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ABSTRACT

Clustering is a well established data analysis methodology that lie in the framework of pat-
tern recognition and it has been extensively used in various fields of applications during
the last decades. Given a set of objects, the aim of clustering is the identification of groups
(clusters) formed by “similar” objects. Amajor effort in the clustering bibliography has been
devoted to the identification of compact and hyperellipsoidally shaped clusters and one
of the most well-known categories of clustering algorithms that are commonly used in the
literature for this purpose is that of the cost function optimization based algorithms. The
present thesis focuses on the Possibilistic C-Means (PCM) algorithms that are one of the
most well-known representatives of the aforementioned category. Specifically, exposing
first their shortcomings, they are extended next, in order to overcome them. These exten-
sions rely on the adoption of the parameter adaptivity and the sparsity concepts. In the
sequel, the main contributions of the present thesis are briefly exposed.

First, a novel approach in the context of possibilistic clustering algorithms, named Adap-
tive Possibilistic C-Means (APCM) has been developed. APCM addresses several of the
weaknesses of original PCM, by allowing the adaptation of some parameters that are char-
acteristic to all PCM algorithms, during its execution. This is in contrast to classical PCM
algorithms where these parameters, once they are set, they remain fixed. This character-
istic of APCM gives rise to two new features that are not met in classical PCM algorithms.
The first one is that APCM is capable, in principle, to reveal the true number of physical
clusters formed by the data, provided that it starts with a reasonable overestimate of it,
thus overcoming a long-standing issue in the clustering literature. This is carried out by
removing the clusters that gradually become obsolete (i.e., the clusters whose charac-
teristic parameter diminishes towards zero as the algorithm evolves). The other feature
resulting from the adaptation of the characteristic parameters of APCM is the increase of
its flexibility in following the variations in the formation of the clusters during the algorithm
execution. This makes APCM able to uncover the underlying clustering structure, even
in demanding cases, where the physical clusters are closely located to each other and/or
have significant differences in their variances. APCM is compared against several related
state-of-the-art algorithms through extensive simulations on both synthetic and real data
and the provided results show that APCM exhibits superior performance in almost all the
considered data sets. Moreover, theoretical results that are indicative of the convergence
behavior of the algorithm are also provided.

Next, the focus is turned on extending PCM by introducing the concept of sparsity. The
rationale behind this extension is that, in practice, a data point is most compatible with at
most one, a few or even none cluster (outlier). Thus, taking into account the data points
that are most compatible with a given cluster and excluding those that are not compati-
ble with it, leads to more accurate estimations of the clusters’ parameters. The resulting
algorithm, called Sparse Possibilistic C-Means (SPCM) can deal well with closely located
clusters that may also be of significantly different densities, while at the same time it ex-
hibits immunity to noise and outliers. Finally, a non-trivial convergence proof for the SPCM
algorithm is conducted. The main source of difficulty in the provided convergence anal-



ysis, compared to those given for previous possibilistic algorithms, relies on the fact that
one of its updating parameter equations is not given in closed form but is computed via a
two-branch expression, which defines a non-continuous mapping. In the present disserta-
tion, it is shown that SPCM will converge to one of the local minima of its associated cost
function. As a side effect, it is also shown that similar convergence results can be derived
for the PCM algorithm, viewed as a special case of SPCM, which are stronger than those
established in previous works.

In the sequel, the main features of the proposed APCM and SPCM algorithms are com-
bined giving rise to the Sparse Adaptive Possibilistic C-Means (SAPCM) algorithm, which,
inheriting all the advantages of its ancestors, has the ability to (a) cope well with demand-
ing data sets with closely located physical clusters with possibly different densities and/or
variances, (b) determine the number of physical clusters and (c) improve even more the
estimates of the clusters’ parameters, compared to APCM and SPCM. Extensive experi-
mentation verified the overall advantages of SAPCM compared to other related algorithms.
Moreover, two variants of SAPCM, which use the above original SAPCM algorithm as a
building block, have been devised. The first one is an iterative bottom-up version, called
Sequential SAPCM (SeqSAPCM), which, at each iteration, determines a single new clus-
ter by employing SAPCM. Thus, it unravels sequentially the underlying clustering struc-
ture. The basic advantage of SeqSAPCM is that it does not require knowledge of the
number of physical clusters (not even a crude overestimate, as is the case with APCM,
SPCM and SAPCM). The second variant of SAPCM is called Layered SAPCM (L-SAPCM)
and works in layers. Specifically, the SAPCM algorithm is initially applied in the whole data
set and then it is recursively applied individually on each resulting cluster, in order to reveal
possible clustering structure within it, working in a tree structure basis. L-SAPCM termi-
nates when none of the clusters resulting so far has further clustering structure within it.
As is verified by the experimental results, L-SAPCM can provide accurate clustering even
in cases where the data form closely located clusters at various “resolutions”, i.e. the
variances of the clusters may differ orders of magnitude from each other.

Also, a considerable contribution of this thesis is the development of an online version
of the APCM algorithm, called Online APCM (O-APCM), which processes data points
one by one and memorizes their impact to suitably defined accumulating variables. O-
APCM embodies three new procedures for (a) generating, (b) merging or (c) deleting
clusters dynamically and it is a good candidate for clustering of big data sets, whose size
and dimensionality are prohibitive for batch algorithms. Finally, it is highlighted that O-
APCM may be utilized for applications in both stationary, as well as dynamically varying
environments, where the physical clusters may change their location in data space over
time. Experimental results show that O-APCM offers high quality clustering results at a
very low computational cost.

The potential of the proposed methods is also demonstrated via experimentation on the
basis of three case studies, concerning real hyperspectral images (HSIs). The images
have been collected from different hyperspectral sensors and depict various land cover
cases. The proposed algorithms gave, in general, superior performance compared to
other related algorithms.



Finally, a sparsity-aware feature selection technique suitable for HSIs has been developed
in the frame of the current thesis. The proposed method is based on the optimization of
a sparsity promoting cost-function, in order to identify the bands with the most signifi-
cant ability in discriminating the various homogeneous regions in the HSI under study.
Experimental results on real HSI data have shown remarkable quality of the clustering
considering only the selected bands that result from the above technique.

SUBJECT AREA: Pattern recognition

KEYWORDS: possibilistic clustering, parameter adaptation, sparsity, cluster elimination,
convergence analysis, online clustering, feature selection, hyperspectral image process-
ing



ΠΕΡΙΛΗΨΗ

Η ομαδοποίηση δεδομένων είναι μια εδραιωμένη μεθοδολογία ανάλυσης δεδομένων στο
πλαίσιο της αναγνώρισης προτύπων και έχει χρησιμοποιηθεί εκτενώς σε διάφορα πεδία
εφαρμογών κατά τη διάρκεια των τελευταίων δεκαετιών. Δεδομένου ενός συνόλου αντικει-
μένων, σκοπός της ομαδοποίησης είναι η ταυτοποίηση των ομάδων που αποτελούνται
από ”όμοια” αντικείμενα. Ένα σημαντικό τμήμα της βιβλιογραφίας στην ομαδοποίηση
δεδομένων έχει αφιερωθεί στην αναγνώριση συμπαγών και υπερελλειψοειδούς σχήματος
ομάδων και μία από τις πιο γνωστές κατηγορίες αλγορίθμων ομαδοποίησης που χρησιμο-
ποιούνται συνήθως στην βιβλιογραφία για τον σκοπό αυτό, είναι οι αλγόριθμοι που βασίζο-
νται στη βελτιστοποίηση κατάλληλων συναρτήσεων κόστους. Ηπαρούσα διατριβή εστιάζει
στους αλγόριθμους ομαδοποίησης δεδομένων με βάση τα ενδεχόμενα (Possibilistic C-
Means, PCM), που είναι από τους πιο γνωστούς της προαναφερθείσας κατηγορίας. Συγκε-
κριμένα, αναδεικνύοντας πρώτα τις αδυναμίες τους, προτείνονται στη συνέχεια μέθοδοι
επέκτασής τους για την αντιμετώπιση των αδυναμιών αυτών. Οι μέθοδοι αυτές βασίζονται
κυρίως στην υιοθέτηση των εννοιών της προσαρμοστικότητας παραμέτρων (parameter
adaptivity) και της αραιότητας (sparsity). Στη συνέχεια, παρουσιάζονται εν συντομία, τα
κύρια σημεία συνεισφοράς της παρούσας διατριβής.

Αρχικά, αναπτύχθηκε μια νέα προσέγγιση στο πλαίσιο των αλγορίθμων PCM, που ονομά-
ζεται Adaptive Possibilistic C-Means (APCM). Ο APCM αντιμετωπίζει πολλές από τις
αδυναμίες των PCMαλγορίθμων, επιτρέποντας την προσαρμογή ορισμένων παραμέτρων
που είναι χαρακτηριστικές για όλους τους αλγορίθμους PCM, κατά την διάρκεια εκτέλεσής
του. Αυτό έρχεται σε αντίθεση με τους κλασικούς PCM αλγορίθμους, όπου αυτές οι παρά-
μετροι, από τη στιγμή που ορίζονται αρχικά, δεν αλλάζουν. Η προσαρμογή αυτή των
παραμέτρων, δίνει στον APCMδύο νέα χαρακτηριστικά που δεν συναντώνται στους κλασι-
κούς αλγορίθμους PCM. Το πρώτο είναι ότι ο APCM είναι σε θέση, κατ’ αρχήν, να προσδιο-
ρίσει τον πραγματικό αριθμό των φυσικών ομάδων που σχηματίζονται από τα δεδομένα,
υπό την προϋπόθεση ότι ξεκινά με μια λογική υπερεκτίμηση του, αντιμετωπίζοντας έτσι ένα
μακροχρόνιο πρόβλημα στη βιβλιογραφία της ομαδοποίησης δεδομένων. Αυτό πραγματο-
ποιείται με την αφαίρεση των ομάδων που σταδιακά καθίστανται παρωχημένες (δηλαδή,
ομάδες των οποίων η χαρακτηριστική παράμετρος ελαττώνεται προς το μηδέν, καθώς ο
αλγόριθμος εξελίσσεται). Ένα άλλο χαρακτηριστικό της προσαρμογής των χαρακτηριστι-
κώνπαραμέτρων στον APCM είναι η αύξηση της ευελιξίας του στο να ακολουθεί τις μεταβο-
λές στο σχηματισμό των ομάδων κατά την εκτέλεση του αλγορίθμου. Το γεγονός αυτό
καθιστά τον APCM ικανό να αποκαλύψει την υποκείμενη δομή ομαδοποίησης, ακόμα και
σε δύσκολες περιπτώσεις, όπου οι φυσικές ομάδες βρίσκονται κοντά η μια στην άλλη και/ή
έχουν σημαντικές διαφορές στις διακυμάνσεις τους. Ο APCM συγκρίνεται με αρκετούς
σχετικούς αλγορίθμους μέσω εκτεταμένων προσομοιώσεων τόσο σε συνθετικά όσο και σε
πραγματικά δεδομένα και τα αποτελέσματα δείχνουν ότι παρουσιάζει καλύτερη απόδοση
σε όλες σχεδόν τις περιπτώσεις. Επιπλέον, παρέχονται θεωρητικά αποτελέσματα, τα
οποία είναι ενδεικτικά της συμπεριφοράς σύγκλισης του αλγορίθμου.

Στη συνέχεια, εστιάζουμε στην επέκταση του PCM εισάγοντας την έννοια της αραιότητας.
Το σκεπτικό πίσω από αυτήν την επέκταση είναι ότι, στην πράξη, ένα σημείο-δεδομένο
είναι συμβατό με το πολύ μία, λίγες ή ακόμη και καμία ομάδα (ακραίο σημείο). Έτσι,
χρησιμοποιώντας τα σημεία δεδομένων που είναι συμβατά με μια συγκεκριμένη ομάδα και



εξαιρώντας εκείνα που δεν είναι συμβατά με αυτή, οδηγούμαστε σε πιο ακριβείς εκτιμήσεις
των παραμέτρων της ομάδας. Ο αλγόριθμος που προκύπτει ονομάζεται Sparse Pos-
sibilistic C-Means (SPCM) και μπορεί να αντιμετωπίσει καλά περιπτώσεις όπου έχουμε
κοντινές ομάδες, οι οποίες μπορεί επίσης να έχουν σημαντική διαφορά στην πυκνότητά
τους, ενώ ταυτόχρονα παρουσιάζει ευρωστία σε θόρυβο και ακραία σημεία. Τέλος, δίνεται
μια μη τετριμμένη απόδειξη σύγκλισης του αλγορίθμου SPCM. Η κύρια πηγή δυσκολίας
στην ανάλυση σύγκλισης, σε σύγκριση με εκείνες που δίνονται για προηγούμενους αλγορίθ-
μους PCM, έγκειται στο γεγονός ότι μια από τις εξισώσεις ενημέρωσης των παραμέτρων
του δεν δίνεται σε κλειστή μορφή, αλλά υπολογίζεται μέσω μιας μαθηματικής έκφρασης
δύο κλάδων, η οποία ορίζει μια μη-συνεχή απεικόνιση. Στην παρούσα διατριβή, αποδεικνύ-
εται ότι ο SPCM συγκλίνει σε ένα από τα τοπικά ελάχιστα της συνάρτησης κόστους του.
Επίσης, αποδεικνύεται ότι παρόμοια αποτελέσματα σύγκλισης μπορεί να προκύψουν και
για τον κλασικό αλγόριθμο PCM, αν ο τελευταίος ιδωθεί ως ειδική περίπτωση του SPCM,
τα οποία είναι ισχυρότερα από αυτά που παρατίθενται σε προηγούμενες μελέτες.

Στη συνέχεια, τα κυριότερα χαρακτηριστικά των προτεινόμενων αλγορίθμων APCM και
SPCM συνδυάζονται, οδηγώντας στον Sparse Adaptive Possibilistic C-Means (SAPCM)
αλγόριθμο, ο οποίος κληρονομεί όλα τα πλεονεκτήματα των προγόνων του και έχει τη
δυνατότητα (α) να αντιμετωπίσει καλά απαιτητικά σύνολα δεδομένων, όπου τα σημεία-
δεδομένα σχηματίζουν κοντινές φυσικές ομάδες, με πιθανώς διαφορετικές πυκνότητες
ή/και διακυμάνσεις, (β) να προσδιορίσει τον αριθμό των φυσικών ομάδων και (γ) να βελτιώ-
σει ακόμη περισσότερο τις εκτιμήσεις των παραμέτρων των ομάδων, σε σύγκριση με τους
APCM και SPCM. Εκτεταμένα πειράματα επαληθεύουν τα συνολικά πλεονεκτήματα του
SAPCM σε σύγκριση με άλλους συναφείς αλγορίθμους. Επιπλέον, αναπτύχθηκαν δύο
παραλλαγές του SAPCM, οι οποίες χρησιμοποιούν τον SAPCM ως δομικό στοιχείο. Η
πρώτη είναι μια επαναληπτική από κάτω-προς-τα-πάνω (bottom-up) εκδοχή, που ονομάζε-
ταιSequential SAPCM (SeqSAPCM), όπου σε κάθε επανάληψη καθορίζεται μια νέα ομάδα
με τη χρήση του SAPCM. Έτσι, αναδεικνύονται ακολουθιακά μια-μια οι ομάδες που σχημα-
τίζουν τα σημεία-δεδομένα. Το βασικό πλεονέκτημα του SeqSAPCM είναι ότι δεν απαιτεί
τη γνώση του αριθμού των φυσικών ομάδων (ούτε καν μια υπερεκτίμηση αυτού, όπως
συμβαίνει με τους APCM, SPCMκαι SAPCM). Η δεύτερη παραλλαγή του SAPCMονομάζε-
ται Layered SAPCM (L-SAPCM) και εργάζεται σε επίπεδα. Συγκεκριμένα, ο αλγόριθμος
SAPCM εφαρμόζεται αρχικά σε όλο το σύνολο δεδομένων και στη συνέχεια, εφαρμόζεται
χωριστά σε κάθε προκύπτουσα ομάδα, προκειμένου να αποκαλυφθεί πιθανή δομή ομαδο-
ποίησης μέσα σε αυτή. Ο L-SAPCM τερματίζει όταν καμία από τις ομάδες που προέκυψαν
μέχρι στιγμής δεν έχει περαιτέρω δομή ομαδοποίησης μέσα της. Όπως επαληθεύεται
από τα πειραματικά αποτελέσματα, ο L-SAPCM μπορεί να παρέχει ακριβή ομαδοποίηση,
ακόμη και σε περιπτώσεις όπου τα σημεία δεδομένων δημιουργούν πολύ κοντινές ομάδες
σε διαφορετικές ”αναλύσεις” (resolutions), δηλαδή ομάδες των οποίων οι διακυμάνσεις
διαφέρουν τάξεις μεγέθους μεταξύ τους.

Επίσης, μια σημαντική συμβολή αυτής της διατριβής είναι η ανάπτυξη μιας online έκδοσης
του αλγορίθμου APCM, που ονομάζεταιOnline APCM (O-APCM), ο οποίος επεξεργάζεται
τα σημεία δεδομένων ένα προς ένα και συσσωρεύει την πληροφορία που περιέχουν σε
κατάλληλα ορισμένες μεταβλητές. Επιπλέον, ο O-APCM ενσωματώνει τρεις νέες διαδικα-
σίες για δυναμική (α) δημιουργία, (b) συγχώνευση ή (γ) διαγραφή ομάδων και είναι ένας
καλός υποψήφιος αλγόριθμος για ομαδοποίηση μεγάλων συνόλων δεδομένων, των οποί-



ων το μέγεθος και η διάσταση είναι απαγορευτικά για τους αλγόριθμους επεξεργασίας κατά
δέσμες. Τέλος, τονίζεται ότι ο Ο-APCM μπορεί να χρησιμοποιηθεί για εφαρμογές τόσο σε
στατικά, όσο και δυναμικά περιβάλλοντα, όπου οι φυσικές ομάδες ενδέχεται να αλλάζουν
θέση στο χώρο των δεδομένων με την πάροδο του χρόνου. Πειραματικά αποτελέσματα
δείχνουν ότι ο O-APCMπροσφέρει υψηλής ποιότητας αποτελέσματα έναντι πολύ χαμηλού
υπολογιστικού κόστους.

Η δυναμική τωνπροτεινόμενων μεθόδων αναδεικνύεται επίσης μέσωπειραμάτων με βάση
τρεις περιπτώσεις μελέτης, που αφορούν σε πραγματικές υπερφασματικές εικόνες (HSI).
Οι εικόνες συλλέχθηκαν από διαφορετικούς υπερφασματικούς αισθητήρες και απεικονί-
ζουν ποικίλες περιπτώσεις κάλυψης γης. Οι προτεινόμενοι αλγόριθμοι είχαν, σε γενικές
γραμμές, ανώτερη απόδοση σε σύγκριση με άλλους συναφείς αλγορίθμους.

Τέλος, στα πλαίσια της παρούσας διατριβής αναπτύχθηκε και μια νέα τεχνική επιλογής
χαρακτηριστικών βασισμένη στην ιδέα της αραιότητας, κατάλληλη για HSIs. Η προτεινόμε-
νη μέθοδος βασίζεται στη βελτιστοποίηση μιας συνάρτησης κόστους προώθησης αραιής
αναπαράστασης, προκειμένου να εντοπιστούν οι μπάντες με την πιο σημαντική ικανότητα
στη διάκριση των διαφορετικών ομοιογενών περιοχών της υπό μελέτη HSI. Πειραματικά
αποτελέσματα σε πραγματικά δεδομένα HSI έδειξαν αξιοσημείωτη ποιότητα στην ομαδο-
ποίηση που προκύπτει, λαμβάνοντας υπόψη μόνο τις επιλεγμένες μπάντες που προκύ-
πτουν από την ανωτέρω τεχνική.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αναγνώριση προτύπων

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: ομαδοποίηση με βάση τα ενδεχόμενα, προσαρμογήπαραμέτρων, αραι-
ότητα, εξάλειψη ομάδας, ανάλυση σύγκλισης, online ομαδοποίηση, επιλογή χαρακτηριστι-
κών, επεξεργασία υπερφασματικής εικόνας
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Advances in Possibilistic Clustering with Application to Hyperspectral Image Processing

1. INTRODUCTION

Pattern recognition is a branch of machine learning whose main task is the search of
patterns in sets of objects with the aim of assigning them into a number of categories or
classes based on a set of preselected features. The most well-known branch of pattern
recognition is the statistical pattern recognition, which is the framework where the present
thesis lie1. Here, each object is represented by a set of, say l, measurements-features2
(this verifies the term “statistical”), which forms its associated feature vector, also called
data vector. Any decision concerning a certain object is based exclusively on its associ-
ated feature vector. In most cases, the design of a pattern recognition system is based
on a certain set of objects, whose associated feature vectors constitute the so-called data
set, while the l-dimensional space where all these vectors “live” is called feature space.

Traditionally, the twomajor problems that lie in the frame of pattern recognition are those of
classification (supervised pattern recognition) and clustering (unsupervised pattern recog-
nition). In the first one, a set of known classes is given and the aim is to assign a certain
object3 to one of these classes (according to an optimality rule/criterion). The rule accord-
ing to which classification is carried out is called classifier. In most cases, the design of a
classifier is based on a given data set where the class to which each data vector belongs
is known. This process is usually called classifier training and the data vectors used in
this process are called training vectors, while the corresponding set is called training set.
Once the classifier has been properly designed, it can be used to classify objects that have
not been used for its training. Also, it should be pointed out that the term “supervised” is
justified by the fact that the classes where the training data vectors belong are known.

The second problem in pattern recognition, i.e. clustering (or unsupervised pattern recog-
nition), has a different formulation from that of classification. Specifically, here the only
available information is a set of objects without, however, any class knowledge about them
(this justifies the term “unsupervised”). The goal is to unravel their underlying similarities,
in order to group “similar” objects to the same group (cluster) and “dissimilar” objects to
different groups, based on a suitable similarity measure. Clustering tasks may arise in
many application fields, such as remote sensing, image segmentation, speech and text
recognition, etc. Next, we focus only on the clustering task for which a brief overview is
given.

1.1 An Overview of Clustering

At the heart of the clustering task is the clustering algorithm, that is, the algorithm that
groups the data vectors into clusters, producing thus a clustering, which is simply the set of

1Another well-known pattern recognition framework is the structural (or syntactic) pattern recognition ([1],
[2]).

2Features may be discrete or real-valued. In this work we consider exclusively the real-valued case.
3It is assumed that the l features used for the representation of the objects at hand have already been

selected and fixed, during the previously applied feature selection/generation stage.
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these clusters. However, before focusing on the clustering algorithms, some prerequisites
are necessary.

According to the way the data vectors are associated with the clusters, we have various
types of clustering, the most significant of which are: (a) hard clustering, where each
data vector belongs exclusively to a single cluster and all pairs of clusters are disjoint,
(b) fuzzy clustering, where each data vector is shared among all available clusters and
(c) possibilistic clustering, where each data vector is associated with a certain cluster
independently of how it is associated with the remaining ones.

Before touching the clustering algorithms issue, the following two additional issues need
to be firstly resolved. The first one is the cluster representation issue. A cluster may be
represented either (a) by all of its data vectors, or (b) by a representative. In the second
case, the representative is chosen so that to be indicative of the location and the “shape”
of the cluster it represents. For example, compact and hyperellipsoidally shaped clusters
(see Fig. 1.1a) are usually represented by a single vector that is located at the center of the
cluster. Other choices, such as hyperplanes (Figs. 1.1b, 1.1c) or second degree curves
(Fig. 1.1d) may also appear, in applications related to image processing. In this work, we
consider the case where a single point is used to represent a cluster (that is, we focus on
compact and hyperellipsoidally shaped clusters).

The second issue to be resolved is that of the proximity measure. Proximity may be either
a similarity (the higher its value the closer the compared entities) or a dissimilaritymeasure
(the lower its value the closer the compared entities). Depending on the way a cluster is
represented, we have proximity measures between (a) two clusters, (b) two data vectors
and (c) a data vector and a cluster. Obviously, different choices of similarity measures
leads to different clustering results, as shown in Fig. 1.2.

Having resolved the above issues one can proceed now to the heart of the clustering
task, the clustering algorithm. A vast amount of clustering algorithms has been developed
during the past eight decades. Taking into account their underlying rationale, they can be
divided into the following main categories4.

• Hierarchical algorithms. These algorithms produce a sequence of nested cluster-
ings, where the clustering of each step emanates from that of the previous step
either by merging the two most similar clusters into one (agglomerative algorithms,
bottom-up nesting) or by dividing the cluster with the highest variance into two (di-
visive algorithms, top-down nesting). Typical examples of agglomerative algorithms
are the single link and complete link algorithms ([3]), theWard’s algorithm [4], which
are differentiated from each other in the definition of the proximity between two clus-
ters. For example, in single link the proximity between two clusters is defined based
on the two “most similar” data vectors of them, while in complete link the respective
proximity is based on the two “most dissimilar” data vectors of the clusters.
As far as the divisive algorithms are concerned, they are discriminated to polythetic,

4Note that the categorization is not strict, since several (usually more sophisticated) algorithms may
exhibit characteristics of more than one category.
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Figure 1.1: Data sets of different shaped clusters.

where all features contribute to the selection of the cluster that will be split (and how
it will be split) and monothetic, where single features are used, in order to deter-
mine which cluster will be split. It is noted that due to the very high computational
requirements for detecting the most appropriate cluster to split (since it is needed
to consider at each clustering, each cluster separately and for each cluster all pos-
sible splits), almost all of these algorithms apply heuristic techniques at the cost of
providing suboptimal solutions.

In addition, there are algorithms, e.g. Chameleon [5] that model data dynamically.
Specifically, Chameleon combines elements from both agglomerative and divisive
concepts, as it merges and divides clusters dynamically.

• Cost function optimization based algorithms. These algorithms iteratively optimize
suitably defined cost functions, in order to produce “sensible” clusterings. They ter-
minate when a local optimum of the associated cost function is reached. Celebrated
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Figure 1.2: Different clustering results of the same 2-dimensional data set, based on different simi-
larity measures.

algorithms of this type are the k-means (hard clustering), e.g. [6], the fuzzy c-means
(FCM - fuzzy clustering), e.g. [7], [8] and the possibilistic c-means (PCM - possibilis-
tic clustering), e.g. [9], [10]. Since all algorithms developed in the present thesis fall
into this category, this category is analysed in more detail in the next chapter.

• Density-based algorithms. The density-based clustering algorithms use a local clus-
ter criterion, according to which clusters are defined as regions in the data space
where the objects are densely located, and clusters are separated from each other
by low-density regions. DBSCAN [11], a well-known representative of this category,
uses density-based notions to define clusters. More specifically, it identifies via suit-
ably chosen criteria each data point as either a “core” point or a “border” point of a
cluster. DBSCAN visits points in a random manner and if a point is a core point, it
tries to expand and form a cluster around it. Other algorithms in this category are
the DBCLASD [12], DENCLUE [13], while an additional one is given in [14].

• Subspace-based algorithms. In certain applications (e.g. in biology), the data vec-
tors are aggregated along subspaces of a (usually high dimensional) feature space.
Subspace clustering aims at finding a multi-subspace representation that best fits a
collection of data points taken from a high dimensional space. In other words, sub-
space clustering could be thought as an extension of feature selection that attempts
to find clusters in different subspaces of the same dataset. Thus, the problem here
is not only to identify the clusters themselves, as is the case with the algorithms of
the previous categories, but also the subspaces where these clusters live. In this
category, there are two prevailing algorithms. First, CLIQUE [15], which was one
of the first subspace-based algorithms, creates a histogram for each dimension and
selects those bins with densities5 above a given threshold. Candidate subspaces

5Themeasure of density is based on the number of data points, whose projection in the relative dimension
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in two dimensions can then be formed using only those dimensions which contain
dense units, dramatically reducing thus the search space. The algorithm proceeds
until there are nomore dense units found. Adjacent dense units are then combined to
form clusters. Secondly, the recently proposed Sparse Subspace Clustering (SSC)
algorithm [16] (a) finds a sparse representation of each data point in the dictionary of
the other data points, (b) builds a similarity graph using the sparse coefficients, and
(c) obtains the segmentation of the data into clusters using spectral clustering. The
algorithm, under appropriate conditions, is expected to recover the desired sparse
representations of data points.

• Combination-based algorithms. Clustering combination relies on the idea that ev-
idence gathered by a number of clusterings can be combined to produce a final
(hopefully) more accurate result. Clustering combination methods receive as input
an ensemble of clusterings that may have been generated either by applying differ-
ent clustering algorithms or by applying the same clustering algorithm with different
values of parameters or initializations on the data set under study. Furthermore,
combinations of different data representations (feature spaces) and clustering al-
gorithms can also provide a multitude of significantly different data clusterings. A
simple framework for extracting a consistent clustering, given the various partitions
in a clustering ensemble, is proposed in [17].

It is noted that the selection of the appropriate algorithmic scheme for clustering is adjusted
according to the application under study, while the interpretation of the results is carried
out by experts in the specific application domain.

1.1.1 Related work

Speaking more precisely, in this work we consider only the case of compact and hyper-
ellipsoidally shaped clusters, represented by a single vector. Moreover, we focus on the
possibilistic clustering alternative. In the sequel, a brief summary of the relative bibliogra-
phy is given.

A great amount of work reported in the clustering literature has been devoted to the identi-
fication of compact and hyperellipsoidally shaped clusters as those shown in Fig. 1.1a. As
stated before, each such cluster is represented by a vector called cluster representative
or simply representative, which lies in the same l-dimensional space with the data and
(ideally) is located at the center of the cluster.

The most well-known algorithms that deal with this problem, belong to the family of cost
optimization clustering algorithms and are the k-means (hard clustering), e.g. [6], the
fuzzy c-means (FCM - fuzzy clustering), e.g. [7], [8] and the possibilistic c-means (PCM
- possibilistic clustering), e.g. [9], [10], [18], [19], [20], [21]. The main goal of all these al-
gorithms is to move iteratively the representatives towards the centers of the regions that

lies in the bin.
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are dense in data points (dense regions), that is, to regions where significant aggrega-
tions of data points (clusters) exist. Under this perspective, we say that each such vector
represents a cluster, while, as mentioned previously, their movement towards the centers
of the clusters is carried out via the minimization of appropriately defined cost functions.

Let us consider first the k-means and FCM, which share some significant features. First of
all, they both require prior knowledge of the exact number of clusters m underlying in the
data set (which, of course, is rarely known in practice). In addition, in both schemes the
updating equations of the representatives are interrelated. As a result, these algorithms
impose a specific clustering structure on the data set (rather than uncovering the under-
lying one), in the sense that they will return m clusters irrespective of the actual number
of physical clusters existing in the data set. Specifically, if m is less than the actual num-
ber of clusters, at least some representatives will fail to move to dense regions, while in
the opposite case, some naturally formed clusters will split into more than one pieces6.
A common method for estimating m is via the use of suitable validity indices (e.g., [22],
[20]). Finally, as shown in [18], [19], k-means and FCM are vulnerable to noisy data and
outliers.

As far as the PCM algorithms are concerned, the cluster representatives are updated,
based on the degrees of compatibility of the data vectors with the clusters. In contrast
to FCM and k-means, in PCM algorithms, the degrees of compatibility of a data vector
with the various clusters are mutually independent. A direct consequence of this fact is
that even if the number of clusters is overestimated, in principle, all representatives will
be driven to dense regions, making thus feasible the uncovering of the actual clusters.
However, in this case, the scenario where two or more cluster representatives are led
to the same dense in data region, may arise [23], [24], which, however, can be faced
after the termination of the algorithm by seeking for (almost) coincident representatives.
In addition, PCM deals well with noisy data points and outliers, compared to k-means
and FCM. However, it involves additional parameters, usually denoted by γ. Each of
these parameters is associated with a single cluster, while their accurate estimation is of
crucial importance. Since, once they have been estimated they are kept fixed during the
execution of the PCM algorithm, it is clear that poor initial estimates are likely to lead to
poor clustering performance, especially in more demanding data sets (e.g. where clusters
with significantly different variances are encountered in the data set).

Many variants of PCM have been proposed to deal with the weaknesses associated with
the parameters γ. More specifically, [25] tries to avoid coincident clusters by introducing
mutual repulsion of the clusters, so that they are forced away from each other. The same
problem is tackled in [23], [26] and [19] by combining possibilistic and fuzzy arguments.
Also, in [27] a strategy is proposed that intoduces a “gray zone” around each represen-
tative, which contains the points around the cluster boundary. The latter overcomes the
coincident clusters problem, is robust to outliers and uses less ad hoc defined parameters
than PCM. Another algorithm that involves very few parameters and is robust to noise
and outliers is described in [20]. In [28] ideas from [20] and [19] are combined for dealing

6Of course, if the value of m corresponds to the actual number of physical clusters, the algorithms have
the ability to recover the physical clusters; that is, in this case “imposition” coincides with “uncovering”.
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Figure 1.3: A HSI cube and the spectral signatures of three pixels of different materials.

additionaly with the coincident clusters issue. The same issues are also addressed in [21]
using, however, a different approach than [28].

The original versions of PCM algorithms are not equipped with a cluster elimination mech-
anism, that is, if they are initialized with an overestimated number of clusters, they cannot
eliminate any of them as they evolve. Inspired by [29], PCM-type algorithms that perform
cluster elimination during their execution are described in [30] and [31]. In these algo-
rithms the parameters γ are considered equal for all clusters and are kept fixed as they
evolve. Consequently, their ability to deal with closely located clusters with significantly
different variances is drastically decreased. In addition, their computational complexity is
dramatically increased [30].

1.2 Clustering of Hyperspectral Data

Hyperspectral image (HSI) analysis has attracted considerable attention in the signal pro-
cessing and pattern recognition literature during the last two decades and is widely rec-
ognized as a valuable tool in diverse applications, such as remote sensing, biomedical
imaging and astronomy to name but a few. In this work, we consider HSI in the frame
of remote sensing, which refers to information acquisition for an object, phenomenon or
geographical area without any physical contact with it. Therefore, in this framework, hy-
perspectral imagery deals with the process of extracting information about an object or
geographical area using hyperspectral sensors.

HSIs are acquired by specific hyperspectral sensors, which sample certain regions (bands)
of the electromagnetic spectrum. The majority of them sample the electromagnetic spec-
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Figure 1.4: Example of hyperspectral data representation in a 3-dimensional space (only three wave-
lengths are used).

trum in hundreds of contiguous spectral bands for a specific scene [32]; from the visible
region (0.4 to 0.7 µm) through the SWIR (Short-Wave InfraRed) (up to 2.5 µm) bands.
The spectral sampling results to a set of different (yet related) images of the scene under
study, which, stacked together, form the so-called HSI cube (see Fig. 1.3) (in the sequel
by the term HSI, we mean the HSI cube). As a consequence, the structuring elements
(pixels) of an HSI are represented by vectors containing the measurements of reflectance
in all spectral bands.

Examples of hyperspectral sensors include the Hyperion, a VNIR/SWIR (Visible Near
InfraRed, VNIR) hyperspectral sensor with 220 spectral bands aboard the NASA EO-1
satellite, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) of NASA with 224
contiguous spectral channels, the HYperspectral Digital Imagery Collection Experiment
sensor (HYDICE) that collects data in 210 spectral bands and OMEGA (Observatoire
pour la Minéralogie, l’Eau, les Glaces et l’Activité) spectrometer that is onboard ESA’s
Mars Express satellite and measures the solar radiation reflected by the surface of planet
Mars.

1.2.1 Hyperspectral Image Representation

As has already been stated, hyperspectral data may be viewed as a sequence of two-
dimensional images produced by sampling at specific (usually contiguous) wavelengths,
thus they are frequently called hyperspectral image cubes. An image cube contains spatial
information on the x and y axes and spectral information on the z axis, as shown in Fig. 1.3.
A hyperspectral data cube may be also viewed as a matrix of individual pixels conveying
spectral information. Thus, isolating a single pixel, its spectral information can be plotted
as shown in Fig. 1.3 and it is called spectral signature of the pixel.

An alternative representation of hyperspectral data could be obtained by considering the
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following. Each HSI pixel can be represented by a vector of length l, whose entries are
the measurements of radiance at the corresponding wavelengths and l is the total number
of spectral bands. Associating an axis of the ℜl space with each wavelength, each mea-
surement of a pixel is a coordinate in the corresponding axis. From this perspective, each
HSI pixel corresponds to a data point in the l-dimensional space. To get an idea of how
the pixels of a HSI are depicted in the l-dimensional space, we consider the (unrealistic)
case of Fig. 1.4 ,where we assume that the number of available spectral bands is l = 3.

1.2.2 HSI Processing

Hyperspectral data provide very detailed and accurate spectral information of the observed
object or scene not only because of the large number of the involved spectral bands, but
also due to the continuous nature of measurements. Taking into consideration that radi-
ance reflection and absorption are differentiated among types of materials and spectral
channels, HSI processing and analysis provides the means of determining and identify-
ing different materials in a remote scene, based on spectral information. This can be
achieved, for example, by matching the scene reflectance spectra to a library of known
spectra. However, designing and implementing a spectral imaging system requires many
practical issues to be addressed. These issues include the specification of the spatial and
spectral resolution of the sensor, the identification of the atmospheric effects such as ab-
sorption and scattering, the spectral variability of surface materials in the scene and other
environmental effects such as viewing angle, secondary illumination and shadowing [33].

Many different types of hyperspectral imaging applications exist that have been exploiting
hyperspectral imagery capabilities. These may be separated into three major categories:
anomaly detection, target recognition and background characterization. Anomaly detec-
tion is the process of identifying and locating uncommon features in an image, whereas
target detection is distinguished from anomaly detection by the availability of some a priori
information about the target. Finally, background characterization emphasizes mainly on
a background scene analysis and identification and it refers to the domains of land, ocean
and atmosphere.

In the next subsection we focus on the processing of HSIs using clustering methods.

1.2.3 Hyperspectral Image Clustering

Hyperspectral image classification is a challenging task that is gaining increasing interest
in the remote sensing literature lately [34]. One of the main issues that frequently arise
in the processing of HSIs is the partial or total lack of ground truth information. A rational
way to deal with this issue is to resort to unsupervised classification (clustering). Under
the clustering perspective the data vectors are the l-dimensional spetral signatures of the
image pixels. The goal now is to identify spectrally homogeneous regions in HSIs. In
particular, the objective of HSI clustering is to assign (a) to the same cluster pixels that are
more similar to each other and (b) to different clusters pixels that are less similar to each
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other. HSI clustering may find application at mineral exploration, precision argiculture,
disaster monitoring, etc. [32], [33].

As mentioned previously, modern hyperspectral sensors are able to acquire measure-
ments in numerous, almost contiguous spectral channels [32]. Although there are several
available measurements for each HSI pixel, which, in principle, may be a desirable fact,
this may also become a source of problems. This is due to (a) the high spectral correlation
(mainly) between adjacent channels, as well as to the noise contained in them ([35]), which
is likely to lead to the formation of overlapping clusters and (b) the high dimensionality and
(usually) very large size of HSI data, which increase dramatically both computation and
memory requirements. Therefore, applying clustering to HSIs becomes a very challenging
task.

In recent years, a major effort in the remote sensing literature has been devoted to the
design and application of clustering techniques in HSIs, in order to identify spectrally ho-
mogeneous regions, which correspond to certain types of land cover. The aim here is to
partition a given image into groups such that pixels in the same group are similar to each
other and correspond to a specific type of land cover. Several algorithms have been de-
vised for remote sensing image clustering, however, most of them require knowledge of
the true number of clustersm underlying in the data set, which is rarely known in practice.
Thus, a major issue in HSI clustering is the accurate estimation of m.

In [36], the Gauss Mixture Vector Quantization (GMVQ) algorithm [38] is considered using
a correlation-based distance between a data vector and a cluster. The method is as-
sessed to pick up most of the variability in the dataset. Several runs are performed and
the optimum number of clusters is chosen to be the one associated with the minimum
value for the adopted objective function. In [38], a method for classifying HSIs based on
Fuzzy C-Means (FCM) and Markov Random Fields (MRF) is presented. Firstly, the FCM
algorithm is used to generate an ensemble of partitions and then, the MRF method is em-
ployed to fuse the obtained partitions by taking into account the spatial and inter-partition
contextual information. Besides the need for prior knowledge of the number of clusters, a
second limitation of this method is that it does not work well at the borders of the classes.
In [39], a hyperspectral image clustering method is proposed, based on the Artificial Bee
Colony (ABC) algorithm, which is a bionics random optimization algorithm that simulates
the self-organizing behavior and intelligence of bee swarms. An extension of this work
is reported in [40], where it is combined with the MRF classification discriminant function
(ABC-MRF method) and maintains the advantages of the ABC algorithm in finding the
cluster center. In addition, it effectively utilized the spatial information contained in the
pixels to further improve the accuracy of the cluster. However, a major disadvantage of
the last two algorithms is that they consume a considerable amount of computing time to
find an optimal solution. Bandyopadhyay et al. [41], utilize a multiobjective optimization
algorithm (NSGA-II [42]) to determine the appropriate cluster centers and the correspond-
ing partition matrix, where a number of fuzzy cluster validity indexes are simultaneously
optimized. A HSI clustering procedure, which is based upon the Fully Constrained Least
Squares (FCLS) spectral unmixing method, is described in [43]. This method consists
of three steps, namely endmember extraction, unmixing and hardening clustering via the
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winner-takes-all approach. Experimental results on a known real HSI data set substantiate
the validity of the method. In [44], the FCM algorithm is applied using similarity measures
such as the spectral angle and correlation, which are less sensitive to brightness varia-
tions. Tran et al. [45] presented a density-based clustering algorithm, called KNNCLUST,
which combines nonparametric k-nearest-neighbour (kNN) and kernel (kNN-kernel) den-
sity estimation. The kNN-kernel density estimation technique makes it possible to model
clusters of different densities in high-dimensional data sets. A major advantage of the
algorithm is that it is expected to identify automatically the number of the clusters. How-
ever, KNNCLUST has very high computational complexity, mainly due to the calculation
of the kNN distance matrix. Cariou and Chehdi [46] proposed KSEM that is an extension
of the KNNCLUST method inspired from the Stochastic Expectation-Maximization (SEM)
algorithm [47]. KSEM is based on iteratively sampling label states via pseudo-posterior
label distributions estimated at the local level of the objects and attempts to address the
problem of the unknown number of clusters in HSIs. Moreover, in [48], a density-based
approach that tries to automatically estimate the number of clusters in hyperspectral im-
agery, is proposed. Furthermore, several hierarchical clustering approaches have been
proposed to deal with HSIs ([49], [50], [51]). Recently, a sparse subspace clustering ap-
proach has been applied in HSI data that simultaneously explores the nonlinear structure
and the inherent spectral-spatial attributes of HSIs [52].

