2 + pn−3
(cn−1 + 1/cn)qn−2 + qn−3

=
pn−1 + pn−2/cn
qn−1 + qn−2/cn

=
cnpn−1 + pn−2
cnqn−1 + qn−2

=
pn
qn

(A.5)

This means that pn
qn = [c0, c1, . . . , cn]

Theorem A.2. Let ξ ∈ R and a, b ∈ Z with b > 0. The rational a
b is a convergent of the

CFE of ξ if the following condition holds∣∣∣∣ξ − a
b

∣∣∣∣ ≤ 1
2b2

See [182] for a proof.

Corollary A.3. If a measurement result k is obtained by the Shor’s algorithm circuit of
Figure 3.5 with L = 22n and order r of a random a, and additionally this measurement
result k is the closest to an integer multiple of L/r, that is

∣∣k−mL
r

∣∣ ≤ 1
2 , m ∈ {0, . . . , r− 1},

then the rational number m
r is a convergent of k/L.

Proof. Taking into account that N2 ≤ L and r ≤ N then

A.Pavlidis 172

Design and Synthesis of Efficient Circuits for Quantum Computers

∣∣∣∣k− m
L
r

∣∣∣∣ ≤ 12 =⇒
∣∣∣∣ kL − m

r

∣∣∣∣ ≤ 1
2L
≤ 1
2N2
≤ 1
2r2

Thus, the condition of Theorem A.2 is satisfied for ξ = k
L .

The usage of 2n qubits at the top register of 3.5, where n = ⌈N⌉, is justified by the required
condition of Theorem A.2. Corollary A.3 permits the extraction of a rational m/r, where r is
the period, given a measurement result k on the condition that this result is the closest to a
multiple of L/r. This extraction is done in two steps. First, the convergents of L/r are found
using the algorithm of Proposition A.5. These convergents are of the form c0, c1, . . . , cj.
Then, these convergents are calculated in the equivalent form pj/qj using the algorithm
of Proposition A.6. The numerator pj and the denominator qj extracted by this procedure
are co-primes (gcd(pj, qj)). By Corollary A.3, one of these convergents is m/r and thus for
r = qj to be valid, it must hold that gcd(m, r). The candidate periods qj are verified by using
aqj mod N = 1. If this verification fails for all qj then the whole quantum computation is
repeated as shown in the flowchart of Figure 3.7.

A.3 Success Probability of Quantum Period Finding
The quantum period finding algorithm successfully finds the period r searched for if two
conditions are met: (i) The measurement result k at the last step of quantum computation
is the closest to an integer m multiple of L/r, and (ii) the integers m and r are co-primes.
The probability of success is analyzed in this section.

Definition A.4. The setKg of ”good” measurements is the set of the measurement indices
k that are the closest ones to the integers multiples of L

r

Kg
.
=

{
k = 0 . . .L− 1 :

∣∣∣∣k− m
L
r

∣∣∣∣ ≤ 12 , m = 0 . . . r− 1
}

Because the integer m ranges between 0 and r − 1, its range can be reformulated as
m = round(kLr) for k = 0 . . . L − 1. By defining the residue {rk}L

.
= rk − Lround(rkL), the

definition of the set Kg can be reformulated as follows

Kg =
{
k = 0 . . . L− 1 : |rk− mL| ≤ r

2
, m = 0 . . . r− 1

}
={

k = 0 . . .L− 1 :
∣∣∣∣rk− round(

k
L
r)L
∣∣∣∣ ≤ r

2

}
={

k = 0 . . . L− 1 : |{rk}L| ≤
r
2

} (A.6)

The following Proposition gives a lower bound for the probability to measure a result that
belongs to the ”good” set of measurements Kg.

Proposition A.7. The probability to obtain a measurement k which belongs to the set of
”good” measurements Kg is lower bounded as follows

Prob [k|k ∈ Kg] ≥

{
4
π2r

(
1− 1

L

)2
, 0 < {rk}L ≤ r

2

(
1− 1

L

)
1
r , {rk}L = 0

(A.7)

173 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

Proof. The relations N2 ≤ L ≤ 2N2 and 0 ≤ r < N are used to derive the following
inequalities, where s = ⌊L/r⌋,

∣∣∣∣π{rk}LL
(s+ 1)

∣∣∣∣ ≤ πr
2L

(
1− 1

L

)
(s+ 1)

≤ π
2

(
1− 1

L

)(
L+ r
L

)
≤ π
2

(
1− 1

L

)(
1+

L
L2

)
≤ π
2

(A.8)

A direct consequence is that ∣∣∣∣π{rk}LL
s
∣∣∣∣ ≤ π

2
(A.9)

Also, because rk = {rk}L + Lround(rkL) the following equality is valid

sin

(
πrk
L
x
)

= sin

(
π{rk}L

L
x
)
, ∀x ∈ Z (A.10)

Using the trigonometric inequality and Eq. (3.21)

4
π2
θ2 ≤ sin2 (θ) ≤ θ2, |θ| < π

2
(A.11)

we conclude that if 0 < {rk}L ≤ r
2

(
1− 1

L

)
then (we remind that L = rs+ t)

Prob [k] =
t sin2

(
π{rk}L

L (s+ 1)
)
+ (r− t) sin2

(
π{rk}L

L s
)

L2 sin2
(
π{rk}L

L

)
≥

t 4π2
(
π{rk}L

L (s+ 1)
)2

+ (r− t) 4π2
(
π{rk}L

L s
)2

L2
(
π{rk}L

L

)2
≥ 4

π2
· rs

2

L2

=
4
π2
· 1
r

(
L− t
L

)2
=
4
π2
· 1
r

(
1− t

L

)2
≥ 4

π2
· 1
r

(
1− 1

N

)2

(A.12)

Thus, first case of Proposition A.7 has been proved. The second case {rk}L = 0 can be
easily proven by taking into account that 0 ≤ t ≤ r−1 and that the probability of Eq. (3.21)
becomes

A.Pavlidis 174

Design and Synthesis of Efficient Circuits for Quantum Computers

Prob [k] =
tL2 + (r− t) r2s2

L2r2

=
1
r
· L

2 + t(r− t)
L2

≥ 1
r

(A.13)

The number of indices k that fulfill the condition |{rk}L| ≤ r
2 is r, as implied by Eq. (A.6).

Combined with the fact that the number N to be factored is very large and thus
(
1− 1

L

)2 ≈ 1
the total probability to obtain a ”good” measurement is lower bounded by

Prob [k ∈ Kg] ≥
4
π2
≈ 0.4 (A.14)

In conclusion, the total probability to obtain a measurement which is the closest to an
integer multiple of L

r , something that could permit the extraction of the period r using CFE,
is at least 40%.

It remains to calculate the final probability that the CFE procedure correctly gives the
period r on the condition that a ”good” measurement is obtained, that is the probability

Prob [k ∈ Kg : gcd(m, r) = 1] ,

where m is a function of index k as implied in Definition A.4, namely m = A(k) = round(kLr).

