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Abstract

In the first part of this thesis a brief overview of the Standard Model physics with emphasis
at its shortcomings is presented. Supersymmetry, a principle of nature which links fermions
with bosons, appears as a natural extension of Standard Model which heals at once many of
these shortcomings. A short description of its principle and its phenomenology is discussed.

The LHC accelerator is capable to create new particles, which Supersymmetry predicts, and
CMS detectors can collects such events for further analysis. A brief description of CERN,
LHC and CMS infrastructure is given.

The second part of this thesis is dedicated to a search for supersymmetry in events with soft
opposite-sign leptons, large missing transverse energy and one or two hard jets. This final
state is typical of supersymmetry scenarios with a small mass splitting (compressed mass
spectra) between the lightest supersymmetric particle and the top squark or the chargino.

Proton-proton collision data, collected in 2012 at a centre-of-mass energy of 8 TeV and
corresponding to 19.7 fb−1 are used in a compressed supernumerary search. The event
selection strategy and the methods for estimating the Standard Model background using
data are presented. In addition prediction methods are validated in real data predictions.
The data observed in the search region of the analysis are found to be in agreement with the
predicted background yields and as a result exclusion limits are set for different compressed
signal scenarios.
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Chapter 1

The Standard Model of particle physics
and its shortcomings

1.1 The Standard Model

The Standard Model (SM) of particle physics contains all our current knowledge of the elementary
particles and their fundamental interactions at space-scales of about 1 fm and energy-scale of about
102 GeV. It is the theory which describes the dynamics of electromagnetic, weak, and strong nuclear
interactions in between all known elementary particles. SM is a quantum field theory(-ies) with local
gauge invariance under the symmetry group SU(3)C×SU(2)L×U(1)Y . In this description context spin
1/2 particles (fermions) interact each other exchanging spin 1 force-carriers particles (bosons). All
particles are acquire their masses interacting with the spin 0 Higgs particle which its corresponding
field fulfils timespace.

Historically, SM emerged after electromagnetic and weak forces unification, embedding theories
existing before into a unibody theoretical structure based on quantum field theory (QFT) and gauge
invariance principle. A brief presentation of “SM making” can be found at [104, 139] by its “fathers”,
whereas an excellent extensive presentation of the SM developing and its history can be found at [125].

In this section we will very briefly present the main aspects of the SM and its prediction power.
(The bibliography which is followed here is mainly [136, 40, 125], additional explicit and complete
presentation of SM is beyond the scope of current document and can be found at [124, 131, 94, 95, 93]).

1.1.1 SM particle content and their interactions

The SM is comprised by 12 fermions: six leptons, three of those are electrically charged −|e| ≡ e, and
three neutral, six charged quarks and five bosons as figure 1.1 summarizes. Each of the six quarks comes
to a three “color” state and the gluon comes to an eight different color-combination states. In addition
each of the fermions has an antiparticle of opposite electric charge. All these sum up to 24 fermion
particles and other 24 antiparticles. These 48 fermions interact with each other with four forces: the
ElectroMagnetic force (EM), weak-nuclear force, strong-nuclear force and gravity. The first three are
understood and described within the SM, where the last -gravity- is not a part of it. In QFT context,
where these forces are understood, each one is “mediated” by its corresponding boson(s) mediator,
which sum up other 1+3+8 bosons in the SM particle context. The set closes with the newly found
Higgs boson which couples with every massive SM particle; thus SM has (48+1+3+8+1=)61 particles.

A very short description of the three forces and their attributes can be as follows.

• EM force affects only the electrically-charged particles i.e. electron (e±), muon (µ±), tau (τ±), all
six quarks (u, d, c, s, t, b) and the W± bosons. It is mediated by the massless and neutral photon
(γ). The theory (part of SM) which describes such interactions is the Quantum ElectroDynamics
(QED); a QFT, based on a local gauge invariance principle [95, 131].

• The Weak-nuclear force affects all particles caring weak-charge, i.e. all six leptons (e, µ, τ, νe, νµ, ντ ),
six quarks and the W±, Z0 bosons. Where the last three (W±, Z0) are the mediators of the force.
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Weak and EM forces are unified under the so-called ElectroWeak force (EW) described by an
SU(2)×U(1) gauge symmetry. This electroweak symmetry is spontaneously broken by the vac-
uum, so EM and weak interactions become very different at low momentum/energy probing
scales.

• Strong nuclear interaction affects only the color-charged particles i.e. the (6×3colors=) 18 quarks
and is mediated by the eight massless, neutral, and colored-charged gluons. The theory which
describes these strong interactions is the Quantum ChromoDynamics (QCD) [93, 131] which is
associated with an SU(3) gauge symmetry. QCD provides a description frame of understanding
all hadrons and the their individual constituents (partons) interactions.

Figure 1.1: The SM particle content. In first three columns the so-called three generations of matter
with distinct mass differences to each others. On top two rows the six quarks and on the bottom
two rows the six leptons. Masses noted on upper-left coroners of each particle, electric charges on the
top-right coroner.

Figure 1.2 summarizes the basic properties of SM fermions and bosons in tables. SM describes not
only to the elementary particles physics, but also underlies larger scale phenomena, both in atomic and
nuclear physics level, up to astrophysical and cosmological scale observations. Strong, weak and EM
interactions are responsible for nuclear α, β and γ decays, explaining all corresponding phenomena, as
well as more exotic processes observed in larger scales like nuclear fusion in stars, inverse β-decay in
compact (astrophysical) object formation, cosmic rays properties and much more.

The final ingredient of the Standard Model is the Higgs boson (H), which was discovered by the
ATLAS and CMS (section 3.4) experiments at the LHC (section 3.3) in 2012 [70, 74], and was predicted
in 1964 by R.Brout, F.Englert and P.Higgs [85, 103]. The H boson has a mass of 125.1 GeV and spin
0+ (scalar). It plays a crucial role in the whole SM frame since it provides the mechanism by which
all (massive) particles acquire their mass. Its corresponding Higgs-field is believed to have a non-zero
Vacuum Expectation Value (VEV) in contrast with the rest SM particles. It is the interaction of the
-in principle- massless particles with this non-zero VEV Higgs-field that gives them their measured
masses. The discovery of this (SM-like) Higgs boson was a vital importance validation for the whole
SM frame.
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Figure 1.2: Table on top: quarks and leptons with their masses and electrical charges. Table in the
middle: each fermion couplings with the force carriers/mediators. Table on the bottom: the four bosons
carriers of each interaction. Diagrams with fermions in coupling with the “force” bosons. (Taken from
[136].)

1.1.2 Local gauge invariance in a general Abelian field

The general principle of Abelian and non-Abelian gauge invariance is what dictates the structure of
the interactions between fermions and vector bosons, and also the interaction of vector bosons their
self1. The non-Abelian symmetry groups is a generalization of the Abelian gauge symmetry used in
QED, thus we will first show the last one.

The Lagrangian density L0 for a free fermion field ψ, (ψ ≡ ψ(x) ≡ ψ(xµ)) with mass m, has a
global U(1) symmetry, can be written as:

L0 = ψ̄(iγµ∂µ −m)ψ (1.1)

where ψ̄ ≡ ψ†γ0 and is invariant under the global gauge (or phase) transformation:

ψ(x)→ ψ′(x) ≡ eiaψ(x), a ∈ R (1.2)

We can deduce QED extending the global to local transformations, where a→a(x) is now a real function.
Such change requires the insertion of a vector field Aµ, and the (minimal) modification of the derivative
to the “covariant” one:

∂µ → Dµ ≡ ∂µ + ieAµ (1.3)

1Subsection follows reference [40] by Markus Diehl and Wolfgang Hollik.
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The e is at the end identified as the fermion charge. Thus the simultaneous local gauge transformations:

ψ(x)→ ψ′(x) = eia(x)ψ(x), Aµ(x)→ A′µ(x) = Aµ(x)− 1

e
∂µa(x), (1.4)

leaves invariant the resulting Lagrangian. Last transformations define the electromagnetic gauge group
U(1)EM . As a consequence of this transformation, the invariant Lagrangian contains now an interaction
of the vector field Aµ with its corresponding (Dirac) EM-current:

L = ψ̄(iγµDµ −m)ψ = L0 − JµEMAµ, current : JµEM ≡ eψ̄γµψ, (1.5)

The field Aµ appears as static since no kinetic term is provided yet; it can become “dynamic” by adding
the kinetic term known from classical electrodynamics:

LA = −1

4
FµνF

µν , Fµν ≡ ∂µAν − ∂νAµ, (1.6)

The field Fµν tensor is invariant under local transformations (1.4). The Aµ vector fields then appears
as the photon field obeying equations of Maxwell. Then, the full QED Lagrangian can be written as:

LQED = ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν − eψ̄γµψAµ. (1.7)

First term allows fermion mass m existence and propagation, second, allows the existence of an electro-
magnetic (vector) field of massless spin 1 boson, and the third, allows interactions between the fermions
and the vector field (photons) with coupling strength1: e.

In short, the three basic steps followed in QED (LQED) construction as the gauge theory of the EM
interaction are:

• recognize the global symmetry of the free non-interacting Lagrangian;

• change the symmetry to local by substituting ∂µ with the covariant derivative Dµ, which contains
a vector field;

• insert a kinetic term for the vector field dynamics.

1.1.3 Local gauge invariance in non-Abelian fields

With these summarized steps (subsection 1.1.2) can be extended to the non-Abelian symmetry case.2

Its group’s elements are not commutative and the gauge fields turn to be self-interacting.

1. We consider the non-interacting system which is described by a multiplet Ψ ≡ (ψ1, ψ2, ..., ψn)T

of fermion fields with common masses m. An n = 3 example can be the triplet (q1, q2, q3)T with
the fields describing the three possible quark color-states. The non-interacting Lagrangian can
be written as:

L0 = Ψ̄(iγµ∂µ −m)Ψ (1.8)

where Ψ̄ ≡ (ψ̄1, ψ̄2, ..., ψ̄n). The free part: L0 (in the case of common masses) is invariant under
global transformations:

Ψ(x)→ U(a1, ..., aN)Ψ(x) (1.9)

with a unitary n×n matrix U parametrised by N real parameters a1, ..., aN . This set of matrices
U(a1, ..., aN) forms a group U(n) which is the maximal symmetry. Certainly the symmetry group
could be any subgroup. In this case the n × n matrices belong to a unitary representation,

1In case of a fermion with charge eQ the preceding construction needs a small modifications to: eiaQ in (1.2), ieQAµ
in (1.3) and eQψ̄γµψ in (1.5).

2Subsection follows reference [40] by Markus Diehl and Wolfgang Hollik.
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irreducible or reducible, of the symmetry group. The symmetry group may be chosen if not
dictated by the interactions, which in general is non-Abelian. We can write:

U(a1, ..., aN) = eia
aTa (1.10)

where now and on, the repeated group-indices (a = 1, ..., N) imply summation. Given that U is
unitary, the n× n matrices T 1, ..., TN are hermitian, and are called the generators of the group.
They satisfy commutation relations:

[T a, T b] = ifabcT c. (1.11)

With the so-called “structure constants” fabc being real numbers characteristic of the group.
These generators are conventionally normalized as: Tr(T aT b) = δab/2. Typical examples for G
are the groups: SU(n) of the n× n unitary matrices with determinant equal to 1. In particular,
the SU(2) has N = n2 − 1 = 3 generators given by: T a = σa/2, (where σa are the Pauli
matrices); while the SU(3) has N = 8 generators: T a = λa/2, conventionally expressed in
terms of the so-called Gell-Mann matrices λa (representations σa, λa can be found elsewhere like
[136, 93, 124, 131, 84]).

2. If we change the constants aa of (1.10) into real functions aa(x) and simultaneously introduce a
covariant derivative in the free Lagrangian (1.8) including vector fields:

∂µ → Dµ ≡ ∂µ + igWµ (1.12)

then the global symmetry can be extended to a local. We have thus introduced a new set of
vector fields Wµ (one for each independent generator) together with a coupling constant g, which
are similar to Aµ and e in QED. More precisely the vector field in (1.12) must be an N × N
matrix, since now Dµ acts on the N -dimensional column Ψ. The set of fields Wµ(x) can explicitly
be written expanded in terms of symmetry group generators as:

Wµ(x) = T aW a
µ (x), (1.13)

where summation is assumed over the a = 1, ..., N (the generators’ number of the group). Thus, a
set of N vector gauge fields W a

µ (x) is introduced to the Lagrangian (1.8) and induce the following
interaction terms between the N gauge fields and the n fermion fields:

L = L0 + Lint, Lint ≡ gΨ̄γµWµΨ = −Ja,µW a
µ , (1.14)

which describes the interaction of currents Ja,µ ≡ −gΨγµT aΨ, with the N gauge fields W a
µ .

The local gauge transformation under which L remains invariant is constructed from the matrix
U(a1(x), ..., aN(x)) as:

Ψ→ Ψ′ ≡ UΨ, Wµ → W ′
µ ≡ UWµU

−1 − i

g
(∂µU)U−1 (1.15)

Where last gauge transformation can be written for each a (in the expanded over infinitesimal
aa(x) form) as:

W a
µ → W ′a

µ ≡ W a
µ +

1

g
∂µa

a + fabcW b
µa

c. (1.16)

First two terms correspond to (1.4) the Abelian case, whereas the last term with fabc introduces
the non-Abelian nature to the group and the self-interaction of the gauge fields.

In case of a multiplet Φ ≡ (φ1, ...φn)T with scalar fields φi the Lagrangian is build in similar way,
with the following substitution, and the same covariant derivative Dµ as in (1.12):

(∂µΦ)†(∂µΦ)−m2Φ†Φ→ (DµΦ)†(DµΦ)−m2Φ†Φ. (1.17)
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3. The W fields kinetic term occurs from a generalisation of the EM strength tensor Fµν of (1.6):

Fµν = T aF a
µν = ∂µWν − ∂νWµ − ig[Wµ,Wν ], Wν = T aW a

ν (1.18)

with the N components:
F a
µν = ∂µW

a
ν − ∂νW a

µ + gfabcW b
µW

c
ν . (1.19)

The field strength Fµν under the transformation in (1.15) changes as: Fµν → F ′µν ≡ UFµνU
−1.

Consequently, the trace Tr(FµνFµν) is gauge invariant and provides the so-called Yang-Mills
Lagrangian (kinetic and self-interacting field terms):

LW ≡ −
1

2
Tr(FµνF

µν) = −1

4
F a
µνF

a,µν (1.20)

Where the ast consists the non-Abelian version of the photon field kinetic term (1.6). The part of
LW that is quadratic in the W fields describes the free propagation of the gauge bosons, whereas
the cubic and quartic terms introduces self-interactions between the vector bosons in three- and
four-bosons vertexes. In its explicit form is:

LW = − 1

4
(∂µW

a
ν − ∂νW a

µ )(∂µW a,ν − ∂νW a,µ)

− g

2
fabc(∂µW

a
ν − ∂νW a

µ )W b,µW c,ν

− g2

4
fabcfadeW b

µW
c
νW

d,µW e,ν . (1.21)

Both Lagrangians in (1.6) and (1.21) describe massless vector bosons. Mass terms: 1
2
m2AµA

µ

and 1
2
m2W a

µW
a,µ for the gauge fields are not invariant under a gauge transformation and break

the gauge symmetry.

1.1.4 Formulation of the QCD sector

The gauge theory of the strong interaction is Quantum ChromoDynamics (QCD) where takes place
between quarks and gluons1. It can be constructed by the principles of the previous section for the
particular case of the SU(3)c symmetry group, (subscript c indicates the “colour”, a quantum number
associated with the symmetry). The quarks are the elementary fermions of the theory which appear
in three different colour states (named: red, green, blue) described by triplets of fermion fields q ≡
(q1, q2, q3)T for each one of the quark flavours q : u, d, s, c, b, t. Using the (1.12) with (1.13) the covariant
derivative acting on the quark triplets can be written as:

Dµ = ∂µ − igs
λa

2
Ga
µ. (1.22)

The gs stands for strong coupling constant (in analogy with the fine-structure constant a or aEM in
QED), also expressed as aS ≡ g2

s/(4π). The gauge fields Ga
µ (where for three color-states/generators

counts: a = 1, ..., 8 = 32 − 1) describe the gluon in its eight different colour-state combinations. The
gluon field strengths tensors can then be introduced in accordance with general expression (1.19):

Ga
µν ≡ ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν . (1.23)

According to the rules of the preceding section the Lagrangian of QCD can be written as:

LQCD ≡
∑
q

q̄(iγDµ −mq)q + LG =
∑
q

q̄(iγ∂µ −mq)q −
∑
q

Ja,µq Ga
µ −

1

4
Ga
µνG

a,µν (1.24)

with summation index q running over the quark flavours. The last term is the Yang-Mills Lagrangian
in accordance with (1.20) with triple and quartic gluon self-interactions (its decomposed version is in

1Subsection follows reference [40] by Markus Diehl and Wolfgang Hollik.
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(1.21)). Second term describes the interaction of the quarks (currents): Ja,µq ≡ gsq̄γ
µ(λa/2)q, with

the eight gluon fields Ga
µ. The quark masses mq appears in QCD as free parameters; their origin is of

electroweak nature and will be discussed in Higgs sector. Even though QCD Lagrangian (1.24) appears
relatively simple, the calculations in QCD dynamics is non-trivial mainly because of the non small
value of is coupling aS which in most of the cases does not allows perturbative expansions. A wide
range of QCD phenomenology can be found in detail at [84, 93, 124, 125, 131].

1.1.5 Formulation of the EW sector

Fermions in SM clustered into leptons and quarks and additionally into three generations1 (figures 1.1,
1.2). The electroweak (EW) symmetry group is the SU(2)×U(1). Where the SU(2) (special unitary
group with 2 × 2 matrecies) stands as the gauge group symmetry of the double-type charges: the
“chiralities” of the weak interaction, whereas the U(1) for the single-type electric charge of the EM
interaction. In same context strong interaction with SU(3) group has triple-type charges: the color
of its fermions. The EW symmetry transformations act differently on left-handed and right-handed
fermion fields, which are projected out from a usual Dirac field ψ by:

1

2
(1− (+)γ5)ψ = ψL(R). (1.25)

The SU(2) group is named the weak isospin group, with associated quantum numbers the isospin I and
its third projection I3. Left-handed fields have I=1/2 and form doublets, whereas the right-handed
fields have I=0 and are singlets (treating the neutrinos as massless without right-handed sates):

I = 1/2 :

(
νe
e

)
L

,

(
u
d

)
L

,

(
νµ
µ

)
L

,

(
c
s

)
L

,

(
ντ
τ

)
L

,

(
t
b

)
L

, (1.26)

I = 0 : eR, uR, dR, µR, cR, sR, τR, tR, bR (1.27)

There are no right-handed neutrinos in the SM, even we know today that this is not true, neutrinos
are treated as massless and thus only left-handed. Their masses are so small (mν . 1 eV, figure 1.2),
which such consideration is valid in most cases. The I = 1/2 doublets transforms with a unitary matrix
U = exp(iaaσa/2), where a = 1, 2, 3. For each of these doublets or singlets, the U(1) corresponds to
an invariance of a multiplication by a phase factor eiY/2, where Y is the so-called weak hypercharge.
This Y is correlated with the EM-charge Q and “third isospin projection” I3 of a particle by the
Gell-Mann-Nishijima relation: Q = I3 + Y/2.

The symmetry group underlying the (unified) EW interaction is named: SU(2)L×U(1)Y . The EM
gauge subgroup U(1)EM of the last, is obtained by combining a hypercharge transformation with a
particular isospin transformation. For the isospin doublets (1.26) the corresponding transformation
matrix is:

eiaσ3/2eiaY/2 =

(
eia/2 0

0 e−ia/2

)
eiaY/2 (1.28)

which gives a phase factor eiaQ for each component of the doublet field and for the isospin singlets
simply eiaQ = eiaY/2. The I, I3, Y,Q eigenvalues are shown bellow:

Given that photon γ is massless and W±, Z are massive, the full symmetry described by SU(2)L×U(1)Y
must be broken down to the EM gauge symmetry. This necessary symmetry breaking in SM is intro-
duced by the Higgs mechanism and with a Higgs field which is a doublet under SU(2)L.

Thus the full EW Lagrangian is formed by the following tears:

LEW ≡ LWB + LF + LH + LY . (1.29)

Where LWB: are the pure unified gauge fields, LF : fermions propagation and interaction (with W and
B fields), LH : Higgs sector and LY : Yukawa interaction sector.

1Subsection follows reference [40] by Markus Diehl and Wolfgang Hollik.
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Figure 1.3: Isospin with its third projection eigenstates, together with charge and hypercharge values
for SM fermions, all connected by Gell-Mann-Nishijima relation: Q = I3 + Y/2.

The SM gauge group full symmetry is: SU(3)c×SU(2)L×U(1)Y , and its complete Lagrangian is
obtained as the sum of the QCD (1.24) and EW Lagrangians1 (1.29), where each quark fields in (1.26)
and (1.27) is a colour triplet: q = (q1, q2, q3)T and the colour indices are summed over.

The gauge field Lagrangian LWB can be derived by the three-steps method (shown in section ??)
to each factor of the SU(2)L×U(1)Y group. Then three vector fields W a

µ appears in association with
the three SU(2)L generators and one vector field Bµ for the hypercharge U(1)Y group. The four field
strength tensors can then be defined as:

Bµν ≡ ∂µBν − ∂νBµ, W a
µν ≡ ∂µW

a
ν − ∂νW a

µ + g2ε
abcW b

µW
c
ν , a = 1, 2, 3. (1.30)

There are two independent gauge coupling constants: g2 for the non-Abelian SU(2)L sector, and g1 for
the Abelian U(1)Y sector (and will be accosted with the Bµ field in next). Then the EW gauge field
Lagrangian can be constructed as follows and is invariant under the transformations (1.4) and (1.15):

LWB ≡ −
1

4
W a
µνW

µν,a − 1

4
BµνB

µν . (1.31)

The kinetic part of the fermion EW Lagrangian, together with the interaction terms between
fermions and bosons, can be constructed by the covariant derivatives (according to (1.12)) for isospin
doublets and singlets:

LF ≡
6∑
j=1

ψ̄jLiγ
µ

(
∂µ − ig2

σa

2
W a
µ + ig1

Y

2
Bµ

)
ψjL +

9∑
j=1

ψ̄jRiγ
µ

(
∂µ + ig1

Y

2
Bµ

)
ψjR. (1.32)

Where ψjL and ψjR represents left-handed doublets and right-handed singlets of (1.26), and (1.27)
respectively. There are still no fermion mass terms at this stage because: ψ̄ψ = ψ̄LψR+ ψ̄RψL explicitly
mixes left and right-handed fields breaking the gauge invariance. Fermion masses are dynamically
generated by gauge invariant Yukawa interactions with the Higgs field. (A detailed approach can be
found in [124, 125]). The terms LH , LY are discussed individually in the next subsections.

1.1.6 The Higgs field and its spontaneous symmetry breaking

The Higgs sector2 of SM is constructed by an isospin doublet of complexvalued scalar fields: Φ(x) ≡
(φ+(x), φ0(x))T , with hypercharge Y=1 and covariant derivative:

Dµ = ∂µ − ig2
σa

2
W a
µ + ig1

1

2
Bµ. (1.33)

According to Q = I3 +Y/2 relation, φ+ has EM charge +1, whereas φ0 is neutral. Following the recipe
(1.17), the Higgs Lagrangian is written as:

LH ≡ (DµΦ)†(DµΦ)− V (Φ) (1.34)

1Subtracting once the free quark term
∑
q q̄(iγ

µ∂µ −mq)q which is included in both LQCD and LEW and should not
be double counted.

2Subsection follows reference [40] by Markus Diehl and Wolfgang Hollik.
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with a (gauge invariant) self-interaction given by the following potential (were last constant term can
be ignored):

V (Φ) ≡ −µ2Φ†Φ +
λ

4
(Φ†Φ)2 =

(
Φ†Φ− 2µ2

λ

)2

− µ4

λ
. (1.35)

At the ground state of SM (i.e. in vacuum), the potential energy of the field should be at its
minimum value. The Higgs potential V (Φ) has the form of a “mexican hat” (as is shown in figure 1.4)
and for µ2, λ > 0 has its minimum value for any field fulfils the condition: Φ†Φ = 2µ2/λ. Among the
possible configurations, the vacuum selects the following:

〈0|Φ|0〉 =

(
〈0|φ+|0〉
〈0|φ0|0〉

)
=

1√
2

(
0
v

)
, v ≡ 2µ/

√
λ (1.36)

where on the left is the vacuum expectation value (VEV) of the two-component Higgs fields Φ.
The VEV (1.36) is not invariant under the transformation exp(iaaσa/2) and exp(iaY /2) thus the

SU(2)L×U(1)Y symmetry is broken by the vacuum. (However 〈0|Φ|0〉 is invariant under an EM gauge
transformation U(1)EM). A “spontaneous symmetry breaking” has taken place and the initial rota-
tionally symmetric potential V(Φ) has finally taken a fixed value as shown in figure 1.4 right.

Figure 1.4: The Higgs potential illustrated as a function of its two components. Taken from [125].
According to the energy scale (which is also associated to a temperature) a theory can be in a fully
symmetric phase or in a phase with broken symmetry. The transition is determined by a critical
temperature [111].

The SM Vacuum is supposed to contains no particles whereas its excitations correspond to the
particles of the field (witch deviates from its VEV). This can be shown righting first the Higgs doublet
with explicit real-valued fields (H, χ, φ1 and φ2) with zero VEVs:

Φ =
1√
2

(
φ1(x) + iφ2(x)
v +H(x) + iχ(x)

)
, (1.37)

then the Higgs potential V (Φ) can be reformed as:

V (H,χ, φ1, φ2) = µ2H2 +
µ2

v
H(H2 + χ2 + φ2

1 + φ2
2) +

µ2

4v2
(H2 + χ2 + φ2

1 + φ2
2)2. (1.38)

Where the H describes a neutral scalar particle: the Higgs boson, with a mass MH = µ
√

2 (=125 GeV)
and (by construction) the rest three fields are massless corresponding to the angular direction of the
potential. These fields corresponds to Goldstone bosons since a continuous symmetry is broken by the
vacuum. In addition (for a local symmetry), these fields in LH (1.38) can be eliminated by a proper
gauge, so they do not describe physical degrees of freedom.
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In such modification (using the so-called unitary gauge) the doublet field in (1.37) can be simply
re-written with only the physical Higgs field as:

Φ =
1√
2

(
0

v +H(x)

)
. (1.39)

Accordingly, the Higgs potential (1.38) in same gauge is re-written as:

V (H) =
M2

H

2
H2 +

M2
H

2v
H3 +

M2
H

8v2
H4. (1.40)

The kinetic term of the Lagrangian (1.34) together with the Φ and Dµ expressions can revile the
couplings of Higgs to gauge fields and the mass terms for the vector bosons. An additional needed step
is the transformation of the four fields W a

ν , Bµ (using as constant the “weak mixing angle” θW ) to the
physical fields in accordance with the observed EW bosons: W±, Z0, γ. Thus the physical content of
the whole LH becomes transparent after the fields transformation:(

W−
µ

W+
µ

)
=

1√
2

(
W 1
µ − iW 2

µ

W 1
µ + iW 2

µ

)
,

(
Zµ
Aµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
W 3
µ

Bµ

)
. (1.41)

With all these in LH (1.34) we can correlate boson masses with couplings (or θW ) as:

MW = vg2/2, MZ = v
√
g2

1 + g2
2/2, cos θW = g2/

√
g2

1 + g2
2 = MW/MZ . (1.42)

The field Aµ remains massless and thus can be identified as the gauge boson of the EM U(1)EM
symmetry, i.e. the photon γ. This way the Higgs boson gives masses to the EW bosons (W±,Z) by
breaking the SU(2)L×U(1)Y symmetry rising a non zero VEV.

1.1.7 Yukawa interactions

Previous section shown the masses generation for the EW bosons, however also the fermions acquire
their masses by the spontaneously broken SU(2)L×U(1)Y gauge symmetry1. This is applied by intro-
ducing a gauge invariant Yukawa interactions between the Higgs and the fermion fields, the last term
in (1.29). Each single fermion generation (column in figure 1.1), need the insertion of a Yukawa term
in Lagrangian which can be written as:

LY,gen ≡ −Y`L̄LΦ`R − YdQ̄LΦdR − YuQ̄LΦcuR + [hermitian conjugate] (1.43)

where LL = (νL, `L)T andQL = (uL, dL)T stand for the left-handed lepton and quark doublets of the first
generation. The Higgs doublet, charge conjugate of Φ ≡ (φ+, φ0)T is the: Φc ≡ iσ2Φ∗ = (φ0∗,−φ−)T ,
where φ− ≡ (φ+)†.

One can substitutes the last in (1.43) to reveal terms per particle (per generation). The VEV of φ0

generates fermion mass terms, where the fermion masses are proportional with the Yukawa couplings
given as: mf = Yfv/

√
2 (with f = `, d, u). The Yukawa Lagrangian in the unitary gauge (1.39), (and

only for first generation) becomes much simpler with explicit meaningful terms:

LY,gen = −
∑

f=`,d,u

(
mf ψ̄fψf +

mf

v
Hψ̄fψf

)
. (1.44)

Thus, Yukawa interactions between the massive fermions and the Higgs field are introduced.
In the complete version of SM, with three generations, Yukawa terms mix fermions of different

generations so a complicate structure need to be introduced. The Yukawa interaction Lagrangian can
be written in its most general form as:

LY ≡ −
∑
i,j

(
Y ij
` L̄

j
LΦ`jR + Y ij

d Q̄
i
LΦdjR + Y ij

u Q̄
i
LΦcujR

)
+ [hermitian conjugate], (1.45)

1Subsection follows reference [40] by Markus Diehl and Wolfgang Hollik.
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where indices i, j runs over the three generations. In (1.45) ui and di denotes the u-type quarks (u1 = u,
u2 = c, u3 = t) and the d-type quarks (d1 = d, d2 = s, d3 = b) respectively. The Yukawa couplings Y ij

f

turns now to 3× 3 matrices in generation space with complex-valued elements. The full set of fermion
mass terms are obtained from (1.45) by replacing Φ with its VEV from (1.36), thus all fermion mass
terms arises:

LY = − v√
2

∑
i,j

(
Y ij
`

¯̀i
L`

j
R + Y ij

d d̄
i
Ld

j
R + Y ij

u ū
i
Lu

j
R

)
+ [hermitian conjugate], (1.46)

The terms with quark can be diagonalised with the introduction of four unitary matrices VL,u, VR,u,
VL,d, VR,d, which transform from flavour eigenstates to mass eigenstates as:

q̃iL =
∑
j

V ij
L,qq

j
L, q̃iR =

∑
j

V ij
R,qq

j
R (q = u, d). (1.47)

The finally arose quark-mass matrices: Mu = diag(mu,mc,mt), Md = diag(md,ms,mb) are given by:

Mq =
v√
2
VL,qYq(VR,q)

† (q = u, d). (1.48)

Where the quark mass eigenstates on the left are related with the Yukawa interactions and the flavor
transformation matrices. It consists the generalization of the mf = Yfv/

√
2 in a quark-mixing version.

Furthermore, introduction of the mass eigenstates (1.47) into the fermion Lagrangian LF (1.32) pre-
serves the form of both the kinetic and interaction terms with the neutral gauge bosons, as both of these
have the structure:

∑
i q̄
i
L...q

i
L or

∑
i q̄
i
R...q

i
R. Hence are invariant under the unitary transformations of

(1.47). The same holds for the QCD Lagrangian (1.24). The only modification occurs in the flavour
changing quark interaction with the W± bosons in LF , where the insertion of the mass eigenstates into∑

i ū
i
L...d

i
L introduces the unitary quark mixing matrix, the so-called Cabibbo-Kobayashi-Maskawa

(CKM) matrix: VCKM = VL,u(VL,d)
†. It is a unitary 3 × 3 matrix, with four independent physical

parameters: three rotation angles and one complex phase. Figure F.1 in appendix F shown such
parametrisation and the actual VCKM values.

The analogues matrix for lepton mixing is the unitary matrix in the massless neutrinos considera-
tion. Generation mixing (non-unitary matrix) in the lepton sector introduced once neutrinos masses
introduced. Then the so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix VPMNS mixes neu-
trinos flavor eigenstates to the mass eigenstates which couples the physical vector bosons (figure F.1
in appendix F shows the VPMNS matrix standard parametrization as well).

The interaction term in the fermion Lagrangian (1.32), in terms of fermion mass eigenstates and
physical vector boson fields, can be written as:

LF,int = [JµEM ]Aµ − [JµNC ]Zµ − [JµCC ]W+
µ − [JµCC ]†W−

µ , with : (1.49)

Electromagnetic current : JµEM = g1 cos θW
∑

f Qf ψ̄fγ
µψf ,

Neutral Weak current : JµNC = − g2
2 cos θW

∑
f ψ̄f

(
gfV γ

µ − gfAγµγ5

)
ψf ,

Charged Weak current : JµCC = − g2√
2

(∑
i ν̄

i
[
γµ 1−γ5

2

]
`i +

∑
ij ū

i
[
γµ 1−γ5

2

]
V ij
CKMd

j
)
.

Where the sum over f runs over all fermions, and i, j runs over the three generations. The coupling
constants of the neutral current are determined by the electric charge (Qf ) and the isospin (If3 ), of

the left-handed fermion (fL): gfV = If3 − 2Qf sin θ2
W and gfA = If3 . Only the charged currents change

the lepton or the quark flavour. Comparing (1.49) with previous equations one can identify that:
e = g1 cos θW = g2 sin θW = [g1g2/

√
g2

1 + g2
2].

The original set of parameters g2, g1, λ, µ2, Y ij
f , used in the EW unification context, can be

replaced with the equivalent set of more physical parameters: e, MW , MZ , MH , mf , V
ij
CKM . These are

all experimentally known (and some of theme are shown in figures 1.2, F.1).
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1.1.8 Feynman rules of the SM

All interaction in the SM frame are understood (and their interaction properties are calculated) with
the so-called Feynman diagrams, in which one can express each interaction as a process where a particle,
or more princely, its corresponding field:

• propagates through vacuum (kinetic teams),

• interacts with Higgs field acquiring mass (Yukawa interactions),

• interacts (attracted) with gluon-fields if it has color (QCD-interactions),

• interacts with (physical) EW boson fields γ, W±, Z0 for electroweaklly charged particles.

A rough taste was given in figure 1.2 bottom with the four basic Feynman diagram vertexes. Each
interaction is illustrated in terms of such “vertacies” and “propagators” (particle lines which connect
vertexes).

Figure 1.5: Left: a (simple) pure QED example of a Feynman diagram for the scattering: e−τ−→e−τ−
and the associated constituents of the matrix element (equation (1.50)) constructed from the QED
Feynman rules. The matrix element is comprised of a term for the electron current, a term for the tau-
lepton current and a term for the photon propagator (taken form [136]). On the right: a (non-trivial)
example of a Feynman diagram of second order (O(a, aW )) for the annihilation e−e+ → τ+τ− (the
“t-Mandelstam-channel” of the left one). Loop with a fermion and propagators of photon and Z-boson
are involved a virtual states. (Taken form [125]).

As a benchmark example1. we present a QED process such e−τ−→e−τ− in the unpolarized scat-
tering, as shown in figure 1.5 left. The “Feynman rules” are clearly introduced and illustrated by
such example. Four-vector indices µ and ν label the two interaction vertices and u denotes the usual
Dirac-spinors of each particle. Application of the Feynman rules for the “e-current”, requires the usage
of the adjoint spinor for the final-state electron ū, a factor ieγµ for the interaction vertex (labelled by
µ), and a spinor u for the initial-state electron. The adjoint spinor is always written first and thus the
contribution to the matrix element from the electron current is: u(p3)[ieγµ]u(p1). In same way the “τ -
current” gives: ū(p4)[ieγν ]u(p2). Finally, the photon propagator contributes with a factor: −igµν/q2.
The combination of these three elements, their tensor µν-contraction more precisely, gives rise to an
“invariant amplitude” M given from the formula:

−iM = (ū(p3)[ieγµ]u(p1))
−igµν
q2

(ū(p4)[ieγµ]u(p2)), u(pi) ≡ ui ⇒ − iM = i
e2

q2
(ū3γ

µu1)(ū4γµu2).

(1.50)
There are three basic ingredients[136] in this “matrix element” (or invariant amplitude) M formula:

1The example is taken form reference [136] §5.4 by Mark Thomson.
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1. the Dirac spinors for the external fermions (the initial- and final-state particles);

2. a propagator term for the virtual photon;

3. and a vertex factor at each interaction vertex.

For each of these elements, a corresponding Feynman rule is defined, and dictates the construction of
the matrix element (or the −iM). In their simplest form, the QED Feynman rules are as listed in figure
1.6. In QED, the fundamental interaction at tree-level, i.e. lading term without loops, is between a
single photon and two spin-half charged fermions (e, τ leptons in our case). At any complexity level,
there is no QED vertex connecting else than three particles, else than two fermions or else than one
photon. All valid QED processes, are build and described by Feynman diagrams formed by this single
vertex.

Figure 1.6: The QED Feynman rules. There is only one allowed vertex and two propagators in QED.
(Taken form [136]).

The computations in QED, a differential cross section for example, require first to build an expres-
sion for the |M |2, and then a summation over all spin possible states. So, one must form the complex
conjugate of M . A bi-spinors product can be complex-conjugated as: (ū3γ

µu1)∗ = u†1(γµ)†(γ0)†u3 =
u†1γ

0γµu3 = ū1γ
µu3. Thus the |M |2 can be written:

|M |2 =
e4

q4
[(ū3γ

µu1)(ū4γµu2)][(ū1γ
νu3)(ū2γνu4)], (1.51)

where u(pi) ≡ ui has been assumed. Finally, the sum over the last equation (1.51)) quantity over all
spin-states (initial and final); which is the actual quantity appears in proportion to both differential
and total cross section is given by:〈

|M |2
〉
≡ 1

4

∑
spins

|M |2 =
e4

4q4
Tr[(6 p3 −me)γ

µ(6 p1 +me)γ
ν ]Tr[(6 p4 −mτ )γµ( 6 p2 +mτ )γν ]. (1.52)

Where in last, the additional definitions: 6 p + m ≡
∑

s u
s(p)ūs(p), 6 p−m ≡

∑
s v

s(p)v̄s(p), have been
imposed (as usual in bibliography [136, 93, 124, 131, 84]).

From the Lagrangian expressions which where discussed previously (equation (1.49)), one can derive
the Feynman rules of the whole SM, which consist to the extension of the QED-rules to the EW-fields
dynamics, the addition of the QCD rules, and in the addition of all Higgs interactions rules. Quadratic
terms of the fields (in Lagrangians) give rise to propagators, whereas cubic and quartic terms specifying
the three- and four-particle vertices in Feynman graphs. These rules allow us to formulate in a “semi-
automatic” way, and to write down the invariant amplitudes (−iM) which contributes to each SM
calculation. All SM Feynman rules are summarized in figure 1.7.
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Figure 1.7: On top the full Feynman rules of EW sector. In the middle the Higgs interactions. On the
bottom the QCD rules. Space-time spinor indices have been omitted. All the momenta in the three-
and four-gluon vertices are inward and satisfy

∑
qi=0. Note there are not γZZ,ZZZ vertices in the

SM. (Taken from [125] §1.6).
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1.1.9 Renormalisation

A process amplitude, at the lowest order (in the perturbative expansion) is given by “tree-level” graphs
(like figure 1.5 left), where the momenta of all lines are fixed by the momenta of the external incoming
and outgoing particles1. Higher-order corrections involve loop graphs, where the momenta of internal
lines in the graphs are integrated over, as shown in the examples of figure 1.5 right.

The momentum integrals of internal lines (propagators) in loop corrections diverge for large loop-
momenta. Such processes are shown in figure 1.8, where the first row (a) shows QED-vertex leading
term diagram O(a1), where in (b) to (e) diagrams are of the order of O(a2) contributions/corrections.
Second and third rows left, tree-level QED and QCD full Feynman diagram of a scattering with ((b)
to (d) columns) loop corrections at the propagator.

Figure 1.8: On the left column: the 0–loop diagrams of an interaction. In the rest some loop corrections
cases: first row single–QED–vertex O(a2) corrections, for second and third rows full Feynman diagram
higher corrections. On the right the renormalizable coupling constants a, as, as a function of the probing
energy q. (Taken from [136]).

To maintain the theory meaningful one has to first “regularise” these divergences, by calculating
loops in a number of dimensions D = 4 − ε where integrals converge. For instance the O(a2) graphs
involved integrals such:

∫
d4−εl/[l2(p − l)2], with l the momentum of the particle in the loop and p

the propagator where loop intervenes. The would-be divergences are then absorbed in the quantities
that appear in the Lagrangian, such as coupling constants and masses. After this procedure, called
“renormalisation”, the regulator is removed again (ε→ 0) [124, 131].

In a more physical frame, renormalisation means that the effects of quantum fluctuations (O(an)
loops) with momenta much larger than the scale of a given process can be absorbed into the parameters
of the theory. One has to choose a specific “renormalization scheme” which defines which part of the
loop-corrections is absorbed into the renormalisable quantities.

In the modified “Minimal Subtraction” scheme (MS) [131], (as well in most other schemes), diver-
gent terms are expanded in powers of ε, the renormalised couplings and masses depend on a “renor-
malisation scale” µ; which, roughly speaking, specifies the lower limit of loop momenta that have been

1Subsection follows reverences: [40]§2.5 by M.Diehl and W.Hollik and [136] §10.5 by Mark Thomson.
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absorbed in the renormalised parameter. The “running” of the parameter with µ is described by the
“Renormalization Group Equations” (RGEs), which in the simple case of one coupling g and one mass
m are [40, 131]:

µ
dg(µ)

dµ
= β(g(µ)), µ

dm(γ)

dµ
= m(µ)γm(g(µ)). (1.53)

The “renormalisation group functions”: β and γm, have an expansion in the coupling and can be
determined from the relevant loop graphs. If the Standard Model is renormalised in the MS scheme,
all couplings and masses, as well as the CKM matrix elements (which are closely connected to the
Yukawa couplings), become dependent on µ. With the increment of µ the U(1)Y coupling g1 increases
as well (shown in figure 1.8 top right), whereas the SU(2)L and SU(3)c couplings g2 and gs decrease.
This last QCD-case is shown on 1.8 bottom-right. (All three SM-running couplings are summarized in
figure 1.16 left, which is discussed later).

An expansion in the coupling constants is only useful if these are small enough to allow the conver-
gence of the perturbative series. The electroweak couplings g1 and g2 are small at all relevant scales,
g1 becomes large only for µ ∼ 1015 GeV, where the Standard Model cannot be expected to be valid
anymore. This is not true for the strong coupling, gs, which has consequences for QCD non-allowing
perturbative treatment.

Since the EW charged currents JµCC (1.49) involve both vector and axial-vector components, (fermion-
triangle anomalies) divergences could potentially break the gauge symmetry of the SM, which would
prevent a consistent renormalisation of the theory ([131] §19 for more). However, it turns out that the
symmetry-breaking terms cancel in the sum over all fermions running around the loop. The cancella-
tion happens separately for each generation of quarks and leptons, where the quarks come with a factor
three in the loop because of the colour-states. The consistency of the SM thus is based on the detailed
quantum number assignment to the fermions under the full gauge group SU(3)c×SU(2)L×U(1)Y .

1.1.10 Tests of the SM predictions

The predictivity of SM has been tested in many ways, in extreme emphasis and in high precision the
last four decades. Almost always turn out that observations meets the SM predicted expectations.
Here we will only summarize a few (among many) high-lighted successful predictions.

• A large set of SM cross sections, predictions and measurements, are shown in figure 1.1.10 (resent
results from ATLAS and CMS collaborations). These summary plots exhibits confirmation in
both EW-sector and QCD-sector (in ≥ Njet columns). The validity of the predictions ranges up
to 14 orders of magnitude over cross-sections and up

√
s = 8 TeV energies.

• The latest discovery of Higgs boson is undoubtedly one of the most sticking predictivity goals of
the SM. Figure 1.10 shows the relevant Higgs-resonance into the H → γγ and H → ZZ∗ → 4`
discovery decay channels, as a function of mγγ and m4` (from ATLAS and CMS collaborations).
These measurements came on 2012 [70] to verify prediction from 1964 [85, 103]. Figure 1.11
shows the predicted branching ratios of the Higgs boson and their measurements in CMS as well
as the Yukawa couplings measurements [74].

• Validity confirmation of the SM and in particular the renormalisation concept, coming from the
evolution of coupling constants versus probing energy (figure 1.8 right).

• Quark model predicts baryon states, whereas lattice QCD calculations predicts their masses [83].
The measured hadron states and their masses are in agreement with SM prediction (figure 1.12
left). Moreover, in the QCD-sector, the differential inclusive jet cross sections is measured in
great agreement with the SM predictions (figure 1.12 right).
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Figure 1.9: The SM production cross sections for various (mainly EW) processes as measured by
ATLAS (top) and CMS (bottom) experiments at the LHC. Results up to March 2015. (Taken from
[70]).
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Figure 1.10: The Higgs-resonance in H → γγ and H → ZZ∗ → 4` decay (discovery) channels at mγγ

and m4` spectra. ATLAS and CMS collaborations results.

Figure 1.11: The SM predicted branching ratios of the Higgs boson, their corresponding measurements
from CMS, as well as the Yukawa couplings measurements [74].

Figure 1.12: Left: light hadron spectrum obtained from lattice QCD simulations with dynamical u,d,s
quarks (in the Wilson fermion formalism) taken from [83]. The hadron masses are extrapolated to the
physical quark masses (determined by mπ, mK and mΩ). Right: the double-differential inclusive jet
cross section in comparison to NLO predictions (using the NNPDF2.1 neural networks PDF set times
the non-perturbative correction factor), measured by CMS [42, 112].
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1.2 The shortcomings of the SM in quantum field theory

frame

Even though Standard Model gives a highly successful and precise description of the physics governing
the microcosm, there are strong arguments calling for an extension of this description. There are
indubitable observational evidence and also conceptual issues suggesting that the SM seems to be
embedded in a more fundamental theory which in our energy regime is understood as the SM. From
this point of view SM is an effective theory, constructed by a number of theoretical concepts in order to
reproduces the experimental data up to the accessible energy scale, rather than an ultimate fundamental
theory of nature.

An obvious shortcoming of the Standard Model is that it treats neutrinos as massless, whereas
neutrino oscillation experiments provided clear evidences for small but non-zero neutrino masses. SM
fails to provide a natural explanation of some experimentally confirmed ingredients of the SM like
the stability of higgs boson (which has non-infinite and finely-tuned mass) and the huge differences in
strength of the four known forces. Does not provides any explanation why the particles come in three
distinct mass generations. It also fails to describe phenomena of the macrocosm, such as gravitation
(as quantized theory), dark matter, dark energy, and the baryon asymmetry of the universe.

We can clusterize these shortcomings in two basic categories: (A) those correlated with the core
of theoretical particle physics i.e. with the Quantum Field Theory (QFT), and (B) those which are
connected with cosmological observations and the large scale universe.

(A) In first category -QFT shortcomings- we can outline the following:

• Hierarchy problem.

• Grand Unification of the three interactions.

• Large number of free parameters imputed by hand.

• Absence of a quantum theory of gravity.

(B) Whereas in the second category -cosmology shortcomings- we can mainly refereed to:

• Dark matter.

• Dark energy.

• Matter-antimatter asymmetry, leptogenesis and baryogenesis.

In this section 1.2 we discus briefly the most important reasons signifying the presence of Beyond
Standard Model physics (BSM) from the QFT perspective, whereas next section 1.3 is dedicated to
the cosmology-originated shortcomings.

We will not consider the neutrino masses neither as an SM shortcoming, nor a BSM extension since
massive neutrinos does not consists an intrinsic problem of the SM and does not requires any structural
change. Massive neutrinos can accommodated in SM frame as massive Dirac-particles. Right-handed
singlets in equations (1.27), (1.43), (1.44), (1.45), (1.46) should be turned to doublets, and the unitary
lepton mixing matrix should be replaced by the PMNS-matrix.

1.2.1 Higgs mass corrections divergence and Hierarchy/Naturalness prob-
lem

The Higgs SM sector is described by the the complex scalar doublet fields Φ introduced in equations
(1.35), which after a spontaneous symmetry breaking, formulated in transformation (1.37), ends up
with the real-valued Higgs field H, and with the corresponding potential shown in (1.40).

Each QFT theory part of SM (QED, QCD, EW) applies the concept of renormalisation, which
means that finite results are obtained for all higher-order (loop) corrections even if we extend the virtual
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momenta in the loop integrals all the way to infinity; but although this certainly implies that the theory
is well defined and calculable up to infinite energies. However this is not taken for granted since we
know that, at least in Planck-mass energy scale (MPlanck ∼ 1/GN ∼ 1018), some-kind of new physics
contributes and has to be taken into account into the regularization techniques of renormalization.

The four-boson vertex self-interaction1 in (1.35,1.38,1.40) generates, at one-loop order, a contribu-
tion to the Φ†Φ mass term, which is proportional to:∫ Λ λ d4k

k2 −M2
H

. (1.54)

Where the Λ represents the energy scale at which this new physics appears, and SM must be modified.
The higgs quartic coupling contributes to the self-energy mass and its corresponding diagram is the
(g) in figure 1.7. This integral diverges quadratically, producing a correction of: ∼ λΛ2Φ†Φ, to the

Figure 1.13: Corrections to the higgs (propagation-bare) mass. (A): diagram of one-scalar-loop cor-
rection in Higgs mass, (B): correction by an one-fermion-loop, (C) and (D) correction with two-loops
processes of a heavy non-SM fermion via SM vector bosons (taken from [121]).

“bare-mass” term: −µ2Φ†Φ in (1.35). The coefficient −µ2 of Φ†Φ (“bare-mass” term) is then replaced
by the one-loop corrected “physical” value −µ2

phys, where (ignoring the numerical factor) leads to:

µ2
phys = µ2 + λΛ2 ⇒ ∆M2

H ≡ µ2
phys − µ2 = λΛ2 (1.55)

This is the correction of the one-loop quartic self-coupling of the Higgs boson (figure 1.13 (A)) and is
proportional to the new physics regime Λ2. However, even if the external momenta are small relatively
to the scale of new physics Λ, the loop momenta have to be integrated all the way to that scale.
Additional correction tearms correspond to each of the SM particle (figure 1.13 (B) shows a SM-
fermion loop, whereas (C) and (D) are higher order loops with a hypothetical exotic heavy fermion
that couples only indirectly to higgs via EW-bosons). The main contribution of the corrections comes
from the one-loop diagram of top-antitop pair loop (like (B)). This happens because the Yukawa
couplings are proportional to the fermion masses and top is the mass leader of the SM-fermions. The
physical mass can then approximately accounted by both diagrams (A) and (B) in figure 1.13 as:

µ2
phys = (125 GeV)2 = µ2 + λΛ2 − 3y2

tΛ
2 (1.56)

The problem is that if Λ is of order MPlanck ∼ 1018 GeV, (assuming the largest possible range of SM
validity) then the loop corrections on M2

H is ∼ 32 orders of magnitude larger than the required value of
1252 GeV2. In other words µ2 and ∆M2

H in equation 1.55 are both huge with respect to µ2
phys = 1252

GeV2; and this would be an “un-natural”, extremely improbable as an accidental case to have such
close values that performs such a “tuning” which places higgs mass into the EW-scale. This problem
is characterized as the “hierarchy problem” or “naturalness problem”. Hierarchy problem refers to
the very wide SM particles mass spectrum: masses from ∼ 100 to ∼ 1011 eV, as received by the
higgs interactions. Naturalness problem refers to the appearing un-natural “finely tuned” mass loop
corrections up to many digits in order to allow higgs meet the EW-scale.

This is mainly a problem for the Higgs boson since it is scalar and its squared mass appears
corrected by Λ2 terms; in contrast, the quantum corrections for fermions and bosons which have a

1Subsection follows references [17] §1.1 by Ian Aitchison and [122] §1 by Stephen P. Martin.
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∝ ln Λ sensitivity to cutoff. However, all the SM particles obtain masses from Higgs, so the entire mass
spectrum of the SM is much or less sensitive to the cutoff Λ. This problem consist one of the most
challenging incompleteness of the SM.

Figure 1.14 illustrates and quantifies the “unnatural” case in which fine tuning needs to take place
even for a Λ = 10 TeV scenario. The measured Higgs mass should somehow converges and retained to
the observed value. An unknown yet mechanism “should” (is needed to) cancel-out most Λ-dependent
corrections to produces as a nature consequence observed masses.

Figure 1.14: Higgs squared mass illustration as a positive and negative corrections summation under
the assumption of Λ = 10 TeV (which indirectly implies new physics appears in this scale). The free
parameter which supposed to be finely tuned is the higgs bare mass. Taken from [126]§1.4.

As natural scenario can considered the one which provides the framework of a small (the minimum)
amount of cancellations between the many-digits correcting terms. This requires a relatively low cutoff
like Λ . 1 TeV. Thus, a natural scenario would be one with some new physics (and new particles)
appears in the EW-scale or up the ∼TeV scale. the contribution of these new particles would provided
the needed cancellations of Λ-terms and would preserved the Higgs mass at the EW scale.