1.3 Thesis Contribution

The scientific contributions of the present thesis are mainly related, but not restricted to
the area of possibilistic clustering and its application in the identification of homogeneous
regions in HSIs. The first contribution of the thesis is the development of a novel Possi-
bilistic C-Means (PCM) clustering scheme, called Adaptive Possibilistic C-Means (APCM)
algorithm, [53], [54]. The main feature of the proposed algorithm is that its parameters
γ, after their initialization, are properly adapted during its execution. Provided that the
algorithm starts with a reasonable overestimate of the number of physical clusters formed
by the data, APCM is capable to unravel them, overcoming a long-standing issue in the
clustering literature. Due to the fully adaptive nature of the proposed algorithm, a clus-
ter elimination procedure is enabled, which makes possible the reduction of the initially
estimated number of clusters. In addition, the adjustment of the parameters increases
the flexibility of the algorithm in following the variations in the formation of the clusters
that occur from iteration to iteration. Theoretical results that are indicative of the conver-
gence behavior of APCM are also provided. Finally, extensive simulation results on both
synthetic and real data highlight the effectiveness of the proposed algorithm.

The second contribution of the thesis concerns the exploitation of sparsity in the cluster-
ing framework. To this end, two novel sparsity-promoting possibilistic clustering algorithms
are proposed [55], [56]. The main idea here is that a data point may be compatible with
one or only a few (or even none) clusters. The first algorithm, termed Sparse Possibilis-
tic C-Means (SPCM), leverages the sparsity of the degree of compatibility vectors and
exhibits increased immunity to data points that may be considered as noise or outliers,
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by not allowing them to contribute to the estimation of the cluster representatives. Thus,
SPCM concludes to more accurate estimates for the cluster representatives, especially in
noisy environments. Additionally, sparsity exploitation makes SPCM able to deal well with
closely located clusters that may also be of different densities. A rigorous convergence
analysis of SPCM is also provided [57] and it is shown that SPCM convergences to one of
the local minima of its associated cost function. The main source of difficulty in this anal-
ysis, compared to those given for previous possibilistic algorithms, is due to the lack of
continuity resulting from the updating rule of certain parameters involved in the algorithm
that must be suitably handled.

The second algorithm, called Sparse Adaptive Possibilistic C-Means (SAPCM), is an ex-
tension of the first, where now the involved parameters are dynamically adapted. SAPCM
can deal well with even more challenging situations, where, in addition to the above, clus-
ters may be of significantly different variances and/or densities. More specifically, it pro-
vides improved estimates of the cluster representatives and has the additional ability to
estimate the actual number of clusters, given an overestimate of it.

Extending SAPCM, two variants of it that use the SAPCM as a structuring element, have
been devised. The first one is an iterative bottom-up version, called Sequential Sparse
Adaptive Possibilistic C-Means (SeqSAPCM) and presented in [58]. Here, at each iter-
ation, SeqSAPCM determines a single new cluster by employing the SAPCM. That way
it finally unravels sequentially the underlying clustering structure. The second version of
SAPCM, which is accustomed to HSI processing, is Layered Sparse Adaptive Possibilistic
C-Means (L-SAPCM) and is presented in [59]. L-SAPCM works in layers where at each
layer, after suitable pre-processing, the SAPCM algorithm is applied on a tree structure
basis. More specifically, initially, SAPCM is applied on the whole HSI data set produc-
ing some subsets (sub-clusters) that constitute the first processed layer. Then, for each
identified sub-cluster of the first layer, SAPCM is recursively applied to reveal possible
sub-clusters within it. The procedure terminates when at each sub-cluster no more than
one cluster can be identified.

Another contribution of this thesis is the development of an efficient online clustering al-
gorithm, called Online Adaptive Possibilistic C-Means (O-APCM), recently presented in
[61]. The algorithm is an online version of the APCM [54], in which data vectors (pixels)
are being processed one by one and their impact is memorized to suitably defined param-
eters; thus O-APCM is released from the noose of storing the whole data (hyperspectral
data cubes in HSI processing) and using it at each iteration, as is the case with the batch
schemes. Due to its online nature, O-APCM is much more computationally efficient with
lower memory requirements without (rather surprisingly) any degradation of the quality of
the resulting clustering, compared to its batch ancestor, in which the whole data cube is
considered at each iteration of the algorithm. From this perspective, O-APCM is suitable
for HSI clustering. The basic advantage that O-APCM inherits from APCM is the ability to
adapt the involved parameters during its execution, in order to track variations during the
clustering formation. In addition, it embodies new procedures for creating new clusters
or merging existing ones, as data points are clustered sequentially. Experimental results
show that O-APCM offers high discrimination ability at a very low computational cost and
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it compares favourably with other online related algorithms, as well as APCM. In addition,
it should be noted that the usage of O-APCM is twofold. It is not only recommended in
cases where the environment in which the data live is stationary, where it alleviates a
computationally demanding processing of a huge amount of (static) data, but also it is ap-
propriate for data clustering under non-stationary environment conditions; that is, in real
time application cases where data may received in a streaming fashion and their statistics
vary with time. Such data are real-time financial stock market data, video surveillance
data, social media data, etc [60].

The performance of the above proposed clustering algorithms has been assessed in terms
of three HSI case studies. Specifically, the first case study is related to the clustering of
data acquired by the 256-bands OMEGA hyperspectral sensor, depicting the South Polar
Cap of Mars, which is characterized by spatial resolution of 3km and spectral resolution
0.93 to 2.98µm. The size of the HSI is 871×128 pixels and the 256 bands are reduced to
186 after the removal of the noisy ones. The pixels of this image stem from three classes:
“CO2” ice, “Water” ice and “Dust”. The second case study is captured by the 224-band
AVIRIS hyperspectral sensor over Salinas Valley, California, which is characterized by
high spatial resolution of 3.7m and spectral resolution 0.2 to 2.4µm. The area covered
comprises 512 lines by 217 samples (512 rows× 217 columns), while 20 water absorption
bands (108-112, 154-167, 224) are discarded. This image includes cultures of vegetables,
bare soils, and vineyard fields with its corresponding reference map containing 16 classes.
The data processed in the last case study came from the 210-band HYDICE hyperspectral
sensor over the Washington DC Mall area. The sensor response is in the 0.4 to 2.4 µm
region of the visible and infrared spectrum. Bands in the 0.9 and 1.4 µm region, where
the atmosphere is opaque, have been omitted from the data set, leaving 191 bands. The
data set contains 150 lines by 150 samples (150 rows × 150 columns) and it has a spatial
resolution of approximately 1m.

Finally, considerable research effort was also invested into the development of a sparsity-
aware feature selection method for hyperspectral data clustering, which was presented
in [62]. The proposed method selects bands that exhibit significant discrimination ability,
based on the optimization of a sparsity promoting cost function. Clustering algorithms that
use only the selected spectral bands export results of the same quality compared to the
case where all spectral bands are used, while, in some cases, they are able to unravel
patterns that are not identified using the whole bands information.

1.4 Outline of the Thesis

The remaining chapters of the thesis are organized as follows.

In Chapter 2, an overview of the most well-known clustering algorithms based on cost
function optimization is given. In particular, the K-means, the Fuzzy C-Means (FCM) and
the Possibilistic C-Means (PCM) algorithms are described and discussed in detail. Also,
previous attempts for dealing with their shortcomings are briefly presented.
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In Chapter 3, the novel Adaptive Possibilistic C-Means (APCM) clustering algorithm is
presented. Indicative theoretical convergence results of APCM are provided. Finally, the
performance of APCM is tested against several state-of-the-art algorithms.

In Chapter 4, the Sparse Possibilistic C-Means (SPCM) clustering algorithm is introduced,
accompanied with its convergence proof. Also, extensive experiments are performed with
synthetic and real data.

In Chapter 5, the Sparse Adaptive Possibilistic C-Means (SAPCM) clustering algorithm
is presented and its properties are analysed. Moreover, two new clustering variations,
namely, Sequential Sparse Adaptive Possibilistic C-Means (SeqSAPCM) and Layered
Sparse Adaptive Possibilistic C-Means (L-SAPCM), that incorporate SAPCM as a build-
ing block, are described.

In Chapter 6, the Online Adaptive Possibilistic C-Means (O-APCM) clustering algorithm
that is an online implementation of APCM, is presented in detail and its usage in both
static and dynamic environments is discussed. Additionally, experimental results verifying
that O-APCM offers high discrimination ability at a very low computational cost, are also
provided.

Chapter 7 provides experimental results of the proposed methods discussed so far when
they apply on real hyperspectral images. Moreover, their results are compared against
those obtained by several state-of-the-art related algorithms.

Chapter 8 departs from the thematic area of clustering algorithms and presents a novel
sparsity-aware feature selection method for hyperspectral data clustering, whose perfor-
mance is tested on real data sets.

Finally, Chapter 9 gives a summary and the conclusions of the research work presented
in the context of the thesis and highlights some possible future research directions.
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2. CLUSTERING ALGORITHMS BASED ON A COST OPTIMIZATION
FUNCTION

2.1 Introduction

As it has already been announced, in the present thesis we focus on possibilistic clus-
tering algorithms, which lie in the general framework of the cost function optimization
clustering techniques. For reasons of thoroughness, we devote the present chapter to
the description of the main features of the algorithms of this category via the presentation
of well-known clustering algorithms that follow from three different interpretations of the
concept of cluster. In the algorithms of this category, linear varieties (e.g. points, lines,
planes, etc.) or quadrics are usually employed for the representation of the clusters, with
the actual type of representative to be adopted, being strongly dependent on the types
of natural clusters formed by the points of the data set X under study. For example, if
compact and hyperellipsoidally shaped clusters are expected, the representatives may be
points lying in the space where the points of X lie (see Fig. 1.1a), while, if linear clusters
are expected, the representatives may be hyperplanes in the space where the data live.
Besides the representatives, some additional parameters are also involved in these algo-
rithms that may be linked with other quantities that describe the clusters formation, such
as their spread.

In this chapter, we focus on cost function optimization algorithms that stem from three ma-
jor philosophies: the hard, the fuzzy and the possibilistic philosophy. In the hard clustering
approach each vector belongs exclusively to a single cluster. The fuzzy approach may be
viewed as a generalization of the hard clustering approach, in the sense that each vector
is shared among more than one clusters, up to a certain degree (grade of membership).
However, the grades of membership of a certain vector with the various clusters are in-
terrelated. In contrast, in possibilistic clustering the so-called degree of compatibility of a
vector with a certain cluster depends exclusively on the vector and the cluster; that is, it is
independent of the degrees of compatibility of this vector with the remaining clusters.

Since in the framework of this thesis we consider compact and hyperellipsoidally shaped
clusters, we focus in the sequel on cost function optimization algorithms where the clusters
are represented by points in the data vectors space. In the following, we present the most
famous members of hard, fuzzy and possibilistic cost function optimization algorithms with
point representatives (k-means, FCM and PCMs, respectively).

2.2 The k-means Algorithm

The most celebrated hard clustering algorithm is the k-means algorithm [6]. Here, a point
representative is used to represent each cluster and the squared Euclidean distance is
adopted to measure the dissimilarity between data vectors and cluster representatives.
Initializing the representatives from (usually) random positions, the aim here is to move
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gradually each representative to the center of regions where the data points form ag-
gregations (i.e., physical clusters), provided that the actual number of clusters is known
a-priori.

Speaking in mathematical terms, let X = {xi ∈ ℜl, i = 1, . . . , N} be a set of N l-
dimensional data vectors to be clustered and Θ = {θj ∈ ℜl, j = 1, . . . ,m} be a set of
m l-dimensional vectors that will be used as representatives of the clusters formed by the
points in X (it is m ≤ N ). Moreover, let U = [uij], i = 1, . . . , N, j = 1, . . . ,m be an N ×m
matrix whose (i, j) element stands for the so called membership coefficient of xi with the
jth cluster, denoted by Cj and represented by the vector θj. Specifically, uij = 1(0), if xi
belongs (does not belong) to Cj. Finally, let uTi = [ui1, . . . , uim] be the ith row of U that
contains the membership coefficients of xi for all the clusters. In what follows, we consider
only Euclidean norms, denoted by ∥ · ∥.

As already mentioned, in the k-means algorithm the membership coefficients uij are either
0 or 1. In addition, if for a data vector xi it is uij = 1, then it is uik = 0, k = 1, . . . ,m, k ̸= j.
The above statements can be expressed as follows:

(C1) uij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . ,m 1

and

(C2)
m∑
j=1

uij = 1, i = 1, . . . , N .

The aim of moving the vectors θj ’s towards the centers of the physical clusters is achieved
via the minimization of the cost function

Jk−means(Θ, U) =
N∑
i=1

m∑
j=1

uij∥xi − θj∥2. (2.1)

Due to the fact that uij ’s are binary-valued, the minimization of the above cost function with
respect to uij ’s cannot be achieved via standard mathematical analysis tools. Moreover,
minimizing eq. (2.1) with respect to θj ’s leads to an equation that is related to uij ’s; thus
no closed-form solutions can be derived. Therefore, an alternating optimization scheme
is employed, where Jk−means is optimized with respect to uij ’s for fixed θj ’s and then it is
optimized with respect to θj ’s for fixed uij ’s. To this end, we proceed as follows.

Assuming that the representatives θj ’s are fixed, it is straightforward to see that Jk−means(Θ, U)
is minimized, if each xi is assigned to its closest cluster; that is to the cluster whose rep-
resentative is closest to xi, since for each xi only one uij is 1 and all the others are equal
to 0. Thus,

1Here, it is implicitly assumed that we are absolutely confident that xi belongs to a single cluster and that
it does not belong to any of the remaining clusters. However, if no such absolute confidence occurs, we
could allow uij to take values in the internal [0, 1], which may be interpreted as the probability that xi belongs
to the jth cluster. Schemes related with the latter consideration are called Probabilistic and are discussed,
e.g. in [63].
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uij =

1, if ∥xi − θj∥2 = min
k=1,...,m

∥xi − θk∥2

0, otherwise
, i = 1, . . . , N. (2.2)

Assume now that the membership coefficients uij ’s are fixed. Taking the derivative of
Jk−means with respect to θj and setting it equal to zero, we obtain that θj is the mean
vector of cluster Cj, i.e.,

θj =

N∑
i=1

uijxi
N∑
i=1

uij

, j = 1, . . . ,m. (2.3)

Eqs. (2.2) and (2.3) give rise to the k-means algorithm, which is explicitly given in “Algo-
rithm 1” box below.

Algorithm 1 [Θ, U ] = k-means(X, m)
Input: X, m

1: t = 0

� Initialization of θj ’s part

2: Choose randomly the initial estimates for θj, θj(t), j = 1, . . . ,m

3: repeat

� Update U part

4: uij(t) =


1, if ∥xi − θj(t)∥2 = min

k=1,...,m
∥xi − θk(t)∥2

0, otherwise
, i = 1, . . . , N, j = 1, . . . ,m

5: t = t+ 1

� Update Θ part

6: θj(t) =
∑N

i=1
uij(t−1)xi∑N

i=1
uij(t−1)

, j = 1, . . . ,m

7: until the change in θj ’s between two successive iterations becomes sufficiently small

8: return Θ = {θ1(t),θ2(t), . . . ,θm(t)}, U = [uij(t− 1)]

It has been proved [64] that the algorithm converges to a minimum of the cost function;
that is, it recovers as compact clusters as possible, provided that their number is known
[18]. However, k-means cannot guarantee convergence to the global minimum of its cost
function. In other words, different initializations may lead k-means to produce different
clusterings, due to the possible convergence to different local minima of Jk−means(Θ, U).
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Remark 1: The major advantage of k-means algorithm is its very low computational cost,
which makes it attractive for a wide range of applications, especially in big data applica-
tions. More specifically, its complexity is O(Nm · iter), where iter is the (usually small)
number of required iterations until convergence.

Remark 2: As already stated, k-means requires prior knowledge of the exact number of
physical clusters m underlying the data set, which is rarely known in practice (this has
been implicitly assumed in the previous discussion). Poor estimates of the true m make
k-means incompetent for revealing the underlying clustering structure in X. In addition,
given an estimate of the actual number of clusters,m, k-means will returnm clusters even
if more or less than m clusters may actually underlie in X. From this perspective, we say
that k-means imposes a clustering structure on X. Finally, k-means is sensitive to outliers
and noise, due to the fact that it assigns every data point to exactly one of the clusters.
Thus, outliers and noisy points, being points of X, influence the cluster representatives
θj ’s, by taking part in their updating and, as a consequence, affect the final clustering
result. Some techniques for dealing with the problem of the estimation of the number of
clusters are discussed in [65] and [66].

Remark 3: It should be mentioned that in some cases, e.g. when the physical clusters are
located close to each other and have big differences in their variances, k-means may fail
to unravel the underlying clustering structure, even if it is initialized with the true number
of clusters. That is, it may split the high-variance cluster into more than one clusters, in
its attempt to minimize Jk−means.

2.3 The Fuzzy C-Means Algorithm

In contrast to the k-means algorithm discussed above, where uij ∈ {0, 1}, in the Fuzzy
C-Means algorithm (FCM) [7], [8], uij ’s are allowed to take any value in the interval [0, 1]
2. In this framework, uij is called grade of membership of data point xi with cluster Cj.
The FCM algorithm is derived by minimizing the following cost function

JFCM(Θ, U) =
N∑
i=1

m∑
j=1

uqij∥xi − θj∥2, (2.4)

with respect to θj and uij, subject to the constraints

(C1) uij ∈ [0, 1], i = 1, . . . , N, j = 1, . . . ,m

(C2)
m∑
j=1

uij = 1, i = 1, . . . , N (sum-to-one constraint)

2Note, however, that uij ’s have not a probability interpretation here, since here it is assumed that a data
point may shared to more than one clusters. That is in contrast to the probabilistic framework, where a
vector belongs exclusively to a certain cluster, but we are not absolutely sure to which one.
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and

(C3) 0 <
N∑
i=1

uij < N, j = 1, . . . ,m,

where q is a user-defined parameter called fuzzifier that takes values greater than 1 (usu-
ally in the range [2,3]).

In words, (C2) means that the grades of membership of a certain data vector with all
clusters are interrelated and more specifically, they sum to one. This constraint is the
one that justifies the basic concept in fuzzy clustering; that is, each xi is shared among all
clusters. Also, (C3) means that for a given cluster, there exists at least one data vector that
is not totally incompatible with it or, loosely speaking, no cluster is allowed to be “empty”.

Minimization of JFCM(Θ, U) with respect to uij, subject to the constraint (C2), leads to the
following Lagrangian function:

L(Θ, U) =
N∑
i=1

m∑
j=1

uqij∥xi − θj∥2 −
N∑
i=1

λi

 m∑
j=1

uij − 1

 . (2.5)

Taking the partial derivative of L(Θ, U) with respect to uij and equating to zero, we obtain

uij =

(
λi

q∥xi − θj∥2

) 1
q−1

, i = 1, . . . , N, j = 1, . . . ,m. (2.6)

Combining eq. (2.6) with constraint (C2) and solving for λi, we get

λi =
q(

m∑
j=1

(
1

∥xi−θj∥2
) 1

q−1

)q−1 , i = 1, . . . , N. (2.7)

Finally, substituting λi from eq. (2.7) to eq. (2.6), we conclude to the following equation for
uij ’s:

uij =
1

m∑
k=1

(
∥xi−θj∥2
∥xi−θk∥2

) 1
q−1

, i = 1, . . . , N, j = 1, . . . ,m 3. (2.8)

Similarly, setting the partial derivative of L(Θ, U)with respect to θj equal to zero, we obtain

θj =

N∑
i=1

uqijxi
N∑
i=1

uqij

, j = 1, . . . ,m. (2.9)

3Note that uij satisfies (C1) and (C3).
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Since the updating equations of the grade of memberships and the cluster representatives
(eqs. (2.8), (2.9)) are interrelated, they cannot give a closed-form solution of JFCM(Θ,U).
Therefore, an iterative algorithmic scheme4 is used, in order to obtain the estimates for
U and Θ, giving rise to the FCM algorithm, which is explicitly given in “Algorithm 2” box
below.

Algorithm 2 [Θ, U ] = FCM(X, m, q)
Input: X, m, q

1: t = 0

� Initialization of θj ’s part

2: Choose randomly the initial estimates for θj, θj(t), j = 1, . . . ,m

3: repeat

� Update U part

4: uij(t) =
1

m∑
k=1

(
∥xi−θj(t)∥2

∥xi(t)−θk(t)∥2

) 1
q−1

, i = 1, . . . , N, j = 1, . . . ,m

5: t = t+ 1

� Update Θ part

6: θj(t) =
∑N

i=1
uij(t−1)qxi∑N

i=1
uij(t−1)q

, j = 1, . . . ,m

7: until the difference in θj ’s between two successive iterations becomes sufficiently

small

8: return Θ = {θ1(t),θ2(t), . . . ,θm(t)}, U = [uij(t− 1)]

Note that FCM does not always converge to the global minimum of its cost function
(eq. (2.4)), that is, different initializations may lead to different clustering results. Specif-
ically, in [7] the theorem of Zangwill [68] is used to prove that FCM terminates at a local
minimum, or at worst, always contains a subsequence which convergences to a local
minimum of its cost function.

Remark 1: FCM requires a priori knowledge of the exact number of clusters underlying in
the dataset. Specifically, given an estimatem of the number of possible clusters underlying
in X, the algorithm splits the data set tom distinct clusters, irrespectively of the number of
the actual clusters that underlie the data set. This is an effect of the sum-to-one constraint.
Thus, FCM imposes a clustering structure on the data set under study, meaning that it will
end up with as many clusters as the user provides (as is the case with k-means also). A
method for estimating the actual number of clusters could be via the use of suitable validity
indices, as it is proposed in [20] and [22].

4Such a scheme is alteratively called “alternating optimization” [67].
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Remark 2: An additional characteristic of FCM is its vulnerability to noisy data and outliers,
which is also featured on the sum-to-one constraint. For instance, assume a structure of
two physical clusters. In this case, outliers that lie far away from both clusters, will have
around 0.5 membership to both clusters, although this is not rationale. A method for facing
this problem is discussed in [69].

Remark 3: It can be shown that the larger the q, the more the grade of memberships
uij ’s are spread in the whole interval of [0,1]. On the other hand, if q → 1 then FCM
approximates k-means, under the concept that uij ’s are either close to 0 or to 1. Usually,
the parameter q is set to 2.
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2.4 The Possibilistic C-Means Algorithm

An obvious way to overcome the shortcomings of the fuzzy clustering approach is simply
to remove the sum-to-one constraint imposed on the rows of U . This gives rise to a new
family of clustering algorithms, namely the possibilistic clustering algorithms. Obviously,
now the summation

∑m
j=1 uij is not necessarily equal to 1 for each xi, while uij is now called

degree of compatibility of the data vector xi with the cluster representative θj. The most
well-known algorithms in this direction are the Possibilistic C-Means (PCM) algorithms,
where, according to [9], [10], the uij ’s should satisfy the conditions,

(C1) uij ∈ [0, 1], i = 1, . . . , N, j = 1, . . . ,m,

(C2) max
j=1,...,m

uij > 0, i = 1, . . . , N

and

(C3) 0 <
N∑
i=1

uij ≤ N, j = 1, . . . ,m.

In words, (C2) means that no vector xi is allowed to be totally incompatible with all clus-
ters, whereas (C3) means that for a given cluster, there is at least one data point that is not
totally incompatible with it. Loosely speaking, each data point should “belong” to at least
one cluster (C2), whereas no cluster is allowed to be “empty” (C3). The aim of a possibilis-
tic algorithm is to move θj ’s towards the centers of dense regions. However, minimization
of eq. (2.4) without imposition of the sum-to-one constraint leads to the trivial zero solution
for uij ’s. In order to alleviate this problem, an additional term should be added in eq. (2.4)
that will be a function only of uij ’s and it will be maximized as uij decreases. Two such
candidate terms are proposed in [9] and [10] giving rise to the following two cost functions

JPCM1(Θ, U) =
m∑
j=1

Jj ≡
m∑
j=1

Jj︷ ︸︸ ︷[
N∑
i=1

uqij∥xi − θj∥2 + γj
N∑
i=1

(1− uij)q
]
, (2.10)

where q is a parameter that “resembles” to the fuzzifier in FCM and

JPCM2(Θ, U) =
m∑
j=1

Jj ≡
m∑
j=1

Jj︷ ︸︸ ︷[
N∑
i=1

uij∥xi − θj∥2 + γj
N∑
i=1

(uij ln uij − uij)
]
, (2.11)

where parameter γj ’s are fixed user-defined positive parameters. More specifically, the
parameter γj is related to the “size” of cluster Cj and could be described as a measure
of the variance of the jth cluster around its representative. More specifically, γj affects
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the degree of compatibility uij of a data vector xi with the jth cluster (see Fig. 2.1). Thus,
implicitly, γj determines the degree of influence of a specific data point on the estimation
of the representative of the jth cluster.
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Figure 2.1: The degree of compatibility uij with respect to dij/γj , where dij = ∥xi − θj∥2, for JPCM1

(for several values of q, solid lines) and JPCM2 (dashed line).

Proceeding with the minimization of JPCM1(Θ, U) and JPCM2(Θ, U) with respect to uij and
θj, we end up with the following two sets of equations,

PCM1 PCM2

uij =
1

1 +
(
∥xi−θj∥2

γj

) 1
q−1

(2.12)
uij = exp

(
−∥xi − θj∥2

γj

)
(2.13)

θj =

N∑
i=1

uqijxi
N∑
i=1

uqij

(2.14) θj =

N∑
i=1

uijxi
N∑
i=1

uij

(2.15)

Note from eqs. (2.12), (2.13) that uij decreases as the distance between xi and θj in-
creases for both PCM1 and PCM2. However, in PCM2 this happens exponentially fast,
which is more appropriate for the recovery of physical clusters that lie close to each other
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(see also Fig. 2.1). Also, from eqs. (2.14), (2.15), it follows that each representative is
computed based on all data vectors, weighted by their corresponding uij ’s. However, the
farther a data vector lies from the current location of a specific θj the less it contributes to
the determination of its new location, as eqs. (2.12), (2.13) indicate.

The two algorithms are given in a unified format in “Algorithm 3” box.

Algorithm 3 [Θ, U ] = PCM(X, m, q (only for PCM1))
Input: X, m, q (only for PCM1))

1: t = 0

� Initialization of θj ’s part

2: [Θ(t), UFCM(t)] = FCM(X, m, 2) 5

� Determination of γj ’s part

3: γj = B
∑N

i=1
uFCM
ij (t)∥xi−θj(t)∥2∑N

i=1
uFCM
ij (t)

, j = 1, . . . ,m

4: repeat

� Update U part

5: uij(t) =
1

1+

(
∥xi−θj(t)∥2

γj

) 1
q−1

, i = 1, . . . , N, j = 1, . . . ,m for PCM1

uij(t) = exp
(
−∥xi−θj(t)∥2

γj

)
, i = 1, . . . , N, j = 1, . . . ,m for PCM2

6: t = t+ 1

� Update Θ part

7: θj(t) =
∑N

i=1
uqij(t−1)xi∑N

i=1
uqij(t−1)

, j = 1, . . . ,m for PCM1

θj(t) =
∑N

i=1
uij(t−1)xi∑N

i=1
uij(t−1)

, j = 1, . . . ,m for PCM2

8: until the difference in θj ’s between two successive iterations becomes sufficiently

small

9: return Θ = {θ1(t),θ2(t), . . . ,θm(t)}, U = [uij(t− 1)]

Let us now comment on the selection of the parameters γj, j = 1, . . . ,m. These are a
priori estimated and kept fixed during the execution of the algorithms. A common strategy
for their estimation is to run the FCM algorithm first and set

γj = B

∑N
i=1 u

FCM
ij ∥xi − θj∥2∑N
i=1 u

FCM
ij

, j = 1, . . . ,m, (2.16)

5See Algorithm 2 of Chapter 2. We set the fuzzifier q = 2.
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where θj ’s and uFCMij ’s are the final FCM estimates for cluster representatives and uij
coefficients, respectively6. Parameter B is user-defined and is usually set equal to 1 7.
From eq. (2.16), it is obvious that γj is a measure of the variance of cluster Cj around its
representative.

It is worth noting that, due to the functional independence between uij ’s, j = 1, . . . ,m, for
a specific xi (eqs. (2.12), (2.13)), the optimization problem solved by PCM can be decom-
posed intom sub-problems, each one optimizing a specific function Jj (see eqs. (2.10), (2.11)).
Considering the representative θj associated with a given Jj, we have from eqs. (2.12), (2.13)
that points that lie closer to the cluster representative will have larger degrees of compat-
ibility with Cj. On the other hand, eqs. (2.14), (2.15) imply that the new position of θj is
mainly specified by the data points that are most compatible with Cj. It is not difficult to
see that such a coupled iteration is expected to lead the representative θj towards the
center of the dense in data region that lies closer to their position, for appropriate choices
of γj ’s (see also Propositions 2 and 3, in chapter 3).

2.4.1 Possibilistic C-Means Issues and Potential Solutions

Having described the main characteristics of the algorithm and the rationale behind them,
let us focus now on some issues that a user faces with PCM. The first one concerns them
parameters γj ’s. An improper choice of γj ’s may lead PCM to failure in identifying properly
the physical clusters underlying in the data set, e.g., a sparse cluster that is located very
close to a denser cluster (see also experiment 1, in section 3.7), or it may even lead the
algorithm to recover the whole data set as a single cluster [24]. Referring to eq. (2.16),
the uij ’s produced by the FCM (uFCMij ’s), are not always accurate (e.g. in the presence of
noise, [10]). In addition, the choice of the parameterB is clearly data-dependent and there
is no general clue on how to select it. In order to deal with this problem, [20] proposes the
replacement of all γj ’s by a single quantity that is controlled by only two parameters: (a)
the number of clusters and (b) a parameter that plays a “fuzzifier” role.

An additional source of inconveniences concerning γj ’s is the fact that, once they have
been set, they remain fixed during the execution of PCM. This reduces the ability of the
algorithm to track the variations in the clusters formation during its evolution. A way out
of this problem is to allow γj ’s to vary during the execution of the algorithm. A hint on
this issue has been given in [9], but, to the best of our knowledge, no further work has
been done towards this direction, until the presentation of algorithms like APCM, SAPCM,
which are the main contribution of the present thesis.

The second issue, which is related with the first one, is that of coincident clusters. As
stated before, with a proper choice of γj ’s, PCM drives, in principle, the cluster represen-
tatives towards the centers of the dense in data regions that are closer to their positions.

6The version of eq. (2.16) proposed in [9] for the cost function JPCM1 (eq. (2.10)), raises uFCM
ij ’s to the

qth power. However, in JPCM2 (eq. (2.11)) no parameter q is involved.
7An alternative choice for γj ’s, given in [9] is γj =

∑
uij>k

∥xi−θj∥2∑
uij>k

1
, with k being an appropriate threshold.
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Therefore, if two or more representatives are initialized close to the same dense region,
they will move towards its center, i.e., all of them will represent the same cluster. Alter-
natively, one could say that the clusters represented by these representatives are coinci-
dent8. This situation arises due to the absence of dependence between the coefficients
uij, j = 1, . . . ,m, associated with a specific xi (see eqs. (2.12), (2.13)), which, as an in-
direct consequence, allows the representatives to move independently from each other
(see eqs. (2.14), (2.15)). Note that such an issue does not arise in FCM due to the sum-
to-one constraint imposed on the uij ’s associated with each xi. Several ways to deal with
this problem have been proposed in the literature. More specifically, in [19], a variation of
PCM is proposed, named Possibilistic Fuzzy c-means (PFCM), which combines concepts
from PCM and FCM. Relative approaches are discussed in [23], [28] and [70], while other
approaches are proposed in [21], [25].

A common feature in all the previously mentioned works, is that condition (C3), which
basically requires all clusters to be non-empty, is respected. Thus, in all the algorithms,
the true number of clusters m is implicitly required, in order to give them the ability to re-
cover all clusters, without, hopefully, returning coincident clusters. Thus, the requirement
of the knowledge of the number of clusters is still here in disguise. A conceptually sim-
ple solution to address this requirement, while respecting condition (C3), comes from the
PCM itself. Specifically, one could run the original PCM with an overestimated number of
cluster representatives which will be initialized appropriately (at least one representative
should lie at each dense in data region). Then, after a proper selection of γj ’s, PCM will
(hopefully) recover the physical clusters, that is, it will move at least one representative to
the center of each dense region. Then, an additional step is required in order to identify
coincident clusters and remove duplicates. This idea has been partially discussed in [10],
without, however, proposing explicitly to run the algorithm with an overdetermined num-
ber of clusters. However, in this case a reliable method for identifying duplicate clusters
should be invented.

In the rest of this thesis, we focus exclusively on the PCM2 algorithm. Thus, from now on,
in order to ease the notation, we will write PCM implying PCM2.

8This point of view justifies the term “coincident clusters”.
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3. ADAPTIVE POSSIBILISTIC C-MEANS ALGORITHM

3.1 Introduction

Having exposed the weaknesses of the classical PCM algorithm [10] and trying to face
them, in this section we introduce an extended version of it by modifying the way the
parameters γ are defined and treated. This gives rise to a new algorithm called Adaptive
Possibilistic c-means (APCM) [54]1. In APCM the parameters γ, after their initialization,
are properly adapted as the algorithm evolves. In particular, the parameter γ of each
specific cluster is updated based only on those data vectors that are “most compatible”
with this cluster.

The adaptation of γ’s renders the algorithm more flexible in uncovering the underlying
clustering structure, compared to other related possibilistic algorithms, where γ’s are kept
fixed during their execution. This happens especially when dealing with demanding data
sets such as those whose data vectors form closely located to each other clusters or
clusters with significant differences in their variances. In addition, as a direct consequence
of this adaptation mechanism, the algorithm has the ability to estimate the (unknown in
most cases in practice) true number of physical (or natural) clusters. More specifically, if
the number of the representatives with which APCM starts is a crude overestimate of the
number of natural clusters, the algorithm gradually reduces their number, as it progresses,
and, finally, it places a single representative to the center of each dense region. In this
sense, it provides not only the number of natural clusters, which is a long-standing issue in
the clustering literature, but also the clusters themselves. Analytical results are presented
that verify the cluster elimination capability of the proposed algorithm and provide strong
indications of its convergence behavior. Extensive simulation results on both synthetic
and real data, corroborate our theoretical analysis and show that APCM offers in general
superior clustering performance compared to relative state-of-the-art clustering schemes.

In the next sections, the various stages of the APCM algorithm are described in detail.
Specifically, the way its parameters are initialized is firstly described (Section 3.2). Next,
in Section 3.3 the updating of its parameters (uij ’s, θj ’s, γj ’s, m) is commented, while in
Section 3.4 the rationale of the algorithm is exposed, where it is explained in detail, how
the initial estimate of the number of natural clusters can be reduced to the true one, as a
result of the adaptation of γj ’s. Section 3.5 describes the method for selecting the unique
user-defined parameter of the algorithm (α). In Section 3.6, some theoretical results that
are indicative of the convergence behaviour of APCM are given. Finally, extensive ex-
perimental results are presented in Section 3.7 and conclusions are provided in Section
3.8.

The proposed APCM algorithm stems from the optimization of the cost function of the

1A preliminary version of APCM has been presented in [53].

61 S. Xenaki



Advances in Possibilistic Clustering with Application to Hyperspectral Image Processing

original PCM (eq. (2.11)), by setting

γj =
η̂

α
ηj, (3.1)

where parameter ηj is a measure of the mean absolute deviation of the current form of
cluster Cj, η̂ is a constant defined as the minimum among all initial ηj ’s, η̂ = min

j
ηj and α

is a user-defined positive parameter. The rationale of the adopted expression for γj ’s as
given in eq. (3.1) will be analysed and further discussed in Section 3.4.

3.2 Initialization in APCM

As mentioned previously, first, we make an overestimation, denoted by mini, of the true
number of natural clusters m, formed by the data points; that is, we begin with mini θj ’s
and their corresponding ηj ’s. Regarding θj ’s and ηj ’s, their initialization drastically affects
the final clustering result in APCM. Recalling that APCM is a possibilistic-type algorithm
and these algorithms move the cluster representatives towards “dense in data points”
regions (physical clusters), care should be taken so that at least one representative lies
“close” to each physical cluster with its associated ηj being initialized suitably. Thus, a
good starting point for them is of crucial importance. To this end, the initialization of θj ’s is
carried out using the final cluster representatives obtained from the FCM algorithm, when
the latter is run with mini clusters. Taking into account that FCM is very likely to drive the
representatives to dense in data regions (sincemini > m), the probability that at least one
of the initial θj ’s is placed in each dense region (cluster) of the data set, increases with
mini.

After the initialization of θj ’s, ηj ’s are initialized as follows:

ηj =

∑N
i=1 u

FCM
ij ∥xi − θj∥∑N
i=1 u

FCM
ij

, j = 1, . . . ,mini, (3.2)

where θj ’s and uFCMij ’s in eq. (3.2) are the final parameter estimates obtained by FCM2.

It is worth noting that the above initialization of ηj ’s involves Euclidean instead of squared
Euclidean distances, as is the case for γj ’s in the classical PCM. As it will be shown next,
this convention will also be kept in the update expressions of ηj ’s, given below, while its
rationale is explained in Section 3.4.

3.3 Parameter adaptation in APCM

In the proposed APCM algorithm, all parameters are adapted during its execution. More
specifically, this refers to, (a) the degrees of compatibility uij ’s and the cluster represen-

2An alternative initialization for θj ’s and ηj ’s is proposed in [53].
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tatives θj ’s, (b) the number of clusters and (c) the ηj ’s, with (b) and (c) being achieved
through two interrelated processes.

As far as the updating of uij ’s is concerned, by setting γj = η̂
α
ηj in eq. (2.11) and minimizing

JPCM(Θ, U) with respect to uij, we end up with the following expression

uij(t) = exp
(
−∥xi − θj(t)∥2

γj(t)

)
= exp

(
−α
η̂

∥xi − θj(t)∥2

ηj(t)

)
, (3.3)

where the iteration dependence of ηj ’s has now been inserted. In addition, the updating
of θj ’s is done as in the original PCM scheme according to eq. (2.15). Concerning the
adjustment of the number of clusters m(t) at the tth iteration, we proceed as follows.
Let label be a N -dimensional vector, whose ith element is the index of the cluster which
is most compatible with xi, that is the index j for which uij(t) = maxr=1,...,m(t) uir(t). At
each iteration of the algorithm, the adjustment (reduction) of the number of clusters m(t)
is achieved by examining, for each cluster Cj, if its index j appears at least once in the
vector label (i.e. if there exists at least one vector xi that is most compatible with Cj). If this
is the case, Cj is preserved. Otherwise, Cj is eliminated and, thus, U and Θ are updated
accordingly. As a result, the current number of clusters m(t) is reduced (see Possible
cluster elimination part in Algorithm 4).

Finally, concerning γj ’s and in contrast to the classical PCM where they are kept fixed, in
APCM they are given by eq. (3.1) and are adapted at each iteration of the algorithm through
the adaptation of the corresponding ηj ’s. More specifically, we propose to compute the
parameter ηj of a cluster Cj at each iteration, as the mean absolute deviation of the most
compatible to cluster Cj data vectors, i.e.,

ηj(t+ 1) =
1

nj(t)

∑
xi:uij(t)=maxr=1,...,m(t+1) uir(t)

∥xi − µj(t)∥, (3.4)

where nj(t) denotes the number of the data points xi that are most compatible with Cj at
iteration t and µj(t) the mean vector of these data points (see also Adaptation of ηj ’s part
in Algorithm 4). The APCM algorithm can be stated as follows.

Algorithm 4 [Θ, H, m, U ] = APCM(X, mini, α)
Input: X, mini, α

1: t = 0

� Initialization of θj ’s part

2: [Θ(t), UFCM(t)] = FCM(X, mini, 2) 3

� Initialization of ηj ’s part

3See Algorithm 2 of Chapter 2. We set the fuzzifier q = 2.
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3: Set: ηj(t) =
∑n

i=1
uFCM
ij ∥xi−θj(t)∥∑n

i=1
uFCM
ij

, j = 1, ...,mini

4: Set: η̂ = minj=1,...,mini
ηj(t)

5: m(t) = mini

6: repeat

� Update U part

7: uij(t) = exp
(
−α
η̂

||xi−θj(t)||2
ηj(t)

)
, i = 1, ..., N , j = 1, ...,m(t)

� Update Θ part

8: θj(t+ 1) =
N∑
i=1

uij(t)xi
/

N∑
i=1

uij(t) , j = 1, ...,m(t)

� Possible cluster elimination part

9: for i← 1 to N do

10: Determine: uir(t) = maxj=1,...,m(t) uij(t)

11: Set: label(i) = r

12: end for

13: Compute: nj(t), j = 1, ...,m(t)

14: p = 0 //number of removed clusters at iteration t

15: for j ← 1 to m do

16: if nj(t) = 0 or 1 then

17: Remove: Cj (and renumber accordingly Θ and the columns of U )

18: p = p+ 1

19: end if

20: end for

21: m(t+ 1) = m(t)− p

� Adaptation of ηj ’s

22: µj(t+ 1) = 1
nj(t)

∑
xi:uij(t)= max

r=1,...,m(t+1)
uir(t)

xi, j = 1, ...,m(t+ 1)

23: ηj(t+ 1) = 1
nj(t)

∑
xi:uij(t)= max

r=1,...,m(t+1)
uir(t)
∥xi − µj(t)∥, j = 1, ...,m(t+ 1)

24: t = t+ 1
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25: until the change in θj ’s between two successive iterations becomes sufficiently small

26: return Θ = {θ1(t),θ2(t), . . . ,θm(t)(t)}, H = [η1(t), . . . , ηm(t)(t)], m(t), U = [uij(t− 1)]

Note that, the definition of γj ’s in the proposed updating mechanism from eqs. (3.1),
(3.4), differs from others used in the classical PCM, as well as in many of its variants, in
two distinctive points. First, ηj ’s in APCM are updated taking into account only the data
vectors that are most compatible to cluster Cj and not all the data points weighted by their
corresponding uij coefficients. This particularity is an essential condition for succeeding
cluster elimination, as by this way the value of a parameter ηj may be pushed to zero, thus
eliminating the corresponding cluster Cj, whereas in the case where all data points were
taken into account, ηj would remain always positive. Note that in the case where a cluster
Cj has no most compatible points with it, it is eliminated (see Possible cluster elimination
part). If a cluster Cj has only one most compatible point to it, say xi, Cj is also eliminated.
This happens because otherwise its parameter ηj becomes zero (through eq. (3.4)) and,
as a consequence, at the next iteration all uij ’s, i = 1, ..., N will become zero (see line 7
of Algorithm 4)4. Thus, the updating of its parameter θj will become impossible (see line
8, Algorithm 4).