Because the number of the ”good” measurements is r there is a ”one-to-one” relation
between the ”good” k’s and m = A(k). This fact can be combined with the definition of the
Euler’s function φ(n) which gives the number of natural numbers which are co-primes and
less than n. Thus, the probability to obtain a ”good” measurement and at the same time
this measurement lead to a correct period estimation is given by

Prob [k ∈ Kg : gcd(A(k), r) = 1] ≥
4
π2
· φ(r)

r

(
1− 1

N

)2
(A.15)

The following result from Number Theory is used, without proof.

Theorem A.3.
lim inf

φ(N)
N/ ln lnN

= e−γ (A.16)

where γ is Euler’s constant and it is γ = 0.5777215 . . . and e−γ = 0.5614594 . . .

Corollary A.4.

Prob [k ∈ Kg : gcd(A(k), r) = 1] ≥ 4
π2 ln 2

· e
−γ − ε(r)
ln logN

(
1− 1

N

)2
(A.17)

where ε(r) is a monotonically decreasing sequence converging to zero.

175 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

Proof. Equivalent to Theorem A.3 is the result that φ(r)
r/ ln ln r = e−γ − ε(r), where ε(r) is a

monotonically decreasing sequence converging to zero. consequently,

φ(r)
r
≥ e−γ − ε(r)

ln ln r
≥ e−γ − ε(r)

ln lnN
=

e−γ − ε(r)
ln ln 2+ ln logN

≥ e−γ − ε(r)
ln 2

· 1
log logN

(A.18)

Corollary A.4 can be stated in the equivalent form

Prob [k ∈ Kg : gcd(A(k), r) = 1] = Ω
(

1
log logN

)
(A.19)

In conclusion, the Quantum Period Finding algorithm gives the period r with a constant
lower bounded probability of error using O(log logN) iterations, where N is the number to
be factored, or equivalently, using O(log n) iterations, where n is the number of bits of N.

A.4 Quantum Fourier Transform Circuit
The derivation of Eq. (3.5) is justified by the following relations

|j⟩ = |j1 . . . jn⟩
QFT2n−−−→ 1√

2n

1∑
k1=0

· · ·
1∑

kn=0

e
i2π
2n j

∑n
l=1 kl2n−l |k1 . . . kn⟩

=
1√
2n

1∑
k1=0

· · ·
1∑

kn=0

n⊗
l=1

ei2πjkl2−l |kl⟩

=
1√
2n

n⊗
l=1

1∑
kl=0

ei2πjkl2−l|kl⟩

=
1√
2n
(
|0⟩+ ei2π(0.jn)|1⟩

) (
|0⟩+ ei2π(0.jn−1jn)|1⟩

)
· · ·
(
|0⟩+ ei2π(0.j1j2...jn−1jn)|1⟩

)
(A.20)

The first line in the above set of equations follows from the QFT definition of Eq. (3.1) and
the fact that

∑n
l=1 kl2n−l = k, assuming that k = (k1k2 . . . kn) in binary notation. The second

line is just a rewriting of |k⟩ = |k1k2 . . . kn⟩ = |k1⟩⊗|k2⟩⊗· · ·⊗|kn⟩. The third line follows from
the linearity property of the tensor product in Eq. (2.13). The last line is just the expanded
form of the third line and shows that in the particular QFT action on computational basis
states the resulting state is of product form.

The first factor of the product form 1√
2

(
|0⟩+ ei2π(0.jn)|1⟩

)
is a reformulation of the expression

1√
2 (|0⟩+ (−1)jn |1⟩). Taking into account that |j⟩ belongs to the computational basis and

thus jn = 0 or jn = 1, this reformulation gives the state 1√
2 (|0⟩+ |1⟩) if |jn⟩ = |0⟩ and the

state 1√
2 (|0⟩ − |1⟩) if |jn⟩ = |1⟩. This is exactly the effect of a Hadamard gate applied on

|jn⟩, as exposed in Eq. (2.25). This operation is depicted on the lower qubit of Figure 3.1.

The second factor of the product form is 1√
2

(
|0⟩+ ei2π(0.jn−1jn)|1⟩

)
. The phase factor ei2π(0.jn−1jn)

can be decomposed as ei2π(0.jn−1)+i2π(0.0jn) = ei2π(0.jn−1)ei2π(0.0jn). Similarly to the previous anal-
ysis, the state 1√

2

(
|0⟩+ ei2π(0.jn−1)|1⟩

)
can be constructed by applying a Hadamard gate on

qubit |jn−1⟩. The additional phase factor ei2π(0.0jn) can be introduced by a c-Rz(
π
2) controlled

by the state |jn⟩ because 2π(0.0jn) = π
2 if jn = 1, otherwise 2π(0.0jn) = 0. The consecutive

A.Pavlidis 176

Design and Synthesis of Efficient Circuits for Quantum Computers

application of the H and c-Rz(
π
2) gates is depicted in the second qubit line of Figure 3.1

which is initially in state |jn−1⟩.

Proceeding with similar analysis for the remaining factors of the product state in Eq. (A.20),
it can be shown that the operation of the circuit in Figure 3.1 performs the desired QFT
on the computational basis states |j⟩, j = 0 . . . 2n−1. Linearity of the operations and the
completeness of the computational basis assures its validity for any state |ψ⟩ ∈ HN as
described by Eq. (3.1).

The total number of gates of the QFT circuit is n(n+1)
2 , while its apparent depth, assuming a

sequential operation of one gate after the other, is the same. Yet, it can be shown that by
a suitable rearrangement, the gates involved in operations of different qubits can operate
in parallel, lowering the depth of the QFT circuit to only 2n− 1 steps.

A.5 Quantum Phase Estimation
The decomposition of the Uf operator in a sequence of CUa2j operators shown in Figure
3.8 offers an alternative interpretation of the quantum period finding algorithm as a phase
estimation algorithm, which can give more insight into other relevant algorithms. The CUa2j

controlled operator can be decomposed in block form as

CUa2j =

[
I 0
0 Ua2j

]
(A.21)

where Ua2j is the operator defined by Ua2j (|x⟩) = |a2ix mod N⟩. Equation (3.26) can be
reformulated as

CUa2j (|c⟩|y⟩) = |c⟩
(
Ua2j
)c |y⟩ (A.22)

Observe that Ua2j = (Ua)
2j where Ua is the modular multiplication operator defined by

Ua(|x⟩) = |ax mod N⟩. Let |u⟩ be an eigenstate of Ua. The corresponding eigenvalue is of
the form eiφ, where 0 ≤ φ < 2π, because Ua is unitary (a is selected to be co-prime with N)
and thus Ua2j |u⟩ = (Ua)

2j |u⟩ = eiφ2j |u⟩. In Figure 3.8 the controlled modular multipliers CUa2j

are controlled by the j-th qubit of the top register. If the top register is in the computational
basis state |k⟩ = |k2n−1 . . . k0⟩ and the bottom register is in an eigenstate |u⟩ of Ua then by
using Eq. (A.22) we conclude that the state of both registers after the application of the 2n
controlled modular multipliers will be

Uf (|k⟩|u⟩) =|k⟩
2n−1∏
j=0

(
Ua2j
)kj |u⟩

= |k⟩
2n−1∏
j=0

(
eiφ2jkj

)
|u⟩

= |k⟩eiφ
∑2n−1

j=0 2jkj |u⟩
= |k⟩eiφk|u⟩

(A.23)

The phase factor eiφk can be viewed as being kicked-back to the top register as already
noted in section 2.4.2.

