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Chapter 1 Introduction

1 Introduction

In this work we present several results concerning mostly applications of Baire’s Cate-
gory theorem in Complex Analysis both in one and in several complex variables, com-
bined with known approximation results. Roughly speaking, we consider various com-
plete metric spaces (or Fréchet spaces) of complex functions and we examine particular
subsets of them that are usually defined as all elements of the space that satisfy a spe-
cific property, most of the times concerning universal approximation. Each such class
is proved to be topologically generic, in the sense that it contains a G5 - dense subset.
This is mainly achieved by using Baire’s theorem, among other arguments.

In some of our results we do not make use of Baire’s theorem at all and we work from
the perspective of Functional Analysis in order to obtain results of different nature. We
consider various Fréchet spaces of functions and we examine whether they contain the
translation of a dense vector subspace (affine genericity), whether they contain a dense
vector subspace except 0 (algebraic genericity) and whether they contain a closed vector
subspace, except 0, of infinite dimension (spaceability). See also the relevant definitions
(Definitions 4.22, 4.29 and 4.34 for affine genericity, algebraic genericity and spaceability
respectively) for further details. We will now give a brief overview of the entire work per
chapter.

In chapter 2 we present a generic result in infinitely (denumerably) many complex
variables concerning Hypercyclicity (Theorem 2.4). We consider the following class of
functions

A={f:lx— C: forevery n € N, there exists a sequence of polynomials

converging uniformly on B, to the restriction fip, }.

where B, = B(0, n)N for every n > 1 and (o, = (+(C) is the set of all bounded
complex sequences. The class A is endowed with the seminorms

pu(f) = [Iflls, = sup{[f(2)| : 2 € Bn}

where n > 1. In this way, if we set

1  plf=g

A9 =2 5 T T —g)

forevery f,ge A

then, itis known that (A, p) becomes a Fréchet space. Our main result in this chapter
(Theorem 2.4) states that for for ever element a € /.., \{0}, the corresponding translation
operator T, : A — A with T,(f) = f(z + a) is hypercyclic. Moreover, this result is
proved to be generic in the space (A, p).

At this point, it is important to highlight the following difference: although the pre-
vious result is an extension of Birkhoft’s theorem in infinitely (denumerable) many vari-
ables, we are working on a subspace of holomorphic functions which comes from a dif-
ferent point of view of infinite dimensional holomorphy ([26]). However, if we work in
the whole space of entire functions in infinitely many variables, this result fails ([18]).
For other extensions of Birkhoff’s theorem in CV (N > 1) we refer to [10].
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In chapter 3 we deal with complex functions which are continuous and nowhere
differentiable. Initially, the main idea was to complexify the Weierstrass function, a well
known explicit example of a 27 - periodic function vy : R — R which is continuous
and nowhere differentiable, and to obtain a relevant result (Theorem 3.2) concerning
functions of the disc algebra A(DD), where both their real and imaginary part satisfy the
main properties as the Weierstrass function ug on the boundary T of the unit circle D.
Moreover, this result (Theorem 3.2) is generic in the disc algebra A(ID). We remind that
the class A(ID) consists precisely of all functions f : D — C which are continuous on
D and holomorphic in D (where, clearly, D is the open unit disc centered at 0). This
class of functions endowed with the topology induced by the supremum norm || - || is
a complete metric space.

A similar idea was also developed in infinitely (denumerable) many complex vari-
ables in [17], but in the present work we do not insist towards this direction.

However, in Theorem 3.2 the notion of a nowhere differentiable function is with
respect to the parameter, since the set T = JD is a Jordan curve.

This work was later extended to more general Jordan domains in [28], presenting
many interesting results in one and in several complex variable. Once more, the notion
of nowhere differentiability in [28] was also considered with respect to the parametriza-
tion of the boundary.