Second, the distances involved in eq. (3.4) are between a data vector and the mean vector
µj(t) of the most compatible points of the cluster; not from θj(t), as in previous works (e.g.
[9], [23]). This allows more accurate estimates of ηj ’s, since µj(t) is expected to be closer
to the next location of θj, θj(t + 1), than θj(t). This is crucial mainly during the first few
iterations of the algorithm where the position of θj may vary significantly from iteration to
iteration. It is also noted that, in the (rare) case where there are two or more clusters, that
are equally compatible with a specific xi, the latter will contribute to the determination of the
parameter η of only one of them, which is chosen arbitrarily. This modification prevents
a scenario of having equal ηj ’s in such exceptional cases (e.g. in data sets consisting
of symmetrically arranged data points) which assists the successful cluster elimination
procedure, in situations where this must be carried out. Finally, it is worth pointing out
that the definition of eq. (3.4), implicitly interrelates the various γj ’s and this interrelation
passes to the uij ’s concerning a given xi through eq. (3.3).

3.4 Rationale of the algorithm

As mentioned in the previous section, the modifications made in the original PCM leading
to APCM aim at a) making the algorithm capable to handling stringent clustering situations
and b) allowing for cluster elimination. In the following we describe in more detail the
hidden mechanisms of APCM that render these two goals feasible.

First, we consider the case where we have two physical clusters of very different variances
that are located very close to each other (Fig. 3.1a). This is a difficult clustering problem,

4Note that θj(t) ̸= xi by its definition.
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(b) Initialization of PCM
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(c) 3rd iteration of PCM
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(d) Initialization of APCM
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(e) 3rd iteration of APCM
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Figure 3.1: An example of a two dimensional data set consisting of two physical clusters that have
big difference in their variances and are located very close to each other. (a) The data set, (b) the
initial stage of PCM, (c) the 3rd iteration of PCM, (d) the initial stage of APCM, (e) the 3rd iteration of
APCM and (f) the final stage of APCM. The circles are centered at θj ’s and have radius

√
γj ’s.

in which most state-of-the-art clustering techniques fail. We assume that after initialization
with FCM, PCM has two representatives in the areas of the physical clusters, as shown
in Fig. 3.1b, with θ1 lying in the high variance physical cluster and θ2 in the low variance
physical cluster. Then, from eq. (2.16) and due to the proximity of the two physical clusters,
it turns out that γ2 will be much larger than the actual variance of physical cluster 2. This
is so because, besides the points of physical cluster 2, the numerous, yet more distant,
points of physical cluster 1, will contribute to the computation of γ2 from eq. (2.16). This
means that the representative of the small variance cluster (θ2) is affected by the data
points of its nearby cluster (C1), according to eqs. (2.13), (2.15). As a result, PCM is
likely to end up with both representatives converging erroneously in the center of the large
variance physical cluster 1 (Fig. 3.1c).

This issue of PCM is alleviated in APCM, by taking care for each representative to stay
in the region of the physical cluster where it was first placed. To this end, APCM reduces
(compared to PCM) the range of influence arround each θj that has γj larger than the
variance of the smallest physical cluster formed in the data set. In this way, the probability
of the movement of a representative, which is initialized in the region of a specific physical
cluster with a given variance, towards the center of a nearby physical cluster with a larger
variance, is reduced. In particular, the larger (smaller) the γj than the variance of the
smallest physical cluster is, the more it is reduced (increased). On the other hand, a γj
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Figure 3.2: The degree of compatibility uij with respect to distance dij (η2 > η1 = η̂/α).

that is equal to the variance of the smallest physical cluster is not affected at all. Focusing
on a given iteration (dropping the index t), this is achieved in APCM by defining γj as
in eq. (3.1). This definition results from the γj ’s as defined in the original PCM via the
following transformations.

γPCMj =

∑N
i=1 u

FCM
ij ∥xi − θj∥2∑N
i=1 u

FCM
ij

1
;

γ′j =

∑
xi:uij=maxr=1,...,m uir ∥xi − µj∥2

nj

2
;

η2j =

(∑
xi:uij=maxr=1,...,m uir

∥xi − µj∥
nj

)2
3
; ηj

η̂

α
. (3.5)

Under transformation 1 , γPCMj is transformed to γ′j, where (a) only the xi’s that are most
compatible with θj are taken into account and (b) θj is replaced by µj. The adoption of
the above hard computation of γ′j ’s is necessary for the cluster elimination procedure, as it
will be further explained in the sequel. Transformation 2 leads γ′j to η2j , which carries the
same “quality of information” with its predecessor and moreover, η2j is upper bounded by
γ′j, j = 1, . . . ,m (see Proposition 1 in Appendix A). This intermediate step on the one hand
reduces the influence of clusters arround their representatives while, on the other hand,
is a prerequisite for transformation 3 . Assuming that α is chosen so that the quantity η̂/α
equals to the mean alsolute deviation of the smallest physical cluster formed in the data
set, then for each ηj ≥ η̂/α (ηj ≤ η̂/α), we have that η2j ≥ ηj (η̂/α) (η2j ≤ ηj (η̂/α)). That
is, by substituting η2j with ηj(η̂/α), the greater (smaller) the ηj of a cluster Cj than η̂/α is,
the more the range of influence arround its θj is reduced (enhanced) (see Fig. 3.2 and
Figs. 3.1d, 3.1e). This justifies our choice for the γj ’s given in eq. (3.1).

In the sequel, we will focus on the cluster elimination property of the APCM algorithm. To
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(a) 1st iteration of APCM
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(b) 4th iteration of APCM
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(c) 5th iteration of PCM
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(d) 6th iteration of APCM
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(e) 7th iteration of APCM
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Figure 3.3: A two dimensional data set consisting of a single physical cluster. APCM is intializedwith
two representatives and the cluster elimination procedure is illustrated at several iteration steps.

this end, consider the case where a single physical cluster is formed by the data points
where k(> 1) representatives θj ’s, j = 1, . . . , k, are initialized within it (see Fig. 3.3a
for k = 2). As eq. (2.15) suggests, each representative will move towards the center
of the dense region (see also Propositions 2 and 3 in Section 3.6 for a more rigorous
justification). As θj ’s move towards the center of the region, they are getting closer to each
other. At a specific iteration t0 (t0 = 6 in Fig. 3.3d) where, say γr(t0) = maxj=1,...,k γj(t0), the
hypersphere centered at θr(t0) and having radius

√
γr(t0)will enclose all the hyperspheres

associated with the other representatives. From this point on, the region of influence (γj)
of all the clusters except Cr shrinks to 0 as is shown in Fig. 3.3, due to their definition
(see eqs. (3.1), (3.4)) (a theoretical justification for the two representatives case is given
in Proposition 4 in Section 3.6).

3.5 Selection of parameter α

As it was mentioned previously, α is a user-defined parameter that has to be fine-tuned,
so that η̂/α becomes equal to the mean absolute deviation of the smallest physical cluster.
As it is expected, larger values of mini lead to smaller initial ηj ’s and thus to a smaller η̂.
As a consequence, there exists a trade-off between mini and parameter α: large (small)
values of mini require small (large) values of α, so that the ratio η̂/α approximates the
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mean absolute deviation of the smallest physical cluster. Note that although the latter
quantity is fixed for a given data set, it is unknown in practice.

In the sequel, we discuss how different choices of α affect the behavior of APCM, focusing
on the limiting cases α→ 0 and α→ +∞. Specifically, we consider a single representative
θj and we concentrate on its corresponding “subcost” function5

Jj(θj) =
∑N

i=1
uij∥xi − θj∥2 + ηj

η̂

α

∑N

i=1
(uij lnuij − uij),

where we assume for the time being that ηj is constant, while uij is given as uij =

exp
(
−α
η̂

∥xi−θj∥2
ηj

)
(see eq. (3.3)). Utilizing the last equation and after some algebra, Jj(θj)

can be written as

Jj(θj) = −ηj
η̂

α

N∑
i=1

exp
(
−α
η̂

∥xi − θj∥2

ηj

)
. (3.6)

Taking the gradient of Jj with respect to θj, we have:

∂Jj(θj)

∂θj
= 2

N∑
i=1

exp
(
−α
η̂

∥xi − θj∥2

ηj

)
(xi − θj). (3.7)

For α→ 0, we have that exp
(
−α
η̂

∥xi−θj∥2
ηj

)
→ 1. Thus, ∂Jj(θj)

∂θj
tends to 2

∑N
i=1(xi − θj) and

equating the latter to zero, we end up with θj =
1
N

∑N
i=1 xi. Thus, in this case there exists

a single minimum; the mean of the data set.

For α → +∞, it is clear from eq. (3.6) that, identically, Jj(θj) = 0. Thus, all possible
choices for θj are (trivially) local minima of Jj(θj). As α gradually increases from 0, the
number of minima of Jj(θj) increases and it is expected that, for a specific range of α
values, the minima of Jj(θj) will correspond to the centers of the physical clusters. Of
course, this cease to hold as we move outside this range towards +∞.

The above are illustrated via a simple clustering example. Specifically, we consider an
one-dimensional data set consisting of two Gaussian clusters with 50 points each, shown
on the x-axis in Fig. 3.4a. The centers of the clusters are at locations 28 and 67 and their
variances are 100 and 121, respectively. We consider two cases: in the first, the number
of initial representatives is mini = 3 while in the second, mini = 10. We run first the FCM
algorithm for each case and we obtain the resulting uFCMij ’s and θj ’s, from which the initial
γj ’s are computed using eqs. (3.2) and (3.1). Note that for mini = 3 and mini = 10, the
corresponding η̂ values are 7.0094 and 2.3213.

In order to investigate further the relation between α and mini, we focus on Jj that corre-
sponds to the minimum initial γj and we drop time dependence. Thus, in this case, γj is
fixed to η̂2/α. The “subcost” function Jj(θj) =

∑N
i=1 uij|xi − θj|2 + η̂2

α

∑N
i=1(uij ln uij − uij) is

plotted with respect to θj, for various values of α. We consider first mini = 3, i.e., mini is
very close to the number of actual clusters (m = 2). Thus, in this case, the FCM algorithm

5We write Jj(θj) to explicitly denote the dependence of Jj on θj .
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is more likely to give good initial estimates for ηj ’s (through eq. (3.2)), i.e. the minimum
initial ηj(≡ η̂) approximates the mean absolute deviation of the smallest physical cluster.
We consider the following indicative cases:

• α = 0.05: In this case the ratio η̂/α becomes much larger than the mean absolute
deviation of the smallest physical cluster, leading all data points to have significant
uij ’s for all representatives (through eq. (3.3)). This justifies the plot of Fig. 3.4b,
where Jj exhibits just a single valley centered at the mean of the data set. Clearly,
the minimization of Jj will lead θj to this position, which means that in this case the
algorithm will fail to detect any of the two true clusters.

• α = 1 or 2: In this case the ratio η̂/α approximates the mean absolute deviation of
the smallest physical cluster and as we can see in Figs. 3.4c, 3.4d, two well formed
valleys are centered at the means of the two natural clusters (despite the presence
of a bit disturbance in the α = 2 case). Thus, minimization of Jj will lead θj to the
center of a true cluster.

In conclusion, when mini is close to the actual m and provided that at least one repre-
sentative is placed at each dense region, the minimum ηj (η̂) that is obtained from FCM
(eq. (3.2)) is a good estimate of the mean absolute deviation of the smallest physical clus-
ter, thus values of α around 1 allow the algorithm to work properly.

However, in the case where mini = 10 (that is mini ≫ m) the situation changes. There, all
initial ηj ’s and thus η̂ are much smaller than the mean absolute deviation of the smallest
physical cluster. We consider the following indicative cases:

• α = 0.05: In this case the ratio η̂/α approximates the mean absolute deviation of the
smallest physical cluster. Thus, two well formed valleys are centered at the means
of the two natural clusters (see in Fig. 3.4e) and the APCM will lead a θj to the center
of a true cluster.

• α = 1 or 2: In this case Jj exhibits many local minima (see Figs. 3.4f, 3.4g), as the
ratio η̂/α is significantly smaller than the mean absolute deviation of the smallest
physical cluster, leading all data points to have negligible uij ’s values, even with θj ’s
that are placed very close to them (through eq. (3.3)). As a consequence, Jj exhibits
several local minima that do not correspond to any of the two true clusters and APCM
is most likely to end up with clusters that do not correspond to the underlying data
set structure.

This example indicates that in cases where mini is chosen not to be very larger than the
actual number of clustersm, appropriate values for the parameter α are around 1. On the
other hand, when mini is chosen much larger than m, parameter α should be taken much
less than 1. However, in more demanding data sets, which contain very closely located
natural clusters and for a fixed value of mini, larger values for the parameter α should be
chosen, compared to cases of less closely located clusters, in order to discourage the
movement of a representative from one dense region to another. Experiments showed
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(b) mini = 3, α = 0.05

0 20 40 60 80
−1200

−1000

−800

−600

−400

−200

0

 

 

Location of cluster representative θ
j

C
os

t f
un

ct
io

n 
J j

Cluster 1
Cluster 2

(c) mini = 3, α = 1
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(d) mini = 3, α = 2
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(e) mini = 10, α = 0.05
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(f) mini = 10, α = 1
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Figure 3.4: Plot of the APCM cost function with respect to θj for a two-class 1-dim data set. (a) The
data set. Data points are denoted by stars on the x-axis and representatives by black dots. Results
for (b) mini = 3, α = 0.05, (c) mini = 3, α = 1, (d) mini = 3, α = 2, (e) mini = 10, α = 0.05, (f) mini = 10,
α = 1 and (g) mini = 10, α = 2.

that values of α around 1 and up to 3 are appropriate for almost any data set, provided
that mini is not extremely larger than m (about 3-4 times larger).

3.6 Convergence results for APCM

In this section we prove some propositions that are indicative of the basic properties of
APCM, namely the convergence of the representatives to the center of dense regions and
cluster elimination. Note that some convergence results on the possibilistic algorithms
are given in [72]. However, these are not applicable to APCM, due to the adaptation
mechanism employed for the parameters ηj ’s. We begin with the following proposition.

Proposition 1. Let θ1, θ2 be two cluster representatives with η2 < η1. The geometrical
locus of the points x ∈ ℜℓ having u2(x) > u1(x), where uj(x) = exp

(
−αdj(x)

ηj η̂

)
and dj(x) =

∥x− θj∥2, j = 1, 2, is the set of points that lie in the interior of the hypersphere C:

∥x− kθ2 − θ1

k − 1
∥2 = k

(k − 1)2
∥θ2 − θ1∥2 ≡ r2, (3.8)
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centered at kθ2−θ1

k−1
and having radius r =

√
k

k−1
∥θ2 − θ1∥, where k = η1/η2(> 1).

Proof. It is u1(x) < u2(x) ⇔ d1(x)
η1

> d2(x)
η2
⇔ d1(x) > kd2(x) ⇔ ∥x − θ1∥2 > k∥x − θ2∥2 ⇔

∥x∥2 − 2xTθ1 + ∥θ1∥2 > k∥x∥2 − 2kxTθ2 + k∥θ2∥2 ⇔ (k − 1)∥x∥2 − 2(kθ2 − θ1)
Tx +

k∥θ2∥2 − ∥θ1∥2 < 0 ⇔ ∥x∥2 − 2
(
kθ2−θ1

k−1

)T
x + k∥θ2∥2−∥θ1∥2

k−1
< 0 ⇔ ∥x∥2 − 2

(
kθ2−θ1

k−1

)T
x +

∥kθ2−θ1

k−1
∥2 − ∥kθ2−θ1

k−1
∥2 + k∥θ2∥2−∥θ1∥2

k−1
< 0 ⇔ ∥x − kθ2−θ1

k−1
∥2 < ∥kθ2−θ1∥2

(k−1)2
− k∥θ2∥2−∥θ1∥2

k−1
or

∥x− kθ2−θ1

k−1
∥2 < k

(k−1)2
∥θ2 − θ1∥2.

Note that the radius r of C can be written in terms of η1, η2 as

r =

√
η1η2

|η1 − η2|
∥θ2 − θ1∥2. (3.9)

We consider next the continuous case where the data vectors are modelled by a random
vector x that follows a continuous pdf distribution p(x). In this case, the updating equations
for the APCM algorithm (with a slight modification in notation, in order to denote explicitly
the dependence of uj(x) from the continuous random variable x) are given below.

θt+1
j =

∫
ℜℓ utj(x)xp(x)dx∫
ℜℓ utj(x)p(x)dx

, (3.10)

where utj(x) = exp
(
−
∥x− θtj∥2

γtj

)
(3.11)

γtj =
η̂

α

∫
T t
j
∥x− µt

j∥p(x)dx∫
T t
j
p(x)dx (3.12)

and µt
j =

∫
T t
j
xp(x)dx∫

T t
j
p(x)dx , (3.13)

with T tj = {x : utj(x) = maxq=1,...,m u
t
q(x)}, j = 1, . . . ,m.

The above equations define the iterative scheme θt+1
j = f(θtj), where

f(θtj) =

∫
ℜℓ exp

(
−∥x−θt

j∥2

γtj

)
xp(x)dx∫

ℜℓ exp
(
−∥x−θt

j∥2

γtj

)
p(x)dx

. (3.14)

In the sequel we give some indicative theoretical results concerning aspects of the behav-
ior of APCM, namely (a) the convergence of the cluster representatives to the centers of
the dense in data regions and (b) the cluster elimination mechanism. First, we state two
assumptions that will be used as premises in the propositions to follow.
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Assumption 1: (a) p(x) decreases isotropically along all directions around its center c 6.

(b) Without loss of generality, we consider the case c = 0.
Note that this assumption indicates the existence of a single dense in data region.

Assumption 2: p(x) is a zero mean normal distribution N (0, σ2I).

(Clearly, Assumption 2 is more restrictive than assumption 1.)

Proposition 2. Under assumption 1, the center c = 0 of p(x) is a fixed point for the
iterative scheme defined by eq. (3.14).

Proof. Assuming that θtj = 0, we will show that θt+1
j = 0 also. Dropping the index j from

θj, γj from eq. (3.14) we have

θt+1 =

∫∞
0

[∫
∥x∥2=r2 exp

(
−∥x∥2

γt

)
xp(x)dAr

]
dr∫∞

0

[∫
∥x∥2=r2 exp

(
−∥x∥2

γt

)
p(x)dAr

]
dr

, (3.15)

where
∫
∥x∥2=r2(·)dAr is the integral over the hypersphere ∥x∥2 = r2.

Continuing from eq. (3.15) we have

θt+1 =

∫∞
0 exp

(
− r2

γt

) [∫
∥x∥2=r2 xp(x)dAr

]
dr∫∞

0 exp
(
− r2

γt

) [∫
∥x∥2=r2 p(x)dAr

]
dr

. (3.16)

But, due to the isotropic property of p(x) along all directions around 0, all points on the
hypersphere ∥x∥2 = r2 are evenly distributed (and have the same magnitude). Thus, it is:∫

∥x∥2=r2
xp(x)dAr = 0. (3.17)

Noting also that exp
(
− r2

γt

)
> 0 and

∫
∥x∥2=r2 p(x)dAr is the area of the hypersphere ∥x∥2 =

r2, the denominator in eq. (3.16) is positive. Thus, eqs. (3.16) and (3.17) finally give
θt+1 = 0. In other words, 0 is indeed a fixed point of the iterative scheme defined by
eq. (3.14).

Proposition 3. Adopt the assumption 2 and consider the mapping f : ℜℓ → ℜℓ defined
by eq. (3.14). Then, the fixed point 0 of the scheme θt+1 = f(θt) is stable.

Proof. Focusing on the s-th component fs(θ) of the above mapping and utilizing the as-

sumption 2 of p(x) as well as the fact that exp
(
−∥x−θ∥2

γ

)
=

ℓ∏
q=1

exp
(
− (xq−θq)2

γ

)
, it is easy

6Such pdf’s are e.g. the independent identically distributed (i.i.d) multivariate normal and Laplace distri-
butions.
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to verify that:

fs(θ) =

∫
ℜ xs exp

(
− (xs−θs)2

γ

)
p(xs)dxs∫

ℜ exp
(
− (xs−θs)2

γ

)
p(xs)dxs

≡ fs(θs). (3.18)

Thus, fs(θ) depends only on θs.

In order to prove the stability of θ = 0, we will compute the Jacobian matrix on θ = 0 and
we will show that |J(θ)| < 1.

Since, ∂fs(θ)
∂θq

= 0, for q ̸= s the Jacobian is diagonal. Computing its diagonal elements at
θ = 0, we have after some algebra

∂fs(θ)

∂θs

∣∣∣∣∣
θ=0

=
2

γ

∫
ℜ x

2
s exp

(
−x2s

γ

)
p(xs)dxs∫

ℜ exp
(
−x2s

γ

)
p(xs)dxs

− 2

γ

(∫
ℜ xs exp

(
−x2s

γ

)
p(xs)dxs

)2
(∫

ℜ exp
(
−x2s

γ

)
p(xs)dxs

)2 . (3.19)

In addition, due to the fact that p(xs) is N (0, σ2), it is easy to verify that

exp
(
−x

2
s

γ

)
p(xs) =

σ′

σ
p̂(xs), (3.20)

where p̂(xs)=N (0, σ′2), with
σ′2 =

1

2
(
1
γ
+ 1

2σ2

) . (3.21)

Substituting eq. (3.20) to eq. (3.19) and taking into account that (a) the numerator of the
second fraction is the mean of p̂(xs), (b) the numerator of the first fraction is the variance
of p̂(xs) and (c) the denominators are both equal to 1, we end up with

∂fs(θ)

∂θs

∣∣∣∣∣
θ=0

=
2σ′2

γ
. (3.22)

Substituting eq. (3.21) to eq. (3.22), it is: ∂fs(θ)
∂θs

∣∣∣
θ=0

= 2σ2

2σ2+γ
, which is always less than 1,

due to the positivity of σ2 and γ.

Thus, θ = 0 is a stable fixed point of the iterative scheme θt+1 = f(θt).

It is noted that propositions 2 and 3 are valid for both constant and time varying positive
γj ’s.

In the general case where the data formmore than one dense regions7, the above proposi-
tions are still valid, assuming that the influence on a representative that belongs to a given
dense region from data points from other dense regions is negligible. This can be ensured
by choosing γj ’s properly. However, an alternative way to achieve this is to equate to zero

7That is, when p(x) has more than one peaks.
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all uij ’s that are below a certain threshold T . In this way, assuming that the data set under
study comprises well-formed and well-separated clusters, each data point xi is very likely
to have only one uij > 0. In such a case the above convergence analysis remains valid.

Remark: The use of a threshold T for pushing all uij ’s that have values less than T to zero
ensures, in general, that a data point xi will be compatible with a few at the most clusters.
This implies that the vector ui = [ui1, ..., uim] has only a few non-zero elements or, in other
words, ui is sparse on non-zero values. The idea of sparsity will be explained in a more
sophisticated way in the next chapter.

In the next proposition, we focus on the cluster elimination property of APCM for the case
of two representatives that lie in the same physical cluster.

Proposition 4. Adopt assumption 1 and consider two cluster representatives θ1 and θ2.
Assuming that η1(t) ̸= η2(t) and ηj(t) < +∞, j = 1, 2, ∀t, one of the clusters represented
by θ1 and θ2 will be eliminated8.

Proof. Utilizing Propositions 2 and 3, we have that θ1 and θ2 converge towards c. Thus,
the distance between them decreases towards zero, i.e.

∥θ1(t)− θ2(t)∥ → 0. (3.23)

Taking into account eq. (3.9), the radius of the hypersphere Ct that delimits T1(t) and T2(t)
at iteration t can be written as

rt =

√
η1(t)η2(t)

|η1(t)− η2(t)|
∥θ2(t)− θ1(t)∥. (3.24)

From hypothesis it follows that
√
η1(t)η2(t)

|η1(t)−η2(t)| is finite, i.e.,

∃M > 0 :

∣∣∣∣∣∣
√
η1(t)η2(t)

η1(t)− η2(t)

∣∣∣∣∣∣ < M ∀t. (3.25)

Combining eqs. (3.23), (3.24) and (3.25) we have that rt → 0. Thus Tj(t) for one of the two
representatives will eventually becomes empty, which will lead the corresponding ηj(t) to
zero value (see eq. (3.4)) and thus to the elimination of cluster Cj (from the execution of
steps 14-21 of APCM, Algorithm 4).

Remark: Note that if η1(t) = η2(t), it is
√
η1(t)η2(t)

η1(t)−η2(t) = +∞. Thus, in this case rt does not
tend to zero. This implies that none of the representatives will be eliminated, since both
T1(t), T2(t) remain non-empty. This scenario becomes extremely improbable, due to the

8Note that, in practice, the hypothesis for η1(t) and η2(t) is almost always met, due to their definition.
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Figure 3.5: PCM and APCM snapshots at their initialization step, 1st iteration and 13th iteration for
PCM and 10th (final) iteration for APCM (experiment 1).

updating of ηj via eq. (3.4) (hard computation). On the contrary, this scenario becomes

more probable when a soft computation of ηj ’s is adopted (e.g. ηj =
∑N

i=1
uij∥xi−θj∥∑N

i=1
uij

).

3.7 Experimental results

In this section, we assess the performance of the APCM method in several experimental
settings and illustrate the obtained results. More specifically, we consider two series of
experiments. In the first one, we use two-dimensional simulated data sets in order to
exhibit more clearly certain aspects of the behavior of the APCM itself. In the second one,
we use both simulated and real-world data sets (Iris [73], New Thyroid [73] to evaluate the
performance of APCM in comparison with several other related algorithms.

3.7.1 Clustering behavior of APCM

Experiment 1: Let us consider a two-dimensional data set consisting of N = 17 points,
which form two natural clusters C1 and C2 with 12 and 5 data points, respectively (see
Fig. 3.5). The means of the clusters are c1 = [1.75, 2.75] and c2 = [4.25, 2.75]. In this
experiment, we consider only the PCM (with m = 2) and the APCM (with mini = 2, α = 1)
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Table 3.1: The degrees of compatibility of the data points of experiment 1 for PCM and APCM algo-
rithms, after: (a) initialization (common to both algorithms), (b) first iteration and (c) 13th iteration
for PCM and 10th (final) iteration for APCM.

Initialization 1st iteration 13th iteration 10th iteration
PCM/APCM PCM APCM PCM APCM

xi C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

(1.5, 3.5) 0.9292 0.0708 0.3701 0.0018 0.2757 1.6e-06 0.3604 0.0831 0.2449 3.0e-09
(2.0, 3.5) 0.8963 0.1037 0.3526 0.0127 0.2590 9.6e-05 0.3632 0.2428 0.2447 1.3e-06
(1.0, 3.0) 0.9475 0.0525 0.3884 2.6e-04 0.2936 2.4e-08 0.3575 0.0284 0.2451 7.2e-12
(1.5, 3.0) 0.9854 0.0146 0.8348 0.0027 0.7913 3.4e-06 0.8178 0.1232 0.7550 1.0e-08
(2.0, 3.0) 0.9728 0.0272 0.7954 0.0188 0.7432 2.2e-04 0.8192 0.3602 0.7544 4.3e-06
(2.5, 3.0) 0.8201 0.1799 0.3360 0.0897 0.2433 0.0060 0.3661 0.7098 0.2445 5.4e-04
(1.0, 2.5) 0.9475 0.0525 0.3884 2.6e-04 0.2936 2.4e-08 0.3575 0.0284 0.2451 7.2e-12
(1.5, 2.5) 0.9854 0.0146 0.8348 0.0027 0.7913 3.4e-06 0.8128 0.1232 0.7550 1.0e-08
(2.0, 2.5) 0.9728 0.0272 0.7954 0.0188 0.7432 2.2e-04 0.8192 0.3602 0.7544 4.3e-06
(2.5, 2.5) 0.8201 0.1799 0.3360 0.0897 0.2433 0.0060 0.3661 0.7098 0.2445 5.4e-04
(1.5, 2.0) 0.9292 0.0708 0.3701 0.0018 0.2757 1.6e-06 0.3604 0.0831 0.2449 3.0e-09
(2.0, 2.0) 0.8963 0.1037 0.3526 0.0127 0.2590 9.6e-05 0.3632 0.2428 0.2447 1.3e-06
(4.25, 3.5) 0.0748 0.9252 1.2e-05 0.6415 4.2e-07 0.3903 1.6e-05 0.2302 2.2e-07 0.2563
(3.5, 2.75) 0.1441 0.8559 0.0058 0.6566 0.0013 0.4101 0.0071 0.8869 0.0010 0.2600
(4.25, 2.75) 6.0e-05 0.9999 3.0e-05 0.9997 1.3e-06 0.9994 4.0e-05 0.3587 7.7e-07 1.0000
(5.0, 2.75) 0.0522 0.9478 2.6e-08 0.6267 1.4e-10 0.3715 3.6e-08 0.0597 4.7e-11 0.2527
(4.25, 2.0) 0.0748 0.9252 1.2e-05 0.6415 4.2e-07 0.3903 1.6e-05 0.2302 2.2e-07 0.2563

algorithms. Figs. 3.5a and 3.5d show the initial positions of the cluster representatives that
are taken from FCM and the circles with radius equal to √γj ’s resulting from eq. (2.16)
(for B = 1) for PCM and from eq. (3.2) for APCM. Similarly, Figs. 3.5b and 3.5e show the
new locations of θj ’s after the first iteration of the algorithms and Figs. 3.5c, 3.5f show the
locations of θj ’s at a later iteration. Table 3.1 shows the degrees of compatibility uij ’s of all
data points xi with the cluster representatives θj ’s at the three specific iterations depicted
in Fig. 3.5 (initial, 1st for both algorithms, 13th for PCM and 10th (final) for APCM).

As it can be deduced from Table 3.1 and Fig. 3.5, the degrees of compatibility of the data
points of C1 with the cluster representative θ2 increase as PCM evolves, leading gradually
θ2 towards the region of the cluster C1 and thus, ending up with two coincident clusters,
although θ1 and θ2 are initialized properly through the FCM algorithm (see Fig. 3.5a).
This is not the case though with the APCM algorithm, as both the cluster representatives
remain in the centers of the actual clusters. Obviously, this differentation on the behavior
of the two algorithms is due to the different definition of the parameters γj ’s, which affect
the degrees of compatibility of the data points with each cluster (see eqs. (2.16), (3.4)
and (2.13)). This experiment indicates that, in principle, APCM can handle successfully
cases where relatively closely located clusters with different densities are involved.

In the next experiment, we investigate on the relation between mini and parameter α.

Experiment 2: Let us consider now a two-dimensional data set consisting of N = 1100
points, which form three natural clusters C1, C2 and C3 (see Fig. 3.6). Each such cluster
is modelled by a normal distribution. The (randomly generated) means of the distributions
are c1 = [1.35, 0.23]T , c2 = [4.03, 4.09]T and c3 = [5.64, 2.28]T , respectively, while their
(common) covariance matrix is set equal to 0.4 · I2, where I2 is the 2× 2 identity matrix. A
number of 500 points is generated by the first distribution and 300 points are generated by
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Figure 3.6: The clustering results of APCM for experiment 2, when it is initialized with mini = 5, for
several values of parameter α.

Table 3.2: Range of values of the parameter α, in which APCM concludes correctly to mfinal = 3
clusters, for specific values of mini for experiment 2.

mini αmin αmax
3 0.35 5.00
5 0.33 3.08
10 0.28 1.38
20 0.23 0.90
50 0.17 0.36
100 0.15 0.29

each one of the other two distributions. Note that clusters C2 and C3 lie very close to each
other and, therefore, their discrimination is considered as a difficult task for a clustering
algorithm. Table 3.2 shows the ranges of values of the parameter α, for which APCM
manages to identify correctly the naturally formed m = 3 clusters, for various values of
mini. Fig. 3.6 shows the clustering results of the APCM algorithm, when it is initialized with
mini = 5, in cases where (a) α = 0.5, (b) α = 1.0 and (c) α = 3.0, respectively. Note from
Table 3.2, that these values of parameter α belong to the range where APCM identifies
correctly the actual clusters, when mini = 5. Also, in Fig. 3.6, it is shown how γj ’s are
affected when varying the parameter α, after APCM is initialized with mini = 5.

Running APCM on the previous data set, for various values of mini and α, we end up
with Fig. 3.7, where regions in the α − mini plot are drawn with different colors, each
one corresponding to a different number of final clusters, mfinal. The light-blue colored
region corresponds to the case where mfinal = 3, i.e., when APCM identifies correctly the
underlying clusters. From the shape of this region, we can verify the “rule of thumb” stated
already in Section 3.5, that is, α is inversely related to mini. Moreover, from Fig. 3.7, we
deduce that by fixing α to a value arround 1 and taking mini 3 − 4 times greater than the
actual number of clusters, APCM will identify correctly the underlying physical clusters.
Interestingly, the situation depicted in Fig. 3.7 has also been observed for several other
data sets. Thus, the above rule of thumb seems to hold more generally.
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Figure 3.7: Graphical representation of the number of final clusters, mfinal, returned by APCM for
experiment 2, for various combinations of α and mini

9.

3.7.2 Comparison of APCM with state-of-the-art clustering algorithms

In the sequel, we compare the clustering performance of APCM with that of the k-means,
the FCM, the FCM with the XB validity index [22], the PCM, the UPC [20], the PFCM [19],
the UPFC [28], the GRPCM [31] and the AMPCM [30] algorithms, which all result from cost
optimization schemes. For a fair comparison, the representatives θj ’s of all algorithms,
except for GRPCM and AMPCM, are initialized based on the FCM scheme and the param-
eters of each algorithm are first fine-tuned. In order to compare a clustering with the true
data label information, we use (a) the Rand Measure (RM) (e.g. [18]), which measures
the degree of agreement between the obtained clustering and the true data classification
and can handle clusterings whose number of clusters may differ from the number of true
data labels, and (b) the Success Rate (SR), which measures the percentage of the points
that have been correctly labeled by each algorithm. Moreover, the mean of the Euclidean
distances (MD) between the true mean of each physical cluster cj and its closest cluster
representative (θj) obtained by each algorithm, is given10. In cases where a clustering al-
gorithm ends up with a higher number of clusters than the actual one (mfinal > m), only the
m cluster representatives that are closest to the true m centers of the physical clusters,
are taken into account in the determination of MD. On the other hand, in cases where
mfinal < m, the MD measure refers to the distances of all cluster representatives from
their nearest actual center; thus some actual centers are ignored11. It is noted that lower
MD values indicate more accurate determination of the cluster center locations. Finally,

9Note that for each value of mini the same initial representatives (produced by FCM) have been used,
for all values of α. Results may differ slightly for different initializations of APCM.

10This is also called “quantization distortion” in centroid-based methods, provided that the number of cj ’s
and θj ’s are the same.

11In such cases, increased MD values are expected, indicating the fact that some actual clusters have
not been identified.
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the number of iterations and the time (in seconds) required for the convergence of each
algorithm, are provided12. Note that in all reported results for the UPC, the PFCM and the
UPFC algorithms, clusters that coincide are considered as a single one. Moreover, for the
FCM with XB validity index case, only the clustering obtained for the mini that minimizes
the XB index is given and discussed. All algorithms have been executed using MATLAB
R2013a on an Intel i7-4790 machine with 16 GB RAM and 3.60 GHz.

We begin with a demanding simulated data set with classes exhibiting significant differ-
ences with respect to their variance.

Experiment 3: Consider a two-dimensional data set consisting ofN = 2100 points, where
three natural clustersC1, C2 andC3 are formed. Each such cluster is modelled by a normal
distribution. The means of the distributions are c1 = [6.53, 1.39]T , c2 = [20.32, 20.39]T and
c3 = [28.09, 11.38]T , respectively, while their covariance matrices are set to 10 · I2, 20 · I2
and I2, respectively. A number of 1000 points are generated by each one of the first two
distributions and 100 points are generated by the last one. Moreover, 200 data points are
added randomly as noise in the region where data live (see Fig. 3.8a).

Table 3.3 shows the clustering results of all algorithms, where mini and mfinal denote the
initial and the final number of the obtained clusters, respectively. Fig. 3.8b and Fig. 3.8c
show the clustering result obtained using the k-means and FCM algorithms, respectively,
for mini = 3. Figs. 3.8d, 3.8e, 3.8f, 3.8g, 3.8h, 3.8i, 3.8j and 3.8k depict the performance
of FCM & XB, PCM, APCM, UPC, PFCM, UPFC, GRPCM and AMPCM respectively, with
their parameters chosen as stated in the figure caption. In addition, the circles, centered
at each θj and having radius

√
γj (as they have been computed after the convergence of

the algorithms), are also drawn.

As it can be deduced from Fig. 3.8 and Table. 3.3, even when the k-means and the FCM
are initialized with the (unknown in practice) true number of clusters (m = 3), they fail to
unravel the underlying clustering structure, most probably due to the noise encountered
in the data set and the big difference in the variances between nearby clusters. The FCM
& XB validity index and the classical PCM also fail to detect the cluster with the smallest
variance. On the other hand, the proposed APCM algorithm produces very accurate re-
sults for various initial values ofmini, estimating with high accuracy the center of the actual
clusters (see the corresponding MD measure in Table 3.3). The UPC algorithm has been
exhaustively fine tuned so that the parameters γj ’s, which remain fixed during its execution
and are the same for all clusters, get small enough values, in order to identify the cluster
with the smallest variance (C3). However, under these circumstances, a representative
that is initially placed at the region where only noisy points exist (due to bad initialization
from FCM), is trapped there and cannot be moved towards a dense region (due to the
small value of its γj). Thus, UPC concludes to 4 clusters when q = 3, but if we set q = 2,
UPC will conclude to 2 clusters, identifying C1 and C2 and missing C3. The PFCM and
UPFC algorithms constantly produce 3 clusters, at the cost of a computationally demand-
ing fine tuning of the (several) parameters they involve (not included in the last column

12In the FCM & XB validity index only the total time required for the execution of FCM 19-times (for
mini = 2, . . . , 20) is given.
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Figure 3.8: (a) Data set of experiment 3. Clustering results for (b) k-means, mini = 3, (c) FCM,
mini = 3, (d) FCM & XB, (e) PCM, mini = 15, (f) APCM, mini = 15 and α = 1, (g) UPC, mini = 8 and
q = 3, (h) PFCM, mini = 15, K = 1, α = 1, β = 3, q = 2.5 and n = 2, (i) UPFC, mini = 15, α = 1, β = 1.5,
q = 3 and n = 2, (j) GRPCM and (k) AMPCM.
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Table 3.3: Performance of clustering algorithms for the experiment 3 data set.

mini mfinal RM SR MD Iter T ime
k-means 3 3 91.02 86.74 6.8509 45 0.13
k-means 8 8 73.83 42.22 2.5267 60 0.33
k-means 10 10 71.41 34.52 2.3544 48 0.41
k-means 15 15 68.35 27.00 0.8074 31 0.46
FCM 3 3 82.05 65.39 4.2089 66 0.04
FCM 8 8 71.88 36.91 2.5468 100 0.34
FCM 10 10 69.67 28.74 2.3466 100 0.48
FCM 15 15 67.18 21.96 0.8593 100 0.50
FCM & XB - 2 87.62 86.74 0.6346 - 3.60
PCM 3 2 87.62 86.78 0.4778 10 0.14
PCM 8 3 75.14 67.87 0.2138 26 0.59
PCM 10 3 75.64 68.35 0.1918 23 0.74
PCM 15 3 78.64 70.04 0.1877 41 1.06
APCM (α = 1) 3 2 87.73 86.83 0.0655 12 0.07
APCM (α = 1.5) 8 3 90.83 90.04 0.2268 38 0.40
APCM (α = 1) 10 3 90.80 90.00 0.2131 28 0.52
APCM (α = 1) 15 3 90.83 90.04 0.2157 35 0.55
UPC (q = 2) 3 2 87.69 86.78 0.1331 20 0.07
UPC (q = 3) 8 4 90.04 85.96 0.5517 76 0.54
UPC (q = 3) 10 4 89.92 85.78 0.5829 89 0.57
UPC (q = 3) 15 4 89.79 85.61 0.6618 111 0.80
PFCM (K = 1, a = 1, b = 1, q = 2, n = 2) 3 2 87.62 86.78 1.2927 25 0.07
PFCM (K = 1, a = 1, b = 1, q = 4, n = 2) 8 3 83.11 84.65 0.5595 55 0.47
PFCM (K = 1, a = 1, b = 2, q = 3, n = 2) 10 3 84.30 85.78 0.7517 119 0.74
PFCM (K = 1, a = 1, b = 3, q = 2.5, n = 2) 15 3 86.74 87.70 0.8414 201 1.83
UPFC (a = 1, b = 1, q = 4, n = 2) 3 2 87.76 86.83 0.4588 20 0.08
UPFC (a = 1, b = 3, q = 3, n = 2) 8 3 87.39 85.43 0.7260 85 0.49
UPFC (a = 1, b = 3, q = 3, n = 2) 10 3 87.40 85.43 0.7364 101 0.68
UPFC (a = 1, b = 1.5, q = 3, n = 2) 15 3 87.64 85.91 0.5555 94 0.83
GRPCM - 2 87.54 86.74 0.3611 90 148.03
AMPCM - 2 87.54 86.74 0.3189 87 151.64

of Table 3.3). However, even when their parameters are fine tuned, the final estimates
of θj ’s are not closely located to the true cluster centers (see MD measure in Table 3.3).
The GRPCM and AMPCM algorithms conclude to two clusters, failing to unravel the un-
derlying clustering structure. It is worth noting that these two algorithms require too much
time to converge, mainly due to the way they perform cluster elimination. Finally, as it is
deduced from Table 3.3, the APCM algorithm achieves the best RM and SR results, esti-
mating more accurately the true centers of the clusters (minimum MD), while, in addition,
it requires the fewest iterations for convergence. It is worth noting that the operation time
of APCM is less than that of PCM, even when APCM requires more iterations than PCM
to converge. This is so because the APCM iterations become “lighter” as the algorithm
evolves, since several clusters are eliminated.

The last two experiments are conducted on the basis of real world data sets.

Experiment 4: Let us consider the Iris data set ([73]) consisting ofN = 150, 4-dimensional
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Table 3.4: Performance of clustering algorithms for the Iris data set.

mini mfinal RM SR MD Iter T ime

k-means 3 3 87.97 89.33 0.1271 3 0.30
k-means 10 10 76.64 40.00 0.7785 4 0.13
FCM 3 3 87.97 89.33 0.1287 19 0.02
FCM 10 10 76.16 36.00 0.7793 35 0.02
FCM & XB - 2 76.37 66.67 0.3986 - 0.16
PCM 3 2 77.19 66.67 0.3563 19 0.11
PCM 10 2 77.63 66.67 0.3488 28 0.11
APCM (α = 3) 3 3 91.24 92.67 0.1406 26 0.06
APCM (α = 1) 10 3 84.15 84.67 0.4030 67 0.09
UPC (q = 4) 3 3 91.24 92.67 0.1438 26 0.03
UPC (q = 2.4) 10 3 81.96 81.33 0.5569 150 0.11
PFCM (K = 1, a = 1, b = 10, q = 7, n = 2) 3 3 90.55 92.00 0.1833 17 0.03
PFCM (K = 1, a = 1, b = 1.5, q = 2, n = 2) 10 3 84.64 85.33 0.5411 92 0.05
UPFC (a = 1, b = 5, q = 4, n = 2) 3 3 91.24 92.67 0.1642 32 0.03
UPFC (a = 1, b = 1.5, q = 2.5, n = 2) 10 3 81.96 81.33 0.5566 180 0.16
GRPCM - 2 77.63 66.67 0.3675 26 0.47
AMPCM - 2 77.63 66.67 0.3643 28 0.47

data points that form three classes, each one having 50 points. In this data set, two classes
are overlapped, thus one can argue whether the true number of clusters m is 2 or 3. As it
is shown in Table 3.4, k-means and FCM work well, only if they are initialized with the true
number of clusters (mini = 3). The FCM & XB and the classical PCM fail to end up with
mfinal = 3 clusters, independently of the initial number of clusters. The same result holds
for the GRPCM and the AMPCM algorithms. On the contrary, the APCM, the UPC, the
PFCM and the UPFC algorithms, after appropriate fine tuning of their parameters, produce
very accurate results in terms of RM, SR andMD. However, the APCM algorithm estimates
more accurately the centers of the true clusters (in most cases), compared to the other
algorithms. It is noted again that themain drawback of the PFCMand the UPFC algorithms
is the requirement for fine tuning of several parameters, which increases excessively the
computational load required for detecting the appropriate combination of parameters that
achieves the best clustering performance.