The top register in Figure 3.8 is initialized in an equiprobable superposition 1√
Q

∑Q−1
k=0 |k⟩

177 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

and thus on the condition that the bottom register is initially set in an eigenstate |u⟩, the
state of the top register just before the inverse QFT would be

Uf

(
1√
Q

Q−1∑
k=0

|k⟩|u⟩

)
=

1√
Q

Q−1∑
k=0

eiφk|k⟩|u⟩ (A.24)

If the phase φ can be described by exactly 2n bits in binary fractional notation as φ =
2π(0.j2n1 . . . j0) = 2πj/Q (which means that 2πφ divides Q), then Eq. (A.24) takes the form

Uf

(
1√
Q

Q−1∑
k=0

|k⟩|u⟩

)
=

1√
Q

Q−1∑
k=0

e
i2π
Q jk|k⟩|u⟩ (A.25)

The application of the inverse QFT at the top register then, is by definition exactly |j⟩. Thus
the circuit of Figure 3.8 can find the phase φ = 2πj/Q if the bottom register is initialized in
an eigenstate of Ua.

The initialization of the bottom register in the quantum period finding application is the state
|1⟩. For this particular application it holds that Ur

a = 1 where r is the order of a searched
for, because Ur

a|x⟩ = |xar mod N = |x⟩. Consequently, the r-th roots of unity ei2πt/r = eiφt for
t = 0 . . . r − 1 are eigenvalues of Ua. Furthermore, it can be proven that the eigenstates
|ut⟩ which correspond to these eigenvalues are

|ut⟩ =
1√
r

r−1∑
s=0

e−i2π t
r s|as mod N⟩ (A.26)

and that the bottom register’s initial state |1⟩ is the sum of the eigenstates ut which corre-
spond to these eigenvalues:

|1⟩ =
r−1∑
t=0

|ut⟩ (A.27)

In this particular case, Eq. (A.24) becomes

Uf

(
1√
Q

Q−1∑
k=0

|k⟩|1⟩

)
=

1√
r
1√
Q

r−1∑
t=0

Q−1∑
k=0

eiφtk|k⟩|ut⟩

=
1√
r
1√
Q

r−1∑
t=0

Q−1∑
k=0

e
i2π
Q

Q
r tk|k⟩|ut⟩

(A.28)

When the order r divides Q, then j = Q/r is an integer (meaning that 1/r can be written
in binary fractional form of 2n bits as (0.j2n−1 . . . j0)). The application of the inverse QFT at
the top register then leads to the joint state

|ψ⟩ = 1√
r

r−1∑
t=0

e
i2π
Q

∣∣∣∣Qr t
⟩
|ut⟩ (A.29)

A.Pavlidis 178

Design and Synthesis of Efficient Circuits for Quantum Computers

The final measurement of the top register gives with certainty one of the values Q
r t for

t = 0 . . . r − 1 which are related to the eigenvalues phases with the relation φt =
2π
Q

Q
r t.

When r does not divide Q, then close estimations of φt are performed as already pointed
out in section 3.4.

Thus the circuit of Figure 3.8 can be viewed as a quantum phase estimator of the phases
φt corresponding to the eigenvalues eiφt of the modular multiplier Ua.

179 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

A.Pavlidis 180

Design and Synthesis of Efficient Circuits for Quantum Computers

REFERENCES
[1] H. Araki and E. H. Lieb, “Entropy inequalities,” Communications in Mathematical

Physics, vol. 18, no. 2, pp. 160–170, 1970.

[2] E. H. Lieb and M. B. Ruskai, “Proof of the strong subadditivity of quantum-
mechanical entropy,” Journal of Mathematical Physics, vol. 14, no. 12, pp. 1938–
1941, 1973.

[3] G. Lindblad, “Completely positive maps and entropy inequalities,” Communications
in Mathematical Physics, vol. 40, no. 2, pp. 147–151, 1975.

[4] A. S. Kholevo, “Bounds for the quantity of information transmitted by a quantum
communication channel,” Problemy Peredachi Informatsii (Problems of Information
Transmission), vol. 9, no. 3, pp. 3–11, 1973.

[5] A. Kholevo, “On the capacity of a quantum communication channel.” Problemy
Peredachi Informatsii (Problems of Information Transmission), vol. 15, no. 4, pp.
3–11, 1979.

[6] J. D. Bekenstein, “Universal upper bound on the entropy-to-energy ratio for bounded
systems,” Physical Review D, vol. 23, pp. 287–298, Jan. 1981.

[7] D. Deutsch, “Quantum Theory, the Church-Turing Principle and the Universal Quan-
tum Computer,” Proceedings of the Royal Society of London A: Mathematical, Phys-
ical and Engineering Sciences, vol. 400, no. 1818, pp. 97–117, Jul. 1985.

[8] D. Deutsch, “Quantum Computational Networks,” Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, vol. 425, no. 1868,
pp. 73–90, Sep. 1989.

[9] D. Simon, “On the power of quantum computation,” in Proc. 35th Annual IEEE Sym-
posium on Foundations of Computer Science, (FOCS’94), Nov. 1994, pp. 116–123.

[10] P. W. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and Factor-
ing,” in Proc. 35th Annual IEEE Symposium on Foundations of Computer Science,
(FOCS’94), Nov. 1994, pp. 124–134.

[11] L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search,” in Proc.
28th Annual ACM Symposium on Theory of Computing (STOC’96), May 1996, pp.
212–219.

[12] S. Lloyd, “Universal Quantum Simulators,” Science, vol. 273, no. 5278, pp. 1073–
1078, Aug. 1996.

[13] J. I. Cirac and P. Zoller, “Quantum Computations with Cold Trapped Ions,” Physical
Review Letters, vol. 74, pp. 4091–4094, May 1995.

[14] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and
M. H. Devoret, “Manipulating the Quantum State of an Electrical Circuit,” Science,
vol. 296, no. 5569, pp. 886–889, May 2002.

[15] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang,
I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science, vol.
351, no. 6277, pp. 1068–1070, Mar. 2016.

