
NATIONAL AND KAPODISTRIAN UNIVERSITY OF

ATHENS

MASTER THESIS

Polytope Membership in High Dimension

Author:
Evangelos
ANAGNOSTOPOULOS

Supervisor:
Prof. Ioannis Z. EMIRIS

A thesis submitted in fulfilment of the requirements
for the degree of Master of Science

in the

Graduate Program in Logic, Algorithms and Computation
µ
∏∏∏

λ∀
Department of Mathematics

June 16, 2017

http://www.uoa.com
http://www.uoa.com
http://cgi.di.uoa.gr/~aneva/
http://cgi.di.uoa.gr/~aneva/
http://cgi.di.uoa.gr/~emiris/
http://mpla.math.uoa.gr
http://mpla.math.uoa.gr
http://math.uoa.gr/

iii

National and Kapodistrian University of Athens

Abstract
Department of Mathematics

Master of Science

Polytope Membership in High Dimension

by Evangelos ANAGNOSTOPOULOS

Polytopes in optimization and sampling problems are usually given by implicit rep-
resentations through oracles. The most basic oracle is the polytope membership ora-
cle which can identify whether a query point q lies inside P or not and is often used
as the basis for more complex oracles, such as the separation oracle or the bound-
ary oracle. In this work we aim to design, implement and analyse algorithms for
approximating the membership oracle in polytopes given as the intersection of half-
spaces in high dimension, by trading exactness for efficiency. Previous approaches
were based on classic polytope approximation techniques which, however, have
complexity that scales exponentially in the dimension and are, thus, intractable in
high dimension. We establish a straightforward reduction from approximate poly-
tope membership to approximate nearest neighbor search among points and obtain
complexity bounds polynomial in the dimension, by exploiting recent progress in
the complexity of nearest neighbor search. We then employ this new membership
oracle to obtain a solution for the boundary oracle in high dimension. Lastly, we
evaluate our algorithms experimentally and report results.

http://www.uoa.com
http://math.uoa.gr/

v

Acknowledgements
First and foremost I would like to thank my family for their continuous support. I
would also like to thank my advisor Ioannis Z. Emiris and my co-advisor Vissarion
Fisikopoulos for their patience and guidance. Furthermore, I would like to thank
Ioannis Psarros and the remaining members of the ErGA lab for the helpful discus-
sions.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Prerequisites . 1
1.2 Motivation . 2
1.3 Previous work . 2
1.4 Our contribution . 4

2 Polytope Membership 5
2.1 Exact Polytope Membership Oracle . 5
2.2 Approximate Polytope Membership Oracle 8

3 Polytope Boundary 13
3.1 Polytope Boundary Framework . 13
3.2 Exact Polytope Boundary Oracle . 14
3.3 Approximate Polytope Boundary Oracle 15

4 Experiments 19
4.1 Experimental setup . 19

5 Conclusion and future work 23

Bibliography 25

1

Chapter 1

Introduction

1.1 Prerequisites

Let us start with some definitions about our objects of interest. We narrow our at-
tention to convex polytopes defined as the bounded intersection of a finite number
of halfspaces. This is a standard convex polytope representation. These polytopes
are called H-polytopes and are defined as follows:

P = {x ∈ Rd | Ax ≤ b, A ∈ Rn×d, b ∈ Rn}.

The notation Ax ≤ b indicates n simultaneous linear inequalities defined by the rows
of matrix A and b; each inequality constraint defines a halfspace where P must lie.
We denote the i-th inequality, 1 ≤ i ≤ n, as aix ≤ bi, where ai is the i-th row of A
and bi is the i-th coordinate of b.

If P does not change when some halfspace constraint is ignored, then the re-
spective hyperplane is called redundant; otherwise, the hyperplane is called non-
redundant or supporting hyperplane. Clearly, the supporting hyperplanes are pre-
cisely those for which at least one point in P satisfies the corresponding equality
constraint. The supporting hyperplanes also define the facets of the polytope P . We
associate each facet of the polytope with its corresponding (in)equality and denote it
as Fi. Formally:

Fi = {x ∈ P | aix = bi}, 1 ≤ i ≤ n

Additionally, we denote as ∂P the boundary of the polytope, i.e.:

∂P = {x ∈ P | ∃i, 1 ≤ i ≤ n s.t. x ∈ Fi}

We are interested in efficient solutions to the following fundamental polytope prob-
lems. Notice how each problem wants to answer a specific question about the poly-
tope. Solutions to these problems are oracles which provide implicit access to the
polytope, by answering the respective questions.

Definition 1 (Polytope Membership Problem). Given a convex H-polytope P ⊂ Rd,
preprocess it into a data structure, so that it is possible to efficiently determine
whether a query point q ∈ Rd lies in P or not.

2 Chapter 1. Introduction

Definition 2 (Polytope Boundary Problem). Given a convex H-polytope P ⊂ Rd,
preprocess it into a data structure, so that it is possible to efficiently compute the
point p = r ∩ ∂P given a query halfline, or ray, r ⊂ Rd, where ∂P is the polytope
boundary.

The polytope boundary problem is also referred to as ray shooting in the literature.
One obvious solution to these problems is to check the query q against all n in-

equalities of the defining halfspaces of P in a brute-force approach. Although this
method may sound trivial, it is often a plausible solution in the exact setting, espe-
cially in the high-dimensional case.