Experiment 5: Let us consider now the so-called New Thyroid three-class data set ([73])
consisting of N = 215, 5-dimensional data points. The experimental results for all al-
gorithms are shown in Table 3.5. It can be seen that both k-means and FCM provide
satisfactory results, only if they are initialized with the true number of clusters (mini = 3),
and the XB validity index is correctly minimized for mini = 3, thus FCM & XB concludes
to the same results as FCM for mini = 3, however at the cost of increased computational
time. The classical PCM exhibits degraded performance, for all choices ofmini. Similar to
PCM behavior is observed for the GRPCM and the AMPCM algorithms, which fail to dis-
tinguish any clustering structure. On the contrary, the APCM and UPC algorithms detect
the actual number of clusters independently of mini after appropriate fine tuning of their
parameters. However, again the APCM algorithm constantly produces higher RM and SR
values. Finally, the PFCM and UPFC exhibit (a) inferior performance compared to APCM
and UPC and (b) superior performance with respect to k-means and FCM provided that
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Table 3.5: Performance of clustering algorithms for the New Thyroid data set.

mini mfinal RM SR MD Iter T ime

k-means 3 3 79.65 87.44 0.8949 3 0.16
k-means 5 5 70.78 63.72 0.8548 12 0.14
k-means 15 15 55.01 25.12 0.7159 16 0.17
FCM 3 3 83.29 89.77 0.4385 53 0.02
FCM 5 5 60.32 46.98 1.0785 55 0.02
FCM 15 15 52.83 21.86 0.8816 91 0.11
FCM & XB - 3 83.29 89.77 0.4385 - 0.44
PCM 3 1 53.05 69.77 0.1177 7 0.06
PCM 5 1 53.05 69.77 0.0559 7 0.06
PCM 15 1 53.05 69.77 0.0577 8 0.16
APCM (α = 8) 3 3 94.58 96.74 0.7231 30 0.08
APCM (α = 3) 5 3 87.59 92.56 1.0026 21 0.06
APCM (α = 1.2) 15 3 73.73 83.72 2.7123 54 0.16
UPC (q = 3) 3 3 83.85 90.23 0.6982 41 0.03
UPC (q = 2) 5 3 77.94 86.51 1.0739 16 0.02
UPC (q = 1) 15 3 67.21 79.53 2.7617 34 0.05
PFCM (K = 1, a = 1, b = 5, q = 8, n = 2) 3 1 53.05 69.77 0.0507 15 0.03
PFCM (K = 1, a = 1, b = 5, q = 8, n = 2) 5 2 64.95 77.21 1.3855 41 0.05
PFCM (K = 1, a = 1, b = 8, q = 2, n = 2) 15 3 66.64 79.07 1.8381 28 0.09
UPFC (a = 1, b = 5, q = 8, n = 2) 3 2 68.21 79.53 0.4108 21 0.05
UPFC (a = 1, b = 3, q = 6, n = 2) 5 3 78.76 86.98 0.9682 27 0.05
UPFC (a = 1, b = 0.1, q = 1.5, n = 2) 15 3 72.85 83.26 1.5909 34 0.09
GRPCM - 1 53.05 69.77 0.2732 63 2.04
AMPCM - 1 53.05 69.77 0.2667 64 1.98

the latter are not initialized with the correct number of clusters.

3.8 Conclusions

In this chapter, commencing from the classic possibilistic c-means (PCM) algorithm pro-
posed in [10], a new possibilistic clustering algorithm, called Adaptive Possibilistic c-
means (APCM), has been presented. APCM addresses several of the weaknesses of
PCM and exhibits several new features. The most important one is that its parameters
γ are adapted as the algorithm evolves, in contrast to all other related possibilistic algo-
rithms, where parameters γ, once they are set, they remain fixed. This makes APCM
more flexible in tracking the variations in the cluster formation as it evolves. Additional
significant features are related with the computation of the parameters γ. Specifically, in
contrast to previous possibilistic algorithms, each γj is expressed in terms of the mean
absolute deviation of the vectors that are most compatible with the jth cluster (Cj), from
their mean. The use of the Euclidean distance, instead of the squared Euclidean one,
makes the algorithm capable to distinguish closely located to each other clusters. More-
over, the use of the mean µj of the most compatible points to a certain cluster Cj instead
of the previous location of the corresponding representative θj in the computation of γj ’s
leads to better estimates for the latter. A significant side-effect of the adaptation of γj ’s is
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that APCM is (in principle) capable to reveal the true number, m, of physical clusters via a
cluster elimination procedure, provided that it is initialized with an overestimate of it, mini.
The latter releases APCM from the noose of knowing exactly in advance the true number
of “physical” clusters at the cost of performing a light fine tuning for specifying the value
of the parameter α involved in the definition of γj ’s. It is worth noting that as experiments
show, mini and α should vary inversely to each other, in order for the algorithm to work
properly, a fact that makes their choice not entirely arbitrary. In addition, they show that if
α is fixed to a value around 1 and mini is around 3-4 times greater than m, then, in sev-
eral cases, the algorithm works properly. Finally, the experimental results provided show
that APCM exhibits superior performance compared to several other related algorithms,
in almost all the considered data sets.
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4. SPARSE POSSIBILISTIC C-MEANS ALGORITHM

4.1 Introduction

In this chapter we extent the classical PCM algorithm, proposed in [10], in a different way
from that presented in the previous section. In contrast to the APCM algorithm, where
the parameters γ were adapted during its execution, here they are considered fixed. The
present extension relies on the fact that, in practice, each data vector is compatible with
only a few or even none clusters. Based on this, a suitable sparsity constraint is imposed
on the vector containing the degrees of compatibility of each data vector with all the clus-
ters, giving rise to the Sparse PCM (SPCM) algorithm [56]. SPCM exhibits increased
immunity to data points that may be considered as noise or outliers by excluding them, in
principle, from contributing to the estimation of the cluster representatives. As a conse-
quence, SPCM concludes to more accurate estimates for the cluster representatives than
PCM, especially in noisy enviroments.

Moreover, in difficult cases, where the physical clusters underlying in the data set under
study are very closely located to each other, SPCM allows only the data points that are
very close to the current location of the representatives to contribute to the estimation of
the next location of the latter. As a result, SPCM is, in principle, capable of identifying
very closely located clusters of possibly various densities. However, the requirement of
the estimation of the specific parameters γ involved in all PCMs still remains.

It is worth noting that the proposed method is not the first one that introduces the sparsity
idea in clustering. Sparsity in the, so-called, outlier domain has been proposed previously
in [74], [69]. Also in [75], [76], two variants of possibilistic clustering that impose sparsity
constraints, adopting the l1 norm, are proposed. In [76] the clusters are recovered in a
sequential manner, in contrast to [75], where clusters are recovered simultaneously.

In the sequel we proceed as follows. In Section 4.2 we introduce the concept of sparsity.
In Sections 4.3-4.6 we present in detail the SPCM algorithm and in Section 4.7 we focus
on an experiment for collating SPCM with PCM. Finally, Section 4.8 contains the conver-
gence analysis of the algorithm, where it is proved that the algorithm converges to a local
minimum of its cost function. Also, the same result is established for PCM as a special
case of the convergence proof of SPCM. Conclusions are presented in Section 4.9. Note
that further extended experimental results of SPCM are presented in the next chapter.

4.2 Enforcing Sparsity - The Sparse PCM (SPCM)

A notable feature of the PCM algorithm is that all data vectors contribute to the updating
of the representatives (see eq. (2.15)) since, from eq. (2.13), we have that all uij ’s are
positive. When the physical clusters are well separated from each other, the updating of a
specific θj will only slightly be affected by distant from it data points. However, in the case
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where the physical clusters are closely located to each other and have different densities,
the affection on θj from data points that belong to other physical clusters will be increased.
Moreover, the affection will be higher for the representative of the less dense cluster.
That may drive this representative towards the center of the denser cluster, failing thus to
identify the less dense cluster. Note that even if this does not happen, the corresponding
final estimates of θj ’s will represent less accurately the physical cluster centers. The
previous arguments are illustrated qualitatively via the following two examples1.
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Figure 4.1: (a) The data set of Example 1 and (b) the clustering result of Example 1 for PCM with
m = 5 (mfinal = 2). Open (closed) circles stand for the initial (final) location of the representatives
(θj ’s) and crosses represent the true centers of the clusters (cj ’s). The circles centered at each θj

and having radius√γj are also drawn. xs is a specific typical point of C1 that will also be considered
in Figs. 4.2 and 4.5 and uini

s2 is its corresponding degree of compatibility with θini
2 .

Example 1: Consider a two-dimensional data set X consisting of N = 3000 points, where
two physical clusters C1 and C2 are formed. The clusters are modelled by normal distri-
butions with means c1 = [0, 0]T and c2 = [1.5, 1.5]T , respectively, while their covariance
matrices are both equal to 0.4 · I2, where I2 is the 2× 2 identity matrix. A number of 2000
points ofX is generated by the first distribution and 1000 points are generated by the sec-
ond one. Note that the clusters share the same covariance matrix, they are located very
close to each other and they have different densities, as shown in Fig. 4.1a. The clustering
result of the PCM, initialized with m = 5 clusters, is shown in Fig. 4.1b. Apparently, PCM
fails to uncover the less dense cluster. To see qualitatively why this happens let us focus
on θ1 and θ2 in Fig. 4.1b. As it can be seen, θ2 was finally attracted towards C1, although
it was initially placed in C2. This occurred because in the process of determining the next
location of θ2, the many small contributions from the data points of C1 gradually prevailed
over the larger but less contributions from the data points of C2 (see eqs. (2.13), (2.15)).

Example 2: Consider now the same two-dimensional data set of Example 1, where now
the two normal distributions are more distant from each other with means c1 = [0, 0]T and
c2 = [2, 2]T , respectively (see Fig. 4.2a). As is shown in Fig. 4.2b, PCM now succeeds in

1A more quantitative illustration is given in Experiment 1.
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Figure 4.2: (a) The data set of Example 2 and (b) the clustering result of Example 2 for PCM with
m = 5 (mfinal = 2). Note that the contribution of the typical point xs to the computation of θini

2 is now
much smaller compared to its counterpart in Fig. 4.1b. See also the caption of Fig. 4.1.

identifying both clusters. It seems that, in determining the next location of θ2, the many
small contributions from the data points of C1 were much smaller than their counterparts
in Example 1 and they did not succeed to prevail over the larger but less contributions
from the data points of C2. However, the final estimates of the true centers (means of
the Gaussians) are not very accurate, as shown qualitatively in Fig. 4.2b and established
quantitatively later in Table 4.1.

One way to face situations, such as those encountered in Examples 1 and 2, is to sup-
press the contribution in the updating of representatives from data points that are distant
from them. Focusing on a specific representative θj, this can be achieved by impos-
ing uij = 0 for data points xi whose distance from θj is sufficiently large. Recalling that
uTi = [ui1, . . . , uim], i = 1, . . . , N , this is tantamount to imposing sparsity on ui, i.e., forcing
the corresponding data point xi to contribute only to its (currently) closest representatives.
To incorporate sparsity in PCM, we propose the following extension of the cost function
JPCM given in eq. (2.11),

JSPCM(Θ, U) =
m∑
j=1

[
N∑
i=1

uij∥xi − θj∥2 + γj
N∑
i=1

(uij lnuij − uij)
]
+λ

N∑
i=1

∥ui∥pp, uij > 0, (4.1)

where ∥ui∥p is the ℓp-norm of vector ui with p ∈ (0, 1), defined as ∥ui∥pp =
∑m
j=1 u

p
ij

2. The
last term in eq. (4.1) is expected to induce sparsity on each one of the vectors ui, while λ
(≥ 0) is a regularization parameter that controls the degree of the imposed sparsity. The
selection of the value of λ, which remains constant during the execution of the algorithm,
is discussed in subsection 4.5. It is clear that by setting λ = 0, we end up with the cost

2The condition uij > 0 is a prerequisite, in order for lnuij to be well-defined. However, in the sequel,
when referring to uij lnuij for uij = 0, we mean lim

uij→0+
uij lnuij(= 0).
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function which is associated with the classical PCM (eq. (2.11)). The algorithm resulting by
the minimization of JSPCM(Θ, U) is called sparse possibilistic c-means (SPCM) clustering
algorithm.

We describe next in detail the various stages of the SPCM algorithm. Specifically, we
first describe the way its parameters are initialized. Next, the updating of uij ’s and θj ’s
is considered. Note that the updating of θj ’s is the same as in classical PCM, while,
the updating of uij ’s is quite different. Although the latter is more complicated than in the
classical PCM, proposed in [10], at the same time, it is far more simpler3 than the updating
in other problems where sparsity is induced through the ℓp-norm with 0 < p < 1.

4.3 Initialization in SPCM

First, we make an overestimation, denoted by mini, of the true number of clusters m,
underlying in the data set. Regarding θj ’s, their initialization drastically affects the final
clustering result in PCM. Thus, a good starting point for them is of crucial importance.
Ideally, we would like to have at least one representative in the region of each physical
cluster. To this end, the initialization of θj ’s is carried out using the final cluster represen-
tatives obtained from the FCM algorithm, when the latter is executed with mini clusters.
Taking into account that FCM is likely to drive the representatives to “dense in data” re-
gions (sincemini > m), we have a good probability of placing at least one of the initial θj ’s
in each dense region (cluster) of the data set.

After the initialization of θj ’s, we initialize γj ’s utilizing eq. (2.16) for B = 1.

4.4 Updating of θj’s and uij’s in SPCM

Minimization of JSPCM(Θ, U) with respect to θj leads to the same updating equation as
in the original PCM scheme (eq. (2.15)), since the last term added to the cost function
does not depend on θj ’s. It is only the updating of uij ’s that will be modified, in the light of
the last term of JSPCM(Θ, U). Taking the derivative of JSPCM(Θ, U) with respect to uij, we
obtain

∂JSPCM(Θ, U)

∂uij
≡ f(uij) = dij + γj ln uij + λpup−1

ij , (4.2)

where dij = ∥xi − θj∥2. Obviously, ∂JSPCM (Θ,U)
∂uij

= 0 is equivalent to f(uij) = 0, the solution
of which will give the requested uij. Clearly, this equation cannot be solved analytically.
However, it can be efficiently solved arithmetically based on the following propositions.

Proposition 1. f(uij) does not become zero for uij ∈ (−∞, 0) ∪ (1,+∞).
3Note that, as it will become evident in the sequel, the simplicity of the updating of uij ’s stems from the

fact that the problem is decomposed with respect to uij ’s (due to the nature of PCM).
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Proof. It is clear that if uij ∈ (1,+∞), all terms in eq. (4.2) are strictly positive and, as
a consequence, f(uij) is positive. Moreover, uij ∈ (−∞, 0) is meaningless, since in this
case ln uij is not defined.

Proposition 2. The stationary points of f(uij) are ûij =
[
λ
γj
p(1− p)

] 1
1−p and ũij = +∞ 4.

Proposition 3. The unique minimum of f(uij) appears at ûij =
[
λ
γj
p(1− p)

] 1
1−p .

Proposition 4. If f(ûij) < 0 then f(uij) = 0 has exactly two solutions u{1}ij , u{2}ij ∈ (0, 1)

with u{1}ij < u
{2}
ij .

Proposition 5. If f(uij) = 0 has two solutions u{1}ij , u{2}ij (with u{1}ij < u
{2}
ij ), JSPCM(Θ, U)

exhibits a local minimum at the largest of them (u{2}ij ).

Proposition 6. JSPCM(Θ, U) exhibits its global minimum (with respect to uij) at u∗ij, where:

u∗ij =

u{2}ij , if f(ûij) < 0 and u{2}ij >
(
λ(1−p)
γj

) 1
1−p (≡ umin)

0, otherwise
(4.3)

Based on the above propositions, to determine u∗ij, we solve f(uij) = 0 as follows. First,
we determine ûij and check whether f(ûij) > 0. If this is the case, then f(uij) has no
roots in [0, 1]. Note that, in this case, it is f(uij) > 0 for all uij ∈ (0, 1], since f(ûij) > 0
(see Fig. 4.3c). Thus, JSPCM is increasing with respect to uij in (0, 1] (see Fig. 4.3d).
Consequently, in this case we set u∗ij = 0, imposing sparsity. In the rare case, where
f(ûij) = 0, we set u∗ij = 0, as ûij is the unique root of f(uij) = 0 and f(uij) > 0 for
uij ∈ (0, ûij) ∪ (ûij, 1]. If f(ûij) < 0, then f(uij) = 0 has exactly two solutions that both
lie in [0, 1] (see Figs. 4.3a, 4.3e). In order to determine the largest of the solutions (u{2}ij ),
we apply the bisection method (see e.g. [77]) in the range (ûij, 1], as u{2}ij is greater than
ûij. The bisection method is known to converge very rapidly to the optimum uij, that is, in
our case, to the largest of the two solutions of f(uij) = 0 5. If the obtained solution u{2}ij

satisfies the rightmost condition in the first branch of eq. (4.3), then we set u∗ij = u
{2}
ij (see

Fig. 4.3b). Otherwise, u∗ij is set to 0 (see Fig. 4.3f).

4The proofs of Propositions 2 to 6 are given in Appendix B.
5Alternatively, any other method of this kind can also be used, e.g. [78].

91 S. Xenaki



Advances in Possibilistic Clustering with Application to Hyperspectral Image Processing

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

20

25

30

f(
u ij)

u
ij
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Figure 4.3: In all plots the dashed parts of the graphs correspond to the interval (0, umin), which
is not accessible by the algorithm (see eq. (4.3)). (a) The shape of function f(uij), when f(ûij) < 0
and the right-most condition of eq. (4.3) is satisfied and (b) the corresponding shape of the cost
function J(uij). (c) The shape of function f(uij), when f(ûij) > 0 and (d) the corresponding shape of
J(uij). (e) The shape of function f(uij), when f(ûij) < 0 and the right-most condition of eq. (4.3) is
not satisfied and (f) the corresponding shape of J(uij).
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4.5 Selection of the parameter λ

As it follows from the previous analysis, considering a specific data point xi and a clus-
ter Cj, a necessary condition in order for the equation f(uij) = 0 to have a solution
is f(ûij) < 0, which, taking into account eq. (4.2) and solving with respect to λ gives
λ < γj

p(1−p) exp
(
−1− dij(1−p)

γj

)
. Consequently, selecting

λ ≥ γj
p(1− p)

exp
(
−1− dij(1− p)

γj

)
, (4.4)

the degree of compatibility uij of a data point xi with a cluster Cj is set to 0, promot-
ing sparsity. Aiming at retaining the smallest sized cluster, say Cq (i.e., the cluster with
γq = min

j=1,...,m
γj) until the termination of the algorithm (provided of course that at least one

representative has been initially placed in it), a reasonable choice for λ would be the one
for which uij becomes 0 for points xi that lie at distance diq greater than γq from the rep-
resentative θq. In this way, θq will be less likely to be “attracted” by nearby larger clusters,
aiding it to remain in the region of the physical cluster where it was first placed. This is so
because the cluster representative will be affected only by the data points that are very
close to it (i.e., points with diq < γq = min

j=1,...,m
γj).

To this end, applying inequality (4.4) for dij and γj equal to γq = min
j=1,...,m

γj, we end up with
λ ≥ γq

p(1−p)e2−p , where e is the base of natural logarithm. In practice, we select λ as

λ = K
min

j=1,...,m
γj

p(1− p)e2−p
, (4.5)

where K is set to values around 1, i.e., actually we allow non-zero uij ’s for points that lie
at distance around γq from θq. In most of the experiments of SPCM, we takeK = 0.9 (see
Fig. 4.4).
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Figure 4.4: A representative θj is denoted with a black dot. The circles delimit the regions around
θj that contain points with uij > 0, for (a) K > 1, (b) K = 1 and (c) K < 1.
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4.6 The SPCM algorithm

From the analysis provided in the previous sections, the SPCM algorithm can be summa-
rized as follows.

Algorithm 5 [Θ, U ] = SPCM(X, mini)
Input: X, mini

1: t = 0

2: m = mini

� Initialization of θj ’s part

3: [Θ(t), UFCM(t)] = FCM(X, mini, 2) 6

� Initialization of γj ’s part

4: Set: γj =
∑n

i=1
uFCM
ij ∥xi−θj(t)∥2∑n

i=1
uFCM
ij

, j = 1, ...,m

5: Set: λ = K minj=1,...,m γj
p(1−p)e2−p

6: repeat

� Update U part

7: Update: U(t) (as described in section 4.4)

� Update Θ part

8: θj(t+ 1) =
N∑
i=1

uij(t)xi
/

N∑
i=1

uij(t) , j = 1, ...,m

9: t = t+ 1

10: until the change in θj ’s between two successive iterations becomes sufficiently small

11: return Θ = {θ1(t),θ2(t), . . . ,θm(t)}, U = [uij(t− 1)]

In the sequel, we discuss how the exploitation of sparsity affects the clustering result in
Examples 1 and 2, by comparing PCM and SPCM through the use of some quantitative
indices. Specifically, in order to compare a clustering outcome with the true data label
information, we use (a) the Rand Measure (RM), (b) the Success Rate (SR) and (c) the
mean of the Euclidean distances (MD), which are described in section 3.7.2.

Example 1 (cont.): Table 4.1 shows the clustering results of PCM and SPCM, wheremini

and mfinal denote the initial and the final number of distinct clusters. Figs. 4.1b and 4.5a
depict the performances of PCM and SPCM, respectively.

6See Algorithm 2 of Chapter 2. We set the fuzzifier q = 2.
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Figure 4.5: The clustering results of SPCM for the data set of (a) Example 1 with mini = 5 and (b)
Example 2 with mini = 5. In both cases the contribution of the typical point xs to the determination
of θini

2 becomes zero. See also the caption of Fig. 4.1.

As we have already seen, PCM fails to uncover the underlying clustering structure (as is
clearly depicted quantitatively in Table 4.1), whereas SPCM distinguishes the two physical
clusters, since it annihilates the contributions of most of the points of C1 (C2) in the deter-
mination of the next location of θ2 (θ1) through the imposition of sparsity. Note also that
the fact that C1 is denser than C2 did not affect the computation of θ2, since ui2 becomes
0 for most of the points of C1. This is also verified through the achieved RM, SR and MD
values (see Fig. 4.5a and Table 4.1).

Table 4.1: Performance of PCM and SPCM for the data sets of Examples 1 and 2.

Data Set mini mfinal RM SR MD
PCM Example 1 5 1 55.54 66.67 1.0271
SPCM Example 1 5 2 91.22 95.40 0.0822
PCM Example 2 5 2 95.35 97.60 0.1042
SPCM Example 2 5 2 96.21 98.07 0.0194

Example 2 (cont.): Table 4.1 shows the clustering results of PCMandSPCMand Fig. 4.5b
depicts the performance of SPCM. As we have seen in this case, PCM is able to uncover
the underlying clustering structure. However, SPCM manages to detect more accurately
the true centers of the clusters, as the MD index clearly indicates.

Remark 1: Note that for p = 1 the last term in eq. (4.2) becomes constant and uij can be
expressed in closed form as uij = exp

(
−dij+λ

γj

)
, i.e., it is a scaled version of eq. (2.13) of

the classical PCM (see pink curve in Fig. 4.6).

Remark 2: In Fig. 4.6, the degree of compatibility uij versus dij/γj, resulting from SPCM,
is plotted for several values of p ∈ (0, 1). It can be seen that in each curve corresponding
to p < 1, there is a critical point where a discontinuity is observed; that is uij “jumps” from
a positive value to zero. The existence of such a point indicates that “hard” sparsity is
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Figure 4.6: The degree of compatibility uij as a function of the dij/γj for PCM [10] (red curve), SPCM
for several values of p < 1 (blue curves) and SPCM for p = 1 (pink curve).

imposed on ui’s, being the result of the inclusion of the third term in the cost function of
JSPCM , which, in turn, leads to the numerical computation of uij ’s. “Hard” sparsity means
that we do not have to define a small threshold below which uij is set to zero, but sparsity is
forced automatically. Note also that as p increases towards 1, the “jump” becomes smaller
and is moved to the right in the graph. The “jump” ceases to exist in the curves of PCM
and SPCM with p = 1, i.e. no hard sparsity is imposed in these cases. Finally, from this
diagram, it can also be noted that uij ’s take generally lower values in SPCM, compared
to PCM, which, in addition to the induced sparsity, contributes to the ability of SPCM in
distinguishing closely located clusters.

4.7 Collation of SPCM with PCM

This experiment illustrates the rationale of SPCM, which has been approached in Exam-
ple 1 more qualitatively. Let us consider a two-dimensional data set consisting of N = 17
points, which form two clusters C1 and C2 with 12 and 5 data points, respectively (see
Fig. 4.7). The means of the clusters are c1 = [1.75, 2.75] and c2 = [4.25, 2.75]. In this ex-
periment, we consider only the PCM and the SPCM algorithms, both withm = 2. Fig. 4.7a
shows the initial positions of the cluster representatives that are taken from FCM and the
circles with radius equal to √γj ’s resulting from eq. (2.16) (for B = 1) for both PCM and
SPCM. Similarly, Figs. 4.7c and 4.7b show the new locations of θj ’s after the first iteration
of the algorithms and Figs. 4.7e, 4.7d show the locations of θj ’s after the 5th and 5th (final)
iterations for PCM and SPCM, respectively. Finally, Fig. 4.7f shows the locations of θj ’s
after the 8th iteration for PCM. Table 4.2 shows the degrees of compatibility uij ’s of all
data points xi’s with the cluster representatives θj ’s at the three iterations considered in
Fig. 4.7 for both PCM and SPCM.
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Figure 4.7: (a) PCM and SPCM snapshots at their initialization step, (b), (c) their first iteration, (d),
(f) 5th and 8th iteration for PCM and (e) 5th (final) iteration for SPCM.
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Table 4.2: The degrees of compatibility of the data points of Experiment 1 for PCM and SPCM algo-
rithms, after: (a) first iteration (for both algorithms), (b) 5th iteration for PCM and 5th (final) iteration
for SPCM and (c) 8th iteration for PCM.

1st iteration 5th iteration 5th (final) iteration 8th iteration
PCM SPCM PCM SPCM PCM

xi C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

(1.5, 3.5) 0.3701 0.0018 0 0 0.3616 0.0064 0 0 0.3606 0.0118
(2.0, 3.5) 0.3526 0.0127 0 0 0.3619 0.0352 0 0 0.3630 0.0570
(1.0, 3.0) 0.3884 2.5e-04 0 0 0.3613 0.0012 0 0 0.3583 0.0024
(1.5, 3.0) 0.8348 0.0027 0.4625 0 0.8157 0.0095 0.4478 0 0.8134 0.0174
(2.0, 3.0) 0.7954 0.0188 0.4316 0 0.8164 0.0523 0.4476 0 0.8186 0.0846
(2.5, 3.0) 0.3360 0.0897 0 0 0.3623 0.1949 0 0 0.3653 0.2766
(1.0, 2.5) 0.3884 2.5e-04 0 0 0.3613 0.0012 0 0 0.3583 0.0024
(1.5, 2.5) 0.8348 0.0027 0.4625 0 0.8157 0.0095 0.4478 0 0.8134 0.0174
(2.0, 2.5) 0.7954 0.0188 0.4316 0 0.8164 0.0523 0.4476 0 0.8186 0.0846
(2.5, 2.5) 0.3360 0.0897 0 0 0.3623 0.1949 0 0 0.3653 0.2766
(1.5, 2.0) 0.3701 0.0018 0 0 0.3616 0.0064 0 0 0.3606 0.0118
(2.0, 2.0) 0.3526 0.0127 0 0 0.3619 0.0352 0 0 0.3630 0.0570
(4.25, 3.5) 1.2e-05 0.6415 0 0.4850 1.5e-05 0.5883 0 0.4852 1.6e-05 0.5276
(3.5, 2.75) 0.0058 0.6566 0 0.4983 0.0069 0.8712 0 0.4854 0.0070 0.9512
(4.25, 2.75) 3.0e-05 0.9997 0 0.8046 3.9e-05 0.9168 0 0.8049 4.0e-05 0.8222
(5.0, 2.75) 2.5e-08 0.6267 0 0.4720 3.5e-08 0.3972 0 0.4849 3.6e-08 0.2926
(4.25, 2.0) 1.2e-05 0.6415 0 0.4850 1.5e-05 0.5883 0 0.4852 1.6e-05 0.5276

As it can be deduced from Table 4.2 and Fig. 4.7, the degrees of compatibility of the data
points of C1 with the cluster representative θ2 increase as PCM evolves, leading gradually
θ2 towards the region of the cluster C1 and thus, ending up with two coincident clusters,
although θ1 and θ2 are initialized properly through the FCM algorithm (see Fig. 4.7a). How-
ever, this is not the case in SPCM algorithm, as both the cluster representatives remain
in the centers of the actual clusters. It is of great interest to mention that in SPCM θ1 and
θ2 conclude closest to the actual centers compared to their initial state through the FCM
algorithm (see Fig. 4.7e). Obviously, the superior performance of SPCM is due to the
sparsity imposed on ui’s leading several uij ’s to 0 for points xi that lie “away” from θj (see
Table 4.2), thus preventing these points from contributing to the estimation of θj. This
experiment indicates the ability of SPCM to handle successfully cases where relatively
closely located clusters with different densities are involved.

More experiments of SPCM on both synthetic and real data sets are presented in the
“Experimental Results” section of the next chapter.

4.8 On the convergence of the SPCM

In the sequel, a proof of the convergence of the SPCM is provided. Note that, in principle,
the proof holds for any choice of (fixed) γj ’s, not only for the one given in eq. (2.16).

A vital observation is that, as long as uij is given by the first branch of eq. (4.3), it is
bounded as follows

umin ≤ uij ≤ umax, (4.6)

where umax is obtained by solving the equation f(uij) = 0, for dij = 0; that is the equation
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γj ln uij + λpup−1
ij = 0. Note that both umin and umax depend exclusively on λ, γj and p.

Before we proceed, we will give an alternative expression for eq. (4.3), which will be
extensively exploited in the convergence proof below. More specifically, we will express
the condition of the first branch of (4.3) in terms of θj. To this end, we consider the case
where u{2}ij = umin. This implies that f(u{2}ij ) = 0 or f(umin) = 0. Substituting umin by its
equal given in eq. (4.3) and after some straightforward algebraic manipulations, it follows
that f(uminij ) = 0 is equivalent to

||xi − θj||2 =

R2
j︷ ︸︸ ︷

γj
1− p

(
− ln λ(1− p)

γj
− p

)
. (4.7)

The above is the equation of a hypersphere, denoted by Cij, centered at xi and having
radius Rj (note that Rj depends exclusively on the parameters γj, p, λ and not on the
data points xi or on θj ’s and uij ’s). Clearly, its interior int(Cij) (which in the subsequent
analysis is assumed to contain Cij itself) contains all the positions of θj which give uij > 0,
while all the points in its exterior ext(Cij) correspond to positions of θj that give uij = 0.
In order to ensure that Cij is properly defined, we should ensure that Rj is positive. This
holds true if K is chosen so that K < pe2(1−p) (see Proposition C1 in Appendix C). In the
light of the above result, eq. (4.3) can be rewritten as follows

u∗ij =

{
u
{2}
ij , if ||xi − θj||2 ≤ R2

j

0, otherwise
(4.8)

Note that the expressions for u∗ij given by eqs. (4.3) and (4.8) are equivalent and will be
used interchangeably in the subsequent analysis.

Before we proceed, we note that the cost function associated with SPCM (eq. (4.1)) can
be recasted as

JSPCM(U,Θ) =
m∑
j=1

Jj(uj,θj) ≡
m∑
j=1


N∑
i=1

h(uij ,θj)︷ ︸︸ ︷
uij∥xi − θj∥2 + γj

N∑
i=1

(uij ln uij − uij) + λupij

 ,
(4.9)

where uj = [u1j, . . . , uNj]
T . Since (a) uij ’s, j = 1, . . . ,m, are not interrelated to each other,

for a specific xi, (b) uij ’s, i = 1, . . . , N are related exclusively with θj and vice versa and (c)
θj ’s are not interrelated to each other, minimization of JSPCM(U,Θ) can be considered as
the minimization of m independent cost functions Jj ’s, j = 1, . . . ,m. Thus, in the sequel,
we focus on the minimization of a specific Jj(uj,θj) and, for the ease of notation, we
drop the index j, i.e., when we write J(u,θ), we refer to a Jj(uj,θj). In addition, we write
u = [u1, . . . , uN ]

T and θ for the vectors uj, θj that correspond to the j-th cluster.
The proof is given under the very mild assumption that for each cluster at least one equa-
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tion f(ui) = 0, i = 1, . . . , N has two solutions at each iteration of SPCM (Assumption 1).
This is a rational assumption, since if this does not hold at a certain iteration, the algorithm
cannot identify new locations for θ at the next iteration. In subsection 4.8.1, it is shown
how this assumption can always be fulfilled.

Some definitions are now in order. LetM be the set containing all the N × 1 vectors u
whose elements lie in the union {0} ∪ [umin, umax], i.e. M = ({0} ∪ [umin, umax])

N . Also,
let Rl be the space where the vector θ lives. The SPCM algorithm produces a sequence
(u(t),θ(t))|∞t=0, which will be examined in terms of its convergence properties.

Let
G :M→Rl, with G(u) = θ,

where G is calculated via the following equation

θ =

∑N
i=1 uixi∑N
i=1 ui

(4.10)

and
F : Rl →M, with F (θ) = u,

where F is calculated via eq. (4.8). Then, the SPCM operator T :M×Rl →M×Rl is
defined as

T = T2 ◦ T1, (4.11)

where
T1 :M×Rl →M, T1(u,θ) = F (θ) (4.12)

and
T2 :M→M×Rl, T2(u) = (u, G(u)). (4.13)

For operator T we have that

T (u,θ) = (T2 ◦ T1)(u,θ) = T2(T1(u,θ)) = T2(F (θ)) =

(F (θ), G(F (θ))) = (F (θ), (G ◦ F )(θ)).

Thus, the iteration of SPCM can be expressed in terms of T as

(u(t),θ(t)) = T (u(t−1),θ(t−1)) = (F (θ(t−1)), (G ◦ F )(θ(t−1))).

The above decomposition of T to T1 and T2 will facilitate the subsequent convergence
analysis, since certain properties for T can be proved relying on T1 and T2 (and, ultimately,
on F and G).

Remark 3: Note that F (and as a consequence T1) are, in general, not continuous (actually
they are piecewise continuous).

In the sequel some required definitions are given. Let Z : X → X (X ⊂ Rr) be a point-
to-point map that gives rise to an iterative algorithm z(t) = Z(z(t − 1)), which generates
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a sequence z(t)|∞t=0, for a given z(0). A fixed point z∗ of Z is a point for which Z(z∗) =
z∗. Also, we say that Z is strictly monotonic with respect to a (continuous) function g if
g(Z(z)) < g(z), whenever z is not a fixed point of Z. Having said the above, we can now
state the following theorem that will be proved useful in the sequel:

Theorem 1 [79] 7 : Let Z : X → X (X ∈ Rr) be a point-to-point map that gives rise to
an iterative algorithm z(t) = Z(z(t− 1)), which generates a sequence z(t)|∞t=0, for a given
z(0). Supposing that:

(i) Z is strictly monotonic with respect to a continuous function g : X →R,

(ii) Z is continuous on X,

(iii) the set of all points z(t)|∞t=0 is bounded and

(iv) the number of fixed points having any given value of g is finite

then

the algorithm corresponding to Z will converge to a fixed point of Z regardless where it is
initialized in X 8.

In the SPCM case, Z is the mapping T (SPCM operator) defined by eq. (4.11) and g is
the cost function J . Due to the fact that SPCM has been resulted from the minimization
of J , it turns out that its fixed points (u∗,θ∗) satisfy ∇J |(u,θ) = 0.

Although the general strategy to prove convergence for an algorithm is to show that it fulfills
the requirements of the convergence theorem, this cannot be adopted in this straightfor-
ward manner in this framework. The reason is that Theorem 1 requires continuity of T ,
which is not guaranteed in the SPCM case due to T2 (F ) (see eq. (4.8)), which is not con-
tinuous in its domain (which is the convex hull of X, CH(X))9. However, it is continuous
on certain subsets of CH(X). This fact will allow the use of Theorem 1 for certain small
regions where continuity is preserved.

Some additional definitions are now in order. Without loss of generality, let I = (∩ki=1int(Ci))
10; that is I is the (nonempty) intersection of the interiors of the hyperspheres of radius R
(eq. (4.7)) that correspond to xi’s, i = 1, . . . , k (see Fig. 4.8)11,12. Note that for θ ∈ I the
above k points will have ui > 0. The set of all data points that have ui > 0with the previous
θ form the so-called active set, while the points themselves are called active points. In

7This is a direct combination of Theorem 3.1 and Corollary 3.2 in [79].
8Actually, this theorem has been stated for the more general case where Z is a one-to-many mapping

[79]. The present form of the theorem is for the special case where Z is a one-to-one mapping, which is the
case for SPCM.

9Due to its updating (eq. (2.15)), θ will always lie in CH(X), provided that its initial position lies in at least
one hypersphere of radius R centered at a data point.

10The notation of I should not be confused with the identity matrix.
11Clearly, by reordering the data points we can take all the possible corresponding I intersections.
12The accurate notation here would be instead of I, to use I{xi1 ,xi2 ,...,xik}, in order to explicitly denote the

dependence on the associated data points (ij ’s should be different to each other and i1, ..., ik ∈ {1, ..., N}).
However, we choose not to do the latter for keeping the notation as light as possible.
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addition, an active set Xq is called valid if its corresponding intersection of hyperspheres
Iq is nonempty. Finally, the points with ui = 0 are called inactive.
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Figure 4.8: An active set of k = 3 points in cases when (a) ΘI ⊂ I and (b) ΘI ̸⊂ I

Let also
UI = {u = [u1, . . . , uk] : u = F (θ), for θ ∈ I} (4.14)

be the set containing all vectors u, whose components ui span the range of all possible
values of the degrees of compatibility of θ with the k active xi’s. Clearly, ui’s are computed
via the first branch of eq. (4.8) and F is continuous in this specific case (as it will be
explicitly shown later). Also, let

ΘI = {θ : θ = G(u), for u ∈ UI} (4.15)

(see Fig. 4.8 for the possible scenarios for ΘI). Three observations are now in order:

• First, due to the fact that ui’s are independent from each other, UI can also be ex-
pressed as

UI = Πk
i=1[u

min, umaxi ], (4.16)

where Π denotes the Cartesian product and umaxi is the maximum possible value ui
can take, provided that θ ∈ I (clearly umaxi ≤ umax).

• If at a certain iteration t of SPCM, θ(t) ∈ I, ΘI contains all possible positions of
θ(t+ 1).

• ΘI always lies in the convex hull of the associated active set.

In the sequel, we proceed by showing the following facts, that are preliminary for the
establishment of the final convergence result. Specifically, we will show that

• (A) J(u,θ) decreases at each iteration of the SPCM operator T
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• (B) T is continuous on every region UI × I that corresponds to a valid active set.

• (C) The sequence produced by the algorithm is bounded

• (D) The fixed points corresponding to a certain valid active set (if they exist) are strict
local minima of J and they are finite.

• Proof of item (A):
To achieve this goal, we prove first the following two lemmas

Lemma 1: Let ϕ :M→R, ϕ(u) = J(u,θ), where θ is fixed. Then u∗ is the global minimum
solution of ϕ if and only if u∗ = F (θ), where F is defined as in eq. (4.3).

Proof: We proceed by showing that

(a) the unique point u∗ that satisfies the KKT conditions for the minimization problem

minϕ(u)
subject to ui ≥ 0, i = 1, . . . , N
and 1− ui ≥ 0, i = 1, . . . , N

(4.17)

is the one determined by eq. (4.3) and

(b) this point is a minimizer of J , which implies (due to the uniqueness) that it is the global
minimizer.

Let u∗ = [u∗i ] be a point that satisfies the KKT conditions for (4.17). Then we have

(i) u∗i ≥ 0, (ii) 1− u∗i ≥ 0 (4.18)

(i) ∃ κi ≥ 0 : κiu
∗
i = 0, (ii) ∃ τi ≥ 0 : τi(1− u∗i ) = 0 (4.19)

and
∂L(u)
∂ui

|u=u∗ = 0, (4.20)

where L(u) is the Lagrangian function defined as

L(u) = ϕ(u)−
N∑
i=1

κiui −
N∑
i=1

τi(1− ui). (4.21)

Recalling eq. (4.1), ϕ(u) can be written as

ϕ(u) =
N∑
i=1

h(ui;θ)︷ ︸︸ ︷
[ui||xi − θ||2 + γ(ui lnui − ui) + λupi ], (4.22)

where h(ui;θ) is a function of ui for a fixed value of θ. Noting that all ui’s are computed
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independently from each other, for fixed θ, it is easy to verify that, for a specific ui it is

∂ϕ(u)
∂ui

=
∂h(ui;θ)

∂ui
= ||xi − θ||2 + γ ln ui + λpup−1

i ≡ f(ui).

As a consequence, eq. (4.20) gives

||xi − θ||2 + γ lnu∗i + λpu∗p−1
i − κi + τi = 0. (4.23)

We will prove next that κi = 0 and τi = 0, for i = 1, . . . , N ; that is, the constraints on ui’s
are inactive, i.e., the optimum of ϕ(u) lies always in the region defined by the constraints.
Assume, on the contrary, that there exists κs > 0. From eq. (4.19-(i)) it follows that u∗s = 0
and from eq. (4.19-(ii)) that τs = 0. Taking into account that limu∗s→0+ (γ ln u∗s + λpu∗ p−1

s ) =
+∞ 13 and applying eq. (4.23) for u∗s we have

||xs − θ||2 +∞ = κs or κs = +∞ (4.24)

which contradicts the fact that κs is finite.
Assume next that there exists τs > 0. From eq. (4.19-(ii)) it follows that u∗s = 1 and from
eq. (4.19-(i)), it is κs = 0. Applying eq. (4.23) for u∗s and substituting the above we have

||xs − θ||2 + γ ln 1 + λp1p−1 + τs = 0 or τs = −||xs − θ||2 − λp < 0, (4.25)

which contradicts the fact that τs > 0. Thus τs = 0.