181 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

[16] R. Barends, L. Lamata, J. Kelly, L. García-Álvarez, A. G. Fowler, A. Megrant, E.
Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A.
Vainsencher, J. Wenner, E. Solano, and J. M. Martinis, “Digital quantum simulation
of fermionic models with a superconducting circuit,” Nature Communications, vol. 6,
pp. 7654:1–7654:7, Jul. 2015.

[17] A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm
on a photonic chip,” Science, vol. 325, no. 5945, pp. 1221–1221, Sep. 2009.

[18] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and
I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using
nuclear magnetic resonance,” Nature, vol. 414, no. 6866, pp. 883–887, Dec. 2001.

[19] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,”
Physical Review A, vol. 52, pp. R2493–R2496, Oct. 1995.

[20] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,”
Physical Review A, vol. 54, pp. 1098–1105, Aug. 1996.

[21] A. Steane, “Multiple-Particle Interference and Quantum Error Correction,” Proceed-
ings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 452, no. 1954, pp. 2551–2577, Nov. 1996.

[22] D. Aharonov and M. Ben-Or, “Fault-tolerant Quantum Computation with Constant
Error,” in Proc. 29th Annual ACM Symposium on Theory of Computing (STOC’97),
May 1997, pp. 176–188.

[23] T. G. Draper, “Addition on a Quantum Computer,” eprint arXiv:quant-ph/0008033,
Aug. 2000.

[24] S. Beauregard, “Circuit for Shor’s Algorithm Using 2n + 3 Qubits,” Quantum Infor-
mation & Computation, vol. 3, no. 2, pp. 175–185, Mar. 2003.

[25] A. Khosropour, H. Aghababa, and B. Forouzandeh, “Quantum Division Circuit
Based on Restoring Division Algorithm,” in Proc. 8th International Conference on
Information Technology: New Generations (ITNG ’11), 2011, pp. 1037–1040.

[26] B.-S. Choi and R. Van Meter, “On the Effect of Quantum Interaction Distance on
Quantum Addition Circuits,” ACM J. Emerging Technologies in Computing Systems,
vol. 7, no. 3, pp. 11:1–11:17, Aug. 2011.

[27] G. Cybenko, “Reducing Quantum Computations to Elementary Unitary Operations,”
J. Computing in Science and Engineering, vol. 3, no. 2, pp. 27–32, Mar. 1996.

[28] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum-logic circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 25, no. 6, pp. 1000–1010, Jun. 2006.

[29] T. Toffoli, “Reversible computing,” Massachusetts Institute of Technology, Labora-
tory for Computer Science, Tech. Rep. MIT/LCS/TM-151, Feb. 1980.

[30] M. Saeedi and I. L. Markov, “Synthesis and Optimization of Reversible Circuits - A
Survey,” ACM Computing Surveys, vol. 45, no. 2, pp. 21:1–21:34, Feb. 2013.

A.Pavlidis 182

Design and Synthesis of Efficient Circuits for Quantum Computers

[31] C. H. Bennett, “Logical Reversibility of Computation,” IBM J. Research and Devel-
opment, vol. 17, no. 6, pp. 525–532, Nov. 1973.

[32] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics,
vol. 38, no. 8, pp. 114–117, Apr. 1965.

[33] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, Oct. 1974.

[34] M. Sipser, Introduction to the Theory of Computation, 2nd ed. Thomson Course
Technology, 2006.

[35] C. H. Papadimitriou, Computational Complexity, 1st ed. Addison-Wesley, 1994.

[36] E. Bernstein and U. Vazirani, “Quantum Complexity Theory,” in Proc. 25th Annual
ACM Symposium on Theory of Computing (STOC’93), May 1993, pp. 11–20.

[37] J. E. Savage, “Computational Work and Time on Finite Machines,” J. ACM, vol. 19,
no. 4, pp. 660–674, Oct. 1972.

[38] C. P. Schnorr, “The Network Complexity and the Turing Machine Complexity of Fi-
nite Functions,” Acta Informatica, vol. 7, no. 1, pp. 95–107, Mar. 1976.

[39] N. Pippenger and M. J. Fischer, “Relations Among Complexity Measures,” J. ACM,
vol. 26, no. 2, pp. 361–381, Apr. 1979.

[40] R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM
J. Research and Development, vol. 5, no. 3, pp. 183–191, Jul. 1961.

[41] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information,
10th ed. Oxford University Press, 2011.

[42] S. Kotiyal, H. Thapliyal, and N. Ranganathan, “Mach-Zehnder Interferometer Based
Design of All Optical Reversible Binary Adder,” in Proc. Conference on Design, Au-
tomation and Test in Europe 2012 (DATE’12), Mar. 2012, pp. 721–726.

[43] D. H. Wood and J. Chen, “Fredkin gate circuits via recombination enzymes,” in Proc.
Congress on Evolutionary Computation 2004 (CEC2004), Jun. 2004, pp. 1896–
2000.

[44] R. P. Feynman, “Simulating physics with computers,” International Journal of The-
oretical Physics, vol. 21, no. 6, pp. 467–488, Jun. 1982.

[45] P. Kaye, R. Laflamme, and M. Mosca, An Introduction to Quantum Computing,
1st ed. Oxford University Press, 2007.

[46] G. Esposito, G. Marmo, G. Miele, and G. Sudarshan, Advanced concepts in quan-
tum mechanics, 1st ed. Cambridge University Press, 2014.

[47] A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of
Physical Reality Be Considered Complete?” Physical Review, vol. 47, pp. 777–780,
May 1935.

[48] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Physical Review Let-
ters, vol. 67, pp. 661–663, Aug. 1991.

183 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

[49] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,
“Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels,” Physical Review Letters, vol. 70, pp. 1895–1899, Mar. 1993.

[50] F. Gaitan, Quantum Error Correction and Fault Tolerant Quantum Computing,
1st ed. CRC Press, 2008.

[51] A. C.-C. Yao, “Quantum circuit complexity,” in Proc. 34th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’93), Nov. 1993, pp. 352–361.

[52] D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Physical
Review A, vol. 51, pp. 1015–1022, Feb. 1995.

[53] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T.
Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computa-
tion,” Physical Review A, vol. 52, pp. 3457–3467, Nov. 1995.

[54] S. Lloyd, “Almost Any Quantum Logic Gate is Universal,” Physical Review Letters,
vol. 75, pp. 346–349, Jul. 1995.

[55] D. Deutsch, A. Barenco, and A. Ekert, “Universality in Quantum Computation,” Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 449, no. 1937, pp. 669–677, Jun. 1995.

[56] Kitaev, A. Y. and Shen, A. H. and Vyalyi, M. N., Classical and Quantum Computa-
tion. American Mathematical Society, 2002.

[57] C. M. Dawson and M. A. Nielsen, “The Solovay-Kitaev Algorithm,” Quantum Infor-
mation & Computation, vol. 6, no. 1, pp. 81–95, Jan. 2006.