1.2 Motivation

Our motivation stems from problems in geometric optimization. Let us mention a
couple of important applications for the polytope oracles above. A concrete applica-
tion is in randomly sampling convex H-polytopes, which is the main paradigm for
approximating the volume of H-polytopes in polynomial time in general dimension.
The inner loop of such algorithms contains the polytope operations studied in this
paper. Specifically, randomized polynomial-time algorithms for volume approxima-
tion, e.g. [DFK91; LV06], rely on random walks that need an access to a membership
or boundary oracle. The first implementation of randomized algorithms that scale
in high dimension appeared in [EF14]. Their approach relies on the standard ran-
dom walks known as hit-and-run, which require a boundary oracle. Notice that,
although this software can handle polytopes in spaces whose dimension goes up to
200, it cannot scale as efficiently for specific classes of polytopes with a large num-
ber of facets. In particular, it cannot approximate the volume of cross-polytopes of
dimension 20 or more.

In this paper, we improve upon the complexity of these methods, specifically
when the dimension d is an input parameter, by allowing ourselves to answer cor-
rectly within some approximation error ϵ and some success probability p. In order to
achieve that we use a reduction to the problem of the approximate nearest neighbor
(ANN) problem, which is the most famous problem with a solution in the high-
dimensional setting, as we will see in the next section.

Definition 3 (Approximate Nearest Neighbor (ANN) Problem). Given a point set
X ⊂ Rd and an approximation parameter ϵ ∈ (0, 1), preprocess X into a data struc-
ture, so that, given a query point q ∈ Rd, it is possible to efficiently find a point
x∗ ∈ X such that ||q − x∗||2 ≤ (1 + ϵ)min

x∈X
||q − x||2

1.3 Previous work

Let us start with the Polytope Membership problem. In the exact setting, a typical so-
lution is the one mentioned above where one tests all n inequalities for a complexity

1.3. Previous work 3

of O(nd). In the approximate setting, where we allow an approximation error ϵ, there
are two classical results. Dudley [Dud74] showed that any convex body K ⊂ Rd is
ϵ-approximated by a polytope P with O(1/ϵ(d−1)/2) facets. This bound is asymptoti-
cally tight in the worst case. Answering membership queries on the ϵ-approximating
polytope implies a (trivial) data structure for the approximate polytope membership
problem with space and query time of O(1/ϵ(d−1)/2). Bentley et al [BPF82] gave an-
other construction for an ϵ-approximating polytope by creating a d-dimensional grid
with cells of size Θ(ϵ · diam(K)) and storing for every column along each axis, the
two extreme values where the column intersects K. Answering membership queries
on this ϵ-approximating polytope can be done in constant time (assuming a model of
computation that supports the floor function) and the corresponding storage grows
to O(1/ϵd−1).

More recent work on Approximate Polytope Membership is studied in the form
of space-time trade-offs [AFM11; AFM12b; AFM12a] for fixed dimension. In these
approaches the authors present a data structure called SplitReduce, which, given a
parameter t, hierarchically subdivides the space using a quadtree until each cell lies
entirely in P , or lies entirely outside P , or the intersection of the cell and P is ap-
proximated by an ϵ-approximating polytope using Dudley’s approach with at most
t halfspaces. Queries are then answered by descending the quadtree and check-
ing the type of the cell of the appropriate leaf. If the cell lies entirely inside or
outside we answer appropriately. Otherwise all (at most) t inequalities approxi-
mating the polytope locally are checked in a brute-force way, providing us with an
answer. t is the controlling time-space trade-off parameter and the authors show
that the quadtree approach achieves a space of O(1/ϵ(d−1)/2) with a query time
t = Θ(log(1/ϵ)/ϵ(d−1)/8).

Even more recently the same authors [AFM17], again for fixed dimension, dropped
the quadtree approach in favour of a data structure employing a hierarchy of ellip-
soids selected by a sampling process on classical structures from the theory of con-
vexity defined on the polytope. Their new proposed data structure achieves space
O(1/ϵ(d−1)/2) with an optimal query time of log(1/ϵ).

Concerning the boundary oracle, in exact form, it is possible to achieve query
time in O(log n) by using space in O(nd/ log⌊d/2⌋ n) [Ram99]. The boundary oracle
is dual to finding the extreme point in a given direction among a known pointset.
This is ϵ-approximated through ϵ-coresets for measuring extent, in particular (direc-
tional) width, but requires a subset of O((1/ϵ)(d−1)/2) points [AHPV05]. The expo-
nential dependence on d or the linear dependence on n make these methods of little
practical use in high dimensions. Ray shooting has been studied in practice only in
low dimensions, e.g., in 6-dimensional polytopes described by the set of their ver-
tices [ZY13].

We will also present now current state-of-the-art approaches to the ANN prob-
lem as we will build atop of those for the design of our oracles. There are many
solutions to this problem, but in principle, methods that scale well (polynomially)

4 Chapter 1. Introduction

with the dimension d belong to two categories.
The first major category is the well studied approach of Locality Sensitive Hash-

ing (LSH), first introduced by Indyk and Motwani in 1998 [IM98]. This method
works by exploiting a data dependent space partition through the utilization of lo-
cality sensitive hash functions which are functions that are more likely to assign the
same value to “similar” objects, under some notion of similarity.

The other major category focuses on random projections to create a drastically
low dimensional representation of the pointset[AEP15] and then uses techniques
that work well for fixed dimension, like BBD-trees[Ary+98]. Both approaches achieve
sublinear query time with (near-)linear storage, while scaling polynomially with re-
gards to the dimension. In addition, both approaches get to that by allowing a prob-
ability of success p. This is the same probability of success that we will inherit in our
oracle.

1.4 Our contribution

We assume that the given H-polytope is full dimensional and that its representation
is minimal, i.e. that it does not contain redundant inequalities.