1.2.2 The parameters of the SM

If neutrinos are Dirac fermions, the SM-physics has 25 (or 26) free parameters that have to be input by
hand1. These are: the masses of the 12 fermions (or alternatively its 12 Yukawa couplings to the Higgs),
the three (bare) coupling constants describing interactions’ strengths, the 2 parameters describing the
Higgs potential, and the 8 mixing angles (4 of the PMNS and 4 of the CKM) matrices:

mν1 ,mν2 ,mν3 , me,mµ,mτ , mu,md,ms, mc,mb,mt,

a0(or e0), GF (or aW ), aS, µ(or mH), λ(or V EV ),

VCKM(θ12, θ13, θ23, δ), VPMNS(θ12, θ13, θ23, δ), θQCD−CP .

This relatively large number of free parameters is indicative of the Standard Model being a model where
the parameters are chosen to match the observations, rather than coming from a higher theoretical
principle.

Putting aside θCP , of the 26 SM parameters, 14 are associated with the Higgs field, 8 with the
flavour sector and only 3 with the gauge interactions. Within each of these three broad areas, patterns
emerge between these different parameters, indicating a potential presence of some unknown symmetry
principle. Figure 1.15 shows the mass hierarchy in SM. With the exception of the neutrinos, the masses
within a single generation are similar, and it is hard to believe that this a random fact. The flavor

1Subsection follows reference [136] §18.1 by Mark Thomson.
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Figure 1.15: The fermion masses by generation with neutrino approximated by cosmological constraints
(taken from [136]).

mixing in lepton and quark sectors are quite different as figure F.1 illustrates. This observed structure
(with off-diagonal enhancement in CKM) is not understood in SM frame. In addition, the coupling
constants of the three gauge interactions are of a similar order of magnitude, hinting that they might
be different low-energy manifestations of a Grand Unified Theory (GUT) of the forces. These patterns
provide hints for, as yet unknown, physics beyond the Standard Model.

1.2.3 Grand unification of the three interactions in SM frame

As it has been noted, the coupling constants of the three forces of the SM evolves due to the probing
energy as figure 1.8 right shows.

At the electroweak scale, in probing energy Q2 ∼100 GeV2, the have coupling strengths are1:

a−1 ' 128, a−1
W ' 30, a−1

S ' 9 (1.57)

Furthermore, the coupling constants of QED and QCD run with energy according to:

[ai(q
2)]−1 = [ai(µ

2)]−1 + β ln(q2/µ2), (1.58)

where µ2 represents an energy scale where the coupling is known and β depends on the numbers of
fermion and boson loops contributing to the gauge boson self-energy. In QED where the photon self-
energy arises from fermion loops alone a increases with energy, whereas aS decreases with energy due
to the presence of gluon loops. Because of the weak boson self-interactions, which are a consequence
of the SU(2) gauge symmetry, aW also decreases with increasing energy scale, although not as rapidly
as S.

The running of the different coupling constants therefore tends to bring their values together. It
seems plausible that at some high-energy scale, the coupling constants associated with the U(1), SU(2)
and SU(3) gauge symmetries converge to a single value.

In the 1970s, it was suggested (by Georgi and Glashow) that the observed gauge symmetries of the
SM could be accommodated within a larger SU(5) symmetry group. In this Grand Unified Theory
(GUT), the coupling constants of the Standard Model are found to converge –although not exactly– at
an energy scale of ∼ 1015 GeV. Figure 1.16 left shows the evolution of the three coupling constants as
a function of probing energy. Dusted lines correspond to the higher energies extrapolation within the
SM frame. The converge in GUT energy scales is not enough in the sense that not all couplings meet
in the same value.

This non-complete convergent behavior is a hint that might new physics -introducing new particles
which supposed to participate in the running coupling evolution- might appears in the energy range
∼ 103 to ∼ 1016 and make the three forces having common unified strength. If there is physics beyond

1Subsection follows reference [136] §18.2.3 by Mark Thomson.
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the SM with new particles at a mass scale Λ, these particles also would contribute to the gauge boson
self-energy terms (through extra fermionic and bosonic loops), modifying the running of the coupling
constants for q2 > Λ2. For example, Figure 1.16 right shows how supersymmetric particles1 at a scale
of Λ=0.5 TeV (and Λ=1.5 TeV red-blue) would modify the evolution of the U(1), SU(2) and SU(3)
couplings within the SU(5) GUT.

Figure 1.16: Left: the evolution of the couplings a−1
i (Q) in the SM SU(5) unification frame (dashed

lines) and in the MSSM (solid lines). The MSSM particle masses are treated as a common threshold
varied between 0.5-1.5 TeV, and 3(MZ) is varied between 0.117 and 0.121. Middle: a schematic evolution
of the forces. Right: evolution of scalar and gaugino mass parameters in the MSSM (with MSUGRA
boundary conditions imposed at Q0 = 2 × 1016 GeV). Parameter µ2 + M2

Hu
runs negative provoking

EW symmetry breaking. Taken from [122].

The three coupling constants converge to a single value: a−1
GUT ' 26 at ∼ 1016 GeV. In some sense,

this convergence is inevitable since two non-parallel lines will always cross, and with the appropriate
choice of the mass scale for new physics the three lines can always be made to meet at a single point.
However it is interesting that the required mass scale turns out to be about 1 TeV.

It is now known that SU(5) is not the correct gauge group for a GUT; the predicted value for sin2 θW
is incompatible with the measured value. Despite this, the convergence of the couplings strongly
suggests that the three forces of the SM are the low-energy manifestations of some larger, as yet
unknown, unified theory. Even more, in even higher energies, also gravity might converges to one
single force of nature (Figure 1.16 middle).

A candidate theory providing such additional particles which allows the three forces convergence, is
the Supersymmetry (SUSY). In the SUSY extension-frame of SM, the extra particles provides such an
attribute. In addition –in one of the its versions, the so-called minimal supersymmetric SM (MSSM)–
the masses of all particles (which are evolves as renormalizable parameters of the theory) meets all in
2 values as figure 1.16 right shows, the universal mass of all fermions and bosons of the model.

This masses unification in MSSM frame reduces considerably the number of free parameter of the
theory, which consists an additional bonus towards GUTs and a clear hint supporting the BSM physics
existence.

1.2.4 Metastable vacuum

The discovery of the Higgs boson with this particular mass of 125 GeV brings the higgs potential
close to the vacuum metastability region. Figure 1.17 shows that the masses values of the Higgs and
top-quark which points to a position in the metastable region. The stability condition is sensitive to
these two masses and to the strong coupling constant aS. The arising questions after the Higgs mass
precise measurement are important since are directly related to how the new physics might appear.

1Chapter 2 is dedicated to Supersymmetry, MSSM, MSUGRA.
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Figure 1.17: Left: SM gauge couplings gi (in the SM, SU(5) GUT-frame), the yt, yb Yukawa couplings,
and the Higgs quartic coupling λ with RGEs evolution in the MS scheme. Middle: the evolution of
λ varying Mt,MH and as by ±3σ, right: stability regions in [MH ,Mt] plane close to measured values.
(Taken from [1, 141].)

Figure 1.17 left: SM renormalization group evolution (RGE) of the gauge couplings g1 = g′
√

5/3,
g2 = g, g3 = gs, of the top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling
λ. All couplings are defined in the MS scheme. The thickness indicates the ±1σ uncertainty. Middle:
the Higgs self-coupling for MH = 125 GeV for the central value of mt and aS, as well as for ±2σ of
mt (dashed lines) and aS (dotted lines). For negative values of λ the lifetime of the SM vacuum due
to quantum tunneling at zero temperature is longer than the age of the universe as long as λ remains
above the region shaded in red, which takes into account the finite corrections to the effective bounce
action renormalized at the same scale as λ. Right: regions of stability, metastability and instability
of the electroweak vacuum in the (MH ,Mt) plane; contours at 1,2,3 σ corresponding to the present
knowledge of aS are shown (taken from [141]

The observation of a Higgs mass of 125 GeV would give vacuum stability up to only scales between
109 and 1010 GeV, and stability up to the Planck scale would require new physics. Such new physics
could be the SUSY, but other models have also been proposed [23, 47]. This is why the discovery and
the determination of the Higgs mass is so important. As the dynamical properties of the Higgs are
directly related to the framework of the SM, it is necessary to know how it is produced. We have to
be aware that the production and detection mechanisms differ depending on the mass of the Higgs.

1.3 The shortcomings of the SM in Cosmology frame

Also from the cosmological side the Standard Model is challenged: first, the SM does not contain a
theory for the description of the interactions that govern the large scale structure of the universe: there
is no renormalisable quantum theory of gravity. Second, and of more direct consequence for particle
physics, the SM does not provide a candidate particle to explain the large dark-matter content of the
universe of close to 25%. The dark matter is necessary to account for, among other features, the
rotation curves of galaxies and is also favoured by measurements of the cosmic microwave background
(CMB). Also the baryon asymmetry as observed in the universe still awaits an explanation. Finally the
accelerated expansion of our universe, “caused” by its so-called “dark energy” content which roughly
accounts the 70%, is one of the biggest mysteries and SM provides no explanations for that observations.

1.3.1 Dark matter

The existence of dark matter in universe provides undeniable evidence for physics beyond the SM1.
Since the 1933, it has been known that a significant fraction of the mass in the universe is not bound

1Subsection follows references [136] §18.2.1 by Mark Thomson and [126] §10.2 by Yorikiyo Nagashima.
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up in the luminous matter that once were thought to comprise most of the mass of the galaxies.
The most direct evidence for dark matter comes from the velocity distributions of stars as they orbit

the galactic centre. In a spiral galaxy like the Milky Way, the majority of the luminous mass is located
in the central bulge. Outside this central region, the tangential velocity of a star of mass m should be
given by the usual equation for centripetal acceleration in a gravitational field: mv2/R ' GmM(R)/R2,
where M(R) is the total mass within a radius R. Assuming that most of this mass is concentrated in
the central bulge, the tangental velocities of the stars should decrease as R−1/2. This is not consistent
with the observed velocity distributions, which decrease only slowly with radius, implying that the
distribution of mass in the galaxy is approximately M(R) ∝ R or rather flat. From this observation,
one can concluded that the mass of a galaxy has a significant non-luminous mass component, known
as dark matter. Figure 1.18 illustrates the situation.

Figure 1.18: Left: our galaxy rotation curve as observed and decomposed to know (luminous) and
unknown (dark) matter. Middle: rotation velocities of spiral galaxies obtained by combining CO data
for the central regions, optical for disks, and HI (an interstellar cloud composed of neutral atomic
hydrogen) for outer disk and halo. The graph shows that the constancy of the velocity goes beyond 30
kpc, while the typical radius of disks in spiral galaxies is ∼10 kpc (taken from [126] §10.2). Right: the
cosmic pie with “Energy-Matter” content of the universe after the resent “Planck” observations.

In addition compelling evidence for the existence of dark matter is provided by a number of cos-
mological and astrophysical measurements related to the precision measurements of the small fluctua-
tions in the cosmic microwave background (CMB) from the Cosmic Microwave Background Explorer
(COBE), Wilkinson Microwave Anisotropy Probe (WMAP), and Planck satellites. These have pro-
vided a firm experimental basis for the ΛCDM cosmological model, which is the standard model of
cosmology. In the ΛCDM model, the total energy-matter density Ω of the universe is consistent with
the flat geometry of space-time predicted by inflationary models, with Ω = 1. Within the ΛCDM
model, only 5% of energymatter density of the universe is in the form of normal baryonic matter,
ΩB ' 0.05. A further 27% is in the form of cold dark matter (CDM), ΩC ' 0.27, and the majority
of the energymatter density of the universe is in the form of dark energy, ΩΛ ' 0.68. In the ΛCDM
model, the dark energy is attributed to a non-zero cosmological constant of Einsteins equations of
general relativity, Λ 6= 0, which tends to accelerate the expansion of the universe.

In nowadays our understanding of cosmology has reached the precision and sophistication where it
now provides constraints on particle physics.

The particle content of the universe affects the way in which large-scale structure arises. Because
lighter particles, such as neutrinos, remain relativistic throughout the expansion and cooling of the
universe, they affect the evolution of large-scale structure differently than massive particles, which
become non-relativistic during the first few years after the Big Bang. On this basis, it is known that
the majority of the energymass density associated with the non-baryonic dark matter is due to cold
(non-relativistic) matter as opposed to hot (relativistic) particles. The cosmological measurements are
sufficiently precise to constrain the sum of the neutrino masses to be approximately: (mν1+mν2+mν3) .
1 eV. The current experimental evidence indicates that only a small fraction of the cold dark matter
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is in the form of normal baryons, for example in low-mass brown dwarf stars.
The success of the ΛCDM standard model of cosmology, therefore strongly suggests that a significant

fraction of the cold dark matter in the universe may be in the form of a new type of weakly interacting
massive particle (WIMP), with a mass in the few TeV range. Such particles arise naturally in extensions
to the Standard Model; for example, in many supersymmetric models the lightest supersymmetric
particle (LSP) is the stable weakly interacting neutralino. WIMPs can either be observed through
their production in beams collision experiments (like those at LHC) or through the direct detection of
the WIMPs that are believed to pervade our galaxy.

Figure 1.19 illustrates the gravitational lensing effect (top-left) due to space-time curvature caused
by a massive galaxy (or cluster) over a quasar (X-ray source) which appears behind the first. This
gravitational lensing technique can be used for identifying and mapping the dark matter presented in
large scale universe involving cluster(s) of galaxies. On the top-right an example with the so-called
bullet nebula cluster where two clusters of galaxies have been collided. The ordinary baryonic matter
(red) and behaves with a bullet-like shock, in contrast with the dark matter (blue) which passes by
each other without electromagnetic interaction. Bottom-left the gravitational lensing of a single cluster
of galaxies and its reconstructed mass density distribution. Bottom-right: the large scale dark matter
distribution of the universe.

We can summarise the independent evidences for the presence of dark matter (completing those
already mentioned) as follows:

• Rotational curves of spiral galaxies (stars kinematics).

• Virial mass of clusters of galaxies (galaxies kinematics).

• X-ray emissions from galaxy clusters (by energetic baryons bremsstrahlung in plasma).

• CMB measurements of the cosmic energy-matter densities

• Gravitational lensing in optical and x-rays either in galaxies and cluster level.

• Critical for the stability of the spiral galaxy discs (according to simulations) allowing the spiral
structure formation.

• Critical for the early universe fast first cosmic structures formation (according to simulation).

All proposed explanation for dark mater candidates are comprised by some extension of the SM
particle content. The suggested candidates (potential components of dark matter) can be summarizes
as follows:

• MACHO (massive compact halo object): It is a name given to baryonic dark matter, that is,
non-luminous matter in the form of brown dwarfs, neutron stars, and black holes, that float in
the galactic halo. MACHOs potential contribution to dark matter at the galactic halo is limited
up to ∼8%, strengthening the need for non-baryonic dark matter.

• Heavy neutrinos: if heavy neutrinos mν & 0.5MZ GeV exist, they can be candidates for the cold
dark matter (CDM). It is a kind of WIMPs and its detection method is very similar to that of
the neutralino (LSP in SUSY).

• Axions: very light (ma � O(1) eV). However, the so-called misalignment axion is degenerate
in the Bose-Einstein condensate state and is classified as one of the CDMs. Negative results of
terrestrial experiments and astrophysical observations have constrained the allowed mass range
severely. Only a small window (106 < ma < 103 eV) is left.

• WIMPs: Among the theories that provide the WIMPs, the supersymmetric theory is the favorite
of the particle physics community because it provides a mean to unify all the forces including
the gravity and to solve the hierarchy problem in grand unified theories (GUTs) as well. The
coupling strength of the SUSY particle with ordinary particles is the same as its SM partner,
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Figure 1.19: [A]: The Cloverleaf quasar is a single object whose image has been reproduced four times
in a cloverleaf-like arrangement through gravitational lensing. The gravitational field of one or more
foreground galaxies has bent and magnified the light from the quasar to produce the multiple images.
[B]: Combined X-ray and optical image of the bullet-cluster nebula. In lines (green, white) contours
of dark matter density, from the weak-lensing reconstructions method. The two figures are interpreted
as follows. The two clusters passed through each other 150 million years ago. The dark matter clump,
revealed by the weak-lensing map, is coincident with the collisionless galaxies and lies ahead of the
collisional gas. The gas of the smaller bullet-cluster, creating a bow-shaped shock wave located near
the right side of the cluster, lags behind the cluster galaxies. [C]: A computer analysis illustration of
the affect of gravitational lensing over a single galaxy cluster (0024+1654). The spikes are the mass of
individual galaxies. The background hump is a result of the dark matter spread between the galaxies.
[D]: 3D map of the evolving distribution of the dark matter reconstructed using gravitational lensing.
The distance from the Earth increases from left (z=0) to right (z=1.1) over a span of 25 Mpc. The
clumping of the dark matter becomes more clear, moving right to left across the volume map, from the
early universe to the more recent universe. The distribution is calibrated by measuring the cosmological
red shift (0<z<1.1) of the lensing galaxies in the constellation Sextans. The structure spans over more
than 25 Mpc. This dark matter map has been formed by Hubble space telescope observations.

but as its reaction typically goes through intermediate states involving heavy SUSY particles,
its effective strength becomes of the order of the weak interaction. The lightest supersymmetric
particle (LSP) is a Majorana particle, a mixture of SUSY partners of the B, W 0 (i.e.: γ and Z),
and neutral Higgs bosons: χ̃0

i = (a)B̃+(b)W̃ 0 +(c)H̃0
d +(d)H̃0

u. If R-parity of SUSY is conserved,
the lightest particle is stable. The lightest neutralino χ̃0

1 is the prime candidate for the dark
matter. Depending on which of the four components are dominant, its reaction rate is different.
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1.3.2 Dark energy

As the figure 1.18 shows the 68% of the cosmic energy-matter budget is comprised by the so-called
“dark energy”. Dark energy is simply a name of the source of the accelerating expansion of the universe;
or (in other words) is the name of an “anti-gravity” effect in universe macro-scales1. Its true nature is
not known yet and definitely SM does not provides any evidences or potential sources for that. The
uniform vacuum energy that appears in any quantum field theory (aka the cosmological constant) is
the primary suspect, but there is a plethora of models to account for the phenomenon.

Its existence was clarified only by measuring the velocity of far away type Ia supernovae (SNe Ia)
and through accumulation of indirect evidences. Figure 1.20 left shows the typical spectrum of a SNe
Ia where used to estimate the expansion rate of the universe. Once an SNe Ia has been tagged as
that is placed in the Hubble diagram (distance vs redshift “z” relation) which is shown in figure 1.20
middle. The data summarized in this illustration involve the measurement of the redshifts of the distant
supernovae. The observed magnitudes are plotted against the redshift parameter z. Note that there
are a number of Type Ia supernovae around z=0.6, which with a Hubble constant of 71 km/s/Mpc
is a distance of about five billion light years. The fitted curve is laid into the accelerated expansion
universe area. The same expansion trend can be seen also at the figure 1.20 right where the data fits
an accelerated expanded universe.

Figure 1.20: Left: Typical spectrum of the SN Ia characterized by the absence of the hydrogen line
and existence of the Si line. Luminosity and metallicity indicators are also designated. Middle: ef-
fective apparent luminosity/brightness (observed magnitude) versus the redshift z. Curves for critical
expansion (red), empty universe (dusted) and the fitted to data (black) which indicates an acceleration.
Right: history of cosmic expansion, as measured by the redshift supernovae (black points). Given the
energy compositions, time evolution curves can be calculated from the Friedmann’s equation, assuming
flat cosmic geometry. Without dark energy, acceleration is always decelerating and the curve is convex
upward. With dark energy, the expansion is decelerating in the beginning, turns to acceleration later.
The lifetime of the universe estimated by SNe meets the Planck observation to ∼13.8 Gy.

1Subsection follows reference [126] §11.1 by Yorikiyo Nagashima.
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Chapter 2

Supersymmetry

2.1 Introduction and motivation

Supersymmetry (SUSY) unifies fermions and bosons by introducing a super-partner or s-particle for
each of the SM particles1. The corresponding operator(s) converts fermionic fields to bosonic and vice
versa. These two different filed types have very different characteristics: fermions respects the Pauli
exclusion principle and its number is a conserved quantity.

Supersymmetry is considered a very attractive extension of the SM because it provides:

• a solution to the hierarchy (or naturalness) problem,

• a natural candidate (the LSP) as the main dark matter constituent,

• unification of the strength of the three forces at GUT energy scales,

• it is also an necessary ingredient in attempt towards a unified theory of everything (superstring
theory).

SUSY is different from all other symmetries in the sense that its operators are fermionic. Usual
quantities and operators such as in the Lagrangians, the four-momentum pµ angular momentum Mµν

are a Lorentz scalar, vector, or tensor, and internal symmetry operators (such as the isospin operator I)
are scalars. (These operators are generally polynomials of field operators). The field operator includes
spinors and tensors.

One might also think that there could exist a symmetry operator in the spinor form. The SUSY
operator Qai is exactly that. Here, a denotes the spinor index and i (1≤ i ≤N) denotes the internal
degrees of freedom. If one makes the spinor operator act on a bosonic state |B〉 which is a vacuum state
multiplied by a bosonic operator, the product transforms as a spinor; hence, it represents a fermionic
state |F 〉. Thus we can write schematically:

Qai|B〉 ∝ |F 〉, Qai|F 〉 ∝ |B〉 (2.1)

The primary effect of the SUSY operator is thus to bridge bosons with fermions.
In the following we present the main aspects of SUSY theory and SUSY phenomenology (following

mainly [126] and [122] respectively). An extensive complete presentation can be found at [122, 130,
116, 17, 24, 123].

2.2 The theory

2.2.1 Building the SUSY concepts in a simplified toy model

In order to illustrate the concepts of SUSY we consider a toy model: a harmonic oscillator consisting
of a fermion and a boson. The annihilation(creation) operators are a(a†) for the fermion and b(b†) for

1Subsection follows reference [126] §4.1 by Yorikiyo Nagashima.
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the boson. The simplest Hamiltonian1 in quantum mechanics is expressed as:

H = ωFa
†a+ ωBb

†b = ωFNF + ωBNB (2.2)

with energy spectrum: ωFnF + ωBnB corresponding to nF fermions and nB bosons. Assuming that:

{a, a†} = [b, b†] = 1, (2.3)

{a, a} = {a†, a†} = [b, b] = [b†, b†] = 0 (2.4)

Defining the SUSY operator Q, Q† as follows:

Q ≡ b†a, Q† ≡ a†b, (2.5)

The SUSY operators satisfy following relations:

[Q,H] = (ωF − ωB)Q, [Q†, H] = −(ωF − ωB)Q† (2.6)

Therefore, if ωF = ωB = ω, Q and Q† commute with the Hamiltonian and are conserved operators.
They also satisfy:

[NB, Q] = [b†b, b†a] = b†a = Q, [NB, Q
†] = −Q† (2.7)

[NF , Q] = [a†a, b†a] = −b†a = −Q, [NF , Q
†] = Q† (2.8)

When the operators Q,Q† act on states, they change the bosonic or fermionic numbers:

NBQ|ψ〉 = QNB|ψ〉+Q|ψ〉 = (nB + 1)Q|ψ〉,
NFQ|ψ〉 = QNF |ψ〉 −Q|ψ〉 = (nF − 1)Q|ψ〉,
NBQ

†|ψ〉 = QNB|ψ〉 −Q†|ψ〉 = (nB − 1)Q|ψ〉, (2.9)

NFQ
†|ψ〉 = QNF |ψ〉+Q†|ψ〉 = (nF + 1)Q|ψ〉,

The relations in 2.9 mean that the operator Q acting on a fermion state increases the boson number
by 1 and decreases the fermion number by 1; the effect of Q† is the opposite. Defining:

|nB, nF 〉 ≡
(b†)nB√
nB!

(a†)nF |0〉, (2.10)

one can easily verify that:

Q|nB, nF 〉 =
√
nB + 1|nB + 1, nF − 1〉 nF 6= 0,

Q|nB, nF 〉 = 0 nF = 0,

Q†|nB, nF 〉 =
√
nB|nB − 1, nF + 1〉 nB 6= 0 and nF 6= 1, (2.11)

Q†|nB, nF 〉 = 0 nB = 0 or nF 6= 1,

Finally, the Hamiltonian of the fermion-boson system can be expressed as follows:

{Q,Q†} =
1

ω
H, (2.12)

We can see that the set of operators Q, Q†, H constitute a closed algebra. Therefore, if SUSY exists,
its operation exchanges a boson with a same mass fermion, and hence there are sets of multiplets
whose members consist of both fermions and bosons with equal mass. Equation (2.12) shows, that the
operator Q is like a square root of the Hamiltonian, reminiscent of the way in which the Klein-Gordon
equation is factorized into a product of two Dirac equations. As the Hamiltonian is the time translation
operator, and Q changes the spin of the states, they are both external (space-time) symmetries.

1Subsection follows reference [126] §4.1.1 by Yorikiyo Nagashima.
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An important feature of SUSY is a constraint that it makes the vacuum energy vanish. As a|0〉 =
b|0〉 = 0 and Q|0〉 = Q†|0〉 = 0. If one takes vacuum expectation value (VEV) of (2.12), obtains
〈0|H|0〉 = 0. Where the last is valid if H is the Hamiltonian of the field theory.

The reason for the vanishing VEV is that the zero-point energy, created by the boson is exactly
canceled by the zero-point energy created by the fermion. The zero-point energy, which is inherent to
QFTs, is generally ignored for the reason that only differences from the reference point are observable.
Bosons produce a divergent vacuum energy when summed over all degrees of freedom of harmonic
oscillators. Fermions also produce infinite vacuum energy but with the opposite sign. SUSY provides
a solid foundation for the vanishing of the vacuum energy.

2.2.2 Field theoretical operators

In the relativistic version of the “toy model”, the SUSY operator should be used in the field theory1.
In order to close the operator algebra we need both commutators and anti-commutators. Lie algebra
therefore, has to be extended to include the anti-commutation relations. The notion of conventional
numbers also needs to be extended to include anti-commuting numbers known as the “Grassmann
numbers”. They are necessary ingredients to complete the algebra in a self-consistent mathematical
framework. Here, we first introduce commutation relations among the SUSY operators that appear in
the field theory and discuss what they mean.

For simplicity, let us consider a SUSY operator Qa having spin 1/2 and only one internal degree of
freedom. If we treat it as the four-component spinor, it is a Majorana spinor that satisfies the following
commutation relations:

[Qa,M
µν ] =

i

2
(σµνQ)a

[Qa, P
µ] = 0

{Qa, Q̄β} = 2(γµ)aβPµ (2.13)

{Qa, Qβ} = 0

{Q̄a, Q̄β} = 0

where σµν ≡ (1/2i)[γµ, γν ] and Q̄ ≡ Q†γ0 (we omit the index of the internal degree of freedom). The
first line shows that the Qa transforms as a spinor, and the second shows that this is a conserved
operator. It also means that Qa commutes with P µPµ = m2, i.e. the operation of Qa does not change
mass of the field: fermions and bosons that belong to the same multiplet must have the same mass.

A multiplet including both fermions and bosons, is called a supermultiplet, and the corresponding
fields are called superfields. Each supermultiplet contains an equal number of fermion and boson degrees
of freedom. To prove this one considers the operator Ps ≡ (1)2s, where s is the spin angular momentum.
The operator Ps has eigenvalue +1 for the bosonic state and −1 for the fermionic. The operation of
Q or Q† on a state having the energy-momentum Pµ, changes a fermionic state to a bosonic and vice
versa within a supermultiplet. Therefore, the operator Ps anticommutes with the SUSY operator Q or
Q†. The completeness relation can be written as:

∑
i |i〉〈i| = 1, with i running through all the states

within a given supermultiplet.
Now consider the operator of: (−1)2sPµ which has as trace: pµ(nB − nF ). Using the completeness

relation and equations (2.13) one can prove that nB = nF , i.e. there is an equal number of bosons and
fermions in any given supermultiplet.

The third line of (2.13) states that a product QQ̄ involves the energy-momentum operator which
is the generator of the space-time translation. Coordinate transformations (translation and rotation)
such as Lorentz transformation are global, but when localized, their transformation matrices become
functions of space-time, which means that the transformation two-component a general coordinate
transformation that includes acceleration.

According to the equivalence principle of general relativity, gravity is an inertial force generated by
transferring an observer from an inertial frame to an accelerating one. As the SUSY algebra includes

1Subsection follows reference [126] §4.1.2 by Yorikiyo Nagashima.
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the Pµ operator, it implies that a gauged (localized) SUSY algebra includes gravity. Therefore, the
gauge theory based on the SUSY, which is referred as supergravity (SUGRA), is a candidate unified
theory for all known forces.

2.2.3 Majorana fields

In order to handle the SUSY algebra two-component fermion fields (φT = (φ1, φ2)) are usually used
instead of conventional four-component Dirac spinors1. (Strictly, the “Weyl spinor” applies only to
massless field, however the term is used loosely to mean a two-component spinor). The Dirac field is
equivalent to a set of two Weyl fields with equal masses just as a complex scalar field is a set of two
real scalars.

The Weyl-representation of the γ matrices is defined as follows:

γµ ≡
[

0 σµ

σ̄µ 0

]
, γ5 ≡

[
−1 0
0 1

]
, σµ ≡ (1, ~σ), σ̄µ = (1,−~σ). (2.14)

where ~σ stands for the three Pauli-matrices.

φ(4) =
1

2
(1− γ5)ψ(4) ≡ PLψ

(4) ≡
[
φ
0

]
, χ(4) =

1

2
(1 + γ5)ψ(4) ≡ PRψ

(4) ≡
[

0
ψ

]
(2.15)

The index (4) is attached for the four-component spinor, φ, χ represents chirality ∓ (or left- and right-
handed particles respectively), which transform as (1/2, 0) and (0, 1/2) in the SU(2) × SU(2) repre-
sentation of the Lorentz group.

The four-component Dirac equation can be expressed in terms of the 2-component spinors φ, χ of
the ψ(4) = [φ, χ]T and ψ̄(4) = ψ†γ0 ≡ [φ†, χ†] as follows:

LDirac ≡ ψ̄(4)(iγµ∂µ −m)ψ(4) = (φ†, χ†)

(
−m i(∂0 + ~σ · ∇)

i(∂0 − ~σ · ∇) −m

)(
φ
χ

)
= φ†σ̄µi∂µφ + χ†σµi∂µχ − m(φ†χ+ χ†φ) (2.16)

where is clear that φ†σµφ and χ†σµχ are Lorentz vectors. In the massless limit, the Dirac equation
reduces to two equations: σ̄µi∂µφ = 0, and σµi∂µχ = 0. Which means that: ~σ · ~pφ = −Eφ, and
~σ · ~pχ = Eχ confirming that: φ(χ) is left(right)-handed.

If we then impose the Majorana conditions we have:

ψ(4) = [−Cψ̄(4)]T , C ≡
[
iσ2 0
0 −iσ2

]
, (2.17)

then, we can write: φ = −iσ2χ
∗ and: χ = iσ2φ

∗. The Lorentz transformation of the 2-component
spinor is given by a 2×2 complex matrix M (with det[M ] = 1) and forms a group referred to as
SL(2, C):

φ→ φ′ ≡
[
φ′1
φ′2

]
= M

[
φ1

φ2

]
=

[
M1

1 M2
1

M1
2 M2

2

]
, det[M ] = 1 ⇒ εaβMγ

aM
δ
β = εγδ (2.18)

where the εaβ (= 0,±1) is the antisymmetric symbol in the case where the indices run from 1 to 2.
The complex conjugate field φ∗ transforms as φ∗′ = M∗φ∗. The M∗ can not be related to M via a
similarity transformation (i.e. M∗ = SMS−1 for some S). The complex conjugate of the left-handed
spinor φ∗ = −iσ2χ is a right-handed Weyl spinor. Indices of the complex field φ∗ are denoted with
dots: (φ∗) ≡ (φ̄)ȧ to distinguish them from un-dotted indices used for φa.

It is straight forward to show that: εaβε
βγ = δγa , φa = εaβφβ, φa = εaβφ

β where summation over
same indexes is assumed. Noting that: (iσ2)aβ = εaβ, and (−iσ2)aβ = εaβ one defines:

(φ∗) ≡ (φ̄)ȧ → (iσ2φ
∗)ȧ = εȧβ̇φ̄β̇ = φ̄ȧ (2.19)

1Subsection follows reference [126] §4.2.1 by Yorikiyo Nagashima.
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Thus, the four-component Majorana field can be expressed as

ψ(4) =

[
φa
φ̄ȧ

]
, (2.20)

The transformation matrix for φ̄ȧ is given by:

φ̄ȧ → φ̄ȧ
′
= N ȧ

β̇
φ̄β̇, N = (iσ2)M∗(−iσ2) (2.21)

In such representation, the Dirac spinor is written in terms of two two-component, complex, anti-
commuting variables (i.e. Grassmann numbers; details can be found at: [122, 130, 126, 116, 17, 123])
φa and (χ†)ȧ with two distinct types of spinor indices.

The scalar products of any two Weyl spinors which are Lorentz invariant are defined as:

χφ ≡ εaβχβφa = χaφa = −χaφa = φaχa = φχ

χ̄φ̄ ≡ εȧβ̇χ̄
β̇φ̄ȧ = εȧβ̇χ̄ȧφ̄β̇ = χ̄ȧφ̄

ȧ = −χ̄ȧφ̄ȧ = φ̄χ̄ (2.22)

χ̄φ̄ = χ∗
1̇
φ1̇∗ + χ∗

2̇
φ2̇∗ = (φ1χ1 + φ2χ2)∗ = (χφ)∗

χφ = (χ̄φ̄)∗

The summation convention is different for dotted and non-dotted variables and that: χaφ
a = −χaφa 6=

χφ. The ordering is important for the anti-commuting fields. If χ = φ ≡ θ one can write:

θaθβ = −1
2
εaβθγθγ = −1

2
εaβθθ

θaθβ = 1
2
εaβθθ (2.23)

θ̄ȧθ̄β̇ = 1
2
εȧβ̇ θ̄θ̄ = −1

2
εȧβ̇ θ̄γ̇ θ̄

γ̇

θ̄ȧθ̄β̇ = −1
2
εȧβ̇ θ̄θ̄

Substituting χa = φ̄ȧ and χ†ȧ = φa in (2.16) the Majorana Lagrangian can be formed:

LMajorana ≡
1

2

[
φ̄ȧσ̄

µȧβi∂µφβ + φaσµ
aβ̇
i∂µφ̄

β̇ − m(φ̄ȧφ̄
ȧ + φaφa)

]
(2.24)

The corresponding equations of motion for Majorana fields are as follows:

σ̄µȧβi∂µφβ −mφ̄ȧ = 0, σµȧβi∂µφ̄
β̇ −mφa = 0 (2.25)

These equations show that σµ
aβ̇

has natural lower indices, whereas σµȧβ has natural upper indices; one

can also see that σµaȧ converts a dotted spinor to an undotted and σµȧa works in opposite way.
That is, the Pauli matrices σ̄µ convert spinors belonging to (1/2,0) to those in (0,1/2) and vice

versa for σµ. Thus, both φ̄σ̄µφ and φσµφ̄ are Lorentz contravariant vectors. Similarly, φσµνχ, φ̄σ̄µνχ̄,
are Lorentz tensors where:

σµν =
i

2
(σµσ̄ν − σν σ̄µ), σ̄µν =

i

2
(σ̄µσν − σ̄νσµ) (2.26)

The four-component Dirac spinor can be redefined as:

ψ
(4)
D =

[
φa
χ̄ȧ

]
, (2.27)

where both φ, χ are left-handed spinors. Thus, the four-component Dirac spinor is expressed in terms of
two left-handed 2-component spinors. In this representation, the Majorana condition is simply φ = χ.
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2.2.4 Operators

The supersymmetric-algebra generators1, by construction, transform a boson to a fermion or vice versa;
hence, they are fermionic operators and carry spin 1/2 (or half-odd integer). There is a theorem which
states that all the symmetry operators of the Lagrangian (other than those of the Poincare group) that
form a Lie algebra of commutators must be Lorentz scalars. The generators of the Poincare group
satisfy the following commutation relations:

[Mµν ,Mρσ] = i(gνρMµσ − gµρMνσ + gµσMνρ − gνσMµρ)

[Pµ,Mρσ] = i(gµρPσ − gµσPρ) (2.28)

[Pµ, Pν ] = 0

If we want a fermionic operator to be a part of some Lie algebra, (which is the mathematical framework
of the field operators), the Lie algebra must be generalized to contain anti-commutators. Such an
extension of the Lie algebra is called a “graded” or “super algebra”. One needs Grassmann numbers
to complete the algebra. To write down the extended part, we consider for simplicity a two-component
SUSY operator Qa (a = 1, 2). Using the two-component representation, the commutator relations of
the extended Lie algebra are defined by:

[Mµν , Qa] = −1

2
(σµν)aβQ

β

[Mµν , Q̄ȧ] = −1

2
(σµν)ȧβ̇Q̄β̇

[Qa, P
µ] = [Q̄ȧ, P

µ] = 0 (2.29)

{Qa, Q̄β̇} = 2(σµ)aβ̇Pµ

{Qa, Q̄β̇} = 2(σ̄µ)β̇aPµ

{Qa, Qβ} = {Q̄a, Q̄β} = 0

These equations constitute an algebra that closes itself and hence can serve as generators of the SUSY
group. The four-component version of the fourth and fifth is:

{Q(4), Q̄(4)} = 2γµPµ, Q(4) = [Qa, Q̄
ȧ]T , Q̄(4) = [Qa, Q̄ȧ] = Q(4)†γ0, Q†a = Q̄ȧ. (2.30)

The form of the right-hand side of first and second of (2.29) can be determined considering the dimen-
sionality and the Lorentz tensor structure with appropriate spinor legs.

In appendix B one can find some basic results concerning the SUSY superspace, the chiral superfields
finally the invariant action and Lagrangian of SUSY is presented as well. Since we will not use this
(quite advance material) further we will not emphasize to that, and we will only let the interest reader to
overview it in appendix and of course in excellent available bibliography [122, 130, 116, 17, 126, 24, 123].

2.3 The Minimal Supersymmetric Standard Model and its

phenomenology

Supersymmetry implies that the fermion and the boson are not different but the same particles in a
different state. If SUSY exists, as a principle of nature, there must exist a supersymmetric partner to
every known particle, a fermion to a boson and a boson to a fermion. This “new particle world” is
schematically illustrated in figure 2.1 together with the SM particles on the left.

The partner is usually refereed to as supersymmetric particle or “superparticle” or simply “sparti-
cle”. Particles and their partner sparticles belong to the same multiplet referred to as super-multiplet
with identical mass; namely, the supersymmetric partners share the same quantum numbers with the

1Subsection follows reference [126] §4.2.2 by Yorikiyo Nagashima.
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Figure 2.1: The SM Particles and the MSSM s-particles in 1-to-1 correspondence for illustration terms.
Sparticles are shown in the so-called physics states, not as mass eigenstates.

SM particles but their spin differs by 1/2, i.e.: SUSY is a spin-based symmetry of nature. They interact
with other particles with the same coupling strength as the SM counterparts.

Experimentally, no degenerate fermion-boson pairs have been observed and, therefor SUSY -if it
exists- must be broken, and as a consequence of this, sparticles have different (presumably higher)
masses than SM-particles. If the SUSY-breaking is “small”, which corresponds to the case where the
mass difference relative to the SM particles is less than a TeV, it still provides a viable solution to the
hierarchy problem.

In this section we will briefly discuss a minimal version of SUSY, known as “Minimum Supersym-
metric Standard Model” (MSSM), and we will explore some of its phenomenological properties.

2.3.1 Particle spectrum

The square of the SUSY operator vanishes Q2
a = 0 (shown in (2.29) and therefore the algebra closes

within a doublet with helicity h differing by 1/21. If a doublet (h, h + 1/2) exists, an anti-doublet
(−h,−h− 1/2) must also exist by the CPT-theorem.

The Minimal Supersymmetric Standard Model (MSSM) has:

• spin 1/2 fermions and their partners sfermions: chiral multiplets (1/2,0),

• gauge bosons and their partners: gauge multiplets (1,1/2),

1Subsection follows reference [126] §5.2.1 by Yorikiyo Nagashima.
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Figure 2.2: The list of chiral supermultiplets (top) and vector super-multiplets (bottom).

• Higgs and its partner: (a part of) chiral multiplet (1/2,0).

The MSSM is the main SUSY framework by which phenomenological studies are carried out. Its
Lagrangian consists of the minimal form of equation (B.35). The super-potential is at most cubic in
the chiral superfields and contains the mass and the Yukawa interaction terms.

To break SUSY, a soft-SUSY-breaking term is introduced. Soft-breaking means that it does not
induce quadratically divergent radiative corrections and that their energy scales remain at the TeV scale.
There is no “universally accepted” mechanism to spontaneously break the SUSY; it is instead provided
as an external term to the Lagrangian put in by hand. The Lagrangian is then constructed by including
all possible supersymmetric interaction terms that satisfy SU(3)×SU(2)×U(1) gauge invariance.

The tables in figure 2.2 list the particle content of MSSM. Only first generation is shown for quarks
and leptons. The column with the symmetry group lists the representation within the group and
hypercharge Y of the SM.

1. In spontaneously broken SUSY, four physical Higgses states appear along with four super-
partners, which are denoted as h,H,A,H± and h̃, H̃, Ã, H̃± respectively. These higgs-states

are expected to be mixed with gauginos to give χ̃0
i and χ̃±i .

2. Bino, neutral wino, and higgsinos mix to form four neutralinos: χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4, where the lower

index orders the mass and the upper stand for the charge of the sparticle.

3. Winos and charged higgsinos mix to form two charginos: χ̃±1 , χ̃
±
2 (same as above indexes meaning).

4. SM-fermions carry a chirality (L or R) which transforms differently under the symmetry group
SU(2)×U(1), thus, they carry different quantum numbers. Therefore, they have to belong to
different chiral supermultiplets: (f̃L, fL) and (f̃R, fR). The superpartners f̃L and f̃R are scalar
bosons, so they have no chirality, but are denoted with indexes L, R to distinguish their partners
since are expected to appear in mixed mass eigenstates: f̃1 and f̃2 (where the index now orders
the masses).
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5. In the SM there is only one Higgs doublet while in SUSY we need at least two: Hu ≡ [H+
u , H

0
u]T

and Hd ≡ [H0
d , H

−
d ]T . Hu couples the up-type quarks and Hd couples only to down-type quarks

and charged leptons. Two Higgs doublets contain eight independent components-fields; three
of them are absorbed to give masses to W±, Z0, and the remaining five appear as physical
particles: h0,H0,A,H±. Corresponding to these five Higgses, also five higgsinos are needed in
MSSM: h̃0,H̃0,Ã,H̃±. Once the SU(2)L×U(1) considered broken to U(1)EM , mixing among them
is introduced. Then W̃± and H̃± mix to form charginos, χ̃±1 , χ̃

±
2 , and B̃, W̃ 0, h̃0, H̃0 mix to form

neutralinos: χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4. The Photino and Zino γ̃, Z̃ are special combinations of the Bino and

Wino: B̃, W̃ 0.

6. When SUSY breaks down spontaneously, Goldstone bosons associated with the SUSY appear.
As the SUSY operator is a spinor, it has spin 1/2 and is referred to as the Goldstino G̃1/2. If
SUSY is a global symmetry, this is a physical particle with vanishing mass. In the supergravity
(SUGRA), the symmetry is local and the Goldstino is absorbed to give mass to the spin 3/2
gravitino. However, this is not part of MSSM.

7. Sparticles and SM particles are distinguished by a multiplicative quantum number, called R-
parity, which is defined as follows:

R ≡ (−1)2S+3(B−L), S : spin, B : baryon number, L : lepton number. (2.31)

All known SM-particles have R-parity R = +1, while all the sparticles have R = −1. If R-parity
is violated (as the R-parity violation models of SUSY (RPV-SUSY) assume), the exchange of
sparticles may lead to an unacceptable fast decay of protons. Therefore it is assumed that R-
parity is conserved. As a consequence, the sparticles can only be produced in pairs, and the
lightest supersymmetric particle (LSP), must be neutral and stable. The LSP is the leading
candidate for dark mater since it does not radiate photons and it does not interact strongly.

2.3.2 MSSM interactions

The allowed interactions of the MSSM are dictated by the superpotential terms of equation (B.35).
In spontaneous SUSY breaking, the degeneracy of particle-sparticles masses disappears1. However the
interaction coupling strengths does not changes.

Consider the case of a SM interaction of a fermion f with a vector boson V , by a coupling strength g
and its corresponding sparticle pair: sfermion f̃ and gaugino Ṽ . If we replace the set of fields (A,ψ, ψ̄)

and (Vµ, λ, λ̄) in equation (B.32) with the case fields: (f̃a, fa, f̄a) and (V µ, Ṽ , ˜̄V ) then the interaction
term becomes:

LSMinteraction = gf̄aγ
µfaVµ + [h.c.], ⇒ LMSSM

interaction =
√

2g(f̄aṼ )f̃a + [h.c.] (2.32)

The form and the coupling strength of the sparticle interaction are not affected by the SUSY breaking.
Only the masses change. Consequently, if the mass spectrum of the sparticles is known, the production
and decay rates can be predicted up to the effects of mixing.

Figure 2.3 shows some examples of interactions vertices in the MSSM. Diagram (1) is the SM-like
coupling of the top quark to the neutral complex scalar Higgs boson, (t, t̄ has be replaced by the more
accurate notation tL, t

†
R showing the helicity states). In diagram (2), we have the coupling of the left-

handed top squark t̃L to the neutral higgsino field H̃0
u and right-handed top quark, while in diagram

(3) the right-handed top anti-squark field (known either as ¯̃t or t̃∗R depending on taste) couples to H̃0
u

and tL. All these interactions are required to have the same strength yt.
These couplings are dimensionless and can be modified by the introduction of soft SUSY breaking

only through finite (and small) radiative corrections, so this equality of interaction strengths is also a
prediction of softly broken supersymmetry. A useful mnemonic rule is that each of diagrams (1),(2),(3)
can be obtained from any of the others by changing two of the particles into their superpartners.

1Subsection follows reference [126] §5.2.2 by Yorikiyo Nagashima.
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Figure 2.3: Some examples of interaction processes (vertices) in the MSSM frame. (Taken from [122]).

There are also scalar quartic interactions with strength proportional to y2
t , as can be seen from

diagrams (4),(5),(6) (there are five more such discreet processes). Given that Yukawa couplings are
known, the third generation has the dominant contribution in any process.

The gauginos can couple also with squark-quark, slepton-lepton and Higgs-higgsino pairs as illus-
trated in diagrams (7),(8),(9) for gluino, wino, and bino respectively. Each of the squark-quark-gaugino
couplings is given by equation (2.32). For each of these diagrams, there is another diagram with all
arrows reversed. Note that the winos only couple to the left-handed squarks and sleptons, and the
lepton-slepton, Higgs-higgsino pairs do not couple to the gluino. The bino coupling to each scalar-
fermion pair is also proportional to the weak hypercharge Y (as given in table of figure 2.2).

Diagrams (10),(11),(12) show some other couplings which play an important role in determining
the mixing of top squarks, bottom squarks, and tau sleptons.

2.3.3 Spontaneous SUSY breaking

There are many ways to break SUSY, with the preferred being, as mentioned above, the so-called
“soft SUSY breaking” (SSB), which is applicable to TeV-scale phenomena1. The MSSM theoretical
constraints are too weak and the number of “free parameters” is large standing at 124. The introduction
of phenomenological restrictions excludes many of these parameters’ values. However, the MSSM theory
is “non viable” in the sense that there is still a very large non-restricted parameter space.

A way to reduce these parameters’ space is to assume a model in which one requires some kind of

1Subsection follows reference [126] §5.2.4 by Yorikiyo Nagashima.
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unification at high energy and embed to the description the gravity. A typical restrictions imposed to
MSSM requires that all the scalar particles and all gauginos are unified, having the same common mass
values m0 and m12 respectively. This attribute has be shown in figure 1.16 right where all physical
masses of MSSM particles meet in GUT-energy scale.

Various models assume that SSB occurs in a hidden sector consisting of particles that are neutral
with respect to the SM gauge group. Its effects are transmitted to the MSSM particles (referred as
“visible sector”) by some “messengers”. Three theoretical scenarios are popular.

1. The “constrained” MSSM (cMSSM), traditionally also known as “minimal SUperGRAvity”
(mSUGRA) in which the symmetry breaking (SB) in the hidden sector is transmitted to the
visible sector by gravity.

2. The General Gauge Mediation (GGM) in which the messenger has the quantum numbers of the
SM and interacts with the visible sector through ordinary gauge interaction.

3. The Anomaly Mediated Symmetry Breaking (AMSB). Scenario where the source of the SB is the
quantum anomaly of the super-Weyl-scale invariance.

A detailed discussion of these SSB scenarios is beyond the scope of this document and the reader is
refereed to [122, 130, 17, 123].

A common feature of the above three scenarios is to assume some kind of unification in GUTs
reducing the number of parameters (conventionally, masses of scalars, gauginos and Yukawa coupling
at GUT scales (figure 1.16 right). These models are based on clear physical ideas and have high
constraints. They suppresses effectively the large parameter space to a very limited number, which
might turn out to be too restrictive.

Alternatively, a phenomenological approach can be applied to study a broader and more compre-
hensive subset of the MSSM the phenomenological MSSM (pMSSM). In this model, experimental data
are used to eliminate parameters. Such constraints reduce the number of free parameters to 19, making
it a practical compromise between the full MSSM (124 parameters) and highly constrained CMSSM (5
parameters).

2.3.4 Higgs potential in the MSSM

In the MSSM the scalar Higgs potential VH comes from three different sources1.

1. The “D-term”, containing the quartic Higgs interaction, which for the two Higgs fields H1=Hd

and H2=Hu with Y = −1 and +1, is given by:

VD ≡
g2
W

8
[4|H†1H2|2 − 2|H1|2|H2|2 + (|H1|2)2 + (|H2|2)2] +

g2
B

8
(|H2|2 − |H1|2)2 (2.33)

2. The “F-term” of the superpotential, which can be written as:

VF ≡ µ2(|H1|+ |H2|)2 (2.34)

3. The soft-breaking term of the Lagrangian, given by:

Vsoft ≡ m2
H1
H†1H1 +m2

H2
H†2H2 +Bµ(H1 ·H2 + h.c.) (2.35)

Where m2
H1

, m2
H2

are the Higgs masses evolved (via the RGEs) from m2
0 down to the EW scale (by

RGE, shown in figure 1.16 right). The full scalar potential VH (expanding the Higgs doublets in terms

1Subsection follows reference [126] §5.2.5 by Yorikiyo Nagashima.
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of charged and neutral components and defining the “µ-terms”) is:

Hd ≡
[
H1
d

H2
d

]
=

[
φ0†

1

−φ−1

]
, Hu ≡

[
H1
u

H2
u

]
=

[
φ+

2

φ0
2

]
, µ2

1 ≡ |µ|2 +m2
H1
, µ2

2 ≡ |µ|2 +m2
H2
, µ2

3 ≡ −Bµ

VH = µ2
1(|φ0

1|2 + |φ−1 |2) + µ2
2(|φ0

2|2 + |φ+
2 |2)− µ2

3(φ−1 φ
+
2 + φ−†1 φ0

2 + h.c.) (2.36)

+
g2
W + g2

B

8
(|φ0

1|2 + |φ−1 |2 + |φ0
2|2 + |φ+

2 |2)2 +
g2
W

2
|φ0†

1 φ
+
2 − φ−1 φ0

2|2

In the unification scale, we have µ2
1 = µ2

2 because m2
H1

=m2
H2

=m2
0.We require one of the squared Higgs

masses turn into negative at the EW-scale.
The conditions necessary to induce SSB are:

• the determinant of the Higgs mass matrix becomes negative: µ2
1µ

2
2 − µ4

3 < 0,

• the potential has a lower limit: µ2
1 + µ2

2 − 2|µ3|3 > 0,

• the conditions for Higgs potential to have minimum at the EW-scale: ∂VH/∂νi = 0, i=1,2.

The explicit equations can be found in [122, 130, 126]. We can express these equations using a limited
number of parameters. For instance, in mSUGRA (or equivalently in cMSSM), it is customary to use
the five parameters:

m0, m1/2, A0, tan β, sign[µ] (2.37)

Which (respectively) refers to: common scalar (s)particle mass at GUT scale, common 1/2-spin
(s)particle mass at at GUT scale, the two neutral higgs VEV ratio tan β ≡ 〈0|H2

u|0〉/〈0|H1
d |0〉, and

the sign of the potential parameter µ.
All the sparticle masses can be derived from the above parameters as using the RGEs. In order to

have spontaneous breakdown of the SU(2)×U(1), either one of the Higgs masses has to go negative.
If the mass of the top quark is large enough, the coupling with the Higgs H2 is strong. If its value is
positive at the SUGRA scale, it can go negative at the EW scale (as demonstrated in figure 1.16 right).