[58] V. Kliuchnikov, D. Maslov, and M. Mosca, “Fast and Efficient Exact Synthesis of
Single-qubit Unitaries Generated by Clifford and T Gates,” Quantum Information &
Computation, vol. 13, no. 7-8, pp. 607–630, Jul. 2013.

[59] P. Selinger, “Efficient Clifford+T Approximation of Single-qubit Operators,”Quantum
Information & Computation, vol. 15, no. 1-2, pp. 159–180, Jan. 2015.

[60] V. Kliuchnikov, D. Maslov, and M. Mosca, “Practical Approximation of Single-Qubit
Unitaries by Single-Qubit Quantum Clifford and T Circuits,” IEEE Transactions on
Computers, vol. 65, no. 1, pp. 161–172, Jan. 2016.

[61] Vedral, V. and Barenco, A. and Ekert, A., “Quantum networks for elementary arith-
metic operations,” Physical Review A, vol. 54, pp. 147–153, Jul. 1996.

[62] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill, “Efficient networks for
quantum factoring,” Physical Review A, vol. 54, pp. 1034–1063, Aug. 1996.

[63] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, “Quantum algorithms revisited,”
Proceedings of the Royal Society of London A: Mathematical, Physical and Engi-
neering Sciences, vol. 454, no. 1969, pp. 339–354, Jan. 1998.

[64] D. Deutsch and R. Jozsa, “Rapid Solution of Problems by Quantum Computation,”
Proceedings of the Royal Society of London A: Mathematical, Physical and Engi-
neering Sciences, vol. 439, no. 1907, pp. 553–558, Dec. 1992.

A.Pavlidis 184

Design and Synthesis of Efficient Circuits for Quantum Computers

[65] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, “Ex-
ponential Algorithmic Speedup by a Quantum Walk,” in Proc. 35th Annual ACM
Symposium on Theory of Computing (STOC’03), Jun. 2003, pp. 59–68.

[66] A. Childs, L. Schulman, and U. V. Vazirani, “Quantum Algorithms for Hidden Nonlin-
ear Structures,” in Proc. 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’07), Oct. 2007, pp. 395–404.

[67] A. M. Childs and J. Goldstone, “Spatial search by quantum walk,” Physical Review
A, vol. 70, p. 022314, Aug. 2004.

[68] A. Ambainis, “Quantum Walk Algorithm for Element Distinctness,” SIAM J. Comput-
ing, vol. 37, no. 1, pp. 210–239, Apr. 2007.

[69] H. Buhrman and R. Špalek, “Quantum Verification of Matrix Products,” in Proc. 7th
Annual ACM-SIAM Symposium on Discrete Algorithm (S0DA’06), Jan. 2006, pp.
880–889.

[70] J. Kempe, “Quantum random walks : An introductory overview,” Contemporary
Physics, vol. 44, no. 4, pp. 307–327, 2003.

[71] A. Ambainis, “Quantum walks and their algorithmic applications,” International Jour-
nal of Quantum Information, vol. 01, no. 04, pp. 507–518, Dec. 2003.

[72] S. Jordan. (2016, Apr.) Quantum Algorithm Zoo. Accessed 25 May 2016. [Online].
Available: http://math.nist.gov/quantum/zoo/

[73] D. S. Abrams and S. Lloyd, “Simulation of Many-Body Fermi Systems on a Universal
Quantum Computer,” Physical Review Letters, vol. 79, pp. 2586–2589, Sep. 1997.

[74] C. Zalka, “Simulating quantum systems on a quantum computer,” Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
vol. 454, no. 1969, pp. 313–322, Jan. 1998.

[75] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, “Quantum algorithms for
fermionic simulations,” Physical Review A, vol. 64, p. 022319, Jul. 2001.

[76] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, “Simulating physi-
cal phenomena by quantum networks,” Physical Review A, vol. 65, p. 042323, Apr.
2002.

[77] S. Raeisi, N. Wiebe, and B. C. Sanders, “Quantum-circuit design for efficient simu-
lations of many-body quantum dynamics,” New Journal of Physics, vol. 14, no. 10,
p. 103017, 2012.

[78] K. L. Brown, W. J. Munro, and V. M. Kendon, “Using Quantum Computers for Quan-
tum Simulation,” Entropy, vol. 12, no. 11, p. 2268, Nov. 2010.

[79] I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Review of Modern
Physics, vol. 86, pp. 153–185, Mar. 2014.

[80] D. P. DiVincenzo, “The Physical Implementation of Quantum Computation,”
Fortschritte der Physik, vol. 48, no. 9-11, pp. 771–783, Sep. 2000.

185 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

[81] P. Aliferis, D. Gottesman, and J. Preskill, “Quantum Accuracy Threshold for Con-
catenated Distance-3 Codes,” Quantum Information & Compututation, vol. 6, no. 2,
pp. 97–165, Mar. 2006.

[82] A. Paetznick and B. W. Reichardt, “Fault-tolerant Ancilla Preparation and Noise
Threshold Lower Bounds for the 23-qubit Golay Code,” Quantum Information &
Computation, vol. 12, no. 11-12, pp. 1034–1080, Nov. 2012.

[83] A. Kitaev, “Quantum Error Correction with Imperfect Gates,” in Quantum Commu-
nication, Computing, and Measurement, O. Hirota, A. Holevo, and C. Caves, Eds.
Springer, 1997, pp. 181–188.

[84] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory,” J.
Mathematical Physics, vol. 43, pp. 4452–4505, Aug. 2002.

[85] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, “Surface code quantum comput-
ing with error rates over 1%,” Physical Review A, vol. 83, p. 020302, Feb. 2011.

[86] M. Suchara, J. Kubiatowicz, A. Faruque, F. Chong, C.-Y. Lai, and G. Paz, “QuRE:
The Quantum Resource Estimator toolbox,” in Proc. 31st IEEE International Con-
ference on Computer Design (ICCD’13), Oct. 2013, pp. 419–426.

[87] M. Ahsan, C. B-S., and K. J., “Performance simulator based on hardware resources
constraints for ion trap quantum computer,” in Proc. 31st IEEE International Con-
ference on Computer Design (ICCD’13), Oct. 2013, pp. 411–418.

[88] M. Ahsan, R. V. Meter, and J. Kim, “Designing a Million-Qubit Quantum Computer
Using a Resource Performance Simulator,” ACM J. Emerging Technologies in Com-
puting Systems, vol. 12, no. 4, pp. 39:1–39:25, Dec. 2015.

[89] D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G.
Blain, “Design, fabrication and experimental demonstration of junction surface ion
traps,” New Journal of Physics, vol. 13, no. 7, p. 075018, Jul. 2011.