A relevant approach was later developed (in one variable) in [23] in simply connected
domains, but this time, the notion of nowhere differentiability was considered with re-
spect to the position, since a parametrization of the boundary was no longer required.
Most of the work in [23] is also presented in the second half og this chapter, where the
main relevant results (Theorems 3.6 and 3.9) express a dichotomy principle: the classes
of functions studied are either void or GG - dense in suitable metric spaces. The chapter
ends with a few examples concerning the previous dichotomy results.

In chapter 4 we present some generic results concerning Padé approximants of sev-
eral types (see Definitions 4.6 and 4.7). The Padé approximants are rational functions
that satisfy specific properties (see Definition 4.1 for further details) and we used them
in order to obtain generic results of simultaneous approximation with the same indices.
However, the approximation is not necessarily meant only with the usual Euclidean dis-
tance | - | in C, but also with the chordal metric x in CU{co}. Such results are presented
in the first half of the chapter.

All results concerning Padé approximants are proved to be generic by using Baire’s
theorem and are derived mainly from [27]. Moreover, they can be altered in order to
achieve simultaneous Padé - Taylor approximation with the same indices ([24]). How-
ever, many results of approximation presented in [27] are omitted, mainly those of Se-
leznev type (concerning formal power series) and those referring to the space X ()
which is a closed subspace of A*(£2) (where ©2 C C is an open set).

At this point we remind that given an open set 2 C C, a holomorphic function
f € H(Q) belongs to the A>*(1) if and only if for every ¢ € {0,1,2,---} the ¢ -
th derivative f() of f can be continuously extended to Q. In A>({2) we consider the
seminorms

pac(f,9) = sup [fO(2) = g¥(2)|

ZGK’n

for every n, £ € N, where the family { K, },,ciy consists of compact subsets of {2 such
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that for every compact set L C (), there exists an index ny € N such that L C K,,,. For
instance, it suffices to set K,, = Q N B(0,n) for every n € N*. It is known that with
these seminorms A>°({2) becomes a Fréchet space.

We also set X >°(€2) to be the closure in A*°(£2) of all rational functions with poles off
Q. Thus, X*°(Q2) is a closed subset of a complete metric space and therefore is a complete
metric space itself. We refer to [27] and [37] for the further results and definitions.

In the second half of chapter 4 we present results of different nature concerning alge-
braic and affine genericity, as well as spaceability of certain classes of Pad¢ approximants.
Our results do not make use of Baire’s theorem this time and are mostly constructive.

Finally, in chapter 5 we present a result concerning universal Laurent series on do-
mains of infinite connectivity. Our main result (Theorem 5.11) is proved to be generic
in a specific space of functions, once again by using Baire’s theorem. However, by apply-
ing Theorem 5.11 in different cases we obtain significantly different results. The most
striking application gives a generic result where universal approximation holds on a part
of the boundary of an open set, while on another disjoint part, the universal function is
smooth. Most of this chapter is contained in [25].

Each chapter of this work is carefully presented so that the reader could study each
chapter independently, apart, of course, from the necessary cross - references between
chapters. Naturally, many results were omitted, although we present most of the results
in [17], [23], [25] and [27] and we refer to these works (and also in [24]) for further
results, examples and information in general.

Last but not least, one could naturally ask for further relevant problems related to
this work. We only mention the following.

Problem 1.1. In Theorem 3.2 we mention the class S which is precisely the set of all
elements g € A(D) such that both functions u, and v, (the real and the imaginary part
of g respectively) satisfy the following property

ug(€") — ug(e™)

t—to

vg(€") — vy (€™)

t—ts

lim sup = +00

t—td

= lim sup
t—td

for every ty € [0,2n]. Is the class S affinely and / or algebraically generic? Is it
spaceable?