While in the SM, the EW spontaneous symmetry breakdown had to be put in by hand, whereas
in SUGRA it can be derived from the SB at the Planck-scale supplemented by the RGEs. This is an
excellent attribute of mSUGRA, MSSM and SUSY in general, which strongly motivates new physics.
Note, however, that the (squared) mass of the squarks and sleptons should not go negative, because
then the baryon and/or lepton number would no longer be conserved.

2.3.5 Soft SUSY breaking

In models that have SUGRA incorporated within them, the process that is responsible for the separation
of gravity from other forces also has an effect on the EW symmetry breaking1.

One can suppose a super-unified symmetry (with SUGRA incorporated) that is broken at some
energy scale MX ' 〈FS〉, slightly below the Planck scale. The VEV of the “F-field” is 〈FS〉 which
supposes that breaks the SUSY spontaneously. At this “symmetric” stage, all the coupling constants
and masses are unified at common values, and for energy scales Q < MX they evolve according to the
RGEs.

We assume that the SB occurs in a “hidden sector”, which means the breaking affects only the (yet
unknown) particles which do not interact neither with the SM particles nor with their superpartners.
The assumption is that those particles in the hidden sector and those in the visible sector interact only
through gravity. Then, even if the SB occurs at, say, a scale ∼ MX (where MX is the mass of the
unknown “messenger” particle), the symmetry breaking scale is effectively reduced to ∼1011 GeV.

In the following we discuss only mSUGRA with simplest assumptions. We can identify chiral
superfields that include SM particles. They are as follows:

SU(2) doublets : Q̂a
i , L̂

a
i , Ĥ

a
1 , Ĥ

a
2 , SU(2) singlets : ûi, d̂i, l̂i, (2.38)

1Subsection follows reference [126] §5.3.1 by Yorikiyo Nagashima.
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wherever i: generation and a:isospin(u, d). The most general superpotential compatible with gauge
invariance, renormalizability, and R-parity conservation is written as (see also (B.35)):

W =
3∑

ij=1

[yiju ūiQ̂j · Ĥu − yijd d̄iQ̂j · Ĥd − yijl l̄iL̂j · Ĥd] + µĤu · Ĥd, (2.39)

where: yiju,d,e denotes Yukawa couplings among generations. The first three terms are SUSY gener-
alization of the Yukawa interactions in the SM, while the last is a SUSY-Higgs mass term. Then
the effective “ultimate” SUSY Lagrangian L can be expressed as a sum of SUSY invariant and SB
Lagrangian L = LSUSY + LSSB.

LSSB ≡ −(m2
0

∑
i=q̃,l̃,H1,2

|φi|2)− (m2
1/2

∑
a=B̃,W̃ ,q̃

λ̄aλa)−BµHu ·Hd − A0W3 − h.c. (2.40)

W3 ≡
3∑

ij=1

{yiju ˜̄uiQ̃j ·Hu − yijd ˜̄diQ̃j ·Hd − yijl ˜̄liL̃j ·Hd}. (2.41)

The first and the second are the mass-terms for the scalar and gaugino fields. The introduction of these
mass terms only for superpartners is the cause for the SB. The third and fourth terms look like the
SUSY conserving superpotential in (2.39).In this form, SB is soft (SSB) and does not induce quadratic
divergences to scalar squared-mass terms. All the constants are of the TeV scale. A0 (which is one
of the five parameters of cMSSM) and B are parameters with mass dimension. m0 and m12 are the
common masses of the chiral scalars and gauginos and A0yijk is the common Yukawa coupling at MX

scale.
In principle, all the SB parameters (m12,m0, A0, Bµ) can be complex, although they are generally

assumed to be real to avoid CP violation in the SUSY sector. As the SB mass scale m0, m12 should
not exceed ∼ O(1) TeV from a phenomenological point of view, A0 and B should also be of the same
order. In mSUGRA, governed by the renormalization equations, these parameters differ at low energies
but are unified at MX scale increasing its predictive power enormously. At low energies when the EW
symmetry breaks at . O(1) TeV, particles with the same quantum number mix.

2.3.6 Evolution and formation of the masses in the MSSM

The masses of all fermions and bosons in the MSSM can be derived from the cMSSM with the RGEs,
given a specific combination of values of the five parameters: m0,m1/2, A0, tan β and sign[µ]. We will
not get into details and technicalities of the mass formation (these can be found in [122, 130, 116, 17,
123]); however, we will only show some of its results as benchmarks to understand the concepts and
the consequences.

We consider the ordering and the definitions of masses1:

M1 ≡Mg̃ < M2 ≡MW̃ < M3 ≡MB̃. (2.42)

The wino consists of charged W̃± and neutral W̃ 0. When the SU(2)×U(1) symmetry is broken, the
charged gaugino W̃± mix with the charged higgsinos H̃± to make two charginos χ̃±1 , χ̃

±
2 :

M(χ̃±) ≡
[

M2

√
2mW sin β√

2mW cos β µ

]
, (2.43)

where the off-diagonal element arises from the gauge coupling of the chiral superfields, that is, between
wino and higgsino (gW W̃

+H̃0
uH̃
−
d ∼

√
2mW sin βW̃+H̃−d ).

The mass matrix is not symmetric. However, the product ofM(χ̃±)M(χ̃±)T is symmetric. There-
fore, the mass-squared eigenvalues can be obtained by diagonalizing this product which leads to the
following mass eigenvalues:

m2(χ̃±1,2) =
1

2
[ M2

2 + µ2 + 2m2
W ∓ {(M2

2 + µ2 + 2m2
W )2 − 4(µM2 −m2

W sin 2β)2}1/2 ]. (2.44)

1Subsection follows reference [126] §5.3.2 by Yorikiyo Nagashima.
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Similarly, the neutral members, bino and wino: B̃, W̃ 0, and the higgsinos h̃0, H̃0, mix to constitute
four neutralinos. One has to diagonalize the mass matrix of the flavor eigenstates to obtain the masses
of the neutralinos χ̃0

1,2,3,4. They are the eigenstates of the symmetric mass matrix:

M(χ̃0) ≡


M1 0 − cos β sin θWmZ sin β sin θWmZ

0 M2 cos β cos θWmZ − sin β cos θWmZ

− cos β sin θWmZ cos β cos θWmZ 0 −µ
sin β sin θWmZ − sin β cos θWmZ −µ 0

 . (2.45)

The exact solutions are not presented here, are complicate and can be found in [122, 130, 17, 123, 126].
Note that the diagonal matrix may have negative or complex-valued elements. If that is true, the
physical masses are the absolute values of the corresponding elements. Also should be noted that µ
must be nonzero. If µ=0, the determinant of (2.45) vanishes and so the lightest neutralino must be
massless (this has been excluded by searches for an excess of invisible Z0 decays). Some examples of
special (extreme) cases of masses combination and dominant flavor-component in mixing are as follows
[126]:

• if: M1,M2 � mZ , |µ| → χ̃0
1 ∼ γ̃ (LSP photino-like),

• if: M1,MZ �M2, |µ| → χ̃0
1 ∼ B̃, (LSP bino-like)

• if: M2,MZ �M1, |µ| → χ̃0
1 ∼ W̃ 0, χ̃±1 ∼ W̃± (LSP wino-like),

• if: |µ|,MZ �M1,M2 → χ̃0
1 ∼ h̃0, χ̃0

2 ∼ H̃0, χ̃±1 ∼ H̃± (LSP higgsino-like).

Figure 2.4 shows the case where M(χ̃0
1)=100 GeV, M1=0.5M2 and the ratio µ/M2 varies. A compression

or degeneracy of the χ̃0
i and χ̃±j masses attributed in many scenarios. There are two distinct cases

(regions). The first is the “gaugino region”, where M1,M2 < |µ|, where the lightest states χ̃0
1, χ̃

±
1

are mainly gauginos, while the heavy neutralinos and charginos are mainly higgsinos. In the second
“higgsino region”: M1,M2 > |µ| the situation is reversed.

Figure 2.4: Masses of the four neutralinos and two charginos along a line in the SUSY parameter space
on which M(χ̃0

1)=100 GeV, while the parameter µ moves from large negative to large positive values.
The parameter M1 is set M1=0.5M2. Note the compression of mass spectrum occurs in a large range
of cases. There are four red lines for neutralinos the two for charginos, the most massive curves of both
(χ̃0

4, χ̃
2
±) are overlaid. (Taken from [130])

For squarks and sleptons, the mass eigenstates in the MSSM should be obtained by diagonaliz-
ing three 6×6 squared-mass matrices for up-type squarks: (ũL, c̃L, t̃L, ũR, c̃R, t̃R), down-type squarks:
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(d̃L,s̃L,b̃L,d̃R,s̃R,b̃R), and charged sleptons: (ẽL,µ̃L,τ̃L,ẽR,µ̃R,τ̃R), and one 3×3 matrix for sneutrinos
(ν̃e,ν̃µ,ν̃τ ) there are no right-handed sneutrinos ν̃R in the MSSM.

Most of these mixing angles are predicted to be very small (this come form a general hypothesis of
flavor-blind soft parameters). Therefore, the first and second generations are almost degenerate, where
the third family of squarks and sleptons can have very different masses (but the squarks are generally
heavier than sleptons).

We also deduce (from the exact RGEs products) that m(f̃L) > m(f̃R) because the SU(2) gauginos
discriminate one from the other. If m0 is very small, all the scalar particles are light. Within mul-
tiplets, one can deduce that m(˜̀

L)2 = m(ν̃`)
2 − m2

W cos 2β. For tan β > 1 or cos 2β < 0, which is
phenomenologically preferred.

So far we have neglect the left-right mixing effect among the same generation sfermions. The
mixing is induced by the Yukawa couplings (mediated by the Higgs and its strength is proportional
to the mass); hence, it can be neglected for the first and second generations. The mass eigenstates of
top-squarks (called stops): t̃1, t̃2 can be obtained by diagonalizing the mass matrix expressed in t̃L, t̃R
base [126, 122]:

m̃2(t̃) ≡
[

m̃2(t̃L) mt(At − µ∗ cot β)
mt(At − µ cot β) m̃2(t̃R)

]
, m̃2(b̃) ≡

[
m̃2(b̃L) mb(Ab − µ∗ cot β)

mb(Ab − µ cot β) m̃2(b̃R)

]
.

(2.46)
The off-diagonal part of the first matrix comes from SUSY invariant contribution: Hdt̃Lt̃

∗
R ∼ ν1µyt

(last term of (B.35) in expression of W (A)) and the SB contribution term Hut̃Lt̃
∗
R ∼ ν2Atyt (the first

term in (2.40), expression for W3).
Then, one using the equalities: mt=ytν2, µ1=ν cos β, and ν2=ν sin β can derive the mass matrix

in (2.46). The soft-couplings At,b (in (B.35)) are the A0 parameter of cMSSM for the top or bottom
quark, evolved down to the EW-scale. By mixing, the mass splitting between the left- and right-
handed stop and sbottom occurs, simultaneously pushing their absolute values down. Especially:
m̃(t̃1) � m̃(t̃2) . m̃(Q̃1,2) and probably (with tan β �1): m̃(b̃1) � m̃(b̃2) and m̃(τ̃1) � m̃(τ̃2).
Consequently, t̃1, τ̃1 are most likely the lightest squark and slepton.

The qualitative features of what we has been described are already depicted in figure 1.16 right,
which is often used as a benchmark spectrum for analyzing experimental data. The bold lines are the
three gaugino masses (g̃, W̃ , B̃). The light solid lines are the squark masses (q̃L, q̃R, t̃1, t̃2) and slepton
masses (˜̀

L, ˜̀
R). The dashed lines represent the Higgs boson masses (H̃d, H̃u). Because of the large top

mass, the mass of the Hu is driven to negative values inducing the spontaneous symmetry breaking at
the electroweak scale.

2.3.7 Summary of mass spectra

We can summarize some of the features of cMSSM (mSUGRA) model in the following statements1.
(Gauge Mediated SB, (GMSB), and AMSB models are also compared).

1. The LSP is the neutralino χ̃0
1 in mSUGRA (and the gravitino G̃ in GMSB).

2. The gluino g̃ is considerably heavier than charginos and neutralinos. At the EW scale the ratios
for mSUGRA (and for GMSB) masses are: M3:M2:M1 ' 6:2:1.

3. The squarks in first and the second generations is not lighter than 80% of the gluino in the
mSUGRA (and ∼60% in the simplest GMSB).

4. q̃ is heavier than ˜̀ (because the gluino contribution to the RGEs is large in the evolution of the
RGEs).

5. Mixing between L-R squarks is small for the first and second generation because of their small
mass (i.e., Yukawa coupling); hence, they are almost degenerate. However, it is large between

1Subsection follows reference [122] §8.5 by Stephen P. Martin.
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t̃R and t̃L. As a result, the mass eigenstates t̃1, t̃2 are widely separated pushing the mass value
themselves downward. For this reason, t̃1 (actually the whole third generation) is considered as
the lightest.

6. Generally, the left-handed sfermions f̃L are slightly heavier than f̃R (because of the wino isospin-
dependent correction).

7. The light Higgs h0 is lighter than 150 GeV, and compatible with the one observed in 125 GeV.

Figure 2.5 shows some scenarios of possible mass spectra in MSSM. Figure 2.6 shows the exper-
imentally excluded area of cMSSM in the two parameters space: m0,m1/2 where the rest three are
set as: tan β = 30, A0 = −2m0, µ > 0. An explicit presentation of the MSSM Feynman rules and
diagrams can be found at reference [100, 82].

Figure 2.5: Mass spectrum for MSSM in various different SB scenarios (as hyper-titles mentions). Mass
scales are not equal and are deliberately omitted. First columns have the five (non-supersymmetric)
higgses, followed by sparticles: four neutralinos, two charginos, gluino, 1st, 2nd and 3rd generation
sfermions. (Taken from [122]).

2.3.8 Sparticles production, decay and final state signatures at the LHC

Given that the Lagrangian and the couplings of the interactions are known, the production cross
sections and the decay channels (branching ratios BR) can be predicted once a the mass spectrum is
assumed (i.e. in a given set of the five cMSSM parameters values). The R-parity conservation restricts
the production to an even number of sparticles at each process, i.e.: in pairs1. Figure 2.7 shows the
production cross section for various sparticle pairs in p-p collisions at energies

√
s = 8 TeV. Appendix

B.4 and figure B.1, presents all possible production modes for sparticles in hadron collisions i.e. via
qq̄, qg, gg parton annihilation or scattering. We can summarize these modes to the following list:

qq̄ → χ̃+
i χ̃
−
j , χ̃0

i χ̃
0
j , χ̃±i χ̃

0
j ,

˜̀±
L ν̃

(∗)
` , (EW − couplings),

gg → g̃g̃, q̃iq̃
∗
j , (QCD − couplings),

qg → gq̃∗i , (QCD − couplings), (2.47)

qq̄ → g̃g̃, q̃iq̃
∗
j , (QCD − couplings),

qq → q̃iq̃j, (QCD − couplings)

The neutralino χ̃0
1 is assumed to be the LSP. It has EW interaction, but because of R-parity con-

servation, the decays chains contain q̃ (or ˜̀) loops in the intermediate states and the cross section is
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Figure 2.6: The exclusion limits at 95% CL for 8 TeV analyses in the [m0,m1/2] plane for the
mSUGRA/cMSSM model with the remaining parameters set to tan β = 30, A0 = −2m0, µ > 0. Part
of the model plane accommodates a lightest neutral scalar Higgs boson mass of 125 GeV. Theoretical
signal cross section uncertainties are not included in the limits shown. (From ATLAS ICHEP 2014).

proportional ∝ [1/m(q̃)]4. As these masses are large, the strength of the reaction two-component of
the order of weak processes or less.

The final state products are dictated by the exact mass spectrum chosen/assumed. Each neutralino
χ̃0
i and chargino χ̃±i contains at least a small admixture of the electroweak gauginos B̃, W̃ 0 or W̃±.

So the χ̃0
i and χ̃±i inherit couplings of weak interaction strength to (scalar, fermion) pairs as shown in

figure 2.3 diagrams (8) and (9). The possible two-body decay modes for neutralinos and charginos in
the R-parity conserved MSSM are:

χ̃0
i → Zχ̃0

j , W∓χ̃±j , h0χ̃0
j , `˜̀, νν̃, [A0χ̃0

j , H0χ̃0
j , H±χ̃∓j , qq̃], (2.48)

χ̃±i → W±χ̃0
j , Zχ̃±j , h0χ̃±j , `ν̃, ν ˜̀, [A0χ̃±j , H0χ̃±j , H±χ̃0

j , qq̃′]. (2.49)

Using a generic notation ν, `, q for neutrinos, charged leptons, and quarks. The final states in brackets
are the more kinematically implausible ones. For the heavier neutralinos and chargino (χ̃0

3, χ̃
0
4 and χ̃±2 ),

one or more of the 2-body decays is likely to be kinematically allowed. If all of these two-body modes
are kinematically forbidden for a given chargino or neutralino, they have three-body decays:

χ̃0
i → ffχ̃0

j , ff ′χ̃±j , χ̃±i → ff ′χ̃0
j , χ̃±2 → ffχ̃0

1, (2.50)

through the same gauge bosons as in (2.48), (Higgs scalars, sleptons, and squarks that appeared in the
two-body decays, but now are off-shell. Here f is generic notation for a lepton or quark, with f and f ′

1Subsection follows reference [122] (§9 and §10) by Stephen P. Martin.
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Figure 2.7: The sparticle-pair production cross section at
√
s=8 TeV, p-p collisions as a function of its

masses. Hard SUSY production: g̃g̃, q̃g̃, q̃q̃, t̃t̃ and EW SUSY production q̃ ˜χ0
1,2, g̃

˜χ0
1,2, χ̃

±
1

˜χ0
1,2,

˜̀∓
e

˜̀±
e .

distinct members of the same SU(2)L multiplet (and of course one of the f , f ′ in each of these decays
must be an antifermion). A set of possible sparticle decay modes can be found in figure 2.8, where
the first row of diagrams shows the neutralino modes (denoted with Ñi), the second line the charginos
(denoted with C̃i). The intermediate particle in each decay can be either off- or on-shell. In many
situations, the particular decays:

χ̃±1 → `±νχ̃0
1, χ̃0

2 → `+`−χ̃0
1, (2.51)

can be important for phenomenology, because the leptons in the final state result in clean signals.
These decays are more likely if the intermediate sleptons are relatively light (even if they cannot be
on-shell). In particular the (three-body version) of the decays χ̃0

2 → ff ′χ̃0
1 and χ̃±1 → ff ′χ̃0

1 throw
off-shell sleptons (ν̃, ˜̀), are involved in one of the signal signatures that the current document analysis
searches for.

Sleptons can have two-body decays into a lepton and a chargino or neutralino, because of their
gaugino admixture, as may be seen directly from the couplings (figure 2.3, (8) and (9)). Therefore, the
the-body decays:

˜̀→ `χ̃0
i ,

˜̀→ νχ̃±i , ν̃ → νχ̃0
i , ν̃ → `χ̃±i , (2.52)

can be of weak interaction strength.
In the squark-gluino sector, if the decay q̃ → qg̃ is kinematically allowed, it will usually dominate all

production processes (figure 2.7), because the q̃qg̃ vertex (figure 2.3, diagram (7)) has QCD strength.
Otherwise, the squarks can decay into a quark plus neutralino or chargino: q̃ → qχ̃0

i or q̃ → q′χ̃±i .
It is possible that the decays t̃1 → tg̃ and t̃1 → tχ̃0

1 are both kinematically forbidden. If so, then the
lighter top-squark may decay only into charginos, by t̃1 → bχ̃±1 , or by a three-body decay t̃1 → bWχ̃0

1.

46



Figure 2.8: A set of possible decay channels (or chains) which sparticles can decay. First and second
rows neutralinos and charginos respectively; last two rows, gluino modes. Notice that each of these has
in final state the LSP ≡ Ñ1 ≡ χ̃1

0 since we consider the R-parity conservation case. (Taken from [122]).

If even this decay is kinematically closed, then it has only the flavor-suppressed decay to a charm quark,
t̃1 → cχ̃0

1, and the four-body decay t̃1 → bff ′χ̃0
1. Where the last one (four-body stop decay) consists

the main signal signature of the following presented search. If indeed the stop is the lightest squark
and the q̃ → qg̃ is kinematically inaccessible, then the t̃ → tχ̃0

1 appears as the dominant production
(figure 2.7).

The decay of the gluino can only proceed through a squark, either on-shell or virtual. If two-body
decays g̃ → qq̃ are open, they will dominate (again because the relevant gluino-quark-squark coupling
has QCD strength). Since the top and bottom squarks are expected lighter than all of the other
squarks, it is quite possible that g̃ → tt̃1 and/or g̃ → bb̃1 are the only available two-body decay mode(s)
for the gluino, in which case they will dominate over all others. If instead all of the squarks are heavier
than the gluino, then the gluino will decay only through off-shell squarks, so g̃ → qqχ̃0

i and g̃ → qq′χ̃±i .
(There can be many competing gluino decay chains, some of the possibilities are shown in figure 2.8
diagrams (7) to (10)).

Over all, each decays of any produced sparticle-pair result in final states with two LSPs, which
escape the detectors. The LSPs “absorbs” at least 2m(χ̃0

1) of the available energy (
√
ŝ) usually in the

form of missing energy (~6 ET ). But at a hadron collider the actual collision takes place between the
hadron constituents. These carry an unknown fraction of hadron energy and thus only the transverse
momentum (with respect to the beam z-axis) conservation can be used. Initial pz of colliding system
is always unknown. This restrict the searches to use only the transverse component of missing en-
ergy/momentum i.e. 6ET . So, in general, the typical observable signal-objects in SUSY production and
decay are N` leptons, Njet jets, and typically high 6ET (where both N`, Njet can be equal to zero).

The SM background, i.e.: known SM processes which end up decaying into the same final states
observables, are mainly coming from W and Z boson productions when these decay leptonically, since
produces leptons and neutrinos (where the last are identified as ~6ET ).

Therefore a search for supersymmetry is a challenge where one tries to discriminate sufficiently the
signal from the same final-state SM background. So far, the experimental study of supersymmetry has
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unfortunately been confined to setting limits. Appendix B.5 illustrates in summary plots the current
experimental limits of sparticles masses (set by ATLAS and CMS experiments) over various sparticles
production and decays.
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Chapter 3

CERN, LHC and the CMS detector

3.1 Introduction and motivation

Discovering SUSY at the LHC is a very challenging task, even within the restricted framework of the
MSSM discussed in previous chapter.

• Every corner of the parameter space needs to be covered, including all possible decay channels
which provide a high number of final states with different mixtures of reconstructed objects
(photon, electron, muon, tau, jets, b-jets, missing transverse energy).

• Due to the presence of many weakly interacting sparticles, cross sections are generally signifi-
cantly smaller, sometimes by orders of magnitude (figure 2.7) with respect to the background SM
processes (figure 1.1.10).

• The few signal events are generally located in the tails of kinematic distributions, requiring chal-
lenging trigger, powerful and sophisticated discriminating variables, and accurate SM background
modeling in a complicated region of phase space.

• In other more exotic (or less natural) SUSY scenarios where R-parity is violated and/or non-
prompt decays are possible, the experimental challenge generally shifts to taking the best per-
formance of each sub-detector to improve secondary vertex reconstruction, timing resolution, jet
substructure reconstruction, lepton coverage, and much more.

Thus SUSY searches provides an excellent motivation for pushing the detector and analyser capabilities
to their best.

3.2 CERN, the organization and the accelerator network

CERN is the acronym of the “Conseil Europen pour la Recherche Nuclaire” and actually is the European
Organization for Nuclear Research. It is based near Geneva extends in both France and Switzerland.
It is an 61 years old organization (it was founded in 1954) that begun with 12 founding member states
and today counts 22 countries as member-state contributors. CERN’s main operation is to provide
the particle accelerators and other infrastructure needed (by the high-energy physics community of
Europe) in order to research the fundamental aspects of matter at the sub-nuclei level. During its long
lifetime, CERN has been the host of many different experiments (about 140), either in high-energy
physics (HEP) probing the properties of nuclei and particles, or developing technology which afterwords
is transferred to industry and the wider society. There are many “Nobel-Prize” stories that one can cite
to CERN, numerous innovative practices and inventions that have been absorbed by today’s technology
(we will not discuss them at all, since this is far beyond our scope).

Currently CERN hosts 26 experiments covering various experimental physics fields (a list of them
can be found in appendix G with their basic description). Figure 3.1 shows the member countries of
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Figure 3.1: The CERN organization located near Geneva in Switzerland with its member states map
(layout of its area with the LHC and SPS rings. List of the 26 current CERN’s experiments (with blue
the LHC-related experiments).

CERN (left), lists its current 26 experiments (middle), and shows the layout of area (right) where the
Large Hadron Collider (LHC), −its greatest machine− is located.

The accelerator complex at CERN is a succession of machines that achieve increasingly higher
energies. Each machine injects a proton beam into the next one, which takes over to bring the beam
to an even higher energy, and so on. In the LHC (the last element of this chain) each proton beam is
accelerated up to 7 TeV, and then, they collide at center of mass energies of

√
s=14 TeV (s is defined

in appendix A). Most accelerators in the chain have their own experimental halls, where the beams
are used for experiments at lower energies.

We now explain briefly the path of a proton accelerated through the accelerator complex at CERN.
(All numbers correspond to the designed performance and are not necessarily those ones of usual or
so-called “Run 1” function.) For this purpose we will use the illustration of the CERN acceleration
network shown if figure 3.2. Information shown in current subsection has been gathered by [88, 35, 45]
and CERN official web pages [44].

• Hydrogen gas molecules (H2) are taken from a hydrogen bottle. Ionising this gas result in protons
are stripd off their electrons: accelerated electrons bombards the molecular-state H2 (which
successively turns to H+

2 e
− and H+e−H) producing free protons. These are thus collected in a

cathode to form proton beams.

• The low-energy proton beam is accelerated in the LINear ACcelerator (LINAC2) up to 50 MeV.

• Protons are injected from LINAC2 into the circular, 157 m long, Proton Synchrotron Booster
(PSB). The proton beam is first distributed into four rings whereby intensities of ∼1013 protons
per ring are achieved. The booster accelerates protons up to 1.4 GeV.

• Beam is then fed to the (628 m long) Proton Synchrotron (PS) where it is accelerated up to 25
GeV.

• Protons are then sent to Super Proton Synchrotron (SPS), underground 6.9 km accelerator, where
they are accelerated to 450 GeV.

• They are finally transferred to the LHC in both clockwise and anticlockwise directions. The filling
time is 4′20′′ per LHC ring, where protons are accelerated for 20′ to 7 TeV.

Beams will circulate for many hours (∼8h) inside the LHC beam pipes under normal operating con-
ditions. Protons arrive at the LHC in bunches, which are prepared in the smaller machines (these
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Figure 3.2: The CERN accelerator network which is followed by protons towards the LHC. Small
arrows show the paths each particle (colored differently) follows. On the right: particle current (green)
and the magnet-field (black) versus time for all accelerating devices (y-axis: arbitrary units).

procedures will be discussed in more detail in subsections 3.3.2 and 3.3.3). For a complete scheme
of beam filling, magnetic fields imposed and particle currents induced in each accelerator figure 3.2
illustrates these quantities versus time in arbitrary units.

In addition, the accelerator complex also accelerates (and collides) lead ions. Lead ions are produced
from a highly purified lead sample, heated to a temperature of about 500oC. The lead vapour is ionized
by an electron current. Many different charge states are produced with a maximum around Pb29+.
These ions are selected and accelerated to 4.2 MeV/n (energy per nucleon) before passing through a
carbon foil, which strips most of them to Pb54+. The Pb54+ beam is accumulated, then accelerated
to 72 MeV/n in the (78 m long) Low Energy Ion Ring (LEIR), which transfers them to the PS. The
protons’ path is followed. The PS accelerates the ion beam up to 5.9 GeV/n and sends it to the SPS
after first passing it through a second foil where it is fully stripped to Pb82+. The SPS accelerates it
to 177 GeV/n then sends it to the LHC, which accelerates it up to 2.76 TeV/n per beam which is the
final energy of each beam in the following collision.

3.3 The Large Hadron Collider

3.3.1 Introduction and motivation for a TeV machine

There are two primary objectives behind the realization of the LHC project:

• The discovery (or exclusion) of the long-sought Higgs boson in the full mass range of [114,∼1000]
GeV.

• The observation of physics beyond the SM. As explained previously the most attractive SM
extension: SUSY, in its “natural” scenario, predicts sparticle pairs produced with masses down
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to EW scale or at about ∼1 TeV, answering both to hierarchy problem and the dark matter
mystery.

For both of these goals, a TeV machine was necessary. In the case of an e+e− collider, the needed√
s energy should only exceeds the energy or the potentially-existing (s)particles masses; therefore a

machine at 1 (or 2,3) TeV would be sufficient. Unfortunately, the energy loss per turn for electron
beam because would be prohibitively large. In case of hadron collisions, both the pp-option and the
pp̄-option are available. This restriction comes from the fact that these are the only stable charged
particles.

A pp̄-machine (such the SPS and Tevatron in the past) comes with restrictively low p̄-beam lumi-
nosity due to the difficulties of antiproton production and accumulation. A pp-machine bypasses the
beam-intensity limitation, however pays the cost of more rare production rates (of interesting physics)
because the later usually occur through the qq̄ production mechanism which can be only realized via the
sea-antiquarks (in contrast to the valence-antiquark p̄-beam). A disadvantage of hadron collisions with
respect to e+e− are: the restriction of most physics analysis into the transverse plane of the collisions
(since the z-axis partons’ momenta are not known), and the intricate collision environment by the rest
non primarily participated partons (rich underling-event activity).

Accounting these arguments, one can deduce that a pp-machine requires about an order of magni-
tude higher energies than the masses of the (s)particles to study produce, ie: ∼10 TeV. Thus was born
a powerful pp-collider with

√
s=14 TeV the LHC.

In the following subsections the main properties and design aspects of LHC are briefly discussed,
the information presented is gathered by [35, 88, 2].

3.3.2 The LHC machine aspects and performance

The Large Hadron Collider (LHC) is the largest and most complex scientific undertaking ever at-
tempted. It is built in a circular tunnel 27 km in circumference; the tunnel is buried 50 to 175 m
underground CERN, extending both France and Switzerland sites (figure 3.1 right).It is the same one
hosted in past LEP (Large Electron-Positron collider). LHC is at the edge of the accelerator based
energy frontier as illustrated in the “Livingston plot” in figure 3.3 left.

The LHC is divided into eight arcs and eight straight sections, (figure 3.3 right) which besides the
housing of the experiments serve as utility insertions. The experimental insertions are located in points
2 and 8 include the injection systems for the two beams from the SPS, while octants (points 1) and
7 contain collimation systems whereby particles with too large momentum dispersion are cleaned up.
The two independent RF-systems (Radio-Frequency Cavities) that provide tangential acceleration to
each LHC beam are located in octant (point) 4, while the beams are extracted and dumped into large
graphite cylinders via fast-pulsed deflecting (kicker) magnets in octant 6.

Inside the LHC ring, two separate proton beams circulate in opposite directions (figure 3.4) and
are accelerated up to their nominal energy of 7 TeV by eight RF-cavities per beam, which operate at
2 MV (accelerating field of 5 MV/m) and a frequency of 400 MHz [88, 35, 2]. The two beams only
share the same vacuum pipe right before and after the collisions, through a distance of 126 m in IP2
(IP: Interaction Point) and IP8 where ALICE and LHCb experiments are located respectively, and 140
m in IP1 and IP5 where ATLAS and CMS experiments locations are. The long common beam pipe
implies 34 parasitic collision points close to the region of the IPs and to suppress this effect the beams
are separated into orbit bumps and brought to collision in a crossing angle at the IPs. The collision
parameters as well as the most important nominal parameters of the LHC are summarized in table 3.1.

Within each beam, the protons are packed into up to 2808 filled proton-bunches. Each bunch
contains up to ∼1.15×1011 protons (beam intensity) and is nominally separated by ∆t ' 25 ns (or
∆x = c∆t ' 7.5 m) with the preceding/succeeding bunch, thus forming the so-called bunch trains. At
peak energy, each bunch is travelling relativistically around the LHC ring with a Lorentz-factor:

γp = Ep/mpc
2 ' 7[TeV ]/938.3[MeV ] ' 7460, βp ≡ vp/c =

√
1− 1/γ2

p ' 0.999999991, (3.1)
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Figure 3.3: Left: the “Livingston plot” showing the energy in the constituent frame of electron-positron
(filled circles) and hadron colliders partons (squares). The energy of hadron colliders has here been
scaled by factors of 6-10 in accordance with the fact that the proton energy is shared among its partons
(i.e. y-axis:

√
ŝ). Right: layout of the LHC, showing separation into octants, with beam-1 (beam-

2) rotating clockwise (anti-clockwise). Also shows experiments, beam injection points, RF-cavities
location, beam cleaning and dump locations (taken from [107, 35]).

which translates to revolution frequency frev ' 11.246 kHz or a period of Trev ' 89 µs to go around
the 26.659 km long (approximately circular) ring of radius RLHC ' 4.3 km.

In order to keep the beams travelling with momentum pp in orbit, a series of superconducting dipole
magnets is used to provide the required centripetal force which bends properly the beams and force
them in circular orbits.

FCentripetal = FLorentz ⇒
p2
p

mpRLHC

= qp(c~βp × ~B) ⇒ B[T ] =
pp[TeV ]

0.3RLHC [km]
. (3.2)

By equating the two forces, the magnetic field ( ~B) strength that has to be supplied normal to the
plane of the orbit can be deduced. Thus, for a proton beam travelling with a momentum of 7 TeV/c,
the required magnetic field is ∼5.4 T. However, since the LHC ring cannot be completely filled with
such dipole-magnets, the required bending power is provided by about 1232 superconducting dipole
magnets, able to provide a homogeneous magnetic field (directed upwards/towards the center of earth)
of 8.33 T into the beam pipe. Figure 3.4 (top-right) illustrates a magnetic-dipole cross section with its
operational modules. The magnetic fields formed is also shown in bottom-right.

To achieve the required magnetic field, a two-in-onw design strategy was chosen for the dipole
magnets, to provide a uniform vertical dipole field over the width of the beam pipes for the two
counter-rotating proton beams. The two vacuum pipes which carry the counter-rotating protons are
held at a pressure of ∼100 nPa (' 10−12 atm), are 55 mm in diameter and 194 mm apart. The beam
vacuum pressure is imperative in order to avoid collisions with gas molecules, and for this reason close
to the IP where collisions take place it is kept at even lower pressures, at <1 nPa. The beam pipes
are surrounded by the superconducting coils (as figure 3.4 bottom-left shows) and in order to counter
the repulsive forces between the cables which tend to “open” the magnet, the conductors are held
in place by stainless steel (non-magnetic) collars. These collars are in turn surrounded by an iron
(ferromagnetic) return yoke. All these parts comprise the dipole cold mass and are contained inside a
shrinking cylinder vessel. The dipole cold mass is operated at 1.9 K in superfluid He-II state. Thermal
insulation is achieved by use of a vacuum vessel and a super-insulating layer. The dipole configuration
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Table 3.1: Summary of the main parameters for LHC machine: modules, magnets, RF-cavities, beams
and collisions performances. (Selected information from [88, 2, 35]).

Quantity Value Unit

Infrastructure modules
LHC circumference (average radius) 26.659 (∼4.3) km
Number of arcs (straight sections) 8×2450 (8×545) m

Nominal beam energy at injection for protons 0.45 TeV
Nominal beam energy at collision, protons (ions) 7 (2.76) TeV

Number of magnets (discrete coils in dipoles, quadrupoles...) 9593
Number of main dipoles/lattice quadrupoles/lattice sextupoles/lattice octupoles 1232 / 392 / 688 / 168

Stored energy in magnets ∼11 GJ
Radio Frequency Cavities

Number of RF-cavities per beam 8
Main RF System operation 400.8 MHz

Voltage of 400 MHz RF system at 7 TeV 16 MV
Magnetic dipole performance

Magnetic field at: Injection(0.45TeV)/Nominal(7TeV)/Ultimate operation 0.54 / 8.33 / 9 T
Current at: Injection/Nominal/Ultimate operational field 0.763 / 11.850 / 12.840 kA

Energy density of the LHC magnets 500 kJ/m
Horizontal force at 8.33 T (inner and outer layer) 1.7 MN/m

Force loading 1 m of dipole 400 (35) tonnes (MN)
Stored energy (both apertures) at nominal (ultimate) field 6.93 (8.11) MJ

Operating temperature 1.9 K
Distance between aperture axes at 1.9 K 194 mm

Inner coil diameter at 293K 56 mm
Cold mass diameter at 293K 570 mm

Length: coils/cold mass(at 293K)/full with ancillaries 14.3 / 15.2 / 16.5 m
Total dipole mass ∼27.5 tonnes

Superconducting coils features
Composition of the superconducting alloy Ni-Ti (47Wt%Ti)

Number of strands per cable 36
Number of Ni-Ti filaments in each strand 6500

Beam performance
Minimum distance between bunches ∼7.5 m

Bunch spacing 25 ns
Design luminosity, protons (ions) 1034(1027) cm−2s−2

Number of harmonic buckets per beam 35640
Number of bunches per proton beam 2808

Number of protons per bunch 1.15×1011

Total crossing-angle 285 µrad
Proton revolution frequency 11.25 kHz

Pressure in vacuum pipes in dipoles (at IPs) ∼100 (< 1) nPa
Bending radius 2803.95 m

Number of turns per second 11245
Circulating current / beam 0.54 A

Stored beam energy ∼7360 MJ
Beam lifetime ∼10 h

Radiated Power per beam (synchrotron radiation) ∼6 KW
Emittance εn 3.75 µrad

Beta function β∗ 0.55 m
Collision properties

Events (primary inelastic vertexes) per bunch-crossing ∼20
Number of collisions points (IPs) 4

Average crossing rate 31.6 MHz
Number of collisions per second 0.6·109

Elastic (inelastic) cross-section 40 (60) mb
Number of elastic (inelastic) collisions per second 400 (600) MHz

generates a magnetic field of nominal magnitude 8.33 T, and is opposite in direction for each beam;
vertically up in the left-hand beam pipe and vertically down in the right-hand one (figure 3.4).

In order to reach the nominal field strength of 8.33 T, (necessary for stabilising the 7 TeV beams
into orbit) a current of 11.850 kA is required. This is achieved by the use of 80 cables, placed in
two layers, running to the beam pipe axis and back on the other side forming the coils “hugging” the
beam pipes (figure 3.4). These cables house 36 strands of superconducting wire, each strand housing
6500 superconducting filaments of Niobium-Titanium (NbTi). This superconducting coils correspond
to ∼55% of full LHC budget. The main parameters of dipole magnets are summarised in table 3.1. In
addition to sustaining the proton beams in orbit, the stabilisation and focussing of the proton bunches
is of paramount importance, otherwise the particles might diverge and be lost. For this purpose, the
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Figure 3.4: The LHC dipole magnet with its operational modules and the niobium-titanium (NbTi)
superconducting coils. Cross section of the dipole and induced magnetic field.

LHC is equipped with 392 main quadrupole magnets. These magnets provide magnetic fields that are
zero in the beam pipe centre but increase linearly away from it, and can thus be used as vertically
focussing and horizontally defocussing, or vice-versa. For this reason, the body of the LHC machine
employs alternate quadrupoles with their poles reversed, so that an alternate focussing and defocussing
effect is achieved, the net effect being the focussing in both planes. However, this focusing effect on the
proton bunches causes oscillations of the particles around the centre of the beam pipes. The number
of oscillations in one turn of the machine is known as the “betatron tune” (Q), whose value is carefully
tuned to avoid resonance with the betatron motion.

Additionally, within a proton bunch, particles tend to have different energies and hence follow
slightly different orbits, which means each requires a different Q-value. The change in focusing with
energy is known as the “chromaticity” and it has an adverse effect on the beam, causing instability
and tune spread. To counter this, the LHC utilises sextupole magnets which are designed to provide
magnetic fields that are zero in the beam pipe centre but increase quadratically away from it. In
particular, there are two sextupole families per plane per beam for chromaticity corrections.

Moreover, higher magnetic multipoles are also used to support beam focussing and to compensate
for other interactions that the beams suffer along their orbits, including the EM-interactions within the
proton bunches, beam interaction with electron clouds from the beam pipe walls and the gravitational
force experienced by the protons.
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Figure 3.5: The integrated luminosity delivered from the LHC to CMS for three different runs (left),
and delivered with recorded luminosities superimposed for the most important (8 TeV) run.

3.3.3 The LHC beams, stability, oscillations, and performance

Protons are tangentially accelerated from 0.45 TeV up to 7 TeV into LHC beam-pipes, by the so-called
Radio-Frequency (RF) cavities.

RF-cavities are in synchronisation with both the particle’s velocity (or energy) and the bending
magnetic field (hence the name synchrotron). These RF-cavities generate a longitudinal oscillating
voltage, which the particles see as an accelerating electrical fields.

The standing EM-waves generated inside the resonating RF-cavity capture the incident beam and
contain it in what is known as an RF-bucket.

The particles are thus trapped in the RF-voltage and this is what gives bunch-structure to the
beam. (The proton bunches are formed from the first level or their circular acceleration i.e.: the PSB.)

Even-though this RF-structure is present only inside the RF-cavities, the RF-buckets can be thought
of as virtual positions on the LHC circumference that may or may not contain beam. If the RF-bucket
contains a beam, then the beam within the bucket is referred to as a proton-bunch.

Within a given bunch, the protons do not have ideal circular orbits, but instead oscillate in and out
of the orbit path in both the horizontal and transverse planes; this is known as “betatron motion”.

In an alternating-gradient quadrupole magnet configuration synchrotron like the LHC, the trans-
verse equation of motion for the particles can be approximated as a pseudo-harmonic oscillator with a
path-dependent spring constant. This is described by Hills equation:

d2x(s)

ds
+K(s), (3.3)

where x(s) is the position or displacement from the longitudinal coordinate s (in the beam direction)
and K(s) is the varying spring constant. The simplest solution reveals that the single particle transverse
motion is described by an oscillatory term analogous to the general solution of simple harmonic motion:

x(s) = A
√
β[x(s)] cos(φ(s) + φ0), (3.4)

where A and φ0 are constants connected to the amplitude and phase, respectively, and
√
β[s(x)] is

an s-dependent amplitude that modulates the evolution of the transverse motion. The betatron phase
advance (µ) over one turn around the LHC ring is defined as the integral of β[s(x)] over the closed
path:

µ ≡
∮
dφ(s) =

∮
ds

β[s(x)]
(3.5)

The betatron tune(Q), defined as Q ≡ µ2π, is the number of betatron oscillations about the closed
path of the LHC ring and it is a carefully adjusted parameter to avoid betatron resonance. Moreover,
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at the neighbourhood of an IP the beam optics of the ring is configured to produce a local minimum
of the betatron amplitude function: β∗(s). This transverse betatron motion of the particles evolves
with the longitudinal coordinate s forming an ellipse in: x(s), dx(s)/ds phase-space. For an ensemble
of Gaussian-like distributed particles in: x(s), dx(s)/ds, the transverse emittance (εx) is defined as the
area of the ellipse containing one standard deviation: εx ≡ πσx/βx(s) (with a same expression for the
other transverse direction, y). The term σx is the projection of the ellipse at x-axis and represents
the beam size in the direction transverse to the longitudinal coordinate s. Therefore, a beam with
low transverse emittance is one where the particles are confined to a small distance and have similar
momenta, and it can be loosely described as the smallest opening you can squeeze the beam through.

In addition to the transverse oscillations, beam particles also oscillate longitudinally under the
influence of the RF-cavities. To complement the coordinates used to describe the motion of particles,
the longitudinal variables: z,∆p/p is added to the transverse phase-space variables [i.e: x(s), dx(s)/ds,
y(s), dy(s)/ds] mentioned above. The variable z describes the distance by which a given particle leads
an ideal particle traversing the LHC ring trajectory. The quantity ∆p is the particle’s momentum error
while ∆p/p is the momentum spread of the beam. The individual particles get in and out of step with
the ideal, synchronous phase, for which the increase in momentum per turn from the RF-kick exactly
matches the increase in the bending field.

Thus, if a particle is lagging with respect to the synchronous particles, it will arrive later than the
RF-kick and will thus see a smaller accelerating voltage. However, since the bending field has now
increased according to the exact synchronous particle, the effect will be to launch the asynchronous
particle into a smaller orbit. As a consequence, during the next time around the asynchronous particle
will now arrive earlier with the exact opposite outcome; experience a larger RF-kick that will launch
it into a larger orbit and hence cause it to arrive later next time around.

In this way, even though the proton bunch as a whole remains stable while circulating around
the LHC ring, the protons themselves undergo longitudinal oscillations, also known as “synchrotron
oscillations”. Therefore, instead of the protons being uniformly distributed around the circumference
of the LHC ring, they instead oscillate around the synchronous particles in the bulk of a bunch, which
is in turn contained in an RF-bucket.

Now, in order (for the particles) to always see the accelerating RF-voltage, the RF-frequency (fRF )
must be an integer multiple (h) of the revolution frequency (frev), i.e.: fRF=hfrev, in which case h is
known as the “harmonic number” and for the LHC machine it has a value of hLHC=35640. Therefore,
even though the LHC has the ability to accelerate a beam made up of 35640 bunches, the nominal
number of occupied buckets is instead 2808. The reason for this is that a number of consecutive buckets
are required to not contain a beam, thus forming an abort gap. An abort gap is a measure which is
required in the beam-dump process, due to the fact that it takes a short yet significant time to switch
on the kicker magnets that divert the beam from the LHC into the dump area.

Figure 3.6: Illustration of (left to right): the dipole magnet which bends the beam; quadrupole magnet
(which successive application focuses) the bean to transverse plane; the lensing induced in a quadrupole
configuration; the RF-cavity “kicker” and its instant fields, and the RF-voltage which accelerates and
causes longitudinal (Synchrotron) oscillations of protons around its “central orbit”.
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3.3.4 Beams luminosity

Once the proton beams have reached nominal energies and have acquired stabilised orbits inside the
LHC ring, they are brought to collisions in the four IPs at which the detectors are positioned. The
reaction rate (R) at these regions, for a given interaction with cross-section: σint, is given by

R = Lσint, L ≡ frevolution
n1n2

4πσxσy
. (3.6)

where L is the instantaneous luminosity for two oppositely directed beams of relativistic particles
with revolution frequency frev. The terms n1, n2 are the number of protons within the two beam
bunches. The quantity 4πσxσy can be thought of as the effective cross-section area of the bunched
beams (assuming they overlap completely). It can be deduced that the number of interactions at any
instance is directly proportional to the intensity of each colliding beam and the revolution frequency
of the bunches, and inversely proportional to the beam size (or momenta spreads within a bunch).

The equation can be recast in terms of transverse emittance and betatron amplitude functions as
follows:

L =
frevn1n2

4εxβx(s)εyβy(s)
, (3.7)

revealing that, while there are no fundamental limits to restrict the peak luminosity, the LHC lumi-
nosity is constrained by the machine’s ability to maintain highly populated bunches of low transverse
emittance, while being able to suppress betatron oscillations of the protons with high precision. These
parameters are not constant in time, but deteriorate over a physics run. In particular, the intensity
and transverse emittance of the circulating beams degrade over time and cause the initial luminosity
(L0) to decay (or interact, or absorbed) exponentially as:

L(t) = L0e
−t/τnuclear , τnuclear ≡ N0/(kL0σtot), (3.8)

Where τnuclear the initial decay time of the bunch intensity due to beam collisions, N0 the initial beam
intensity, k is the number of IPs, and σtot is the total cross-section of the LHC at a specific centre-of-
mass-energy: σtot '100 mb (at

√
s=14 TeV). The time required for the initial luminosity to reach 1/e

of its initial value is: (
√
e− 1)τnuclear, which for a nominal LHC operation is ∼29h.

Besides the beam losses due to collisions, luminosity lifetime is affected by “Touschek Scattering”,
whereby particle losses within a bunch are due to single particle-particle collisions. In addition to that,
slow transverse emittance blow-up caused by the scattering of particles on residual gas in the beam
pipes, RF-noise, beam-beam interactions and Intra-Beam Scattering (IBS) (process where particles
elastically scatter off each other) can further decrease the luminosity lifetime. By approximating the
luminosity decay by an exponential process, the net luminosity lifetime takes the form:

1

τL
=

1

τIBS
+

1

τnuclear(
√
e− 1)

+
1

τRestGas
(3.9)

and assuming τIBS '80h and τRestGas '100h it has a value of: τL '14.9h.
Therefore, luminosity lifetime can be used to estimate the integrated luminosity as: Lint(t) =

L0(1−e−t/τL). Once the beam losses have reached a level where the luminosity has dropped significantly,
the beam is dumped and a new fill cycle begins.

The nominal beam injection time from the SPS into the LHC is 16 min, while the minimum time
required for ramping the beam energy from 450 GeV up to 7 TeV is approximately 20 min. The
ramping down of the magnets from the nominal 7 TeV back to 450 GeV (in case of beam abort) is 20
min, while the theoretical minimum time interval from the end of a luminosity run and a new beam at
top energy (turnaround) is estimated 70 min.

3.4 The Compact Muon Solenoid detector/experiment

In this section the Compact Muon Solenoid (CMS) detector is briefly described. The CMS detector is
a multi-purpose and multi-modules detecting apparatus due to operate at the LHC at CERN. CMS is
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installed about 100 metres underground of LHC at point 5 (shown already at figures 3.1, 3.2 and 3.4)
close to the French village Cessy between lake Geneva and the Jura mountains. The main sources of
information for this section are: [77, 51, 56, 79].

3.4.1 Introduction, motivation and the general concept

The prime motivation of the CMS construction is dictated by the LHC reach; which are the study of
electroweak symmetry breaking (Higgs boson/mechanism) and reveal potential SM-extensions in the
TeV scale (like natural SUSY). However CMS mission is to recorded and study all LHC data and
perform all kind of possible analysis extended from SM-precision physics, and Ion-collision physics up
to quantum black hols studies.

At the core of the CMS detector sits a high-magnetic field and large-bore superconducting solenoid
surrounding a silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic
calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return
is instrumented with four stations of muon detectors covering most of the 4π solid angle. Forward
sampling calorimeters extend the pseudorapidity coverage to high values (|η| <5) assuring good her-
meticity and stereoscopic coverage. The overall dimensions of the CMS detector are a length of 21.6
m, a diameter of 14.6 m and a total weight of 12.5 ktonnes.

The total proton-proton (pp) cross-section at
√
s = 14 TeV is expected to be roughly 100 mb. At

design luminosity the general-purpose detectors will therefore observe an event rate of approximately
109 inelastic events/sec. This leads to a number of formidable experimental challenges. The online
event selection process (trigger) reduces the huge rate to about 100-150 events/sec for storage and
subsequent analysis. The short time between bunch crossings, 25 ns (designed performance), has
major implications for the design of the read-out and trigger systems.

At the design luminosity, a mean of about 20 inelastic collisions will be superimposed on the event
of interest (within a single bunch crossing). This implies that ∼103 charged particles will emerge from
the interaction region every 25 ns. The products of an interaction under study may be confused with
those from other interactions in the same bunch crossing. This problem clearly becomes more severe
when the response time of a detector element and its electronic signal is longer than 25 ns.

The effect of this pile-up is reduced by using high-granularity detectors with high time-resolution,
resulting in low occupancy. This requires a large number of detector channels. The resulting (∼100)
millions of detector electronic channels require excellent synchronization. The large flux of particles
coming from the interaction region leads to high radiation levels, requiring radiation-hard detectors
and front-end electronics.

The CMS detector/experiment requirements to meet the goals of the LHC physics programme can
be summarised as follows:

• Good muon identification and momentum resolution over a wide range of momenta and angles,
good di-muon mass resolution (∼ 1% at 100 GeV), and the ability to determine unambiguously
the charge of muons with p < 1 TeV;

• Good charged-particle momentum resolution and reconstruction efficiency in the inner tracker.
Efficient triggering and offline tagging of s and b-jets, requiring pixel detectors close to the
interaction region;

• Good electromagnetic energy resolution, good diphoton and dielectron mass resolution (∼ 1%
at 100 GeV), wide geometric coverage, π0 rejection, and efficient photon and lepton isolation at
high luminosities;

• Good missing-transverse-energy and dijet-mass resolution, requiring hadron calorimeters with a
large hermetic geometric coverage and with fine lateral segmentation.

The design of CMS (detailed in the next section), meets these requirements. The main distinguishing
features of CMS are a high-field solenoid magnet, a full-silicon-based inner tracking system, and a
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Figure 3.7: The CMS detector anatomy with its sub-devices.

homogeneous scintillating-crystals-based electromagnetic calorimeter. The coordinate system adopted
by CMS has the origin centered at the nominal collision point inside the experiment, the y-axis pointing
vertically upward, and the x-axis pointing radially inward toward the center of LHC ring. Thus, the
z-axis points along the beam direction (toward the Jura mountains from Point 5). The azimuthal angle
φ is measured from the x-axis in the x− y plane and the radial coordinate in this plane is denoted by
r. The polar angle θ is measured from the z-axis. Pseudorapidity is defined as: η ≡ −ln[tan(θ/2)].
Thus, the momentum and energy transverse to the beam direction, denoted by pT (≡

√
px2 + py2)

and ET(≡
√
pT 2 +m2), respectively, are computed from the x and y components. The imbalance of

momentum measured in the transverse plane is denoted by 6ET .
The overall layout of CMS is shown in figure 3.7, whereas transverse and longitudinal cross section

are shown at figure 3.8. An complete description of the CMS performance can be fount at [77]

3.4.2 Superconducting solenoid/magnet and the iron yoke

Large bending power is needed to measure precisely the momentum of energetic charged particles. This
forces a choice of superconducting technology for the magnet. At the heart of CMS, sits a 13 m long,
6 m inner-diameter and field-intensity: B=4 T superconducting solenoid providing a large bending
power:

∫
~B · d~x ∼12 Tm, with a stored energy of: 2.6 GJ at full current.