We describe a simple constructional reduction from the Polytope Membership
Problem to the problem of Nearest Neighbor and then show under which condi-
tions this reduction holds for the respective approximate versions of the problems.
This gives us the flexibility to exploit advances in the research of ann in improving
the behaviour of our polytope membership oracle. We demonstrate this flexibility
by using a high dimensional solution to the ann problem in order to offer a prac-
tical approximate polytope membership oracle in high dimension with complexity
bounds polynomial in the dimension d and sublinear in the number of inequalities
n.

We also present an iterative framework for creating boundary oracles for H-
polytopes and describe a concrete instantiation of it. We then modify this algorithm
to work in an approximate setting. Both approaches use the polytope membership
oracle that we described above and which is based on (approximate) nearest neigh-
bors.

We implement and experimentally examine our algorithms.Our implementation
is linked to the software of [EF14] for polytope volume, so as to provide faster or-
acles. It exhibits encouraging improvements in the practical complexity of volume
approximation.

The rest of the paper is organized as follows. The next chapter discusses poly-
tope membership and the reduction to Nearest Neighbor, focusing on the approxi-
mate setting. Chapter 3 considers the boundary oracle and various algorithms for
answering it in the approximate setting. The implementation and experiments are
discussed in Chapter 4. We conclude in Section 5 with open questions.

5

Chapter 2

Polytope Membership

In this chapter we focus on the fundamental problem of testing membership in H-
polytopes in general dimension. We first present a straightforward reduction to
Nearest Neighbor search in the exact form and then analyse the conditions under
which this reduction holds in the approximate setting. Then, we will exploit ap-
proaches in approximate nearest neighbor in high dimension that will associate a
probability of success with the membership oracle in order to make the problem
feasible in high dimension.

2.1 Exact Polytope Membership Oracle

We will establish here a reduction from the exact polytope membership problem
to the exact nearest neighbor problem. This was established in [Aur87], where it
was shown that there is a connection between the boundaries of polytopes in Rd

and power diagrams in Rd−1. In order to present this reduction we will need some
definitions.

Definition 4 (Cell complex). A cell complex C in Rd is a partition of Rd into finitely
many polyhedra.

Definition 5 (Power Diagram). A power diagram is a partition of the Euclidean
space into into a cell complex defined from a set of spheres, where the cell for a
given sphere S consists of all the points for which the power distance to S is smaller
than the power distance to the other spheres. The power distance of a point p to a
sphere S of center c and radius r is defined as

pow_dist(p, S) = ||p− c||22 − r2

The power diagram is a form of generalized Voronoi diagram, and coincides with
the Voronoi diagram of the sphere centers in the case that all the spheres have equal
radii. For an example of a power diagram, check figure 2.1.

Now, let Rd be spanned by the coordinate axes x1, . . . , xd and let h0 denote the
hyperplane xd = 0. Let a cell complex C be contained in some hyperplane of Rd+1.
Then, C and a polyhedron P ⊂ Rd+1 are said to be affinely equivalent if there exists
a central or parallel projection ϕ such that, for each face f of C, f = ϕ(g) holds for

6 Chapter 2. Polytope Membership

FIGURE 2.1: An example of a power diagram of 5 different circles
in two dimensions. It can be seen as a generalization of the Voronoi

diagram of the centers of the spheres.

some face g of P . The following proposition refers to upper halfspaces, which are
precisely those that are unbounded in the positive direction of xd, in other words
these halfspaces contain a halfline directed in the positive direction of xd.

Proposition 6. [Aur87, Thm.4] For any polyhedron P ∈ Rd, which is expressible as the
intersection of upper halfspaces, there exists an affinely equivalent power diagram in hyper-
plane h0 : xd = 0.

The above result provides a reduction from ray shooting in a polyhedron to point
location in a polyhedral complex. In the special case of polytope membership, the
polyhedral complex becomes a single cell (the polytope) and the power diagram
becomes a Voronoi diagram. This provides a reduction from polytope membership
to the problem of nearest neighbor.

Corollary 7. Let P ⊂ Rd be a convex polytope described as the intersection of n non-
redundant halfspaces. For every point p∗ ∈ P \ ∂P it is possible to compute a set S of n+ 1

points such that, p∗ ∈ S and, given a query point q, the exact Polytope Membership test for
a query point q reduces to finding the Nearest Neighbor of q among these n+ 1 points.

Proof. As mentioned in the introduction, the defining halfspaces of P correspond to
hyperplanes which define the facets of the polytope, as they are non-redundant by
assumption.

We initialize S = {p∗}. We will describe for completeness the procedure to com-
pute the remaining n points of S such that the corresponding Voronoi diagram of
these n points and p∗ will have the polytope P as the voronoi cell of p∗. These n+ 1

points will be the points of the corollary.
For each facet Fi and its corresponding hyperplane Hi := aix = bi, 1 ≤ i ≤ n,

we compute the projection of p∗ on Hi and denote it as fi. Then, we compute the

2.1. Exact Polytope Membership Oracle 7

point pi, 1 ≤ i ≤ n, such that the line segment (p∗, p) is perpendicular to Hi and
d(p∗,Hi) = ||p∗ − fi||2 = d(pi,Hi), where d(p, S) = min

x∈S
||p− x||2. Equivalently,

pi = fi + (fi − p∗)

Conceptually we can think of each point pi as the symmetric point of p∗ about Hi.
We now have a set of points S = {p∗, p1, . . . , pn} of n + 1 points that have the

following property. In the Voronoi diagram of S, the cell that corresponds to p∗ is
precisely the input polytope P . By the Voronoi property, the following holds:

q ∈ P ⇔ ||p∗ − q||2 ≤ ||q − s||2, ∀s ∈ S.