Problem 1.2. Consider the set of frequently universal martingales on trees in the sense
of [1]. Is this class algebraically generic and / or spaceable?
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2 Hypercyclicity of the translation operator in infinitely
many variables

2.1 A few things about Hypercyclicity

Birkhoff in [6] showed that there exists an entire function f : C — C such that its
translates fC[L”](Z) = f(z + na), n € N are dense in the set of entire functions H(C)
endowed with the topology of uniform convergence on compacta, for a = 1. That is,
the translation operator 77 : H(C) — H(C), T\(f) = 111 g hypercyclic. We remind
the following definition.

Definition 2.1 (Hypercyclic operators and Hypercyclic vectors). Let X be a topological
vector space and 7" : X — X a continuous linear operator. The operator 7 is called
hypercyclic if there exists a vector z € X such that the set {7 (x) : n > 1} is dense
in X. Obviously

T (z)=ToT---oT(z) (2.1)

(. /
~~

n times

In addition, if such a vector exists, then it is called hypercyclic vector for the operator
T Tt is also known ([21]) that the set of hypercyclic vectors of a hypercyclic operator is
a G5 - dense set, provided that it is not void.

Thus, the set of all functions f € H(C) such that the set { /" : n € N} is dense in
H(C) is G - dense subset of H(C). The previous results remain valid if 1 is replaced by
anya € C\ {0}.

Baire’s theorem implies that if S C C \ {0} is denumerable, then there exists a
common hypercyclic function (vector) f € H(C) for all operators 7}, a € S and that
their set is G5 - dense set in H (C).

Costakis and Sambarino in [10] proved that the set of common hypercyclic functions
f € H(C) for all operators T,, a € C\ {0} is still residual in H(C).

Extensions of Birkhoff’s result are known in CV, N' € N. In infinite many variables
similar extensions fail ([19]). However, considering holomorphic functions on ¢, (N)
compatible with the notion of a holomorphic function in [26], it turns out that Birkhoft’s
result can be extended in this case, provided we consider a smaller subspace of entire
functions. A similar result has been obtained earlier in [2] by using different methods.
It would be interesting to examine if the result of Costakis and Sambarino in [10] extends
as well or not.

2.2 Notations and preliminaries

We start with a few basic notations and preliminaries which will be used in order to
prove our main result concerning Hypercyclicity (Theorem (2.4)).

For every n € N, we set B, = B(0,n) ; that is a closed polydisc in the space C"
of infinitely many complex variables. We also consider the set of all bounded complex
sequences, i.e. the set

loo(C) =l :={2€CY:3In & Nsuchthat z € B,} = U B,. (2.2)

n>0
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Moreover, £, is endowed with the relevant (cartesian) topology, as a subspace of C.
Next, we consider the following set

A={f:lx — C: forevery n € N, there exists a sequence of polynomials

converging uniformly on B, to the restriction fip, }. (2.3)

At this point we recall that every polynomial depends only on a finite number of
variables. It is also known ([26]) that for every f : /., — C and for every n € N,
(1) <= (i) & (ii), where

(i) There exists a sequence of polynomials converging uniformly on B, to the restric-
tion fp,.

(ii) Therestriction fp, isa continuous function with respect to the topology of point-
wise convergence.

(iii) The restriction f|p, belongs separately, as a function of a single variable, to the
disc algebra A(B(0,n)).

By A(B(0,n)) we denote the algebra of the disc B(0,n), i.e. the set of all functions
h : B(0,n) — C which are continuous on B(0, n) and holomorphic in B(0, n).

Remark 2.2. Obviously, every function f : ¢,, — C which is separately holomorphic

and continuous on /., with respect to the topology of pointwise convergence belongs to

A. The converse does not hold. Indeed, consider the following example.
Let f : /oo — C with

~j

j2

f(z1,20,-+) = (2.4)

Jj=1

for every z = (21,22, +) € lx. In order to prove that f € A, we consider the
polynomials

N
pv(z) =33 (2.5)

J=1

<

for N > 0. It is easy to verify that the sequence { Py } y>( converges uniformly on

B, = B(0, n)N to f for every n € N. It follows that f € A.