The internal space of the coil is large enough to accommodate the pixel tracker, the silicon tracker,
the ECAL and the main HCAL stations. Whereas the muon chambers are installed outside of it in a
4-layer stations. The magnetic field is large enough to saturate 1.5 m iron yokes surrounding the coil.
Magnetic flux returns through this 10 kilo-tonnes iron yoke comprising five barrel-wheels, two endcaps,
and composed by four cylindrical-layers and three disk-layers respectively (figures: 3.7, 3.8).

The dimensions of the solenoid are: 6.3 m cold bore (diameter), 12.5 m length and weights 220
tonnes. Its distinctive feature of the coil is the NbTi superconductor. The superconductor, made from a
Rutherford-type cable, co-extruded with pure aluminium, is mechanically reinforced with an aluminium
alloy. Due to the number of ampere-turns required for generating a field of 4 T (41.7 MA-turn), the
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Figure 3.8: The CMS detector in the transverse and the longitudinal cross section.

winding is composed of four layers, (instead of the usual one as in Aleph, Delphi, or maximum two as
in ZEUS BaBar coils).

The ratio between stored energy and cold mass is nominally: 11.6 KJ/kg, causing a large mechanical
deformation (0.15%) during energising, well beyond the values of previous solenoidal detector magnets
(figure 3.9 right). For physics reasons, the radial extent of the coil (∆R) had to be kept small, and thus
the CMS coil is a “thin coil”: ∆R/R∼0.1. The magnet was designed to be assembled and tested in a
surface, prior to being lowered ∼90 m below ground to its final position in the experimental cavern.

3.4.3 Tracking system overview

The innermost part of the CMS detector is the inner tracking system [77], which is 5.8 m long and 2.5
m in diameter. It surrounds the thin beryllium beam-pipe which accommodates the LHC vacuum and
is centred at the IP where beams are collide. Its mission is to provide a robust, efficient and precise
measurement of the charge and trajectories of charged particles emerged from IP with transverse
momenta above ∼1 GeV and within the pseudorapidity range |η| <2.5.

Furthermore, the efficient identification of heavy flavours requires that the tracking system is able to
determine precisely secondary vertices and impact parameters dxy, dz (where are defined and illustrated
in figure 3.11 bottom left).

At the LHC design luminosity, an average of ∼1000 charged particles that originate from more than
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Figure 3.9: The CMS magnet, with the iron return yoke of wheel-0, and its cooling system (left). The
magnetic field (parallel to z-axis) formed over the whole detector in full nominal operations conditions
(middle). The energy over cold mass ratio map for CMS and other detectors (right).

20 overlapping proton-proton interactions are produced every 25 ns, and first propagate through the
tracker before reaching the next detector layer, the calorimetry system.

This leads to a tracker-hit rate density of 100 MHz/cm2 in the barrel part at a radius of 4 cm, which
can have consequences in terms of detector occupancy and radiation damage to the tracking system.

In order to be able to deal with this enormous particle flux, the tracker system must have high gran-
ularity and a fast response to provide a very good position resolution, as well being able to withstand
the radiation damage. However, this is contrary to the aim of keeping the amount of tracker material
to as little as possible, in order to minimise the amount by which a given particle involves in multiple
scatterings, bremsstrahlung, photon conversion and nuclear interactions.

To fulfil the requirements on granularity, speed and radiation hardness, the CMS tracker is entirely
based on silicon technology. Two main devices/subdetectors have been implemented: the so-called
Pixel detector and the Strip detector. These are composed of 1440 pixel and 15148 microstrip modules
that are arranged in a barrel and endcap configuration. These corresponds to a total active silicon
area of about 200 m2, which is the largest silicon tracker built to date. In the next subsections we will
present pixel and strip detectors’ main features.

3.4.4 Pixel Detector

Due to the high hit-rate density at very small distanced around CMS-IP, radiation-hard detectors with
very fine granularity must be used, in order to avoid saturation and keep the tracker occupancy at the
level of ∼1%. For this reason, the innermost part of the CMS tracker consists of about 66×106 pixel
detectors, with a pixel unit cell of 100×150 µm2.

The pixel detector covers a total area of ∼1 m2, and due to the high granularity of the pixels it has
an occupancy of only 104 per pixel at the nominal LHC operation.

There are 47923200 pixels in barrel (BPix) arranged into three homoaxial cylindrical layers, each
53.3 cm long and positioned at mean radii of: 4.4 cm, 7.3 cm and 10.2 cm around IP, providing an
active area of 0.78 m2. These are complemented by other 17971200 pixels in endcaps (FPix) arranged
into two endcap disks on each side of the barrels, at z = ±34.5 cm and z = ±46.5 cm, spanning through
a radius range of 615 cm and covering an area of other 0.28 m2. All these are illustrated in figure 3.10.

The barrel layers are composed of modular detector units (modules) placed on carbon fibre supports
(ladders). Each ladder includes eight modules with pixels arranged in quadratic arrays of n+ implants
on n substrates, with a thickness of 250 µm2. As charged particles traverse the depletion region of the
junction they eject electrons from the silicon atoms-implants, causing the production of electron-hole
pairs. Each pixel uses an electric field to collect these charges on the surface to metal contacts. To
read out the detector, a Read-Out Chip (ROC) is bump-bonded to the pixel modules, which extracts
the signal off the top by reading an array of 52×80 pixels. The ROCs, which amount to about 16000,
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Table 3.2: Summary of the parameters/performances of CMS detector per sub-system: magnet, iron
yoke, pixel-tracker, silicon strip-tacker, ECAL, HCAL, Muon-system, Trigger, DAQ. (Taken from [77,
51, 56, 79, 60, 38, 102, 58]).

Quantity Value Unit

Magnet
Magnetic length 12.5 m

Cold bore diameter 6.3 m
Central magnetic induction 4 T

Total Ampere-turns 41.7 MA-turns
Nominal current 19.14 kA

Inductance 14.2 H
Stored energy 2.6 GJ

Radial thickness of cold mass 312 mm
Radiation thickness of cold mass 3.9 X0

Weight of cold mass 220 t
Maximum induction on conductor 4.6 T

Temperature margin wrt operating temperature 1.8 K
Stored energy/unit cold mass 11.6 kJ/kg

Iron yoke
Outer diameter of the iron flats 14 m

Length of barrel 13 m
Thickness of the iron layers in barrel 300, 630 and 630 mm

Thickness of iron disks in endcaps 250, 600 and 600 mm
Mass of iron in: barrel/each endcap/Total 6 / 2 / 10 kt

ECAL
|η| coverage: EB, EE, ES <1.479, [1.479,3], [1.653,2.6]

Action medium / modules: EB, EE, ES 61200, 14648, - PbWO4, PbWO4, Si-stripes
Radiation length: EB, EE, ES 25.8, 24.7, 3 X0

Front(back) cross-section in EB PbWO4 crystals 22×22 (26×26) mm2

Front(back) cross-section in EE PbWO4 crystals 28.62×28.62 (30×30) mm2

Length EB, EE, 230, 220 mm
Density of PbWO4 crystals 8.28 g/cm3

Refractive index n for PbWO4 crystals at peak wavelength 2.29
PbWO4 crystals scintillation decay time (80%) 25 ns

Photo-electrons produced in PbWO4 crystals at 18o 4.5 MeV1

PbWO4 crystals emission spectrum maximum 420-430 nm
HCAL

|η| coverage HB, HE, HO, HF: <1.3, [1.3,3.0], <1.65, [3.0,5.2]
Action medium HB, HE, HO, (HF): plastic scintillators, (quartz fibres )
Radiation length HB, HE, HO, HF: [5.82,10.6], ∼10, ∼11, .11, ∼10

Absorber material brass: Cu 70%, Zn 30%
Brass absorber density 8.53 g/cm3

Brass absorber radiation length: (X0) 1.49 cm
Interaction Length: λ 16.42 cm

HB layer 0, plastic scintil.(Bicron BC408), steel: 9, 40 mm
HB layers 1-8, plastic scintil.(Kuraray SCSN81), brass: 3.7, 50.5 mm
HB layers 9-14, plastic scintil.(Kuraray SCSN81), brass: 3.7, 56.5 mm
HB layers 15-16, steel, plastic scintil.(Kuraray SCSN81): 75, 9 mm

Muon detectors
|η| coverage DTs, CSCs, RPCs: < 1.2, [0.9,2.4], < 1.6

DTs gas composition 85% Ar, 15% CO2

CSCs gas composition 30% Ar, 50% CO2, 20% CF4

RPCs gas composition 95% Freon:C2H2F4 & 5% Isobutane: C4H10

DTs anode/electrode/cathode voltage +3.6/1.7/1.2 kV
DTs dead time: 150 ns

RPCs gas gap: number, width 2, 2 - , mm
RPCs operating voltage 8.5-9.0 kV

Trigger
Input rate L1, HLT: ∼0.1, ∼1000 MHz

Output rate L1, HLT: ∼100(30), ∼0.1 kHz
Rate reduction factor L1, HLT: ∼104, ∼103

Time latency L1, HLT: ∼3.2×10−6, [0.04,1] s

amplify the signals and apply a threshold filter before registering a hit. In the endcaps, the disks are
split into half. Each half is comprised of 12 trapezoid-shaped blades which is sandwich of two back-
to-back panels. Rectangular sensors of five sizes are bump-bonded to arrays of ROCs in such a way to
form plaquettes. The 672 in total plaquettes are arranged to overlap, so as to provide full coverage for
charged particles emerging from the IP5.

To enhance the spatial resolution by analogue signal interpolation, the effect of charge sharing
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Figure 3.10: The pixel-tracker layers (which their hits allows the precise reconstruction of charged
particle direction), and the operation principle of such a pixel-detector (take from [40, 77]).

induced by the Lorentz drift in the 3.8 T magnetic field is used. Charge generated by an ionising track
traversing the sensor perpendicularly will be spread over 150 µm at the surface in the r-φ plane and
perpendicular to the magnetic field.

Therefore, since in the barrel layers the pixels are perpendicularly oriented to the magnetic field,
they are deliberately not tilted.

The resolution along the z-axis is determined by the pixel pitch (implants) in the central regions
(low values of η) and by charge sharing if the tracks hit the sensors at an angle, whereby typically
pixel clusters share the charge carriers created in the depletion region. Conversely, in the endcap
regions, the orientation of the pixel modules is parallel to the magnetic field. Therefore, the modules
are deliberately tilted to about 20o resulting in a turbine-like geometry, which enhances charge sharing
between channels due to the Lorentz effect. The spatial resolution of the pixels is about 20 µm for the
r-φ measurement (σr−φ) and about 15 µm for the z measurement (σz). The arrangement of the pixel
detector into barrel and endcap parts, provides a pseudorapidity coverage of |η| .2.5.

In the high η regions the pixel information from the two disks has to be combined with the innermost
layer of the barrel, which only covers the region up to |η| .2.2, leaving the pseudorapidity range
2.2< |η| <2.5 to be only covered by the endcap disks.

In this way the pixel detector provides three high precision space points (hits) on each charged
particle trajectory, enabling the localization of the collision and decay vertexes, allows the determi-
nation of small impact parameter resolution (σdxy , σdz), which is important for good secondary vertex
reconstruction for low track multiplicity of b-quark and τ -lepton decays. Moreover, the pixel detector
may be used to perform fast track finding, which may be used to set coarse constrains for selecting
interesting events with the trigger.

3.4.5 Silicon-strip tracker

The tracker silicon strip detector, which surrounds the pixel detector, has a total of 9.3×106 silicon
microstrips, covering an area of 198 m2, and is divided into three separate subsystems; the Tracker-
Inner-Barrel and Disk(s) named: (TIB), (TIDs), and the Tracker-Outer-Barrel (TOB), which surrounds
the former, and the Tracker-EndCap (TEC), which seals off the TOB, as shown in figure 3.12. The
placement of the barrel and endcap subsystems has been designed such that each particle must pass
through at least 10 sensors, independent of pseudorapidity and, assuming they have high enough
transverse momentum, to be within the tracker acceptance.

Each of the subsystems has silicon microstrip modules, designed differently for its place within
the detector. The choice to use silicon sensors was based on building a compact, high resolution,
efficient, reliable and cost-efficient tracker. As the pixel detector, the silicon microstrip sensors have
very fast response, excellent spatial resolution, are “radiation-hard” and can be operated at nearly
room temperature. These features makes it highly suited for detecting large particle flux emerging
from IP and through the pixel detector.

Silicon microstrip detectors operate in similar way to the pixels. When a charged particle propagates
through the sensitive region of the material, the current from the liberated electron-hole pairs can be
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Figure 3.11: The complete picture of the CMS pixel detectors with all its plaquettes either in barrel and
endcaps with also the relative spacial orientation. Bottom left: the definition of the impact parameters
dxy, dz with respect to the primary vertex (PV); right: the anatomy of such a BPix module (take from
[63]).

measured by collecting them to silicon strip electrodes. The small pulse of current, which typically
lasts a nanoseconds, is then amplified by ROCs, thus registering a hit and allowing for the particles
trajectory to be reconstructed. The layout of CMS full tracking system and the silicon-strip detector
operating principle are shown in figure 3.13.

Each side of the barrel is sealed off with the TID endcaps. The TIB layers are 146 cm long and are
positioned at mean radii of: 25.5 cm, 33.9 cm, 41.9 cm and 49.8 cm around IP. These are complemented
by three disks in the TID on each side of the barrels at: ±78.8 cm, ±91.8 cm and ±104.7 cm and
spanning through a radius range of 23.5-33.5 cm, 32.6-42.6 cm and 37.7-50.2 cm, respectively. The
combined TIB/TID subsystem, which has its silicon microstrips oriented parallel (radial) to the beam
axis in the barrel (disks), delivers up to four r-φ measurements on a trajectory. The layers are fitted
with 320 µm thick and 12 cm long microstrips silicon sensors, with a strip pitch in the range of 80-120
µm, leading to an occupancy of up to 2-3% per strip at the nominal LHC bunch-crossing frequency.

The two innermost layers of the TIB, and rings one and two of the TID are equipped with stereo
modules that are coupled back-to-back and rotated at an angle of 100 mrad with respect to each other,
hence providing measurements in both the r-φ and r-z coordinates. The resulting spatial resolution
for TIB is about 23-35 µm for the r-φ measurement and about 230 µm for the z measurement.

Surrounding the TIB is the TOB, consisting of six concentric layers, each 236 cm long and positioned
at mean radii of 60.8 cm, 69.2 cm, 78.0 cm, 86.2 cm, 96.5 cm and 108.0 cm around IP. Being further
away from the IP than the TIB, the relatively lower particle flux enables the use of longer strip length
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Figure 3.12: The full CMS tracking system with its sub-layers (x-y plane, and y-z plane). On the
bottom: an illustration of a charged particle track with the the tracker hits.

Figure 3.13: On the left, the 3D-structure of the complete CMS tacking system (pixel & strip), and on
the right an illustration of the operating principle of such strip detectors. (Taken from [2, 124]).

and wider pitch. The maximum strip length is 16 cm while the pitch range is 122-183 µm.
The increase in strip length relative to the inner barrel is purely for logistical reasons, as the outer

barrel has to cover a much larger area than the inner barrel, while also constraining the number of read-
out channels. However, the longer strip length implies a relative increase in electronics noise, which is
a linear function of strip length. To compensate for the apparent deterioration of the signal-to-noise
ration, the silicon sensors in the TOB are much thicker than those in TIB, with a thickness of 500 m.

The thickness of the microstrips in the TOB was selected to maintain a signal/noise ratio well above
10. Additionally, and in similar fashion to the TIB, the two innermost layers of the TOB are equipped
with back-to-back stereo modules, rotated at an angle of 100 mrad with respect to each other. They
provide measurements in both the r-φ and r-z coordinates with resolutions 35-53 µm and 530 µm,
respectively. The outer barrel region, is supplemented by the TEC subsystem, which is comprised of
nine endcap disks on each side, thus closing the barrel gaps to form a cylindrical-like tracker volume.
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Each of the disks carries 7 rings of silicon microstrip detectors, with a thickness and pitch range of 320-
500 µm and 97-184 m, respectively. This arrangement of the disks in the TEC provides another nine
r- measurements per trajectory. To further enhance the performance of the TEC subsystem, the rings
one, two and five carry stereo microstrip detectors that enable the measurement of the z coordinate (r
coordinate) in the the barrel (disks). Similarly to the TID, the achieved single point resolution in TEC
varies with the strip pitch.

The above described tracker layout provides a pseudorapidity coverage of |η| <2.4 and ensures at
least ∼9 hits in the silicon strip tracker, with at least four of them being two dimensional measurements
(stereo). The ultimate acceptance of the tracker ends at |η| ∼5. However, despite the efforts to minimise
the amount by which a given particle is perturbed, by carefully selecting the tracker design and material,
the tracker does exhibit a small but finite material budget to the incoming particle flux, as shown in
figure E.4 (in appendix E.3), before they penetrate the next layer of the CMS detector; the calorimetry
system. The number of tracker-hits versus |η| is shown in figure E.5 and a set of muon parameters’
resolution is shown in figure E.6.

3.4.6 Electromagnetic Calorimeter

The Electromagnetic CALorimeter (ECAL) surrounds externally the tracker and is mission is to absorb
and measure the energy of the electromagnetic products of the collisions i.e.: photons, electrons and
positrons. ECAL covers the pseudorapidity region |η| <3 and is composed of 75848 lead tungstate
(PbWO4) crystals. From these crystals, 61200 are installed in the central barrel while 7324 crystals
are placed in each one of the endcaps.

The lead-tungstate crystals have a very good stopping power and radiation hardness as well as a
high density of: 8.28 g/cm3. In addition, their characteristics include a short radiation length: X0 ' 0.9
cm, and a small Moliere radius: rm ' 2.1 cm, hence the ECAL is more that 25 X0 deep. Given the fact
that ∼80% of the deposited energy can be collected in 25 ns, it is ideal for the high collision rate of the
LHC. The disadvantages of PbWO4 crystals are the low light yield per MeV (∼10 e−/MeV) something
that is confronted with the use of photodetectors. The ECAL layout, geometry, and substructure can
be shown in figure 3.14.

The ECAL barrel (EB) crystals are segmented by ∆η × ∆φ=0.0174×0.0174 with a cross section
of 22×22 mm2 and are positioned in an angle of about 3o in both φ, θ directions with respect to the
beam axis. The ECAL endcap (EE) covers a pseudorapidity region 1.479< |η| <3 where the crystals
are clustered in 5×5 segments (called “supercrystals”), being arranged in different angles varying from
2o to 8o with respect to the z-axis (figure 3.14 top-right shown the geometry). Their total length is
24.8X0=220 mm while their cross section is 28.62×28.62 mm2 and 30×30 mm2 for the front and back
side respectively.

As electrons and photons pass through the ECAL, their electromagnetic shower results in cascades
giving rise to scintillations in the crystals. These signals are collected by two different types of photo-
detectors. The EB crystals are read with the help of avalanche-photodiodes while vacuum-photodiodes
are responsible for this task in the EE as they are more radiation resistant. At the end, more than
90% of the electromagnetic shower can be contained within a single crystal.

A 20 cm thick Electromagnetic Preshower (ES) sampling calorimeter detector is contained within the
ECAL, in front of the its endcaps. It is made up of two layers of lead absorbers and silicon micro-strips,
which are interleaved by two silicon strip detectors. It covers effectively the region 1.653< |η| <2.6
and is situated between the TEC and the EE (figure 3.14 bottom-left). Its main mission is to help
the identification of π0 in the forward region which otherwhise could fake photons. It also helps the
identification of electrons against minimum ionizing particles, and improves the position determination
of electrons and photons with high granularity.

The identification of π0 is achieved as the first lead layer is about 2 X0, while the second one gives
another X0 before the second sensor plate. This allows to differentiate between electrons and pions
due to the fact that 95% of the photons shower before the second silicon plane is reached, therefore
providing discrimination against neutral pions. The ES operates at temperature of 5Co.
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Figure 3.14: The

A very important and challenging aspect is the calibration of the electromagnetic calorimeter. The
calibration is divided into two steps, the calibration of the global component, responsible for the absolute
energy scale, and a channel-to-channel calibration, also known as inter-calibration. The calibration is
performed both in the laboratory and with cosmic-ray and collision events. A typical energy resolution
σ(E)/E for a 3×3 crystals configuration, is modeled by the following three term function:

(σ(E)/E)2 = (0.028/
√
E)2 + (0.12/E)2 + (0.003)2 (3.10)

where E is the energy in GeV. The first term corresponds to the stochastic behavior of scintillation;
it parametrize the contribution from fluctuations of the number of photo-electrons being produced
and collected due to event-by-event fluctuations. The second term is the noise contribution term, and
the third term is a constant term for the non-uniformity of the readout units and miscalibrations,
non perfect inter-calibration and leakage of the electromagnetic shower. At high energies, last term
becomes dominant, including contributions coming from the need for stable operating conditions, such
as the stable high voltage, the temperature, the non-uniformal crystal yields, miscalibrations, presence
of inactive material (dead-cells) or the accumulated radiation damage of the components.

A set of the ECAL main parameters and performance is listed in table 3.2.

3.4.7 Hadronic Calorimeter

The second calorimeter-layer met by a particle emerging from the tracking system is the Hadronic
CALorimeter (HCAL) [56, 60, 77], whose task is to measure the energy and direction of hadron jets
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(arising from hadronisation processes of quarks and gluons). Hadronic cascade showers are generated
from the elastic and inelastic interactions of these hadrons with the calorimeter material. The inter-
actions that take place between the incident particles and the nucleons of the calorimeter material
produce several secondary hadrons, the majority of which are π and K mesons, neutrons and protons.

Figure 3.15 shows (on the left) the development of jets near IP of a particular tt̄ event production
decaying semileptonically, and (on the right) the shower where hadrons produces once they met the
HCAL. (Also electromagnetic shower is shown for comparison). The cascade decays and interactions
processes repeated until the hadron energies are so small that they are either absorbed in a nuclear
process or are stopped by ionisation energy loss.

Figure 3.15: The illustration of tt̄ production and its semi-leptonic decay. Jet and b-jet formation are
illustrated where for the last secondary vertexes are noticed. On the right, examples of the showers
produced by (single) hadron and photon/electron, as well as the detector module penetration of all
kind of particles.

As a jet is considered, a bunch of hadrons originated by the same initial quark. The jets is then
observed as a superposition of many hadron showers which also contains and an EM-component (due
to e∓, γ) which usually is accompanied.

Compared with the values of the radiation length X0 of high-Z materials (Z:atomic number), the
size of hadronic showers is large, which correspondingly means hadron calorimeters must be also large
to completely contain the hadronic showers. However, apart from energy losses due to particles leaking
out longitudinally or laterally and the presence of MIPs and neutrinos which deposit little or no energy
in the active calorimeter medium, hadronic sampling calorimeters have losses due to additional reasons.
The inelastic collisions of shower particles induce nuclear excitations and reactions in the nuclei of the
absorber material, which produces other protons, neutrons, nuclear fragments and low-energy photons.
Therefore, EM cascade showers where the incident energy appears eventually in the form of ionisation,
in hadron cascade showers about 30% of the incident energy is lost in such EM processes and does not
give an observable signal.

In order to measure completely the energy of hadrons, HCAL must be built from high-density (ρ)
materials, so as to be able to contain the showers in their active volume. For this reason as well as its
non-magnetic properties, the main absorber material chosen for the CMS HCAL is brass (:alloy made
of copper and zinc), whose main properties can be seen in table 3.2.

Similar to the tracker and ECAL, the HCAL is divided into a barrel and endcap parts: HB and HE
respectively, with both contained within the CMS magnet. The HCAL is positioned behind the ECAL
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detector as seen from IP (figure 3.16), and it is radially restricted to be between the outer extent of
the ECAL (1.77 m) and the inner extent of the magnetic coil (2.95 m). Consequently, the amount of
material that can be used to absorb the incident particle energy is constrained accordingly to these
dimensions. For this reason, the HCAL Outer (HO) is placed outside of the magnetic solenoid, acting
as an outer hadron calorimeter or a tail catcher. In the forward regions it is complemented by the
HCAL Forward (HF) calorimeters, positioned at a distance of 11.2 m from the IP and outside the
muon chamber. (All above details can be seen in figure 3.16 bottom-left.)

Figure 3.16: The CMS HCAL, layout, substructure, tower segmentation in the r,z plane and a tower
with all sub-detectors slices. (Taken form [2, 77]).

The HCAL tower segmentation in the r,z plane
The barrel part of the HCAL (HB) is a sampling calorimeter, covering a pseudorapidity range

|η| <1.3. It consists of 36 in total identical slices/wedges which form two half-barrel, constructed of
flat brass absorber plates aligned parallel to the beam axis. Each wedge, which is segmented into
four φ-sectors, has its innermost and outermost plates made of stainless steel, to provide the necessary
structural strength. A total of 14 brass plates are sandwiched between the stainless steel plates. The
first layer is a 40 mm-thick stainless steel plate, followed by 50.5 mm-thick brass plates 1-8. These are
followed by 56.5 mm-thick brass plates 9-14, which are finally closed by a 75 mm-thick stainless steel
plate. There are 17 plastic scintillator tiles interspersed between the stainless steel and brass material.
The first scintillator layer is immediately after the ECAL and it is 9 mm-thick, much thicker than the
nominal scintillator tile thickness of 3.7 mm, to sample low energy showering particles from support
material between the ECAL and HCAL. An identical scintillator slice is also positioned after the last
stainless steel plate.

The exact plate configuration is summarised in table 3.2. The staggered wedge geometry provides
a total absorber thickness of 5.82λ at |η|=0, which increases with polar angle θ as 1/sin θ, resulting in
10.6λ at |η| <1.3. Each scintillator tile is segmented to provide a granularity of ∆η×∆φ=0.087×0.087
and it is instrumented with a WaveLength-Shifting (WLS) fibre.
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As the hadronic showers develop due to brass absorber material, particles pass through the alter-
nating scintillator layers, causing them to emit photons in the blue-violet spectrum. The gaps between
tiles are filled with a reflective paint to ensure that light produced in each tile does not escape into
neighbouring ones.

The WLS fibres are used to absorb this light and their wavelength to the green region of the
spectrum, while clear optic fibres then carry the green light away to readout boxes located within the
HCAL volume.

The optical signals are amplified and digitised by Hybrid Photo-Diode (HPD) photosensors, which
use the photoelectric effect to convert light to an electric signal and a silicon diode to amplify it.

The endcap part HE covers the very active pseudorapidity range 1.3< |η| <3.0, a region occupied
by about 34% of the particles produced in each LHC bunch-crossing. Therefore, the HE is required to
be radiation resistant and have enough granularity to cope with the high flux of particles.

Furthermore, as the HE has to be made of non-magnetic materials while also being thick enough
to present an adequate number of interaction lengths to fully contain hadronic showers. Similarly
to HB, the material chosen for these tasks was brass. The absorber design is such as to minimise
crack between HB and HE, and its resolution is limited by parton fragmentation, pile-up and magnetic
effects [38, 102]. The HE is divided into 18 (20o each) φ-sectors, in a geometry that matches the
barrel part of the hadron calorimeter. The absorbers are composed entirely of 79 mm-thick brass
plates with 9 mm gaps to accommodate 19 (3.7 mm-thick) scintillators. These provide a granularity
of: ∆η × ∆φ=0.087×0.087 for 1.3< |η| <1.6, thus matching the HB, which however deteriorates to
∆η ×∆φ=0.17times0.17 for 1.6< |η| <3.0. The total length of the HE is about 10λ.

Outside the CMS HB is the magnet and above magnet there is also one more HCAL device, the
Hadronic-Outer (HO). It covers the central region of pseudorapidity range |η| <1.26, a region in which
the stopping power of the EB and HB does not provide sufficient containment of the hadronic showers.
The size and position of scintillator tiles in the HO approximately match the HB layers, providing a
similar granularity of: ∆η ×∆φ=0.087×0.087.

The HO consists of 5, each 2.54 m wide along the z-axis and each having 12 identical φ-sectors.
The central ring (ring 0) consists of two scintillator layers (figure 3.16) which are 10 mm thick, at a
radial distance of 3850 mm and 4097 mm from IP.

The rest of the wheels (±2,±1) only have one layer of scintillator tiles, at a radial distance of
4097 mm. The scintillation light produced by hadronic showers within the detector that reach the HO
calorimeter is collected by WLS fibres and transported to photodetectors with clear fibres, in similar
fashion as in HB. The additional thickness provided by the HO increases the total depth of the CMS
calorimeter system to a minimum of 11λ for the pseudorapidity range |η| <1.26.

The very forward location of the HFs, results in an unprecedented average energy deposited of 760
GeV per LHC bunch-crossing, with a pronounced maximum at the highest rapidities. Compared to the
rest of the detectors which receive about 100 GeV, this is a significant difference. The radiation-wise
hostile environment that the HFs are exposed to was the primary factor when considering their design,
aiming for a lifetime corresponding to 10 years of LHC operations.

The HF calorimeters are symmetrically positioned 11.2 m away from the IP5 and centred around
the beam pipe. Each HF is essentially a cylindrical steel structure of outer radius 1.3 m, covering
a pseudorapidity range of 3.0< |η| <5.2. Each of this cylindrical structures is divided into 18 20o

φ-wedges, composed of 5 mm-thick steel absorber plates, with quartz fibres embedded into dedicated
grooves. The full depth of the absorber is 1.65 m, which corresponds to about 10λ. The quartz
fibres, which were chosen as the active medium of the calorimeter, primarily due to their radiation
hardness, run parallel to the beam line and are bundled in such a way as to provide a granularity of
∆η×∆φ=0.175×0.175. They are used to generate Cherenkov light emitted by particles traversing the
active medium, thereby rendering the calorimeter more sensitive to the electromagnetic component of
cascade showers.

In order to enhance the ability to distinguish between electromagnetic and hadronic showers, the
HF employs two set of quartz fibres which are read out separately. Half of the quartz fibres run over
the full width of the steel absorber, while the other half start at a depth of 0.22 m from the face of the
calorimeter. In this way, EM-showers can be distinguished from hadronic showers, due to the fact that
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the former deposit a large fraction of their energy in the first 0.22 m, while the latter produce nearly
equal signal on average over the two segments. The light produced in the quartz fibres is directed via
light-guides into a shielded area where it is detected by Photomultiplier Tubes (PMTs).

The full HCAL properties, subsystems and features are summarised in table 3.2.

3.4.8 Muon system-chambers

The muon system of CMS [77, 56, 58] is the last subdetector layer that a particle generated at IP meets.
Muon system mission is to identify and measure the momentum of the muons. Muons penetrate
material and escapes detector without stopping into it, since they are MIPs, they have a modest
interaction with matter (bremsstrahlung) due to their relatively-high mass. Muon system also plays
an important role on triggering events based on their presence; muons usually indicates a clear (EW-
content) event, candidate for “interesing” (known and new) physical process.

The muon momentum resolution and triggering capabilities are supported by the presence of the
strong magnetic field (and its flux iron return yoke), which not only provides the required bending
force but also absorbs hadrons that might escape HCAL and magnet. Therefore, muon chambers are
placed as the last detector layer. The solenoid magnet shape led to the natural decision to design a
muon system with a closed cylindrical shape, with a Muon Barrel (MB) and two Muon Endcaps (MEs)
that close it, as shown in figure 3.17.

Figure 3.17: The CMS muon system, i.e.: chambers, RPCs, CSCs, DTs, at the z-x plane.

The deposition of energy and the subsequent detection of muons is implemented through the ionisa-
tion of an active gas and the collection of the resulting ions and electrons as electrical signal. The CMS
muon system employs three different types of gaseous particle detectors; Drift Tubes (DTs), Cathode
Strip Chambers (CSCs) and Resistive Plate Chambers (RPCs). Its position on CMS detector can be
shown in figure 3.17 top-right.

1. The DTs measure muon position in the barrel part of the detector where the neutron-induced
background and muon rates are small while the magnetic field is uniform and mostly contained
in the iron yoke.

2. The CSCs are used in the endcaps, where the magnetic field is inhomogeneous and particle rates
are high.

3. The RPCs are used in both the barrel and endcaps to provide fast decisions for the muon trigger
system.
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The barrel DTs, cover the pseudorapidity range |η| <1.2 and are organised into four concentric
cylindrical stations (MB1-MB4 figure 3.17 top-right), which are between the iron yoke layers and house
in total 250 chambers. Each muon station consists of five wheels, each divided into 12 30o φ-sectors.
The three innermost stations: MB1,MB2 and MB3 have 60 drift chambers each, while the outermost
MB4 has 70, resulting in about 172000 sensitive wires. A DT chamber is made by three (or 2) Super-
Layers (SLs), as shown in figure 3.18, and each is comprised of four successive layers of DT-cells. The
DT cells geometry and SLs superposition ensure that no dead spots are present.

The operating principle is the ionisation of the active Ar/CO2 gas volume inside and the resulting
electrons are collected to the 2.4 m-long anode wire to which they drift due to the presence of electric
field. The dimensions of a DT cell are 42×13 mm2, which means the maximum path that the electrons
have to drift is about 21 mm, corresponding to a drift time of about 380 ns. This value, which is
determined by the size of the cell, the electric field and the gas mixture, is small enough to ensure
a low occupancy of the DT-cells but also large enough to limit the number of active channels. DTs
give two coordinates for the muon position with a single wire resolution of about 100 µm for the r-φ
measurement. Figure 3.18 illustrated the geometry and the operating principle of DTs.

Due to the high particle flux and the large magnetic field strength, the use of DTs in the forward
regions is not suitable as the electron’s drift path becomes too long. Consequently, endcap muon
system employs 468 radiation resistant, fine segmented CSCs with fast response time that cover the
pseudorapidity range 0.9< |η| <2.4. In each endcap, the CSCs are organised into four stations of cham-
bers: ME1-ME4 (figure 3.17 top-right). These chambers are mounted on the endcap disks enclosing
the magnet, are oriented perpendicularly to the beam axis and interspersed in-between the iron yoke
plates. The CSC chambers have a trapezoidal shape and cover 10o or 20o in the azimuthal angle φ.
They are MultiWire Proportional Chambers (MWPCs), comprised of six anode wires interleaved with
seven cathode panels that form six gas gaps.

They operate on the principle that if an electric field is established in a gas, the electrons released
when a charged particle ionises the gas will drift to the anode wire (figure 3.18). With a high enough field
strength, drifting electrons cause secondary ionisation and so forth, leading in numerous secondarily
produced electrons which are collected as a pulse at the anode.

The anode wires are arranged in a plane between a common pair of cathode strips, each wire acting
as a standalone detector. Since the cathode strips and anode wires are perpendicular to each other, two
position coordinates are obtained for each passing particle traversing the active gas volume. The anode
wires run azimuthally and measure a muon’s radial coordinate, while strips run at constant azimuthal
angle φ, thus providing the azimuthal angle measurement by a Gaussian fit between neighboring weirs.
In total, the CSC chambers are comprised by 2times106 wires, with an active gas volume of 50 m3

and a sensitive area of 5000 m2, resulting in 220000 (180000) cathode (anode) read-out channels. The
spatial resolution provided by the CSCs is about 75-150 µm for the r-φ measurement. In addition the
closely spaced wires make the CSCs fast detectors suitable for triggering.

Figure 3.18: From left to right: the CMS DTs geometry, each DT individual cell, the CSCs’ chambers
operating principle (not CMS ones), and the CMS RPCs with its’ layer substructure. (Taken from
[77, 124]).

In both the barrel and endcap of CMS muon system, RPCs are employed as a dedicated muon
trigger, while also contributing to the muon identification and reconstruction alongside DTs and CSCs.
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In MB, 480 RPCs are sorted in six layers, two in each of the first couple stations (MB1-MB2), and one
in each of the last two stations (MB3-MB4) (figure 3.17 top-right) covering the pseudorapidity range
|η| <1.2. In ME 432 RPCs are mounted in one plane in each of the first three stations (ME1-ME3),
covering the pseudorapidity range 0.9< |η| <1.6. Thus, there are six RPC layers in the central region,
and three RPC layers in the forward region. The RPCs are fast gaseous detectors with a rough spatial
resolution but precise time measurement, whose main properties are shown in table 3.2.

They consisted by two parallel plates, an anode and a cathode (as shown in figure 3.18 right), both
made of bakelite, a plastic material of very high resistivity. These double-gap plates, which are covered
with graphite to make electrodes, are separated by a gas volume that is ionised when a muon passes
through chamber, and the resulting electrons are accelerated creating avalanche of electrons. These are
collected by aluminium strips instead of the electrodes, which are transparent to the electrons. Each
of the 912 in total RPC chambers contains a plane of strips, which are rectangularly segmented in
the barrel and oriented parallel to the bream axis, whereas the endcaps are equipped with trapezoidal
shaped strips of granularity: ∆η×∆φ=0.1×0.1. Overall, the RPCs provide a spatial resolution of about
1 cm and a time resolution of less than ∼3ns, a time interval much shorter that the LHC bunch-crossing
period of 25 ns.

Figure 3.19: The 2D and 3D profile of a ZZ → 4µ event. Only muon chambers are shown to illustrate
their positions.

The off-line combination of the three muon-system detector information together with the rest
devices provide an excellent muon reconstruction ability/resolution. Figure 3.19 shows a real ZZ → 4µ
event illustration where the four muons cross all subsystems. In conclusion, the CMS muon subsystems,
provide four measurement points via the DT and CSC detectors, except for a gap at |η| ∼1.4, where only
three measurement points are provided. In addition, the RPC subsystem provides six measurements
in the barrel region and three in the endcaps, enabling a relatively good muon momentum estimation
even without the use of the tracking system. Furthermore, the excellent time resolution provided by
the RPC subsystem provides an unambiguous identification to which a muon track is associated to,
even at the in a high rates and large backgrounds environment, fully proper for muons triggering.

3.4.9 Forward detectors: CASTOR and ZDC

High pseudorapidity coverage is provided by two very forward detectors, CASTOR and ZDC [77]. CAS-
TOR is a Cherenkov-based sampling EM/HAD-calorimeter, consisting of successive layers of tungsten
(absorber) and quartz plates (active material), which covers the pseudorapidity region 5.2< |η| <6.6.
Its physics motivation is to complement the Pb-Pb collision physics program, developed essentially in
the baryon-free mid-rapidity region, and also the diffractive and low-pT physics in p-p collisions. Castor
location can be seen in figures 3.7,3.8 and 3.16 and is only at the -z side of the detector.

A set of two zero-degree calorimeters (ZDC), with pseudorapidity coverage of |η| >8.3, are de-
signed to complement HCAL for neutral particles very forward region, especially for heavy ion and p-p
diffractive studies. It has a very similar design as CASTOR. Each ZDC has two independent parts: the
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electromagnetic and the hadronic sections. Tungsten is used as absorber and the Cherenkov light is
produced by quartz fibres. ZDCs location is ∼140 m far from the IP and surround the two beam-pies
even in-between of them.

3.4.10 Level one trigger

The LHC provides p-p and heavy-ion collisions at high interaction rates, (table 3.1) i.e.: a crossing
frequency of 40 MHz. Depending on luminosity, several collisions occur, ∼20 individual simultaneous
p-p collisions occur at the nominal design luminosity of 1034/(cm2s).

It is impossible to store and process the large amount of data resulting, a drastic rate reduction has
to be applied. This task is performed by the trigger system; i.e.: trigger is the system which on-line
(during the data production) filters all events and according to well defined physics criteria, decides to
select and store only a small amount of them.

The rate is reduced in two steps called Level-1 (L1) Trigger and High-Level Trigger (HLT), respec-
tively. The Level-1 Trigger consists of custom-designed, largely programmable electronics, whereas the
HLT is a software system implemented in a farm of about a thousand processors. The rate reduction
capability is designed to be at least a factor of 106 for the combined L1 and HLT triggers.

The design output rate limit of the L1 Trigger is 100 kHz, in practice the operational rate is chosen
to be about 30 kHz (assuming a safety factor of 3). The L1 Trigger uses raw signal information data
from the calorimeters and the muon system, while holding the high-resolution information data in
pipe-lined memories in the front-end electronics.

The HLT has access to the complete read-out data and can therefore perform complex calculations
similar to those made in the the analysis off-line software. The HLT algorithms evolve with time due
to the accumulated experience and physics-analysis interests of the CMS collaboration.

For flexibility, the L1 Trigger hardware is implemented in FPGA technology where possible (Field-
Programmable Gate Array: is an integrated circuit designed to be configured by a customer). ASICs
and programmable memory Look-Up-Tables (LUT) are also widely used where speed, density and
radiation resistance requirements are important. (ASIC: Application-Specific Integrated Circuit, is
an integrated circuit customized for a particular use, rather than intended for general-purpose use; In
computer science, an LUT is an array that replaces run-time computation with a simpler array indexing
operation). A software system: the Trigger Supervisor, controls the configuration and operation of the
trigger components.

The L1 Trigger has local, regional and global components.

• The Local Triggers, (also called Trigger Primitive Generators (TPG)), are based on energy de-
posits in calorimeter trigger towers and track segments or hit patterns in muon chambers, respec-
tively.

• Regional Triggers combine their information and use pattern logic to determine ranked and
sorted trigger objects such as electron or muon candidates in limited spatial regions. The rank is
determined as a function of energy or momentum and quality, which reflects the level of confidence
of the L1 parameter measurements, based on detailed knowledge of the L1-electronics and on the
amount of available information.

• The global calorimeter and global muon triggers determine the highest-rank calorimeter and muon
objects across the entire experiment and transfer them to the global trigger, the top entity of the
Level-1 hierarchy.

The latter takes the decision to reject an event or to accept it (∼1 per 105 events) for further evaluation
by the HLT.

The decision is based on algorithm calculations and on the readiness of the sub-detectors and the
DAQ (Data Acquisition System), which is determined by the Trigger Control System (TCS). The
Level-1-Accept (L1A) decision is communicated to the sub-detectors through the Timing, Trigger and
Control (TTC) system. The architecture of the L1 Trigger is depicted in figure 3.20. The L1 Trigger
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has to analyze every bunch crossing. The allowed L1 latency, between a given bunch crossing and the
distribution of the trigger decision to the detector front-end electronics, is: ∼3.2 µs. The processing
must therefore be pipelined in order to enable a deadtime-free operation. The L1 Trigger electronics
is housed partly on the detectors, partly in the underground control room located at a distance of
approximately 90 m from the experimental cavern. An overview of the CMS L1 properties is given in
table 3.2.

Figure 3.20: The architecture of CMS L-1 trigger (left), and the CMS DAQ (right). (Taken form [77]).

3.4.11 High level trigger and data acquisition

The L1 Trigger processes fast trigger information coming from calorimeters and muon systems, and
only selects events with interesting content. It is able to analyse all forwarded information for further
filtering at a maximum rate of 100 kHz. With a mean event size of 1 MB of zero-suppressed data in
the CMS read-out systems, this rate corresponds to a data flow of about 100 GB/s fed by the L1 to the
DAQ system. The DAQ system must thus be able to sustain such rates and provide enough computing
power for the HLT, which is a software-based filter system.

The HLT task is to provide a further event-rate reduction of the order of 103, reducing the incoming
L1 trigger input of 100 kHz to a rate of 100 Hz. These 100 events per second will be recorded for offline
processing and analysis. In order to achieve the required rate reduction 100 Hz, a computing power
corresponding to ∼1000 processing nodes is required runnging the corresponding selection algorithms.
An overview of the CMS HLT parameters is shown in table 3.2.

To achieve the required rate reduction, all events that pass the L1 Trigger are sent to a computer
farm known as the Event Filter, located in a dedicated room on the surface of the CMS cavern, not
far away from the CMS detector. The Event Filter uses access to the full read-out data from the CMS
detector to perform physics selections using faster versions of the offline recostruction software, in order
to filter events and reduce the output rate within a time interval of: 0.04 to ∼1 second.

The various subdetector Front-End Systems (FESs) store data continuously in 40 MHz pipelined
buffers, and upon the arrival of a L1A decision via the TTC system, the full detector data are extracted
and pushed to the DAQ system by the Front-End Drivers (FEDs). The Event Builder assembles the
data from all FEDs into a single complete event and transmits it to a Filter Unit (FU) in the Event
Filter for further processing.

CMS HLT implements trigger paths using a combination of more than one trigger physics object,
like for example high lading jet momentum of lepton momentum together with a second or third jet
or a second lepton etc. Such trigger paths are referred to as cross-triggers. An example could be the
trigger which looks for events with at least one jets with pT >30 GeV each, along with an isolated
muon with pT >25 GeV. In order to trigger physics-process which are not rare but still interesting
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(in analysis perspective) without increase HLT output rate, presclaled trigger paths are implemented
selecting a defined fraction of events of a particular topology.

3.4.12 Computing infrastructure and software

During data taking periods, the output of the HLT is directly reconstructed at the so-called Tier-0
which is located at CERN Computing Center (CCC). Because of the huge amount of data that can be
more than: ∼1 GB/sec, or ∼1 PB/year, the need to properly distribute both the collision as well as
the simulation data, is of vital importance for the CMS collaboration.

To achieve that, several Tier-1 and Tier-2 computing clusters have been accommodated in various
institutes all over the world. Together they constitute the so-called CMS computing infrastructure
which is implemented on top of the WorldWide LHC Computing Grid (WLCG), a very powerful
network of computers which allows analysers to use the required computational resources for analysis.
No matter if it is collision or simulated events, both can be accessed from any grid enabled machine
using appropriate software tools (like CRAB). Figure 3.21 illustrates the data flow between CMS data
centers and Tiers.

Figure 3.21: A schematic illustration of data processing flow after HLT selection towards the analysis
final-object extraction. (Taken from [77]).

The backbone of data analysis is the CMS Software called CMSSW which is written in Python and
C++, and it is the result of the combined efforts of thousands of CMS members over the past ∼15
years. This software, is a rather sophisticated mixture of various integrated software packages, which
allows users to explore and use different tools. These can include the generation of simulated events,
detector-level reconstruction, or even data analysis using of the reconstructed final objects.

3.5 Physics objects reconstruction and identification

3.5.1 Introduction and the Particle Flow reconstruction concept

As has been discussed every 25 ns (nominally) about 20 p-p pairs come to inelastic collision producing
∼103 new particles which then travels throw the detector material interacting in various ways. Most
of these particles have a rather low momenta and does not corresponds to the process where we are
interested in study. However a good understanding of all particle content of a bunch crossing is
necessary.

One of the CMS primer objectives in order to do physics analysis is first to identify and reconstruct
those particles in the highest possible efficiency and purity (lowest misidentification “fake” rate). We
can have a feeling of the challenge by looking the figure 3.22, which illustrates a real CMS bunch-
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crossing reconstruction picture with multiple primary vertexes. We can see the particles’ tracks which
has been clustered in colors due to their parent p-p vertex.

The CMS collaboration employs the so-called “Particle Flow” (PF) approach for the physics object
reconstruction mission. This approach combines in the most efficient way information from all sub-
detector components, prior to jet clustering and missing energy calculation, to identify, reconstruct and
classify all stable particles (of an event) into five main categories/objects: photons, muons, electrons,
neutral and charged hadrons. From these particles, composite objects such as jets, (hadronic) taus and
6ET , are reconstructed in an optimal determination of their direction, energy and type [59].

The input information to the PF event reconstruction are: the charged-particle tracks, the clusters
of energy deposits in the calorimeters and the hits (tracks) from the muon system. The output of the
PF event reconstruction is a collection of particle candidates (belonging in one of the five categories
above) associated to an p-p event. Compared to calorimeter-based reconstruction methods, the PF
event reconstruction has been found to be superior with respect to the spatial and energy resolution
of the reconstructed jets [66], while it also gives a more accurate measurement of the 6ET of the event
[59, 98].

In the next subsections we will briefly overview the physics objects identification and reconstruction
techniques; information shown is gathered from references: [59, 128, 86, 61, 66, 98, 68, 64, 71, 67, 28,
65, 16, 40, 2, 92].

3.5.2 Track reconstruction

Track pattern recognition is very important for CMS since two thirds of the produced particles are
charged. It is also a very challenging task under the high track densities (figure 3.22), and a main
consumer of CPU resources in the overall event reconstruction.

In principle the trajectory of each charged particle consists in general of a deterministic and a
stochastic component. The deterministic aspect of the trajectory is due to the known magnetic field
and leads to a helical (3D) track if the field is homogeneous (which roughly is the case for CMS
tracker). This part of the trajectory is entirely determined by the equations of motion, material effects
like multiple scattering or energy loss give rise to stochastic components. Thus the realistic track
pattern turn to circular helical, with gradually decreased radii and step, which often including knees
(angles). A proper accounting for stochastic effects is essential in order to obtain an unbiased estimation
of the track parameters (and their covariance matrix).

The track reconstruction is decomposed into five logical parts [56]:

• Hit reconstruction, which in turn consists of clustering of strips or pixels and estimating a position
and its uncertainty

• Seed generation

• Pattern recognition or trajectory building

• Ambiguity resolution

• Final track fit

First step is the clustering of the signals produced by charged particles in the pixel and strip
subdetectors into hits. After estimating the position and the uncertainty of the hits, they are used to
generate the seeds of tracks.

The minimum information needed to construct a curvature is three seeds or a pair of seeds with
an additional constraint from beam-spot or vertex. To increase the tracks reconstruction efficiency,
tracks are generated in four different ways: pixel triplets, pixel or strip pairs with beam-spot or vertex
constraint, or strip-only pairs with beam-spot constraint.

The pattern recognition and the track building starts from the collection of seeds and proceeds by
including successive detection layers. The track reconstruction procedure (and the estimation of the its
parameters) implements the method “Combinatorial Kalman Filter” (CKF) [61, 68, 64, 40]. It is also
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Figure 3.22: CMS events with 29 distinct p-p vertices within a single bunch crossing. Tracks of
generated particles tagged with colors due to their parent p-p vertex.
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known as Combinatorial Track Finder (CTF), and is the default CMS track reconstruction algorithm
as it provides the best performance both in terms of physics results and computing time. The CKF
addresses ambiguities which consist the main complication of track pattern recognition in complex
events. Ambiguities arise from the passage of several particles through the same detector areas or the
presence of noise hits, also the possibility that the expected hit is missing due to limited efficiency.
As soon as a new layer is included, the track parameters are re-calculated leading to a more precise
estimation of the trajectory. The procedure is repeated until the last detection layer is reached. In
each step, track candidates are rejected based on quality criteria (χ2 method, or number of valid and
invalid hits).

During the track reconstruction, the same tracks may be created multiple times starting from
different seeds or a given seed may be included into many track candidates. The final track collection
consists of cleaned candidates that share maximum 50% of their seeds. Before the final track fit,
spurious hits are removed and the track is refitted. The track collection consists of many fake tracks,
that are significantly reduced by applying appropriate selection on their quality criteria.

3.5.3 Vertex reconstruction

An example of reconstructed primary vertices (PV) by CMS can be shown in figure 3.22. By primary
vertex one means the exact 3D-location where an individual p-p collision took place. This PV recon-
struction comes with its corresponding set of tracks − particles originated by this vertex. The accurate
reconstruction of vertices and the correct assignment of their corresponding tracks is very important
for the correct description of the event final state content. This is a challenging task when multiple
collisions take place in the same bunch-crossing (high pile-up).

At a first step, the reconstructed tracks are grouped into clusters based on the z-coordinate of their
shortest (to the beam line) point. Then, as second step, a 3D vertex-fit is performed with the tracks
in each cluster, using the full track information [92, 132].

Thee main challenge for the clustering step in the presence of high pile-up is to avoid merging
tracks from separate p-p collisions into a single cluster, while at the same time preserving a good
efficiency of assigning tracks to the proper clusters, and a low rate of fake clusters not corresponding to
a p-p interaction. The algorithm used in CMS to perform clustering is the “deterministic annealing”
[134, 46, 132]: starting from a very loose clustering in which the same track can contribute to multiple
clusters, the association between tracks and clusters is iteratively tightened to produce narrower clusters
and more definite track-cluster assignments. With this algorithm it is possible to resolve vertices with
separations down to about 1 mm, appropriate for a multiplicity of interactions per bunch crossing up
to 20.

Vertex fitting is performed with the “adaptive vertex fitter algorithm” [138, 132], which addresses
the issue of secondaries and fake tracks in the cluster by iteratively under-weighting the tracks which
are not compatible with the common vertex being fitted. The resolution on the vertex position depends
on the number of tracks in the vertex, and is in the 2050 µm range.