[90] Aude Craik, D. P. L. and Linke, N. M. and Harty, T. P. and Ballance, C. J. and Lucas,
D. M. and Steane, A. M. and Allcock, D. T. C., “Microwave control electrodes for
scalable, parallel, single-qubit operations in a surface-electrode ion trap,” Applied
Physics B, vol. 114, no. 1, pp. 3–10, Jan. 2014.

[91] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke,
D. N. Stacey, and D. M. Lucas, “High-Fidelity Preparation, Gates, Memory, and
Readout of a Trapped-Ion Quantum Bit,” Physical Review Letters, vol. 113, p.
220501, Nov. 2014.

[92] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B.
Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland,
“Creation of a six-atom ’Schrödinger cat’ state,” Nature, vol. 438, no. 7068, pp. 639–
642, Dec. 2005.

[93] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Kör-
ber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R.
Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature, vol. 438, no.
7068, pp. 643–646, Dec. 2005.

A.Pavlidis 186

Design and Synthesis of Efficient Circuits for Quantum Computers

[94] D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe,
“Ion trap in a semiconductor chip,” Nature Physics, vol. 2, no. 1, pp. 36–39, Jan.
2006.

[95] B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P.
Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt,
and C. F. Roos, “Universal Digital Quantum Simulation with Trapped Ions,” Science,
vol. 334, no. 6052, pp. 57–61, Oct. 2011.

[96] P. Schindler, D. Nigg, T. Monz, J. Barreiro, E. Martinez, S. Wang, S. Quint, M.
Brandl, V. Nebendahl, C. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum
information processor with trapped ions,” New Journal of Physics, vol. 15, no. 12,
p. 123012, Oct. 2013.

[97] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlan-
der, W. Hänsel,W., M. Hennrich, and R. Blatt, “14-Qubit Entanglement: Creation
and Coherence,” Physical Review Letters, vol. 106, p. 130506, Mar. 2011.

[98] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus,
A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P.
O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland,
and J. M. Martinis, “Superconducting quantum circuits at the surface code threshold
for fault tolerance,” Nature, vol. 508, no. 7497, pp. 500–503, Apr. 2014.

[99] E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. O’Malley,
D. Sank, A. Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cleland, and J. M. Mar-
tinis, “Computing prime factors with a Josephson phase qubit quantum processor,”
Nature Physics, vol. 8, no. 10, pp. 719–723, Oct. 2012.

[100] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank,
J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi,
C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner,
A. N. Cleland, and J. M. Martinis, “State preservation by repetitive error detection
in a superconducting quantum circuit,” Nature, vol. 519, no. 7541, pp. 66–69, Mar.
2015.

[101] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computa-
tion with linear optics,” Nature, vol. 409, no. 6816, pp. 46–52, Jan. 2001.

[102] B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A.
Gilchrist, and A. G. White, “Experimental Demonstration of a Compiled Version of
Shor’s Algorithm with Quantum Entanglement,” Physical Review Letters, vol. 99, p.
250505, Dec. 2007.

[103] C. Lu, D. E. Browne, T. Yang, and J.-W. Pan, “Demonstration of a Compiled Version
of Shor’s Quantum Factoring Algorithm Using Photonic Qubits,” Physical Review
Letters, vol. 99, p. 250504, Dec. 2007.

[104] E. Martín-López, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Ex-
perimental realization of Shor’s quantum factoring algorithm using qubit recycling,”
Nature Photonics, vol. 6, no. 11, pp. 773–776, Nov. 2012.

[105] J. A. Jones, M. Mosca, and R. H. Hansen, “Implementation of a quantum search
algorithm on a quantum computer,” Nature, vol. 393, no. 6683, pp. 344–346, May
1998.

187 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

[106] S. Haroche, “Quantum Information with Atoms and Photons in a Cavity: Entangle-
ment, Complementarity and Decoherence Studies,” in Condensation and Coher-
ence in Condensed Matter, T. Claeson and P. Delsing, Eds. Physica Scripta and
Wold Scientific, 2011, pp. 128–132.

[107] R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kim-
ble, “Trapped atoms in cavity QED: coupling quantized light and matter,” Journal
of Physics B: Atomic, Molecular and Optical Physics, vol. 38, no. 9, p. S551, Apr.
2005.

[108] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muho-
nen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak,
“A two-qubit logic gate in silicon,”Nature, vol. 526, no. 7573, pp. 410–414, Oct. 2015.

[109] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum Computation by Adi-
abatic Evolution,” Massachusetts Institute of Technology, Center for Theoretical
Physics and Department of Mathematics, Tech. Rep. MIT/CTP/2936, Jan. 2000.

[110] T. Lanting, A. J. Przybysz, A. Y. Smirnov, F. M. Spedalieri, M. H. Amin, A. J.
Berkley, R. Harris, F. Altomare, S. Boixo, P. Bunyk, N. Dickson, C. Enderud, J. P.
Hilton, E. Hoskinson, M. W. Johnson, E. Ladizinsky, N. Ladizinsky, R. Neufeld, T.
Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, S. Uchaikin, A. B. Wilson,
and G. Rose, “Entanglement in a Quantum Annealing Processor,” Physical Review
X, vol. 4, p. 021041, May 2014.

[111] C. C. McGeoch and C. Wang, “Experimental Evaluation of an Adiabiatic Quantum
System for Combinatorial Optimization,” in Proc. 10th ACM International Confer-
ence on Computing Frontiers (CF,13), May 2013, pp. 23:1–23:11.

[112] S. Boixo, T. F. Ronnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M. Marti-
nis, and M. Troyer, “Evidence for quantum annealing with more than one hundred
qubits,” Nature Physics, vol. 10, no. 3, pp. 218–224, Mar. 2014.

[113] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis,
D. A. Lidar, and M. Troyer, “Defining and detecting quantum speedup,” Science,
vol. 345, no. 6195, pp. 420–424, Jul. 2014.

[114] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer,”SIAM J. Computing, vol. 26, no. 5, pp. 1484–1509,
Oct. 1997.

[115] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied Cryp-
tography, 1st ed. CRC Press, 1996.

[116] R. B. Griffiths and C.-S. Niu, “Semiclassical Fourier Transform for Quantum Com-
putation,” Physical Review Letters, vol. 76, pp. 3228–3231, Apr. 1996.

[117] A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,” Re-
view of Modern Physics, vol. 68, pp. 733–753, Jul. 1996.

[118] A. Kitaev, “Quantum measurements and the Abelian Stabilizer Problem,” Electronic
Colloquium on Computational Complexity, Tech. Rep. TRS96-003, Jan. 1996.

A.Pavlidis 188

Design and Synthesis of Efficient Circuits for Quantum Computers

[119] D. Boneh and R. J. Lipton, “Quantum cryptanalysis of hidden linear functions (ex-
tended abstract),” in Proc. 15th Annual International Cryptology Conference on Ad-
vances in Cryptology (CRYPTO’95), Aug. 1995, pp. 424–437.