We will show that f is not continuous on 0 € /.., where /., is consider endowed
with the relevant (cartesian) topology. Suppose that f is continuous on 0. Then, for
e = 1, there exists an index N € Nand § > 0 such thatif |z;| < dforj =1,--- | N
and z; € Cfor j > N + 1itholds

+oo 5
> Zi<l (2.6)
j

N
Z,
|f(z)21) <e =1« ’Z]—; +
=1 j=N+1

Wesetz; =0forj=1,--- ,Nandz; = c€ Cforj > N + 1. Then

+o00 1
(Y )<l (2.7)
j:N+1‘7
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If
+o00 1

G = -

- (2.8)
j=N+17

then Relation (2.7) is equivalent to |cc;| < 1 for every ¢ € C, which is clearly false
for ¢ — oo. Thus, fis not continuous on 0 € /..
Since f is a linear function, it follows that it is not continuous on any a € (.

Now, for every n € N we consider the seminorms p,, : A — [0, +00), defined for
every f € A as follows

pu(f) = [IfllB, = sup{|f(2)] : z € B.}. (2.9)
We know that if we set
+00 1 . .
p(f.g9) = Z o % forevery f,ge A (2.10)

n=0

then p is a metric on A. In this way, (A, p) becomes a Fréchet space. Indeed, if
{fn}n>0 € Aisap - basic sequence of functions, then it is easy to see that the sequence
{fn}n>0 is also py - basic and that this holds for every £ € N. Thus, for every ¢ > 0,
there exists an index ng € N such that for every n, m > ng itholds || f,, — f.||5, < e
It follows that for every z € By, and for every n, m > ny it holds

[fa(2) = fm(2)| < [fn = finllB < (2.11)

It is now clear that for every z € By, the sequence { f,,(z) },>0 is basic in C and since
C is a complete metric space, it converges. We set

()= lim f(2) (2.12)

for every z € DBj. In this way we have defined a function f : /., — C which
is the pointwise limit of the sequence { f,,},>0. By taking limits in Relation (2.11) for
m — 400, we obtain that | f,,(2) — f(z)| < e forevery z € By, which yields the relation
| fo— fllB, < eforeveryn > ny. Since f,, € A, it follows that there exists a polynomial
P, such that p,,(f,, P,) < % for all n. It follows easily that P, — f uniformly on each
By.. Hence f € A. Therefore, p(f,, f) — 0 and thus (A4, p) is a complete metric space.

Leta € (o \ {0} and f : /.. — C be a function. For every n € N we use the
following notation
fI(2) = f(z + na) for every z € (. (2.13)

a

In the particular case wherea = (1,1, - - - ) € /.., we use the notation fI"/(z) instead.
Finally, we will use the following well known result.

Proposition 2.3. (See Lemmas 1.1 and 1.2 of [13]) Let K; and K two disjoint, compact
and convex subsets of CV (N € N). Then the set K; U K, is polynomially convex.
It follows that if p; and p, are two polynomials of N complex variables and ¢ > 0,
then there exists a polynomial p of N complex variables such that ||p — p1||k, < € and

P = pall, <e.
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2.3 A generic result about Hypercyclicity

In this section we prove that for every a € (, \ {0} the corresponding translation
operator T}, : A — A is hypercyclic.

Theorem 2.4. There exists a function f € A such that the translations of f, i.e. the set
{fI"l . n > 0} is dense in (A, p). Moreover, the set of all such functions f is G5 - dense
in (A, p).

Proof. We consider an enumeration { f; } ;> of polynomials with coefficients in Q +
1Q. Of course, every polynomial is a function that depends only on a finite number of
variables. One can verify that the set { f; : 7 > 0} is dense in (A, p).