Polytope membership returns “YES" iff the nearest neighbor of q is p∗.

p�

p�
��

p2

�2

�3

p3

�4

p4

�5

p5

�6p6

�7

p7

FIGURE 2.2: Construction of a pointset S from Corollary 7 for a 2d poly-
tope. p∗ ∈ P \∂P is the selected internal point. Each pi corresponds to the
symmetric point of p∗ about the facet Fi.

A nearest neighbor computation or data structure on these n+ 1 points of corol-
lary 7 provides us with an exact Membership Oracle for the polytope P . We also
emphasize that the choice of p∗ ∈ P is arbitrary. This means that a set S satisfying
the Corollary can be computed for each point p∗ ∈ P \ ∂P .

8 Chapter 2. Polytope Membership

2.2 Approximate Polytope Membership Oracle

In order to solve the Polytope Membership approximately, we allow for a relaxation
of the problem definition. Given an approximation parameter ϵ, we still wish to
decide membership in H-polytopes, in other words whether a query point q ∈ P ,
but we permit ourselves to answer either way if q’s distance from ∂P is at most
ϵ · diam(P), where diam(·) stands for the diameter, i.e. the longest segment between
two points in the polytope. The diameter is obviously obtained by two vertices of
the polytope.

Definition 8 (Approximate Polytope Membership Problem). Given a convex poly-
tope P ⊂ Rd and an approximation parameter ϵ ∈ (0, 1), an ϵ-approximate polytope
membership query decides whether a query point q ∈ Rd lies inside or outside of
P , but may return either answer if q’s distance from the boundary of P is at most
ϵ · diam(P).

We define P−ϵ = {x ∈ P | d(x, ∂P) > ϵ · diam(P)}. Obviously the aforemen-
tioned problem makes sense only when P−ϵ ̸= ∅. Otherwise, we can always return
“NO” for a query point q and be correct.

Lemma 9. Approximate Polytope Membership for an H-polytope P and an approximation
parameter ϵ, such that P−ϵ ̸= ∅, reduces to the ANN problem on the pointset S = {p∗, pi :
1 ≤ i ≤ n}, where p∗ ∈ P−ϵ and the remaining pi are computed as in the proof of Corol-
lary 7.

Proof. Let p∗ ∈ P−ϵ and S be the corresponding pointset from Lemma 7 for P . In
addition, let ∆(P) = max

pi∈S\{p∗}
||pi − p∗||2. By construction, the following holds for

∆(P):
2ϵ · diam(P) < ∆(P) < 2diam(P) (2.1)

Let q ∈ Rd be a query point.

||q − p∗||2 ≥
∆(P)

2ϵ
⇒ , by 2.1

||q − p∗|| > diam(P)⇒

q /∈ P

Therefore we will now focus on the case where ||q − p∗|| < ∆(P)
2ϵ , as otherwise we

will return “NO” after a simple test. We will distinguish the two cases when q ∈ P−ϵ

and q ∈ {Rd | q /∈ P ∧ d(q, ∂P) > ϵ · diam(P)}.
- Let q ∈ P−ϵ, we wish to select an ϵ′ for the ANN problem such that:

(1 + ϵ′) <
||pi − q||2
||p∗ − q||2

(2.2)

Essentially, this would imply that p∗ is the nearest neighbor of q, while every pi ∈
S \ {p∗} is not an ϵ′-NN of q.

2.2. Approximate Polytope Membership Oracle 9

Let ri = d(p∗,Hi) ≥ ϵ · diam(P), where Hi is the hyperplane defining facet Fi. By
construction, d(p∗,Hi) = d(pi,Hi). It follows that the segment p∗pi has length 2ri, as
it is perpendicular to Hi.
Next, we define the projection of q on the line spanned by the segment p∗pi as

qi =
(pi − p∗) · q
||pi − p∗||2

and its distance from Hi as

ai = d (qi,Hi) ≥ ϵ · diam(P)

Obviously now, as depicted in Figure 2.3:

||pi − qi||2 = ri + ai

||p∗ − qi||2 = ri − ai

Therefore,

||pi − q||22 = ||pi − qi||22 + ||q − qi||22 = (ri + ai)
2 + k2i

||p∗ − q||22 = ||p∗ − qi||22 + ||q − qi||22 = (ri − ai)
2 + k2i ,

where ki = ||q − qi||22 < diam(P).
It follows that,

||pi − q||22
||p∗ − q||22

=
(ri + ai)

2 + k2i
(ri − ai)2 + k2i

= 1 +
4riai

(ri − ai)2 + k2i

≥ 1 +
4ϵ2(diam(P))2

(ri − ai)2 + k2i

≥ 1 +
4ϵ2(diam(P))2

2(diam(P))2

≥ 1 + 2ϵ2

Substituting in (2.2), yields:

(1 + ϵ′) <
√

1 + 2ϵ2 ⇒

ϵ′ <
√

1 + 2ϵ2 − 1

- Next, let q ∈ {Rd | q /∈ P ∧ d(q, ∂P) > ϵ · diam(P)}. Assume that the nearest
neighbor of q is pi ∈ S \ {p∗}. Similar to before, we are looking for an ϵ′ such that:

(1 + ϵ′) <
||p∗ − q||2
||pi − q||2

10 Chapter 2. Polytope Membership

Conceptually this means that p∗ cannot be an ANN of q. Now, like before:

||p∗ − q||22
||pi − q||22

=
(ri + ai)

2 + k2i
(ri − ai)2 + k2i

= 1 +
4riai

(ri − ai)2 + k2i

≥ 1 +
4(ϵ · diam(P))2

(ri − ai)2 + k2i

≥ 1 +
4(ϵ · diam(P))2

2
(
2∆(P)

2ϵ

)2

≥ 1 +
4ϵ4 · diam2(P)