[120] M. Mosca and A. Ekert, “The hidden subgroup problem and eigenvalue estimation
on a quantum computer,” in Quantum Computing and Quantum Communications:
First NASA International Conference, (QCQC’98), Selected Papers, C. P. Williams,
Ed. Springer, 1999, pp. 174–188.

[121] C. Lomont, “The Hidden Subgroup Problem - Review and Open Problems,” eprint
arXiv:quant-ph/0411037, Nov. 2004.

[122] T. Granlund and P. L. Montgomery, “Division by Invariant Integers Using Multiplica-
tion,” in Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation 1994 (PLDI’94), Jun. 1994, pp. 61–72.

[123] Y. Takahashi and N. Kunihiro, “A Linear-size Quantum Circuit for Addition with No
Ancillary Qubits,” Quantum Information & Computation, vol. 5, no. 6, pp. 440–448,
Sep. 2005.

[124] S. Parker and M. B. Plenio, “Efficient Factorization with a Single Pure Qubit and
logN Mixed Qubits,” Physical Review Letters, vol. 85, pp. 3049–3052, Oct. 2000.

[125] S. Cuccaro, T. Draper, S. Kutin, and D. Petrie Moulton, “A new quantum ripple-carry
addition circuit,” eprint arXiv:quant-ph/0410184, Oct. 2004.

[126] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, “A Logarithmic-depth Quan-
tum Carry-lookahead Adder,”Quantum Information & Computation, vol. 6, no. 4, pp.
351–369, Jul. 2006.

[127] P. Gossett, “Quantum Carry-Save Arithmetic,” eprint arXiv:quant-ph/9808061, Aug.
1998.

[128] C. Zalka, “Fast versions of Shor’s quantum factoring algorithm,” eprint arXiv:quant-
ph/9806084, Jun. 1998.

[129] R. Van Meter and K. M. Itoh, “Fast quantum modular exponentiation,” Physical Re-
view A, vol. 71, p. 052320, May 2005.

[130] A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg, “Implementation of Shor’s Algo-
rithm on a Linear Nearest Neighbour Qubit Array,” Quantum Information & Compu-
tation, vol. 4, no. 4, pp. 237–251, Jul. 2004.

[131] S. A. Kutin, “Shor’s algorithm on a nearest-neighbor machine,” in Asian Confer-
ence on Quantum Information Science (AQIS’07), Sep. 2007, eprint arXiv:quant-
ph/0609001.

[132] B.-S. Choi and R. Van Meter, “AΘ(
√
n)-depth Quantum Adder on the 2D NTC Quan-

tum Computer Architecture,” ACM J. Emerging Technologies in Computing Sys-
tems, vol. 8, no. 3, pp. 24:1–24:22, Aug. 2012.

[133] P. Pham and K. M. Svore, “A 2D Nearest-Neighbor Quantum Architecture for Fac-
toring in Polylogarithmic Depth,” Quantum Information & Computation, vol. 13, no.
11-12, pp. 937–962, Nov. 2013.

189 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

[134] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch,
G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic
using higher-dimensional Hilbert spaces,” Nature Physics, vol. 5, no. 2, pp. 134–
140, Feb. 2009.

[135] T. C. Ralph, K. J. Resch, and A. Gilchrist, “Efficient Toffoli gates using qudits,” Phys-
ical Review A, vol. 75, p. 022313, Feb. 2007.

[136] T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M.
Hennrich, and R. Blatt, “Realization of the Quantum Toffoli Gate with Trapped Ions,”
Physical Review Letters, vol. 102, p. 040501, Jan. 2009.

[137] A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, “Implementation of a
Toffoli gate with superconducting circuits,” Nature, vol. 481, no. 7380, pp. 170–172,
Jan. 2012.

[138] P. Kaye, “Optimized Quantum Implementation of Elliptic Curve Arithmetic over Bi-
nary Fields,” Quantum Information & Computation, vol. 5, no. 6, pp. 474–491, Sep.
2005.

[139] B. Amento, M. Rötteler, and R. Steinwandt, “Efficient Quantum Circuits for Binary El-
liptic Curve Arithmetic: Reducing T-gate Complexity,” Quantum Information & Com-
putation, vol. 13, no. 7-8, pp. 631–644, Jul. 2013.

[140] N. Moller and T. Granlund, “Improved Division by Invariant Integers,” IEEE Trans-
actions on Computers, vol. 60, no. 2, pp. 165–175, Feb. 2011.

[141] A. Pavlidis and D. Gizopoulos, “Fast Quantum Modular Exponentiation Architecture
for Shor’s Factoring Algorithm,” Quantum Information & Computation, vol. 14, no.
7&8, pp. 649–682, May 2014.

[142] R. Van Meter,III, “Architecture of a Quantum Multicomputer Optimized for Shor’s
Factoring Algorithm,” Ph.D. dissertation, Keio University, Jul. 2006.

[143] Y. Takahashi and N. Kunihiro, “A quantum circuit for shor’s factoring algorithm using
2n+2 qubits,” Quantum Information & Computation, vol. 6, no. 2, pp. 184–192, Mar.
2006.

[144] A. M. Steane, “Overhead and noise threshold of fault-tolerant quantum error correc-
tion,” Phys. Rev. A, vol. 68, p. 042322, Oct 2003.

[145] A. G. Fowler and L. C. L. Hollenberg, “Scalability of Shor’s algorithm with a limited
set of rotation gates,” Physical Review A, vol. 70, p. 032329, Sep. 2004.

[146] A. G. Fowler and L. C. L. Hollenberg, “Erratum: Scalability of Shor’s algorithm with
a limited set of rotation gates [Phys. Rev. A 70, 032329 (2004)],” Physical Review
A, vol. 75, p. 029905, Feb. 2007.

[147] T. T. Pham, R. Van Meter, and C. Horsman, “Optimization of the Solovay-Kitaev
algorithm,” Physical Review A, vol. 87, p. 052332, May 2013.

[148] N. C. Jones, J. D. Whitfield, P. L. McMahon, M.-H. Yung, R. V. Meter, A. Aspuru-
Guzik, and Y. Yamamoto, “Faster quantum chemistry simulation on fault-tolerant
quantum computers,”New Journal of Physics, vol. 14, no. 11, p. 115023, Nov. 2012.

A.Pavlidis 190

Design and Synthesis of Efficient Circuits for Quantum Computers

[149] A. Bocharov, Y. Gurevich, and K. M. Svore, “Efficient decomposition of single-qubit
gates into V basis circuits,” Physical Review A, vol. 88, p. 012313, Jul. 2013.

[150] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum
computation on cluster states,” Physical Review A, vol. 68, p. 022312, Aug. 2003.

[151] A. Trisetyarso and R. Van Meter, “Circuit Design for A Measurement-Based Quan-
tum Carry-Lookahead Adder,” International Journal of Quantum Information, vol. 08,
no. 05, pp. 843–867, Aug. 2010.