3.5.4 Calorimeter clustering

The calorimeter clustering is taking place with algorithm for the four following reposes:

• detect and measure the energy and direction of stable neutral particles such as photons and
neutral hadrons,

• separate these neutral particles from energy deposits from charged hadrons,

• reconstruct and identify electrons and all accompanying “bremsstrahlung” photons,

• help the energy measurement of charged hadrons for which the track parameters were not deter-
mined accurately, which is the case for low-quality, or high-pT tracks.

80



A specific clustering algorithm has therefore been developed for the particle-flow event reconstruc-
tion [59], aiming high detection efficiency (even for low-energy particles), and towards a separation of
close energy deposits (as the example in figure 3.23). The clustering is performed separately to each
sub-detector: ECAL barrel, ECAL endcap, HCAL barrel, HCAL endcap, Preshower-first layer and
Preshower-second layer. In the HF, no clustering is performed so far, so that each cell gives rise to one
cluster.

Figure 3.23: An event display of a simple jet in the x-y view left, in η-φ in the middle and right with
the ECAL and HCAL surfaces respectively. The K0

L, the π− and the two photons from the π0 decay
are detected as four well separated ECAL clusters (middle). The π+ leaves no energy in the ECAL.
The two charged pions are reconstructed as charged-particle tracks, appearing as vertical solid lines in
the η − φ views and circular arcs in the x − y view. These tracks point towards two HCAL clusters
(right). In all three views, the cluster positions are represented by dots, the simulated particles by
dashed lines, and the position of their impact on the calorimeter surfaces by various open markers.
Taken from [59].

The clustering algorithm firsts identifies “cluster seeds” as local calo-energy maxima above a given
energy, then “topological clusters” are grown from the seeds by gathering cells with at least one side in
common with a cell already in the cluster, and with an energy in excess of a given threshold. (These
thresholds represent two standard deviations of the electronics noise [59].) A topological cluster gives
rise to as many “particle-flow clusters” as seeds. The calorimeter granularity is exploited by sharing
the energy of each cell among all particle-flow clusters according to the cell-cluster distance, with an
iterative determination of the cluster energies and positions. In a simple jet example the resulting
clusters, four of which are resolved from two topological clusters (one in ECAL, one in HCAL), are
represented by dots in figure 3.23.

3.5.5 Particle Flow algorithm

A given particle is, expected to give rise to several particle-flow elements in the various sub-detectors
(charged-particle track, calorimeter clusters, muon track). A simple example is shown in figure 3.23.
These elements must be connected to each other by a “link algorithm” to fully reconstruct each single
particle, and getting rid of any possible double counting.

The link algorithm is performed for each pair of elements in the event and defines a distance between
any two linked elements to quantify the quality of the link. The algorithm then produces “blocks” of
elements linked. Thanks to the granularity of the CMS detectors, blocks typically contain only one,
two or three elements, and constitute simple inputs for the particle reconstruction and identification
algorithm.

The smallness of the blocks ensures the algorithm performance to be essentially independent of the
event complexity, for example, jets as simple as that of figure 3.23, made of one to four blocks, turn out
to have the same energy response and resolution as regular jets found in QCD events, which typically
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feature a larger number of blocks, but of the same size. More specifically, a “link” between a charged-
particle track and a calorimeter cluster proceeds as follows. The track is first extrapolated from its last
measured hit in the tracker to the layers of Preshower, ECAL and HCAL, at a proper depth typical
of a hadron shower. The track is linked to any given calorimeter cluster if the extrapolated position is
within the cluster boundaries. The link distance is defined as the distance in the η − φ plane between
the extrapolated track position and the cluster position.

Algorithms are dedicated to reconstruct individual electrons and muons [127] which also accounts
the potential radiated energy and accurately reconstruct the object. These method will be discussed
in the next subsections. Charged hadrons are reconstructed [59] from the tracks in the central tracker.
Photons and neutral hadrons are reconstructed from energy clusters in calorimeters. Clusters separated
from the extrapolated position of tracks in the calorimeters constitute a clear signature of these neutral
particles. A neutral particle overlapping with charged particles in the calorimeters can be detected as a
calorimeter energy excess with respect to the sum of the associated track momenta. The resulting list
of reconstructed particles constitute a global description of each event, available for subsequent physics
analysis.

3.5.6 Muons

As has been indirectly mentioned muons are considered “stable” in the sense that: they have mean
lifetime τµ ∼2.2 µs, mass mµ '0.1 GeV; so, even an 1 GeV muon (with γ '10) has a 50% provability
to survive and travel a distance of (cτµ10 ln 2) ' 5 km before decay. Therefor one can safely consider
that the muons generated in p-p collision are only decade away the (∼10 m long) detector devices and
we can treat them as stable. (The fraction of the 50 GeV muons which decay before they escape last
level of detection is (1− exp[−∆x/(cγτ)])× 100 ∼0.005%).

Muons are reconstructed using information from the silicon tracker and the muon system [92, 71,
67, 128], leading in the following three reconstruction approaches:

1. Tracker reconstructed muons (local reconstruction).
Tracks reconstructed (almost only) by the silicon tracker, (with pT > 0.5 GeV and p > 2.5 GeV),
are considered as muon candidates and are extrapolated to the muon system, while taking into
account effects from multiple scattering. If at least one compatible muon segment is found, then
the corresponding track is promoted to tracker muon. In such tracker-muons, momentum and
position assignment is estimated only from the strip-track. This approach is very efficient for
relatively low pT muons, exploiting the excellent tracker performance.

2. Standalone (only muon-chambers) reconstructed muon (local reconstruction).
The standalone muon reconstruction uses information only from the muon system. Tracks in the
muon chambers are reconstructed following a very similar method as the one described for the
track reconstruction (CKF). The trajectories found are then propagated to the closest vertex to
reject reconstruction of cosmic ray muons. Hence, position and momentum are estimated using
only the muon system. This approach serves L1-trigger purposes and is mainly used as input for
the global muon reconstruction.

3. Global muon reconstruction.
Global muons are reconstructed from standalone muons which are matched to the most compati-
ble tracker-muon track. The hits from both the tracker and the muon system are used to perform
a fit, (using the CKF technique) to create the global track. For transverse momenta with pT <
200 GeV the momentum estimation is driven by the tracker resolution, while for larger momenta
the global muon fit can improve the estimation compared to the tracker only estimation.

In general, several sources can leads to muon (or a muon-like) objects. We can roughly classify the
muon candidates as follows:

• Prompt muons. These are muons that can be associated directly with the IP and an individual
PV near by. These are mostly coming from an on-shell, Z or W boson leptonic decays, or even can
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produced by a tau-leptonic decay near the IP. Their features are basically relatively low momenta
(p & 15 GeV), high isolation, small impact parameters: dxy, dz (distances of track from the PV).

• Non-prompt muons. These are muons coming from hadron decays. These can be further separated
between muons coming from heavy or light flavour quark transition. The light-flavour category
includes decays of in-flight π or K mesons, or even particles produced while interacting with
the detector material. In the case of heavy-flavours, the muon can come from a charmed or
a beauty quark transition (via an off-shell W-boson). Typical non-prompt (NP) muon profile
is relatively low momentum, usually appears in a busy-tack environment i.e.: non isolated and
without necessarily small impact parameters.

• Fake muons. Hadron punch-through from the remnants of a hadron shower that penetrates the
calorimeter detector and reaches the muon-chambers. These misidentified “muon-like” objects
give hits in the muon chamber, however typically are not matched with inner tacker seeds. An
other case of fake reconstruction is by duplicate false-reconstruction of single (real) candidate
muons are due to the largest number of neighboring hits. Fakes and non-prompt have the same
profile in terms of pT , isolation and impact parameters.

In the following chapters analysis we will refereed to non-prompt and fakes inclusively as non-prompt
(NP) muons (and we will also generalize this to leptons including electrons accordingly).

The full set of the muon parameters where we cut over to define the reconstructed muons is listed
in table 3.3. With these selections cuts a high identification and reconstruction efficiency is achieved
together with high purity. Figure E.7 in appendix E.3 shows the identification and reconstruction
efficiencies for muons versus pT and |η|. The data which are used are from Z → µµ and J/ψ → µµ
processes for above and bellow the pT = 20 GeV respectively, and tag and probe method has been
used.

Table 3.3: Muons and electrons identification requirements for “Loose” and “Tight” selections. First
block muons, second block electrons broken down into barrel and endcap electrons (Taken from [96,
97, 92]).

Muons ID variable Muons Tight ID Muons Loose ID
µ−reco type Tracker & Global Tracker or Global

pT > 20 GeV > 15 GeV
|η| < 2.1 < 2.5

Irel = Iabs/pT (µ) < 0.12 < 0.2
Global-µ track fit χ2/ndf ≤ 10 -

Valid muon hits > 0 -
Matched stations > 1 -

Pixel hits > 0 -
Track layers with hit > 5 -

Transverse distance from PV: dxy < 0.02 cm < 0.2 cm
Longitudinal distance from PV: dz < 0.5 cm < 0.5 cm

Electrons ID variable Electrons Tight ID Barrel, Endcap Electrons Loose ID Barrel, Endcap
pT > 20 GeV,> 20 GeV > 15 GeV,> 15 GeV

Irel = Iabs/pT (µ) < 0.15, < 0.15 < 0.15, < 0.15
H/E < 0.12, < 0.10 < 0.15, < -
|∆φin| < 0.06, < 0.03 < 0.8, < 0.7
|∆ηin| <0.004, <0.007 < 0.007, < 0.01
|σiηiη| < 0.01, < 0.03 < 0.01, < 0.03

Missing hits ≤ 0, ≤ 1 - , -
Conversion Rejection true, true - , -

Transverse distance from PV: dxy < 0.02 , < 0.02 cm < 0.04, < 0.04 cm
Longitudinal distance from PV: dz < 0.1, < 0.1 cm < 0.2, < 0.2 cm

3.5.7 Electrons

The electrons in CMS are reconstructed using two algorithms varying to the initial seed. The first
uses energy deposits in ECAL as seed for the electron reconstruction, whereas the second starts from
a track seed to build the electron candidate.
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1. The ECAL-driven algorithm [28, 65, 92].
For electrons with pT > 5 GeV, It has the advantage of increased purity compared to the track-
driven approach for a similar efficiency. The algorithm starts by clustering deposits of energy
in several crystals of the ECAL, creating ECAL clusters. The clustering algorithm accounts for
the effects induced by the passage of electrons through the tracker; when an electrons traversing
the tracker interact with its material (shown in figure E.4 appendix E.3) and radiate photons
(figure 3.24), hence the energy deposits on ECAL are spread in a φ range (due to the bended
track). This effect is very important since electrons typically radiate ∼50% of their initial energy
before they reach the ECAL. These additional energy-deposits are identified and summed with the
ECAL clusters to form the ECAL super-clusters. Super-clusters with ET > 4 GeV are matched
with the most compatible track seeds and then, using the Gaussian Sum Filter (GSF) algorithm
[16, 40]. The GSF (is an extension of Kalman Filter method) able to deal with profoundly non-
Gaussian random variables, which can deals with radiative energy-loss, (at a significant expense
of computing power). Information of both ECAL and tracker is combined for the most precise
momentum assignment in reconstruct of the electron’s final trajectory.

2. The track-driven algorithm [64, 92].
This is used mainly to reconstruct very low pT electrons, or electrons inside jets, where the
energy deposits on ECAL are very widely spread across φ, leading to mismeasurement of the
actual electron’s energy. The procedure starts from the reconstructed tracks fitted by the GSF
algorithm which is extrapolated from the outermost hit to the closest possible ECAL cluster
candidate. If no compatible ECAL-seed is found, the track is not considered appropriate for
the electron reconstruction. Then again, important fraction of electron’s energy is carried out
by bremsstrahlung photons (as illustrated in figure 3.24). To account for this effect, for each
hit used to estimate the GSF track, a straight line tangential to the direction of the track is
extrapolated up to the ECAL. If an ECAL cluster, which is not already linked to any track, is
found, the energy is added to the total electron energy. The final selection of electrons is based
on the output of a Boosted Decision Tree (BDT) [137] which combines information from several
observables related to tracker and ECAL.

Additional selections are applied on the reconstructed electrons to suppress backgrounds originating
by photon-converted electrons or pions misidentified as electrons. Electrons from photon conversions are
reconstructed by selecting two opposite sign tracks and estimating the conversion vertex. In addition,
an electron from a photon conversion is expected to have missing hits in the pixel. Therefore, the
distance from the primary vertex, the conversion vertex fit probability and the number of missing hits
in the pixel, are used to discriminate them. Table 3.3 shows the variables and their cuts witch define
the a tights and a loose selection of electrons with different purity and reconstruction efficiency ∼ 80%
and ∼ 95% respectively. The most important are: the energy-momentum match between the seed
cluster and track, defined as Eseed/pin, the transverse shower profile along the direction, σiηiη, the
spatial matching in η and φ between track and super-cluster, ∆ηin and ∆φin, and the ratio of the
energy deposit in HCAL and ECAL, defined as H/E. These variables distributions can bee seen in
figure E.8 in appendix E.3.

Electrons, as like muons, can be characterized and categorization as: prompt, non-prompt and fakes
(and usually last two are merged into non-prompt NP). This categorization follows the same criteria as
for NP muons and also leads to the same kinematic features in terms of isolation, impact parameters
and momenta. However the fake electrons are significantly larger compared to muons and hence the
reconstructed efficiency for prompt electrons is smaller (compared to muons) and depends strongly on
the identification algorithm. To increase the purity of the electron collection, tight selection on the
identification variables is applied.

3.5.8 Lepton isolation

Isolation requirements are imposed to charged leptons: e and µ as a handle to suppress the QCD
background and reduce leptons arising from heavy flavor decays and decays in hadron flight. Two
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Figure 3.24: Left: material budget of tracker up to ECAL in units of radiation length as a function
of η, extracted from simulation. Middle: material budged in the tracker as function of the radius R,
measured using reconstructed photon conversions in data and simulation and extracted from simulation
(top-bottom respectively). Right: illustration of an electron undergoing a large radiative energy loss
in the material, depicted in the transverse plane: the local curvature of the GSF track close to the
interaction point provides an estimate of the initial momentum pin, while that close to the ECAL
surface allows to estimate the final one pout. The tangents to the trajectory are used to collect the
bremsstrahlung clusters in the particle flow. (Taken from [132].)

methods are used to estimate the degree of isolation of a given particle [92]. The more traditional
method estimates the level of isolation based on the sum of the pT of the tracks and the energy
deposits in the calorimeters in a cone ∆R < 0.4 around the charged lepton. The subdetector-based
isolation, Irelcomb (calo), is defined as:

[CALO] Irelcomb ≡
1

pT (`)
[
∑
i

ptrackerT,i +
∑
i

EECAL
T,i +

∑
i

EHCAL
T,i ], ∆R(`, i) < 0.4. (3.11)

An other more advanced method is used to estimate the isolation variable using objects reconstructed
by particle flow. Similarly, the isolation is calculated in a cone ∆R < 0.4 around the charged lepton.
In this case particle flow based isolation, Icombrel (PF), is defined as:

[PF ] Irelcomb ≡
1

pT (`)
[
∑
i

pcharged hadronsT,i +
∑
i

Ephotons
T,i +

∑
i

Eneutral hadrons
T,i ], ∆R(`, i) < 0.4. (3.12)

Where the first term is the sum of the pT of the charged hadrons, the second is the sum of the ET
of the photons and the last is the sum of the ET of the neutral hadrons. (To reduce contributions
from electronics noise, photons and neutral hadrons are required to have ET > 0.5 GeV). In parallel to
the luminosity increase, the number of pile-up interactions increases as well, leading to a degradation
in the isolation efficiency. The contribution in the calculation of isolation from particles originating
from minimum bias interactions becomes significant and has to be reduced. Charged particles are
rejected by using the vertex information. For the neutral particles this approach is not feasible and a
specific correction, known as ∆β correction, is implemented [27]. The ∆β correction relies on the fact
that, on average, the relative fraction of the jet energy carried out by charged and neutral particles is
∼2:1. The correction is calculated by estimating the isolation from all charged particles that do not
originate from the primary vertex, which are particles from PU interactions, and then using the average
“charge-to-neutral energy fraction”, the contribution of PU due to neutral particles is extracted. The
∆β corrected isolation has the form [92, 27]:

[PF,∆β] Irelcomb ≡
1

pT (`)
[
∑
i

pchd.Had.T,i +max(0, (
∑
i

Eγ
T,i+

∑
i

Eneut.Had.
T,i − 1

2

∑
Echd.Had.
T,i,∆β ))], ∆R`i < 0.4.

(3.13)
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This method exhibits an improved performance and hence used for the analysis presented next. The
numerator of each Irel defines the corresponding absolute isolation Iabs. Both relative and absolute
isolation are used in the analysis follows and always ∆R(`, i) < 0.4 is considered.. In cases with soft
leptons (low pT (`)), where the Iabs is comparable with pT (`): Iabs/pT (`) & 0.2) then the Irel is needed
to guaranty isolated lepton.

3.5.9 Jets reconstruction/clustering

Quarks and gluons in final state products hadronize immediately after their production, as shown in
figure 3.15 left, leading to a spray of energetic hadrons boosted in similar directions. These hadrons
are then naturally clustered in what is refereed as a jets.

A jet reconstruction is defined by a set of objects, and an algorithm to clusterize them [132]. Several
options are available for both these choices but the vast majority of the analyses, rely on jets from
particles reconstructed using particle flow approach and clustered according to the “anti-kT” algorithm
with distance parameter ∆R = 0.5. ∆R is defined in appendix A, it is also called clustering radius (also
shown in figure A.1 over the η − φ plane). The PF approach (one of the three available), exploiting
the precision of the tracker and the full granularity of ECAL, provides a very significant improvement
to the jet energy and direction resolutions compared to calorimetric-only approaches. The use of PF
reconstruction also allows a high reconstruction efficiency for jet constituents with low momentum
achieving a jet energy response close to unity even before calibrations.

Detector jets belong to three types, depending on the way which the contributions from subdetectors
are combined: “Calorimeter jets”, “Jet-Plus-Track jets” and “Particle-Flow jets”. Figure 3.25 (top left)
helps the visualization of the following three definitions.

• Calorimeter jets (“CALO-jets”) [69]: are reconstructed from energy deposits in the calorimeter
towers. A calorimeter tower consists of one or more HCAL cells and the geometrically corre-
sponding ECAL crystals. A four-momentum is associated to each tower deposit above a certain
threshold, assuming zero mass, and taking as a direction the tower position as seen from the
interaction point.

• Jet-Plus-Track (JPT) jets [69]: are reconstructed calorimeter jets whose energy response and
resolution are improved by incorporating tracking information (according to the Jet-Plus-Track
algorithm [57]). “Calo-jets” are first reconstructed as described above, and then charged particle
tracks are associated with each jet, based on the spatial separation between the jet axis and
the track momentum vector, measured at the interaction vertex, in η − φ plane. The associated
tracks are projected onto the front surface of the calorimeter and are classified as in-cone tracks
if they point to within the jet cone around the jet axis on the calorimeter surface. The tracks
that are bent out of the jet cone because of the CMS magnetic field are classified as out-of-cone
tracks. The momenta of charged tracks are then used to improve the measurement of the energy
of the associated calorimeter jet: for in-cone tracks, the expected average energy deposition in the
calorimeters is subtracted and the momentum of the tracks is added to the jet energy. For out-
of-cone tracks the momentum is added directly to the jet energy. The Jet-Plus-Track algorithm
corrects both the energy and the direction of the axis of the original calorimeter jet.

• Particle-Flow jets (PF-jets) [69]: are reconstructed by clustering the four-momentum vectors
of particle-flow candidates. The PF algorithm [59] combines the information from all relevant
CMS sub-detectors to identify and reconstruct all visible particles in the event (muons, electrons,
photons, charged and neutral hadrons). Charged hadrons electrons and muons, are reconstructed
from tracks. Photons and neutral hadrons are reconstructed from energy clusters separated
from the extrapolated positions of tracks in ECAL and HCAL, respectively. A neutral particle
overlapping with charged particles in the calorimeters is identified as a “calorimeter energy excess”
with respect to the sum of the associated track momenta. The energy of photons is then obtained
from the ECAL measurement (corrected for zero-suppression effects). The energy of electrons
is determined from a combination of the track momentum at the main interaction vertex, the
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corresponding ECAL cluster energy, and the energy sum of all bremsstrahlung photons associated
with its track. The energy of muons is obtained from the corresponding track momentum. The
energy of charged hadrons is determined from a combination of the track momentum and the
corresponding ECAL and HCAL energy (corrected for zero-suppression effects, and calibrated for
the non-linear response of the calorimeters). Finally, the energy of neutral hadrons is obtained
from the corresponding calibrated ECAL and HCAL energy.

As has been already mentioned the PF-jets provides the greatest performances and thus are used in
most analysis.

Jet clusterization is performed by the “anti-kT” algorithm [41]. The anti-kT algorithm is a sequential
clustering of individual particles. It basically tries to combine near by entities (particles) noted here
with indexes i, j. The input to the jet-clustering routine is the collection of PF candidates of the event
from which a list of pseudo-jets is defined. These pseudo-jets are recombined to form the final jets
object according to following algorithmic steps [125].

• For each particle i (PF-objects), and for each pair of them i, j in a given event, the following
metrics are calculated:

di ≡
1

p2
T,i

, dij ≡ min

[
1

p2
T,i

,
1

p2
T,j

]
∆R2

ij

∆R2
,

where : ∆R2
ij ≡ (ηi − ηj)2 + (φi − φj)2, i 6= j, ∆R = 0.5 : constant. (3.14)

• Find the minimum of all di, dij and label it dmin.

• If dmin is dij, remove particles i and j from the list (of event’s PF-objects) and replace them with
a new, merged pseudoparticle (denoted with c), with parameters are given by the recombination
scheme of centroid method [125]:

ETc ≡ ET i + ETj, ηc ≡
Ei
ETc

ηi +
Ej
ETc

ηj, φc ≡
Ei
ETc

φi +
Ej
ETc

φj. (3.15)

• Else if dmin is di, remove particle i from the list of pseudoparticle and add it to the list of final
reconstructed jets.

• If any particles (PF-object) remains non jet-clusterized, then go to step 1: recalculate di, dij...

This algorithm produces a list of jets, each separated by ∆Rij > ∆R. The metric dij between a hard
and a soft entity (pseudoparticle) is exclusively determined by the momentum of the hard one and
∆Rij, and typically has small values. For two soft entities dij is much larger. Hence, the anti-kT
algorithm leads to jet configurations with one hard particle at the center of a circle and many other
softer on the edge. If there is no other hard particle within 2∆R, the jet would have a perfectly conical
shape. If there is a second hard entity such that ∆R < ∆Rij < 2∆R, two hard jets will be created, and
the shape would depend on the momentum of each hard particle. Finally, if both hard particles have
∆Rij < ∆R, they will cluster into a single jet [41, 92]. The key feature above is that the soft particles
do not modify the shape of the jet, while hard particles do; i.e. the jet boundary in this algorithm is
resilient with respect to soft radiation, but flexible with respect to hard radiation.

The anti-kT is both infrared and collinear safe [41]. Being collinear safe, means that all collinear
splitting does not change the final output of the algorithm. Being infrared safe (IR) means that the
presence of soft QCD emissions should not change the structure of the jet [106]. Figure 3.25 shows an
example of jets reconstruction over the η − φ plane, the separation patterns mentioned above can be
seen as well. Also, the jet resolution appears well modeled with the anti-kT algorithm.
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Figure 3.25: Top left: Illustration of a jet substructure and its layout over detector. Top right: a
sample parton-level event (generated with Herwig), together with many random soft “QCD-ghosts”,
clustered with anti-kT jets algorithm (“active” areas of the resulting clusterized hard jets shown with
colors). Bottom: jet resolution with bias-corrected data, compared to the generator-level MC (denoted
as MC-truth) pT resolution before (red-dashed line) and after correction for the measured discrepancy
between data and simulation (red-solid line) for PF jets in three bins of |η|. Taken from [41, 69]

3.5.10 Jets energy calibration and correction

Since the reconstructed jets are affected by both the imperfections of the detector and the weaknesses
of jet clustering algorithms, jet-energy calibration and corrections have to be applied. These are needed
to get the most accurate reconstructed object derived from the constituents of the jets. On average,
they connect the measured jets to a more generic and universal jet definition, hence, independent of the
detector’s geometry and response. Problems arise since the theoretical definition of a jet can be very
different compared to the final output of a given jet-algorithm, because of the interaction of particles
with matter. Thus, one needs to calibrate and correct the reconstructed jet energy to be close to
the energy of the initial parton or the “GenJet”. In this section we discuss the various levels of jet
corrections that CMS implements.

The adopted work-flow for CMS is the so-called “factorized approach” [69, 92, 106] where the jet-
energy calibration can be divided into different levels as illustrated in figure 3.26. Once this sequence
of different levels of corrections is applied, a non-negligible reduction of the systematic errors and
uncertainties is achieved. Each one of these, is studied in detail by dedicated working groups, which
are trying to get a better understanding and control of the different sources of systematic uncertainties
involved.

The CMS collaboration derives the jet-energy corrections from both simulation and by using data-
driven methods. The different corrections are applied as successive multiplication factors to the raw
jet four-vector (pcorr.µ ≡ L1(pµ) × L2(η) × L3(pT ) × ...prawµ ). These multiplication factors corresponds
to the following corrections:

1. Offset correction (L1).
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Figure 3.26: aaaa

Figure 3.27: Response versus Gen-Jet pT for PF-jets (left) before correcting for pileup, (middle) after
correcting for pileup, and (right) after the required MC correction chain (L2,L3). (The same plots can
be made for the Calo jets with similar results). Taken from [129].

When the jet energy has been measured, there are still sources that result in additional calorimeter
energy deposits. These contributions are due to electronic noise in calorimeters and PU events.
As a consequence, they cause an offset of the jet energy scale. The PU correction subtracts from
the jet the average extra energy from other vertices present in the event, but are not associated
with the jet itself. The correction formula is parametrized as a function of the median jet energy,
or alternatively of the number of primary vertices NPV . There are three way to perform this
correction which can be found here [69] and their presentation is far beyond our scope. Figure
3.27 shows the pT of the jet before and after the PU correction.

2. Relative η dependence (L2).
The L2 correction aims to correct for the effects of the dependence of the jet energy response
with the pseudo-rapidity. Studies based on MC [129] show a need for a correction at the level of
0.5-1.5% for jets with pT > 30 GeV, depending on the flavour of the jet.

3. Absolute pT dependence (L3).
The L3 correction aims to correct the jet energy due to the non-uniform response of the detector as
a function of their pT and correcting back to the jet energy scale. Figure 3.27 (right) demonstrates
some of the relative uncertainty sources as a function of pT and η for the PF jets collection.

4. Electromagnetic fraction (L4).
The electromagnetic fraction (EMF) of the jet (i.e. the fraction of energy measured in ECAL
compared the total energy measured in both HCAL and ECAL), can result in a different jet
energy scale. The L4 correction is the first of the “optional” corrections and is depending on the
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EMF value. The L4 correction can be derived both from simulation studies or from data-driven
approach.

5. Correction for the dependency on the jet flavour (L5).
Given the fact that jets originate either from gluons or (u, d, c, s, b) quarks, the jet energy scale
can be different depending on the flavour of the jet as small differences are expected due to the
way jets fragment depending on their the flavour. On top of that, gluons are responsible for the
presence of extra radiation in the jet activity. The L5 corrections can be derived from simulation
studies by matching the jet flavour to the GenJet. Details of this correction can be found here
[87].

6. Correction for the underlying event (L6).
This correction accounts for the extra amount of energy that is attributed to a jet due to the
UE. Hence, the L6 correction aims to subtract this contribution which gives an extra hadronic
activity that shifts the jet energy to higher values.

7. Parton correction (L7).
The L1-L6 corrections aim to correct the jet energy back to the energy of the GenJet collection.
The L7 calibration targets to correct the jet energy back to the energy of the originating par-
ton [106]. However, the connection between the jet pT and the patron pT , is far from trivial.
Consequently, the correction strongly depends on the implementation and modelling of the UE
and the MPIs in the MC generator. It also depends somehow from the choice of the used jet
reconstruction algorithm and the details of the physics process in question.

3.5.11 b-jets tagging

The jets originated by b-quarks can be identified and tagged as these, by taking into account the
following two properties of the b-quarks:

• b-quarks hadrons have relatively long lifetime, so the fly a bit before they disintegrate: b →
W, c(u), providing a signature of a secondary vertex (displaced from the primary PV) in the
event. This property comes from the decay suppression imposed by the corresponding CKM
matrix elements (figure F.1).

• b-quark is heavier than the rest (figure 1.2, with the exception of top quark), hence the higher
final-initial-quark mass difference leads to more energetic final state hadrons and wider jets.

These two characteristics allow us to separate and tag b-jets from the rest light-flavoured jets. This
b-tagging opportunity is vital importance attribute for every analysis includes signal or background
with b or t quarks.

There are three main b-tagging algorithms used in CMS [72]. The “Impact Parameter significance”
algorithm, the “Secondary Vertex” algorithm, and the the “Soft Lepton” algorithm. Each one, combines
one or more discriminating observables (associated with jets properties), providing finally a single
discriminating value per jet which characterise it as b-jet or non-b-jet with a certain probability.

In all cases, a common selection over the jets candidates is applied to ensuring quality of their input
PF-objects and robustness of the algorithm. This is applied by the following selection cuts over each
considered jet [72]:

1. Only well-reconstructed tracks with high purity are considered by requiring: pT > 1 GeV.

2. Number of track-hits present: in Strip Tracker N strip
hits ≥ 8, and in Pixel Detector Npixel

hits ≥ 2.

3. Track fit requirement: (χ2/n.d.o.f.) < 5.

4. Loose restriction on impact parameters (defined in figure 3.11): |dxy| < 0.2 cm, |dz| < 17 cm.
These cuts suppress the track contamination by long-lived particle decay products’ like kaons.
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5. Cone ∆R < 0.5 around the jet axis and the track is required to associate a track with the jet (jet
axis is defined by the PV and the direction of its momentum).

6. The minimum distance (in 3D-space) between the jet-axis and a track (which is supposed to be
part of it) has to be less than 0.07 cm. This way one rejects track contributions from PU.

7. The point of closest jet-track distance must be less that 5 cm away from the PV.

Figure 3.28 shows the aforementioned track properties (cut variables) for a jet-sample with pT > 60
GeV.

Figure 3.28: Track properties after basic selection (except for the variable plotted): (a) number of hits
in the pixel system, (b) transverse momentum, (c) distance to the jet axis. The average number of
tracks passing the basic selection is shown in (d) as a function of the transverse momentum of the
jet. In (a)-(c) the distributions from simulation have been normalized to match the counts in data.
The filled circles correspond to data. The stacked, coloured histograms indicate the contributions
of different components from simulated multijet (QCD) samples. Simulated events involving gluon
splitting to b-quarks (b from gluon splitting) are indicated separately from the other b production
processes (b-quark). In each histogram, the rightmost bin includes all events from the overflow. The
sample corresponds to a trigger selection with pT (jet) > 60 GeV. (Taken from [72]).

The reconstruction of the secondary vertices: SV (decay points) of b or c hadrons is more challenging
in the presence of multiple p-p interactions. In order to minimize this complexity an additional track
selection is required. Tracks must be:

1. within a cone of ∆R < 0.3 around the jet axis,

2. with minimum (jet-axis,track) distance less of 0.2 cm,

3. and pass a “high-purity criterion” as defined in [62].

Where the last uses the normalized χ2 of the track fit, the track length, and the impact parameters to
cut and optimize the purity of tracks.

The SV finding procedure begins with tracks defined by this selection and proceeds iteratively. A
vertex candidate is identified by applying an “adaptive vertex fit” [?] which estimates the SV position
and assigns a weight (between 0 and 1) to each track based on its compatibility with the SV. Tracks
with weights > 0.5 are then rejected as SV content. The fit procedure is repeated until no new vertex
candidate can be found.

The aforementioned properties are used in the three b-tagging algorithms [72] which are briefly
explained in the following:

1. Impact Parameters (IPs) b-jet identification algorithm (“b-IP-tag”).
The IPs: dz, dxy are used to distinguish the SV decay products (tracks) of a b-hadron from prompt
tracks coming from PV. The IPs have the same sign as the scalar product of the vector pointing
from the PV to the closest point of jet axis. Tracks originating from the SV decay travelling
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Figure 3.29: Left: an illustration of an SV in a jet. One jet’s track is shown with its closes point to
the PV and with its IP quantities. Right: a 2D example of tracks associated to the PV (green) and to
the SV (orange). We can deduce that: 〈dPVz 〉 < 〈dSVz 〉, and 〈dPVz 〉 ' 0, 〈dSVz 〉 > 0.

along the jet axis tend to have positive IP values, whereas for PV originated tracks IPs signs are
balanced. Figure 3.29 illustrates the situation.

The “impact parameter significance” (SIP ), defined as the ratio of the IP to its estimated un-
certainty, has discriminating power between the decay products of b and non-b jets. The dis-
tributions of IP values and their significance are shown in figure 3.30. The “Track Counting”
(TC) algorithm sorts tracks in a jet by decreasing values of the IP significance. Although the
ranking tends to bias the values for the first track to high positive IP significances, the probability
to have several tracks with high positive values is low for light-parton jets. Therefore the two
different versions of the algorithm use the IP significance of the second and third ranked track
as the discriminator value. These two versions of the algorithm are called “Track Counting High
Efficiency” (TCHE) and “Track Counting High Purity” (TCHP), respectively. The distribution
of the TCHE discriminator is shown in figure 3.30 left as well. A natural extension of the TC
algorithms is the combination of the IP information of several tracks in a jet. Two discriminators
are computed from additional algorithms. The “Jet Probability” (JP) algorithm uses an estimate
of the likelihood that all tracks associated to the jet come from the primary vertex. The “Jet B
Probability” (JBP) algorithm gives more weight to the tracks with the highest IP significance, up
to a maximum of four such tracks, which matches the average number of reconstructed charged
particles from b-hadron decays.

Figure 3.30: Distributions of (a) the 3D impact parameter, (b) the significance of the 3D impact
parameter for all selected tracks, discriminator values for (c) the TCHE and (d) the JP algorithms
respectively. Taken from [72].

The distribution of the JP discriminator in data and simulation is shown in figure 3.30 (d). The
IP is calculated in the 3D-plane and carries the same sign as the scalar product of the vector
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pointing from the PV to the point of closest approach with the jet direction. Hence, it will be
positive (negative) if the track was produced downstream (upstream) compared to the PV along
the jet direction (figure 3.29 left). That practically means that those tracks originating from the
particles along the jet axis direction will tend to have positive values.

2. The presence of a SV and its associated kinematic variables can be used to discriminate b from
non-b jets. Two such variables are the “flight distance” and “flight direction”, using the vector
between PV and SV. The SV candidates must fulfill the following requirements in order to enhance
the b-jet purity:

• An SV must share less than 65% of their associated tracks with PV.

• The significance of radial distance (between PV and SV) has to exceeds 3σ.

• The SV candidates with a radial distance of more than 2.5 cm (with respect to the PV), with
masses compatible to K0 or exceeding 6.5 GeV are rejected. (Reducing the contamination
by vertices from long-lived meson decays and interactions with the detector material.)

• The flight direction of each SV has to be within a cone of ∆R < 0.5 around the jet direction.

The Simple Secondary Vertex (SSV) algorithm uses the significance of the flight distance (defined
as the ratio of the flight distance to its estimated uncertainty) as the discriminating variable.
The algorithms’ efficiencies are limited by the SV reconstruction efficiency to ∼65%. There exist
two versions: the High Efficiency (SSVHE) and the High Purity (SSVHP) version (requiring at
least two and three respectively associated tracks). Figure 3.31 left shows the flight distance
significance.

A more sophisticated approach involves the use of SV, together with track-based lifetime infor-
mation. By using these additional variables, the “Combined Secondary Vertex” (CSV) algorithm
provides discrimination also in cases when no secondary vertices are found, increasing the maxi-
mum efficiency (with respect to the SSV). In many cases, tracks with SIP > 2, can be combined
in a “pseudo vertex”, allowing the computation of a subset of SV-based quantities even without
an actual vertex fit. When even this is not possible, a “no vertex” category reverts to track-based
variables that are combined. The following set of variables with high discriminating power and
low correlations is used (in “no vertex” case only the last two variables are available):

• vertex category: “real”, “pseudo”, or “no vertex”,

• flight distance significance in the transverse plane,

• the vertex mass,

• number of tracks at the vertex,

• ratio of the energy carried by tracks at the vertex with respect to all tracks in the jet,

• the η of the tracks at the vertex with respect to the jet axis,

• the 2D-IP significance of the first track that raises the invariant mass above the charm
threshold of 1.5 GeV (tracks are ordered by decreasing IP significance and the mass of the
system is recalculated after adding each track),

• number of tracks in the jet,

• the 3D-IP significances for each track in the jet.

Two likelihood ratios are built from these variables and are used to discriminate between b and c
jets, and between b and light-parton jets. They are combined with prior weights of 0.25 and 0.75,
respectively. The distributions of the SV mass, vertex multiplicity and the CSV discriminator are
presented in figure 3.31. For the CSV variable, three thresholds are shown: define loose (“L”),
medium (“M”), and tight (“T”) operating points with a misidentification probability for light-
parton jets of about 10%, 1%, and 0.1% respectively (at an average jet with pT > 80 GeV). In the
next chapters’ analysis the CVS discriminator is used in its medium working point: “CVSM”,
i.e: a jet is a b-jet if: CVS > 0.679.
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Figure 3.31: Properties of reconstructed decay vertices: (a) the significance of the 3D-SV flight distance,
(b) the mass associated with the SV, (c) the SV multiplicity, and (d) the CSV discriminator. Taken
from [72].

The performance of these algorithms are summarized in figure 3.32, at (a) the misidentification
provability for a given b-tag efficiency. The three working points (L,M,T) are defined by this curve
accepting a fixed percentage (∼10%, 1%, 0.1%) of wrongly light-quark or gluon jets tagged as b-jets.
The b-jet efficiency for the CSVM point is ∼0.67. For this efficiency the fraction of c-jets which are
wrongly tagged as b are ∼15% figure 3.32 (b). Over all the CSVM algorithm reconstructs on average
two out of three b-jets, with purity of ∼85%. In the same figure at plots (c,d,e,f) one can see the
variation of b-tagging efficiency versus pT and η for the two best algorithms: CSV and JPL. Even if the
b-jet efficiency is higher (by ∼1.2) for JPL, the c and light quark jet have also higher misidentification
rate (by ∼2), and the optimal choice for most analysis turns to be the CSV algorithm at medium point:
CSVM (figure: d,f). Explanation for the histograms’ trends can be fount at [72].

The b-jet tagging algorithms are tested and their efficiencies are measured in data. Many techniques
are employed for that purpose [72] using the multijet or the tt̄ event samples:

• Efficiency measurement with kinematic properties of “muon jets”: jets with near by muon (∆R <
0.4) originated from its sequential decay.

• Efficiency measurements with the “System8” method [52, 15] using muon jets.

• Efficiency measurements with “reference lifetime algorithm”.

The key aspect of a “muon jets” selection usage (in order to obtain a rich in b-jets selection) is that
the muons coming for b-jets (b → cµνµ) have relatively higher transverse to the jet momenta (prelT ).
Corrections can be applied to simulated events using a scale factor SFb, defined as the ratio of the
efficiency measured in data to the efficiency found in the equivalent MC samples, using MC generator-
level information to identify the jet flavour. Figure 3.33 shows the fits of MC over data samples applied
with the first method above. The prelT and ln(|IP |) variable are shown in cases where muon jets are
tagged (a,c) and not tagged (b,d) as b-jets. On the bottom, the b-tagging scale factor for the CSVM
method are shown (on average are ∼0.95±0.02 with a small variance over pT (b) between [0.94,0.98]).

3.5.12 Missing transverse energy/momentum reconstruction

The missing transverse momentum, ~6ET , is reconstructed as the negative of the vector sum of the
transverse momenta of all final-state particles reconstructed in the detector: ~6ET ≡ −

∑
i ~pT,i. There

are three distinct algorithms developed in CMS to reconstruct 6ET :

• Particle Flow 6ET (pf-6ET ): calculated from all reconstructed PF particles,

• Calo ~6ET : calculated using the energies contained in calorimeter towers and their direction, relative
to the center of the detector, to define pseudo-particles
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Figure 3.32: Top: performance curves obtained from MC for many algorithms. (a) light parton- and
(b) c-jet misidentification probabilities as a function of the b-jet efficiency. Jets with pT > 60 GeV in a
sample of MC multijet events are used to obtain the efficiency and miss-ID probability values. Bottom:
efficiency for b-jets and misidentification probabilities for c and light-parton jets of the JPL (c, e) and
CSVM (d, f) taggers as a function of pT (jet) and |ηjet|. Overflows are accounted for pT . Taken from
[72].

• TC ~6ET : is based on Calo-MET, but the response and resolution is improved using tracks recon-
structed in the inner tracker.

A three-step correction is used to remove the bias in the 6ET magnitude due to the non-linearity of
the calorimeter response for neutral and charged hadrons, caused by event pile-up (PU), large bending
of low pT tracks due to strong magnetic field in CMS, etc.. The correction procedure relies on the fact
that 6ET can be factorized into contributions from jets, isolated high pT photons, electrons, muons and
un-clustered energies. The jet energy scale corrections are propagated 6ET using the so called “type-I”
correction:

~6ET
Corrected

≡ ~6ET
Raw
−
∑
i

( ~pT,i
Corrected jets − ~pT,i

Raw jets), (3.16)

In order to correct for the soft jets below the threshold used for “type-I” correction and energy deposits
not clustered in any jet, a second correction can be applied to the un-clustered energy, which is called
“type-II” correction. This correction is obtained from Z → ee events, as discussed in [99]. To reduce
the dependency of 6ET on event pile-up, a so called “type-0” correction has been developed only for PF-
6ET . For each pile-up vertex the expected missing neutral momentum is calculated using an improved
PF candidate to vertex association technique and added it vectorially to PF-6ET .

The performance of 6ET is studied using events containing a Z or γ boson sample where the 6ET can
be induced by removing the vector boson from the event. The well measured Z boson: Z → µµ(ee),
provides the momentum scale, qT and a unique event axis (figure 3.34 top). The hadronic recoil,
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Figure 3.33: Top: fits of the summed b and non-b templates, for simulated muon jets, to the muon prelT
distributions from data. (a) and (c) show the results for muon jets that pass (tagged) and or in (b) and
(d) fail (untagged) the b-jet tagging criteria of the CSVM method. The muon jet pT is [80,120] GeV.
Bottom: (e) the efficiencies for the identification of b-jets measured with the “Life-Time” method in
data with the muon-jet sample. (f) the combined measurements (fit) of the data/MC ratio which formed
the SFb. (g) the measured b-tagging efficiency and the SFb as a function of the flavour discriminator
threshold for the CSV algorithm, measured with “bSample” method. Taken from [72].

~uT , is defined as the vector sum of the transverse momenta of all particles except the vector boson.
Momentum conservation in the transverse plane requires: − ~qT = ~uT + ~6ET . The projection of the
hadronic recoil onto the axis q̂T yields two signed components, parallel: u‖ and perpendicular: u⊥ to
the event axis, where u‖ is typically negative.

− ~qT ≡ ~uT + ~6ET = [ ~u‖ + ~u⊥] + ~6ET (3.17)

The mean value of the scalar quantity 〈u‖〉/qT is the correction factor required for 6ET measurements
and is closely related to jet energy scale corrections. The −〈u‖〉/qT is referred also as 6ET response,
and its dependence of the qT as 6ET response curve. This is shown in figure 3.34 (e). The component
u⊥ is expected to be centred at zero by construction, and to be symmetric as it arises primarily from
random detector noise and the underlying event, whereas by construction u‖ is balanced with qT , thus
making u‖ + qT centred around zero and approximately symmetric. Deviations from unity indicate a
biased hadronic recoil energy scale. The curves fit to data indicate that the PF-6ET is able to fully
recover the hadronic recoil activity corresponding to a Lorentz boosted boson with qT ∼ 40 GeV.

Since the vast majority of pileup interactions do not have significant 6ET and its average value
projected on any axis is zero, the effect of pileup interactions on the 6ET response is small. However,
as shown in figure 3.34 (f), (g), pileup interactions have a considerable effect on the 6ET resolution.
CMS employs two algorithms that reduce the effect of pileup interactions on the 6ET reconstruction,
referred to as the “No-PU PF- 6ET ” and “MVA PF- 6ET ” algorithms [76]. These algorithms divide each
event into two components: particles that are likely to originate from the primary hard-scattering
pp interaction (HS particles) and particles that are likely to originate from pileup interactions (PU
particles). The implementation of these show a significantly reduced dependence of the resolution on
pileup interactions in both data and simulation. This reduced pileup dependence can significantly
increase the sensitivity of searches for new physics.
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Figure 3.34: On the top: schematic illustration of momentum conservation in transverse plane for Z
and γ events. The ~uT , ~qT , u‖, u⊥ definitions can be seen. Plot (a): the PF- 6ET distributions for events
passing a di-jet selection without and with cleaning algorithms applied. Plots (b),(c),(d) shows the
PF-6ET distribution in Z → µ+µ−, Z → e+e−, and direct-photon events respectively. The lower panel
of each plot show the data/MC ratio. Plot (e) response curves for PF-6ET in events with a Z/γ-boson.
Upper frame shows the response in data; the lower frame shows the ratio of data over simulation. Plots
(f),(g) parallel and perpendicular recoil component resolution curves versus the number of reconstructed
vertices (PU) for PF-6ET . Upper frames show the resolution in data; lower frames show the ratio of
data/MC. Taken from [76].
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Chapter 4

Analysis Strategy

Resent results for the mass of the newly found Higgs boson [?, ?] (fully consistent with the SM Higgs
boson so far) at 125 GeV, put a strain on the Minimal Supersymmetric extension to the Standard
Model (MSSM), the absence of SUSY can be explained and it’s “naturalness” being preserved, in the
so-called compressed SUSY models.

In this analysis, results from a search for natural SUSY in R-parity conservation scenario, and
considering small sparticle mass-splittings are reported.

4.1 Motivation in compressed natural SUSY search

Discovering supersymmetry at the LHC requires distinguishing the signal decay products of SUSY
particles (sparticles) from large standard model (SM) backgrounds. In R-parity conserving SUSY in
which the Lightest Super Partner (LSP) is stable and invisible to the detector, methods commonly used
to separate signal from backgrounds take advantage of the signals large missing transverse momentum
( 6ET ), numerous jets from visible final state products, or highly energetic leptons. However, this
becomes more challenging in the case of electroweak (EW) SUSY production where cross sections are
modest (figure 2.7). More over is especially difficult for compressed EW SUSY scenarios in which the
mass difference between the SUSY produced sparticle (initial) and the LSP (final) is small.

Not only are such processes harder to pick out of backgrounds during an analysis, but they may not
even pass typical trigger requirements for the LHC detectors (requiring for example high 6ET , pT (`), HT ).
As a result, both CMS and ATLAS remain “blind” in a vast majority of compressed SUSY scenarios.

In compressed natural SUSY models the mass spectrum of SUSY particles is more compressed, i.e.
parent sparticle is closer in mass to the LSP and as a result, less visible energy is available in the final
state, in form of detected objects. Also a modest amount of energy escapes detection as it stored in
the (not necessarily energetic) LSP’s, making it very hard to distinguish between signal and QCD, tt̄
and electroweak backgrounds.

The main motivation for a search in natural SUSY compressed spectra is listed bellow.

• Such phase-space regions has been remained unexplored (even two years after the end of “Run-
I”) due to their kinematic inaccessibility. Instead CMS and ATLAS emphasize in signal searches
with higher cross sections signatures and which probe broad (more kinetically accessible) areas
of the sparticles masses parametric space.

• A small mass splitting ∆M ∼ [10,30] GeV (of LSP and next-to-LSP (NLSP) particles) is com-
patible with the observed dark matter relic. In such scenario the co-annihilation of LSP-NLSP
to SM particles is enhanced and produces the observed DM relic [29, 118, 18].

• Also compressed SUSY in third generation is particularly well motivated since the dominant
correction to the Higgs mass comes from the top quark loop, therefore it is necessary for the stop
quark to be in the TeV range in order to effectively cancel most of this correction thus preserving
“naturalness” [31, 78, 80, 140, 119, 81, 135, 108].
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4.2 Experimental frontier of compressed SUSY in terms of

exclusion limit

Before the publication of current analysis result the landscape of exclusion limits in stop-LSP and
chargino-LSP productions was as shown in figure 4.1. Exclusion limit curves corresponds to 95%
confidence level and exclude a wide range of the two masses parametric space. The non excluded areas
across and between the (dusted straight) lines mχ̃0

1
= mt̃ −mW , mχ̃0

1
= mt̃ −mt are characterized as

the compressed spectra.
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Figure 4.1: Exclusion limits from ATLAS (left) and CMS (right). The stop-pair production on top,
the chargino-neutralino production on the bottom. Various different analysis in different channels are
superimposed. (Taken from ATLAS and CMS public results summary web-page).

For the mt̃ − mχ̃0
1
< mt the top quark appear off-shell and if mt̃ − mχ̃0

1
< mW also its daughter

W (t → bW ) appears off-shell. The corresponding search regions are kinematically inaccessible in
the sense which described above: it leads to low pT objects and modest 6ET , buried under huge SM
background processes.
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After the LHC “Run-I” data collection period a lot of effort were put in investigation of the accessible
on-shell sparticle productions. Analysis where designed and optimized to probe such events and not
the compressed scenarios. The later period (and mainly the end of the LS1 period) the compressed
scenarios attracted the interest since natural SUSY could be hidden it.

4.3 The signal signatures

In this analysis three different signal signatures are probed. The main one is a stop-pair production
with stop-LSP mass-splitting: ∆M(t̃χ̃0

1) < MW . This is shown in figure 4.2 left. The exact decay
chain for each of the stops which will be considered is: t̃ → tχ̃0

1 → Wbχ̃0
1 → `νbχ̃0

1, i.e. we only the
leptonic decay of the stops: “dileptonic” channel. Accounting only the electron and muon as leptonic
final states of a singe W-decay (accounting that τ disintegrate rapidly into these or into quarks) we
have the following % branching ratios (BR):

• 2W → 2qq̄ (∼ 55%) full-hadronic,

• 2W → `νqq̄ (∼ 38%) semi-leptonic,

• 2W → `+`−νν (∼ 7%) di-leptonic.

The final state is characterized by jets, (originating from the fragmentation and hadronization of b-
quarks), soft oppositely charged leptons and neutrinos (originating from the decays of W bosons in the
leptonic decay of it). The search is therefore based on events with soft opposite-sign (OS) leptons.

Figure 4.2: SUSY signal models considered in the analysis. Left: stop-squark pair production with
subsequent four-body decays (where both t∗,W ∗ appears off-shell). Middle: chargino-neutralino pair
production in final states with three leptons with two LSPs, right: chargino-neutralino pair production
in W ∗Z∗ final state with two LSPs. The considered branching ratios are also shown (two sub-cases for
the one in the middle are probed).

As mentioned, stop with a mass similar to LSP mass are difficult to discover, as only few missing
transverse momentum is produced in each stop decay and also the two decay legs (stops) are not
oriented necessarily in same direction. To see this lets consider the four-body decay of the stop at its
center of mass frame, the energy and momentum conservation (for massless b, `, ν`) can be written as:

mt̃ = |~pb|+ |~pν |+ |~p`|+
√
~pχ̃

2 +m2
χ̃, ~pb + ~pν + ~p` + ~pχ̃ = 0 (4.1)

We can see that even at the extreme scenario where the LSP produced at rest the three fermions
have to share the energy corresponding to the stop-LSP mass split which does not exceeds mW . In
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such example there is not 6ET produced at all. In the other regime the maximum LSP momenta is:
| ~pχ̃| = |~pb| + |~pν | + |~p`| (where the three fermions are collinear and back-to-back with LSP), and we
substitute to the energy conservation relation above we can easily deduce: | ~pχ̃| = mt̃[1− (mχ̃/mt̃)

2]/2.
For a typical mass combination of (mt̃,mχ̃) = (200,150) GeV (or (300,250) GeV) we have: | ~pχ̃| ' 45
GeV. This momenta add up vectorially with the other LSP and the two neutrinos which typically forms
a 6ET . 100 GeV. Thus in principle, if stops are not produced boosted, the process has modes 6ET and
low momentum leptons and b-jets. As has been mentioned is hard to trigger such events since no such
trigger (with soft leptons and low 6ET ) was employed in “Run-I”.

One way to circumvent this challenge of compressed SUSY (of low 6ET and soft objects) is to search
for events with an energetic jet from Initial State Radiation (ISR). In such events the sparticles will
recoil against the ISR, increasing the energy of visible decay products but mainly increasing 6ET , up to
a level that makes such events able to be triggered.