2∆2(P)

> 1 +
4ϵ4 · diam2(P)

4 · diam(P)

> 1 + e4 · diam(P)

It follows that,
ϵ′ <

√
e4 · diam(P)− 1

Choosing e′ = min{
√

e4 · diam(P)−1,
√
1 + 2ϵ2−1} and answering ϵ′-ANN queries

on this set solves the original problem, because if a query point q ∈ P−ϵ, then we
have ensured that the ϵ′-ANN data structure will correctly identify p∗ as the only
approximate nearest neighbor of q. Similarly in a symmetric argument, for every
q /∈ P , such that d(q, ∂P) > ϵ · diam(P), p∗ will not be an approximate nearest
neighbor of q. Lastly, if d(q, ∂P) ≤ ϵ · diam(P) the response from the ANN data
structure does not matter. Therefore, the reduction is complete.

p� p�

�
�
d
i
a
m

�
P

)

�
�
d
i
a
m

�
P

)

��

r� r�

P

FIGURE 2.3: pi corresponds to the symmetric point of p∗ about the facet
Fi. We decompose the distances ||p∗−q||2 and ||pi−q||2 and express them
in terms of ai and ki. Notice how q ∈ P−ϵ ⇒ ai ≥ ϵ · diam(P) and how
ki < diam(P), as q cannot be a vertex.

2.2. Approximate Polytope Membership Oracle 11

We can now employ approaches for high-dimensional ANN in order to obtain
a polynomial bound on the dimension by further allowing the data structure to an-
swer correctly with a probability (varying on the selection of the ANN algorithm).
Below, Õ omits logarithmic factors.

Theorem 10 (Approximate Polytope Membership Oracle). For an H-polytope P ⊂
Rd and an approximation parameter ϵ, such that P−ϵ ̸= ∅, we can solve the Approximate
Polytope membership problem on P by building a data structure on P answering queries in
Õ(dnρ+o(1)) time with a probability of success p = 1/(2(1+ ϵ)2− 1), using Õ(n1+ρ+o(1)+

dn) space.

Proof. The Chebyshev center of a polytope P is defined as the center of the largest
inscribed ball of P . Formally it is given by:

argmin
x∈P

max
y∈P
||x− y||22

Many points inside the polytope can be Chebyshev centers, but they will all share
the same radius.

Let c be the Chebyshev center of P with radius r and assume that c /∈ P−ϵ, in
order to deduce an absurdity.

c /∈ P−ϵ ⇒ r < ϵ · diam(P) (2.3)

Take a point c′ ∈ P−ϵ, as P−ϵ ̸= ∅.

d(c′, Fi) ≥ ϵ · diam(P), 1 ≤ i ≤ n⇒ B(c′, ϵ · diam(P)) ⊂ P (2.4)

Combining (2.3) and (2.4) produces an absurdity as we have found a larger inscribed
ball in P , contradicting the property of c. Therefore, c ∈ P−ϵ.

We will use p∗ = c as the starting point of the construction of the pointset S in
Lemma 9. Answering ANN queries on that pointset S using the LSH data structure
of [AR15] completes the proof of this theorem.

13

Chapter 3

Polytope Boundary

This chapter focuses on the boundary problem for H-polytopes. Like in the pre-
vious section we will show a solution for the exact case and then we will define an
approximate version of this problem. Afterwards, we will make the jump to the high
dimensional case where we will answer correctly under some probability p, like in
the corresponding membership version.

Recall that a boundary oracle (i.e.. a solution to the boundary problem) given
a ray r emanating from inside P , returns p∗ = r ∩ ∂P . A ray, or halfline, in Rd is
defined by a point in Rd, which is the apex, and a direction (unit) vector in Rd. We
will usually denote the ray’s apex as s and the ray’s direction as v.

Next we propose and study a generalized framework for the polytope boundary
problem for the case where r is a random direction and analyse one specific instan-
tiation of it.

3.1 Polytope Boundary Framework

Inspired by widely used iterative root-finding methods for polynomial equations,
such as bisection or derivative-based methods, we introduce a framework for solv-
ing the polytope boundary problem. The framework consists of two steps:

1. Selecting a starting point t1 such that t1 /∈ P , but t1 ∈ r.

2. Iteratively computing points ti ∈ r, i ≥ 2, such that each point ti is closer to ∂P

(or to the ray’s apex) than ti−1, until a membership oracle decides that ti ∈ P .

A number of strategies can be chosen for both of the two steps defined above.
The conceptual similarity between root-finding methods is that the proposed frame-
work considers the ray as an arbitrary function and starts with a random point on
the function (ray) and iteratively closes in on the “root” of the function (ray) i.e.. the
point where it meets the boundary of the polytope.

14 Chapter 3. Polytope Boundary

FIGURE 3.1: An example of the boundary oracle converging to a solution.
The query ray is r = (s, v⃗) and t4 = r∩∂P is the solution. t1, t2, t3, t4 were
computed in sequence.

3.2 Exact Polytope Boundary Oracle

We will now describe a concrete instantiation of this generalized procedure for a
polytope P based on an exact nearest neighbor data structure E_MEM defined on the
pointset S of Corollary 7 that we described in section 2.2. This exact nearest neighbor
data structure will act as the exact membership oracle for the polytope P .

Finding the starting point The first step is to find a starting point t1 such that
t1 ∈ r and t1 /∈ P . We may use the intersection of r with a bounding box around
P . A bounding box of P can be readily computed by solving 2d linear programs to
compute the farthest points on P along the coordinate directions.