Since κi = τi = 0, for all i, eq. (4.23) becomes

||xi − θ||2 + γ ln u∗i + λpu∗ p−1
i ≡ f(u∗i ) = 0, i = 1, . . . , N. (4.26)

Note that the SPCM algorithm relies on eq. (4.26) in order to derive the updating formula
of eq. (4.3) (thus step (a) has been shown). We proceed now to show that the point
corresponding to eq. (4.3) (derived through eq. (4.26)) minimizes J . We consider the
following two cases:

• u∗i is given by the first branch of eq. ((4.3)). This implies that f(ui) = 0 has two solutions

u
{1}
i and u{2}i (u{1}i < u

{2}
i ) and u{2}i >

(
λ(1−p)
γj

) 1
1−p (= umin) (figures 1a, 1d). Taking into

account the definition of h(ui;θ) in eq. (4.22) and Proposition 5, it follows that themaximum
of the two solutions u{1}i , u{2}i (u{1}i < u

{2}
i ) is the one that minimizes h(ui;θ) and, as a

consequence, ϕ(u) also (which equals to J(u,θ)) with θ fixed.

• u∗i is given by the second branch of eq. (4.3). In this case we have that either (i) f(ui)
is strictly positive, which implies that J(u,θ) is strictly increasing with respect to ui (case
shown in figures 1b, 1e) or (ii) h(u{2}i ,θ) ≥ h(0,θ) = 0 (case shown in figures 1c, 1f). In
both (i) and (ii) cases, J(u,θ) is minimized with respect to ui only for ui = 0 (the second

13Utilization of the L’ Hospital rule gives that limx→0+ x1−p lnx = 0 (p < 1). Then limx→0+(lnx+ β 1
x1−p ) =

limx→0+
x1−p ln x+β

x1−p = +∞, for β > 0. Setting x = u∗
s, β = λp

γ , the claim follows.

S. Xenaki 104



Advances in Possibilistic Clustering with Application to Hyperspectral Image Processing

branch of eq. (4.3)).

From the above, it follows that u∗ is the global minimum solution of ϕ if and only if u∗ is
given by eq. (4.3). Q.E.D.

Lemma 2: Let ψ : Rl → R, with ψ(θ) = J(u,θ), where u ∈ UI is fixed. Then, θ∗ (∈ ΘI) is
the unique global minimum of ψ if and only if θ∗ = G(u), where G is calculated as in eq.
(4.10).

Proof: In contrast to the situation in Lemma 1, the minimization of ψ(θ) with respect to θ
is an unconstrained optimization problem. The stationary points of ψ(θ) are obtained as
the solutions of the equations

∂ψ

∂θ
=

∂

∂θ

[
N∑
i=1

(
ui||xi − θ||2 + γ(ui ln ui − ui) + λupi

)]
= 2

N∑
i=1

ui(θ − xi) = 0, (4.27)

which, after some manipulations, give

θ∗ =

∑N
i=1 uixi∑N
i=1 ui

. (4.28)

Also, it is

Hψ ≡
∂2ψ

∂θ2 =

b︷ ︸︸ ︷
2

N∑
i=1

ui I
l, (4.29)

where I l is the l × l identity matrix. Under Assumption 1, stating that at least one ui is
computed by the first branch of eq. (4.3), it is b > 0. Therefore, ψ is a convex function
over Rl, with a unique stationary point, given by eq. (4.28), which is the unique global
minimum of ψ(θ). Q.E.D.

Combining now the previous two lemmas, we are in a position to prove the following
lemma.

Lemma 3: Consider a valid active set, whose corresponding hyperspheres intersection is
denoted by I. Let

S = {(u,θ) = ([u1, . . . , uk],θ) ∈ UI × I : ∇J |(u,θ) = 0

with ui being the largest of the two solutions of fθ(ui) = 0, i = 1, . . . , k} 14. (4.30)

Then J is continuous over UI × I and

J(T (u,θ)) < J(u,θ), if (u,θ) /∈ S.

14In the sequel, we insert θ as subscript in the notation of f in order to show explicitly the dependence of
ui from θ.
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Proof: Since {y → ||y||2}, {y → ln y}, {y → yp} are continuous and J is a sum of products
of such functions, it follows that J is continuous on UI × I. Let (u,θ) /∈ S. Recalling that

T (u,θ) = (F (θ), (G ◦ F )(θ)) = (F (θ), G(F (θ))),

we have
J(T (u,θ)) = J(F (θ), G(F (θ))). (4.31)

Applying Lemma 1 for fixed θ, we have that F (θ) is the unique global minimizer of J . Thus,

J(F (θ),θ) < J(u,θ). (4.32)

Applying Lemma 2 for fixed F (θ), we have that G(F (θ)) is the unique global minimizer of
J . Thus, it is

J(F (θ), G(F (θ))) < J(F (θ),θ). (4.33)

From eqs. (4.31), (4.32) and (4.33), it follows that

J(T (u,θ)) < J(u,θ), for (u,θ) /∈ S.

Q.E.D.

Remark 4: It is noted that although the above proof has been focused on the k (active)
points, its generalization that takes also into account the rest data points is straightforward
since ui = 0, for i = k+ 1, . . . , N and the corresponding terms h(ui,θ) that contribute to J
are 0.

Remark 5: Taking into account that SPCM has been resulted from the minimization of J
(∇J |(u,θ) = 0) on a UI × I corresponding to an active set, it follows that S contains all
the fixed points of T , which (as will be shown later) are local minima of the cost function
J (of course, J may have additional local minima than those belong to S which are not
accessible by the algorithm).

Now we proceed by showing that T decreases J , in the whole domain ({0}∪ [umin, umax])N
×CH(X).

Lemma 4: The strict monotonically decreasing property of T with respect to J remains
valid in the domain ({0} ∪ [umin, umax])N ×CH(X) excluding the fixed points of T of each
valid active set.

Proof: Let (ū, θ̄) be the outcome of SPCM at a specific iteration, û = F (θ̄) be the u for the
next iteration and θ̂ = G(û) be the subsequent θ. Recall that the ordering of the updating
is

ū→ θ̄ → û→ θ̂. (4.34)

We define

Γ̄ = {i : ūi is computed via the second branch of eq. (4.3)}
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and
Γ̂ = {i : ûi is computed via the second branch of eq. (4.3)}.

Recalling that h(ui;θ) = ui||xi − θ||2 + γ(ui ln ui − ui) + λupi , we can write

J(ū, θ̄) =
Ā1︷ ︸︸ ︷∑

i∈Γ̄∩Γ̂

h(ūi; θ̄)+

Ā2︷ ︸︸ ︷∑
i∈˜ Γ̄∩Γ̂

h(ūi; θ̄)+

Ā3︷ ︸︸ ︷∑
i∈˜ Γ̂

h(ūi; θ̄) (4.35)

and

J(û, θ̄) =
Â1︷ ︸︸ ︷∑

i∈Γ̄∩Γ̂

h(ûi; θ̄)+

Â2︷ ︸︸ ︷∑
i∈˜ Γ̄∩Γ̂

h(ûi; θ̄)+

Â3︷ ︸︸ ︷∑
i∈˜ Γ̂

h(ûi; θ̄), (4.36)

where˜Γ denotes the complement of Γ.

Focusing on Ā1 and Â1, we have that h(ūi; θ̄) = h(ûi; θ̄) = 0, since i ∈ Γ̄ ∩ Γ̂. Thus

Â1 = Ā1 = 0. (4.37)

Considering Ā2 and Â2, since i ∈ Γ̂, we have ûi = 0. Thus, taking into account the order
of updating (eq. (4.34)) and Lemma 1, we have (0 =) h(ûi; θ̄) < h(ūi; θ̄). Thus, it follows
that

Â2 < Ā2. (4.38)

Finally, focusing on Ā3 and Â3, since i ∈ ˜Γ̂, the argumentation of Lemma 1 implies that
the global minimum of h(ui; θ̄) is met at ûi = u

{2}
i . Thus, taking also into account the order

of updating in eq. (4.34), it is h(ûi; θ̄) < h(ūi; θ̄). Therefore, it is

Â3 < Ā3. (4.39)

Combining eqs. (4.37), (4.38) and (4.39) it follows that

J(û, θ̄) < J(ū, θ̄). (4.40)

Also, lemma 2 gives
J(û, θ̂) < J(û, θ̄) 15. (4.41)

Combining eqs. (4.40), (4.41), we have that

J(û, θ̂) < J(ū, θ̄).

Q.E.D.

15Considering a valid active set with corresponding hypersphere intersection Ī and ΘĪ defined as in
eqs. (4.14), (4.15), it is noted that although θ̄ ∈ Ī, this does not necessarily hold for θ̂, as Fig. 4.8b in-
dicates, since θ̂ ∈ ΘĪ , with ΘĪ ̸⊂ Ī.
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• Proof of item (B):
In the sequel, we give two useful Propositions concerning the continuity of the F and G
mappings. In both Propositions, without loss of generality, we consider a valid active set,
having xi, i = 1, . . . , k as active points, whose corresponding hypersphere intersection is
denoted by I and UI , ΘI are defined via eqs. (4.14), (4.15).

Proposition 7: The mapping G is continuous on UI × {0}N−k.

Proof: To prove that G is continuous in the N variables ui, note that G is a vector field with
the resolution by (l) scalar fields, written as

G = (G1, . . . , Gl) : UI × {0}N−k →Rl,

where Gq : UI × {0}N−k →R is defined as:

Gq(u) =
∑N
i=1 uixi∑N
i=1 ui

≡ θq, q = 1, . . . , l. (4.42)

Since {ui → uixi} is a continuous function and the sum of continuous functions is also
continuous, Gq is also continuous as the quotient of two continuous functions. Under the
assumption that

∑N
i=1 ui > 0, the denominator in eq. (4.42) never vanishes. Thus, Gq is

well-defined in all cases and it is also continuous. Therefore, G is continuous in its entire
domain. Q.E.D.

Proposition 8: The mapping F is continuous over I.

Proof: It suffices to show that F is continuous on the l variables θq. F is a vector field with
the resolution by (N ) scalar fields, i.e.,

F = (F1, . . . , FN) : I → UI ,

where Fq is given by eq. (4.8).

The mapping {θ → ||xi − θ||2(≡ di)} is continuous. Let us focus on the ui’s, i = 1, . . . , k,
for which int(Ci) contributes to the formation of I; that is, on ui’s given by the first branch of
(4.8). Themapping {di → ui} is continuous. To see this, note that (since γ is constant), the
graph of f(ui) (which is continuous), viewed as a function of di, is simply shifted upwards
or downwards as di varies (see fig. 4.9). Focusing on the rightmost point, u{2}i , where
the graph intersects the horizontal axis, it is clear that small variations of di cause small
variations to u{2}i , which implies the continuity of {di → ui} in this case.

Let us focus next on the ui’s, i = k + 1, . . . , N , for which int(Ci) do not contribute to the
formation of I; in this case ui is given by the second branch of (4.8) and the claim follows
trivially. Q.E.D.

As a direct consequence of Propositions 7 and 8, we have the following lemma.
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Figure 4.9: Graphical presentation of the continuity of the mapping {dij → uij}. Small variations in
dij cause small variations in uij .

Lemma 5: T is continuous on UI × I.

Proof: Recall that T = T2 ◦ T1 and T2 and T1 are defined in terms of G and F , respectively
(eqs. (4.12), (4.13)). G is continuous on UI , as a consequence of Proposition 7, while F
is continuous on I from Proposition 8. Thus, T is continuous on UI × I as composition of
two continuous functions. Q.E.D.

• Proof of item (C):
We proceed now to prove that the sequence (u(t),θ(t))|∞t=0 produced by the SPCM falls in
a bounded set.

Lemma 6: Let (F (θ(0)),θ(0)) be the starting point of the iteration with the SPCM operator
T , with θ(0) ∈ CH(X) and u(0) = F (θ(0)). Then

(u(t),θ(t)) ≡ T t(u(0),θ(0)) ∈ [0, 1]N × CH(X).

Proof: For a given θ(0) ∈ CH(X), u(0) = F (θ(0)) ∈ [0, 1]N , since u(0)i ∈ [0, 1] (see eq.
(4.3)). Also, θ(1) = G(u(0)) is computed by eq. (4.10), which can be recasted as

θ(1) =
N∑
i=1

u
(0)
i∑N

i=1 u
(0)
i

xi.

Since u(0)i ∈ [0, 1], it easily follows that 0 ≤ u
(0)
i∑N

i=1
u
(0)
i

≤ 1 and
∑N
i=1

u
(0)
i∑N

i=1
u
(0)
i

= 1. Thus

θ(1) ∈ CH(X). Continuing recursively we have u(1) = F (θ(1)) ∈ [0, 1]N by eq. (4.3) and
θ(2) = G(u(1)) ∈ CH(X), using the same argumentation as above. Thus, inductively, we
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conclude that
(u(t),θ(t)) ≡ T t(u(0),θ(0)) ∈ [0, 1]N × CH(X).

Q.E.D.

Remark 6: Note that it is possible to have θ(0) outside CH(X), yet in a position where
at least one ui is positive. Computing u(0) = F (θ(0)) by eq. (4.3), the latter will lie inM
and, as a consequence, θ(1) = G(u(0)) will lie in CH(X) as it follows by the argumentation
given in the proof of Lemma 5.

• Proof of item (D):
In the sequel, we will prove that the elements of the set S (eq. 4.30), for a given valid
active set with hyperspheres intersection I (if they exist) are strict local minima of the cost
function J and thus the cardinality of S is finite.

The elements of S are the solutions z∗ = (u∗,θ∗) ≡ (u∗1, . . . , u
∗
k, θ

∗
1, . . . , θ

∗
l )

16 of∇J |(u,θ) = 0
with u∗i being the largest of the two solutions of fθ(ui) = 0, i = 1, . . . , k. They should satisfy
the following equations

2
k∑
i=1

u∗i (θ
∗
q − xiq) = 0, q = 1, . . . , l (4.43)

and
||xi − θ∗||2 + γ ln u∗i + λpu∗

p−1

i = 0, i = 1, . . . , k. (4.44)

Then, we have the following lemma.

Lemma 7: The points z∗ that satisfy eqs. (4.43) and (4.44) (if they exist) are strict local
minima of J in the domain UI × I. Moreover, their number is finite.

Proof: In order to prove that z∗ are local minima we need to prove that the Hessian matrix
of J computed at z∗, Hz∗, is positive definite over a small region around z∗. It is

Hz∗ =



g∗1 0 0 2(θ∗1 − x11) 2(θ∗2 − x12) 2(θ∗l − x1l)
0 g∗2 0 2(θ∗1 − x21) 2(θ∗2 − x22) 2(θ∗l − x2l)
...

... . . . ...
...

... . . . ...
0 0 g∗k 2(θ∗1 − xk1) 2(θ∗2 − xk2) 2(θ∗l − xkl)

2(θ∗1 − x11) 2(θ∗1 − x21) 2(θ∗1 − xk1) 2
∑k
i=1 u

∗
i 0 0

2(θ∗2 − x12) 2(θ∗2 − x22) 2(θ∗2 − xk2) 0 2
∑k
i=1 u

∗
i 0

...
... . . . ...

...
... . . . ...

2(θ∗l − x1l) 2(θ∗l − x2l) . . . 2(θ∗l − xkl) 0 0 . . . 2
∑k
i=1 u

∗
i


(4.45)

where
g∗i = γu∗

−1

i − λp(1− p)u∗p−2

i , i = 1, . . . , k. (4.46)

16Without loss of generality, we assume that the xi’s, i = 1, . . . , k are the active points of the valid active
set under study.
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Let z′ = (u′,θ′) ≡ (u′1, . . . , u
′
k, θ

′
1, . . . , θ

′
ℓ) be a point in UI × I that is close to z∗. More

specifically, let u′1, . . . , u′k be close to u∗1, . . . , u∗k, respectively, so that

||θ∗ −
∑k
i=1 u

′
ixi∑k

i=1 u
′
i

|| < ε. (4.47)

After some straightforward algebraic operations it follows that

z′THz∗z′ = 2||θ′||2
k∑
i=1

u∗i + 4
k∑
i=1

u′iθ
′T (θ∗ − xi) +

k∑
i=1

u′2i g
∗
i . (4.48)

It is easy to verify that
∑k
i=1 u

′
iθ

′T (θ∗ − xi) =
∑k
i=1 u

′
iθ

′T (θ∗ −
∑k

i=1
u′ixi∑k

i=1
u′i

) ≥ −∑k
i=1 u

′
i||θ′||ε.

Utilizing the fact that ui > umin ≡ (λ(1−p)
γ

)1/(1−p), i = 1, . . . , k, for the second appearance
of u∗i in the right hand side of (4.46), it turns out that g∗i ≥

(1−p)γ
u∗i

.

Combining the last two inequalities with eq. (4.48), it follows that

z′THz∗z′ ≥ 2
k∑
i=1

u∗i ||θ′||2 − 4
k∑
i=1

u′i||θ′||ε + (1 − p)γ
k∑
i=1

u′2i
u∗i

≡ ϕ(||θ′||). (4.49)

Since
∑k
i=1 u

∗
i > 0, the second degree polynomial ϕ(||θ′||) becomes positive if and only if

its discriminant

∆ = 8[2ε2(
k∑
i=1

u′i)
2 − (1− p)γ

k∑
i=1

u∗i

k∑
i=1

u′2i
u∗i

] (4.50)

is negative. But, from Proposition C2 in Appendix C, it is

(
k∑
i=1

u′i)
2 ≤

k∑
i=1

u∗i

k∑
i=1

u′2i
u∗i
.

Also, choosing ε < 1
2

√
(1−p)γ

2
, we have that ∆ is negative. As a consequence and due to

the continuity of J in UI × I, ε defines a region Yz∗ around z∗, for which z′THz∗z′ > 0 for
z′ ∈ Yz∗. Thus z∗ is a strict local minimum.
In addition, since the domain UI × I is bounded, it easily follows that the number of strict
local minima is finite. Q.E.D.

Remark 7: It can be shown that in the specific case where (a) γ
γ̄
< 1

p
e(1−p)

2/2 and (b) K

in eq. (4.5) is chosen in the range [γ
γ̄
pe2−

(1+p)2

2 , pe2(1−p)], then the set Sq (eq. (4.30)) that
corresponds to each valid active set Xq has one element at the most. The proof of this
fact follows the line of proof of lemma 7, with the difference that ε in eqs. (4.47), (4.49)
and (4.50) is replaced by R (since the maximum possible distance between two points
in the (nonempty) intersection of hyperspheres of distance R, is equal to R). Then, the
conditions (a) and (b) above follow from the requirement to have 2R2 < (1− p)γ, in order
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to have negative discriminant∆. Taking into account eq. (4.7) and utilizing eq. (4.5) in the
previous requirement it follows that K > γ

γ̄
pe2−

(1+p)2

2 . Also, since K < pe2(1−p) (Proposition

C1), condition (a) results from the requirement to have γ
γ̄
pe2−

(1+p)2

2 < pe2(1−p).

In the sequel we denote by Yz∗ a region around a point z∗ in the set Sq corresponding to
a valid active set Xq, where J is convex. Yz∗ will be called as a valley around z∗ (such a
region always exists, as shown in Proposition C3).

Having completed the proof of the prerequisites (A)-(D) and before we proceed any further,
some remarks are in order.

Remark 8: Although J is well defined in [0, 1]N × Rl, there are several regions in the
landscape of J(u,θ) that are not accessible by the algorithm. For example, some positions
(u,θ) where ui < umin and those where θ is expressed through eq. (2.15) with coefficients
ui less that umin, are not accessible by the algorithm.

Remark 9: It is highlighted again the fact that a certain set of active points Xq, with cor-
responding (nonempty) union of hyperspheres Iq and UIq , ΘIq as defined by eqs. (4.14)
and (4.15), respectively, may have no local minima of J in UIq × Iq that are accessible by
T . Equivalently, this means that the solution set Sq (see Lemma 3) corresponding to Xq

is empty.
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Figure 4.10: (a) An active set of k = 3 points where (I ∩ (∩i: ui=0ext(Ci))) ̸≡ I and (b) an active set of
k = 4 points where (I ∩ (∩i: ui=0ext(Ci))) ≡ I

We prove next the following lemma.

Lemma 8: There exists at least one valid active set Xq (with Iq ̸= ∅) for which there exists
at least one local minimum (u∗

qr ,θ
∗
qr), with θ∗

qr ∈ Iq ∩ (∩i: ui=0ext(Ci)) 17.

Proof: Suppose on the contrary that for all possible active sets Xq, there is no local mini-
17Note that θ∗

qr ∈ ΘIq due to the definition of the latter set from eq. (4.15).
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mum (u∗
qr ,θ

∗
qr) with θ∗

qr ∈ Iq ∩ (∩
N
i: ui=0ext(Ci)) (see fig. 4.10). Equivalently, this means that

the solution sets Sq for all valid active sets are empty. Then from lemma 3 we have that if
at a certain iteration t1, θ(t1) belongs to the intersection Iq of a certain active set Xq, the
algorithm may move θ(t) (t > t1) to other positions in Iq that always strictly decrease the
value of J . Since J is bounded below (due to the fact that u ∈ [0, 1]N and θ ∈ CH(X)) it
follows that θ will leave Iq at a certain iteration. In addition, lemma 4 secures the decrease
of the value of J as we move from one hypersphere intersection to another (or, equiva-
lently, from one active set to another). Thus, the algorithm will always move (u(t),θ(t))
from one position to another in the domain [0, 1]N × CH(X), without converging to any
one of them, while, at the same time the value of J decreases from iteration to iteration.

Assuming that at a specific iteration t′, θ(t′) belongs to a certain Iq, then, due to the
continuity of J in Iq, there exists a region V (t′) around (u(t′),θ(t′)), for which J(u,θ) >
J(u(t′ + 1),θ(t′ + 1)), for (u,θ) ∈ V (t′).

From the previous argumentation, it follows that, since the domain where (u(t),θ(t))moves
is bounded, the regions V (t) (defined as above) will cover the regions of the whole do-
main that are accessible by T . Thus there exists an iteration t′′ at which the algorithm will
visit a point in the region V (t′), where t′ corresponds to a position the algorithm visited
before (t′ < t′′). Then, due to the strict decrease of J as SPCM evolves we have that
J(u(t′′),θ(t′′)) < J(u(t′ + 1),θ(t′ + 1)) < J(u(t′),θ(t′)). However, since (u(t′′),θ(t′′)) ∈
V (t′), it follows that J(u(t′′),θ(t′′)) > J(u(t′ + 1),θ(t′ + 1)), which leads to a contradiction.
Therefore, there exists at least one active set Xq for which there exists at least one local
minimum (u∗

qr ,θ
∗
qr), with θ∗

qr ∈ Iq ∩ (∩Ni: ui=0ext(Ci)). Q.E.D.

Now we are in the position to state the general theorem concerning the convergence of
SPCM.

Theorem 2: Suppose that a data set X = {xi ∈ Rl, i = 1, . . . , N} is given. Let J(u,θ)
be defined as in eq. (4.9) for m = 1, where (u,θ) ∈ M× CH(X). If T :M× CH(X) →
M×CH(X) is the operator corresponding to SPCM algorithm, then for any (u(0),θ(0)) ∈
M× CH(X) the SPCM converges to one of the points of the set Sq that corresponds to
a valid active set Xq, z∗qr = (u∗

qr ,θ
∗
qr), provided that θ

∗
qr ∈ Iq ∩ (∩i: ui=0ext(Ci)).

Proof: Following a reasoning similar to that of lemma 8 we have that the regions of the
whole space that are accessible by T will eventually be covered by regions V (t′) defined
as in the proof of lemma 8. Then the algorithm

(i) either will visit a valley Yz∗qr inUIq×Iq around a (strict) local minimum (u∗
qr ,θ

∗
qr) of a certain

active set Xq and, as a consequence of theorem 1 (due to (a) the local convexity of J in
Yz∗qr , (b) the monotonic decrease of J with T , (c) the continuity of T in the corresponding
UI × I and (d) the uniqueness of the minimum in this valley) it will converge to it,

(ii) or it will never visit the valley of such a local minimum. This means that the algorithm
starts from a (u(0),θ(0)), whose J(u(0),θ(0)) is less than the values of J at all local min-
ima. However, this case can be rejected following exactly the same reasoning with that in
the proof of lemma 8.
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Therefore, the algorithm will converge to a local minimum z∗qr that corresponds to one of
the possible active sets Xq (with Iq ̸= ∅) provided that θ∗

qr ∈ Iq ∩ (∩i: ui=0ext(Ci)). Q.E.D.

4.8.1 Fulfilling Assumption 1

Next, we show how the Assumption 1 requiring that at each iteration of SPCM at least
one equation f(ui) = 0, i = 1, . . . , N for each cluster Cj, j = 1, . . . ,m has two solutions,
can always be kept valid. In other words, we show that each cluster has at least one data
point xi, i = 1, . . . , N with ui > 0 at each iteration. To this end, we will prove that (a) the
Assumption 1 is fulfilled at the initial step of SPCM (base case) and (b) this inductively
holds also for each subsequent iteration of the algorithm (induction step).

(a) Base case: Taking into account that the initialization of SPCM is defined by the FCM
algorithm and in particular eq. (2.16), it is obvious that initially each cluster Cj with rep-
resentative θj has at least one data point with ∥xi − θj∥2 ≤ γj. Focusing on a certain
cluster Cj, let xq be the closest to θj data point, where θj denotes the initial (FCM) es-
timate of the representative of Cj. Then, in general, ∥xq − θj∥2 << γj. According to
Proposition C4 (see Appendix C), this data point has uqj > 0, if K ≤ γj

γ̄
pe(2−µj)(1−p), where

here µj = ∥xq−θj∥2
γj

(<< 1). In order to fulfill the Assumption 1 for each cluster, K should
be chosen such that K ≤ min

j=1,...,m

[
γj
γ̄
pe(2−µj)(1−p)

]
. Also, it is min

j=1,...,m

[
γj
γ̄
pe(2−µj)(1−p)

]
≥

γ̄
γ̄
pe(2−µmax)(1−p) ≡ pe(2−µmax)(1−p), where we recall that γ̄ = min

j=1,...,m
γj. Thus, if K is cho-

sen so that K ≤ pe(2−µmax)(1−p) ≡ B(p), where µmax = max
j=1,...,m

µj(<< 1), the Assumption 1

is satisfied. Note also that B(p) ≤ pe2(1−p), thus the condition of Proposition C1 is valid.

In Fig. 4.11, the upper boundB(p) ofK is illustrated with respect to parameter p for different
values of µmax, so that each initial cluster has at least one data point with u > 0. Note that
K = 0.9 is an appropriate value for p = 0.5 that ensures that the Assumption 1 is fulfilled
at the initial step of SPCM.

(b) Induction step: Let us focus on a specific cluster C 18. Assume that at iteration t, its
represenative is θ(t) and it has a certain set of active points X t 19 with its correspond-
ing nonempty intersection of hyperspheres, denoted by I t. Obviously, it is CH(X t) ⊆
(∪i:ui>0int(Ci)). Taking into consideration that all possible positions of θ(t + 1) lie inside
CH(X t), we have that θ(t+1) will lie inside ∪i:ui>0int(Ci). As a consequence, there exists
at least one data point of X t that will remain active at the next iteration of the algorithm.

As a result, each cluster will have at least one data point xi, i = 1, . . . , N with ui > 0 at
each iteration of SPCM.

18For notational convenience, we drop the cluster index j for the rest of this subsection.
19We drop the index q, in order to lighten the notation. Index t shows the time dependence of the active

set corresponding to C, as it evolves in time.
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Figure 4.11: The upper bound B(p) of K with respect to parameter p for different values of µmax, so
that each initial cluster has at least one data point with u > 0.

4.8.2 On the convergence of the PCM algorithm

In [72] it is proved that the sequence T t(U (0),Θ(0)) produced by PCM [10] terminates to (i)
either a local minimum or a saddle point of J , or (ii) every convergent subsequence of the
above sequence terminates to a local minimum or a saddle point of J . This result follows
as a direct application of the Zangwill’s convergence theorem ([68]). However, viewing
PCM as a special case of SPCM, we can utilize the convergence results of the latter to
establish stronger results for PCM, compared to those given in [72].

Let us bemore specific. We focus again to a single θ and its corresponding u = [u1, . . . , uN ]
T

vector. Note that JPCM results directly from JSPCM , for λ = 0. In this case, the radius R
(eq. (4.7)) becomes infinite for any (finite) value of p. This means that the convex hull
of X, CH(X), lies entirely in the intersection of the hyperspheres centered at the data
points of X. As a consequence, ui > 0, for i = 1, . . . , N . This implies that the whole X
is the active set. Also, note that for λ = 0, f(ui) = 0 gives a single positive solution, i.e.
ui = exp(− ||xi−θ||2

γ
).

Let us define the solution set S for PCM as

SPCM = {(u,θ) ∈ [0, 1]N × CH(X) : ∇J |(u,θ) = 0}.

The requirements for (i) the decreasing of JPCM , (ii) the continuity of TPCM (the operator
that corresponds to PCM, defined in a fashion similar to T ) and (iii) the boundness of
the sequence produced by PCM can be viewed as special cases of Lemmas 3, 5 and
6, respectively, where UI × I is replaced by [0, 1]N × CH(X) 20. Then Theorem C1

20The only slight difference compared to SPCM concerns the establishment of requirement (i). Specifi-
cally, in the proof of Lemma 1 in (eq. (4.24)), it turns out that for PCM, it is κs = −∞, which still contradicts the
fact that κs is finite. Also, in (4.25) in the same proof it results that τs ≤ 0, which gives also a contradiction.
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(see Appendix C) guarantees that there exist fixed points for TPCM and lemma 7 proves
that these are strict local minima of JPCM 21. Finally, in correspondance with SPCM, the
following theorem can be established for PCM.

Theorem 3: Suppose that a data set X = {xi ∈ Rl, i = 1, . . . , N} is given. Let JPCM(u,θ)
be defined by eq. (2.11) for m = 1, where (u,θ) ∈ [0, 1]N × CH(X). If TPCM : [0, 1]N ×
CH(X) → [0, 1]N × CH(X) is the operator corresponding to the PCM algorithm, then
for any (u(0),θ(0)) ∈ [0, 1]N × CH(X), the PCM algorithm converges to a fixed point of T
(which is a local minimum of JPCM ).

4.9 Conclusion

In this chapter a novel possibilistic c-means algorithm is proposed, namely SPCM, which
imposes a sparsity constraint on the degrees of compatibility of each data vector with the
clusters. The algorithm is initialized through FCM with the latter executed for an overes-
timated number of the actual number of clusters. SPCM, which results by extending the
cost function of the original PCM with a sparsity promoting term, unravels the underying
clustering structure much more accurately than PCM. This is achieved via the improve-
ment on the estimation of the cluster representatives by excluding points that are distant
from them in contributing to their estimation. Thus, it is able to identify closely located
clusters with possibly different densities. In addition, SPCM exhibits immunity to noise
and outliers. In extensive experiments, it is shown that SPCM has a steadily superior
performance, compared to its ancestor PCM. Finally, in this chapter, a convergence proof
for the SPCM algorithm is conducted. The main source of difficulty in the provided SPCM
convergence analysis, compared to those given for previous possibilistic algorithms, re-
lies on the updating of the degrees of compatibility, which are not given in closed form and
are computed via a two-branch expression. Here, it is shown that the iterative sequence
generated by SPCM coverges to a local minimum (fixed point) of its accosiated cost func-
tion JSPCM . Finally, the above analysis for SPCM has been applied to the case of PCM
([10]) and gave much stronger convergence results compared to those provided in [72].
Experiments that compare SPCM with relevant state-of-the-art algorithms are provided
in Chapter 5 and show that SPCM exhibits in most cases a very satisfactory clustering
performance.

21The only thing that is differentiated in the PCM case is that g∗i = γ
u∗
i
. As a consequence, ε is chosen as

ε < 1
2

√
γ
2 .
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5. THE SPARSE ADAPTIVE POSSIBILISTIC C-MEANS ALGORITHM
AND ITS VARIANTS

5.1 Introduction

Despite the fact that SPCM, described in the previous chapter, can handle successfully
cases of closely located and different in density clusters, it still suffers from the problem of
its ancestor PCM as far as the estimation of γj ’s is concerned. Specifically, the estimation
of γj ’s is based on the outcomes of the FCM, which can be significantly affected by the
possible presence of noise or outliers in the data, as well as by the possible differences
in the variance of the clusters. Moreover, once the γj ’s have been estimated, they remain
fixed during the whole course of the algorithm. Thus, poor initial estimates of γj ’s may
lead SPCM to degraded performance. Furthermore, as is the case with all PCMs, SPCM
may end up with coincident clusters (duplicates of the same cluster). This happens when
more than one representatives are led to the center of the same physical cluster.

One way to deal with these issues is to adopt the key feature of APCM (discussed in
Chapter 3) that allows γj ’s to adapt as the algorithm evolves, in the SPCM context. This
will equip the algorithm with the ability to track the changes occurring in the formation
of clusters. In addition, as shown in Chapter 3 of the present thesis, by adopting the
updating mechanism of APCM for the adaptation of γj ’s, the true number of clusters could
be determined. In the sequel, we extend SPCM in order to incorporate the adaptation
of γj ’s by embedding the relevant mechanism of APCM. The resulting algorithm is called
Sparse Adaptive PCM (SAPCM).

In the next section (5.2) the SAPCM algorithm is described, while in section 5.3 experi-
mental results are provided for assessing its performance. Finally, in the last two sections,
two variants of SAPCM are discussed, namely the Sequential SAPCM and the Layered
SAPCM.

5.2 The Sparse Adaptive PCM (SAPCM)

The proposed SAPCMalgorithm stems from the optimization of the cost function in eq. (4.1),
that is

JSPCM(Θ, U) =
m∑
j=1

[
N∑
i=1

uij∥xi − θj∥2 + γj
N∑
i=1

(uij lnuij − uij)
]
+λ

N∑
i=1

∥ui∥pp, uij > 0, (5.1)

where now γj varies as in APCM. Recall that γj is defined as

γj =
η̂

α
ηj (5.2)
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with ηj being a measure of the mean absolute deviation of Cj as it has been formed in
the current iteration, α is a user-defined positive parameter (see section 3.5) and η̂ is a
constant defined as the minimum among all initial ηj ’s, i.e., η̂ = min

j=1,...,mini

ηj, where mini is
the initial number of clusters.

The parameters that need to be initialized in SAPCM are the representatives θj ’s and the
parameters γj ’s. This is carried out as for APCM where the FCM algorithm is executed
first for mini clusters and the estimated by FCM θj ’s are used as initial estimates in the
SAPCM algorithm. Then the ηj ’s are initialized as

ηj =

∑N
i=1 u

FCM
ij ∥xi − θj∥∑N
i=1 u

FCM
ij

, j = 1, . . . ,mini, (5.3)

where θj ’s and uFCMij ’s in eq. (5.3) are the final parameter estimates obtained by FCM1.
Combining eqs. (5.2) and (5.3), the initialization of γj ’s is completely defined.

The parameters that are adapted in SAPCM are (a) the number of clusters, m, (b) the
parameters θj ’s, (c) the parameters uij ’s and (d) the parameters γj ’s. As far as m is
concerned, this is adapted in the same way as in APCM (see section 3.3), while θj ’s and
uij ’s are updated as in SPCM (see section 4.4). Finally, γj ’s are adjusted as in APCM via
the adaptation of ηj ’s (in eq. (5.2)) through

ηj(t+ 1) =
1

nj(t)

∑
xi:uij(t)=maxr=1,...,m(t+1) uir(t)

∥xi − µj(t)∥. (5.4)
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Figure 5.1: Graphical presentation of fr(u) and fs(u) for constant d, λ and p, with γr > γs. The
largest of the two solutions of fr(u) = 0 and fs(u) = 0, uir and uis, are also shown, respectively. It is
observed that uir ≥ uis.

1An alternative initialization for γj ’s is proposed in [53].
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A slight difference in the cluster elimination mechanism of SAPCM from that of APCM
is that the N -dimensional vector label, the ith element of which is the index of the class
that is most compatible with xi (see section 3.3), may have zero entries, in contrast to
the APCM. These zero entries correspond to data points that have no compatibility with
any of the clusters (possibly outliers). This implies that care must be taken in choosing
the regularizing parameter λ in eq. (5.1), since if the imposed sparsity is too strict it may
happen that none of the data points is compatible with any cluster.

Let us focus for a while on the immunity of the SAPCM algorithm to its initialization with
an overestimated number of clusters. Taking into account (a) that all representatives are
driven to dense in data regions, due to the possibilistic nature of SAPCM, (b) that the prob-
ability to select as representative at least one point in each dense region is increased, since
the overestimated number of representatives are initially selected via FCM algorithm and
(c) the mechanism for reducing the number of clusters, then, in principle, the number of the
representatives which move to the same dense region will be reduced to a single one. In
order to get some further insight on this issue, assume that two cluster representatives θr,
θs almost coincide, which, for a given xi implies that dir ≃ dis ≡ d, but let say that γr > γs.
Consider also the functions f r(u) = d + γr ln u + λpup−1 and f s(u) = d + γs lnu + λpup−1

for u ∈ (0, 1] (see section 4.4). It is easy to see that f r(u) ≤ f s(u), for each u ∈ (0, 1].
Assume now that both have positive solutions. It is easy to verify that uir ≥ uis, where uir
and uis are the largest of the two solutions of f r(u) = 0 and f s(u) = 0, respectively (see
Fig. 5.1). In the case where uir = 0 then, trivially follows that uis = 0. Finally, if uis = 0
then uir ≥ uis. Thus, the influence of the cluster with the smaller γ (γs) will be vanished
by the influence of the one with the greater γ (γr), in the sense that uir > uis, for all data
points xi ∈ X. As a consequence the index s will not appear in the label vector and, thus,
Cs will be eliminated.

The proposed SAPCM algorithm is summarized below (the choice of λ is justified later).

Algorithm 6 [Θ, U , H, label, m] = SAPCM(X, mini, α)
Input: X, mini, α

1: t = 0

2: m(t) = mini

� Initialization of θj ’s part

3: [Θ(t), UFCM(t)] = FCM(X, mini, 2) 2

� Initialization of ηj ’s part

4: Set: ηj(t) =
∑n

i=1
uFCM
ij ∥xi−θj(t)∥∑n

i=1
uFCM
ij

, j = 1, ...,m(t)

5: Set: η̂ = minj=1,...,m(t) ηj(t)

2See Algorithm 2 of Chapter 2. We set the fuzzifier q = 2.
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6: Set: γj(t) = η̂ηj(t)/α, j = 1, ...,m(t)

7: Set: λ(t) = K
minj=1,...,m(t) γj(t)

p(1−p)e2−p , K = 0.1

8: repeat

� Update U part

9: Update: U(t) as in SPCM (see section 4.4)

� Update Θ part

10: θj(t+ 1) =
N∑
i=1

uij(t)xi
/

N∑
i=1

uij(t) , j = 1, ...,m(t)

� Possible cluster elimination part

11: for i← 1 to N do

12: Determine: uir(t) = maxj=1,...,m(t) uij(t)

13: if uir(t) ̸= 0 then

14: Set: label(i) = r

15: else

16: Set: label(i) = 0

17: end if

18: end for

19: p = 0 //number of removed clusters at iteration t

20: for j ← 1 to m(t) do

21: if j /∈ label then

22: Remove: Cj (and renumber accordingly Θ(t+1), the columns of U(t) and γj ’s)

23: p = p+ 1

24: end if

25: end for

26: m(t+ 1) = m(t)− p

� Adaptation of ηj ’s part

27: ηj(t+ 1) = 1
nj(t)

∑
xi:uij(t)=maxr=1,...,m(t+1) uir(t)

∥xi − µj(t)∥, j = 1, ...,m(t+ 1)

28: Set: γj(t+ 1) = η̂ηj(t+ 1)/α, j = 1, ...,m(t+ 1)
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29: Set: λ(t+ 1) = K
minj=1,...,m(t+1) γj(t+1)

p(1−p)e2−p , K = 0.1

30: t = t+ 1

31: until the change in θj ’s between two successive iterations becomes sufficiently small

32: return Θ = {θ1(t),θ2(t), . . . ,θm(t)(t)}, U = [uij(t − 1)], H = [η1(t), . . . , ηm(t)(t)], label,

m = m(t)

In the sequel, we give some very demanding experimental set ups which exhibit the en-
hanced abilities of SAPCM compared to APCM3.

Example 1: Consider the set up of Example 1 of Chapter 4, where now C1 and C2 consist
of 2000 and 500 points, respectively. Note that the clusters have the same variances yet
even more different densities compared to the data set of Example 1 of Chapter 4, while at
the same time they are located very close to each other, as shown in Fig. 5.2a. Table 5.1
shows the clustering results of APCM and SAPCM and Figs. 5.3a and 5.3b depict the
performance of APCM and SAPCM, respectively, with their parameter α being chosen as
stated in the figure caption (after fine-tuning). As it can be deduced from Fig. 5.3 and
Table 5.1, APCM fails to uncover the underlying clustering structure, whereas SAPCM
distinguishes the two physical clusters and achieves very satisfactory results in terms
of RM, SR and MD. To see why this happens, let us focus on θ1 and θ2 in Figs. 5.3a
and 5.3b. Clearly, APCM fails to recover C2 since, in determining the next location of
θ2 the many small contributions from the points of C1 gradually prevail over the larger but
less contributions from the points of C2. Note that this happens despite the fact that APCM
adjusts dynamically the γj ’s and it is due to the combination of (a) the strict positivity of all
uij ’s, (b) the very different cluster densities and (c) the closeness of the clusters. However,
this is not the case for SAPCM, since the latter annihilates the contributions of the points
of C1 in the determination of the next location of θ2, via the imposition of sparsity.

Table 5.1: Performance of APCM and SAPCM for the data sets of Examples 1 and 2.

Data Set α mini mfinal RM SR MD
APCM Ex. 1 1.5 5 1 67.99 80.00 1.0363
SAPCM Ex. 1 2 5 2 90.07 94.76 0.0673
APCM Ex. 2 1.5 5 2 97.86 98.92 0.0183
SAPCM Ex. 2 1 5 2 97.78 98.88 0.0142

Example 2: Consider the same two-dimensional data set but now the means of the two
normal distributions are c1 = [0, 0]T and c2 = [2, 2]T , respectively, as shown in Fig. 5.2b.
Table 5.1 shows the clustering results of APCM and SAPCM and Figs. 5.4a and 5.4b
depict the performance of APCM and SAPCM, respectively. As it can be deduced, APCM
is now able to uncover the underlying clustering structure. However, SAPCM manages to
detect even more accurately the true centers of the clusters (as MD index indicates).