Indeed if we consider that the stop-pair is produced in association with an ISR-jet and that each
stop inherits pT ∼ 200 GeV, then a Lorentz boost of γ ' 1.4 (1.2) boost all the stop decay products.
The final pT s at the CMS frame then are given by the relation:

pCMS−frame
T = γβE + γpCM−frameT , ~γ ‖ − ~pT (jetISR) (4.2)

which for the above LSP masses and pT s cases the pCMS−frame
T (χ̃) ranges in [150,220] GeV (only for one

LSP). Thus LSPs, and the whole event, acquire artificially high momenta and induces high 6ET sufficient
to be triggered. The same does not happens to the rest soft object. Dues to their very small masses
the first term in equation 4.2 is relatively small thus for example a |p| = 15 GeV object is boosted to
a |p| range [0,35] GeV depending to its orientation with respect to the boost (~γ). Consequently, the
b-jet, the lepton and the neutrino remains low pT objects, and 6ET (induced mainly by the two LSPs)
is back-to-back with the hard ISR-jet. Figure 4.3 illustrates this situation.

Figure 4.3: The stop-pair production illustration showing the back-to-back behavior of the 6ET and
ISR-jet. With red the soft objects, with green the off-shell mediators.

Such ISR-strategy searches are usually called “mono-jet” searches and similar analysis can be found
here [4, 5, 6] (also the same signature in the full-hadronic channel). Analysis in the full-hadronic channel
have to deal with huge irreducible SM background stemming from Z → νν (invisible) and W+jets (with
“missing” charged lepton or having hadronically decade tau). Both these SM processes give exactly
the same mono-jet-like signature as the signal. The single lepton final state leads to smaller BR but
bypasses the Z → νν contribution and the W+jets, with the tt̄ becomes then dominant. A soft lepton
requirement (and soft b-jet) can suppress these backgrounds effectively for the search.

These backgrounds can be further suppressed by requiring two soft lepton at the price of a smaller
branching ratio as only fully leptonically decaying stop pairs are selected. This search is therefore based
on events with soft opposite-sign leptons, high missing transverse energy and one or two hard jets from
initial state radiation.

The search presented in next section has small event yield for the SM backgrounds (<10 events),
which is very complementary situation to the mono-jet searches [3, 75]. The SM yields are so small
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that the SM prediction do not need to reach e.g. 10% precision level as the statistical uncertainties are
the dominant. This search not only add sensitivity, but as well would potentially give corroborative
evidence in cases of excesses in mono-jet like searches.

Similar processes, e.g. boosted EWKinos [101] or other BSM models, could give similar signatures
as those in the figure 4.2 middle and right. The topology in the middle, with chargino-neutralino
production, leads to three soft lepton final state, however the di-lepton search can probe the cases
where one of the two same-sign leptons is missed, or is very soft, or is a hadronically-decade tau.
Thus, two decay scenarios are considered for this signal as well. The topology in the right is the the
same chargino-neutralino production where now are both rapidly disintegrates to off-shell W ∗, Z∗ boson
leading also in a 0,1,2 and 3 lepton final states.

1. pp→ t̃t̃+ jets→ `+`−νν(ντντντντ )χ̃
0
1χ̃

0
1bb+ jets,

(with BR(t̃→ t∗χ̃0
1)= 100%)

2. pp→ χ̃±1 χ̃
0
2 + jets→ `±`∓`±ν(νννντντντ )χ̃

0
1χ̃

0
1 + jets,

(“flavor-democratic” with BR(χ̃0
2)=50% and BR(χ̃±1 )=100%)

3. pp→ χ̃±1 χ̃
0
2 + jets→ `±`∓τ±ντ (νννντντντ )χ̃

0
1χ̃

0
1 + jets,

(“tau-enriched” with BR(χ̃0
2)=100% and BR(χ̃±1 )=100%)

4. pp→ χ̃±1 χ̃
0
2 + jets→ W ∗Z∗χ̃0

1χ̃
0
1 + jets→ `±`∓(`±ννννντντντ )χ̃

0
1χ̃

0
1 + jets,

(with BR(χ̃0
2)=100% and BR(χ̃±1 )=100%)

Where ` can be e or µ. The τ has been considered decayed either leptonically or hadronically. Particles
appears in parenthesis stands for those may or may not appear depending on tau decays. For the first
one as mentioned we will search the: ∆M(t̃ − χ̃0

1) ≤ 80 GeV band, for second and third only the:
M(χ̃±1 ) = M(χ̃0

2) = M(χ̃0
1) + 20 GeV slice, and for the last the: M(χ̃±1 ) = M(χ̃0

2) = M(χ̃0
1) + 10 GeV.

Obviously the third decay is a special case of the second.
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Chapter 5

Event Selection

5.1 Data samples and triggers

The data sample used for the search is proton-proton collisions collected in 2012 at a center-of-mass
energy of

√
s=8 TeV. These were recorded by the CMS experiment and corresponds to an integrated

luminosity (L) of: L=19.7 fb−1. As the leptons for the signal are very soft and are produced in
association with high 6ET and ISR jet(s) we use the following hadronic triggers for the signal region:

• HLT MET 120 HBHENoiseCleaned,

• HLT Mono CentralPFJet80 PFMETno Mu105 NHEF0p95,

• HLT Mono CentralPFJet80 PFMETno Mu95 NHEF0p95,

No soft muon triggers were in place at 8 TeV. Triggers evolved over the data taking period and require
either 6ET > 120 GeV, where 6ET is reconstructed from the energy deposited in the calorimeters, or
6ET > 95 GeV and a jet with pT > 80 GeV and |η| <2.6, where both objects are reconstructed using the
PF algorithm. In the second part of the data taking period the threshold on 6ET was raised from 95 to
105 GeV. The “or” combination of these three triggers leads to an efficiency above 98% for events with
6ET above 200 GeV. The turn-on curves for this trigger (in their “or” combination) for the data, SM
background, and SUSY signal can be seen in the figure 5.1. Alternatively, also the HLT PFMET 150
GeV trigger was investigated, which had a slightly slower turn-on figure 5.2 and was discarded.

Each triggers response for background and signal generated events is simulated and taken into
account. Control samples were collected based on a single-muon trigger with a pT threshold of 24 GeV.

5.2 SM background and SUSY signal simulation

The Monte Carlo (MC) samples and the data samples that are used in the signal and control regions
are listed in Table 5.2. These are produced mainly with MadGraph generator (the decays) where the
Pythia generator implemented in final state radiation and hadronization of the decay products.

5.3 Signal region selection cuts

In principle the event selections defines the so-called signal or search region (SR) of the events selected
for the Analysis. It is a set of “cuts” which are applied in order to discriminate signal from background.
With term cuts we mean a set of requirements/restriction, over various kinematic variables of each
event, which discriminate the signal over the same (final state) signature SM background. The SR
selection is dictated by the signal features of the dilepton final state topology of stop-pair production
(shown in figure 4.3). Even the analysis is optimised and designed for stop-pair production, is also
applied for the other chargino-neutralino production (shown if figure 4.2 middle and right).
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Figure 5.1: Offline Efficiency of the “or” combination of: HLT MET 120 HBHENoiseCleaned,
HLT Mono Central PFJet80 PFMETno Mu105 NHEF0p95, and HLT Mono Central PFJet80
PFMETno Mu95 NHEF0p95 triggers in data and MC measured using the single muon trigger.

Figure 5.2: Performance of the MET trigger on data measured and MC using the single muon trigger.
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Table 5.1: MC background, signal simulation and the data samples used in the analysis.
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Thus, we require two leptons: N` = 2, either an electron or a muon, with opposite-sign (OS) charges:
Q(`1)Q(`2) = −1, with the additional requirement that at least one of the two leptons must be a muon:
Nµ ≥ 1 (i.e. [µµ], [µe] channels). The rejection of the [ee] was due to the lower reconstruction efficiency
that electrons have, in combination their smaller kinematic acceptance with respect to muons.

Muons (electrons) with pT >5(7) GeV, with |η| < 1.5, relative isolation Iso(rel) < 0.5, and absolute
isolation Iso(abs) < 5 GeV were accepted in the SR of the analysis. (Isolation is defined in subsection
3.5.8, is the sum of all objects pT s within a ∆R = 0.4 cone around the lepton, relative isolation is the
absolute over its pT ; the pT , η and much more useful variables definitions can be found in appendix
A.) For the muon identification we select loose ID (POG) muons and require the soft lepton ID as
well (defined in table 3.3). For electrons we use GSF electron (defined in subsection 3.5.7) with the
Egamma POG non-triggering MVA ID at the same working point used in the H → ZZ → 4` analysis
with the additional requirement of at most one inner tracker lost hit.

In order to motivate those and the additional cuts of our signal region (SR) definition we use a
selection named “Preselecton”. This is by construction looser than the SR and is defined by the cuts
shown in table 5.2. We stress that this preselection sample is only to allow us explore the discrimination
power of each variable we tempting to cut over. This could be done with the so-called “N-1” plots, (i.e.
showing distributions excluding only the cut over the plotted variable), but in our case the very low
yields is SR requires an enriched preselection with sufficient conclusive statistics; thus we implement
preselection. The three horizontal lines on table separates the cuts to leptonic-sector, hadronic-sector,
and composite variable sector cuts.

Table 5.2: Preselection cuts used for the plots which motivates the SR cuts. (For the Nb multiplicity
plot we remove the Nb=0 requirement). The “-” means no cut is imposed in preselection.

Variable Preselection cut value:
N` = 2
Nµ ≥ 1 (soft µ ID)

Q(`1)Q(`2) = -1
pT (`1) [5(7),45] GeV
pT (`2) [5(7),25] GeV
|η|(`1,2) < 2.1

dz(`1,2)&dxy(`1,2) < 0.1 cm
Isorel(`1,2), Iso(abs)(`1,2) - , -

pT (jet1) > 100 GeV
pT (jet3) -
|η|(jet1) < 2.4
Nb(CSVM) = 0, (-)
6ET > 175 GeV

6ET / HT -
M`` -
Mττ -

Simulated Trigger pfMET120 or MonoJet

We illustrate each SR cut choice in plots using this preselection. For the signal, three points
are shown (two from the stop-pair case with considerably different mass splittings, and one from the
“democratic” chargino-neutralino production). Signal histograms are scaled by ×10 to be visible.

5.3.1 Hadronic sector cuts

The trigger requires an offline selection of at least 200 GeV in missing transverse momentum and a
leading hard jet (jet1) of more than 150 GeV. Conditions which perfectly meet our signal discrimination
requirements. These are the values we cut over. The simulated distributions, for SUSY signal and
background, for missing transverse momentum ( 6ET ) and leading jet pT (pT (jet1)) are presented in
figure 5.3 left and right respectively. Signal appears clearly harder distributed than the background.

Thus, in the hadronic sector of our selection we require a hard central (|η| < 2.4) jet1 and we allow
the presence of a second hard jet (with |η| < 4.5). The sub-leading jet (jet2) pT distribution does not
discriminates the signal (shown in appendix C.1, figure C.1). These (one or two) ISR-originated hard
jet(s) gives the boost to the sparticle pair and allows the triggering of such events. We veto events
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Figure 5.3: The missing transverse energy 6ET (left) and the leading jet pT (right). SM background
processes and signal (scaled by ×10) are superimposed in the preselection.

with a third hard jet if pT (jet3) > 60 GeV, to suppress the tt̄ backgrounds. pT (jet3) distribution is
presented in figure 5.4 left.

Figure 5.4: The distribution of third jet pT (if exists) left, and the b-jet multiplicity right. Signal and
background in preselection. SM background processes and two SUSY signal scenarios scaled by ×10
are superimposed.

To suppress the instrumental and beam-related backgrounds additional quality requirements are
imposed to the leading jet. Events are selected only if jet1 charged and neutral electromagnetic energy
fraction is below 50% and 70%, respectively. In addition events are rejected if less than 20% of its energy
is carried by charged hadrons or more than 70% of this energy is carried by either neutral hadrons or
photons [3, 75]. Such spurious jets primarily arise from instrumental noise, where the energy deposition
is limited to one sub-detector. Jets resulting from energy deposition by beam halo or cosmic-ray muons
do not have associated tracks and are also rejected by these selections. The application of these data
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“clean-up requirements” are very effective in rejecting non-collision backgrounds. (The distributions
over these variables in preselection are presented in appendix C.1, figures C.11 and C.10.)

Even though the stop-pair production has two b-jets in final state (figure 4.2) these appears in
most cases softer than the jet pT threshold of our analysis which is 30 GeV and the b-jet multiplicity
distribution peaks at Nb = 0. This is shown in figure 5.4 right. We select Nb = 0 and thus we further
suppress tt̄ events. (The b-jet tagging is performed with the method described in subsection 3.5.11
using the “Combined Secondary Vertex” CSV discriminator at the “Medium” working point which
provides ∼ 65% reconstruction efficiency with ∼ 85% b-jet purity [72]). The exact jets’ requirements
are summarised bellow.

• pT (jet) > 30 GeV and |ηjet| < 4.5 for all the jets to be considered in the analysis

• pT (jet1) > 150 GeV and |η|(jet1) < 2.5

• CHEF (jet1) > 0.2 charged hadrons energy fraction

• NHEF (jet1) < 0.7 neutral hadrons energy fraction

• NEEF (jet1) < 0.7 neutral electromagnetic energy fraction

• CEEF (jet1) < 0.5 charged electromagnetic energy fraction

• pT (jet3) < 60 GeV

• Nb(CSVM) = 0

5.3.2 Leptonic sector cuts

The transverse momentum of the two leptons is shown in plots of figure 5.5, which motivates a cut of
the first lepton to be below 25 GeV and the second to be less than 15 GeV. Further, the first lepton pT
is split into two search bins, one with: 5(7) GeV < pT (`1) < 15 GeV and one with: 15 < pT (`1) < 25
GeV. This binning extends the sensitivity of the search to a wide range of mass-splittings. The higher
the ∆M(t̃− χ̃0

1) is, the most extended (hihger) the pT (`1) is as well, (this can shown from the equation
4.1 where ∆M limits the momenta of soft objects). The pseudorapitidy of the leptons is shown in
figure 5.6 whereas the relative and absolute isolation in figure 5.8.

Absolute pseudorapidity |η`| of each lepton is required to be less than 1.5. Lepton originated by
heavy objects decay (in our case t̃ which are produced modestly boosted) tends to have more central
direction. Such cut restricts to central leptons. The relevant distributions are shown in figure 5.6.

Among the plotted backgrounds one can notice processes with in principle one lepton like the
W+Jet (W → `ν) and tt̄(1`). In such events a second (usually soft) lepton may occur from a hadron
decay in a jet, and that makes the events laid in dileptonic selection. Such leptons and events are called
“Non-Prompt” (NP) in contrast with the other lepton (coming from on-shell W ) which is the prompt.
To suppress such the NP-events we proceed to the following cuts:

• We require an impact parameter (IP) in the transverse plane z, y and along the z (beam) axis
direction with respect to the primary vertex, satisfying the requirements: |dxy| < 0.01 cm and
|dz| < 0.01 cm. (The illustration of IPs definition has been shown in figure 3.11). Thus NP-lepton
coming from relatively long-lived and flight hadrons tend to have higher |dxy|, |dz| values and are
supresed with such cut.

• We apply both relative and absolute isolation cuts (as has been mentioned: Isorel < 0.5, Isoabs <
5 GeV) and thus NP-leptons close to jets are suppressed.

Main motivation for these cuts is to suppress the NP background events (which in general tends to be
the most difficult to predict) and not the discrimination power or the variables. The corresponding
distribution of |dxy|, |dz| are shown in figure 5.7, whereas the isolation in figure 5.8. (For each individual
lepton, IPs, and isolation are shown in figures C.6, C.7, C.8 and C.9, in the appendix C.1).
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Figure 5.5: Leading lepton pT distribution (left), and the sub-leading lepton pT distribution (right).
A looser than the signal region selection (preselection) is used. SM background processes and signal
scaled by ×10 are superimposed in preselection.

Figure 5.6: The |η`| distribution of leading (left) and sub-leading (right) leptons for signal and back-
ground. SM background processes and signal scaled by ×10 are superimposed in preselection.

5.3.3 Composite variables sector cuts

The 6ET /HT ratio (where the HT is the sum of pT of all considered jets) is presented in figure 5.9 (left).
It is used to guard our selection from QCD events, which are not simulated in sufficient statistics. QCD
events are expected to have small 6ET with respect to the HT and therefore to appear at the left tail of
ratio distribution. 6ET /HT is known also from hadronic searches to be a very effective QCD “killer”
and we select events with 6ET /HT > 2/3.

After all previous cuts, the dominant remaining background is the Z+jets. Where the boosted Z is
initially decayed into two taus were decayed finally leptonically in a final-state with four neutrinos and
two soft leptons. Due to the boost that taus inherit from Z (pT (τ) >> mτ ) the flight direction of the
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Figure 5.7: The |dxy| (left) and |dz| (right) impact parameters distributions for signal and background.
SM background processes and signal scaled by ×10 are superimposed in preselection.

Figure 5.8: The relative isolation distributions (left) and absolute isolation distributions (right) for
signal and background. SM background processes and signal scaled by ×10 are superimposed in
preselection.

final lepton is roughly the same with its parent tau i.e. ∆R(`, τ) ' 0. Assuming equality to the last,
we can calculate the original tau four-momentum setting the two taus momenta equal to the measured
hadronic recoil:

~p(Z) = ~p(τ1) + ~p(τ2) = − ~HT = ~p(`1) + ~p(`2) +
∑

i ~pi(ν), (5.1)

x− y plane ⇒ [~pT (τ1)] + [~pT (τ2)] = ~pT (`1) + ~pT (`2) + ~6ET = [~pT (`1)+ 6ET 1p̂T (`1)] + [~pT (`2)+ 6ET 2p̂T (`2)]

⇒ ~pT (τi) = ~pT (`i)(1 + 6ET i

|~pT (`i)
|), pz(τi) = pz(`i)(1 + 6ET i

|pz(`i)|
)

This equation projected in the transverse plane gives a trivial equation with two unknowns that can
be solved (6ET 1, 6ET 2 in the above). With the tau four-vectors we then reconstruct the (effective)
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Figure 5.9: The 6ET /HT distribution (right) and the invariant mass of lepton pair (right). SM
background processes and signal scaled by ×10 are superimposed.

invariant mass of the tau-pair Mττ which correspond to their parent Z-mass.
In other words: we decompose ~6ET along the two soft lepton directions, we add together these two

components (~pT (`i)+ 6ET ip̂T (`i)) into the effective ~pT (τ) and we scale the pZ(`) by the same factor (as
for pT (`)) to form pZ(τ) and receive each tau four-vector.

Figure 5.10: The decomposition of 6ET along the two lepton directions in transverse plane (left).
Each pT (`i)+ 6ET (i) component forms each tau pT (τi). Each pz(τi) is formed as: pz(τi) =
pz(`i)[pT (τi)/pT (`i)]. Invariant mass of the effective taus M(ττ) (right) for a looser than the signal
region selection (preselection). SM background processes and two SUSY signal scenarios scaled by ×10
are superimposed.

Figure 5.10 illustrates the tau’s reconstruction (left) in the transverse plane and the distribution of
their corresponding effective invariant mass Mττ (right). If the 6ET doesn’t lying in-between the two
soft leptons the 6ET i is negative; case which corresponds to taus having opposite direction than their
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soft lepton. We set the reconstructed invariant mass to be negative for these cases (Mττ = −|Mττ |).
An explicit study of all possible tau-reconstruction cases can be found in appendix C.4, figure C.25.
Finally, we impose a cut excluding the 0 < Mττ < 160 GeV region which corresponds the Z mass-peak
of di-tau reconstructed mass. Thus, we subtract the Z → ττ → ``νννν events from SR.

Some other potential soft OS-lepton background contribution is coming from the procceses:

• heavy hadron decays like j/ψ → µµ, with lepton invariant mass: M`` ' 3.1 GeV,

• b-hadron proceeding in “double sequential decay”: b → cW → dWW → d`+`−νν, with M`` <
Mb ' 4.5 GeV,

• photons conversion: γ → `+`−.

In order to shield our SR selection from their presence we impose a rejection of all events with M`` < 5
GeV.

The complete set of all cut define the SR are listed in table 5.3. An explicit cut-flow can be shown
in figure 5.11 and in table 5.4, whereas each bin corresponds to a selection one step closer to the final
SR selection. An additional set of kinematic variable distributions, under preselection requirements,
can be found in appendix C.1. Similar set of all kinematic variable distributions, after applying all SR
selection cuts are presented in appendix C.2 where signal is scaled to data luminosity 19.7 fb−1.

Table 5.3: Selection cut for the signal regions. The pT s in parenthesis stands for electrons.

Variable: SR selection cut:
N` = 2
Nµ ≥ 1 (& soft Muon ID)

Q(`1)Q(`2) -1
pT (`1) [5(7), 25] GeV
pT (`2) [5(7), 15] GeV
|η|(`1,2) < 1.5

dz(`1,2)&dxy(`1,2) < 0.01 cm
Isorel(`1,2)&IsoAbs(`1,2) < 0.5, < 5 GeV

pT (jet1) > 150 GeV (& quality requirements)
pT (jet3) < 60 GeV
|η|(jet1) < 2.4

Nb (CSVM) = 0
6ET > 200 GeV

6ET /HT > 2/3
M`` > 5 GeV
Mττ cut:[0, 160] GeV

HLT MET 120 HBHENoiseCleaned
Triggers used HLT Mono CentralPFJet80 PFMETno Mu105 NHEF0p95

HLT Mono CentralPFJet80 PFMETno Mu95 NHEF0p95

Table 5.4: The cut-flow yields for simulated background and two signal points. (In the appendix C.3,
Table C.1 an explicit cut-flow per each background is shown).

Selection Total SM M(t̃),M(χ̃0
1): M(t̃),M(χ̃0

1):
bin cuts background (250,230) GeV (300,250) GeV
1 6ET >200 GeV 147533±229 6640±39 2563±15
2 N` = 2 6247±32 132±6 125.9±3.4
3 Nµ ≥ 2 4472±26 117±6 102.8±3.1
4 Q(`1)Q(`2) = −1 3712±23 92.5±4.9 83.5±2.8
5 pTj1 >150 GeV,|η| <2.4 2610±19 76.2±4.4 69.7±2.5
6 pTj3 <60 GeV 1887±18 69.2±4.2 63.1±2.3
7 Nb=0 1003±15 64.3±4.1 53.2±2.2
8 6ET /HT >2/3 667±13 57.5±3.6 46.3±2.0
9 pT`:[5,25(15)]GeV,|η| <1.5 41.0±3.0 23.2±2.3 14.3±1.1
10 |dz |, |dxy | <0.01cm 18.5±1.9 20.3±2.2 12.1±1.1
11 IRel` <0.5,&IAbs` <5GeV 12.7±1.5 15.3±1.9 9.0±0.9
12 M`` > 5GeV 12.4±1.5 14.6±1.8 8.4±0.9
13 Mττ cut:[0,160] GeV 8.0±0.8 13.5±1.8 7.8±0.8
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Figure 5.11: The cut-flow in a histogram. Each bin correspond to different selection cuts which are
defined (adding always the listed cut) in table on the left. Last bin has the final event yields of the SR.
(Pile-up correction, ISR-reweigh corrections, b-tagging Scale Factors correction and trigger simulations
cuts are applied from the 0-level of the cut-flow).

5.3.4 Background composition in signal region

The yielded SM background is presented in table 5.5 accompanied by the three signal scenarios. The
SM background composition −according to simulation− is comprised mainly from tt̄(2`) ∼42%, and
di-boson ∼30% (where W+W−, WZ, ZZ merged together under the collective legend “V V ”), and
the subdominant tt̄(1`) ∼ 18%, W+jets ∼ 4%, and Z+jets ∼ 6%. All these corresponds to ∼8 events
according to raw MC.

Table 5.5 also shows three signal points. First two corresponds to stop-pair production decaying
into LSPs via the four-body decay (figure 4.2 left) for masses (m(t̃),m(χ̃0

1)). The third signal scenario
stands for figure 4.2 middle (democratic), and for masses (m(χ̃±1 ),m(χ̃0

1)). The chargino-neutralino
pair decayed (via slepton-neutralino) at 50% BR to the three lepton final state (where lepton can
equi-probable be e, µ or τ).

Table 5.5: Simulation yields in SR. The SM background and three signal point are shown.

Sample: / Bins: pT (`1) : [5, 15]GeV pT (`1) : [15, 25]GeV Inclusive
tt̄(2`) 0.90 ± 0.20 2.48 ± 0.34 3.38 ± 0.39
tt̄(1`) 0.53 ± 0.20 0.89 ± 0.27 1.42 ± 0.33

W + jets 0 0.28 ± 0.28 0.28 ± 0.28
Z + jets 0 0.45 ± 0.33 0.45 ± 0.33
V V 0.70 ± 0.21 1.64 ± 0.33 2.34 ± 0.39
Rare 0.03 ± 0.01 0.08 ± 0.04 0.11 ± 0.04

SM Total 2.16 ± 0.35 5.81 ± 0.69 7.97 ± 0.78
SUSY(250,230) 10.0 ± 1.5 3.41 ± 0.90 13.5 ± 1.8
SUSY(300,250) 3.98 ± 0.61 3.83 ± 0.58 7.80 ± 0.84
SUSY(200,180) 6.2 ± 1.5 1.90 ± 0.88 8.1 ± 1.7

The % background abundances can be shown in chart at figure 5.12 as well the per bin distribution.
The collective “Rare” legend stands for the very small contribution of: tW , t̄W (i.e.: “single-top”),
tt̄W , tt̄Z, tt̄H, WWW , WWZ, WZZ, ZZZ, W±W± (i.e.: same-sign WW).
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Figure 5.12: The SR decomposed in its % SM background (left), broken-down into the two bins event
yields (middle), and the SR-position in a pT (`1) − pT (`2) plane (right). Region above the diagonal is
forbidden due to convention pT (`1) > pT (`2).
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Chapter 6

Background Prediction

In this chapter we exhibits the methods used for the background prediction in SR.
We predict four different backgrounds categories individually. One is tt̄(2`), which is the biggest

background (table 5.5, figure 5.12), the second largest background stems from di-boson events. An
other background is DY+jets (to ττ) where the latest decayed leptonically (to eµ or µµ). Background
with one “non-prompt” lepton, i.e. W+jets and tt̄ semi-leptonic, are the forth category. For the
negligible (∼ 1%) contribution of “Rare”, we use as predicted the MC simulated yields. The SM events
yielded with such soft leptons have in a level of ∼50% at least one tau-originated lepton.

For each of these four categories we introduced a Control Region (CR), enriched in such processes, in
which we derive correction factors from data to correct the SR yields from MC. The explicit motivation
of each CR selection and the explicit prediction formulas are presented in next sections.

The table 6.1 presents collectively all variables that we cut over (first column), repeats the SR se-
lection (second column), and shows for each each CR definition cuts. On the bottom the corresponding
event yields in data and simulation are presented as well. No cut value, is imposed where a cut is the
same with the one in SR. The three signal points presence shows that all CR are relatively “signal-free”.
Figure 6.1 illustrates the % purity of each CR. All the content of the table will be detailed descused in
the next.

Figure 6.1: The % abundances (purity) of the four main control regions used for each or the corre-
sponding background prediction.

Figure 6.2: The pT`1 − pT`2 plane and each control region selection over this.

115



Table 6.1: Top: selection cuts for SR and each control region used for the background prediction. Only
the changes with respect to the SR cut are shown. Bottom: simulation and data event yields per
region. Isolation values in square brackets stands for the soft leptons with: pT (`)<25 GeV.

Regions: SR CR(tt̄2`) CR(NP) CR(VV) CR(Z) SR-inv
Sub Regions: SR(SS) CR(SS)

Cut variables Cut values/thresholds
N` 2

Q(`1)Q(`2) =-1 =+1 =+1
Nµ 1 or 2 = 2

`1 flavor, (ID) µ or e µ, (tight ID) µ, (tight ID) µ, (tight ID) µ, (tight ID)
pT (`1) [5(7),25] GeV > 25 GeV > 25 GeV > 25 GeV > 125 GeV
pT (`2) [5(7),15] GeV > 15 GeV > 10 GeV
|η|(`1,2) <1.5 < 2.1

|dz |, |dxy |(`1,2) <0.01 cm <0.5,<0.02 cm
IRel(`1,2) <0.5 < 0.12 [<0.5] 0.12 [<0.5] <0.12 [<0.5] <0.12 [<0.5]
IAbs(`1,2) <5 GeV - [<5 GeV] - [<5 GeV] - [<5 GeV] - [<5 GeV]
pT (jet1) >150 GeV
pT (jet3) <60 GeV
|η|(jet1) <2.4
Nj ≥1 1 or 2
Nb =0 =1 & jet1: non b =0 (loose id)

|∆φ(`1, jet1)| - >1
6ET >200 GeV >125 GeV >125 GeV > 125 GeV -

6ET /HT > 2/3 - - - -
6ET +pT (`1) ≡ LT - > 225 GeV >225 GeV >225 GeV

LT /HT - >2/3 >2/3 >2/3
|~pT (µ1) + ~pT (µ2)| - >200 GeV

|~pT (µ1) + ~pT (µ2)|/HT - >2/3
M`` >5 GeV >50 GeV >10 GeV
Mττ <0, >160 GeV - [0,160] GeV

Trigger(s) used MET or ISR Single Mu Single Mu Single Mu Single Mu

Samples Simulation and data event yields
tt̄(2`) 3.38±0.39 119.1±2.4 0.27±0.11 30.3±1.2 12.5±0.8 0.15±0.08
tt̄(1`) 1.42±0.33 1.09±0.29 4.7±0.6 0.30±0.14 2.19±0.42 0.11±0.11

W+jets 0.28±0.28 0 3.4±1.3 0 0 0.7±0.7
DY+jets 0.45±0.33 0.35±0.35 0 4.9±1.3 9464±62 3.3(2.8)±1.1

VV 2.34±0.39 2.4±0.6 0.62±0.11 45.9±1.8 33.6±1.4 0.13±0.09
Rare 0.11±0.04 15.1±2.7 1.0±0.5 6.4±1.7 3.7±0.9 0

Total SM background 8.0±0.8 138.0±3.7 10.0±1.5 87.8±3.0 9516±62 4.4(3.9)±1.3
Data results section 119 11 81 7610 5

SUSY(250,230) 13.5±1.8 0 1.0±0.5 0 0 1.1±0.5
SUSY(300,250) 7.8±0.8 0.16±0.11 0.72±0.24 0.50±0.20 0 0.57±0.22
SUSY(200,180) 8.1±1.7 0 1.8±0.8 0 0 0.51±0.42
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6.1 Dileptonic top background prediction

For the control region of tt̄(2`) background we apply the same selection on hadronic level as in SR, i.e.
same jet requirements, but we use higher pT leptons. The first lepton pT is required to be: pT (`1) > 25
GeV and the second: pT (`2) > 15 GeV. (The inversion of the second lepton pT is necessary to eliminate
non-prompt event contribution as will be clear in following sections.)

In order to avoid an increment at the scale of leptonic activity (sum of neutrinos and leptons pT s) by
going higher in lepton pT , we replace the missing transverse momentum cut with the sum of transverse
momentum of the first lepton pT (`1) and 6ET . In the following we call this sum LT . We also replace
the 6ET /HT cut by the LT/HT >2/3 correspondingly. The 6ET cut is relaxed to: 6ET > 125 GeV and
an LT cut is set to: LT >225 GeV (which is the value of the 6ET cut plus the upper threshold of pT (`1)
in signal region).

Apart from assuring that the scale of the leptonic activity is similar (between 6ET and LT cuts) also
the yields are larger (by factor of ×4) compared to those only changing the leptons pT ranges.

We use the single muon trigger: HLT IsoMu24 eta2p1, to trigger also lower 6ET events with large
LT . The standard muon ID from the POG, and isolation (relative PF isolation: Isorel <0.12) are used
for the leading lepton which required to be a muon. The trigger and reconstruction efficiencies for this
selection are very well understood. For the subleading lepton, (which can be either electron or muon)
we require same as for the leading lepton requirements for pT s above 25 GeV, and in case of a soft
second lepton (i.e. 15 < pT (`2) < 25 GeV), we stay in the SR requirements (demanding Irel <0.5 and
Iabs <5 GeV). This selection gives a sample with dileptonic tops but has a large di-boson contribution
(mainly WW) and thus we require exactly one b-tagged jet to reject them (Nb(CSVM) = 1).

What remain is a rather pure tt̄(2`) sample, however it is not yet assured that it is kinetically similar
as the high missing transverse momentum in SR can either stem from a top pair (which is boosted by
an initial state radiation) or it can stem from a high pT top from a top pair that is back-to-back in
the transverse plane, but not boosted as a pair. Figure 6.3 left shows the momentum of the top-pair:
pT (tt̄) ≡ |~pT (t) + ~pT (t̄)| for the signal region and it can be seen that it is dominated by boosted stop
pairs balanced by 6ET . Same figure the second, third, fourth plots shows the same distribution for our
control sample for three cases; second: all events, third: the events where the leading jet is b-tagged
and fourth the events for which the leading jet is not b-tagged. It can be seen that events for which
the first jet is required to not be b-tagged have a similar pT (tt̄) distribution as the signal region and
thus is the preferred control region. Therefor we require the first jet to be non b-tagged.

In the following this control sample is called CR(tt̄2`). Its detailed cuts are listed in table 6.1 at
the corresponding CR(tt̄2`) column. The event yields in simulation and in data are listed in the same
table (bottom).

Figure 6.3: On the left first plot, the transverse momentum of top pair of di-leptonic tt̄ events in the
SR. On the second plot: the pT (tt̄) distributions for any kind of leading jet for Nb = 1 events. In
third plot the pT (tt̄) distribution for only b-tagged as leading jet events and on the fourth plot the
non-b-tagged leading jet events (third and fourth plots are the breakdown of the second).

117



In order to predict the SR tt̄(2`) events we measure the data events yielded in CR(tt̄2`), we subtract
the non-tt̄(2`) events (∼14%) and we multiply these with the MC ration of tt̄(2`) events for the SR
over the CR(tt̄2`). Explicitly, the prediction formula for tt̄(2`) can be written as:

PRED
tt̄(2`)
SR =

(
DATACR(tt̄2`) −MC

non−tt̄(2`)
CR(tt̄2`)

)( MC
tt̄(2l)
SR

MC
tt̄(2`)
CR(tt̄2`)

)
, (6.1)

where DATA, MC, represent the number of events in data and simulation respectively, and PRED is
the predicted yield in the signal region. Upper indexes stands for the background sample(s) in MC,
PRED, and the lower indexes characterise the region of each yield has be measured/calculated.

Some kinematic variable distributions of CR(tt̄2`) events (in data and simulation) are shown in
appendix D.1, where reasonable agreement is observed.

6.2 Prediction of semi-leptonic top and W+jets background

The background stemming from tt̄(1`) and W+jet consists of events with at least one non-prompt “NP”
lepton. The prompt lepton comes from the on-shell W-boson leptonic decay whereas the non-prompt
one can be either occurs from a hadron decay or as a miss-reconstructed (“fake”) object accounted as
lepton. In order to measure in data the rate for these “NP” events we again define control regions that
are expected to have a similar “NP” contribution.

The main strategy is to use exactly the same SR selection and only change from OS to same-sign
(SS) lepton events. Indeed, since the non-prompt lepton does not have necessarily opposite than the
prompt lepton charge, tt̄(1`) and W+jet occupies also the SS event slice of SR-cuts. Its cuts are
presented in the collective table 6.1, whereas the MC and data yields are presented in table 6.2.

We have carefully checked that the lepton kinematics as well as the source of non-prompt is very
similar between the SR and SR(SS). Although kinematics is very similar the actual events yields are
too poor to be used for prediction.

To further gain statistics we make use of the fact that predominantly the second lepton is the non-
prompt one (NP or `NP ). We apply exactly same cuts (as in SR) for the subleading lepton and we allow
higher transverse momentum muons for the first lepton: pT (`1) > 25 GeV. Further more, in accordance
with the CR(tt̄2`), we exchange 6ET with LT variable. (Whereas, in one W-boson backgrounds is true
that: L2

T = M2
T + p2

T (W ). The LT is very similar to pT (W ) between SR and the LT -configuration

extension: pT (W ) ∼6ET ).
Since kinematics depends on pT (W ), we get a similar kinematics between SR and CR by using LT .

The extension to pT (`1) > 25 GeV events increase statistics by ×5. This (second) control region is
called CR(SS). Exact data and MC yields of SR(SS) and CR(SS) are presented in table: 6.2.

Table 6.2: Simulation and data Yields for SR(SS) and CR(SS); the sum of those two form the CR(NP).
The CR(NP) total yields are presented in 6.1 as well.

Sample: / Region SR(SS) CR(SS)
tt̄(2`) 0 0.27 ± 0.11
tt̄(1`) 1.48 ± 0.33 3.27 ± 0.51

W+jets 1.47 ± 0.85 1.89 ± 0.94
DY+jets 0 0

VV 0.17 ± 0.08 0.45 ± 0.08
Rare 0.52 ± 0.45 0.44 ± 0.14

SM Total 3.6 ± 1.0 6.3 ± 1.1
SUSY(250,230) 1.00 ± 0.51 0
SUSY(300,250) 0.54 ± 0.21 0.17 ± 0.12
SUSY(200,180) 1.35 ± 0.63 0.49 ± 0.49

DATA 2 9

These two regions combined SR(SS)+CR(SS) provide a control sample rich in tt̄(1`) and W+jets
events with similar relative abundances. The combined selection is named CR(NP). figure 6.4 Illustrates
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this extension to pT (`1) > 25 in the pT (`1), pT (`2) plane, and also shows the relative background
abundances. The collective table 6.1 lists its full selection cuts for the two sub-regions and the inclusive
CR(NP) data and MC yields.

Figure 6.4: The SR(SS), CR(SS) and CR(NP) in the pT (`1), pT (`2) plane and their % background
contribution. The purity of the final CR(NP) in NP-events is ∼80%.

In order to check if the CR(NP) is indeed consists a proper representative sample (due NP-lepton
kinematics and origination) to predict the SR NP-events we plot (superimposed) various distributions.
Figure 6.5 shows the categorization of the NP-events due to four aspects of each NP-lepton (pT , charge,
flavor, channel). The plots on top stands for the (standard) SR selection whereas those on the bottom
for a looser one which allow us robust conclusions in higher statics. It shows that indeed the second
lepton is always the non-prompt one as assumed to motivate CR(SS) extension. Consequently the `1, `2

small asymmetry (first two bins) is an artifact of CR(SS) leading lepton which is always the prompt
one.

Further, the plots shows the fraction of positively and negatively charged “NP” leptons. As ex-
pected, the SS events have a small enhancement of `+

NP (or prompt `−Prompt). The OS selection prefers
positively charged prompts. The positive charge preference stems from the dominance of u quarks
in the protons and the polarization of W-boson at the LHC. As the fake rate is not expected to be
dependent on the charge these very small differences between control and signal region can be safely
ignored.

Also the fractions of the lepton-flavor, (e or µ as the NP-lepton) are shown and reasonably agree
between the three samples. The small difference in flavor is understood as well. If we decompose the
events into its channels, where events are ordered by pT , we have: [µµ], [eµ], [µe] for SR and SR(SS),
and only [µµ], [µe] for CR(SS) i.e. the relative presence of µ is 2/3 for SR,SR(SS) and 1/2 for CR(SS).
Thus we expect an enhancement of µNP due to that ordering, also because the electron acceptance is
shorter (pT (e) > 7 GeV). This effects can be shown in 6.5 bottom left.

The fraction of electron-muon and muon-muon channels is presented as well; here CR(SS) is biased
as the first lepton is required to be a muon, however the other two samples agree well. The bias for
CR(SS) is not a problem, as only the non-prompt, i.e. the second lepton and unbiased one, does matter
for our method.

The similarity of these regions with respect to the NP-lepton origin can be seen in figures 6.6 and 6.7
left column, which illustrates the decomposition of non-prompt leptons over four different parenthood
sources. The three regions appears very similar in the origin of non-prompt lepton. Same figures 6.6
and 6.7 in second, third and forth columns shows the pT , |η|, and |∆φ(`NP , jet1)| distributions of the
non-prompt lepton respectively.

The first row of plots in figures 6.6, 6.7 confirms the similarity in kinematics between the three
samples and therefore supports and allows the combination of SR(SS)+CR(SS) into one: CR(NP).
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The second row plots (figures 6.6, 6.7, contains actually very similar information) motivates the usage
of the CR(NP) as the one kinematic representative sample to be used in the SR NP-event prediction.

Additional plots with separated tt̄(1`) and W+jets samples and with ratios of SR/CR(NP) of
distributions can be found in appendix D. A set of kinematic variable distributions of CR(NP) events (in
data and simulation) are shown in same appendix figure D.5, where reasonable agreement is observed.

Figure 6.5: Decomposition of non-prompt events in cases where [a] second(first) lepton is the non-
prompt, [b] negative(positive) lepton is the non-prompt, [c] non-prompt is an electron(muon) and [d]
the non-prompt lepton is in a µµ(eµ) event. Each pair of bin values’ is normalized to 1. Comparison
between SR, SR(SS), CR(SS) on the left, and comparison between SR, CR(NP) on the right. Standard
SR-selection on top, looser selection on the bottom for a higher statistics (×7) cross check. The looser
selection differs to the SR b removing the impact parameter and relative isolation cuts, and relaxing
absolute isolation cut at 10 GeV.

The prediction is preformed by taking the data events from the combined CR(NP), subtracting the
non tt̄(1`) or non W+jets events in simulation (prompt background); and then, multiplying with the
ratio (transfer factor) of tt̄(1`) and W+jets events in SR over the those appear in CR(NP) region. The
explicit prediction formula for tt̄(1`) and W+jets events is:

PRED
tt̄(1`),W+jets
SR =

(
DATACR(NP ) −MC

non[tt̄(1`),W+jets]
CR(NP )

)(MC
tt̄(1`),W+jets
SR

MC
tt̄(1`),W+jets
CR(NP )

)
(6.2)

where (as before) DATA, MC, represent the number of events in data and simulation respectively, and
PRED is the predicted yield in the signal region. Upper indexes stands for the background samples
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Figure 6.6: Top row: comparison between the SR, SR(SS) and CR(SS) non-prompt lepton parenthood
and kinematics. Bottom row: comparison between the SR, and CR(NP) non-prompt lepton parenthood
and kinematics. First column: the available examined origins which are considered for non-prompt
lepton, bin1: from b to c quark transition, bin2: form c to s, bin3: from other quark, bin4: non-
matched to object. Rest three columns the pT , |η| and |∆φ(`, jet1)| distributions of the non-prompt
leptons respectively. Distribution stands for SR selection, figure 6.7 shows the same in a looser selection
providing conclusive statics.

Figure 6.7: Same as in figure 6.6 distributions but for a looser than the SR selection, i.e. removing the
impact parameter and Isorel cuts, and relaxing absolute isolation at 10 GeV (×7 higher statistics).
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whereas the lower indexes characterise the region of each yield. The background components which are
subtracted from data are ∼20%, mainly WZ events (under the collective legend VV) and tt̄(2`) which
one of the prompt leptons has been missed.

6.3 Prediction of the DY+jets background

The DY+jets background yielded in SR is very small, less than 0.5 events, 6% over total (according to
simulation) as listed in table 5.5, and shown in figure 5.12.

The selected events are: Z → τ+τ− → `+`−ντ ν̄τν`ν̄`, as this leads to soft lepton and missing
transverse momentum. These are the events where the~6 ET is laid aside the two soft lepton (smallest)
angle |∆φ(~pT (`1), ~pT (`2))| (details are shown in appendix C.4), or the invariant di-tau reconstructed mass
arise higher than the threshold of 160 GeV.

The prediction method for the Z+jets events is performed in two steps and uses two different control
regions.

• step-1: We apply an event-per-event reweigh of each event MC-yield based on data, correcting a
potential miss-modeling of hadronic recoil resolution.

• step-2: We measure in the control region the effect of potential miss-modeling of the soft lepton
spectra due to miss-modeling of the tau decays and correct for it.

For these two correction steps we define two control samples, referred as CR(Z) and “SR-inv” for
step-1 and step-2 respectively. Both are highly pure in Z+jets events.

6.3.1 Hadronic recoil correction with CR(Z)

The CR(Z) is used for the hadronic recoil correction. For this, we select the Z → µµ events with
pT (Z) > 200 GeV, by requiring |~pT (µ1) + ~pT (µ2)| > 200 GeV in accordance with the SR corresponding
6ET > 200 GeV. Consequently we ask for |~pT (µ1) + ~pT (µ2)|/HT > 2/3. This way we preserve the Z
boson properties same as in SR. Isolation changes and impact parameters relaxed to the POG officially
proposed selection. The exact full set of cuts are explicitly presented in table 6.1 as well data and
MC events yields. The obtained sample CR(Z) is consisted by 99.5% of Z+jets events (according to
simulation). The pT (Z), pT (Z)/HT ,Mµµ and Mττ distribution of CR(Z) events are presented in figure
6.8.

The ∼ 20% MC-overestimation is a well known fact and is due to missing higher order corrections
in simulation.

We analyze the hadronic recoil: [ ~6ET + ~pT (µ1) + ~pT (µ2)] of each CR(Z) event in longitudinal and
transverse components with respect to ~pT (µµ) = ~pT (Z) direction. (This is the same with the 6ET
correction procedure shown in top of figure 3.34). Then, we calculate the difference of longitudinal
component and the |~pT (Z)|, named in following: U‖. The transverse component is noted as U⊥.
(Assuming same behavior for negative and positive angular deviations we use the |U⊥|.) The 2D-
distributions of U‖, |U⊥| versus |pT (Z)| are presented in figure 6.9. On the first, second, row the U‖,
|U⊥| respectively. Columns: first, second, third: the MC in generation level, the MC in reconstruction
level, the data respectively. The 1-D (profile) distributions using MCreco and data superimposed are
presented in figure 6.10. The U‖ and |U⊥| are in first and second rows respectively.

We observe a modest miss-modeling of the U‖ and |U⊥| distributions. As “step-1” correction we
heal this hadronic recoil miss-modeling together with the 20% cross-section divergence by:

• forming the data/MC ratios in 3D-variable binning over: pT (Z), U‖, |U⊥|,

• reweighing each SR event yield by multiplying with its corresponding 3D-ratio.
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Figure 6.8: On top: the two main variables distributions which their cuts defines the CR(Z). Bottom:
the di-muon invariant mass Mµµ distribution (left) and the di-tau invariant mass Mττ distribution
(right). All histograms stands for the CR(Z) control region selection.

Since for SR we do not have two muons we access the ~pT (µµ) in generator level as ~pT (Z). The data/MC
ratios are presented in figure 6.11, were into the bulk the reweigh ranges from 0.6 to 0.9 and at the
tails of U‖, |U⊥| is up to ∼1.6. We can express the correction formula for a single event yield as:(

MCZ+jets
SR

)
recoil−corr

= MCZ+jets
SR

(
DATACR(Z)

MCCR(Z)

)
pT (Z),U‖,|U⊥|

(6.3)

where on the left is a single SR event corrected yield. The indexes in ratio stands for the 3D-binning.
Upper indexes stands for the background sample, and the lower for the region of the events.

Using this correction formula (equation 6.3) we can also correct the CR(Z) events and compare
data over MC-corrected. Figures D.6 and D.7 in appendix D.3 shows figures’ 6.8 and 6.10 distributions
with the hadronic recoil corrected according to equation 6.3, where by construction are in agreement.
The Z+jets raw MC yields in SR-inv are decreased by ∼15% after this step-1 correction.
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Figure 6.9: Top row: the MCgen (left), MCreco (middle) and data (right) distributions of the longitu-
dinal component U‖ of the hadronic recoil resolution (projected to ~pT (Z)) versus the |pT (Z)|. Bottom:
the MCgen (left), MCreco (middle) and data distributions (right) of the difference of transverse hadronic
recoil component and the ~pT (Z), (|U⊥|) versus the |pT (Z)| (for CR(Z) events). All distributions are for
CR(Z) selection.

Figure 6.10: Top row: data and MC(reco) distributions of the |U⊥|. Bottom row: data and MC(reco)
distributions of the U‖. All plots are in CR(Z) events. From left to right the bins: 200 < pT (Z) < 300
GeV, 300 < pT (Z) < 400 GeV, pT (Z) > 400 GeV. All distributions are for CR(Z) selection.
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Figure 6.11: The data over MC(reco) ratios of the CR(Z) events, as distributed over the: pT (Z), U‖, |U⊥|
variables. From left to right bins: 200 < pT (Z) < 300 GeV, 300 < pT (Z) < 400 GeV, pT (Z) > 400
GeV. These are the values used for the event-per-event first-step correction.

6.3.2 Soft lepton correction with “SR-inv”

In step-2 we define an additional control region with two soft OS leptons. The most natural choice is
to use the exact SR selection with inverted Mττ cut, i.e. we select the events with: 0 < Mττ < 160
GeV. This region is named “SR-inv”. Table 6.1 shows the cuts and the yields of the region. The
Z+jets yields in parenthesis stands for the hadronic-recoil-corrected (step-1 correction) events yield.
This region allows to correct for a potential miss-modeled in isolation, in impact parameters, (where
we cut tighter in SR than in CR(Z)), as well prevents SR from a tau-decay potential miss-modeled.
SR-inv is dominated by Z+jets (purity: ∼ 70%, shown in figure 6.1), and the rest is mainly non-prompt
∼ 20%. The yielded raw MC Z+jets events (and the data) are about ×7 higher in SR-inv than these
in SR (so, sufficiently larger to be used in prediction).

We measure the data in SR-inv, then we subtract predicted values of all rest ∼ 30% non Z+jets
processes, and we transfer the yields to SR by multiply with the ratio of (hadronic-recoil-corrected)
Z+jets yields in SR over SR-inv. The explicit prediction formula can be expressed as:

PREDZ+jets
SR =

(
DATASR−inv − PREDnon−Z+jets

SR−inv

)(MCZ+jets
SR

MCZ+jets
SR−inv

)
recoil−corr.

(6.4)

where “DATA”, the “MC” and the “PRED” represents total events yields, upper indexes stands for
the background sample, and the lower for the region.

figure D.8 in appendix D.3 shows the distribution of pT (`1),M``,Mττ of SR-inv region. Despite the
poor statistics in SR-inv, the prediction is precise enough since we extrapolate from a region with 5
(data) events in one with less than 0.5 events expected according to MC.

6.4 Prediction of di-boson background.

The dominant di-boson (VV) contribution in the SR comes form WW (∼90% over the VV), which in
principle has two prompt leptons and 6ET .

To define a control region for this background we do the hadronic selection as for the SR and the
same lepton selection as for CR(tt̄2`), i.e. pT (`1) > 25 GeV, pT (`2) > 15 GeV and the replacement
6ET→ LT . As mentioned in the section 6.1 (tt̄(2`) prediction), after such a selection we have a mixed
sample of tt̄(2`) and VV events. For tt̄(2`) prediction we changed to the Nb(CV SM) = 1 events to
suppress the VV, whereas in VV prediction we keep Nb(CV SM) = 0.

We introduce further cuts to enhance the VV purity over the dileptonic top. Inspired by di-boson
analysis (measurements) which were using zero-jet multiplicity events (triggered by photon) we demand
low jet multiplicity: Nj ≤ 2. The dileptonic top can be even harder suppressed by using the b-tagged jet
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multiplicity at the loose selection point: Nb(CSV L) = 0, and by requiring |∆φ(`1, jet1)| > 1. After these
cuts we apply also the M`` > 50 GeV to suppress DY+jets contribution. These variable distributions
are presented (for the selection without these four cuts) in figure 6.12.

Figure 6.12: The Nj, Nb(CSV L), M`` and |∆φ(`1, jet1)| distributions for events in a region with same
leptonic cuts as CR(tt̄2`) and hadronic as SR. The additional selection cuts: Nj ≤ 2, Nb(CV SL) = 0,
|∆φ(`1, jet1)| > 1, M`` > 50 define the CR(VV).

Figure 6.13: The pT (VV), ∆R(V,V) and |∆φ(V,V)| distributions for only VV events decomposed to
WW, WZ, ZZ. Top row the CR(VV), middle the SR (and on the bottom both normalised superim-
posed).

The full selection details are summarized in table 6.1 and we refer to this selection as CR(VV). The
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VV purity of CR(VV) is ∼50% and the rest is mainly (∼30%) tt̄(2`). The explicit event yields in data
and MC are presented at the bottom of the same table.

The distributions of pT (VV), ∆R(V,V) and |∆φ(V,V)| of the VV pair in SR and in CR(VV) are
shown and compared in Figures 6.13. The relative abundances of WW, WZ, ZZ (Zγ∗ merged to ZZ) are
very similar in two regions. CR(VV) has about ×20 the SR yields (high statistics). We observe a rough
similarity of the vector boson kinematics between the control samples and the SR, which supports its
usage for prediction.

The prediction methods for the VV yield in the SR is very similar to the procedure followed in tt̄(2`)
and non-prompt predictions. We measure the data yielded in CR(VV); since the rest background is
50% we subtract its predicted yield value for each of the processes. Then, we transfer this yield to
the SR by multiplying by an MC-formed ratio of VV events in SR over CR(VV). For this method the
exact prediction formula is:

PREDV V
SR =

(
DATACR(V V ) − PREDtt̄,Z,W

CR(V V ) −MCRare
CR(V V )

)( MCV V
SR

MCV V
CR(V V )

)
(6.5)

where DATA, MC, and PRED are the number of events in data, in simulation and the predicted yields
respectively and indexes stand for region (lower) and SM-process (upper).