Finding the intersection point We aim at an efficient method following a derivative-
like approach. Given a starting point t1 /∈ P : let pi be the nearest neighbor of t1 using
the data structure defined for membership, i.e. pi = E_MEM(t1). Let Hi be the hyper-
plane supporting the facet Fi used to define pi; in other words, Fi separates the cell
of pi from P in the Voronoi diagram. Now, let t2 = (Hi ∩ r). Iterate by computing
t3, t4, . . ., until the membership oracle decides that tn ∈ P .

3.3. Approximate Polytope Boundary Oracle 15

Below is the pseudocode for the exact version of the problem.

Algorithm 1: Exact boundary oracle, using exact membership

Input: H-polytope P ⊂ Rd, ray r (pair (r.apex, r.direction))
Output: t ∈ Rd s.t. t ∈ r ∩ ∂P

1 E_MEM = membership oracle for P, based on NN approach of Chapter 2;
2 Q = bounding_box(P);
3 t = Q ∩ r;
4 do
5 tprev ← t;
6 pi ← E_MEM(t);
7 H ← Hi (facet corresponding to pi);
8 t← H ∩ r;

9 while E_MEM(t) ̸= p∗;
10 return t;

Lemma 11 (Correctness of Algorithm 1). Algorithm 1 always converges to a solution.

Proof. Let t1, t2, . . . denote the sequence of successive points computed on the ray r

by the above algorithm. Let x1, x2, . . . be a sequence of points in S, each representing
the nearest neighbor of the point ti. This means that the nearest neighbor of ti was xi
at the i-th step. We assume without loss of generality that each ti has a single nearest
neighbor, because otherwise it would mean that ti falls on the intersection of a line
(the ray), a Voronoi facet and a supporting hyperplane which is highly degenerate.
However, even in that case we could consider every nearest neighbor of the point
and take the one that improves the distance the most.

For correctness, assume that we have reached the i-th step. There are two cases
for ti+1. Either it lies on ∂P in which case the membership data structure E_MEM will
identify it as being inside and the algorithm will terminate. Otherwise, by convexity
of the cell of xi, ti+1 lies between ∂P and ti, since ti+1 lies on an “extension” of
the facet (meaning on Hi \ Fi) between the cell of xi and P . Since Hi \ Fi cannot
belong to a Voronoi facet, ti+1 will always belong to a new Voronoi cell. Therefore
the sequence xi will not have any repeating points and the algorithm will eventually
reach ∂P where the iteration will stop and return ∂P ∩ r.

3.3 Approximate Polytope Boundary Oracle

As the focus of this work is on practical high dimensional solutions, it becomes ap-
parent that we need to offer some room for flexibility in the answer of the boundary
oracle, since exact nearest neighbor queries are very expensive.

To that end we define an approximate version of the polytope boundary problem.

Definition 12 (Approximate Polytope Boundary Problem). Given a convex

16 Chapter 3. Polytope Boundary

H-polytope P ⊂ Rd and an approximation parameter ϵ ∈ (0, 1), preprocess P into
a data structure such that, given a query ray r ⊂ Rd emanating from inside P , it is
possible to efficiently compute a point r∗ ∈ r such that d(r∗, ∂P ∩ r) ≤ ϵ · diam(P).

The first step towards a solution to the approximate polytope boundary problem
would be to build an ANN data structure on the pointset S from Lemma 7 and
substitute that as the membership data structure in algorithm 1. However that is not
enough, since with only that change the algorithm could be fooled and get stuck in
a “local optima”. To see that, imagine that the algorithm has reached the point t2, in
Figure 3.1, whose nearest neighbor is p2, but the ANN data structure returns p3 as a
valid approximate nearest neighbor. Then algorithm 1 would keep finding the same
point again and again (and possibly never terminate).

For the approximate version we make two additional changes to the algorithm.
First, we compare ti’s and ti+1’s distance from the ray’s source point s. If the distance
is not improved, then we discard the current ti+1 and set it as ti+1 = (ti− s)− v

||v||2 ϵ.
In other words, in this case we take an ϵ-step from ti towards the ray’s apex.

The second change concerns the termination criterion of the algorithm. Now we
stop when the approximate membership oracle identifies a point ti as being inside
the polytope, or when the point ti lies in the opposite direction of the ray.

Algorithm 2: Approximate boundary oracle, using approximate membership

Input: H-polytope P ⊂ Rd, ray r (pair (s, v)), ϵ
Output: t ∈ Rd s.t. t ∈ r and d(t, ∂P) ≤ ϵdiam(P)

1 A_MEM = approximate membership oracle for P;
2 Q = bounding_box(P);
3 t = Q ∩ r;
4 do
5 pi ← A_MEM(t);
6 if pi == p∗ then
7 return t+ v

||v||2 ϵ;

8 end
9 tprev ← t;

10 H ← Hi (facet corresponding to pi);
11 t← H ∩ r;
12 if ||t− s||2 ≥ ||tprev − s||2 then
13 t← (tprev − s)− v

||v||2 ϵ;

14 end
15 if (t− s) · v < 0 then
16 return s+ v

||v||2 ϵ;

17 end

18 while True;

Convergence

3.3. Approximate Polytope Boundary Oracle 17

Lemma 13 (Correctness of Algorithm 2). Algorithm 2 always converges to a solution for
the approximate boundary problem.

Proof. Observe that the successive points ti lying on the ray r are always improving
the distance to the ray’s apex, by a factor of at least ϵ. Additionally, by definition, the
ray’s apex always lies inside P . We separate two cases for the ray’s apex, which we
will from now on denote as s.