3Note that SPCM is not examined here, due to the fact that only APCM and SAPCM are able to determine
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Figure 5.2: (a) The data set of Example 1, (b) The data set of Example 2. xs is a specific typical point
that will also be considered in Figs. 5.3 and 5.4.
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Figure 5.3: The clustering results of Example 1 for (a) APCM, mini = 5 and α = 1.6 (b) SAPCM,
mini = 5 and α = 2. See also the caption of Fig. 5.2. Note that the degree of compatibility of xs
(defined in Fig. 5.2) with θini

2 , uini
s2 , is positive in APCM and zero in SAPCM.

Remark 1: In SAPCM the parameter λ is chosen as in SPCM, as eq. (4.5) indicates. Note
that in SAPCM, the parameters γj ’s are updated during the execution of the algorithm, thus
the parameter λ should also be updated after the adaptation of γj ’s (see line 29 in Algorithm
6). Moreover, in SAPCM the parameterK should take much smaller values than in SPCM,
due to the definition of γj ’s. This has to do with the fact that in SAPCM the adaptation of
the parameters γj ’s leads to more accurate estimates for the variances of the clusters (see
the radius of the circles (√γj) in Figs. 4.5a, 4.5b for SPCM and the corresponding ones
for SAPCM in Figs. 5.3b, 5.4b). Taking into account that (a) the choice of the value of

the true number of clusters.
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Figure 5.4: The clustering results of Example 2 for (a) APCM, mini = 5 and α = 1.5 (b) SAPCM,
mini = 5 and α = 1. See also the caption of Fig. 5.2. In this case, uini

s2 is significantly smaller than in
Fig. 5.3a.

λ via eq. (4.5) imposes sparsity for all the points at distance greater than min
j=1,...,m

γj from
a given representative and (b) γj ’s in SAPCM are of much smaller sizes with respect to
their corresponding ones in SPCM, values of K close to 1 would lead to such a large
degree of sparsity (as indicated by f(uij) in eq. (4.2)), where the cluster representatives
could hardly move (see line 10 in Algorithm 6). Extensive experimentation indicated that
values around 0.1 are the most appropriate. Therefore, in all SAPCM experiments we set
K = 0.1.

5.3 Experimental results

In this section, we assess the performance of the SAPCM algorithm in several experimen-
tal settings and illustrate the results. More specifically, we use two-dimensional simulated
data sets as well as a real-world data set (Iris [73]) to evaluate its performance in com-
parison with several other related algorithms. We compare the clustering performance
of SAPCM with that of the k-means, the FCM, the PCM [10], the UPC [20], the UPFC
[28], the PFCM [19], the SPCM-L1 [76], the APCM (chapter 3) and the SPCM (chapter
4) algorithms, which all result from cost optimization schemes. For a fair comparison,
the representatives θj ’s of all algorithms (except for SPCM-L1) are initialized based on
the FCM scheme and the parameters of each algorithm are first fine tuned. Moreover, in
PCM, UPC, UPFC, PFCM and SPCM, duplicate clusters are removed after their termina-
tion. In order to compare a clustering with the true data label information, we utilize again
the RM, SR and the MD indices defined in section 3.7.2. In particular, in Experiments 1
and 2 the SR of each physical cluster (SRcj , j = 1, ...,m) is presented, which measures the
percentage of the points of each physical cluster that have been correctly labeled by each
algorithm. Finally, the number of iterations and the total time required for the convergence
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of each algorithm, is provided.

Experiment 1: Consider a two-dimensional data set consisting of N = 5300 points,
where three clusters C1, C2 and C3 are formed. Each cluster is modelled by a normal
distribution. The means of the distributions are c1 = [0.27, 7.99]T , c2 = [6.28, 1.49]T and
c3 = [7.81, 3.76]T , respectively, while their covariance matrices are set to 3 · I2, 0.5 · I2 and
0.01 · I2, respectively. A number of 200 points are generated by the first distribution, 100
points are generated by the second one and 5000 points are generated by the third one.
Note that C2 and C3 clusters are very close to each other and they have a big difference
in their variances (see Fig. 5.5a). Also, note the difference in the density among the three
clusters.

Table 5.2: Performance of clustering algorithms for the data set of Experiment 1.

mini mfinal SRc1 SRc2 SRc3 MD Iter Time
k-means 3 3 51 0 100 3.4066 2 0.265
k-means 5 5 51 94 51.48 0.5369 20 0.202
FCM 3 3 51 0 100 3.3432 110 0.140
FCM 5 5 50.50 93 51.62 0.5537 86 0.218
PCM 5 2 100 0 100 0.9242 15 0.514
PCM 10 2 100 0 100 0.9254 18 1.185
UPC (q = 1.5) 5 4 50 95 100 0.4589 65 0.390
UPC (q = 1.2) 10 4 50 95 100 0.4480 89 0.910
UPFC (a = 5, b = 1, q = 2, n = 1.5) 5 4 50.50 96 100 0.4170 41 0.390
UPFC (a = 5, b = 1, q = 2.2, n = 3) 10 3 100 94 100 0.3601 190 2.940
PFCM (K = 1, a = 1, b = 5, q = 1.5, n = 1.5) 5 4 51.50 100 100 0.4573 38 0.380
PFCM (K = 1, a = 2, b = 1, q = 2, n = 1.2) 10 5 44 97 100 0.4011 60 0.880
SPCM-L1 (λ = 15, q = 2) - 2 76 0 100 1.1831 6 0.031
APCM (α = 0.3) 5 4 53 100 100 0.4469 73 0.390
APCM (α = 0.3) 10 4 52.50 100 100 0.4748 90 0.889
SPCM (K = 0.9) 5 2 100 0 100 0.9256 15 3.276
SPCM (K = 0.9) 10 2 100 0 100 0.9263 19 7.769
SAPCM (α = 0.18) 5 3 100 100 100 0.3222 91 13.40
SAPCM (α = 0.15) 10 3 100 100 100 0.3020 100 18.94

Table 5.2 shows the results of all algorithms for Experiment 1. Fig. 5.5b and Fig. 5.5c
show the clustering obtained using the k-means and FCMalgorithms, respectively, both for
mini = 3. Figs. 5.5d, 5.5e, 5.5f, 5.5g, 5.5h, 5.5i and 5.5j, depict the performance of PCM,
UPC, UPFC, PFCM, SPCM-L1, APCM and SPCM, respectively, with their parameters
chosen (after fine-tuning) as stated in the caption. In addition, the circles, centered at
each θj and having radius

√
γj (as they have been computed after the convergence of the

algorithms), are also drawn.

As it can be deduced from Fig. 5.5 and Table. 5.2, even when the k-means and the FCM
are initialized with the (unknown in practice) true number of clusters (m = 3), they fail to
unravel the underlying clustering structure mainly due to the big difference in the variances
and densities between clusters. The classical PCM also fails to detect the physical cluster
2, because it is located very close to the densest physical cluster. The UPC algorithm
has been fine tuned so that the parameters γj ’s, which remain fixed during its execution
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Figure 5.5: (a) The data set of Experiment 1. Clustering results for (b) k-means, mini = 3, (c) FCM,
mini = 3, (d) PCM, mini = 5, (e) UPC, mini = 5, q = 1.5, (f) UPFC, mini = 10, α = 5, β = 1, q = 2.2, n = 3,
(g) PFCM,mini = 5,K = 1, α = 1, β = 5, q = 1.5, n = 1.5, (h) SPCM-L1, λ = 15, q = 2 (i) APCM,mini = 5,
α = 0.3, (j) SPCM, mini = 5, and (k) SAPCM, mini = 10 and α = 0.15.
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and are the same for all clusters, get small enough values, in order to identify cluster C2.
However, it splits the high variance/low density clusterC1 in two clusters. The same seems
to hold for the PFCM algorithm, after fine tuning of its several parameters. The UPFC
algorithm produces 3 clusters, at the cost of a computationally demanding fine tuning of
the (several) parameters it involves. The APCM algorithm also splits the big variance
cluster in two subclusters, failing to detect the underlying clustering structure. On the
other hand, SPCM identifies two clusters with high accuracy with respect to the center
of the actual clusters, but misses the third one. Finally, as it is deduced from Table 5.2,
the SAPCM algorithm manages to identify all clusters, achieving the best SR and MD
results and estimating very accurately the true centers of the clusters, since it exhibits the
minimum MD among all algorithms.

Experiment 2: Consider the dataset of Experiment 1, where 50 data points are now added
randomly as noise in the region where data live (see Fig. 5.6a). It can be seen that APCM
and SAPCM algorithms are the only algorithms that distinguish all clusters. In addition,
SAPCM keeps MD at low values, whereas all other algorithms conclude to higher MD
values compared to the results of Experiment 1 (see Tables 5.2 and 5.3). Finally, as
shown in Fig. 5.6, SAPCM is the only algorithm that identifies the noisy points of the data
set and ignores them in the updating of the location of the cluster representatives.

Table 5.3: Performance of clustering algorithms for the data set of Experiment 2.

mini mfinal SRc1 SRc2 SRc3 MD Iter Time
k-means 3 3 54.50 0 100 3.8296 8 0.156
k-means 5 5 99.50 94 50.96 0.0843 35 0.203
FCM 3 3 56 0 100 3.4345 75 0.110
FCM 5 5 99.50 92 38.92 0.3334 129 0.375
PCM 5 1 0 0 100 3.7899 9 0.421
PCM 10 2 99 0 97.60 0.9254 29 1.943
UPC (q = 1.5) 5 4 50 95 100 0.4424 80 0.328
UPC (q = 1.3) 10 4 50 95 100 0.4517 113 1.186
UPFC (a = 1, b = 1, q = 2.5, n = 2) 5 2 100 0 100 1.1388 60 0.421
UPFC (a = 5, b = 1, q = 2.5, n = 2) 10 2 100 0 100 1.1346 151 2.044
PFCM (K = 1, a = 1, b = 1, q = 1.5, n = 1.5) 5 2 100 0 100 0.9519 45 0.343
PFCM (K = 1, a = 1, b = 1, q = 1.2, n = 1.5) 10 2 98.50 0 100 0.9575 61 1.358
SPCM-L1 (λ = 17, q = 2) - 3 58.50 0 100 4.1291 9 0.016
APCM (α = 0.3) 5 3 100 100 100 0.3150 83 0.374
APCM (α = 0.3) 10 4 97 100 100 0.3518 93 0.655
SPCM (K = 0.9) 5 2 100 0 100 0.9117 19 4.695
SPCM (K = 0.9) 10 2 100 0 100 0.9118 13 5.991
SAPCM (α = 0.24) 5 3 100 100 100 0.3808 202 27.82
SAPCM (α = 0.19) 10 3 100 100 100 0.3193 122 21.20

Experiment 3: Let us consider the Iris data set ([73]) consisting ofN = 150, 4-dimensional
data points that form three classes, each one having 50 points. In this data set, two classes
are overlapped, thus one can argue whether the true number of clusters m is 2 or 3. As it
is shown in Table 5.4, k-means and FCM work well, only if they are initialized with the true
number of clusters (mini = 3). The classical PCM and SPCM fail to end up withmfinal = 3
clusters, independently of the choice of the initial number of clusters. On the contrary,
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Figure 5.6: (a) The data set of Experiment 2. Clustering results for (b) k-means, mini = 3, (c) FCM,
mini = 3, (d) PCM, mini = 10, (e) UPC, mini = 5, q = 1.5, (f) UPFC, mini = 10, α = 5, β = 1, q = 2.5,
n = 2, (g) PFCM, mini = 5, K = 1, α = 1, β = 1, q = 1.5, n = 1.5, (h) SPCM-L1, λ = 17, q = 2 (i) APCM,
mini = 5, α = 0.4, (j) SPCM, mini = 5, and (k) SAPCM, mini = 10 and α = 0.18.
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Table 5.4: Performance of clustering algorithms for the Iris data set.

mini mfinal RM SR MD Iter Time
k-means 3 3 87.97 89.33 0.1271 3 0.30
k-means 10 10 76.64 40.00 0.7785 4 0.13
FCM 3 3 87.97 89.33 0.1287 19 0.02
FCM 10 10 76.16 36.00 0.7793 35 0.02
PCM 3 2 77.19 66.67 0.5428 19 0.11
PCM 10 2 77.63 66.67 0.5286 28 0.11
UPC (q = 4) 3 3 91.24 92.67 0.1438 26 0.03
UPC (q = 2.4) 10 3 81.96 81.33 0.5569 150 0.11
UPFC (a = 1, b = 5, q = 4, n = 2) 3 3 91.24 92.67 0.1642 32 0.03
UPFC (a = 1, b = 1.5, q = 2.5, n = 2) 10 3 81.96 81.33 0.5566 180 0.16
PFCM (K = 1, a = 1, b = 10, q = 7, n = 2) 3 3 90.55 92.00 0.1833 17 0.03
PFCM (K = 1, a = 1, b = 1.5, q = 2, n = 2) 10 3 84.64 85.33 0.5411 92 0.05
SPCM-L1 (λ = 4.5, q = 2) - 3 66.65 58.67 0.69.04 13 0.02
APCM (α = 3) 3 3 91.24 92.67 0.1405 26 0.03
APCM (α = 1) 10 3 84.15 84.67 0.4030 61 0.06
SPCM (K = 1.2) 3 3 83.22 83.33 0.3631 27 0.14
SPCM (K = 0.95) 10 3 79.38 76.00 0.2151 35 0.36
SAPCM (α = 2.2) 3 3 91.24 92.67 0.1419 33 0.16
SAPCM (α = 0.8) 10 3 84.15 84.67 0.4224 60 0.34

the UPC, the PFCM, the UPFC, the APCM and the SAPCM algorithms, after appropriate
fine tuning of their parameters, produce very accurate results in terms of the RM, SR and
MD metrics. However, the APCM and SAPCM algorithms estimate more accurately the
centers of the true clusters compared to the other algorithms. It is noted again that themain
drawback of PFCM and UPFC is the requirement for fine tuning of several parameters,
which increases excessively the computational load required for detecting the appropriate
combination of the values of the parameters that achieves the best clustering performance.
Finally, the SPCM-L1 algorithm concludes also to three clusters, however with degraded
clustering performance.

5.4 The Sequential SAPCM (SeqSAPCM)

In this section, an iterative bottom-up version of SAPCM, termed Sequential SAPCM (Se-
qSAPCM), which involves in its heart the SAPCM, is presented4. Unlike SAPCM, Se-
qSAPCM does not initially require any overestimation of the number of clusters. On the
contrary, it first identifies two of the clusters that underlie in the data set and then, at each
iteration, SAPCM is applied increasing the number of clusters by one at a time, until the
true number of clusters is (hopefully) reached. From this point of view, if SAPCM can be
considered as a top-down technique in the sense that it starts with an overestimated num-
ber of clusters and gradually reduces it, SeqSAPCM can be considered as a bottom-up
approach in the sense that it starts with two clusters and gradually increases them up to
the true number of clusters.

4A preliminary version of SeqSAPCM has been presented in [58].
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5.4.1 The SeqSAPCM algorithm

Note that in the framework of SeqSAPCM, the SAPCM algorithm cannot initialize by itself
the parameters θ’s and η’s 5 and therefore, neither η̂ = min

j
ηj. It rather takes as input the

initial estimates of these parameters. To denote this explicitly we write6

[Θ, U,H, label,m] = SAPCM(X,mini, α,Θ
ini, H ini, η̂), (5.5)

which implies that SAPCM (see Algorithm 6) is used excluding the initialization phase
(lines 3, 4 and 5).

The SeqSAPCM algorithm works as follows. Initially, the two most distant points of X,
say xs and xt, are determined and serve as initial estimates of the first two cluster rep-
resentatives, θ1 and θ2, denoted by θini1 and θini2

7. Thus, at this time it is m = 2 and
Θini = {θini1 ,θini2 }. The initial estimates of the parameters η1 and η2 (ηini1 , ηini2 ) that corre-
spond to the first two clusters are computed as the maximum of the following two quanti-
ties:

• dmax, which is the maximum among the Euclidean distances between each data vec-
tor xi ∈ X and its nearest neighbour xneii ∈ X, i.e.,

dmax = max
i=1,...,N

∥xi − xneii ∥,

where xneii ∈ X is the nearest neighbour of xi.

• djslope, which is determined as follows: The Euclidean distances of θinij from its q
nearest neighbours in X 8, djs, s = 1, . . . , q, are computed and plotted in increasing
order. The neighbouring point of θinij where the resulting curve exhibits the maximum
slope, say the rth one, is identified and djslope is set equal to djr (the Euclidean distance
between θinij and its rth neighbour).

Thus ηinij = max{dmax, djslope} 9, H ini = {ηini1 , ηini2 } and η̂ = min
j
ηinij . Then, we run the

SAPCM algorithm (5.5) and after its convergence, θ1 and θ2 are placed to the centers of
dense regions, while η1 and η2 take values that characterize the spreads of these regions
around θ1 and θ2, respectively. We have now Θ = {θ1,θ2} and H = {η1, η2}.

We proceed next by identifying the point in X that will be used as initial estimate of the
next representative. The next representative is initialized by executing only a single step

5Recall that the latter are needed for the estimation of the parameters γ of SAPCM.
6Note that Hini contains the initial parameters η that are needed for the estimation of the parameters γ

of SAPCM.
7In order to avoid high computational burden, this step is carried out approximately using the method

described in [80].
8Typically, q is set to a value around 10.
9See below for the rationale about the choice of ηinij .
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of the Max-Min algorithm [81], as follows. For each xi ∈ X we compute its distances from
the points of Θ and we select the minimum one. Then, among all N minimum distances
we select the maximum one and the corresponding point, say xr is the initial estimate
of the next representative (θ3), that is θini3 ≡ xr. In mathematical terms, xr is the point
that corresponds to the distance maxi=1,...,N(minj=1,...,m d(xi,θj)). Note that this procedure
for initializing the representatives aims at increasing the probability to select a point from
each one of the physical clusters underlying the data set. In the sequel, ηini3 is computed
following the same procedure as for the previous ones. Then, the SAPCM algorithm is
employed withH ini = {η1, η2, ηini3 } andΘini = {θ1,θ2,θ

ini
3 } and executed for three clusters

now. After its convergence, all θj ’s are found to the centers of “dense in data” regions and
we have Θ = {θ1,θ2,θ3} and H = {η1, η2, η3}. The algorithm terminates when no new
cluster is detected between two successive iterations.

The SeqSAPCM algorithm can be stated as follows:

Algorithm 7 [Θ, U ] = SeqSAPCM(X, α)
Input: X, α

1: t = 0

2: m(t) = 2

3: Initialize: Θini = {θini1 ,θini2 }, that is, the two most distant points in X.

4: Initialize: H ini = {ηini1 , ηini2 } as described in the text.

5: Set: η̂ = minj=1,2 η
ini
j

6: [Θ(t), U(t), H(t), label(t),m′(t)] = SAPCM(X,m(t), α,Θini, H ini, η̂)

7: if m′(t) < m(t) (single cluster case) then go to line 14

8: end if

9: repeat

10: t = t+ 1

11: Set: Θini = Θ(t− 1) ∪ {θininew}, where θininew is the initial estimate of the next cluster,

that is, the point that corresponds to the distance maxi=1,...,N(minj=1,...,m(t−1) d(xi,θj)).

12: Set: H ini = H(t− 1) ∪ {ηininew}, where ηininew is computed as described in the text.

13: m(t) = m(t− 1) + 1

14: [Θ(t), U(t), H(t), label(t),m′(t)] = SAPCM(X,m(t), α,Θini, H ini, η̂)
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15: until m′(t) < m(t) (no new cluster is detected)

16: return Θ, U

Although the initialization of the parameters η for each new cluster may seem a bit tricky,
its rationale is the following. For data sets whose points form well separated clusters,
dmax is, in general, a good estimate for ηininew of each new cluster. In this case, since the
initial estimates of the representatives are cluster points10, dmax is a reasonable value for
controlling the influence of a cluster around its representative. Note also, that in this case
djslope is close to dmax. On the other hand, when there are points in the data set that lie
away from the clusters (e.g. outliers), the algorithm is likely to choose some of them as
initial estimates of cluster representatives. However, a small initial value of η for these
representatives will make difficult their movement to dense in data regions. In this case
η is set initially equal to djslope which, in this case, turns out to be significantly larger than
dmax. Experiments show that dmax is a small value for η in this case, while djslope leads to
better cluster estimations.

Some remarks on the proposed SeqSAPCM are now in order.

Remark 1: It is worth mentioning that previously determined ηj ’s (and θj ’s) may be ad-
justed in subsequent iterations, as new clusters are formed.

Remark 2: The SeqSAPCM algorithm actually requires fine tuning only for the parameter
α. On the other hand, SAPCM requires additional fine tuning for the initial number of
clusters.

Remark 3: A generalization of the proposed scheme may follow if, instead of adding a
single representative at each time, we seek for more than one of them at each iteration.
In principle, this may reduce the required computational time.

5.4.2 Experimental Results

In this subsection, we assess the performance of SeqSAPCM in several experimental syn-
thetic and real data settings. More specifically, we compare the clustering performance
of SeqSAPCM with that of the k-means, the FCM, the PCM, the APCM, the SPCM and
the SAPCM algorithms. In order to evaluate a clustering outcome, we use the Rand Mea-
sure (RM), the Generalized Rand Measure (GRM), which is a generalization of RM that
is described in [82] and takes into account the degrees of compatibility of all data points
to clusters, and the classical Success Rate (SR). Note that in k-means algorithm, the RM
does not differ from GRM, since each vector belongs exclusively to a single cluster. Thus,
the GRM is not considered in the k-means case. Finally, the time (in seconds) required
for the convergence of each algorithm is provided.

Experiment 1: Let us consider a synthetic two-dimensional data set consisting of N =
1100 points, where three clusters C1, C2, C3 are formed. Each cluster is modelled by a

10Usually, they are “peripheral” points of the clusters.

131 S. Xenaki



Advances in Possibilistic Clustering with Application to Hyperspectral Image Processing

0 2 4 6 8

0

1

2

3

4

5

6

7

 

 

Cluster 1
Cluster 2
Cluster 3

(a) k-means
0 2 4 6 8

0

1

2

3

4

5

6

7

 

 

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

(b) k-means
0 2 4 6 8

0

1

2

3

4

5

6

7

 

 

Cluster 1
Cluster 2
Cluster 3

(c) FCM

0 2 4 6 8

0

1

2

3

4

5

6

7

 

 

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

(d) FCM
0 2 4 6 8

0

1

2

3

4

5

6

7

 

 

Cluster 1
Cluster 2

(e) PCM
0 2 4 6 8

0

1

2

3

4

5

6

7

 

 

Cluster 1
Cluster 2
Cluster 3

(f) APCM

0 2 4 6 8

0

1

2

3

4

5

6

7

 

 

Unassigned
Cluster 1
Cluster 2

(g) SPCM
0 2 4 6 8

0

1

2

3

4

5

6

7

 

 

Unassigned
Cluster 1
Cluster 2
Cluster 3

(h) SAPCM
0 2 4 6 8

0

1

2

3

4

5

6

7

 

 

Unassigned
Cluster 1
Cluster 2
Cluster 3

(i) SeqSAPCM

Figure 5.7: Clustering results of Experiment 1 for (a) k-means, mini = 3, (b) k-means, mini = 5, (c)
FCM, mini = 3, (d) FCM, mini = 5, (e) PCM, mini = 10, (f) APCM, mini = 5, α = 2, (g) SPCM, mini = 3,
(h) SAPCM, mini = 5, α = 1.5 and (i) SeqSAPCM, α = 1.3.

normal distribution. The means of the distributions are c1 = [4.1, 3.7]T , c2 = [2.8, 0.8]T and
c3 = [3.5, 5.7]T , respectively, while their (common) covariance matrix is set to 0.4·I2, where
I2 is the 2×2 identity matrix. A number of 500 points are generated by the first distribution
and 300 points are generated by each one of the other two distributions. Note that clusters
C1 and C3 differ significantly in their density (since both share the same covariance matrix
but C3 has significantly less points than C1) and since they are closely located to each
other, a clustering algorithm could consider them as a single cluster. Figs. 5.7a, 5.7b show
the clustering outcome obtained using the k-means algorithm with mini = 3 and mini = 5,
respectively. Similarly, in Figs. 5.7c, 5.7d we present the corresponding results for FCM.
Fig. 5.7e depicts the performance of PCM for mini = 10, while, in addition, it shows the
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Table 5.5: The results of the Experiment 1 synthetic data set

mini mfinal RM GRM SR Time
k-means 3 3 93.62 - 95.36 0.14
k-means 5 5 81.14 - 61.82 0.17
k-means 10 10 72.84 - 31.00 0.14
k-means 15 15 70.27 - 25.91 0.25
FCM 3 3 93.62 79.10 95.36 0.02
FCM 5 5 81.38 67.81 63.09 0.03
FCM 10 10 72.97 60.78 31.82 0.06
FCM 15 15 70.14 57.96 21.64 0.22
PCM 3 2 74.19 72.27 71.73 0.11
PCM 5 2 73.35 71.94 70.73 0.16
PCM 10 2 74.33 73.03 72.00 0.45
PCM 15 2 74.19 72.80 71.73 0.72
APCM (α = 2) 3 3 93.74 92.69 95.45 0.15
APCM (α = 2) 5 3 93.74 92.84 95.45 0.15
APCM (α = 1.3) 10 3 93.40 91.85 95.18 0.50
APCM (α = 1.15) 15 3 93.51 91.70 95.27 0.70
SPCM 3 2 74.50 74.32 72.18 1.48
SPCM 5 2 74.04 73.62 71.55 4.15
SPCM 10 2 74.50 74.23 72.18 6.35
SPCM 15 2 74.33 74.14 72.00 10.30
SAPCM (α = 1.5) 3 3 93.74 92.39 95.45 0.84
SAPCM (α = 1.5) 5 3 93.74 92.56 95.45 1.09
SAPCM (α = 1.2) 10 3 93.51 92.41 95.27 1.97
SAPCM (α = 1) 15 3 93.51 92.13 95.27 3.88
SeqSAPCM (α = 1.3) - 3 93.74 92.55 95.45 4.37

circled regions, centered at each θj and having radius equal to √γj, in which Cj has
increased influence. Fig. 5.7f shows the results of APCMwithmini = 5 and α = 2, Fig. 5.7g
shows the results of SPCM with mini = 3 and Fig. 5.7h shows the results of SAPCM with
mini = 5 and α = 1.5. Finally, Fig. 5.7i shows the results of SeqSAPCM with α = 1.3.
Moreover, Table 5.5 shows RM, GRM, SR for the previously mentioned algorithms, where
mini and mfinal denote the initial and the final number of clusters, respectively.

As it is deduced from Fig. 5.7 and Table 5.5, when k-means and FCMare initialized with the
(rarely known in practice) true number of clusters (m = 3), their clustering performance is
very satisfactory. However, any deviation from this value causes a significant degradation
to the obtained clustering quality. On the other hand, the classical PCM fails to unravel
the underlying clustering structure, due to the fact that two clusters are close enough
to each other and the algorithm does not have the ability to adapt γj ’s in order to cope
with this situation. APCM and SAPCM algorithms steadily result in mfinal = 3 clusters
independently of the initialization of the number of clustersmini, under appropriate values
of parameter α. This is not the case for SPCM, which fails to unravel the less dense cluster
C3 that is located next to the denser one (C1). Finally, SeqSAPCM produces very accurate
results after cross validating just a single parameter (α).

Experiment 2: Let us consider a synthetic two-dimensional data set consisting of N =
5000 points, where fifteen clusters are formed (data set S2 in [83]), as shown in Fig. 5.8.
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Figure 5.8: The data set in Experiment 2. Colors indicate the true label information.

All clusters are modelled by normal distributions with different covariance matrices. As it
is shown in Table 5.6, k-means and FCM work well when they are initialized with the true
number of clusters (mini = 15), providing very satisfactory results. However, any deviation
from this value causes, again, a significant degradation to the obtained clustering quality.
The classical PCM fails independently of the initial number of clusters. In this data set, the
APCM and the SAPCM algorithms produce very accurate results for various initial values
of mini. Although the SPCM algorithm achieves better results than PCM, however, it fails
to end up with mfinal = 15 clusters. Finally, SeqSAPCM is able to capture the underlying
clustering structure very accurately.

Experiment 3: Let us consider the real Iris data set ([73]) considered in experiment 4
of chapter 3. As it is shown in Table 5.7, k-means and FCM work well only if they are
initialized with the true number of clusters (mini = 3). The classical PCM fails to end up
withmfinal = 3 clusters independently of the initial number of clusters. On the contrary, the
APCM and the SAPCM algorithms, after appropriate cross validation of their parameters
and a properly selected overestimated value for the initial number of clusters, produce very
accurate results. Finally, SeqSAPCM reveals also the actual number of clusters and is
very accurate, offering though a slightly degraded performance compared to SAPCM and
APCM (note that, due to the small size of the Iris data set the difference in SR corresponds
to about 12-13 wrongly assigned data vectors in SeqSAPCM than in SAPCM and APCM).

5.5 The Layered SAPCM (L-SAPCM)

In this section, another variant of SAPCM called Layered SAPCM (L-SAPCM) is pre-
sented. L-SAPCM performs a layered processing, where at each layer it uses as structural
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Table 5.6: The results of the Experiment 2 synthetic data set

mini mfinal RM GRM SR Time
k-means 15 15 99.23 - 97.00 0.33
k-means 20 20 98.42 - 88.22 1.79
k-means 25 25 97.67 - 78.58 7.11
FCM 15 15 99.23 80.09 97.00 0.22
FCM 20 20 98.35 75.47 87.24 1.84
FCM 25 25 97.52 71.85 76.58 7.52
PCM 15 3 69.46 65.68 21.00 7.01
PCM 20 4 77.05 64.24 27.32 13.05
PCM 25 6 77.21 61.41 33.90 23.77
APCM (α = 1) 15 15 99.28 97.81 97.20 0.7
APCM (α = 1) 20 15 99.28 98.06 97.20 2.94
APCM (α = 1) 25 15 99.28 98.23 97.20 8.21
SPCM 15 10 94.17 90.13 67.06 47.57
SPCM 20 13 96.22 71.09 79.34 313.9
SPCM 25 11 93.24 61.39 64.00 411.9
SAPCM (α = 1.5) 15 15 99.28 98.64 97.20 9.07
SAPCM (α = 1) 20 15 99.27 98.35 97.18 14.69
SAPCM (α = 1) 25 15 99.27 98.51 97.16 20.87
SeqSAPCM (α = 1.2) - 15 99.27 98.69 97.18 95.90

Table 5.7: The results of the real Iris data set - Experiment 3

mini mfinal RM GRM SR Time
k-means 3 3 87.97 - 89.33 0.1
k-means 5 5 78.41 - 54.67 0.1
k-means 10 10 77.32 - 42.00 0.1
FCM 3 3 87.97 79.33 89.33 0.01
FCM 5 5 78.85 68.32 55.33 0.01
FCM 10 10 77.02 63.76 38.00 0.02
PCM 3 2 77.19 77.10 66.67 0.05
PCM 5 2 77.19 76.88 66.67 0.06
PCM 10 2 77.63 77.55 66.67 0.07
APCM (α = 3) 3 3 91.24 90.01 92.67 0.04
APCM (α = 1.5) 5 3 83.68 82.58 84.00 0.05
APCM (α = 1) 10 3 84.15 82.35 84.67 0.07
SPCM 3 2 77.63 77.22 66.67 0.31
SPCM 5 2 77.19 77.01 66.67 0.53
SPCM 10 2 77.63 77.59 66.67 1.26
SAPCM (α = 2.5) 3 3 91.24 90.54 92.67 0.19
SAPCM (α = 1.2) 5 3 83.68 82.64 84.00 0.35
SAPCM (α = 0.9) 10 3 83.68 82.64 84.00 0.44
SeqSAPCM (α = 1.4) - 3 83.68 82.64 84.00 1.23
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Figure 5.9: (a) Initial data, (b) Data after removing “noisy” points

element the SAPCM algorithm11. The two key features of SAPCM that L-SAPCM inherits,
are the following: a) certain critical parameters are dynamically adapted, and b) sparsity is
induced in the sense that each data point is forced to belong to only a few (or even none)
of the clusters. These features make the algorithm capable in revealing the underlying
clustering structure. Moreover, L-SAPCM as a layered algorithm has the ability to detect
clusters that lie in different resolutions in the data space. Thus, L-SAPCM is an ideal
choice, when the data set under study is composed of clusters with difference in their vari-
ance of several orders of magnitude. Such data sets are the HSIs in which the application
of clustering becomes much more challenging, due to a) their high dimensionality and b)
the tendency of HSI pixels to form not clearly distinguishable clusters. Actually, L-SAPCM
has been initially designed to cope with HSI data, where the entities to be clustered are
the pixels of the HSI under study. To this end, in the sequel, we present L-SAPCM using
HSI terminology. Note that L-SAPCM contains some addtional processing steps (such as
the data-purifying step and the PCA step) that facilitate the clustering procedure of the HSI
pixels. Clearly, L-SAPCM can be adopted in any other application framework to perform
clustering with those additional processing steps being deactivated depending on the will
of the application expert.

5.5.1 The L-SAPCM algorithm

In HSIs, the number of image pixels, N , as well as the number of spectral bands, l, are
usually very large. This increases dramatically both processing complexity and memory
requirements. Taking into account, however, that contiguous HSI bands are usually highly
correlated [84], computational complexity can be reduced by removing the redundancy
introduced by the spectral information. To this end, we apply principal component analysis
(PCA) as a first pre-processing step. The PCA transforms the original data so that almost

11A preliminary version of Layered SAPCM has been presented in [59]
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Algorithm 8 [X_cleared] = data_purifying(X)
Input: X

1: Determine: dmin(i) = minxs∈X−{xi} ∥xi − xs∥2, i = 1, ..., N

2: Compute: µ = 1
N

∑N
i=1 dmin(i)

3: Set: X_cleared = {xi ∈ X : dmin(i) < µ, i = 1, ..., N}

4: return X_cleared

all information is contained in the first few principal components, which are used from now
on. As a result, the dimension l is dramatically reduced.

Another serious problem, frequently met in HSIs, is that the pixels are grouped to not
very well distinguished “clouds”. Thus, direct application of density-based clustering al-
gorithms (such as SAPCM), could lead to poor clustering results. To face this problem,
a pre-processing step, which removes the pixels that are not “too close” to the physical
cluster centers, unravels the “cores” of the clusters, which are expected to be better dis-
tinguished. This can be achieved by first determining the mean of the distances of all
pixels from their nearest neighbour and then removing those pixels whose distance from
their nearest neighbour is larger than the mean (see Algorithm 8). As shown in Fig. 5.9,
this pre-processing step allows clusters to be better distinguished, assisting density-based
algorithms in unravelling the underlying clustering structure.

Dataset X

C2C1 C3

C11 C21 C22

Figure 5.10: L-SAPCM flaw example

We describe now the proposed L-SAPCM algorithm, which is suitable for HSI clustering
(see Algorithm 9). The algorithm first performs PCA on the data set and then executes the
SAPCM algorithm in a layered form. Before each execution of SAPCM, data_purifying
(Algorithm 8) is applied, as described above. Initially, SAPCM is applied on the whole
data set producing some subsets that constitute the first layer clusters (leaf-layer clus-
ters). Then, L-SAPCM uses the SAPCM algorithm (Algorithm 6) in each layer, in order
to provide the clustering structure of the current layer, and then for each one of the leaf-
level clusters, the SAPCM algorithm is applied again in a recursive manner. Note that
L-SAPCM performs the noisy points removal pre-processing step for each leaf-layer clus-
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ter before specifying the next leaf-level clusters through the SAPCM algorithm (see also
Fig. 5.10). The algorithm terminates when the SAPCM algorithm returns one cluster for
each leaf-layer cluster (which means that the currently processed leaf-layer cluster does
not possess a clustering structure). Such a cluster is considered as a cluster of the final
clustering structure provided by L-SAPCM12.

The whole procedure of L-SAPCM algorithm is given in Algorithm 9.

Algorithm 9 [clusters] = L-SAPCM(X)
Input: X

1: [X]=PCA(X) and keep the l first components of PCA

2: pending_sets = {X}

3: clusters = {}

4: repeat

5: Take an element C of pending_sets

6: [C]=data_purifying(C)

7: Give: mini, α

8: [Θ, U,H, label,m]=SAPCM(C,mini, α)

9: Cj = {xi ∈ X : label(i) = j, i = 1, ..., N}, j = 1, ...,m, where m is the final number

of clusters that SAPCM returns when applied on C 13

10: if m > 1 then

11: pending_sets = (pending_sets− {C}) ∪ {C1, ..., Cm}

12: else if m = 1 then

13: pending_sets = pending_sets− {C}

14: clusters = clusters ∪ {C}

15: end if

16: until pending_sets = ∅

12L-SAPCM can also be viewed as an in-depth processing algorithm.
13A data point xi with label(i) = 0 (unassigned point) is assigned to its closest among the m formed

clusters (C1, ..., Cm).
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17: Assign each xi ∈ X that has been removed from the data_purifying scheme to its

closest among clusters

18: return clusters

5.5.2 Experimental Results

In this subsection, we demonstrate the effectiveness of L-SAPCM to unravel clusters of
various resolutions (clusters whose variances may differ considerably) via an experiment
on synthetic data14. In order to evaluate the clustering performance of all algorithms, we
use the Rand Measure (RM), the Generalized Rand Measure (GRM) and the classical
Success Rate (SR). Finally, the time (in seconds) required for the convergence of each
algorithm is provided.

Experiment: Let us consider a synthetic two-dimensional data set consisting of N = 2900
points and five clustersC1, C2, C3, C4, C5. Each cluster is modelled by a normal distribution.
The means of the distributions are c1 = [20, 70]T , c2 = [30, 80]T , c3 = [40.3, 64]T , c3 = [41,
65]T and c3 = [40.7, 65.6]T respectively. Their covariance matrices are 10 · I2, 10 · I2,
0.01 ·I2, 0.02 ·I2 and 0.05 ·I2, respectively, where I2 is the 2×2 identity matrix. A number of
2000 points is generated by the first distribution, 500 points by the second one, 100 points
by the third one, 100 points by the fourth one and 200 points are generated by the fifth
distribution. Note that the variance of clusters C1 and C2 is much larger than the variances
of clusters C3, C4 and C5 (see Fig. 5.11a). Figs. 5.11b, 5.11c show the clustering outcome
obtained using the k-means and the FCM algorithm, respectively, both with mini = 5.
Fig. 5.11d depicts the performance of PCM for mini = 5, while, in addition, it shows the
circled regions, centered at each θj and having radius equal to √γj, in which Cj has
increased influence. Fig. 5.11e shows the results of APCM with mini = 5 and α = 1,
Fig. 5.11f shows the results of SPCM with mini = 20, Fig. 5.11g shows the results of
SAPCM with mini = 5 and α = 1 and Fig. 5.11h depicts the results of SeqSAPCM with
α = 1. Finally, Fig. 5.11i shows the results of L-SAPCM with mini = 5 and α = 1 for
each layer. Moreover, Table 5.8 shows the RM, GRM, SR and Time for the previously
mentioned algorithms, where mini and mfinal denote the initial and the final number of
clusters, respectively.

As it is deduced from Fig. 5.11 and Table 5.8, even when k-means and FCM are initialized
with the true number of clusters (m = 5), they recognize clusters C3, C4 and C5 as one,
thus they fail to unravel the underlying clustering structure. The classical PCM also fails
to distinguish clusters C3, C4 and C5 from each other and, in addition, it misses cluster
C2, due to its proximity with cluster C1, which is also much denser than it. As it can be
seen, APCM, SPCM, SAPCM and SeqSAPCM are unable to distinguish C3, C4 and C5

as three different clusters and thus they constantly produce a clustering result of only
three clusters in total (see Figs. 5.11e-5.11h). On the other hand, L-SAPCM in the first
layer identifies a three clustering structure (Fig. 5.11g), while in the second layer identifies

14Experimental results for L-SAPCM on HSI images are presented in chapter 7.
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Figure 5.11: (a) The data set of the experiment (the area containing the three low variance clusters
is magnified in a separate window). Clustering results for (b) k-means, mini = 5, (c) FCM, mini = 5,
(d) PCM, mini = 5, (e) APCM, mini = 5, α = 1, (f) SPCM, mini = 20, (g) SAPCM, mini = 5, α = 1, (h)
SeqSAPCM, α = 1 and (i) L-SAPCM.

three different clusters within cluster C5 of Fig. 5.11g (see Fig. 5.11i). Thus, L-SAPCM is
the only algorithm that succeeds in unravelling accurately the clustering structure of this
challenging experiment.

5.6 Conclusion

In this chapter a novel possibilistic c-means algorithm is proposed, termed SAPCM, which
extends SPCM by embedding in it the adaptation mechanism of γj ’s as well as the cluster
elimination mechanism from APCM. The algorithm is initialized through FCM with the lat-
ter executed for an overestimated number of the actual number of clusters. The SAPCM
algorithm is immune to noise and outliers, as its predecessor SPCM. In addition, SAPCM
has the ability (a) to cope well with closely located clusters with possibly different densi-
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Table 5.8: The results of the experiment

mini mfinal RM GRM SR Time
k-means 5 5 71.10 - 55.35 2.87
k-means 20 20 52.92 - 19.41 1.16
FCM 5 5 66.36 67.33 47.45 0.20
FCM 20 20 52.68 59.35 17.66 1.0
PCM 5 2 77.36 77.62 75.86 0.53
PCM 20 2 75.02 75.02 75.86 2.26
APCM (α = 1) 5 3 97.22 96.97 92.17 0.41
APCM (α = 0.15) 20 3 96.70 95.27 91.86 2.20
SPCM 5 3 94.86 92.43 90.72 4.56
SPCM 20 3 97.69 94.82 92.45 59.8
SAPCM (α = 1) 5 3 97.28 97.01 92.21 2.45
SAPCM (α = 0.2) 20 3 97.16 96.43 92.14 6.96
SeqSAPCM (α = 1) - 3 97.16 96.56 92.14 3.40
L-SAPCM (α = 1) 5 5 98.39 98.12 98.72 2.51

ties and/or variances, (b) to determine the number of natural clusters and (c) to improve
even more the estimates of the cluster representatives compared to SPCM and APCM.
In extensive experiments, it is shown that SAPCM has a steadily superior performance,
compared to other related algorithms, irrespective of the initial estimate of the number of
clusters.