6.5 QCD background test

Apart from requiring high 6ET and two leptons, we also apply the 6ET /HT > 2/3 in standared SR
selection to reject any residual QCD. 6ET /HT is a known QCD “killer” and an integral part of e.g. the
QCD save αT variable in relevant analysis. QCD background from miss-measurements is expected to
be enhanced -if exits- at lower 6ET /HT values.

We thus form such a control region, designed to potentially accommodate the maximum QCD
contribution in our SR. Thus we apply the following cuts:

• invert the 6ET /HT cut selecting events with: 6ET /HT < 2/3,

• select events in the three dilepton channels i.e. including also the [ee] one,

• select events in both OS and SS events, slices QCD is expected (in principle) charge symmetric,

• relax the impact parameters from 0.01 cm to |dz|,|dxy| <0.05 cm,

• relax the subleading lepton cut from 15 to: pT (`2) <25 GeV in order to enlarge statistics,

• extend to Nb: any, maintaining leading-b-jet veto, and check the per bin agreement.

However, since this selection (named CR(QCD)) diverges from the one in SR, we plot the data vs
simulated distributions over these variables to check the agreement also in individual bins. figure 6.14
shows the distribution of this CR(QCD)-selection.

All results-distributions are fully compatible with no QCD contribution even in this CR(QCD)
selection. In particular the Nb=0 and 6ET /HT <0.44 bins are in good agreement. Similar conclusions
can be derived if (instead of simulated) predicted yields where used.

6.6 Prediction methods’ summary and predicted SR yields

The semi-data-driven prediction recipe is in principle the same for the four different backgrounds
categories. It can be summarized in the following steps:

• define a CR highly pure in each SM background sub-process events,

• ensure similarity in kinematics (at the maximum possible extend) between CR and SR,

127



Figure 6.14: Kinematic variable distributions of the CR(QCD) selection to test potential QCD contri-
bution. Simulated background and data.

• ensure that CR has sufficiently higher events yields with respect to SR and that is signal free,

• measure data yielded in each background CR,

• subtract the rest background (those which contaminate CR purity) either using simulated or (if
purity .70%) predicted yields,

• multiply the above measurement with the MC-made yields ratio of events in SR over CR.

Implementing all prediction methods we derive the following predicted yields as listed in table 6.3.

Table 6.3: Predicted and data yields for SR.

Sample: / Bins: pT (`1) : [5, 15]GeV pT (`1) : [15, 25]GeV Inclusive
tt̄(2`) 0.75 ± 0.19 2.08 ± 0.37 2.84 ± 0.42

tt̄(1`),W+jets 0.60 ± 0.33 1.32 ± 0.69 1.92 ± 0.76
DY+jets 0 ± 0 0.48 ± 0.45 0.48 ± 0.45

VV 0.74 ± 0.27 1.61 ± 0.48 2.35 ± 0.55
Rare 0.03 ± 0.01 0.08 ± 0.04 0.11 ± 0.04

Total SM Prediction 2.12 ± 0.47 5.6 ± 1.0 7.7 ± 1.1
SUSY(250,230) 10.0 ± 1.5 3.41 ± 0.90 13.5 ± 1.8
SUSY(300,250) 3.98 ± 0.61 3.83 ± 0.58 7.80 ± 0.84
SUSY(200,180) 6.2 ± 1.5 1.90 ± 0.88 8.1 ± 1.7

Small differences with respect to the raw MC yields are observed. In particular, (comparing tables
6.3 and 5.5) for the two bins inclusively we have −16% for dileptonic top, +9% for NP-events, +6% for
VV events and 0% for Z+jets. The total predicted yields decreased at −4%, and for the most sensitive
bin (low pT s) by −2%. However the statistical uncertainty is increased about +33% for both SR bins.
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Chapter 7

Validation of the Background Predictions

The CRs used for each prediction methods were designed under the concept of providing the most
consistent kinematic behavior with respect to SR events, and thus to provide robust predictions in SR.
However, even if CR are conceptual properly chosen, we need to verify (if possible) that predictions
works in data, both individually and inclusively validating their usage.

Regions which are not used as control samples (for the prediction method measurements) are used for
validation of these predictions. We perform an exclusive validation of the tt̄(2`) background prediction
method in two independent validation regions, a combined one for the tt̄(2`) and VV backgrounds,
and a validations for all methods inclusively. For each of these four independent validation we define
a dedicated validation region (VR).

Figure 7.1: The four validation regions in a pT (`1)− pT (`2) plane illustration. Their full cut selection
is shown in table 7.1.

Figure 7.2: The four validation regions % background abundances.

7.1 Validation test for the dileptonic top prediction method

In the Nb=1 event-slice (with non b-tagged jet1) we invert the pT (`2) cut of CR(tt̄2`) as it is required
in SR: 5 < pT (`2) < 15 GeV. The obtained region is further divided into two:
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Table 7.1: Top: selection cuts for each validation region used. Only the changes with respect to the
SR are shown. For VR(tt̄2`,VV) we demand at least one of the “{}” conditions being true i.e. “or”
combination. Isolation values in “[ ]” stands for soft leptons with: 15 < pT < 25 GeV. Middle: each
region simulated yields (SM background and signal contamination). Bottom: predicted SM yields and
observed data.

Validation Region: SR(1b) VR(tt̄(2`)) VR(tt̄2`,VV) VR(Inclusive)

Cut variables cut values/thresholds
N`

Q(`1)Q(`2)
Nµ

1st lepton flavor and ID µ (tight ID) µ (tight ID) µ (tight ID)
pT (`1) > 25 GeV > 25 GeV > 25 GeV
pT (`2) > 15 GeV
|η|(`1,2)

dz(`1,2)&dxy(`1,2)
Rel.Iso(`1,2) < 0.12[0.5] < 0.12[0.5] < 0.12[0.5]
Ab.Iso(`1,2) none [< 5 GeV] none [< 5 GeV] none [< 5 GeV]
pT (jet1)
pT (jet3)
|η|(jet1)
Nj {≥ 3}

Nb(CSVM) = 1 &jet1: non b-tag =1 &jet1: non b-tag
Nb(CSV L) {≥1}
|∆φ(`1, jet1)| {<1}

6ET > 125 GeV > 125 GeV > 125 GeV
6ET +pT (`1) ≡ LT > 225 GeV > 225 GeV > 225 GeV
|~pT (`1) + ~pT (`2)|
6ET /HT none none none
LT /HT > 2/3 > 2/3 > 2/3

|~pT (`1) + ~pT (`2)|/HT
M`` {<50 GeV}
Mττ

Trigger used Single Mu * Single Mu * Single Mu *

Samples Simulated (raw MC) background yields and signal contamination
tt̄(2`) 2.95±0.37 21.3±1.0 84.7±2.0 18.9±0.9
tt̄(1`) 0.61±0.22 2.66±0.45 0.42±0.17 5.6±0.7

W+jets 0 0 0 1.7±0.9
DY+jets 0 0 9.5±2.1 5.7±1.3

VV 0 0.27±0.13 32.8±1.5 15.8±1.0
Rare 0.05±0.03 2.9±1.1 11.5±2.2 2.7±1.1

Total MC background 3.60±0.43 27.1±1.6 139.0±4.0 50.2±2.5
SUSY(250,230) 0.29±0.21 0 0.39±0.28 0.03±0.03
SUSY(300,250) 1.31±0.31 0.28±0.15 1.56±0.36 1.71±0.38
SUSY(200,180) 0.14±0.14 0 0.37±0.37 1.1±0.6

Samples SM predicted background yields
tt̄(2`) 2.48±0.38 17.9±2.2 71±8 15.8±2.0

Non-Prompt: tt̄(1`),W+jets 0.68±0.32 3.0±1.3 0.47±0.28 8.2±3.6
DY+jets 0 0 6.8±1.9 7.1±2.5

VV 0 0.27±0.14 32±7 15.5±3.6
Rare 0.05±0.03 2.9±1.1 11.5±2.2 2.7±1.1

Total predicted background 3.2±0.5 24.0±2.8 122±11 49±6
Data 4 31 134 39

Significance σstat 0.4 1.2 0.7 -1.1
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• one with pT (`1) < 25 GeV, which has exactly the same as SR cuts except the Nb=1, and into

• one with the pT (`1) > 25 GeV where, as for the CR(tt̄2`), the LT and LT/HT replaces 6ET and
6ET /HT cuts respectively.

We name these two validation regions as: SR(1b) and VR(tt̄2`) respectively. Figure 7.1 illustrates
both VRs in first and second diagrams, whereas figure 7.2 shows the purities. The explicit list of cuts
of these VRs are presented in table 7.1, where only the differences with respect to SR selection (left
column) are listed.

According to simulation, these two regions are dominated by tt̄(2`) events (as same tables in the
middle shows and also figure 7.2 illustrates in pie-charts). Thus is mainly tested the tt̄(2`) prediction
method.

We use (all) our prediction methods to predict each VR yields. The corresponding predicted yields
for SR(1b) and VR(tt̄2`) are presented in table 7.1 on the bottom and also observed data are listed.
The total predicted yields are in agreement within statistical uncertainties.

7.2 Validation test for all prediction methods

For the Nb(CSVM) = 0 selection we can use as VR the events which are not selected in the CR(VV). Two
region can be formed bellow and above the pT (`2) = 15 GeV (figure 7.1 third and fourth diagrams).

• Events with same as CR(VV) cuts but inverted at least one of theNj, Nb(CSV L), M``, |∆φ(`1, jet1)|
cut requirements. This sample is the complementary of the CR(VV) with respect to the “and”
combination of these four variables. The deduced VR is name VR(tt̄2`,VV) due to its main
background content (figure 7.2).

• Events with same as SR hadronic-cuts, pT ((`1) > 25 GeV, and LT cut configuration (instead of
6ET ) forms a VR very similar in background composition and abundances with the SR. We name
this VR(Inclusive) and we test all background methods inclusively there.

The explicit cuts, the MC, predicted and data yields of VR(tt̄2`,VV) and VR(Inclusive) are presented
in table 7.1. Figure 7.1 illustrates both VRs in third and fourth diagrams, whereas figure 7.2 shows
the purities. We perform again prediction using all background prediction methods. We observe once
more agreement within statics between data and predictions.

Figure 7.3 present all four implemented validation regions (predicted vs data yields) with the back-
ground decomposition left, and with the ±1σ, ±2σ statistical uncertainties right. We observe over all
agreement. The methods can successfully extrapolate the yields form non-soft to soft leptons and also
from the single-muon trigger to the triple-combination of trigger used in SR.

7.3 Validation test with only SR-trigger-configuration

The extrapolation of single-muon triggered events which mainly CR uses, to “ 6ET -ISR-triggered” SR
events is a step which requires additional study and tests.

The straightforward (and obvious) extension of SR to CRs would be an maintenance of a 6ET >
200 GeV cut in all CRs (i.e. CR(tt̄2`), CR(SS), CR(VV)) without changing to LT -cut concept, and
consequently use of same trigger configuration in both SR and CRs. We name this triple trigger “or”
configuration “SR-trigger-configuration”.

The implementation of single-muon triggered events introduced in section 6.1 in order to enlarge
the statistics of the corresponding CR(tt̄2`) region. However the low statistics appears as a critical
issue only for the CR(NP) and more specifically for CR(SS) sub-region. The CR(NP) has a factor
of about ×7 higher yields than those in SR. For that purpose (to select more NP-events in CR(SS))
we introduced the LT variable and relaxed 6ET in such a way which maintains the W-products pT s.
Since the SR-trigger-configuration turn-on curve has the plateau for 6ET > 200 GeV we needed an other
trigger to go lower in 6ET , thus we implement the single-muon one.
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Figure 7.3: The predicted and data event yields in all validation regions with (left) explicit background
decomposition and (right) with ±1σ,±2σ statistical uncertainty bands.

However we can perform the full analysis and use every prediction method in the only 6ET > 200
GeV cut configuration without introducing LT . This variation of analysis is named: “only SR-trigger-
configuration”. The exact CR cuts of this variation as well as the MC and data yields are presented in
table 7.2 which is analogous to the table 6.1 (original CRs setup/configuration i.e. with single-muon
triggered events). Only the columns CR(tt̄2`), CR(SS), CR(VV) are different and only for the rows:
“1st lep.flavor”, 6ET , 6ET /HT , LT , LT/HT , “Trigger(s) used”. This way we have a simple (and closer
to SR) definition of the CR(tt̄2`), CR(SS), CR(VV). We perform two tests:

• Test 1: the SR predicted yields in “only SR-trigger-configuration” (formed by tables’ 7.2 CRs)
are shown in table 7.3. Compared with the original predictions (those formed by single-muon
triggered CRs in table 6.3) we can conclude that prediction are very close each other and they
agree within statistics. The original one has slightly smaller uncertainties. So the SR prediction
is roughly invariant under the change of 6ET to LT and the change from “single-muon triggered
CRs” to “only SR-trigger-configuration”.

• Test 1: the VRs’ tests can repeated in the “only SR-trigger-configuration” of the analysis. We
redefine the VRs accordingly (without LT ) as shown in table 7.4, the SR(1b) remains same as no
LT cut is involved in its definition. Raw MC, predictions and data yields are also listed in the same
table. The data in VRs are in agreement with the predictions within statistical uncertainties.
Figure 7.4 shows the analogous of figure 7.3 illustration in “only SR-trigger-configuration” version,
i.e. data versus predicted yields in four VRs.

We can conclude that the single-muon trigger, and the corresponding LT -cut configuration, leads in
same predictions/results for SR, and also leads to correct predictions in VRs triggered with “only
SR-trigger-configuration”. These validation tests offers the robustness and reliability to the prediction
methods and the two different trigger-configuration strategy.
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Table 7.2: “Only SR-trigger-configuration”CR definitions. Top: selection cuts for each CR used for
prediction. Only the changes with respect to the SR are shown. Bottom: simulation and data event
yields. (Isolation values in “[ ]” stands for the soft leptons with: 15 < pT < 25 GeV).

Control Regions: CR(tt̄2`) CR(NP) CR(VV) CR(Z) SR-inv
Sub Regions: SR(SS) CR(SS)

Cut variables cut values/thresholds
N`

Q(`1)Q(`2) =+1 =+1
Nµ = 2

1st lep. flavor & ID µ tight ID
pT (`1) > 25 GeV > 25 GeV > 25 GeV > 125 GeV
pT (`2) > 15 GeV > 10 GeV
|η|(`1,2) < 2.1

dz(`1,2), dxy(`1,2) < .02, < .5 cm
Rel.Iso(`1,2) < 0.12 [0.5] < 0.12 [0.5] <0.12
Ab.Iso(`1,2) none [<5 GeV] none [<5 GeV] none
pT (jet1)
pT (jet3)
|η|(jet1)
Nj ≤ 2

Nb (CSVM) = 1 & jet1: non b
Nb (CSVL) = 0
|∆φ(`1, jet1)| > 1

6ET none
6ET +pT (`1) ≡ LT
|~pT (`1) + ~pT (`2)| > 200 GeV
6ET /HT none
LT /HT

|~pT (`1) + ~pT (`2)|/HT > 2/3
M`` > 50 GeV > 10 GeV
Mττ none (0,160)GeV

Trigger(s) used Single Mu

Samples Simulation and data event yields
tt̄(2`) 33.2±1.3 0.09±0.07 10.5±0.7 12.5±0.8 0.15±0.08
tt̄(1`) 0.14±0.09 2.8±0.5 0.13±0.09 2.19±0.42 0.11±0.11

W+jets 0 3.0±1.2 0.5±0.5 0 0.7±0.7
DY+jets 0 0 0.60±0.43 9464±62 2.8±0.9

VV 1.39±0.32 0.47±0.10 20.5±1.2 33.6±1.4 0.13±0.09
Rare 6.2±1.8 0.7±0.5 3.0±1.3 3.7±0.9 0

Total background 41.0±2.2 7.1±1.4 35.2±2.0 9516±62 3.9±1.1
Data 31 8 27 7610 5
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Table 7.3: Predicted and data yields for SR in the “only SR-trigger-configuration”.

Sample: / Bins: pT (`1) : [5, 15]GeV pT (`1) : [15, 25]GeV Inclusive
tt̄(2`) 0.63 ± 0.21 1.73 ± 0.50 2.36 ± 0.54

tt̄(1`),W+jets 0.62 ± 0.37 1.36 ± 0.79 1.97 ± 0.87
DY+jets 0 ± 0 0.48 ± 0.45 0.48 ± 0.45

VV 0.54 ± 0.26 1.24 ± 0.53 1.78 ± 0.59
Rare 0.03 ± 0.01 0.08 ± 0.04 0.11 ± 0.04

Total SM Prediction 1.82 ± 0.50 4.9 ± 1.2 6.7 ± 1.3

Table 7.4: “Only SR-trigger-configuration” VRs definitions. Top: selection cuts for each VR. Only
the changes with respect to the SR are shown. For VR(tt̄2`,VV) we demand at least one of the “{}”
conditions being true. Isolation values in “[ ]” stands for soft leptons with: 15 < pT < 25 GeV. Middle:
each region simulated yields. Bottom: predicted SM yields and observed data.

Validation Region: SR(1b) VR(tt̄(2`)) VR(tt̄2`,VV) VR(Inclusive)

Cut variables cut values/thresholds
N`

Q(`1)Q(`2)
Nµ

1st lepton flavor and ID
pT (`1) > 25 GeV > 25 GeV > 25 GeV
pT (`2) > 15 GeV
|η|(`1,2)

dz(`1,2)&dxy(`1,2)
Rel.Iso(`1,2) < 0.12[0.5] < 0.12[0.5] < 0.12[0.5]
Ab.Iso(`1,2) none [< 5 GeV] none [< 5 GeV] none [< 5 GeV]
pT (jet1)
pT (jet3)
|η|(jet1)
Nj {≥ 3}

Nb (CSVM) = 1 &jet1: non b-tag =1 &jet1: non b-tag
Nb (CSVL) {≥1}
|∆φ(`1, jet1)| {<1}

6ET
6ET +pT (`1) ≡ LT
|~pT (`1) + ~pT (`2)|
6ET /HT
LT /HT

|~pT (`1) + ~pT (`2)|/HT
M`` {<50 GeV}
Mττ

Trigger used

Samples Simulated (raw MC) background yields and signal contamination
tt̄(2`) 2.95±0.37 9.8±0.7 31.7±1.2 12.3±0.8
tt̄(1`) 0.61±0.22 0.83±0.24 0.18±0.12 2.11±0.41

W+jets 0 0 0 0.5±0.5
DY+jets 0 0 2.4±1.0 0.9±0.5

VV 0 0.19±0.10 18.7±1.2 10.9±0.9
Rare 0.05±0.03 2.1±1.0 5.1±1.5 1.8±0.9

Total MC background 3.60±0.43 12.9±1.3 58.1±2.5 28.5±1.7

Samples SM predicted background yields
tt̄(2`) 2.1±0.5 6.9±1.8 22±6 8.6±2.2

Non-Prompt: tt̄(1`),W+jets 0.70±0.35 1.0±0.5 0.21±0.17 3.0±1.6
DY+jets 0 0 2.1±1.1 1.8±1.2

VV 0 0.14±0.09 14±5 8.2±3.2
Rare 0.05±0.03 2.1±1.0 5.1±1.5 1.8±0.9

Total predicted background 2.8±0.6 10.1±2.2 44±8 23.4±4.5
Data 4 5 42 26
σstat 0.7 -1.3 -0.2 0.4
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Figure 7.4: SR-trigger-configuration, the predicted and data event yields in all VRs with (left) explicit
background decomposition and (right) with ±1σ, ±2σ statistical uncertainty bands.
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Chapter 8

Systematic uncertainties

This chapter describes the systematic uncertainties. As systematic is considered every source of uncer-
tainty which is not induced by statistical fluctuation of data or MC event. All sources are considered
uncorrelated and the total uncertainties are accounted as the quadratic sum of the individuals per
search bin. In this chapter we present the methods which where used in each uncertainty estimation.

Table 8.1 presents each systematic uncertainty per individual source (rows) and per search bin
(columns). More specifically, the % absolute difference of the total predicted yields between the default
prediction and the prediction yielded with the variation shown. The simple formula can be expressed
as in equations 8.1 or, in cases that the variation of a parameter has two (±) “directions” equations
8.2. The U is the % uncertainty and P each predicted value.

USource
SR =

1

PDefault
SR

|PDefault
SR − P V ariation

SR |100% (8.1)

U±SourceSR =
1

2PDefault
SR

[
|PDefault
SR − P (+)V ariation

SR |+ |PDefault
SR − P (−)V ariation

SR |
]

100% (8.2)

Table 8.1: Uncertainty on SR predicted yield for each individual systematic uncertainty source.

Bins pT (`1):[5,15] GeV pT (`1):[15,25] GeV Inclusive

Default SM total predicted yields: 2.12 5.57 7.69
Relative statistical uncertainty (δPred/Pred): 21.9 % 18.3 % 14.6 %

Uncertainty Source
JES (±1σ): 1.0 % 2.8 % 2.1 %

SF btag c-b quark (±1σ): 0.9 % 0.9 % 0.7 %
SF btag light partons (±1σ): 1.3 % 1.1 % 1.1 %

electron efficiency (with/without SFs): 1.3 % 1.1 % 1.1 %
Muon efficiency (±5% for soft µ): 6.0 % 4.5 % 4.9 %
tt̄(2`) spin correlation (±20%): 4.1% 3.5% 3.6 %
tt̄(2`) W polarization (±10%): 2.5 % 2.6 % 2.6 %

tt̄ pT reweigh tt̄(1`, 2`,W,Z,H) (with/without): 1.7 % 3.3 % 2.9 %
Non-prompt W+jets/tt̄(1`) ratio (±20%): 6.1 % 2.7 % 3.6 %

Non-prompt b-originated NP (±50%): 4.9 % 3.5 % 3.9 %
Non-prompt c-originated NP (±100%): 0.4 % 0.4 % 0.2 %

Non-prompt pT (`NP ) ratio SR/CR(NP) (±100%): 2.3 % 1.7 % 1.9 %
Non-prompt η(`NP ) ratio SR/CR(NP) (±100%): 1.6 % 1.9 % 1.8 %

Non-prompt CR(NP) VV-yield (±50%): 5.7% 2.4% 3.3%
VV W&Z polarization (±10%): 2.5% 1.9 % 1.4 %

VV (pV+
T /[pV+

T + pV−T ]) (±50%): 2.5% 1.7 % 0.7 %
VV M(``):[1,12] GeV (“private” samples, ±100%): 7.2% 0.7 % 2.5%

W,Z polarization ±10%: 0.6 % 0.8% 0.4%
DY 6ET resolution: 0.0 % 2.3 % 1.7 %

Rare reweigh (±50%): 3.7% 3.3 % 3.4 %
Rare tt̄ spin correlation (±20%): 0.2% 0.0 % 0.0 %

Rare W & Z polarization (±10%): 0.1% 0.2 % 0.2 %

Total systematic uncertainty: 15.7% 10.7 % 11.3 %
Total uncertainty [statistical+systematic]: 26.9% 21.1 % 18.3 %
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We should stress that the analysis is dominated by statistical-uncertainty. This is listed also in same
table as first row (δPred/Pred %) which includes all error propagation from the prediction methods
formulas. In the following we examine most of the techniques uncertainties accounting.

8.1 Uncertainties applied over all backgrounds

The uncertainties applied over all backgrounds inclusively are:

• b-tagging scale factor (SF) for b and c quarks. A long discussion about the “b-tag-SF” (SFb) def-
inition and construction can be found in subsection 3.5.11. The b-tagging with CSVM algorithm
has a small divergence compared with data; thus, by default we apply the SFb to correct the
MC yields. A potential miss-modeling of the SFb is a source of systematic uncertainty. We scale
up/down the heavy flavor (b,c) quark tagging according to the BTV POG (b Tag & Vertexing
Physics Object Group) recommended uncertainty and use the differences in predicted yields as
uncertainty (according to formula 8.2).

• b-tagging scale factor for light partons: we scale up/down the colored light particles (g,u,d,s)
according to the BTV POG recommended uncertainty and use the differences in predicted yields
as uncertainty (with formula 8.2).

• Electrons efficiency: we apply SF for the electron efficiency in the default predictions. Theses
SF s again correct for the differences of electron reconstruction between data and MC. The cor-
responding SF s were determined by the EGamma POG for “not-triggered MVA ID” that we
use. As there are small differences between their and our selection, we apply the full SF s as
uncertainty. (The only difference between the selection we use and the one used for the SF s is
the “3D-IP significance” cut, which should not have a large effect on the SFs.) Formula 8.1 is
used. Figure 8.1 shows the specific SF-values.

• Muons efficiency: we scale up/down each event by (1± 5%)N , with N being the number of soft
muons 5 < pT (µ) < 25 GeV. The efficiencies for the control region with the muon POG tight ID
and the single lepton trigger is much better determined than 5% and the SF s are negligible small.
(Also for the low pT regime SF s have been determined for the loose ID). Again the uncertainties
and values are well below 5%. We apply the SF s only for soft leptons and we calculate the
corresponding uncertainty according to formula 8.1).

• JES (Jet Energy Scale): we apply the recommended JES factors to estimate the JES uncertainty.

• Trigger efficiency: the trigger is ∼100% efficient and the uncertainty on this is small enough to
be negligible with respect to the other systematic uncertainties.

Figure 8.1: Electron efficiency SF s as a function of pT , η. Used by default to rescale every [eµ] event.

All resulting uncertainties are displayed in table 8.1 (upper block).
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8.2 Dileptonic top specific uncertainties

8.2.1 Spin correlation

The top and antitop quarks are produced essentially unpolarised. The gg-fusion dominates the tt̄
production at the LHC ∼90%, while the qq̄-annihilation contributes about ∼10% (figure 8.2). The
tt̄ spins tend to be anti-parallel in the gg-fusion i.e. the spin tend to be anti-correlated: and thus
the system has same helicities [37, 14, ?]. Due to the very short lifetime of top the spin correlation
is inherit also at its decay products: t → bW . The SM dictates that the top quark has the “V-A”
charged-current EW interaction which implies that the W-boson in its decay must be left-handed ∼30%
or longitudinally polarized ∼70%.

Figure 8.2: Left: the tt̄ production mechanisms and its spin correlation. Configurations with reversed
spin directions are not shown explicitly, but are meant to be included. Right the top/antitop decay
and the helicity conservation. (Taken form [?].)

The tt̄(2`) spin correlation potential miss-modeling is a source of systematic uncertainty. We mea-
sure the correlation of the tt̄-pair using the variables cosθ∗i where the angle is the one between the
lepton `i and its corresponding top/anti-top flight direction at the rest frame of it. The correlation C
of two variables x, y is defined as:

Correlation : C(x, y) ≡ cov(x, y)/(σxσy) = [〈xy〉 − 〈x〉〈y〉]/(σxσy) (8.3)

which in our case x, y are: cos(θ∗(`+,t)), cos(θ
∗
(`−,t̄)), and according to simulation (in generator level)

the correlation is: Cdefault = −0.151. The distribution of tt̄-events over [cosθ∗(`+,t),cosθ
∗
(`−,t̄)] plane is

presented in figure 8.3 left.
In order to account a potential miss-modeling of the tt̄ correlation we decompose this 2D distribution

into two: the flat component with 0-correlation and the one with the shape (and consequently with
correlation Cshape = Cdefault = −0.151). Then we add the two components back, once multiplying
the non-flat with 0.8, and once with 1.2. Thus we obtained two new 2D-histograms with weaker and
stronger correlation (with values: C−20% = −0.134 and C+20% = −0.164, or +11%,-8% with respect to
the default). The last step is to divide these distributions with the default one to obtain the weights
over the cosθ∗(`+,t), cosθ

∗
(`−,t̄) plane. These reweighed distributions are presented in figure 8.3 middle and

right. (The variation of ∼ 20% is inspired by the measurement at LHC in data [11].)
To account the systematic we use these 2D reweigh function to multiply each tt̄(2`) MC event

according to its cosθ∗(`+,t), cosθ
∗
(`−,t̄) values. The estimated uncertainty with formula 8.2 on the SR

predicted total yield is ∼4% (table 8.1).

8.2.2 The top-antitop pT correction

It is a known feature that tt̄ MC used shows modest disagreement of the top pT distribution with
respect to data. Formulas have bean developed (by fitting in data) in order to correct the observed
disagreement. The data over simulation ratios for top-antitop pT s are presented in figure 8.4. The
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Figure 8.3: Left: the distribution of tt̄(2`) events, at generator level over the cos(θ∗(`+,t)), cos(θ
∗
(`−,t̄))

plane. Middle and right: the reweigh functions obtained by a ±20% enhancement of the non-flat
component of the default distribution.

Figure 8.4: The distribution of top (or antitop) pT -ratios of data over simulation.

data-driven formed scale factor (for each top-leg) which corrects MC are given by the formula:

• weight per t (or t̄) leg: W (pT ; t) = ea+bpT , for tt̄(1`) with a=0.159, b=-0.00141,

• weight per t (or t̄) leg: W (pT ; t) = ea+bpT , for tt̄(2`) with a=0.148, b=-0.00129,

• weight per tt̄ event: W (pT1, pT2; a, b) =
√
ea+bpT1

√
ea+bpT2 .

We do not reweigh by default our MC selections since these studies do not apply directly to our situation,
as the high pT of the tops in our case mainly stem from the ISR boost (as figure 6.3 illustrates). However,
to proof that our data-driven correction really does cancel miss-modeling of a plausible size we take
the suggest corrections to calculate an uncertainty. This uncertainty due to a potential MC pT (t)
miss-modeling is accounted by producing the predictions with and without the top-pT correction and
accounting the difference as a systematic uncertainty. As expected the resulting uncertainty is tiny
(table 8.1).
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8.2.3 Polarization of W-boson in dileptonic top background

A potential miss-modeling of the W-boson polarization (originated by top: (t± → b,W±)) is taken into
account as a systematic uncertainty. The W-bosons coming from tt̄ decay are left-handed ∼ 30% or
longitudinally polarized ∼ 70% (right-handed is suppressed of the small b quark mass), when taking
using the top rest-frame to determine these numbers.

We scale ±10% the left-handed polarization state component: [(1− cosθ∗)2/4] which dominates the
SR events (shown in figure 8.6). The W boson polarization in top decays is well known and measured,
thus the usage of ±10% is conservative approach. The weights stemming from each W-boson are
multiplied and applied to the tt̄(2`) on event-by-event basis. The difference with respect to default
predicted yield is accounted as systematic uncertainty. The cosθ∗ distributions for the two leptons, of
SR and CR(tt̄2`) are presented in figure 8.6.

Figure 8.5: The polarization states of W-boson and its corresponding distributions over the cosθ∗

variable (where θ∗ = θ∗`,t at the cm-frame of parent top).

Figure 8.6: The cosθ∗ distribution for the SR events (left 2 plots), and for the CR(tt̄2`) (right 2 plots).

8.3 Non-prompt background uncertainties

8.3.1 The W+jets over semileptonic top events abundances ratio

The relative abundances (r) of W+jets over W+jets & tt̄(1`) events are different between SR (r ' 20%)
and CR(NP) (r ' 40%). This can be shown in table 6.2 and figure 6.4. In order to estimate a systematic
uncertainty coming from this different ratio we rescale by ±50% the W+jets events in CR(NP) and
we use the difference in prediction (formula 8.2) as uncertainty estimate. Thus, a wide range of ratios
r are accounted as potential miss-modeling. Also the tt̄(1`) was rescaled by ±50% and the yielded
systematic was smaller than the W+jet case. In order to be conservative we use the highest estimated
uncertainty from these variations as final uncertainty on the W+jet to tt̄(1`) cross-section ratio.
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8.3.2 Source of NP leptons

Concerning the origin of each non-prompt lepton the parenthood decomposition (for the processes
tt̄(1`), W+jets) is shown in figures 6.6, 6.7 bottom left. An enhancement of ±50% of non-prompt
leptons originating from b quarks (b → (c/u)`±NPν`) is applied. Additionally, in the same context, a
±100% enhancement of the c-quark originated non-prompt leptons (c → d`±NPν`) is used to estimate
the uncertainties. The differences of predicted yields (with respect to default) are used as estimation
of the uncertainties. Both variations are used as two separate systematic uncertainties.

8.3.3 Kinematics of NP leptons

We consider the differences of NP-leptons (`NP ) kinematic distributions between SR and CR(NP) (for
W+jets & tt̄1` events), as a potential source of systematic uncertainty.

The non-prompt lepton’s pT and |η| distributions for SR and CR(NP) events are presented in figure
6.6 (bottom row). Since the statistics is poor and the plots are inconclusive, we relaxed the isolation
and the impact parameters cuts to obtain the collection of plots in figure 6.7. To quantify the potential
uncertainty coming the usage of CR(NP) events due to different kinematics with respect to SR we
follow the steps:

• we form the pT (`NP ) ratios of SR over CR(NP) normalized distribution in loose selection as shown
in figure 8.7,

• we reweigh the CR(NP) events per non-prompt lepton once by multiplying with the ratio and once
dividing with it; reducing and enhancing the “SR-like” kinematics in CR(NP) per pT (`NP )-bin,

• we take as systematic uncertainty the difference in SR prediction (as usual formula: 8.2),

• We do the same independently for |η`NP | ratio distribution (figure 8.7 third plot).

The delivered uncertainties are about 2% as table 8.1 shows.

Figure 8.7: The ratios: SR/CR(NP) for normalized distribution of `NP -parenthood, pT (`NP ), |η|(`NP )
and |∆φ|(`NP , jet1) for both tt̄(1`) and W+jets events. The looser selection has been used formed by
SR removing the impact parameter and relative isolation cuts, and relaxing absolute isolation cut at
10 GeV (thus we gain statistics ×7).

8.4 W+jets, Z+jets, VV(γ∗)+jets, Rare background system-

atic uncertainties

8.4.1 Polarization of the W and Z bosons

The differential cross-section of the boson decay expressed in terms of cosθ∗, where θ∗ is the angle
between lepton and boson flight direction, of the W(Z) is determined by its helicity. The total W(Z)
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decay rate is proportional to the amplitude [?]:

〈|Mif |2〉 ∝ g2
Wm

2
W

[
A

1

2
(1 + cosθ∗)2 +B(sinθ∗)2 + C

1

2
(1− cosθ∗)2

]
(8.4)

where each term corresponds to the three possible polarization states illustrated in figure 8.5, and in
the non-polarized case we have A = B = C = 1.

Mainly left-handed W boson are selected in our signal region “C” term dominates SR. Thus we
reweigh this left-handed fraction of events by ±10% i.e. C → C(1 ± 0.1) in order to estimate the
uncertainty from a potential miss-modeling of this polarization. The factors A,B,C are known as
function of η` and are different for lepton coming from W+, W−, Z0 or W± from tt̄ production. However
approximately are: A(t) ≈ A(t̄) ≈ 0, B(t) ≈ C(t̄) ≈ 0.3, C(t) ≈ B(t̄) ≈ 0.7.

The variation ±10% is derived from the data measurements [48, 7] and theory uncertainties [36].
We use the difference between the prediction with reweighed and the default one as the systematic
uncertainty.

8.4.2 Hadronic recoil systematic uncertainty

The Z+jets prediction method corrects for potential miss-modeling of hadronic recoil. This is performed
via the formula 6.3. As explained in subsection 6.3, this step-1 correction scales down the SR-inv region
MC yields by ∼15% and increases the transfers factor used in step-2 by ∼10%. We conservatively use
the difference between predictions with and without this correction as uncertainty. Given the very
small contribution of Z+jets in our SR this appears negligible effect.

8.4.3 Very low invariant mass γ∗ contribution

The γ∗ M`` region of [1,12] GeV of the WZ(γ∗) and ZZ(γ∗) samples is covered by “privately produced”
samples using massive leptons. As a conservative approach to account for the different treatment of
lepton masses we perform the prediction once without the samples and once with double weights i.e:
±100 reweighing. The difference (with respect to the default one) is used as systematic uncertainty.
The cut M`` > 5 GeV imposed in all regions used in the analysis protects for a further miss-modeling
of γ∗ with momentum close to ∼1 GeV.

8.4.4 Rare background systematic uncertainty

The rare background processes are: tt̄W, tt̄Z, tt̄H, tW, VVV and W±W±. We do not form a prediction
method for them since the yields about 1% in SR. Instead, we use the raw MC and for uncertainty we
change their nominal cross-section by ±50%. The yielded difference on prediction is used as uncertainty.
The relatively high value occurs from the fact that rare background contribute by ∼11% and ∼7% in
CR(tt̄2`) and CR(VV) respectively, in combination with the fact that these regions have both less than
one transfer factors. (It is like a simultaneous scaling of their transfer factors by ±5.5% and ±3.5%
respectively.)

8.5 Di-boson systematic uncertainty

The WW, WZ and ZZ have been measured at the LHC [9, 49, 8, 110, 10] and typically show reasonable
description even of the shapes of distribution. The small difference observed in the inclusive cross-
section of WW [9, 49] will largely cancel by design of the prediction method. We varied physics
quantities that could affect the transfer factors.
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8.5.1 Boson polarization

Same recipe with subsection 8.2.3. We enhance(suppress) the contribution of the a specific helicity
state (the dominant one in SR) by +10%(−10%) and we use change in predicted yields as systematic
uncertainty (formula 8.2).

8.5.2 Boson transverse momentum asymmetry

The pT of the boson pair in the signal region is similar by design to those in the control region. Also
the ∆R and ∆φ shows reasonable agreement as figure 6.13 illustrates. However, for the translation
factor the asymmetry in the two boson pT could have an effect. In order to account this we do the
following procedure.

• we form the distributions ratios: [pV
+

T /(pV
+

T + pV
−

T )] in a high statistics selection (requiring only
6ET >200 GeV) figure 8.8 left,

• we de-compose this distribution into a flat one and one component with the shape,

• we re-compose back the two components by scaling the one with the shape by ±50%,

• finally we divide the last by the initial distribution to obtain the ±50% reweigh functions.

With these weight functions (presented in figure 8.8 right) we perform an event-per-event reweighing
of all VV events. The difference in predicted values is taken as systematic uncertainty.

Figure 8.8: First: the distributions of the boson asymmetry: [pV+
T /(pV+

T + pV−T )] in a loose selection.
Second: the shape-component of the ratio. In third and fourth: the distributions of the ratio re-
composed by scaling with ±50% the shape-component and the result divided by the original. In other
words, last two are the reweighing functions. (Negative weights are treated as zeros.)

8.6 Signal systematic uncertainties

For the signal we consider the similar as for the background systematic uncertainties.
For b-tagging SF, and for muon/electron efficiencies the uncertainties where found to be roughly

flat over the different mass point (2D masses scan) of each of the three different signal scans. Table 8.2
shows these uncertainties in summary, whereas the figure E.1 in appendix E.2 present an explicit per
Mt̃,Mχ̃0

1
mass-point calculation of the % uncertainties for the stop-scan.

For JES, ISR signal correction and MC statistics the uncertainties are accounted per each individual
mass point. Again figure E.1 shows the % uncertainties per point only for stop scan.

A potential miss-modeling of the |dz| cut efficiency is accounted as systematic uncertainty in signal.
This cut efficiency is calculated as the fraction of events accepted with the analysis |dz|<0.01 cm
cut over those accepted with a much loosed (that CMS usually uses): |dz|<0.5 cm. To measure the
efficiency in data and in background (MC-calculation) we use all electrons and muons in every accepted

143



event in all CRs and VRs used in analysis. (We only veto leading muon in CR(Z) to avoid an overuse
of CR(Z) muons). The efficiencies are shown in appendix E.3, figure E.3 and seams perfectly modeled
|∆EffDATA,MC | < 3%.

For the signal the efficiency is higher (∼ 5%) than the background as expected, since signal isn’t
dominantly consisted by tau-originated-leptons. In order to account a potential miss-modeling of the
efficiency we assign a ±2.5% systematic uncertainty over the signal yield.

Table 8.2: Systematic uncertainties for SR yields per source. The three different signal scans (stop-pair,
chargino-democratic and chargino-tau-enriched) are shone. Case where the corresponding uncertainty
differs significantly versus mass point are shown separately. The typical uncertainty ranges (in stead
of singe values) are shown for cases where the per-mass-point treatment has be implemented.

Bin: pT (`1) : [5, 15]GeV pT (`1) : [15, 25]GeV

Uncertainty sources / Signal scan: t̃t̃(2`) , χ̃±1 χ̃
0
2(3`) , χ̃±1 χ̃

0
2(2`1τ) t̃̃t̄(2`) , χ̃±1 χ̃

0
2(3`) , χ̃±1 χ̃

0
2(2`1τ)

Flat in the whole scan uncertainties:
btag-SF (b,c-quarks & light partons ±1σ) 0.6% 0.6%

PDF 6.0% 6.0%
Luminosity 2.6% 2.6%

|dz | cut efficiency 2.5% 2.5%
Electron efficiency 3.4%, 1.0%, 0.7% 1.8%, 0.7%, 0.6%
Muons efficiency 7.2%, 8.7%, 9.8% 7.2%, 8.7%, 9.8%

Per mass-point accounted uncertainties:
JES f(Mt̃,Mχ̃0

1
) ∼ [0, 5]% ∼ [0, 5]%

ISR correction ∼ [15, 20]%, 14.8%, 13.7% ∼ [15, 20]%, 16.9%, 16.6%
Statistical uncertainty f(Mt̃,Mχ̃0

1
) ∼ [10, 25]%, ∼ [20, 40]%,∼ [15, 30]% ∼ [10, 25]%,∼ [20, 40]%,∼ [20, 35]%

8.7 Systematics summary

Table 8.1 also summarizes systematics uncertainties without the statistical which is around 15% in the
low lepton pT -bin and 10% in the high pT -bin. The statistical uncertainty of the each search bin yield
is presented on the top of the same table list. For these we accounted both the propagated transfer
factor statistical uncertainty and the data yielded (in each CR) uncertainty. The combined systematic
uncertainties are much smaller than each corresponding statistical uncertainties (16% and 11% versus
22% and 18% for the two pT -bins). Therefor the leading uncertainty is the statistical one from MC on
the translation factors.
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Chapter 9

Results, their interpretation and
conclusions

9.1 Results: observed data in signal region

The predicted yields and the observed data for the SR are presented in table 9.1 (same information as
in table 6.3 with data) and in figure 9.1. Observed and predicted yields are in good agreement and give
no indication of the presence of signal. In particular we have 2 events in the sensitive bin expecting
2.1±0.5 events and 6 over all expecting 7.7±1.1.

Table 9.1: Predicted and data yields for SR. Systematic uncertainties shown in parenthesis.

Sample: / Bins: pT (`1) : [5, 15]GeV pT (`1) : [15, 25]GeV Inclusive
tt̄(2`) 0.75 ± 0.19 2.08 ± 0.37 2.84 ± 0.42

tt̄(1`),W+jets 0.60 ± 0.33 1.32 ± 0.69 1.92 ± 0.76
DY+jets 0 ± 0 0.48 ± 0.45 0.48 ± 0.45

VV 0.74 ± 0.27 1.61 ± 0.48 2.35 ± 0.55
Rare 0.03 ± 0.01 0.08 ± 0.04 0.11 ± 0.04

Total SM Prediction 2.12 ± 0.47(±0.33) 5.6±1.0(±0.60) 7.70±1.1(±0.87)
SUSY(250,230) 10.0 ± 1.5 3.41 ± 0.90 13.50 ± 1.8
SUSY(300,250) 3.98 ± 0.61 3.83 ± 0.58 7.80 ± 0.84
SUSY(200,180) 6.2 ± 1.5 1.90 ± 0.88 8.1 ± 1.7

DATA 2 4 6
σstat -0.1 -0.6 -0.6

Figure 9.1: The predicted and data event yields in two search bins. Left: the background decomposition,
right: the ±1σ,±2σ bands with only statistical uncertainties.
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9.2 Results interpretation

9.2.1 The SUSY signal scans and their efficiencies

The search performed have shown no evidence of SUSY signals. Therefore, results obtained are in-
terpreted using a statistical methodology to constrain a parameter space. This parameter space is in
the context of the Simplified ModelS “SMS” where only the LSP and the next-to-LSP sparticles are
considered with various masses combinations.

The SUSY models considered are those mentioned in section 4.3, shown in figure 4.2.

• For the stop-pair production (figure 4.2 left) we use a full “2D-scan” over the parameter space of
stop-LSP masses, with 25×10 GeV binning respectively, and with the restriction of ∆M(t̃, χ̃0

1) ≤
80 GeV.

• For the chargino-neutralino production (figure 4.2 middle) we have a 2D parametric space with
Chargino-LSP masses in 20 × 20 GeV step-binning however we only use the ∆M(χ̃±0 , χ̃

0
1) = 20

GeV “slice” (the smallest one) where the analysis is sensitive. Two scenarios are considered
differing on the chargino decay: the “democratic” and the “tau-enriched”.

• Finally we interpret the results in the topology shown in figure 4.2 right; 2D-scan over Chargino-
LSP masses in 10×10 GeV step-binning, again we consider only the minimum ∆M(χ̃±0 , χ̃

0
1) = 10

GeV slice.

The signal efficiency % (SR-accepted over all signal events) for the first scan and for the two cases of
the second scan can be shown if figure 9.2. In these figures where (cross-sections are not accounted) the
observed pater is high efficiencies in high masses. This is an artifact of the LSP-mass, which is silently
and indirectly implied to be relatively high (M(χ̃0

1) ∼6ET CUT ) in order to gain momentum from the
ISR-boost and therefore induce 6ET at the event.

9.2.2 Exclusion limits with the modified frequentist method

In order to quantify the level of incompatibility of observed experimental data with a signal+background
(“B+S”) hypothesis, it is common practise to express it in Confidence Level (CL). The commonly
accepted convention is to require a 95% CL for the exclusion of an “B+S” hypothesis.

The official LHC guideline for imposing exclusion limits for Higgs boson searches is based on the
“modified frequentist method” [55]. The limit calculation method is defined by the choice of the
test-statistic (qµ) and the way that nuisance parameters (θ) are treated.

The null results of the “B+S” hypothesis will be expressed in terms of a given “signal strength”
modifier, denoted µ, which is taken to change the signal cross-section by a scale µ. The predictions of
both S and B event yields are subject to multiple uncertainties, which are all incorporated to the signal
and background event yields by introducing a nuisance parameter vector space, such that S ≡ S(~θ)

and B ≡ B(~θ). In this way, the signal and background event yields become functions of the nuisance
parameters [2, 55].

Systematic uncertainties treatment of the limits

The systematic error Probability Density Functions (PDFs), denoted ρ(θ|θ̃), reflect the degree of belief
on what the true value of the nuisance parameters θ is, with θ̃ being the default nuisance parameter
value. This can be expressed as [2, 55]:

ρ(θ|θ̃) =
1√

2π ln k
exp

[
−(ln(θ/θ̃))2

2(ln k)2

]
1

θ
, k ≡ 1 + δ, lim

δ→0
ρ(θ) =

1√
2πδ

exp

[
−(θ − θ̃)2

2δ2

]
1

θ
(9.1)

where k incorporates the relative systematic uncertainty (δ) associated with the best estimate of θ̃.
Example of log-normal distributions are presented in figure 9.3. From equation 9.1, by writing ln (θ/θ̃) =
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Figure 9.2: Signal efficiency %, first row: t̃t̃-pair production (stop-LSP masses), second row: χ̃±1 χ̃
0
2-

production “democratic”, third: χ̃±1 χ̃
0
2-production “tau-enriched”. High efficiencies for small mass

splittings and high LSP-masses ( 6ET ) as the SR selections imposes.
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ln θ/ − ln θ̃ one sees that the log-normal distribution is just a Gaussian with mean ln θ̃ and variance
σ2 = (ln k)2. Therefore, the lognormal PDF is simply a Gaussian distribution in the x-axis log-scale,
which assigns equal probabilities for the nuisance parameter θ to be a factor kn larger (or smaller) than
the best estimate θ̃. In the limiting case where the relative systematic uncertainty approaches zero, the
log-normal distribution becomes a Gaussian with mean θ̃ and variance σ2 = δ2, as it can be seen in figure
9.3 (a). The log-normal distribution’s connection to the Gaussian becomes increasingly inappropriate
for higher values of δ as shown in same figure plot (b). It is convenient to reinterpret the systematic
uncertainty PDFs ρ(θ|θ̃) as posteriors of some real or imaginary measurements, thus decoupling the
need for Bayesian a priori information, and allow a purely frequentist approach. In this conceptual step,
the systematic uncertainty PDFs can be re-formulated using Bayes’ theorem as: ρ(θ|θ̃) ∼ p(θ̃|θ)πθ(θ)
where the functions πθ(θ) are hyper-priors of the hypothetical measurements. By choosing flat hyper-
prior functions, the mapping of Bayesian posterior PDFs ρ(θ|θ̃) to frequentist auxiliary measurements
PDFs p(θ̃|θ), allows one to represent all systematic uncertainties in the frequentist context. In this
way, a systematic uncertainty PDF is expressed as the posterior ρ(θ|θ̃) constructed from a fictional
auxiliary measurement, whose systematic PDF is p(θ|θ̃). The latter can be used to constrain the
main measurement and to construct sampling distributions of the test-statistic in pure frequentist
calculations.

Calculation of observed limit method

For a given experimental observation with a set of observed events Ni (i runs over search bins), a
likelihood function is constructed of the form:

L(data|µ, ~θ) =
∏
i

1

Ni!

[
µSi(~θ) +Bi(~θ)

]Ni
exp

[
µS(~θi) +Bi(~θ)

]
p(~̃θ|~θ). (9.2)

This expression quantifies the probability that a given set of data, (poissonianly distributed), will be
observed for the specified parameters µ, S(θ̃) and B(θ̃). The Poisson product describes the combined
probability that, in each of the bins, which has Poisson mean of: µSi(θ) + Bi(θ̃), an event yield of Ni

will be observed. The signal strength modifier µ is a parameter that can be used to adjust the event
yield expected from a given “B+S” hypothesis, while the term ~θ represents the full set of nuisance
parameters.

In order to assess the degree of compatibility between the data and the “B+S” hypothesis for a given
signal strength modifier (µ), and the background-only (“B+0”) hypothesis (with zero signal µ = 0), the
construction of a test-statistic is required. The chosen test-statistic is based on the profile likelihood
ratio:

q̃µ = −2 ln
L(data|µ, ~̂θµ)

L(data|µ̂, ~̂θ)
, 0 ≤ µ̂ ≤ µ, (9.3)

The term
~̂
θµ refers to the nuisance parameter vector that maximises the likelihood L(data|µ, ~θµ) for a

given value of µ and for a given set of experimentally observed data. The pair of parameter estimators

µ̂ and
~̂
θ correspond to the parameters that yield the global maximum of the likelihood, for any of the

allowed µ.
Having defined the test-statistic q̃µ in equation 9.3, three variables are needed for the calculation of

the observed limit on the µ:

• the observed test-statistic value q̃ obs
µ , which is unique for a given trial µ,

• the nuisance parameter vector
~̂
θ
obs

µ , deduced form maximisation: d

d~θ
L(data|µ, ~θ) = 0, and

• the nuisance parameter vector
~̂
θ
obs

µ=0, deduced form maximisation: d

d~θ
L(data|µ = 0, ~θ) = 0.
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Where vectors derived from the likelihood maximisation and describe best the observed data, for the
“B+S” hypothesis and “B+0” hypothesis respectively.

Once the above values/vectors are determined, the next step is to generate toy MC pseudo-data
in order to construct the PDFs of the test-statistic q̃µ for the “B+S”, and “B+0” hypothesis, denoted

f(q̃µ|µ,~̂θ
obs

µ ) and f(q̃µ=0|µ = 0,
~̂
θ
obs

µ=0), respectively. Details of the procedure can be found at [2, 55].
In this way, the likelihoods are constructed using events yields that account for fluctuations, from
systematic uncertainties sources, and for possible statistical fluctuations of the data.

The PDF distributions f(q̃µ|µ,~̂θ
obs

µ ) and f(q̃µ=0|µ = 0,
~̂
θ
obs

µ=0), are used to quantify the “p-values”
of “B+S” and “B+0” hypothesis, denoted pµ and pµ=0, respectively:

pµ ≡ P (q̃µ ≥ q̃ obs
µ |“B + S”) = CLB+S, ⇒ CLB+S =

∫ ∞
q̃ obs
µ

f(q̃µ|µ,~̂θ
obs

µ )dq̃µ, (9.4)

1− pµ=0 ≡ P (q̃µ ≥ q̃ obs
µ |“B + 0”) = CLB+S, ⇒ CLB+0 =

∫ ∞
q̃ obs
µ

f(q̃µ|µ = 0,
~̂
θ
obs

µ=0)dq̃µ.(9.5)

The CLB+S describes the probability that a test-statistic with a value greater to the one evaluated from
data q̃ obs

µ will be observed under the “B+S” hypothesis; that is, how compatible is the test-statistic
value of q̃ obs

µ with the “B+S” hypothesis hypothesis. Similarly, CLB+0 describes the probability that
the observed value is compatible with the “B+0” hypothesis. By calculating the ratio of these two
probabilities as: CLs(µ) ≡ CLB+S/CLB+0, one has the final ingredient for quantifying the probability
that a given “B+S” hypothesis, with a certain trial signal strength modifier µ, is compatible with
the observed data. In particular CLs(µ) is compared by convention with the 0.05 (since 1-0.05 corre-
sponding to 2σ confidence level). The “B+S” hypothesis is then excluded with 95% confidence level if:
CLs(µ) < 0.05. The “B+S” hypothesis is set to be excluded with a 95% CL upper limit on the signal
strength modifier µ, and is denoted as µ95%CL.