1. d(s, ∂P) > ϵ · diam(P) + ϵ

2. d(s, ∂P) ≤ ϵ · diam(P) + ϵ

In case 1, the algorithm will eventually reach a point ti, after performing a number
of ϵ-steps, such that ti ∈ P and d(ti, ∂P) ≥ ϵ · diam(P). Since the ray’s apex s is at
distance > ϵ ·diam(P)+ ϵ from ∂P this will happen while (ti− s) · v > 0. In this case
we return the point ti + v

||v||2 ϵ which of course lies within distance ϵ · diam(P) from
∂P .

In case 2, the point ti will either reach d(ti, ∂P) > ϵ · diam(P) and will be iden-
tified as being inside and in which case the algorithm will correctly return a point
ti +

v
||v||2 ϵ. Alternatively, it will take an ϵ-step and move to the opposite direction of

the ray. In that case, s is identified as lying at distance at most ϵdiam(P) + ϵ from
∂P and in which case we return the point s+ v

||v||2 ϵ which lies in r and is at distance
< ϵ · diam(P) from ∂P .

Therefore, eventually, the algorithm will return a point t, such that t ∈ P and
d(t, ∂P) ≥ ϵ · diam(P).

The analysis of the proof actually guarantees that the returned point will always
lie inside P .

19

Chapter 4

Experiments

This section examines the practical aspects of the examined oracles, in particular, it
introduces our implementation and discusses the experiments.

4.1 Experimental setup

Datasets. We experiment on a synthetic dataset consisting of high-dimensional
polytopes with a large number of facets. In particular, for the following set of possi-
ble dimensions d = {40, 100, 500, 1000} and the following set of possible number of
facets n = {5000, 10000, 20000, 50000, 100000, 500000, 1000000}, we generate 5 poly-
topes for every combination of d × n. Each polytope P (d, n, i), d ∈ d, n ∈ n, i ∈
{1, 2, 3, 4, 5} lives in a d-dimensional Euclidean space and is described by n inequal-
ities of the form:

ajx ≤ 1000, 1 ≤ j ≤ n,

where aj ∼ mod(U(0, 32767), 1000). The notation U(i, j) denotes the uniform real
distribution over [i, j]. By construction, each polytope contains the origin 0, which
we use as the internal point needed by the approximate membership oracle. If that
assumption was not satisfied, we could have computed an internal point either by
solving a linear program or by computing an important point of the polytope, like
the Chebyshev center.

Implementation. All of our code is linked to the software of [EF14]. It is written
in C++11 based on using the CGAL1 library for the readily available data structures
of d-dimensional objects, Eigen32 for some linear algebra computations and FAL-
CONN[And+15] for the approximate nearest neighbor data structure. We remind
the reader at this point that for a polytope P (d, n, i) we compute n+ 1 points, out of
which one point p∗ ∈ P while all remaining n points pi /∈ P, 1 ≤ i ≤ n. FALCONN
offers LSH only for angular distances so in order to take advantage of that we use
it in the following manner. We consider our pointset already centered around the
internal point, in our case the origin. We build a FALCONN data structure using the
Hyperplane LSH family and setting k = 11, l = 1, number of probes=40, when the

1http://www.cgal.org/
2http://eigen.tuxfamily.org/index.php?title=Main_Page

http://www.cgal.org/
http://eigen.tuxfamily.org/index.php?title=Main_Page

20 Chapter 4. Experiments

number of facets n ≥ 10000. Otherwise, we set them to l = 1, k = 8 and number of
probes=150. l corresponds to the number of hash tables built, k corresponds to the
number of hash functions used per hash table and number of probes is a parameter
for the multi-probe LSH scheme[Lv+07]. The data structure is built for every com-
puted point besides the internal one. Then, assuming that for a query point q the
FALCONN data structures returns an approximate nearest neighbor guess xi; we
compare d(xi, q) to d(p∗, q) and return the point closet to q out of xi, p∗. The param-
eters for FALCONN were selected in a manual approach, while trying to maintain a
90% success rate for the approximate boundary oracle.

Evaluation protocol For both the membership and boundary oracle we report pre-
processing time, total query time, and success rate vs n and d as n and d vary in their
respective sets n,d. Specifically for the boundary oracle we also report the average
number of steps that it required in order to reach a solution and we also compute the
min,max and average distances of the point returned from our approximate bound-
ary oracle to the actual point that the exact ray shooting problem should have com-
puted. We compare the query time to the naive approach of checking all n facets of
P . For the membership oracle we sample 1000 query points inside the polytope via
the popular hit-and-run paradigm and then move these points sufficiently far from
the origin so that they lie outside the polytope. This generates another 1000 points
to form a total of 2000 points. Similarly for the boundary oracle we use 1000 query
points in total.

Results Table 4.1 depicts the total time in seconds for creating the approximate
membership oracle on the random polytopes for different values of d and n.

The two following figures 4.1 and 4.2 depict the total time in seconds taken for
all the queries to be completed. Parameters in all cases were tuned such that the
corresponding oracles had a success rate of over 90%. Furthermore, the boundary
oracle in all cases took on average at most 4 steps in order to converge to a solution.
The results matched our expectations with regards to the behaviour of the oracles
in the high dimensional case, where we can see a huge difference in the query time,
especially as the number of facets grows larger as well.

Number of facets
5000 10000 20000 50000 100000 500000 1000000

Dimension

40 0.006s 0.013s 0.027s 0.057s 0.125s 0.518s 0.795s
100 0.015s 0.035s 0.057s 0.121s 0.230s 1.005s 1.885s
500 0.055s 0.108s 0.193s 0.419s 0.717s 3.396s 6.744s

1000 0.101s 0.192s 0.342s 0.783s 1.470s 5.500s 10.770s

TABLE 4.1: Preprocessing time in seconds for creating the member-
ship oracle. This includes computing the n + 1 pointset and creating

the ANN data structure on top of it.