Moreover, two variants of SAPCM have been devised. The first one is an iterative bottom-
up version, called SeqSAPCM, which, at each iteration, determines a single new cluster
by employing SAPCM, and thus, unravels sequentially the underlying clustering structure
in a bottom up fashion (from two clusters to the actual number of clusters existing in the
data set). SeqSAPCM does not require knowledge of the number of clusters (not even a
crude overestimate, as APCM, SPCM and SAPCM require). SeqSAPCM outperforms the
classical k-means and FCM when the latter are not fed with the actual number of clusters.
In addition, it has almost the same clustering performance with SAPCM, when the latter
is equipped with the optimal values for its parameters, which are two (initial estimate of
the number of representatives and the parameter α) against only one in SeqSAPCM (α).
The second variant of SAPCM, which is called L-SAPCM, works in layers. Specifically,
it applies first SAPCM on the whole data set and the resulting clusters are considered
as leafs forming the first layer of clusters. Then SAPCM is applied on the clusters corre-
sponding to the leafs, giving rise to the second layer of leafs and so on. The algorithm
terminates when no cluster in the last layers produces new clusters. The main advantage
of the algorithm (as the experiment also verifies) is that, in principle, it can provide accu-
rate clustering results even in cases where the data form clusters at various “resolutions”,
i.e. the variances of the clusters may differ orders of magnitude from each other. This
property makes L-SAPCM a good candidate for HSI processing, as also verified by the
experimental results presented in chapter 7.
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6. ONLINE ADAPTIVE POSSIBILISTIC C-MEANS ALGORITHM

6.1 Introduction

In this chapter, we present a novel online extension of the batch APCM clustering algorithm
(chapter 3), called Online Adaptive Possibilistic C-Means (O-APCM). As is usually the
case in all online algorithms, the data vectors in O-APCM are being processed one by one
and their impact is memorized into suitably defined parameters; thus O-APCM is released
from the noose of storing the whole data set and using it at each iteration, as is the case
with the batch schemes. O-APCM achieves high quality clustering results much more
computationally efficiently compared to batch methods. From this perspective, O-APCM
is a serious candidate for processing big data sets (e.g. HSIs cubes).

The basic feature that O-APCM inherits from its ancestor is the adaptation of the involved
parameters, which makes the algorithm flexible in tracking variations during the clustering
formation. Furthermore, in contrast to the batch APCM, which starts with a crude overesti-
mate of the number of clusters and gradually reduces it, O-APCM, due to its online nature,
starts with zero clusters and gradually, as more data are processed sequentially, it alters
it by (a) generating new clusters, (b) merging and (c) deleting existing clusters. These
operations are carried out via associated novel mechanisms embedded in the algorithm.

Note that the usage of O-APCM is twofold. First, it can be used for clustering efficiently
big static data, by dramatically reducing the required computational burden. Second, it is
also appropriate for data clustering under non-stationary conditions; that is, in real time
applications where the centers of the actual clusters may change their location over time
within the data space. A prime example is the processing of a video stream with static
background, aiming at tracking moving objects and monitoring their orbit.

It is worth noting that online clustering algorithms have already been presented in the
bibliography, e.g. [85], [86], [87], albeit they have not been applied for HSI processing.
However, all of them require knowledge of the exact number of physical clusters before-
hand, which is kept fixed during their execution. A basic drawback, arising from this, is
the fact that these online clustering algorithms are not able to alter (reduce or increase)
the number of clusters that underlie in the data set over time. Moreover, they employ
a random initialization of the cluster representatives, which, obviously, affects the final
clustering result.

Closing this introduction, it is worth noting that the quality of the clustering results of O-
APCM in stationary environments compares well with that of the previously introduced
batch algorithms, while it outperforms its competitors under time-varying conditions.
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6.2 The Online APCM (O-APCM)

In this section, following a unified formulation for both static and dynamic conditions, we
describe in detail the proposed online APCM (O-APCM) clustering algorithm, which con-
siders a single data vector per iteration and updates its parameters accordingly. To this
end, the cost function (2.11) in the online context is modified as follows,

J(Θ(t), Ut) =
t∑
i=1

ξt−i
m(t−1)∑
j=1

[
uij∥xi − θj(t)∥2 + γj(t− 1) (uij lnuij − uij)

]
, (6.1)

where t denotes the current iteration of the algorithm, xt is the current data vector to be
processed, m(t − 1) is the number of clusters formed up to the t-th iteration and ξ is an
exponentially weighted factor, 0 ≪ ξ ≤ 1. Moreover, ut = [ut1, ..., utm(t−1)] contains the
degrees of compatibility of the current data vector xt with the current number of clusters
m(t− 1).

Let us focus on the parameter ξ appeared here for the first time. When ξ = 1, all data
points have equally weighted contribution in the updating of the algorithm parameters.
Thus, in this case, the algorithm is expected to behave well in static environments, in
the sense that, in principle, it is able to capture the statistics of the clusters formed by
the data vectors. On the other hand, when ξ = 1 the algorithm in not able to track the
possible changes of the cluster statistics in a dynamically varying environment. However,
if for the latter case a value less but very close to 1 is selected for ξ, the more recent
data vectors will gain greater importance than the older ones in the parameters updating
process. This will make the algorithm capable to track cluster variations in a dynamically
changing environment1.

6.2.1 Parameter initialization

Although O-APCM, as a descendent of APCM, inherits the main features of the latter, at
the same time it is differentiated from it, due to its online nature. Specifically, the parameter
initialization of O-APCM should take into account that no clusters are initially available due
to the lack of data points at this stage. In addition, a cluster generation step should be
adopted as clusters are formed dynamically during the execution of the algorithm. Also, a
cluster merging step is required for merging two clusters growing in parallel that are part
of a larger physical cluster. In the sequel, we describe in detail the above issues.

As it is easily understood, the initialization of the parameters θj and ηj in O-APCM cannot
be implemented as in batch APCM, due to the fact that the whole data set is not available
a-priori. A natural way to proceed would be to create the first cluster containing only the
data point x1 at the first iteration of the algorithm. However, it is obvious that it is not

1Note that the number of the most recent data points that are weighted more heavily and are actually
taken into account (memory size) is approximately equal to lim

N→∞
ξN−1
ξ−1 = 1

1−ξ .
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feasible to extract information about the “size” of this cluster from just a single data point,
in order to initialize its parameter η1. In order to address this issue, in the initialization
phase of O-APCM, we run the batch APCM (see Algorithm 4) on a small sample of the,
say K, first pixels (e.g. K = 100)2, with an overestimated number of clusters, mini. After
its convergence, APCM ends up with m (≤ mini) clusters and the obtained estimates for
θj ’s and ηj ’s, are used as the current state of O-APCM. Also, we set η̂ = minj ηj (as in
APCM) and then we run O-APCM for the remaining data points of the data set.

6.2.2 Parameter adaptation - Cluster generation

In O-APCM, this part refers to (a) the computation of the degree of compatibility utj, j =
1, . . . ,m(t− 1) of the current data point xt with all clusters and the adaptation of all cluster
representatives θj ’s, j = 1, . . . ,m(t− 1), taking into consideration only the corresponding
utj ’s, and (b) the adaptation of the parameters ηr and µr of the cluster Cr, with utr =
maxj=1,...,m(t−1) utj, i.e. of the most compatible to xt cluster.
Minimization of eq. (6.1) with respect to utj and θj, j = 1, . . . ,m(t− 1) results to

utj = exp
(
−∥xt − θj(t− 1)∥2

γj(t− 1)

)
3, (6.2)

where (as in APCM)

γj(t− 1) =
η̂

α
ηj(t− 1) (6.3)

and to the following time recursive equation for θj(t),

θj(t) =

(
1− utj

Uj(t)

)
θj(t− 1) +

utj
Uj(t)

xt, (6.4)

where the quantity Uj(t) is defined recursively as follows

Uj(t) = ξUj(t− 1) + utj, j = 1, . . . ,m(t− 1), (6.5)

respectively. Note that all cluster representatives are updated, during the processing of
the current data point xt. However, this is not the case with the parameters µj and ηj of
the clusters. Specifically, if utr is above a certain threshold, thres (e.g. thres = 1e − 05),
which implies that xt is not far enough from the data points processed up to now so that to
create a new cluster; only the parameters µr and ηr of the most compatible to xt cluster,
Cr, are updated. Setting Itj = 0, j ̸= r and Itr = 1, we can easily get from (3.4) the

2Note that data points are processed in a random order.
3Note that direct optimization of eq. (6.1) with respect to utj involves in the right-hand side of eq. (6.2),

θj(t) instead of θj(t−1). However, due to the interdependence of the updating equations eq. (6.2), eq. (6.4)
for utj and θj(t), respectively, we proceed with an alternating optimization concept and we use θj(t− 1) in
eq. (6.2).
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following time-recursive formulas:

µj(t) =

(
1− Itj

Sj(t)

)
µj(t− 1) +

Itj
Sj(t)

xt, (6.6)

ηj(t) =

(
1− Itj

Sj(t)

)
ηj(t− 1) +

Itj
Sj(t)

∥xt − µj(t)∥, (6.7)

where
Sj(t) = ξSj(t− 1) + Itj. (6.8)

Let us now comment on themechanism that creates new clusters, as the algorithm evolves.
This procedure is activated when utr is less than thres. In this case, a new cluster is cre-
ated, containing only xt, its corresponding parameters θ, µ are set equal to xt, its param-
eters U , S are set to 1, while its parameter η is set to the minimum η among all current
clusters, minj=1,...,m(t−1) ηj(t− 1). Finally, the number of clusters is increased by one.

Before we close this subsection, let us comment on Uj(t) and Sj(t) defined above. In-
tuitively speaking, for ξ = 1, Uj(t) accumulates the degrees of compatibility of the data
points processed so far with cluster Cj, while Sj(t) counts the number of points that are
most compatible with Cj, among the points processed so far. On the other hand, for ξ < 1,
the computation of Uj(t), Sj(t) is dominated by the most recent data points.

6.2.3 Cluster merging procedure

In online clustering schemes, the clustering result is usually dependent on the order in
which the data are processed in the sense that several clusters might be created, which
nevertheless represent parts of the same physical cluster. Consequently, a mechanism
that identifies and merges such clusters should be incorporated in an online clustering
algorithm. To this end, every T iterations (e.g. T = 100), O-APCM considers all pairs of
clusters Cs and Ck and checks whether they exhibit overlapping via the following rule: if√
γs+
√
γk > β ·d(θs,θk), where d(θs,θk) is the Euclidean distance between the two cluster

representatives θs, θk, (β controls the acceptable degree of overlapping and it is set equal
to 1.1 in our case), the two clusters are merged into one cluster and the parameters of the
newly formed cluster are defined as follows:

θnew =
Usθs + Ukθk
Us + Uk

, (6.9)

Unew = Us + Uk, (6.10)

µnew =
Ssµs + Skµk

Ss + Sk
, (6.11)

ηnew =
Ssηs + Skηk
Ss + Sk

, (6.12)
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Snew = Ss + Sk. (6.13)

In the case where the above criterion is not satisfied for any pair of clusters, no merging
takes place. Note that the values for the parameters θnew, µnew, ηnew of the newly formed
cluster are computed as the weighted sum of the constituting clusters Cs and Ck.

Having analyzed the basic features of O-APCM separately, we give in Algorithm 10 below
the whole O-APCM algorithm.

Algorithm 10 [Θ, Γ] = O-APCM(X, mini, α, ξ)
Input: X, mini, α, ξ

1: K = 100, thres = 1e− 05 and T = 100

2: t = K

� Initialization (use the first K points)

3: [Θ(t), H(t),m(t), U(t)]=APCM(X(:, 1 : K),mini, α)
4

4: Determine: uir = maxj=1,...,m(t) uij and set: Labeli = r, i = 1, ..., K

5: η̂ = minj=1,...,m(t) ηj(t)

6: Set: µj(t) = θj(t), j = 1, . . . ,m(t)

7: Set: Uj(t) =
∑K
i=1 uij and Sj(t) =

∑
i=1,...,K:
Labeli=j

1, j = 1, . . . ,m(t)

8: while there are still unprocessed data vectors do

9: Set: γj(t) = η̂
α
ηj(t), j = 1, . . . ,m(t)

10: t = t+ 1

� Take the next unprocessed data vector

11: xt = X(:, t)

� Compute degrees of compatibility

12: utj = exp(−∥xt−θj(t−1)∥2
γj(t−1)

), j = 1, . . . ,m(t− 1)

� Update cluster representatives

13: Uj(t) = ξUj(t− 1) + utj, j = 1, . . . ,m(t− 1)

14: θj(t) =
(
1− utj

Uj(t)

)
θj(t− 1) + utj

Uj(t)
xt, j = 1, . . . ,m(t− 1)

15: Determine: utr = maxj=1,...,m(t−1) utj

4See Algorithm 4, section 3.3.
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16: if utr < thres then

� Generate a new cluster

17: m(t) = m(t− 1) + 1

18: θm(t)(t) = xt

19: µm(t)(t) = xt

20: ηm(t)(t) = minj=1,...,m(t−1) ηj(t− 1)

21: Um(t)(t) = 1 and Sm(t)(t) = 1

22: Set: Itj = 0, j = 1, . . . ,m(t)

23: Set: Labelt = m(t)

24: else

� Update parameters of cluster Cr

25: m(t) = m(t− 1)

26: Set: Itj = 0, ∀j ̸= r and Itr = 1

27: Set: Labelt = r

28: end if

29: Sj(t) = ξSj(t− 1) + Itj, j = 1, . . . ,m(t− 1)

30: µj(t) =
(
1− Itj

Sj(t)

)
µj(t− 1) + Itj

Sj(t)
xt, j = 1, . . . ,m(t− 1)

31: ηj(t) =
(
1− Itj

Sj(t)

)
ηj(t− 1) + Itj

Sj(t)
∥xt − µj(t)∥, j = 1, . . . ,m(t− 1)

� Every T iterations perform the cluster merging procedure

32: end while

33: return Label = [Label1, ...,Labelt]

6.3 Experimental results

In this section, we assess the performance of O-APCM in both synthetic and real experi-
ments under both static and dynamic conditions. Specifically, in a stationary environment,
we compare the clustering performance of O-APCM with that of the batch APCM, SAPCM
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and the online k-means (O-kmeans)5 [86]. In a non-stationary environment, we compare
the clustering performance of O-APCM with that of O-kmeans, which both are expected to
be able to track the dynamical changes occurring in the physical clusters as they evolve.
In order to measure the quality of clustering obtained by the algorithms, we use the Rand
Measure (RM), the classical Success Rate (SR) and the runtime (Time) required for con-
vergence (in seconds).

6.3.1 Experiments in a stationary environment

Experiment 1: Let us consider a synthetic two-dimensional data set consisting of N =
31200 points, where three clusters C1, C2, C3 are formed (Fig. 6.1(a)). Each cluster is
modelled by a normal distribution. The means of the distributions are c1 = [7, 7]T , c2 = [0,
0]T and c3 = [11, 0]T , respectively, while the (common) covariance matrix of C1 and C2 is
set to 4·I2, and the covariancematrix ofC3 is set to I2, where I2 is the 2×2 identity matrix. A
number of 1000 points are generated from the first distribution, 30000 points are generated
from the second one and 200 points are generated from the third one. Note that clusters
C1 and C2 differ significantly in their density (since both share the same covariance matrix
but C1 has significantly less points than C2) and due to their close proximity, a clustering
algorithm could hardly distinguish them. In addition, cluster C3 consists very few data
points, thus it is hardly identified, too.

Fig. 6.1(b) shows the clustering outcome obtained using the APCM algorithm with α = 0.7
and mini = 10. Similarly, in Fig. 6.1(c) we present the corresponding results for SAPCM
with α = 1 and mini = 10. Figs. 6.1(d)-(f) depict the performance of O-APCM (α = 0.7,
ξ = 1) after the processing of the first 10000, 20000 and 31200 (final stage) data points,
respectively. The corresponding results of O-kmeans (m = 3, z = 0.01) at the same stages
are shown in Figs. 6.1(g)-(i). Moreover, Table 6.1 shows RM, SR and Time (in seconds)
for the previously mentioned algorithms, where mini and mfinal denote the initial and the
final number of clusters, respectively.

Table 6.1: Performance of clustering algorithms for the synthetic data set of Experiment 1 (stationary
environment).

mini mfinal RM SR Time
APCM (α = 0.7) 10 1 92.56 96.15 11.90
SAPCM (α = 1) 10 2 97.85 98.29 52.78
O-APCM (α = 0.7, ξ = 1) 5 3 97.49 98.69 0.39
O-kmeans (z = 0.01) 3 3 50.33 50.02 0.47

As it is deduced from Fig. 6.1 and Table 6.1, APCM fails to unravel the underlying clustering
structure, due to the great difference on the density of the clusters and their close proximity.
Although SAPCM manages to distinguish cluster C1 from C2, it fails to uncover cluster C3.

5O-kmeans is basically a set of m gradient descent-like schemes, one for each cluster representative,
sharing the same learning rate parameter z. Upon the arrival of a new data vector, only the closest to it
representative is updated.
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(d) O-APCM at 10000 data points
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(e) O-APCM at 20000 data points
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(f) O-APCM final result
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(g) O-kmeans (m = 3) at 10000
data points
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(h) O-kmeans (m = 3) at 20000
data points
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(i) O-kmeans (m = 3) final result

Figure 6.1: (a) The data set of Experiment 1 (stationary environment). Clustering results for (b)
APCM, mini = 10, α = 0.7, (c) SAPCM, mini = 10, α = 1, (d)-(f) O-APCM at 10000, 20000 and 31200
(final) data points, respectively, α = 0.7, ξ = 1, (g)-(i) O-kmeans at 10000, 20000 and 31200 (final) data
points, respectively, m = 3, z = 0.01.

As it is seen from Figs.6.1(g)-(i), O-kmeans is initialized with the true number of clusters
(m = 3), however, its clustering performance is not as satisfactory as expected, due to
the peculiar data set structure. On the other hand, O-APCM is able to detect all clusters,
producing very satisfactory results with high computational efficiency, requiring less time
even than O-kmeans.
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6.3.2 Experiments in a non-stationary environment

Experiment 2: Let us consider a synthetic two-dimensional data set consisting of N =
20800 points, where five clusters C1, C2, C3, C4, C5 are dynamically formed (Fig. 6.2). Each
cluster is modelled by a normal distribution. Themeans of the distributions are dynamically
changed over time, starting from c1 = [100, 50]T , c2 = [20, 90]T , c3 = [20, 0]T , c4 = [30, 20]T
and c5 = [100, 50]T and ending at c1 = [50, 80]T , c2 = [0, 40]T , c3 = [0, 40]T , c4 = [80, 10]T
and c5 = [30, 40]T , respectively, moving on straight lines, as shown in Fig. 6.2 (see also
Table 6.2). Their (common) covariance matrix is set to 10 · I2. A number of 3200 points
are generated from each of the first and the third distributions, 4000 points are generated
from the fifth one and 5200 points are generated from each of the second and the fourth
ones. Note that clusters C1 and C5 start generating data points around the same data
point, however, as time passes by, their centers move towards different positions, thus
C1 and C5 get split. The opposite holds for clusters C2 and C3, which start from different
locations and eventually converge to the same position, thus they are merged.

Table 6.2: Data set of Experiment 2 (non stationary environment).

Cluster Start point (cj) End point (c′j)
Number of
total steps

Number of
points per step

Total number
of points

C1 [100, 50]T [50, 80]T 400 8 3200
C2 [20, 90]T [0, 40]T 400 13 5200
C3 [20, 0]T [0, 40]T 400 8 3200
C4 [30, 20]T [80, 10]T 400 13 5200
C5 [100, 50]T [30, 40]T 400 10 4000

Subfigures of the first column of Fig. 6.3 show the clustering outcome obtained by O-
kmeans with m = 4 and z = 0.01 at several time instants. The corresponding clustering
results at the same time instants for O-kmeans with m = 5 and z = 0.01 are shown in the
subfigures of the second column of Fig. 6.3. Finally, the last column of Fig. 6.3 contains
the subfigures that depict the corresponding clustering result of O-APCM with α = 0.8 and
ξ = 0.99 for the same time instants. Moreover, Table 6.3 shows RM, SR and Time (in
seconds) for both algorithms, wheremini andmfinal denote the initial and the final number
of clusters, respectively.

As it is deduced from Fig. 6.3 and Table 6.3, O-kmeans with m = 4 initially behaves well
as long as clusters C1 and C5 are still united and the number of underlying clusters is
4 (Figs.6.3(a),(d)). However, when clusters C1, C5 are split into two different clusters, O-
kmeans fails to follow each one of them (Figs.6.3(j),(m),(p),(s)); thus, O-kmeans concludes
to a four-clusters clustering result, completely failing to detect the center of clusters C1 and
C5 (Fig.6.3(v)). Additionally, O-kmeans (with m = 4) is not able to merge C2, C3, when
the latter are eventually merged (Fig. 6.3(v)). On the other hand, O-kmeans withm = 5 in
the early stages of clustering with the number of clusters being 4, erroneously separates
cluster C1 into two clusters (Figs.6.3(b),(e)). However, in the sequel where the underlying
clusters are 5, O-kmeans (m = 5) detects very accurately the clustering structure of the
data set (Figs.6.3(h),(k),(n),(q),(t)). Again, however, O-kmeans (withm = 5) fails to merge
C2, C3, when the latter become almost coincident (Fig. 6.3(w)). Finally, O-APCM produces
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Figure 6.2: Data set of Experiment 2 (non stationary environment).

very accurate results at each time instant, as the centers of the clusters are dynamically
changed, and it has the ability to delete or create clusters on demand, thus tracking with
high accuracy and computational efficiency the clustering structure of the data set over
time (3rd column of Fig.6.3).

Table 6.3: Performance of clustering algorithms for the synthetic data set of Experiment 2 (non-
stationary environment).

mini mfinal RM SR Time
O-kmeans (z = 0.01) 4 4 93.20 84.96 0.30
O-kmeans (z = 0.01) 5 5 96.64 94.93 0.31
O-APCM (α = 0.8, ξ = 0.99) 5 4 97.55 96.27 0.28

In the next experiment, we test O-APCM on a real application, where the data set under
study is a series of successive images in the scale of time (video). The aim here is the
identification of moving objects and the tracking of their orbit in a video data sequence
produced by a static camera (fixed background). As it is expected in such a video, the
number of objects may change, as the objects enter into or leave the vision range of the
camera used. Consequently, O-kmeans is not examined in this experiment, due to the
fact that O-kmeans needs a-priori knowledge of the number of clusters, m, which is not a
realistic requirement for video data sets. Besides, in general, m varies over time.

Experiment 3: Let us consider the real Basketball RGB video data set [88]. The video
has a total duration of 4.64 seconds and it consists of K = 111 time frames, each one
of duration of 0.0418 seconds. The spatial resolution of each image frame is 1280×720,
thus each frame has Nk = 921600 pixels, k = 1, . . . , 111. The total number of data points
(pixels) of the whole data set (video) is N = 102297600. Note that for each pixel we have
three values of intensity (RGB images). In this video, four moving objects are identified in
total. Specifically, a walking man in the image background (C1), a man initially holding a
basketball that subsequently throws away (C2), the basketball by the time instant it moves
away from the man (C3) and a tent that is moving because of the wind on the left side of
the vision range of the camera (C4). Note that the aforementioned basketball disappears
at some point from the visible field of the camera and then re-enters straightaway.
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(a) O-kmeans (m = 4) at 1000
data points
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(b) O-kmeans (m = 5) at 1000
data points
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(c) O-APCM at 1000 data points
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(d) O-kmeans (m = 4) at 3000
data points
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(e) O-kmeans (m = 5) at 3000
data points
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(f) O-APCM at 3000 data points
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(g) O-kmeans (m = 4) at 6000
data points
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(h) O-kmeans (m = 5) at 6000
data points
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(i) O-APCM at 6000 data points
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(j) O-kmeans (m = 4) at 8000 data
points
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(k) O-kmeans (m = 5) at 8000
data points
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(l) O-APCM at 8000 data points
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(m) O-kmeans (m = 4) at 12000
data points
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(n) O-kmeans (m = 5) at 12000
data points
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(o) O-APCM at 12000 data points
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(p) O-kmeans (m = 4) at 16000
data points
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(q) O-kmeans (m = 5) at 16000
data points
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(r) O-APCM at 16000 data points
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(s) O-kmeans (m = 4) at 18000
data points
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(t) O-kmeans (m = 5) at 18000
data points
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(u) O-APCM at 18000 data points
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(v) O-kmeans (m = 4) at 20000
data points
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(w) O-kmeans (m = 5) at 20000
data points
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(x) O-APCM at 20000 data points

Figure 6.3: Clustering results of Experiment 2 (non-stationary environment) at 1000, 3000, 6000,
8000, 12000, 16000, 18000 and 20000 data points, respectively, for (a), (d), (g), (j), (m), (p), (s), (v)
O-kmeans, m = 4, z = 0.01, (b), (e), (h), (k), (n), (q), (t), (w) O-kmeans, m = 5, z = 0.01 and (c), (f), (i),
(l), (o), (r), (u), (x) O-APCM, α = 0.8, ξ = 0.99 (the older points of each cluster are gray-colored).
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(a) (b) (c)

Figure 6.4: (a) Differences between frames 24 and 25 (matrix I24 depicted as an image), (b) smoothed
differences between frames 24 and 25 (image ISmoothed

24 ) and (c) pixels with high (above pre-defined
threshold) differences between frames 24 and 25.

The whole process for motion tracking is divided into two stages. At the first stage, the
aim is to identify the pixels of the moving objects, examining the differences between each
pair of successive frames. At the second stage, these pixels are processed by O-APCM,
in order to identify each moving object as a cluster in the spatial domain and to track its
orbit. Concerning the first stage, we aim to identify all the pixels that compose the moving
objects for each frame. To this end, we first compute the pixel-by-pixel Euclidean distance
matrix Ik, k = 1, . . . , K − 1 between each pair of successive frames (say frames k, k + 1)
taking into account the RGB values of the pixels (Fig. 6.4(a)). In the sequel, we produce
the smoothed image of matrix Ik, ISmoothedk , by applying a 10×10 mean filter, in order to
reduce noise impact and smooth Ik (Fig. 6.4(b)). Finally, from image ISmoothedk , we keep
only the pixels whose ISmoothedk value is larger than a pre-defined threshold, th (Fig. 6.4(c)).
The coordinates (x, y) of all these pixels constitute the data set that will be processed by
O-APCM at the second stage. Closing, we note that the above threshold, th, is determined
by the point where a significant “knee” is met, at the histogram of the positive values of
the vectorized matrix ISmoothedk . In practice, this needs to take place only for one of the
matrices ISmoothedk (e.g. the first one, k = 1).

Concerning the second stage, the aim is to run O-APCM for the two dimensional (two
coordinates for each pixel) data set resulting from the first stage. The subfigures of the first
column of Fig. 6.5 show several frames of the data set under study, while the subfigures
of its second column depict the corresponding clustering outcome obtained by O-APCM.
Note that in this experiment, all pixels of the same frame, produced by the first processing
stage (object detection), are equally weighted, while, in addition, these are points that will
be more influential in the algorithm parameters adjustment, compared to pixels of previous
frames. The latter requirement is achieved by setting ξ = 0.05 6. Finally, we set parameter
α equal to 0.05.

As it is deduced from Figs. 6.5(b),(d), during the first frames O-APCM identifies correctly
the two clusters C1 (the man at the background of the image) and C2 (the man that holds
the basketball). Around frames 19-20, the man labeled as cluster C2 throws away the

6Note that lim
N→∞

ξN−1
ξ−1 = 1

1−ξ ≃ 1, for ξ = 0.05. That is, O-APCM processes the data, aiming at uniformly
weighting pixels of the same frame and weighting themmore heavily, compared to pixels of previous frames.
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(a) Data set at frame 17
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(b) O-APCM result at frame 17

 

 

(c) Data set at frame 19
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(d) O-APCM result at frame 19

 

 

(e) Data set at frame 24
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(f) O-APCM result at frame 24

 

 

(g) Data set at frame 32
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(h) O-APCM result at frame 32
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(i) Data set at frame 36
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(j) O-APCM result at frame 36

 

 

(k) Data set at frame 53
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(l) O-APCM result at frame 53

 

 

(m) Data set at frame 56
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(n) O-APCM result at frame 56

 

 

(o) Data set at frame 59
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(p) O-APCM result at frame 59
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(q) Data set at frame 70
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(r) O-APCM result at frame 70

 

 

(s) Data set at frame 72
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(t) O-APCM result at frame 72

 

 

(u) Data set at frame 76
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(v) O-APCM result at frame 76

 

 

(w) Data set at frame 81
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(x) O-APCM result at frame 81

Figure 6.5: (a), (c), (e), (g), (i), (k), (m), (o), (q), (s), (u), (w) Data set of Experiment 3 (non-stationary
environment, video) at frame 17, 19, 24, 32, 36, 53, 56, 59, 70, 72, 76 and 81, respectively, and (b), (d),
(f), (h), (j), (l), (n), (p), (r), (t), (v), (x) the respective clustering results of O-APCM, α = 0.05, ξ = 0.05.
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basketball (Fig. 6.5(d)), thus a new cluster C3 (the basketball) is created by O-APCM
(Fig. 6.5(f)). Around frames 32-33, the basketball (C3) disappears from the visible range
of the camera (Fig. 6.5(h)) and it re-enters around frame 51 (Figs. 6.5(j),(l)). As it was
expected, O-APCM considers the returned basketball as a new cluster labeled as C5 (see
Figs. 6.5(l) and the following). Note also, that from around frame 36, O-APCM manages
to identify with high accuracy the moving tent (cluster C4) at the bottom left side of the
image and to track its full orbit until around frames 56-57 (see Figs. 6.5(j),(l),(n)). However,
around frames 57-58, the tent stops moving; thus, O-APCM deletes correctly cluster C4

(Fig. 6.5(p)), recognizing that it is not a moving object any more. Concluding, note from
all subfigures of the second column of Fig. 6.5 that O-APCM identifies all moving objects
and manages with high accuracy to track their orbits.

6.4 Conclusion

In this chapter, a novel online adaptive possibilistic c-means clustering algorithm, called
O-APCM, which is an online implementation of the recently proposed APCM algorithm
(chapter 3), is presented. O-APCM incorporates the relative parameter adaptation mech-
anism of APCM, which makes it capable to deal well with closely located and hardly distin-
guished clusters. Moreover, O-APCM embodies three new procedures for generating new
clusters, merging or deleting dynamically existing ones, when necessary, as data points
are being processed one by one. In addition, O-APCM does not need a prior knowledge
of the underlying number of physical clusters. Due to its online nature, O-APCM requires
very low memory and computational time, compared to a batch mode implementation,
where the whole data set is considered at each iteration of the algorithm. This makes
O-APCM applicable for clustering of big data sets, whose size and dimensionality are
prohibitive for batch processing. Moreover, apart static conditions, O-APCM is recom-
mended for cases where the dynamics of the data set change with time, i.e. the centers
of the physical clusters change their location in the data space over time. Specifically,
O-APCM has the ability to weight more heavily the most recent data, compared to older
data, in the estimation of its parameters. Experimental results show that O-APCM offers
high discrimination ability at a very low computational cost for data sets in stationary con-
ditions and, additionally, it is able to track with high accuracy the physical clusters at a
non-stationary environment. Finally, the application of O-APCM to a real video data set,
in order to identify and track moving objects, highlights its great potential in monitoring the
evolution of dynamically varying phenomena.

159 S. Xenaki



Advances in Possibilistic Clustering with Application to Hyperspectral Image Processing

S. Xenaki 160



Advances in Possibilistic Clustering with Application to Hyperspectral Image Processing

7. CLUSTERING ALGORITHMS APPLIED TO HYPERSPECTRAL
IMAGES: A COMPARATIVE STUDY

7.1 Introduction

In the present chapter, we assess the performance of the clustering algorithms proposed
in this thesis on real HSI data sets. Specifically, we evaluate the performance of APCM,
SPCM, SAPCM, L-SAPCM and O-APCM in comparison with several other related algo-
rithms, including k-means [6], FCM [7], [8], PCM [10], UPC [20], UPFC [28], PFCM [19],
H2NMF [51], KNNCLUST [45] and O-kmeans [86]. The clustering algorithms are applied
to three HSIs, collected from different hyperspectral sensors, depicting: (a) a scene of
Mars’ South Polar Cap (OMEGA), (b) a scene of Salinas Valley, California (AVIRIS) [89]
and (c) a scene of Washington DC Mall (HYDICE) [90]. These HSIs have been selected
on purpose since they depict three totally different environments: planetary, agricultural
and urban, respectively, in order to evaluate the performance of the algorithms in diverse
cases.

For fair comparison, the initial representatives θj ’s of all algorithms are initialized based on
the FCM scheme and the parameters of each algorithm are first fine-tuned. Moreover, we
remove duplicate clusters after the termination of algorithms in which coincident clusters
may arise (PCM, UPC, UPFC, PFCM, SPCM). In order to compare a clustering with the
true data label information (if existed), we utilize again the RM and SR indices defined
in subsection 3.7.2. Finally, the number of iterations (Iter) and the total time (Time (in
seconds)) required for the convergence of each algorithm, are provided. All algorithms
have been executed using MATLAB R2013a on Intel i7-4790 machine (16 GB RAM, 3.60
GHz).

7.2 Case Study 1: South Polar Cap

This data set consists of a hyperspectral data cube depicting the South Polar Cap of Mars
in the local summer (Jan. 2004), acquired by the OMEGA sensor, which generates 128
spectral bands across the range from 0.93 to 2.73µm with a spectral resolution of 14nm
and 128 spectral bands from 2.55 to 5.11µm with a spectral resolution of 21nm. The total
number of the 256 bands is reduced to 186 in the region from 0.93 to 2.98µm, after the
removal of the noisy bands, with a spatial resolution of approximately 3km. The size of
the HSI is 871×128, which results to a total size of N = 111488 samples-pixels. Note that
there is no available ground truth information for this data set. To this end, in Figs. 7.1(a)-
(c) the 1st, 2nd and 3rd principal components (PCs) of the data set are depicted, where
the main features of the data set are visible. Moreover, in Fig. 7.1(d) a “virtual” reference
map is composed, based on the first three PCs and [91], which is also verified by [92],
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(a) 1st PC (b) 2nd PC (c) 3rd PC (d) “Virtual”
reference map

using a method proposed in [93]1. Specifically, the pixels stem from three classes: “CO2”
ice (brown class in Fig. 7.1(d)), “Water” ice (orange class in Fig. 7.1(d)) and “Dust”. The

1This has been generated only for assessing the performances of the clustering algorithms qualitatively
by no means it is a real reference map. This is the reason that RM and SR measures are not computed in
this case.
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(m = 3)

 

 

(f) k-means
(m = 10)

(g) FCM
(m = 3)

 

 

(h) FCM
(m = 10)

(i) PCM

latter class is composed of three closely located clusters in the feature space, as it can be
deduced from 2nd PC (Fig. 7.1(b)) and it is depicted in Fig. 7.1(d) (dark blue, light blue,
green). Figs. 7.1(e)-(u) depict the best mappings obtained by the algorithms running on
the full HSI hypercube 871×128×186, with respect to the “reference map” in Fig 7.1(d).
Relative quantitative results are shown in Table 7.1.
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(j) UPC (k) UPFC (l) PFCM (m) H2NMF

Concerning k-means and FCM, it can be deduced fromFigs. 7.1(e),(g) that evenwhen they
are initialized with the true number of classes (mini = 3), they are actually unable to distin-
guish both (a) the three “Dust” sub-clusters, as well as (b) the “Water” class. Specifically,
apart from the “CO2” class that is correctly identified, they return two additional clusters la-
beled “Dust 1” and “Dust 2”, where “Dust 2” is composed of the two “Dust” areas depicted
by green and light blue in Fig. 7.1(d), while “Dust 1” includes the third “Dust” area (dark
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(n) KNNCLUST (o) APCM (p) SPCM (q) SAPCM

blue in Fig. 7.1(d)) with the “Water” class. Figs. 7.1(f) and (h) depict the clustering results
of k-means and FCM, respectively, when they are initialized with a larger than the actual
one number of clusters (mini = 10). Clearly, the algorithms in this case fragment all physi-
cal classes. The results of PCM algorithm (Fig. 7.1(i)) are different from those of k-means
and FCM. However, PCM also fails to uncover the “Water” class, concluding to a similar
result with k-means and FCM when the latter are initialized withmini = 3. The same holds
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Figure 7.1: (a) 1st PC, (b) 2nd PC, (c) 3rd PC, (d) reference map of the South Polar Cap HSI
cube and the corresponding clustering results of (e) k-means (m = 3), (f) k-means (m = 10),
(g) FCM (m = 3), (h) FCM (m = 10), (i) PCM (m = 10), (j) UPC (m = 3, q = 2), (k) UPFC (m = 3),
(l) PFCM (m = 3), (m) H2NMF (m = 3), (n) KNNCLUST (K = 1200), (o) APCM (m = 3), (p)
SPCM (m = 10), (q) SAPCM (m = 3), (r) L-SAPCM (1st layer, m = 3), (s) L-SAPCM (2nd layer,
m = 3), (t) O-kmeans (m = 3) and (u) O-APCM (m = 10).
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Table 7.1: Clustering results for the South Polar Cap HSI cube

mini mfinal Iter Time
k-means 3 3 8 14.30
k-means 10 10 79 257.65
FCM 3 3 21 12.54
FCM 10 10 144 287.25
PCM 3 2 20 28.22
PCM 10 3 24 348.71
UPC (q = 2) 3 3 26 31.43
UPC (q = 2) 10 3 28 293.27
UPFC (q = 2, n = 2, α = 1, b = 1) 3 3 30 43.72
UPFC (q = 2, n = 2, α = 1, b = 1) 10 3 39 348.06
PFCM (K = 1, q = 2, n = 2, α = 1, b = 1) 3 3 24 37.27
PFCM (K = 1, q = 2, n = 2, α = 1, b = 1) 10 3 52 395.27
H2NMF 3 3 - 6.35
H2NMF 10 10 - 14.31
KNNCLUST (K = 1200) - 10 8 3205.7
APCM (α = 2) 3 3 16 46.23
APCM (α = 1) 10 3 24 350.61
SPCM 3 2 24 102.86
SPCM 10 3 69 1071.2
SAPCM (α = 1) 3 3 16 82.13
SAPCM (α = 1) 10 3 30 473.47
L-SAPCM (1st layer: α = 1, 2nd layer: α = 5) 3 5 248 386.56
O-kmeans (z = 0.05) 3 3 - 2.04
O-kmeans (z = 0.05) 10 10 - 2.30
O-APCM (α = 0.8, ξ = 1) 3 5 - 3.07
O-APCM (α = 0.5, ξ = 1) 10 5 - 3.05

for the UPC, UPFC and PFCM algorithms, which are able to detect three clusters, splitting
the “Dust” class into two sub-clusters and merging one of them with “Water” class into a
single cluster, thus failing to distinguish the latter class (see Figs. 7.1(j), (k), (l), respec-
tively). The H2NMF hierarchical algorithm succeeds in identifying correctly the three main
classes in remarkably short time (Fig. 7.1(m)). However, it was unable to further distin-
guish the sub-clusters incorporated in the “Dust” class. On the other hand, KNNCLUST
algorithm fails to detect the underlying clustering structure, and besides, it takes too long
time to converge (Fig. 7.1(n)). In Figs. 7.1(o) and (q), the APCM and SAPCM algorithms
are depicted, respectively, which also perform similar to k-means and FCM, when the lat-
ter are executed with mini = 3. Specifically, they split the “Dust” class into two clusters
“Dust 1” and “Dust 2”, however they fail to distinguish the “Water” class (which is incorpo-
rated with “Dust 1” cluster). The SPCM algorithm behaves similarly, but the “Water” class
is incorporated with “Dust 2” cluster (see Fig. 7.1(p)). L-SAPCM, performing a clustering
of two layers, manages to distinguish the “Water” class, while at the same time, splits the
“Dust” class into the three sub-clusters discerned in the second PC component (see the
clustering result of the 1st layer of L-SAPCM in Fig. 7.1(r) and the final result (2nd layer) in
Fig. 7.1(s)). Finally, concerning the online clustering algorithms O-kmeans and O-APCM,
the former behaves as the k-means (Fig. 7.1(t)), however in significantly less time, while
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the latter concludes to a five-cluster clustering result, identifying correctly all classes, as
well as the sub-classes of the “Dust” class at a very short time (Fig. 7.1(u)).

7.3 Case Study 2: Salinas Valley

This data set depicts a subscene of size 220× 120 of the flightline acquired by the AVIRIS
sensor over Salinas Valley, California [89]. The AVIRIS sensor generates 224 spectral
bands across the range from 0.2 to 2.4 µm with a spectral resolution of approximately
10nm and a spatial resolution of 3.7m. The number of bands is reduced to 204 by removing
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(h) UPFC (i) PFCM (j) H2NMF
 

 

(k) KNNCLUST

(l) APCM (m) SPCM (n) SAPCM (o) L-SAPCM (1st layer)

20 water absorption bands. A total size of N = 26400 samples-pixels are used, stemming
from 7 ground-truth classes: “Grapes”, “Broccoli”, three types of “Fallow”, ‘Stubble‘ and
“Celery”, denoted by different colors in Fig. 7.2(c). Note that there is no available ground
truth information for the dark blue pixels in Fig. 7.2(c)2. It is also noted that Figs. 7.2(d)-(r)
depict the best mapping obtained by each algorithm taking into account not only the “dry”
performance indices, but also their physical interpretation.

As it can be deduced from Fig. 7.2 and Table 7.2, when k-means and FCM are initialized

2Note that the last three colors in the color bar on the top of Fig. 7.2 are used in the cases where (one or
more of) the classes “Grapes”, “Celery” and “Stubble” are split by the considered algorithm.
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Figure 7.2: (a) 1st PC, (b) 4th PC, (c) ground truth of the Salinas Valley HSI cube and the
corresponding clustering results of (d) k-means (m = 7), (e) FCM (m = 7), (f) PCM (m = 15),
(g) UPC (m = 15), (h) UPFC (m = 15), (i) PFCM (m = 15), (j) H2NMF (m = 7), (k) KNNCLUST
(K = 1000), (l) APCM (m = 15), (m) SPCM (m = 15), (n) SAPCM (m = 15), (o) L-SAPCM (1st
layer, m = 15), (p) L-SAPCM (2nd layer/final, m = 15), (q) O-kmeans (m = 7) and (r) O-APCM
(m = 15).

with mini = 7, they actually split the “Stubble” class into two clusters and merge the “Fal-
low 1” and “Fallow 3” classes (Figs. 7.2(d),(e)). The PCM and SPCM algorithms fail to
uncover more than 5 discrete clusters, merging the three different types of the “Fallow”
class (Figs. 7.2(f),(m)). The UPC and UPFC algorithms are able to detect up to 6 clusters,
merging the “Fallow 1” and “Fallow 3” classes (Figs. 7.2(g),(h),(m)). PFCM, after exhaus-
tive fine tuning of its parameters, manages additionally to distinguish two types of “Celery”
(Fig. 7.2(i)), compared to UPC, UPFC and SPCM, although this information is not reflected
to the ground-truth labeling; however, it is justified taking into account the 1st or 4th PC
(Figs. 7.2(a)-(b)). The same result is achieved by KNNCLUST algorithm (Fig. 7.2(k)). The
H2NMF algorithm, when it is initialized withmini = 7, manages to distinguish a part of “Fal-
low 1” class from “Fallow 3”, however, it misses “Fallow 2” class. In addition, it merges
“Celery” class with “Broccoli” class, thus failing to detect the latter. APCM, SAPCM, L-
SAPCM and O-APCM are the only algorithms that manage to distinguish the “Fallow 1”
from the “Fallow 3” class, while at the same time they do not merge any other of the
existing classes (Figs. 7.2(l),(n),(p),(r)). Finally, the O-kmeans algorithm concludes to a
decreased performance merging “Fallow 1” with “Fallow 3” class and mingling “Grapes”
class with “Celery” (Fig. 7.2(q)).