Figure 9.3: Left: example log-normal distributions with typical (a) and 200% (b) systematic uncertain-
ties. Right: an example of differential distribution of possible limits on µ (c) for the“B+0” hypothesis
(no systematic errors); and the Cumulative probability distribution (d) of the plot (c) (horizontal lines
defining the median expected limit as well as the ±1, 2σ). Taken from [2, 55].

Calculation of expected limit method

The procedure starts with the generation of a large set (indexed with j) of toy MC pseudo-data, under
the assumption of a “B+0” hypothesis (µ = 0), to obtain a set of event yields: Nij. The Nij replaces the
Ni (used in equation 9.2) for observed data over i-bin. The generated pseudo-yields follows a poisson
distribution of the form:

p(Nij;B) =
BNije−B

Nij!
, B =

∑
k

bk(~θk) (9.6)

Where B stands for the total predicted event background and is a sum of k individual background
components bk with different “set” of systematic uncertainties ~θ. These toy MC pseudo-data are
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treated as if they were in fact real experimental data and are used in calculating of the L(data|µ, ~θ)
and the q̃µ as described before.

The p-values, pµ and pµ=0, are also evaluated using dedicated toy MC pseudo-data for the “B+S”
and “B+0” hypothesis. Once the p-values are determined, the value of CLs(µ) is compared to 0.05
to determine whether the requirement CLs(µ) ≤ 0.05 is met. The procedure is repeated by adjusting
the trial value of the signal strength modifier µ until CLs(µ) = 0.05 and a corresponding µ95%CL is
obtained. By repeating this iteration several times, a distribution of µ95%CL can be obtained, which can
be converted to a PDF distribution and consequently into a “cumulative” CDF (see figure 9.3 right).
The CDF distribution is then used to finally obtain the expected limit in terms of signal strength
modifier µ, by simply reading the µ95%CL which corresponds to the CDF 95%.

9.2.3 Exclusion limits

The modified-frequentist CLs method [105, 133, 26] with a one-sided profile likelihood ratio test statistic
is used to define 95% confidence level (CL) upper limits on the production cross section as a function
of the sparticle masses.

Statistical uncertainties related to the observed number of events in control regions are modelled
as Poisson distributions. All other uncertainties are assumed to be multiplicative and are modelled
with lognormal distributions. The impact of a potential signal contamination in the control regions is
taken into account in the calculation of the limits for each signal point. The CRs with highest signal
contamination are those with the same selection as the SR, i.e.: the CR(NP) (actually the SR(SS)
sub-region of it) and the SR-inv. Their corresponding signal event yields per mass point are shown in
figure 9.4 and are negligible with respect to the SR yield.

Figure 9.4: The signal contamination in the two most contaminated CRs. The signal events yields per
mass-point; on the left the CR(NP), middle the SR-inv and right SR.

Systematic uncertainties on signal yields related to the determination of the integrated luminosity
[53], pileup, energy scales, object identification efficiencies, and uncertainties in the parton distribution
functions [19, 39, 30, 120, 117] and the modelling of ISR [50] have been evaluated. Section 8.6 and
appendix E presents most of them. The dominant term is related to ISR and amounts to approximately
20% (table 8.2, figure E.1). Correlations between the systematic uncertainties in different signal regions
are taken into account, where applicable.

Limits for this work are set in the context of a simplified model [25, 22, 21, 20]. In our particular
case of stop-pair and chargino-neutralino pairs the cross sections are shown in figure B.3.

Interpretation in the stop–pair production, limits over the stop–LSP mass scan

Using the stop-pair production cross section calculated at next-to-leading order (NLO) and “next-to-
leading logarithm” (NLL) precision [34, 115, 114, 33, 32, 113] the cross section limits can be converted

150



into excluded regions in the stop-LSP mass plane. The limits obtained for top squark pair production
are shown in figure 9.5, under the assumption of a 100% branching ratio of the four-body decay.

Figure 9.5: Left the expected (red) and observed (black) upper limits at 95% CL with its corresponding
±1σ bands. Right the status of CMS searches over the whole 2D-space including the 0,1,2-lepton
searches in compressed spectra.

• stop masses below 325 GeV are excluded for ∆M(stop− LSP ) ∼ 30 GeV.

• stop masses below 300 GeV are excluded for ∆M(stop− LSP ) range: ∼[20,50] GeV.

• stop masses below 250 GeV are excluded for ∆M(stop− LSP ) ∼ range: ∼[15,80] GeV.

This result considerably extends existing limit [13, 12] shown in figure 4.1. It is complementary to the
results of searches in the monojet topology targeting the decay to t̃→ cχ̃0

1 [54, 13] into the 0-lepton final
state (figure 9.5 right yellow curve). Also complements and exceed the exclusion result of the 1-lepton
final state of the same four-body decay (figure 4.2 left). This 1-lepton search (which was developed in
parallel with the current 2-lepton one), results into the red exclusion limit presented in figure 9.5 right,
and complement the 2-lepton result extending at ∆M(stop− LSP ) ∼ 10 GeV. Both these 1,2-lepton
results are submitted to be published together under the same paper.

Interpretation in chargino–neutralino production, limits over the chargino–LSP mass scan

In the case of chargino-neutralino pair production three models are studied as explained in section 4.3,
figure 4.2 midle and right. If only the supersymmetric partners of left-handed leptons (˜̀

L) and neutrinos
(ν̃) participate in the process, we expect a “flavour-democratic” scenario with identical branching
fractions into all lepton flavours, both for the chargino and the neutralino. In this scenario the fraction
of events with at least two charged leptons is reduced by 50% due to the χ̃0

2 → ννχ̃0
1 decay channel.

If only the supersymmetric partners of right-handed leptons ( ˜̀
R) are involved the production of τ

leptons is increased since the ˜̀
R would couple to the higgsino component of the chargino. For this case

we use the τ -enriched scenario where the chargino decays exclusively to a τ lepton, while the neutralino
decays democratically as in the first case.

In our interpretation we set M(˜̀) = [M(χ̃±1 )+M(χ̃0
1)]/2. Figure 9.6 left, shows the 95% CL limits for

the three cases in a compressed scenario with ∆M(χ̃±1 , χ̃
0
1) = 20(10) GeV. On the right the contribution

of the 2-lepton search (dotted slices) over the general-status of CMS scan-plane. The theoretical cross
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Figure 9.6: Left: expected and observed exclusion limits at 95% CL with its corresponding ±1σ bands
for the chargino-neutralino production cross section. Three different scenarios are considered (with
mass differences ∆M(χ̃±1 , χ̃

0
1) = 20(10) GeV). Right: the contribution of the result in the general

status CMS limits graph. The two newly excluded slices by soft-2-lepton search are shown in (orange
and green) dots.

section is calculated at NLO+NLL precision with the Resummino [89, 90, 91] program. The 95% CL
limits on m(χ̃±1 ) are set as follows:

• chargino masses below ∼210 GeV are excluded in flavour-democratic scenario,

• chargino masses below ∼310 GeV are excluded in τ -enriched scenario.

• non exclusion for any chargino mass for the third (WZ) scenario shown in figure 4.2 right.

In this compressed scenario the new limits slightly improve current results in the flavour-democratic
scenario (green) and exceed them by ∼ 200 GeV for the τ -enriched scenario (orange) [109], as for the
latter the dominant decays lead to final states with opposite-sign leptons.

9.3 Summary and conclusions

A search for supersymmetry with compressed mass spectra is performed in events with one or two
hard jets, 6ET , and two oppositely-charged soft leptons, compatible with the emission of initial state
radiation. In particular, the search targets the pair production of top squarks with a mass splitting of
at most 80 GeV with respect to the LSP.

The data sample consists of proton-proton collisions at
√
s=8 TeV, recorded by the CMS detector

in 2012. Signal region is defined requiring one or two hard jets (ISR candidate), no b-tagged jet,
two low pT OS leptons (µµ or eµ) and high 6ET . A leading-lepton transverse mass binning is used as
discriminating variable between low and high mass splittings, extending the range of sensitivity.

The most crucial cuts which can be underlined as the “golden cuts” of the search are: (a) the
di-tau (effective) invariant mass Mττ cut, which drastically reduces the Z+jets(Z→ ττ) background,
and (b) the tight impact parameters cuts (with respect to primary vertex) which suppresses the soft
lepton coming form a tau decays (∼50%) since taus (accompanied by their neutrinos) are preferably
selected in our high 6ET , soft-lepton selection. In addition the tight impact parameter cuts reduces the
non-prompt background which introduces the highest systematic and statistical uncertainty.
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The search is clearly dominated by the low pT (`1)-bin and its statistical uncertainty. The back-
grounds to this search-bin are tt̄(2`), tt̄(2`) and V V in almost equivalent abundances and only 2 (±30%)
expected/predicted events.

The expected event yield prediction is performed by data-driver methods using control regions
similar in kinematic properties (as much as possible) to the signal region. The main assumption which
were used for the prediction is that: event yielded in SR over CR are correctly modeled in MC. Under
this assumption we predict in SR with the basic formula: PREDSR = [MCSR/MCSR]DATACR,
correcting the DATACR yields properly for non 100% purity.

An essential ingredient of the search is (a) the test of all prediction methods in four different
validation regions, and (b) a test of all prediction (in either SR and VRs) in an alternative approach
based on a single trigger configuration (in contrast with the default usage of two different triggers).
Figure 9.7 left summarizes the SR and VRs prediction and data for the dual-trigger configuration
(default strategy used), whereas plots on the right shows same six bins in the single trigger configuration.
(Left histogram information re-presents inclusively the figures 9.1 and 7.3 whereas right histogram re-
presents inclusively information of figure 7.4 and table 7.3).

Figure 9.7: On the left, the predicted and data yields for the two SR bins and the four VRs with the
default trigger configuration (i.e. single muon trigger for pT (`1) > 25 GeV). On the right, the same
information where all predictions have been derived using data by a single trigger configuration (the
“MET+ISR” triggers only) and the VRs are defined accordingly with high 6ET cut.

Observed data are compatible with the SM background predictions within statistical uncertainties.
In the absence of any indication for supersymmetry, cross section limits are set at 95% CL in the
LSP-top squark mass plane. These limits are used to derive mass limits based on a reference cross
section for top squark pair production and assuming a 100% branching ratio for the four-body decay
t̃ → bff ′χ̃0

1 where Mt̃ oints are excluded up to ∼325 GeV. The result extend existing limits in the
four-body decay channel of the top squark [13, 12] and complement the analyses performed in the 0
and 1 soft lepton final state channel [54].

The result is also capable, even without optimization, to set limits on various chargino-neutralino
production in compressed spectrum scenarios with a mass difference of ∆M(χ̃±1 , χ̃

0
1) 20 GeV. In case

of flavour-democratic leptonic decays of these sparticles, and for 95% CL, a lower limit on the common
Mχ̃±1

/M0̃±2
mass is set at 210 GeV. If chargino decays proceeds exclusively via the τ -channel the limit

increases to 310 GeV.
The dileptonic final state search has shown that at least for the stop-pair productions leads to the

best sensitivity with respect to the full-hadronic and semi-leptonic channel searches. In addition, the
exclusion results in the chargino-scan are very promising for a reload of the search optimized for that
topologies.
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Appendix A

Some basic kinematics

The CMS experiment uses a right-handed coordinate system, with the origin at the interaction point
(IP), the x-axis pointing to the centre of the LHC ring and the y-axis pointing vertically upwards
perpendicular to the LHC plane. It then follows that the z-axis, from which the polar angle θ is
measured, is oriented to be parallel to the beam and the anti-clockwise rotating proton beam. The
azimuthal angle φ is measured from the positive x-axis in the x-y plane whereas the radius (r) denotes
the distance from the z-axis.

In high energy physics where hadron beam collisions takes place, the actual colliding particles
are not the hadrons but their constituent partons. Due to different momentum carried by these, the
center of mass of the colliding partons is moving along the z-direction (with respect to the lab-frame).
Consequently since LHC collides protons only the x-y plane conservation of momentum can be used
in most analysis. Thus, a set of proper variables using the transverse plane aer defined and used in
analysis. The most commonly used variable is pseudorapidity: η(θ) ≡ − ln[tan(θ/2)] is presented in
figure A.1. The θ → η change have the great advantage to enables the use of the invariant quantity
∆η. More kinematic variables used in high energy particle collisions physics are listed bellow.

1. Mandelstam invariant variables: s, t, u
where momenta (pi ≡ pµi ) stands for the generic interaction “1+2→3+4”with p1 + p2 = p3 + p4.
s ≡ (p1 + p2)2 = (p3 + p4)2 = (E1 + E2)2 + (~p1 + ~p2)2,
t ≡ (p1 − p3)2 = (p2 − p4)2 = (E1 − E3)2 + (~p1 − ~p3)2,
u ≡ (p1 − p4)2 = (p2 − p3)2 = (E1 − E4)2 + (~p1 − ~p4)2,
where in the relativistic limit (pi/Ei)→ 1 turn to:
s = 2p1p2 = 2p3p4

t = −2p1p3 = −2p2p4

u = −2p1p4 = −2p2p3

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4.

2. Total (initial and final) collision energy in any frame:
√
s =
√

2p1p2 =
√

2p3p4.

3. Transverse momentum: pT ≡
√
p2
x + p2

y = |p| sin θ.

4. Transverse energy : ET ≡ E sin θ = pT (E/|p|).

5. Transverse mass (of a single particle): mT ≡
√
p2
T +m2.

6. Rapidity: y ≡ 1
2

ln[(E + pZ)/(E − pZ)].

7. Pseudorapidity: η ≡ lim[(E/p)→1] y = − ln[tan(θ/2)].

8. Invariant η-φ “3D-angle”: ∆R ≡
√

(∆η)2 + (∆φ)2.

9. Four-momentum of a particle as function of different variables:
f(E, px, py, pz): p

µ ≡ (E; px, py, pz),
f(mT , px, py, y): pµ = (mT cosh y; px, py,mT sinh y),
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f(mT , pT , y, φ): pµ = (mT cosh y; pT cosφ, pT sinφ,mT sinh y),

f(m, pT , η, φ): pµ = (
√
m2 + p2

T cosh2 η; pT cosφ, pT sinφ, pT sinh η).

10. Invariant mass of n particles: M ≡
√

(pµ1 + pµ2 + ...+ pµn)2 =
√

(E1 + E2 + ...)2 − (~p1 + ~p2 + ...)2.

11. Invariant mass of 2 particles: M =
√
E2

1 + E2
2 + 2E1E2 − p2

1 − p2
2 − 2~p1 · ~p2.

12. Invariant mass of 2 particles for (Ei/pi)→ 1: M =
√

2p1p2(1− cos θ).

13. Transverse mass of 2 particles: MT ≡
√

(E1 + E2)2 − (~pT1 + ~pT2)2.

14. Transverse mass of 2 particles for (Ei/pi)→ 1: MT =
√

2pT1pT2(1− cos θ).

15. Transverse hadronic activity: HT ≡
∑

i pT (jeti) (where the sum runs over all jets above some
thresholds, which in particular analysis are pT >30 GeV, |η| <4.5).

16. Hadronic recoil: ~Hmiss
T ≡ −

∑
i ~pT (jeti) where the sum runs over all jets. (Usually used in Z+jets

samples where is equal with the pT (Z)). It is true that: | ~Hmiss
T | 6= HT due to the threshold(s)

imposed to selected jets in HT .

17. Transverse missing energy (or momentum): ~6ET ≡ −
∑

i ~pT (i) where the sum runs over, all
reconstructed objects: jets, leptons, taus, photons (without cut thresholds).

18. Transverse leptonic activity: LT ≡ pT (`1)+ 6ET (definition used only in current analysis)

19. Lepton (absolute) isolation: Iabs ≡
∑

i p
charged hadr.
T,i +

∑
iE

γ
T,i +

∑
iE

neutral hadr.
T,i , for all particles

with: ∆R(`, i) < 0.4.

20. Lepton relative isolation: Irel ≡ Iabs/pT (`).

Figure A.1: The pseudorapidity η versus θ. Leptons with |η| <1.5 or 25o < θ <155o are considered in
the signal region of the analysis. (Taken from [2]).
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Appendix B

Supersymmetry, calculations and
additional material

B.1 Superspace

The four-momentum Pµ is a translation symmetry operator1; it is defined by:

Φ(x+ a) = e−a
µPµΦ(x)eia

µPµ , (B.1)

where a = aµ, (µ : 0, 1, 2, 3) is a set of four constant space-time coordinates. In parallel to the energy-
momentum operator (Pµ), we consider the superfield operators Qa, Q̄ȧ as generators of the translation
in the fermionic coordinate system expressed by the Grassmann numbers. To match the four (space-
time) dimensions, we consider four fermionic coordinates as elements of a Majorana spinor or as a pair
of 2-component Weyl spinors. Points in super-space are identified by the coordinates: z = (xµ, θµ, θ̄ȧ) =
(xµ, θ1, θ2, θ̄1̇, θ̄2̇). Commutators of the super-coordinates satisfy the following relations:

{θa, θβ} = {θ̄ȧ, θ̄β̇} = {θa, θ̄β̇} = 0

[xµ, θa] = [xµ, θ̄β̇] = 0 (B.2)

where always the indices a, ȧ runs from 1 to 2 and (θa)∗ ≡ θ̄ȧ.
A translational operator (an element of the super group) L(x, θ, θ̄) is then defined. The superfield

Φ(x, θ, θ̄) is the operand of the SUSY generators, which is a function of space-time and superspace
coordinate variables:

L(x, θ, θ̄) ≡ exp[i(−xµPµ + θaQa + θ̄ȧQ̄
ȧ)]

Φ(x, θ, θ̄) = L(x, θ, θ̄) Φ0 L
−1(x, θ, θ̄) (B.3)

Using the “Poincare algebra” and the “Baker-Campbell-Hausdorff” formula:

eAeB = eA+B+[A,B]/2+[A,[A,B]]/12−[B,[B,A]]/12+..., (B.4)

one can prove that:

[ξQ, θ̄Q̄] = 2(ξσµθ̄)Pµ,

[ξ̄Q̄, θQ] = −2(θσµξ̄)Pµ, (B.5)

[ξQ, θQ] = 0,

[ξ̄Q̄, θ̄Q̄] = 0.

And with these relations the transformation property of the super-generator is obtained:

S Φ(x, θ, θ̄) ≡ L(0, ξ, ξ̄) Φ(x, θ, θ̄) L−1(0, ξ, ξ̄) = Φ(xµ + i[θσµξ̄ − ξσµθ̄] , θa + ξa , θ̄ȧ + ξ̄ȧ). (B.6)

1Subsection follows reference [126] §4.2.3 by Yorikiyo Nagashima.
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The important thing to notice is that translations in the super-coordinates necessarily induce transla-
tions in the space-time coordinates as well. The interpretation of the super-generator as a translation
operator of the fermionic coordinates is valid, but unlike the space-time translation, does not have a
simple expression. For most purposes, it is sufficient to consider infinitesimal transformations, which
can be written as follows:

δS(ξ, ξ̄)Φ(x, θ, θ̄) = i[ξQ+ ξ̄Q̄ , Φ(x, θ, θ̄)] = (....)Φ(x, θ, θ̄) (B.7)

which corresponds to the following explicit representation of the SUSY generators:

iQa ≡ ∇a − i(σµaȧ)θ̄ȧ∂µ = Da, iQ̄ȧ ≡ −∇̄a + iθa(σµaȧ)∂µ = D̄ȧ (B.8)

where the definitions: ∇a ≡ ∂/∂θa, ∇ȧ ≡ ∂/∂θ̄ȧ = −εȧβ̇∂/∂θ̄β̇, have been introduced in order to
avoid confusion with the space-time derivatives ∂µ. A valid global symmetry should apply also to the
derivatives of the field as both the field itself (f) and its derivatives appear in the Lagrangian. An
important notion in SUSY is that ∇af and ∇̄ȧf do not satisfy the global SUSY transformation hence
they are not superfields. By global symmetry, we mean that SUSY operators satisfy the commutation
relations defined by equations (2.29). Notice that ∂µf is a superfield because it satisfies the global
SUSY but: ∇af, ∇̄ȧf are not (this can be seen by looking at its commutators with the symmetry
operators.) We have to find differential operators that commute with the SUSY operators. This can
be achieved by defining the covariant derivatives Da, D̄ȧ (equation B.8) which satisfy the following
relations:

{Dβ, Qa} = {Dβ, Q̄ȧ} = {Q̄β̇, Da} = {D̄β̇, Q̄ȧ} = {Da, Dβ} = {D̄ȧ, D̄β̇} = 0,

{Da, D̄β̇} = −2i(σµ
ȧβ̇

)∂µ,

(D3)a ≡ (DβDβ)Da = (D̄3)ȧ ≡ (D̄β̇D̄β̇)D̄ȧ = 0.

For reference, in the four-component representation, we have:

Θ(4) ≡ (θa, θ̄
ȧ)T , Θ̄(4) ≡ (θa, θ̄ȧ) ⇒

(
∂

∂Θ

)(4)

a

≡
(

∂

∂θa
,
∂

∂θ̄ȧ

)
,

(
∂

∂Θ̄

)(4)

a

≡
(

∂

∂θa
,
∂

∂θ̄ȧ

)T
(B.9)

We can re-write and summarize the four-component operators as, follows:

Q(4) =

[
Qa

Q̄ȧ

]
=

[
∇a

∇̄ȧ

]
= −i

[
0 σµ

aβ̇

σ̄µȧβ 0

] [
θβ
θ̄β̇

]
∂µ =

[
∂

∂Θ̄

](4)

− iγµΘ∂µ (B.10)

D(4)
a =

[
Da

D̄ȧ

]
=

(
∂

∂Θ̄

)(4)

a

+ i(γµΘ)a∂µ (B.11)

B.2 Chiral superfield

Consider a superfield F (x, θ, θ̄), which is a function of xµ, θa, θ̄ȧ, then F could belong to an arbitrary
representation of the Lorentz group but first we consider a scalar field1. The Taylor expansion in
powers of θ and θ̄ terminates at finite order θθ, θ̄θ̄, since the variables are anti-commuting Grassmann
numbers. Thus F can be expanded [123, 126] as follows:

F (x, θ, θ̄) = A+ θψ + θ̄χ̄+mθθ + nθ̄θ̄ + θσµθ̄Vµ + θθθ̄λ̄+ θ̄θ̄θξ + θθθ̄θ̄d (B.12)

There are four complex scalar components A,m, n, d, a complex vector V µ, two Weyl spinors: ψ, ξ
that belong to (1/2, 0), and two more Weyl spinors χ, λ, belonging to (0, 1/2). All these are functions
of xµ. Altogether, there are 16 real bosonic and 16 fermionic degrees of freedom.

1Subsection follows reference [126] §4.3 by Yorikiyo Nagashima.
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The transformation laws for each component under the SUSY operator can be obtained by com-
paring powers of θ and θ̄ in the equation δF = δηF + δη̄F = δA+ θδψ + ...; with the definitions:

δηF = ηaiQaF, δη̄F = η̄ȧiQ̄
ȧF (B.13)

and Qa, Q̄ȧ defined in (B.8). A set of constrains can be derived for δA, δψa, δχ̄
ȧ, δm, δn, δVµ, δλ̄

ȧ, δξa,
δd. Given that the components are reducible under SUSY operations, which means that not all of the
derived conditions are required to close the algebra, a condition to make them irreducible is imposed.
One widely used set of conditions is the following:

D̄ȧΦL(x, θ, θ̄) = [−∇̄a + iθa(σµaȧ)∂µ] ΦL(x, θ, θ̄) = 0,

DaΦR(x, θ, θ̄) = [∇a − i(σµaȧ)θ̄ȧ∂µ] ΦR(x, θ, θ̄) = 0, (B.14)

where the first defines a chiral (left-handed) superfield ΦL and similarly the second, a chiral (right-
handed) superfield ΦR.

The chiral superfield ΦL can be solved in terms of new variables defined by: yµ ≡ xµ + iθσµθ̄. It
can be shown that D̄ȧy

µ = D̄ȧθa. Therefore, any function of y, θ is a solution to D̄ȧΦ. That is:

ΦL(x, θ, θ̄) = Φ′(y, θ) = Φ′(xµ + iθσµθ̄, θ) (B.15)

where Φ′ can be any function of y, θ. Using a Taylor expansion, the field Φ′ can be expressed as:
Φ′(y, θ) = A(y) +

√
2θaψa(y) + θθF (y).

The superfield satisfying the first condition of (B.14), contains only two scalar fields A, F and a
left-handed Weyl spinor ψ. Notice that the chiral superfield has dimension [E]. It follows that the
field F (x) has dimension [E2], which is an indication that it is not a conventional scalar field. The
expression for ΦL(x, θ, θ̄) can be derived by going back to the original variable x.

Finally after some calculations the chiral superfield can be expressed as:

Φ′(x, θ, θ̄) = A+
√

2θaψa + θθF + i(θσµθ̄)∂µA+
i√
2
θθθ̄ȧσ

µaȧ∂µψ̄ −
1

4
θθθ̄θ̄∂µ∂

µA (B.16)

Variations under the super-translation of the component fields A,ψ, F in the chiral superfield ΦL

follow by applying the formulas δηA, δηψa, δηφ and for the infinitesimal ηη̄ are given by:

δηA =
√

2ηaψa,

δηψa =
√

2[ηaF + i(σµη̄)∂µA], (B.17)

δηφ =
√

2iη̄σ̄µθµψ.

Where we can see that no fields other than A,ψ, F appear in the transformed fields. Every component
in equation (B.16) transforms to each other, and hence the SUSY algebra is closed by itself. The chiral
left-handed superfield constitutes an irreducible representation. It also means that the field F is a
necessary ingredient to have a consistent SUSY algebra.

In a similar set of steps one can derive the (right-handed) superfield ΦR relation which is:

ΦR(x, θ, θ̄) = Φ′(z, θ̄) = Φ′(xµ − iθσµθ̄, θ), Taylor ⇒ Φ′R = A∗(z) +
√

2θ̄ȧψ̄
ȧ(z) + θ̄θ̄F ∗(z) (B.18)

where: zµ ≡ xµ − iθσµθ̄, and: Daz
µ = Daθ̄ȧ = 0. From the above equation, one can see that the right-

handed chiral superfield is the one of the left-handed field. A right-handed superfield is a complex
conjugate of a left-handed superfield and contains only the complex conjugate of a scalar field and a
right-handed Weyl field.

Products of chiral superfields are again chiral superfields. This can be seen by explicitly making
products of two left-handed scalar chiral fields. By induction, product of three left-handed chiral
superfields is again a left-handed chiral superfield. Similar results hold for the conjugate, that is,
right-handed chiral fields. Note that products of left- and right-handed chiral superfields are in general
neither chiral nor anti-chiral.
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B.3 Invariant action and Lagrangians

The action for SUSY in superspace is given by1:

S =

∫
d4x L(x), L(x) =

∫
d2θd2θ̄ L(x)[Φ(x, θ, θ̄), V (x, θ, θ̄)], (B.19)

where the integration is over four-dimensional super-coordinates: θ1, θ2, θ̄1̇, θ̄2̇ as well as over space-
time. We will ignore the vector field for a while in terms of simplicity. We use the following identities
for intergation over a Grassmann variable η:∫

dη = 0,

∫
ηdη = 1, θθ = θaθa = θaεaβθ

β = −θ1θ2. (B.20)

One thus obtains: ∫
θθd2θ ≡ c

∫
(−2θ1θ2)dθ1dθ2 = 2c

∫
θ1dθ1

∫
θ2dθ2 = 2c (B.21)

therefore, we have c=1/2. The d2θ and d2θ̄ can be expressed as:

d2θ = −1

4
εaβdθ

adθβ,

∫
θθd2θ = 1, d2θ̄ = −1

4
εȧβ̇dθ̄ȧdθ̄β̇,

∫
θ̄θ̄d2θ̄ = 1 (B.22)

We will consider the integration of a superfield that is at most quadratic in θ:

f(θ) = A+ θaBa + Cθθ, ⇒
∫
d2θ(A+ θaBa + Cθθ) = C (B.23)

with a similar equation for the
∫
d2θ̄g(θ̄). Consequently, the only non vanishing terms in equation

(B.19) are those proportional to: θθθ̄θ̄. When the integrand contains a function of: θ or θ̄ only, the
L(x) is to be understood to stands for the following:

L(x) =

∫
d2θd2θ̄

[
LL[ΦL(x, θ)]δ(θ̄θ̄) + LR[ΦR(x, θ̄)]δ(θθ) + L[Φ(x, θ, θ̄)]

]
(B.24)

where δ(θθ) is a δ-function whose integral gives 1. That is, the superspace integral picks up the highest
order component of the Lagrangian made of superfields. All other terms vanish upon integration.

The action that is invariant under the SUSY should satisfy the relation

δSS =

∫
δSL(x)d4x = 0 (B.25)

This means that the SUSY action should give δSL=0 up to a total divergence. We have seen that the
highest component of a superfield always gives a total divergence upon the symmetry operation (B.17).
If they also have the proper Lorentz structure, like those of kinetic energy, a mass term or a potential,
they are candidates of the Lagrangian. By demonstrating that the superspace integration of the action
picks up only the highest component of the superfields, we have just proven that the action defined by
equation (B.19) is SUSY-invariant.

In the following, we consider building a Lagrangian using irreducible representations of the super-
fields, namely the chiral fields and the vector fields. The vector fields are real. The chiral fields contain
either θ only (left-handed) or θ̄ only (right-handed). As the Lagrangian has to be Hermitian and the
right-handed chiral fields are obtained by taking the Hermitian conjugate of the left-handed fields, we
can separate the Lagrangian into two:

L(x) =

∫ [(∫
d2θLL + h.c.

)
+

∫
d2θd2θ̄L

]
=

∫
d2θd2θ̄ [(LLδ(θθ) + h.c.) + L] (B.26)

1Subsection follows reference [126] §4.5 by Yorikiyo Nagashima.
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where δ(θθ) is the δ-function. From now on we omit to attach the index “L” to the chiral superfield
and simply denote it as Φ unless otherwise specified.

It can be seen that the products of chiral fields contain mass terms and Yukawa interactions. which
are candidates to be included in the chiral part of the Lagrangian (B.26).

We now briefly discuss the kinetic energy of the chiral superfield. A second order or square of the
derivatives is necessary to construct the kinetic energy part of the Lagrangian. We have seen already
that chiral fields or their products contain no derivatives at least in the L or R representation. Let
us consider the product of a left-chiral field and its conjugate. As the left-handed field is in the L
representation and its conjugate is in the R representation, we need to unify the representation to
handle their product. Expressing the left-chiral field as in (B.16) we have:

Φ(x, θ, θ̄) = [A] + [
√

2θaψa] + [θθF ] + [i(θaσµaȧθ̄
ȧ)∂µA] + [

i√
2
θθθ̄ȧ(σµaȧ∂µψ

a)]− [
1

4
θθθ̄θ̄∂µ∂

µA] (B.27)

Where the fields: A,ψa, F are time-space function: A(x), ψa(x), F (x). Taking the hermitian conjugate

and noting the hermitian nature of the Grassmann variables, that is: (θaθ̄β̇)∗=(θ̄β̇)∗(θa)∗=θβ θ̄ȧ, we
have:

Φ†(x, θ, θ̄) = [A∗]+[
√

2θ̄ȧψ̄
ȧ]+[θ̄θ̄F ∗]− [i(θaσµaȧθ̄

ȧ)∂µA
∗]+[

i√
2
θ̄θ̄θa(σµaȧ∂µψ̄

a)]− [
1

4
θθθ̄θ̄∂µ∂

µA∗] (B.28)

We only need to consider the coefficients of θθθ̄θ̄ in the product Φ†Φ. The fermionic kinetic energy
terms then arise from the crossed terms: (2nd−termΦ × 5th−termΦ†), and (2nd−termΦ† × 5th−termΦ); and
the results after some algebra is:

=
i

2
[∂µψ̄

ȧσ̄µȧaψ
a − ψ̄ȧσ̄µȧa∂µψa]θθθ̄θ̄ (B.29)

In the bosonic sector, the kinetic energy terms are: (1st−termΦ×6th−termΦ†) + (6nd−termΦ†×1st−termΦ)
+ (3rd−termΦ× 3trd−termΦ†) + (4nd−termΦ† × 4th−termΦ); and the results after some algebra is:

=

[(
1

2
∂µA

∗∂µA− 1

4
∂µ(A∗∂µA+ ∂µA∗A)

)
+ FF ∗ +

1

2
gµν∂µA

∗∂νA

]
θθθ̄θ̄

= [∂µA
∗∂µA+ FF ∗ + divergence terms]θθθ̄θ̄ (B.30)

Combining Eqs. (B.29) and (B.30), the Lagrangian for the kinetic energy part of the chiral fields
two-component:

LChiralKE (x) =

∫
d2θd2θ̄Φ†Φ = ∂A∗∂µA+

1

2
[∂µψ̄

ȧσ̄µȧaψ
a − ψ̄ȧσ̄µȧa∂µψa] + FF ∗ (B.31)

The first two terms represent the kinetic energy of a scalar field and its super-partner left-handed Weyl
field.

For a detailed extraction of all lagrangian terms one can see at: [122, 130, 116, 17, 123], here we
further present only some final the results. Starting from definitions of the following chiral superfields:
ΦL,ΦR and a vector superfield VWZ (in the so-called “Wess-Zumino” gauge):

ΦL(x, θ, θ̄) = Φ′(y, θ) = A(y) +
√

2θψ(y) + θθF (y), (B.32)

ΦR(x, θ, θ̄) = Φ′(z, θ) = A∗(z) +
√

2θ̄ψ̄(z) + θ̄θ̄F ∗(z), (B.33)

y = x− i(θaσµaȧθ̄ȧ), z = x+ i(θaσµaȧθ̄
ȧ),

VWZ(x, θ, θ̄) = (θσµθ̄)Vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θλ(x) + θθθ̄θ̄
1

2
D(x) (B.34)

we will give the full Lagrangian describing all its interactions. The SUSY-invariant Lagrangian con-
taining the chiral superfield (Ai, ψi) and the gauge superfield λa, V

µ
a in an explicit representation is
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expressed as:

LSUSY ≡ Lgauge KE + Lchiral KE + Lsuperpotential, (B.35)

Lgauge KE ≡
∑

a

[
1
2
|Da(x)|2 − 1

4
F a
µνF

aµν − iλaσµ∂µλ̄a
]
, (B.36)

Lchiral KE ≡
∑

i

[
|Fi(x)|2 + i(D∗µψ̄i(x))σ̄µψi(x) +D∗µA

∗(x)DµA(x)
]

+ (B.37)∑
a[−{
√

2gλ̄a(x)[ψ̄(x)T aA(x)] + (c.c.)}+ gDa(x)(A∗(x)T aA(x))],

[Dµ]ij ≡ δij∂µ − ig
∑

a V
a
µ [T a]ij

Lsuperpotential ≡
∑

iWiFi − 1
2

∑
j,kWjkψjψk + (h.c.) (B.38)

Wi = ∂W (A)
∂Ai

, Wij = ∂2W (A)
∂Ai∂Aj

, Fi = −W ∗
i ≡ [∂W (A)

∂Ai
]∗,

W (A) ≡ tiAi + 1
2
mijAiAj + 1

3
yijkAiAjAk

where T a is the gauge group generators and i, j, k denote the flavor of the chiral fields. The superpo-
tential W (A) is an analytic function of A(x) treated as a complex number. That is, it does not contain
the complex conjugate fields A(x) or derivatives of the field.

B.4 Feynman diagrams for sparticles hadronic production

and cross sections
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Figure B.1: Feynman diagrams for all possible sparticles production modes in hadronic collisions, i.e.:
by annihilation or scattering of qq̄, qg, gg. R-parity conservation is assumed and sparticles are produced
in pairs. (Taken from [122]).
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Figure B.2: The cross sections for t̃t̃ pair production as a function of
√
s for four different stop masses.

Figure B.3: Production cross sections at pp–collisions in
√
s = 8 TeV used in the analysis. Left the t̃t̃

pair production, right the χ̃±1 χ̃
0
2 pair production.
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B.5 Current exclusion reach of sparticle searches
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Appendix C

Signal region kinematics

C.1 Additional kinematic variables distribution in SR

preselection

All plots in this subsection stands for the preselection cuts listed in table 5.2. The SM simulated
background processes with three SUSY signal points scaled by ×10 are superimposed.

Figure C.1: The jet multiplicity Nj, pT (jet2), and HT distributions for SR preselection.

Figure C.2: The LT ≡ pT (`1)+ 6ET , | ~6ET + ~pT (`1)| and the M(`1, `2, 6ET ) = [(p`1 + p`2+ 6ET )µ(p`1 +
p`2+ 6ET )µ]0.5 distribution for preselected events.
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Figure C.3: The leading and subleading lepton transverse massesMT (`1, 6ET ), MT (`2, 6ET ) distributions,
and both together.

Figure C.4: The |∆φ(`1, jet1)|, |∆φ(`2, jet1)|, and |∆φ(`1, `2)| distributions for preselected events.

Figure C.5: The |∆φ(`1, 6ET )|, |∆φ(`2, 6ET )|, and |∆φ(jet1, 6ET )| distribution for preselected events.
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Figure C.6: Absolute isolation distributions for leading and sub-leading lepton in preselection.

Figure C.7: Relative isolation distributions for leading and sub-leading lepton in preselection.

Figure C.8: Impact parameter |dxy| for leading lepton and sub-leading in preselection.
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Figure C.9: Impact parameter |dz| for leading lepton and sub-leading in preselection.

Figure C.10: The charged-hadrons-energy-fraction distribution of jet1 (left) and the neutral-hadrons-
energy-fraction distribution distribution (right), for the leading jet in preselection.

Figure C.11: The jet1 neutral electromagnetically-originated (photons) energy fraction distribution
(left). The jet1 charged electromagnetically-originated energy fraction distribution (right).
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C.2 Kinematic variables distribution in SR selection

Figure C.12: The jet1, jet2 and jet3 pT distributions in SR selection.

Figure C.13: The HT , Nj and Nb(CSV L) distributions in SR selection.

Figure C.14: The 6ET , LT and pT (W ) = | ~6ET + ~pT (`1)| distributions in SR selection.
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Figure C.15: The MT (`1, 6ET ), MT (`2, 6ET ) and 6ET /HT distributions in SR selection.

Figure C.16: The pT (`1), pT (`2) and |∆φ(`1, `2)| distributions in SR selection.

Figure C.17: The |η| distributions of leading lepton, sub-leading and both in SR selection.
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Figure C.18: The impact parameter |dxy| distributions for leading lepton (left),sub-leading lepton
(middle) and both leptons (right) for SR selection.

Figure C.19: The impact parameter |dz| distributions for leading lepton (left), sub-leading lepton
(middle) and both leptons (right) for SR selection.

Figure C.20: The M(`1, `2), M(`1, `2, 6ET ) and |∆φ( 6ET , jet1)| distributions in SR selection.
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Figure C.21: The |∆φ(`1, jet1)|, |∆φ(`2, jet1)| and |∆φ(jet1, jet2)| distributions in SR selection.

Figure C.22: The absolute isolation distributions for leading lepton (left), sub-leading lepton (middle)
and both leptons (right) for SR selection.

Figure C.23: The relative isolation distributions for leading lepton (left), sub-leading lepton (middle)
and both leptons (right) for SR selection.
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Figure C.24: The pT (tt̄), ∆R(t, t̄) (left) and the |∆φ(t, t̄)| distributions in SR selection. The pT (tt̄)
shape indicates that the peak at ∼200 GeV corresponds to the ISR-boost which pushes back-to-back
tt̄-pair and ISR-Jet. The |∆φ| however indicates that these tt̄-quarks have all possible angles in almost
flat distribution. These means that the two tops are not necessarily in the same direction, but rather
in all possible directions/angle but in such a way that their vectorial momentum sum appears back-to-
back with leading jet. In addition, we see that the pT (tt̄) . 100 GeV region is populated by the events
with t back-to-back with t̄ and probably one of the b-jets has not been tagged as a b-jet consisting the
jet1 in stead of an ISR one. As expected this non-tagging effect is about 1/3 as the b-jet efficiency of
CSV algorithm at medium working point indicates.
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C.3 Explicit background cut flow
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Table C.1: Explicit background cut flow yields for each simulated background, and two signal points
in 13 steps. Same information is presented in figure 5.11 in log scale. We successively (per row) impose
cuts towards the SR selection. Last row corresponds to the full SR-selection and the SR event yields.
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C.4 Tau reconstruction cases

Since we require high met and two soft leptons, the Z+jets events (appearing in signal region) are
boosted and dominated by Z → τ+τ− → `+`−νννν. Consequently 6ET appearing mainly in-between
the two leptons (smallest) angle. However the 6ET vector can appear aside this angle. Figure C.25

analyze all possible cases. In our analysis we perform the Mττ reconstruction only for case A, while
for B, C and D we assign a negative value i.e.: Mττ = −[(pτ1 + pτ2)

µ(pτ1 + pτ2)µ]0.5.

Figure C.25: The four different reconstruction cases for the “effective-taus” (A-D). A) The 6ET is in-
between the two leptons and the direction of reconstructed taus is the same as the leptons. B) The 6ET
is not in-between the two leptons but reconstructed taus’ direction is still same with the corresponding
lepton. C) When the 6ET is not in-between the two leptons and only one direction of reconstructed tau
is same with its corresponding lepton. D) 6ET is not in-between and both tau directions are opposite
of the leptons. (Blue: leptons’ pT , yellow: 6ET , green: reconstructed taus’ pT .)
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Appendix D

Background prediction methods additional
material

D.1 Kinematic variables distributions for CR(tt̄2`) events
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Figure D.1: Some kinematic variables distribution for CR(tt̄2`). Raw MC versus data.
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D.2 Kinematic variables distributions, ratios and

decomposition to backgrounds for CR(NP) events

Figure D.2: Top row tt̄(1`) events, bottom W+jets. Left the three region explicitly, right the combi-
nation to CR(NP). Decomposition of non-prompt events in cases where [a] second(first) lepton is the
non-prompt, [b] negative(positive) lepton is the non-prompt, [c] non-prompt is an electron(muon) and
[d] the non-prompt lepton is in a µµ(eµ) event. Each pair of bin values’ is normalized to 1. Com-
parison between SR, SR(SS), CR(SS) on the left, and comparison between SR, CR(NP) on the right.
The looser selection has been used which stands for SR removing the impact parameter and relative
isolation cuts, and relaxing absolute isolation cut at 10 GeV (thus we gain statistics ×7).
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Figure D.3: Top row tt̄(1`) events, bottom W+jets. First column: the available examined origins which
are considered for non-prompt lepton, bin1: from b to c quark transition, bin2: form c to s, bin3: from
other quark, bin4: non-matched to object. Rest three column the pT , |η| and |∆φ(`, jet1)| distributions
of the non-prompt leptons respectively. Distribution stands for the loose selection with removed IP
& Irel cuts, and relaxed Iabs to 10 GeV. Figure D.4 shows the same with combined the SR(SS) and
CR(SS) to CR(NP).

Figure D.4: Top row tt̄(1`) events, bottom W+jets. First column: origins which are considered for non-
prompt lepton origin. Rest three column the pT , |η| and |∆φ(`, jet1)| distributions of the NP–leptons
respectively. Distribution stands for the loose selection with removed IP & Irel cuts, and relaxed Iabs
cut to 10 GeV.
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Figure D.5: Se set of some kinematic variables distribution for CR(NP) events selection. Raw simulation
background versus data.

182



D.3 Kinematics in CR(Z), hadronic-recoil corrected

distributions

Figure D.6: Hadronic recoil corrected distributions for CR(Z) events (corrected version of figure 6.8).
On top: the two main variables distributions which their cuts defines the CR(Z). Bottom: the di-muon
invariant mass Mµµ distribution (left) and the di-tau invariant mass Mττ distribution (right).
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Figure D.7: Hadronic recoil corrected distributions for CR(Z) events (corrected version of figure 6.10).
Top row: data and MC(reco) distributions of the |UT |. Bottom row: data and MC(reco) distributions
of the UL. All plots are in CR(Z) events. From left to right the bins: 200 < pT (Z) < 300 GeV,
300 < pT (Z) < 400 GeV, pT (Z) > 400 GeV.

D.4 Kinematic variables distributions for SR-inv events

Figure D.8: The pT (`1), M`` and Mττ distributions of SR-inv region. MC background and data.

D.5 kinematic variables distributions for CR(VV) event
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Figure D.9: Some kinematic variables distribution for CR(VV) events selection. Raw simulation back-
ground versus data.
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Appendix E

Systematic uncertainties additional
material

E.1 Number of MC entries per region: statistics of the

samples used

Table E.1: Number of entries in simulated MC events for SR and CRs. These numbers indicate the
statistics of the simulation. We deduce that entries are relatively poor for some of the backgrounds of
SR(bin1): tt̄(1`), W+jets, however still a factor of about ×10 higher than the predicted yields.

Sample SR(bin1)+SR(bin2) CR(tt̄2`) CR(NP) CR(VV) CR(Z) SR-inv
tt̄(2`) 22 + 60 2896 6 721 301 5
tt̄(1`) 8 + 14 17 72 5 30 1

W+jets 0 + 1 0 7 0 0 1
DY+jets 0 + 4 1 0 15 30733 11

VV 26 + 40 60 56 1498 1941 3
Rare 6 + 6 162 24 190 545 0

Total Background 62 + 125 3136 165 2429 33550 21
Data Observed 2 + 4 119 11 81 9516 5
SUSY(250,230) 51 + 15 0 5 0 0 7
SUSY(300,250) 52 + 53 2 10 8 0 8
SUSY(200,180) 20 + 6 0 6 0 0 2

E.2 Signal uncertainties per mass point.

E.3 CMS performance on parameters and quantities used in

analysis
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Figure E.1: Signal % uncertainties. Rows: statistical,ISR,JES,eff(µ),eff(e). Columns: incl.,bin1,bin2.
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Figure E.2: Tracker performance on impact parameters. Transverse and longitudinal impact parameters
|dxy|(≡ d0) and |dz|(≡ z0) resolution, as a function of η and pT , for single isolated muons with pT = 1,
10, and 100 GeV. Barrel, transition-area, and endcap regions, defined by η intervals of 0–0.9, 0.9–1.4
and 1.4–2.5 respectively. For each bin in η, the solid (open) symbols correspond to the half-width for
68% (90%) intervals centered on the mode of the distribution in residuals [73].
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Figure E.3: 1st row: background and data |dz| distributions including leptons from CRs and VRs
(vetoing leading muon of CR(Z)). From left to right: both leptons, only µ, and only e. Signal leptons
includes all regions ie: +SR. Z+jets background is corrected due to hadronic recoil according to formula
6.3. 2nd row: the dz-cut efficiency as a function of different cut value (with respect to 0.5 cm cut: last
overflow-bin). Three different pT ranges are shown from left to right. (3rd and 4th rows: the breakdown
of 2nd into only µ and e respectively). 5th row: three η ranges (inclusive over pT ranges), for both
leptons, for e, and for µ left to right respectively.
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Figure E.4: The material budget of the CMS tracker in units of radiation length (X0) as a function
of η for the different sub-detectors (left) and functionalites (right). The radiation length is the mean
distance over which the energy of an electron drops to 1/e by bremsstrahlung. (Taken from [77]).

Figure E.5: Left: a schematic cross section through the CMS tracker. Each line represents a detector
module. Double lines indicate back-to-back modules which deliver stereo hits. Right: Number of
measurement points in the strip tracker as a function of pseudorapidity. (Taken from [77]).

Figure E.6: Resolution of track parameters for single muons with transverse momenta of 1, 10 and 100
GeV: transverse momentum (left), transverse and longitudinal impact parameters (middle) and (right)
respectively. (Taken from [77]).
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Figure E.7: Tag-and-probe results for the muon efficiency in data compared to simulation. Given that
a tracker track exists, the plots show the efficiency as a function of muon pT for Soft Muons (left),
Particle-Flow Muons (middle), and Tight Muons (right) in the barrel and overlap regions (top), and
in the endcaps (middle). On the bottom muon deficiencies versus η. The measurement is made using
J/ψ → µ−µ+ events for pT < 20 GeV/c and Z → µ−µ+ events for pT > 20 GeV/c. For pT < 3 GeV/c,
to reduce the background, only tracks with MIP signature are considered. (Taken from [67]).
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Figure E.8: Electron distributions over: ∆ηin, ∆φin and H/E, variables used for pure and efficient
selection reconstruction. First row for barrel, second for endcaps. Bottom row the reconstruction
efficiency versus pT starting from 7 GeV as used in the analysis. (Taken from [97]).
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Appendix F

The CKM and PMNS matrices,
parametrization and measured values

Figure F.1: The CKM and PMNS matrices parametrized. Illustration with the squares representing
the square of the matrix elements. (Values taken from [125, 126]).
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Appendix G

CERN’s current experiments outline

A full list with current CERN’s experiments together with their main purposes and description can
be found here. (Information taken from [43]).

1. ACE: brings together an international team of physicists, biologists and medics to study the
biological effects of antiprotons.

2. AEGIS: (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) uses a beam of an-
tiprotons from the antiproton decelerator to measure the value of Earth’s gravitational accelera-
tion

3. ALICE: (A Large Ion Collider Experiment) detects quark-gluon plasma, a state of matter thought
to have formed just after the big bang.

4. ALPHA: makes, captures and studies atoms of antihydrogen and compares them with hydrogen
atoms.

5. AMS: (Alpha Magnetic Spectrometer) multipurpose high precision detector, looks for dark mat-
ter, antimatter, SM-matter distributions and abundances, and missing matter from a module on
the International Space Station.

6. ASACUSA: compares matter and antimatter using atoms of antiprotonic helium and antihydro-
gen, and studies the properties of matter-antimatter collisions.

7. ATLAS: from a cavern 100 metres below ground, the 7000-tonne ATLAS detector is probing for
fundamental particles doing general-purpose physics analyses.

8. ATRAP: compares hydrogen atoms with their antimatter equivalents - antihydrogen atoms.

9. AWAKE: (proton-driven plasma wakefield acceleration experiment) is an accelerator project,
explores the use of plasma to accelerate particles to high energies over short distances.

10. BASE: is aiming for the most precise measurements of the magnetic moments of protons and
antiprotons - to compare matter with antimatter.

11. CAST: (Cern Axion Solar Telescope) axions could explain differences between matter and anti-
matter - and we may find them at the centre of the Sun.

12. CLOUD: (Cosmics Leaving Outdoor Droplets) experiment uses a special cloud chamber to study
the possible link between galactic cosmic rays and cloud formation.

13. CMS: (Compact Muon Solenoid) is a general-purpose detector at the LHC. It has a broad physics
programme ranging from studying the SM and probe the BSM physics at the Terascale (as well
as ATLAS).
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14. COMPASS: (Common Muon and Proton Apparatus for Structure and Spectroscopy) experiment
is a multipurpose experiment uses the Super Proton Synchrotron to probe fix targets with muon
and pion beams.

15. DIRAC: (DImeson Relativistic Atom Complex) studies the decay of unstable pionium atoms to
gain insight into the strong force.

16. ISOLDE: (Isotope mass Separator On-Line facility) is a source of low-energy beams of radioac-
tive nuclides, which aim to study the properties of atomic nuclei, with further applications in
fundamental studies, astrophysics, material and life sciences.

17. LHCb: (LHC-beauty) experiment specializes in investigating the slight differences between matter
and antimatter by studying the “beauty quark” hadron decays.

18. LHCf: (LHC-forward) experiment uses particles thrown forward by collisions in the LHC as a
source to simulate cosmic rays in laboratory conditions.

19. MOEDAL: (MOnopole and Exotics Detector At the LHC) its prime motivation is to search
directly for the magnetic monopole.

20. NA61/SHINE: studies the properties of the production of hadrons in collisions of beam particles
(pions, and protons, beryllium, argon and xenon) with a variety of fixed nuclear targets.

21. NA62: studies rare kaon decays. Understanding these decays will help to check some of the
predictions the SM makes about short-distance interactions.

22. NA63: experiment directs beams of electrons and positrons onto a variety of targets to study
radiation processes in strong electromagnetic fields.

23. nTOF: (neutron Time-Of-Flight) studies neutron-nucleus interactions for neutron energies rang-
ing from a few meV to several GeV.

24. OSQAR: (Optical Search for QED vacuum bifringence, Axions and photon Regeneration) exper-
iment searches for axions, and studies the properties of a vacuum.

25. TOTEM: (TOTal, Elastic and diffractive cross-section Measurement) experiment studies particles
thrust forward by collisions in the LHC.

26. UA9: is investigating how tiny bent crystals could improve how beams are collimated in modern
hadron colliders such as the LHC.
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[32] Wim Beenakker, Silja Brensing, Michael Krämer, Anna Kulesza, Eric Laenen, Leszek Motyka,
and Irene Niessen. Squark and gluino hadroproduction. Int. J. Mod. Phys. A, 26:2637, 2011.

197
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