4.1. Experimental setup 21

FIGURE 4.1: Average timing results for 2000 queries for varying n
and d. Half of the queries were inside the random polytopes and half

were outside.

FIGURE 4.2: Average timing results for 1000 ray queries for varying
n and d. The approximate boundary oracle took on average at most 4

steps.

23

Chapter 5

Conclusion and future work

In this work we have presented two practical solutions for the H-polytope mem-
bership and boundary problems in the high dimensional setting. Our approaches,
as demonstrated in the experiments chapter, scale well as the dimension and the
number of facets grow larger.

However, we have left some open question which we are looking forward in
answering in the future. For the membership oracle it would be nice to see how the
choice of the internal point affects the ϵ′ of the ANN data structure. Our intuition
tells us that the choice of the Chebyshev center as the choice for the internal point is
the optimal one as it minimizes the maximum distance to any facet.

For the boundary oracle we would like to study its behaviour more and try to
give a convergence rate. The experiments demonstrate that it adopts well to the
boundary of the polytope and can converge very fast. Experiments on both fat and
skinny H-polytopes could give a better insight into its behaviour as well.

Lastly, the holy grail of our efforts is to manage to incorporate the high di-
mensional version of the boundary oracle in sampling approaches for H-polytopes.
Achieving that would provide a huge boost in current software computing approx-
imate volume for polytopes. This involves either making the boundary oracle more
robust to ANN fails, or adopting sampling methods, like hit-and-run, to boundary
oracles with a success rate.

25

Bibliography

[AEP15] E. Anagnostopoulos, I.Z. Emiris, and I. Psarros. “Low-Quality Dimen-
sion Reduction and High-Dimensional Approximate Nearest Neigh-
bor”. In: 31st International Symposium on Computational Geometry (SoCG
2015). 2015.

[AFM11] S. Arya, G. Dias da Fonseca, and D.M. Mount. “Approximate polytope
membership queries”. In: Proc. 43rd ACM Symp. Theory of Computing,
STOC 2011, San Jose, USA. June 2011.

[AFM12a] S. Arya, G. Dias da Fonseca, and D.M. Mount. “Optimal Area-Sensitive
Bounds for Polytope Approximation”. In: Proc. Symp. on Computational
Geometry. 2012.

[AFM12b] S. Arya, G. Dias da Fonseca, and D.M. Mount. “Polytope approximation
and the Mahler volume”. In: Proc. ACM/SIAM Symp. Discr. Algorithms
(SODA). 2012.

[AFM17] S. Arya, G. Dias da Fonseca, and D.M. Mount. “Optimal Approximate
Polytope Membership”. In: Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms. 2017.

[AHPV05] P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. “Geometric approx-
imation via coresets”. In: COMBINATORIAL AND COMPUTATIONAL
GEOMETRY, MSRI. 2005.

[And+15] A. Andoni et al. “Practical and Optimal LSH for Angular Distance”.
In: Proceedings of the 28th International Conference on Neural Information
Processing Systems. 2015.

[AR15] A. Andoni and I. Razenshteyn. “Optimal Data-Dependent Hashing for
Approximate Near Neighbors”. In: Proceedings of the Forty-seventh An-
nual ACM Symposium on Theory of Computing. 2015.

[Ary+98] S. Arya et al. “An Optimal Algorithm for Approximate Nearest Neigh-
bor Searching Fixed Dimensions”. In: J. ACM (1998).

[Aur87] F. Aurenhammer. “Power Diagrams: Properties, Algorithms and Appli-
cations”. In: SIAM J. Comput. (1987).

[BPF82] J.L. Bentley, F.P. Preparata, and M.G Faust. “Approximation Algorithms
for Convex Hulls”. In: Commun. ACM (1982).

26 BIBLIOGRAPHY

[DFK91] M. Dyer, A. Frieze, and R. Kannan. “A random polynomial-time al-
gorithm for approximating the volume of convex bodies”. In: J. ACM
(1991).

[Dud74] R.M Dudley. “Metric entropy of some classes of sets with differentiable
boundaries”. In: Journal of Approximation Theory (1974).

[EF14] I.Z. Emiris and V. Fisikopoulos. “Efficient Random-Walk Methods for
Approximating Polytope Volume”. In: 30th Annual Symp. Computational
Geometry, SOCG’14, Kyoto, Japan, June 08 - 11, 2014. 2014.

[IM98] P. Indyk and R. Motwani. “Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality”. In: Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing. 1998.

[Lv+07] Q. Lv et al. “Multi-probe LSH: Efficient Indexing for High-dimensional
Similarity Search”. In: Proceedings of the 33rd International Conference on
Very Large Data Bases. 2007.

[LV06] L. Lovász and S. Vempala. “Simulated annealing in convex bodies and
an O∗(n4) volume algorithm”. In: J. Comp. Syst. Sci. (2006).

[Ram99] E.A. Ramos. “On Range Reporting, Ray Shooting and K-level Construc-
tion”. In: Proc. Symp. on Computational Geometry. 1999.

[ZY13] Y. Zheng and K. Yamane. “Ray-Shooting Algorithms for Robotics”. In:
IEEE Trans. Automation Science & Engineering (2013).

	Abstract
	Acknowledgements
	Introduction
	Prerequisites
	Motivation
	Previous work
	Our contribution

	Polytope Membership
	Exact Polytope Membership Oracle
	Approximate Polytope Membership Oracle

	Polytope Boundary
	Polytope Boundary Framework
	Exact Polytope Boundary Oracle
	Approximate Polytope Boundary Oracle

	Experiments
	Experimental setup

	Conclusion and future work
	Bibliography