[152] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: To-
wards practical large-scale quantum computation,” Physical Review A, vol. 86, p.
032324, Sep. 2012.

[153] R. Van Meter, T. D. Ladd, A. G. Fowler, and Y. Yamamoto, “Distributed Quantum
Computation Architecture Using Semiconductor Nanophotonics,” International Jour-
nal of Quantum Information, vol. 8, no. 1&2, pp. 295–323, Feb. 2010.

[154] N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd, and
Y. Yamamoto, “Layered Architecture for Quantum Computing,” Physical Review X,
vol. 2, p. 031007, Jul. 2012.

[155] A. Barenco, A. Ekert, K.-A. Suominen, and P. Törmä, “Approximate quantum Fourier
transform and decoherence,” Physical Review A, vol. 54, pp. 139–146, Jul. 1996.

[156] D. Coppersmith, “An approximate Fourier transform useful in quantum factoring,”
IBM Research Division,T.J.Watson Research Center, Tech. Rep. RC 19642, Jan.
1994.

[157] Y. S. Nam and R. Blümel, “Performance scaling of Shor’s algorithm with a banded
quantum Fourier transform,” Physical Review A, vol. 86, p. 044303, Oct. 2012.

[158] Y. S. Nam and R. Blümel, “Robustness and performance scaling of a quantum com-
puter with respect to a class of static defects,” Physical Review A, vol. 88, p. 062310,
Dec. 2013.

[159] Y. S. Nam and R. Blümel, “Streamlining Shor’s algorithm for potential hardware
savings,” Physical Review A, vol. 87, p. 060304, Jun. 2013.

[160] Y. S. Nam and R. Blümel, “Analytical formulas for the performance scaling of quan-
tum processors with a large number of defective gates,” Physical Review A, vol. 92,
p. 042301, Oct. 2015.

[161] E. Knill, “Approximation by quantum circuits,” Los Alamos National Laboratory,
Tech. Rep. LA-UR-95-2225, Aug. 1995.

[162] B. Kraus and J. I. Cirac, “Optimal creation of entanglement using a two-qubit gate,”
Physical Review A, vol. 63, p. 062309, May 2001.

[163] M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer,
M. A. Nielsen, and T. J. Osborne, “Practical Scheme for Quantum Computation with
Any Two-Qubit Entangling Gate,” Physical Review Letters, vol. 89, p. 247902, Nov.
2002.

191 A.Pavlidis

Design and Synthesis of Efficient Circuits for Quantum Computers

[164] A. Pavlidis and D. Gizopoulos, “Hierarchical synthesis of quantum and reversible
architectures,” in Proc. 12th ACM International Conference on Computing Frontiers
(CF’15), 2015, pp. 13:1–13:8.

[165] A. Pavlidis and D. Gizopoulos, “Hierarchical synthesis of quantum and reversible ar-
chitectures,” International Journal of Parallel Programming, vol. 44, no. 5, pp. 1028–
1053, Oct. 2016.

[166] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis of reversible
logic circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 22, no. 6, pp. 710–722, Jun. 2003.

[167] A. K. Prasad, V. V. Shende, I. L. Markov, J. P. Hayes, and K. N. Patel, “Data Struc-
tures and Algorithms for Simplifying Reversible Circuits,” ACM J. Emerging Tech-
nologies in Computing Systems, vol. 2, no. 4, pp. 277–293, Oct. 2006.

[168] O. Golubitsky and D. Maslov, “A Study of Optimal 4-Bit Reversible Toffoli Circuits
and Their Synthesis,” IEEE Transactions on Computers, vol. 61, no. 9, pp. 1341–
1353, Sep. 2012.

[169] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based algorithm for
reversible logic synthesis,” in Proc. 40th Annual Design Automation Conference
(DAC’03), Jun. 2003, pp. 318–323.

[170] D. Maslov, G. W. Dueck, and D. M. Miller, “Techniques for the Synthesis of Re-
versible Toffoli Networks,” ACM Transactions on Design Automation of Electronic
Systems, vol. 12, no. 4, pp. 42:1–42:28, Sep. 2007.

[171] P. Gupta, A. Agrawal, and N. K. Jha, “An Algorithm for Synthesis of Reversible Logic
Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 25, no. 11, pp. 2317–2330, Nov. 2006.

[172] M. Saeedi, M. S. Zamani, M. Sedighi, and Z. Sasanian, “Reversible Circuit Synthe-
sis Using a Cycle-based Approach,” ACM J. Emerging Technologies in Computing
Systems, vol. 6, no. 4, pp. 13:1–13:26, Dec. 2010.

[173] R. Wille and R. Drechsler, “BDD-based Synthesis of Reversible Logic for Large
Functions,” in Proc. 46th Annual Design Automation Conference (DAC’09), 2009,
pp. 270–275.

[174] J. J. Vartiainen, M. Möttönen, and M. M. Salomaa, “Efficient decomposition of quan-
tum gates,” Physical Review Letters, vol. 92, p. 177902, Apr. 2004.

[175] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M.
Martonosi, “ScaffCC: A Framework for Compilation and Analysis of Quantum Com-
puting Programs,” in Proc. 11th ACM International Conference on Computing Fron-
tiers (CF’14), May 2014, pp. 1:1–1:10.

[176] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron, “Quipper: A
Scalable Quantum Programming Language,” in Proc. 34th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI’13), Jun. 2013,
pp. 333–342.

A.Pavlidis 192

Design and Synthesis of Efficient Circuits for Quantum Computers

[177] X. Liu and J. Kubiatowicz, “Chisel-Q: Designing quantum circuits with a scala em-
bedded language,” in Proc. 31st IEEE International Conference on Computer De-
sign (ICCD’13), Oct. 2013, pp. 427–434.

[178] R. Wille and R. Drechsler, Towards a Design Flow for Reversible Logic. Springer,
2010.

[179] C.-C. Lin, A. Chakrabarti, and N. K. Jha, “QLib: Quantum Module Library,” ACM J.
Emerging Technologies in Computing Systems, vol. 11, no. 1, pp. 7:1–7:20, Sep.
2014.

[180] R. Wille, S. Offermann, and R. Drechsler, “SyReC: A programming language for
synthesis of reversible circuits,” in 2010 Forum on Specification Design Languages
(FDL 2010), Sep. 2010, pp. 1–6.

[181] R. Drechsler and R. Wille, “Reversible Circuits: Recent Accomplishments and Fu-
ture Challenges for an Emerging Technology,” in Proc. 16th International Confer-
ence on Progress in VLSI Design and Test 2012 (VDAT’12), 2012, pp. 383–392.

[182] G.H.Hardy and E.M.Wright, An Introduction to the Theory of Numbers, 4th ed.
Clarendon Press, 1960.

193 A.Pavlidis