Let us focus for a while on the “Celery” class. This class is formed by two similar yet
distinguished from each other “subclasses”, although this is not reflected to the ground-
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Table 7.2: Clustering results for the Salinas Valley HSI cube

mini mfinal RM SR Iter Time
k-means 7 7 93.75 79.89 25 18
k-means 15 15 89.90 59.18 28 60
FCM 7 7 93.18 75.31 99 23
FCM 15 15 89.75 57.89 137 67
PCM 7 4 88.09 69.37 28 52
PCM 15 5 92.75 80.84 29 100
UPC (q = 4) 7 3 80.97 57.43 38 27
UPC (q = 4) 15 6 95.61 86.21 48 85
UPFC (q = 4, n = 2, α = 1, b = 5) 7 3 80.98 57.43 38 31
UPFC (q = 5, n = 2, α = 1, b = 3) 15 6 95.67 86.31 45 93
PFCM (K = 1, q = 2, n = 2, α = 1, b = 7) 7 3 80.98 57.44 349 148
PFCM (K = 1, q = 3, n = 2, α = 1, b = 2) 15 7 94.17 76.86 162 186
H2NMF 7 7 89.03 72.23 - 2.03
H2NMF 15 15 92.14 70.34 - 2.97
KNNCLUST (K = 1000) - 6 93.63 82.10 3 164.31
APCM (α = 4) 7 6 95.45 85.92 82 50
APCM (α = 3) 15 8 95.91 85.85 191 160
SPCM 7 5 92.73 81.19 35 52
SPCM 15 5 93.33 81.79 47 151
SAPCM (α = 2) 7 6 95.85 86.51 71 84
SAPCM (α = 1.8) 15 9 95.25 83.40 223 369
L-SAPCM (1st layer: α = 1.8, 2nd layer: α =
1.6) 15 10 93.37 78.02 758 561

O-kmeans (z = 0.05) 7 7 90.34 76.06 - 1.11
O-kmeans (z = 0.05) 15 15 90.68 65.10 - 1.25
O-APCM (α = 0.2, ξ = 1) 7 8 94.26 85.47 - 1.22
O-APCM (α = 0.12, ξ = 1) 15 8 95.38 89.33 - 0.97

truth labeling (note however that this can be deduced from the 1st PC, as well as the 4th PC
component in Fig. 7.2(a),(b)). These subclasses are likely to form two spectrally closely
located clusters. It is important to note that only PFCM, KNNCLUST, APCM, SAPCM and
L-SAPCM succeed in identifying each one of them. The fact that this is not reflected in
the ground-truth labeling causes a misleading decrease in the SR performance of these
five algorithms. Similar comments hold for the “Grapes” class, after the inspection of the
4th PC component in Fig. 7.2(b). However, in this case, only the SAPCM and L-SAPCM
algorithms succeed in unravelling this situation.

7.4 Case Study 3: Washington DC Mall

This dataset is a part of the HSI flightline acquired by HYDICE over Washington DC Mall
[90] that includes the Lincoln Memorial. The HYDICE sensor generates 210 spectral
bands across the range from 0.4 to 2.5µm with a spectral resolution of 10nm and a spatial
resolution of approximately 1m. The number of bands is reduced to 191 after removing
noisy bands. The size of the HSI is 150×150 that results to a total size of N = 22500
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pixels. Note that there is no available ground truth labeling, however, exploting a refer-
ence map given in [94] and the 1st PC (Fig. 7.3(a)), we conclude that the pixels stem from
five classes: “Trees”, “Grass”, “Road”, “Water/Shadow” and “Roof”. Figs. 7.3(b)-(r) depict
the mapping obtained by the algorithms after fine tuning of their parameters, shown in
Table. 7.3, where the above classes are depicted by dark green, light green, gray, blue
and beige, respectively.

 

 

Trees Grass Road Water/Shadow Roof

(a) 1st PC (b) k-means

(c) FCM (d) PCM

As it can be deduced from Figs. 7.3(b),(c) and Table 7.3, even when k-means and FCM
are initialized with the actual number of clusters (mini = 5), they split the “Grass” class
into two clusters and merge the “Water/Shadow” with the “Road” class (Figs. 7.3(b),(c)).
Similar results are achieved by UPC and UPFC, when they are initialized with mini = 5
(Figs. 7.3(e)(g)). The PCM and SPCM algorithms fail to unravel the underlying cluster-
ing structure, both concluding a degraded two-cluster result (Figs. 7.3(d)(m)). The PFCM
algorithm is able to detect 4 clusters, missing the “Roof” class (Fig. 7.3(i)). The H2NMF
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(e) UPC (mini = 5) (f) UPC (mini = 10)

(g) UPFC (mini = 5) (h) UPFC (mini = 10)

 

 

(i) PFCM (j) H2NMF
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(k) KNNCLUST (l) APCM

(m) SPCM (n) SAPCM

(o) L-SAPCM (1st layer/final)
 

 

(p) O-kmeans
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Trees Grass Road Water/Shadow Roof

(q) O-APCM (mini = 5) (r) O-APCM (mini = 10)

Figure 7.3: (a) 1st PC, (b) k-means (m = 5), (c) FCM (m = 5), (g) FCM (m = 5), (d) PCM (m = 5),
(e) UPC (m = 5), (f) UPC (m = 10), (g) UPFC (m = 5), (h) UPFC (m = 10), (i) PFCM (m = 10),
(j) H2NMF (m = 5), (k) KNNCLUST (K = 1500), (l) APCM (m = 10), (m) SPCM (m = 10), (n)
SAPCM (m = 10), (o) L-SAPCM (1st layer/final, m = 10), (p) O-kmeans (m = 5), (q) O-APCM
(m = 5) and (r) O-APCM (m = 10).

algorithm merges the “Water/Shadow” with the “Road” class and splits the “Grass” class
into three clusters (Fig. 7.3(j)). The APCM algorithm manages to distinguish correctly
four classes, without splitting to more than one piece any of them, but fails to uncover
the “Roof” class that is incorporated in “Grass” class Fig. 7.3(l). The UPC (mini = 10),
UPFC (mini = 10), KNNCLUST, SAPCM, L-SAPCM, O-kmeans and O-APCM succeed in
identifying accurately all the underlying classes, without splitting or merging any of them
(Figs. 7.3(k),(n)-(r)). Moreover, the last two online algorithms (O-kmeans, O-APCM) run
at significantly short time. Finally, it is remarkable that O-APCM manages to identify cor-
rectly the underlying clustering structure independently of the initial number of clusters
(mini). Specifically, note that in case O-APCM is initialized with mini = 10, concludes to
six clusters, distinguishing correctly all classes and moreover it identifies a sixth cluster
corresponding to “Shadow”; distinguishing the latter from the “Water” class (see black-
coloured pixels in Fig. 7.3(r)).

Concluding this chapter, we notice that the proposed algorithms exhibit, in general, su-
perior or, at least, comparable performance with respect to several well-known relative
algorithms, in identifying with accuracy the underlying clustering structure in all three case
studies. Moreover, we highlight the fact that L-SAPCM and O-APCM are able to detect in
high detail and precision sub-clusters of which a physical class may be consisted. Finally,
it is important to note that none of the proposed algorithms, independently of the given
initial number of clusters, splits a physical cluster into two or more clusters. This may be
a consequence of the fact that due to their possibilistic nature, the proposed algorithms
do not impose a clustering structure but rather (ideally) identify “dense in data” regions
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Table 7.3: Clustering results for the Washington DC Mall HSI cube

mini mfinal Iter Time
k-means 5 5 12 37.50
k-means 10 10 34 432.79
FCM 5 5 133 32.31
FCM 10 10 716 392.50
PCM 5 2 60 47.91
PCM 10 2 75 381.57
UPC (q = 2) 5 5 184 86.65
UPC (q = 2) 10 5 204 508.85
UPFC (q = 5, n = 2, α = 1, b = 1) 5 5 324 199.19
UPFC (q = 4, n = 2, α = 1, b = 1) 10 5 227 570.64
PFCM (K = 1, q = 4, n = 2, α = 1, b = 5) 5 3 238 110.97
PFCM (K = 1, q = 3, n = 2, α = 1, b = 1) 10 4 332 632.20
H2NMF 5 5 - 2.37
H2NMF 10 10 - 4.76
KNNCLUST (K = 1500) - 5 9 481.73
APCM (α = 3) 5 4 260 158.98
APCM (α = 2) 10 4 288 445.67
SPCM 5 2 69 109.41
SPCM 10 2 91 534.58
SAPCM (α = 3) 5 4 324 374.04
SAPCM (α = 2) 10 5 268 790.59
L-SAPCM (1st layer/final: α = 2) 10 5 268 790.59
O-kmeans (z = 0.01) 5 5 - 1.67
O-kmeans (z = 0.01) 10 10 - 1.76
O-APCM (α = 1.3, ξ = 1) 5 5 - 1.04
O-APCM (α = 1.1, ξ = 1) 10 6 - 1.27

in the feature space as clusters. This is also observed for almost all possibilistic-based
algorithms used in the present study.
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8. A SPARSITY-AWARE FEATURE SELECTION METHOD FOR
HYPERSPECTRAL IMAGES

8.1 Introduction

A general issue that needs to be addressed in several classification or clustering tasks
is that of feature selection; that is, selecting from a set of available features, used for the
representation of the involved entities, the most “informative” ones. In this section, we
focus on the HSIs case and we propose a new feature selection method for HSIs. In this
context, the entities to be processed are the pixels, which are represented by their spectral
signatures (vectors containing the spectral values in the observed bands). Although, there
are several available measurements for each HSI pixel (due to the large number of the
considered bands) which, in principle, may be a desirable fact, this may also become a
source of problems. This is due to the high correlation (mainly) between adjacent bands,
as well as to the noise contained in them. This, in turn, may affect the performance of any
adopted clustering methodology for identifying homogeneous regions in a given HSI.

The proposed spectral band selection method selects only a small subset of the available
bands that are suitable for cluster identification. The selected bands exhibit significant dis-
crimination ability among different kinds of HSI pixels and their choice has also a physical
interpretation. The proposed procedure is based on the optimization of a suitably de-
fined sparsity promoting cost function. This allows classification or clustering algorithms
to provide results of the same quality compared to cases where all spectral bands are
used, while, in some cases, it allows the unravelling of some less-obvious patterns. Ex-
perimental results on real data have shown remarkable quality of the clustering produced
by considering only the selected by the proposed method bands, compared to the case
where all bands are used.

8.2 The Feature Selection Method

Let X = {xi ∈ ℜL, i = 1, ..., N} be the set of N = n1 · n2, L-dimensional data vectors
(spectral signatures), each one corresponding to a pixel of the n1×n2 HSI under study (L
is the number of the involved bands).

First, we construct the N ×N symmetric distance matrix, Dtot, containing all the squared
Euclidean distances1 between any pair of points, based on all bands and then, we deter-
mine the L N ×N distance matrices Dr, r = 1, . . . , L, taking each time into account only
the corresponding band r. That is, in Dr, the distances among the data points will be equal
to the squared difference of their rth spectral band values. In the sequel, we vectorize Dtot
columnwise, thus producing a N2-dimensional column vector, termed y = vec(Dtot). The

1Note that ∥xi−xj∥2 denotes the squared Euclidean distance between vectors xi, xj , while |x(r)
i −x

(r)
j |2

denotes the squared absolute difference between the scalars x
(r)
i , x(r)

j .
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Figure 8.1: Graphical illustration of the adopted problem formulation for a toy 3×3 HSI (N = 9).

same is applied to all Dr’s, producing the corresponding N2-dimensional column vectors,
denoted by ar, r = 1, . . . , L. These ar’s are stacked together to form a N2 × L matrix
A. Apparently, y = A1, where 1 is the all ones column vector. The whole problem for-
mulation is illustrated in Fig. 8.1. In HSIs, it is expected that several spectral bands (and
their corresponding ar’s) will not contribute significantly to y, since the values of almost all
HSI pixels in each one of these bands will be very close to each other. Motivated by this
observation, we propose the formulation

y = Aw+ v =
L∑
r=1

wrar + v, (8.1)

where w = [w1, . . . , wL]
T is a L× 1 sparse weight vector and the reconstruction error term

v accumulates the contributions of the “less-significant” spectral bands. Note that the non-
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zero components of w weight the most significant (for clustering) columns (bands) of A,
while its zero components annihilate the less significant ones. In order to estimate the
sparse vector w, we adopt the celebrated lasso minimization criterion [95]

min
w
{||y− Aw||22 + λ||w||1}, (8.2)

where λ is a regularization parameter and ||.||1, ||.||2 denote the l1 and l2 distances, respec-
tively. The above formulation imposes sparsity on w, via the inclusion of its l1 norm in the
cost function to be minimized. Then, the spectral bands that correspond to the non-zero
components of w are retained and used to form the HSI pixel feature vector that will be
used subsequently in the classification or clustering task (see Fig. 8.2).

Figure 8.2: Graphical illustration of the procedure that forms the HSI pixel feature vectors using the
spectral bands that correspond to non-zero components of w.

In order to solve the aboveminimization problem, we adopt the Bi-ICE algorithm, proposed
in [96], which does not require any parameter fine tuning and works well even for highly
correlated data (as is expected to be the case for the columns of A). Note that Bi-ICE does
not, in general, force some wr’s to be exactly zero, but rather imposes to them very small
values. Thus, an appropriate threshold t should be defined so that, after the convergence
of Bi-ICE, the wr’s that are less than t are set to zero.

8.3 An extension for large HSI data sets

Although the proposed formulation for feature selection is valid in the HSI clustering frame-
work, it exhibits a significant problem when it is used even for data sets of moderate size.
More specifically, the dimensionality of the vectors y and ar’s is N2, which is very large,
even for moderate values of N . Thus, solving the lasso may become computationally
prohibitive, especially in terms of memory requirements.

In the sequel, we show how the proposed method can be extended for medium-size or
large-size HSIs. Specifically, first, we split the original HSI (X) into K smaller equal-sized
HSIs with X1, . . . , XK being their corresponding sets of data vectors, each one of size,
say m, and X = ∪Kk=1Xk (see Fig. 8.3). As a result, the associated y’s and ar’s will be of
size m2 in each subimage, with m chosen so that the resulting problem can be handled
using the available computational resources. Then, for each such set Xk, k = 1, ..., K,
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Figure 8.3: An example that an HSI cube is split into K = 9 smaller equallised HSIs.

we solve the above lasso minimization problem and let Fk denote the set of selected
features for the corresponding set Xk. Note that the rth feature is included in Fk, if wr > t,
where t is the user-defined threshold mentioned before. In the sequel, we compute the
frequency of occurrence, pr, of the rth feature in all the Fk’s, k = 1, ..., K. The final set
of features F , concerning the whole data set X, will comprise those features for which
pr > b, r = 1, . . . , L, where b ∈ [0, 1] is a user-defined constant and indicates the minimum
required frequency of occurrence of a feature in all sets F1, . . . , FK . Clearly, the larger the
b, the less features are likely to be included in F .

8.4 Experimental Results

The proposed method is assessed through tests performed on an 150×150 HSI dataset
from a rural area in Salinas California. This dataset is a part of a scene of the flightline ac-
quired by the AVIRIS sensor over Salinas Valley, California with 204 bands (after removal
of 20 noisy bands). Salinas classification used as reference contains eight vegetation
classes: Cs-1 and Cs-2 (two types of “broccoli”), Cs-3 (“grapes”), Cs-4 (“corn”) and Cs-5
- Cs-8 (four types of “lettuce”), (see Fig. 8.6(a)). The aim here is to apply the proposed
methodology, in order to get a reduced set of features and then to run a clustering algo-
rithm (APCM, see chapter 3) on both the complete and reduced feature vector sets, in
order to assess the impact of the proposed methodology.

InExperiment 1, the proposed band selection method was applied on a 40×40 sub-image
of the HSI under study that includes the four “lettuce” classes Cs-5 - Cs-8. The method
selected 24 out of the 204 bands (for t = 0.1) as the most significant ones for clustering
(Fig. 8.4). Then, the APCM clustering method [54] (with mini=10, α=1) was applied for
(i) all the 204 bands and (ii) the 24 selected bands. In both cases, five clusters are dis-
tinguished, as shown in Fig. 8.5(b) and Fig. 8.5(c), respectively, giving both SR=99.25%.
Three clusters Cl-5, Cl-7, Cl-8 correspond to the three reference classes Cs-5, Cs-7, Cs-8,
while the reference class Cs-6 is divided into clusters Cl-6a and Cl-6b. This can be ex-
plained by the different spectral pattern of the latter within bands 25-40, which, however,
present the same diagnostic absorption features in position and depth at higher wave-
lengths, indicating thus the same species over the same soil with different abundances in
the pixel.
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Figure 8.4: The 5 mean cluster signatures of Experiment 1 and the 24 selected bands (marked with
red lines).
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Figure 8.5: Results of Experiment 1. (a) The reference classified image. The clustering results
obtained from APCM (mini = 10, α = 1), when (b) all bands are used (5 clusters), (c) only the 24
selected bands are used (5 clusters). Labels in (a) correspond to classes (Cs) and in (b),(c) to clusters
(Cl).

Fig. 8.4 shows the mean spectral signatures of the 5 clusters identified in Experiment 1,
as well as the 24 bands selected by our method. It is interesting to note that most of
them are located in the VNIR area (bands 20-60) over characteristic vegetation features.
Significant bands are located either in the maximum absorption depth of typical vegetation
features, such as the red absorption and the infra-red water absorptions, or in abrupt
reflectance changes such as the red edge pattern (680-750nm). It must be noted here,
that the algorithm does not necessarily select all the bands where significant differentiation
between signatures occurs (for example, bands 68 to 72).

In Experiment 2, the extended version of the proposed band selection method was ap-
plied to the whole 150×150 HSI image (as aforementioned, with eight classes) and 33
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Figure 8.6: Results of Experiment 2. (a) The reference classified image. The clustering results
obtained from APCM (mini = 20, α = 2), for (b) all bands (9 clusters), (c) for the 33 selected bands
(10 clusters).

bands were selected (for t = 0.2 and b = 0.5). Then, clustering via the APCM algorithm
(mini=20, α=2) was performed using (i) all spectral bands (Fig. 8.6(b), SR=92.01%) and
(ii) the 33 selected bands (Fig. 8.6(c), SR=91.82%). As shown in Fig. 8.6, in both cases
the results provided additional information compared to the reference classes. In particu-
lar, both distinguished Cl-6a and Cl-6b for Cs-6, while Cl-7 corresponds to the whole Cs-7
and a compact rectangular region of Cs-4. Also, we have additional spectral presence of
Cl-6a at the right edge of the Cs-4 area. Furthermore, the clustering using the 33 selected
bands provided additional information on Cs-2, as shown in Fig. 8.6(c) in the form of a new
cluster Cl-2b (named “soil/plant”) appearing in linear stripes within the Cs-2 area (upper
right part of the image). This seems to correspond to mixed vegetation/soil pixels with
higher spectral participation of soil in the overall spectral signature of the pixel.

8.5 Conclusion

In this chapter, a novel sparsity-aware feature selection method for HSI clustering is pre-
sented, which is based on the optimization of a sparsity promoting cost function. The
proposed method is likely to select less correlated bands, which, in principle, will help
subsequent classification or clustering tasks in identifying patterns that are not identified
using the whole bands information. Finally, the proposed method was tested in the clus-
tering framework and gave results of the same quality with those produced in the case
where the full pixels’ spectral signatures are used.
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9. CONCLUSION AND FUTURE DIRECTIONS

In the present thesis, we have addressed the task of clustering within the possibilistic
framework, introducing three novel features: parameter adaptivity, sparsity and online
processing. Although the resulting algorithms are of generic nature, in this thesis they are
mainly applied for hyperspectral image (HSI) processing, aiming at the identification of ho-
mogeneous regions in HSIs. In this concluding chapter, we review the main contributions
of the thesis and we discuss some directions for future research.

9.1 Summary

The first contribution of the thesis is a novel clustering scheme, called Adaptive Possi-
bilistic C-Means (APCM) (chapter 3), whose main feature is that its involved parameters
γ’s, after their initialization, are properly adapted at each iteration of the algorithm. This
renders APCMmore flexible in tracking the variations in the cluster formation occurring as
the algorithm evolves. Specifically, in contrast to most state-of-the-art possibilistic clus-
tering algorithms, APCM is able to uncover the underlying clustering structure, even in
cases where the physical clusters are closely located to each other and/or have signif-
icant differences in their variances. In addition to the above, as direct consequence of
the adaptation mechanism embedded in APCM, a long-standing issue in the clustering
literature is overcome. In particular, APCM is equipped with a cluster elimination mecha-
nism, which makes it capable to reveal the actual number of physical clusters formed by
the data set under study, as well as the clusters themselves, provided that the algorithm
starts with an overestimate of it. In addition, theoretical results that are indicative of the
convergence behavior of APCM, are also provided. Finally, the provided experimental
results show that APCM exhibits superior clustering performance compared to several
related algorithms and in particular the conventional PCM.

As another direction in expanding the possibilistic clustering framework, we considered the
issue of sparsity. The sparsity hypothesis is supported by the fact that, in practice, a data
point may be compatible with only one or a few (or even none) clusters. To this end, our
research efforts have focused on inducing sparsity on the vectors containing the degrees
of compatibility of each data point with the clusters, giving rise to the so called Sparse
Possibilistic C-Means (SPCM) algorithm (chapter 4). SPCM exhibits increased immunity
to the presence of data points that may be considered as noise or outliers, by not allowing
them to contribute to the computation of the cluster representatives. Thus, the exploitation
of sparsity makes SPCM capable in dealing well (in principle) with closely located clusters
that may also be of different densities. This, in turn, implies that SPCM ends up with more
accurate estimates for the cluster representatives, compared to other related possibilistic
algorithms, especially in noisy environments. Finally, a rigorous convergence analysis of
SPCM has been also conducted, which shows that the iterative sequence generated by
SPCM converges to a local minimum of its associated cost function. The proof is not trivial
with the main source of difficulty, compared to those given for previous possibilistic algo-
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rithms, being the lack of continuity of the updating formula of the degrees of compatibility,
which is actually a two-branch expression. This theoretical analysis applies also trivially
to the conventional PCM algorithm [10], leading to much stronger convergence results,
compared to those given in the literature.

The next step was an effort towards the combination of the main features of the APCM
and SPCM algorithms into a single scheme. The resulting algorithm, called Sparse Adap-
tive Possibilistic C-Means (SAPCM) (chapter 5), inherits all the advantages of APCM and
SPCM, being able to deal well with even more challenging situations, where clusters may
be of significantly different variances and/or densities, and exhibiting robustness to out-
liers. More specifically, SAPCM has the ability (a) to cope well with closely located clusters
with possibly different densities and/or variances, (b) to determine the number of natural
clusters and (c) to improve even more the estimates of the cluster representatives com-
pared to SPCM and APCM. The overall advantages of SAPCM, compared to other related
algorithms, are verified via extensive experimentation.

Continuing with our tour in the thesis, we met next two variants of SAPCM (chapter 5).
The first one is called Sequential Sparse Adaptive Possibilistic C-Means (SeqSAPCM) al-
gorithm and is an iterative bottom-up version of SAPCM. Specifically, SeqSAPCM, which
adopts SAPCM as its structuring element, begins with two clusters and proceeds by ex-
amining at each iteration whether a new cluster can be formed. Thus, it unravels sequen-
tially the underlying clustering structure. The basic advantage of SeqSAPCM is that it
does not require an initial (over)estimation of the number of clusters, like APCM, SPCM
and SAPCM. The second variant of SAPCM, called Layered Sparse Adaptive Possibilistic
C-Means (L-SAPCM) algorithm, also utilizes SAPCM as its structuring element (yet in a
different way than that of SeqSAPCM) and works in layers. Specifically, the SAPCM algo-
rithm is initially applied on the whole data set and then it is recursively applied separately
on each resulting cluster, in order to reveal possible clustering structure within it, working
as in a tree structure basis. The L-SAPCM algorithm terminates when none of the so far
produced clusters contains further clustering structure within it. L-SAPCM, due to its phi-
losophy, can distinguish very closely located clusters that lie at different “resolutions” in
the feature space (i.e. in cases where the variances of the clusters may differ orders of
magnitude from each other). This feature has been confirmed experimentally on HSI data,
where clusters with variances differing orders of magnitude from each other may appear.

The most well-known clustering schemes, as well as the so far discussed ones, operate
in a batch mode, that is, they need to consider the whole data set at each iteration before
updating their parameters. Thus, they turn out to be extremely demanding in terms of
computational complexity when processing large sized and/or high dimensional data sets
(e.g., HSIs). The above issue was the motivation to explore the possibility of transforming
the proposed batch clustering schemes to online, where data points are processed one-by-
one. To this end, we developed an efficient online version of the APCM algorithm, called
Online Adaptive Possibilistic C-Means (O-APCM) (chapter 6), which embodies three new
procedures for (a) generating, (b) merging and (c) deleting clusters dynamically, as new
data points become available. Instead of storing and using the whole data set, O-APCM
processes data vectors one by one and memorizes their impact to suitably defined pa-
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rameters. As a result, it is much more computationally efficient and has very low memory
requirements with no degradation on the resulting clustering quality, compared to its batch
counterpart. This makes O-APCM a good candidate for clustering of big data sets, whose
size and dimensionality are prohibitive for batch algorithms. It is worth highlighting that
O-APCM can be utilized for applications in both stationary, as well as dynamically vary-
ing environments, where the centers of the physical clusters may change their location
in data space over time. Experimental results show that O-APCM offers high discrimina-
tion capability at a very low computational cost, in both static and dynamically changing
environments.

After the presentation of the new clustering algorithms, a comparative study of all of them
with several other related algorithms is performed, on the basis of HSIs processing (chap-
ter 7). Specifically, three HSIs depicting areas with totally different land cover are used.
The obtained results are commented and interpreted on the basis of the nature of the ap-
plication at hand and it is shown that most of the proposed clustering algorithms exhibit
superior performance with respect to other related algorithms.

Departing from the thematic area of clustering and entering to the area of feature selection
that is closely related to it, a sparsity-aware feature selection method suitable for hyper-
spectral data has been developed (chapter 8). The proposed method is based on the
optimization of a sparsity promoting cost function, in order to identify the spectral bands
that are more informative and thus possess the higher discrimination capability. Experi-
mental results on real data have shown remarkable quality of clustering, resulting from a
certain algorithm, considering only the selected features/bands.

9.2 Future Directions

The present thesis has opened up several possible directions for future work, as it is
described in the sections to follow.

9.2.1 Further Extensions on the Proposed Algorithms

In all clustering possibilistic algorithms in the bibliography, as well as those proposed in
the present thesis, each cluster is associated with a parameter γ that is a measure of its
variance around its representative. This parameter actually defines a hypersphere around
the representative of the cluster and, as a consequence, the presence of hyperspherically-
shaped clusters is implied. Therefore, in the case where e.g. hyperellipsoidally-shaped
clusters are considered, a single parameter like γ cannot capture the variance around
the representatives in the various directions. One way to address this issue would be to
model each cluster with a hyperellipse centered on its cluster representative, at the cost of
inserting more parameters per cluster which, in turn, need to be estimated. It is expected
that this approach will work efficiently only for low dimensional data sets.

In chapter 6 we presented an online implementation of the APCM algorithm, named O-

185 S. Xenaki



Advances in Possibilistic Clustering with Application to Hyperspectral Image Processing

APCM, that requires very low memory and computation time compared to a batch imple-
mentation. Another research possibility would be the online implementation of the SAPCM
algorithm (O-SAPCM), aiming at exploiting its sparsity-promoting characteristic in a se-
quential framework, in order to reduce significantly the required computational burden. In
addition, an online implementation of the proposed layered sparse adaptive possibilistic c-
means clustering algorithm, L-SAPCM, is a further interesting extension, that may lead to
a layered online sparse adaptive possibilistic c-means clustering algorithm, L-OSAPCM.
In particular, L-OSAPCM algorithm may perform online clustering at each layer employ-
ing, e.g. O-SAPCM as its structuring element, thus inheriting all the advantages of a
layered clustering scheme and, additionally, reducing significantly the computational time
and complexity.

9.2.2 Subspace Possibilistic Clustering

In certain applications, the data vectors are aggregated along subspaces of the (usually
high dimensional) feature space. Subspace clustering aims at finding a multi-subspace
representation that best fits a collection of data points taken from a high dimensional
space. The problem here is not only to identify the clusters themselves but also the sub-
spaces where these clusters live. In this spirit, an extension of possibilistic clustering that
is worth to be investigated, is under the framework of subspace clustering. Specifically,
the development of subspace possibilistic clustering algorithms that aim at the identifica-
tion of the clusters along with the subspaces where they live, enriched with the features
of adaptivity and sparsity introduced in this thesis, is a very challenging future research
topic.
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ABBREVIATIONS

Abbreviation Meaning
ABC Artificial Bee Colony
AMPCM Automatic Merging Possibilistic Clustering Method
APCM Adaptive Possibilistic C-Means
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
Bi-ICE Bayesian Inference Iterative Conditional Expectations
FCLS Fully Constrained Least Squares
FCM Fuzzy C-Means
GMVQ Gauss Mixture Vector Quantization
GRM Generalized Rand Measure
HSI HyperSpectral Image
HYDICE HYperspectral Digital Imagery Collection Experiment
i.i.d Independent and identically distributed
L-SAPCM Layered Sparse Adaptive Possibilistic C-Means
MD Mean Distance
MRF Markov Random Fields
O-APCM Online Adaptive Possibilistic C-Means
OMEGA Observatoire pour la Minéralogie, l’Eau, les Glaces et

l’Activité
PCM Possibilistic C-Means
PFCM Possibilistic Fuzzy C-Means
SAPCM Sparse Adaptive Possibilistic C-Means
SEM Stochastic Expectation-Maximization
SeqSAPCM Sequential Sparse Adaptive Possibilistic C-Means
SPCM Sparse Adaptive Possibilistic C-Means
SR Success Rate
SSC Sparse Subspace Clustering
SWIR Short-Wave InfraRed
UPC Unsupervised Possibilistic Clustering
UPFC Unsupervised Possibilistic Fuzzy Clustering
VNIR Visible Near InfraRed





NOTATION

Symbol Meaning

x Scalar
|x| Absolute value of a scalar
x Vector
0 Zero vector
1 All ones vector
X Matrix or set
XT Transpose of matrix X
Il l × l identity matrix
|X| Determinant of matrix X
CH(X) Convex hull of set X
∥x∥p ℓp norm of vector x
N (µ,Σ) Normal distribution with mean µ

and covariance matrix Σ

ℜ Field of real numbers
ℜl l-dimensional space of real numbers
≈ Approximately equal
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APPENDIX A. PROOF OF APCM PROPOSITION

Proposition 1. Let γ′j =
∑

xi:uij=maxr=1,...,m uir
∥xi−µj∥2

nj
and η2j =

(∑
xi:uij=maxr=1,...,m uir

∥xi−µj∥

nj

)2

(see eq. (3.5)). Then η2j ≤ γ′j.

Proof. Let qij = ∥xi − µj∥ and qj = [qi1, . . . , qinj
]T . Then γ′j = 1

nj
∥qj∥22 (squared l2-norm)

and η2j = 1
n2
j
∥qj∥21 (squared l1-norm). From the relation between the l1 and l2 norms (see

e.g. [71]), it is: ∥qj∥1 ≤ n
1/2
j ∥qj∥2 ≤ n

1/2
j ∥qj∥1 or ∥qj∥21 ≤ nj∥qj∥22 ≤ nj∥qj∥21 or 1

n2
j
∥qj∥21 ≤

1
nj
∥qj∥22 ≤ nj

1
n2
j
∥qj∥21 or η2j ≤ γ′j ≤ njη

2
j . Note that for finite nj values, η2j and γ′j are of the

same magnitude.
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APPENDIX B. PROOFS OF SPCM PROPOSITIONS

Proof of Proposition 2. Taking the derivative of f(uij) with respect to uij, we obtain

∂f(uij)

∂uij
= γju

−1
ij

[
1− λ

γj
p(1− p)up−1

ij

]
. (B.1)

Solving ∂f(uij)

∂uij
= 0 with respect to uij and taking into account that uij > 0 (by definition),

after some elementary algebraic manipulations we have the following solutions

ûij =

[
λ

γj
p(1− p)

] 1
1−p

and ũij = +∞. (B.2)

Proof of Proposition 3. It suffices to show that ∂f(uij)
∂uij

≤ 0 for uij ∈ (0, ûij] and ∂f(uij)

∂uij
≥ 0

for uij ∈ [ûij,+∞). Indeed, for uij ∈ (0, ûij] we have uij ≤ ûij, which implies that u1−pij ≤
λ
γj
p(1 − p) (from eq. (B.2)) or 1 ≤ λ

γj
p(1 − p)up−1

ij . From the latter and taking into account
eq. (B.1) again, it follows that ∂f(uij)

∂uij
≤ 0 in uij ∈ (0, ûij]. Similarly, for uij ∈ [ûij,+∞) we

have uij ≥ ûij, which, utilizing eq. (B.2), implies that u1−pij ≥ λ
γj
p(1−p) or 1 ≥ λ

γj
p(1−p)up−1

ij .
From the latter and taking into account eq. (B.1), it follows that ∂f(uij)

∂uij
≥ 0 in uij ∈ [ûij,+∞).

Consequently, ûij is the unique minimum of f(uij), since in [ûij,+∞), f(uij) is increasing
and, as a consequence, ũij is not a minimum of f(uij).

Proof of Proposition 4. It is f(1) = dij + γj ln 1 + λp · 1p−1 = dij + λp > 0. Moreover, it
is f(0) = lim

uij→0+
f(uij) = lim

uij→0+

(
dij + γj ln uij + λpup−1

ij

)
= dij + lim

uij→0+

[
1

u1−p
ij

(
γju

1−p
ij ln uij+

λp)] = +∞, as it follows from the application of the L’ Hospital rule, since lim
uij→0+

1

u1−p
ij

= +∞

and lim
uij→0+

(
γju

1−p
ij lnuij

)
= 0.

Taking into account (a) that f(0) > 0 and f(ûij) < 0, (b) the continuity of f(uij) and
(c) the Bolzano’s theorem, there is at least one u{1}ij ∈ (0, ûij) : f(u

{1}
ij ) = 0. Moreover,

based on Proposition 3, ∂f(uij)
∂uij

< 0 for uij ∈ (0, ûij), thus f(uij) is decreasing on (0, ûij).
Therefore, there is exactly one u{1}ij ∈ (0, ûij) : f(u

{1}
ij ) = 0. Similarly, taking into account

(a) that f(ûij) < 0 and f(1) > 0, (b) the continuity of f(uij) and (c) the Bolzano’s theorem,
there is at least one u{2}ij ∈ (ûij, 1) : f(u

{2}
ij ) = 0. Moreover, based on Proposition 3, it is

∂f(uij)

∂uij
> 0 for uij ∈ (ûij, 1), thus f(uij) is increasing on (ûij, 1). Therefore, there is exactly

one u{2}ij ∈ (ûij, 1) : f(u
{2}
ij ) = 0. Consequently, there are exactly two u{1}ij , u

{2}
ij ∈ (0, 1)

such that f(uij) = 0.

Proof of Proposition 5. Obviously, if f(uij) = 0 has two solutions, then f(ûij) < 0. From
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Proposition 4, it is u{1}ij < ûij < u
{2}
ij . Since ∂f(uij)

∂uij
≤ 0 for uij ∈ (0, ûij] and ∂f(uij)

∂uij
≥ 0 for

uij ∈ [ûij,+∞) (proof of Proposition 3), it turns out that f(uij) is decreasing for uij ∈ (0, ûij]
and increasing for uij ∈ [ûij,+∞). In addition, it can be easily verified that f(0) ≥ 0
and f(+∞) ≥ 0. Taking into account these facts, the continuity of f and the fact that
f(u

{1}
ij ) = f(u

{2}
ij ) = 0, it follows that f(uij) is positive for uij ∈ (0, u

{1}
ij ) ∪ (u

{2}
ij ,+∞) and

negative for uij ∈ (u
{1}
ij , u

{2}
ij ). Thus, u{2}ij is a turning point for JSPCM(Θ, U) before which

JSPCM(Θ, U) decreases with respect to uij and after which JSPCM(Θ, U) increases with
respect to uij. Therefore, u{2}ij is a local minimum of JSPCM(Θ, U), whereas, employing
similar reasoning, it turns out that u{1}ij is a local maximum of JSPCM(Θ, U).

Proof of Proposition 6. Let JSPCM(θj, uij) contain the terms of JSPCM(Θ, U) that involve
θj, uij. According to Propositions 3, 4 and 5, it turns out that if f(ûij) < 0, then the
global minimum of JSPCM(θj, uij)with respect to uij is u{2}ij , provided that JSPCM(θj, u

{2}
ij ) <

JSPCM(θj, 0). However, the latter becomes u{2}ij

[
dij + γj ln u{2}ij − γj+ +λ(u

{2}
ij )p−1

]
< 0

and taking into account that f(u{2}ij ) ≡ dij + γj ln u{2}ij + λp(u
{2}
ij )p−1 = 0, it is equivalent to

u
{2}
ij

[
−λp(u{2}ij )p−1 −γj + λ(u

{2}
ij )p−1

]
< 0 or u{2}ij >

(
λ(1−p)
γj

) 1
1−p . Clearly, in the case where

f(ûij) < 0 and u{2}ij <
(
λ(1−p)
γj

) 1
1−p , it is uij = 0. Finally, in the case where f(ûij) > 0, it is

f(uij) > 0, for uij ∈ (0,+∞). Thus, JSPCM(Θ, U) increases with respect to uij in (0,+∞)
and, as a consequence, its minimum is achieved at uij = 0.
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APPENDIX C. SPCM CONVERGENCE PROPOSITIONS AND PROOFS

Proposition C1: If K < pe2(1−p), then Rj > 0.

Proof: Substituting λ from eq. (4.5) into the definition of R2
j from eq. (4.7) and after some

manipulations, we have

R2
j =

γj
1− p

(
− ln γ̄

γj
− ln

K

e2−p
− p

)

or, since γ̄
γj
< 1

R2
j ≥

γj
1− p

(
− ln K

e2−p
− p

)
.

Straightforward operations show that the positivity of the quantity in parenthesis is equiv-
alent to the hypothesis condition K < pe2(1−p). Q.E.D.

Proposition C2: It is (
∑k
i=1 u

′
i)
2 ≤ ∑k

i=1 ui
∑k
i=1

u′2i
ui
, for ui, u′i > 0, i = 1, . . . , k.

Proof: It is

(
k∑
i=1

u′i)
2 ≤

k∑
i=1

ui
k∑
i=1

u′2i
ui
⇔

k∑
i=1

u′2i + 2
k∑
i=1

k∑
j=i+1

u′iu
′
j ≤

k∑
i=1

u′2i +
k∑
i=1

k∑
j=1

ui
uj
u′2j ⇔

k∑
i=1

k∑
j=i+1

(
ui
uj
u′2j +

uj
ui
u′2i − 2u′iu

′
j) ≥ 0⇔

k∑
i=1

k∑
j=i+1

(uiu
′
j − uju′i)2

uiuj
≥ 0,

which obviously holds. Q.E.D.

Proposition C3: Let z∗ = (u∗,θ∗) ∈ Sq corresponding to a certain active set Xq. Let also

Yz∗ = Yu × Yθ be a set of (u,θ), such that Yu = {u ∈ M : ||θ∗ −
∑k

i=1
uixi∑k

i=1
ui
|| < ε} where

ε < 1
2

√
(1−p)γ

2
and Yθ = {θ : θ =

∑k

i=1
uixi∑k

i=1
ui
,u ∈ Yu}. Then (a) Yz∗ is a convex set and (b) J

is a convex function over Yz∗ .

Proof: (a) Since the domain Yu of u is a cartesian product of closed one-dimensional
intervals, it is convex. In addition, the set Yθ is also convex by its definition. Thus Yz∗ is
convex.

(b) We prove that for any z ∈ Y , it is z′THzz′ > 0, ∀z′ ∈ Y . Following a reasoning similar to
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that in Lemma 7, we end up with the following inequality (with corresponds to eq. (4.49))

z′THzz′ ≥ 2
k∑
i=1

ui||θ′||2 − 4
k∑
i=1

u′i||θ′||(2ε) + (1 − p)γ
k∑
i=1

u′2i
ui

≡ ϕ(||θ′||). (C.1)

Note that the factor 2ε in the right hand side of the above inequality, results from the fact
that this is the maximum possible difference between two elements in Yθ. The discriminant
of ϕ(||θ′||) is

∆ = 8[8ε2(
k∑
i=1

u′i)
2 − (1− p)γ

k∑
i=1

u∗i

k∑
i=1

u′2i
u∗i

]. (C.2)

Proposition C2 and the choice of ε guarantee that∆ is negative, which implies that z′THzz′ >
0 and as a consequence J is convex over Yz∗. Q.E.D.

Proposition C4: A data point x has u > 0 with respect to a cluster C with representative
θ and parameter γ or, equivalently, f(u) = 0 has solution(s), if K ≤ γ

γ̄
pe(2−µ)(1−p), where

µ = ∥x−θ∥2
γ

.

Proof: According to eq. (4.7), a data point x has u > 0 if and only if ∥x − θ∥2 ≤ R2 ⇔
∥x − θ∥2 ≤ γ

1−p

(
− ln λ(1−p)

γ
− p

)
⇔ µ ≤ 1

1−p

(
− ln λ(1−p)

γ
− p

)
, which, using eq. (4.5), gives

µ ≤ 1
1−p

(
− ln Kγ̄

pe2−pγ
− p

)
⇔ µ(1 − p) ≤ − ln Kγ̄

pγ
+ 2 − 2p ⇔ (2 − µ)(1 − p) ≥ ln Kγ̄

pγ
⇔

e(2−µ)(1−p) ≥ K
p
γ̄
γ
⇔ K ≤ γ

γ̄
pe(2−µ)(1−p). Q.E.D.

Theorem C1 (Leray-Schauder-Tychonoff Fixed point theorem, e.g. [71]): If X ⊂ Rr is
nonempty, convex and compact and if Z : X → X is a continuous function, there exists
x∗ ∈ X, such that Z(x∗) = x∗ (fixed point).
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