Next, for every m, n, j, s € N we consider the following sets

1
Bunis = { € A = fills, < <} (2.14)

S

If B is the set of all functions satisfying Theorem 2.4, one can verify that the following

holds
B= () Bumnis (2.15)

m,j,s n20

In order to use Baire’s theorem and prove that 5 is non void (in fact, a G5 - dense
set), it suffices to prove the following.

Claim 2.5. For everym,n,j € Nand s > 1 the sets B,,, ,, ; s are open in A.

Proof of Claim 2.5 Let m,n,j,s € Cand f € B,, ;s be fixed. We need to find
an € > 0 such that for every g € A with p(f,g) < ¢ it follows that g € B, . j s> OF

equivalently
1

19" = Fill ., < - (2.16)
s
The triangle inequality implies that
19" = fill g, < g™ = f™15,, + 117 = fills,.. (2.17)

Thus, it suffices to prove the following

1
g™ = |5, < = = 1™ = fills..- (2.18)
S
We know that it holds

g™ — fM| 5, = sup |g(z +n) — f(z+n)| < ||f — gllB,n- (2.19)

2€EBm,

The quantity || f — g||s,.,, can become arbitrary small, provided that p(f,g) < e.
Thus, B,, . j s is open in A.
N

Claim 2.6. For everym,j € Nand s > 1 the set

U Bm,n,j,s (220)

n>0

is dense in .A.
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Proof of Claim 2.6 We fix the parameters m, j € Nand s > 1 and we want to prove
that the set in Relation (2.20) is dense in A.

Letg € A,e > 0and M € N. We want to find an index ny € N and a function
f € Bung.js such that || f — g||g,, < €. There is no problem if we assume that it holds
e < 1. The function f must satisfy the following properties.

@ |[f —gllsy <&

1
(i) ||fo] — £;]|p, < — or, equivalently
s

sup  |f(2) — fi(z —ng-a)| < é (2.21)

z€ B(no,m)N

Since g € A, there exists a polynomial p; such that |[p; — g||,, < 5. Sup-
pose that the polynomial p; depends on n, variables, while the polynomial f; depends
on ny variables. Then we can consider both polynomials as functions from C™*"2 to

C. This allows us to use Proposition 2.3, since the closed polydiscs B(0, M) 7 and
B(ny, m)n1+n2 in C"*"2 are compact, convex and disjoint sets, provided that ng is
large enough. We set B = B(0, M)nﬁm U B(no, m)n1+n2
h : B — C defined as follows

. We consider the function
I — ) +7’L
h(z) = {pl(z)7 forz € B(0,M)

——ni1+no (2'22)
fi(z —=ng - a), for z € B(ng, M) :

Since B is polynomially convex, according to Proposition 2.3 there exists a polyno-
mial p depending at most n; + n variables such that [|p — h[|p < §. It follows that

£
||p - leW”ﬁ-w < 3 (2.23)
and also -
lp— fjumnﬁ-nz < 5 (2.24)
We set f = p and we are done by the triangle inequality.
[}
We apply Baire’s theorem and that completes the proof.
|

Remark 2.7. The previous proof is valid for a = (1,1,---) € l. More generally, if
a = (a;)j50 € s \ {0}, then the same proof works. It suffices to consider n, large
enough such that for some fixed j with a; # 0 we have B(nga;, m) N B(0, M) = (). For
instance, it suffices to choose

M+m

a;

ng > (2.25)

Thus, we obtain the following theorem.

10
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Theorem 2.8. For every a € {, \ {0} there exists a function f € A such that the set

{#"": n > 0} is dense in (A, p). Moreover, the set of all such functions is G5 - dense
in (A, p).

Question 2.9. Is it possible to find a function f € A such that the set { £ : n. > 0} is
dense in (A, p) simultaneously for all a € CN \ {0}? If this is true, is it possible that the
set of all such functions is residual in (A, p)? This question relates to [10].

11
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3 Nowhere differentiable functions

3.1 Nowhere differentiable functions in the disc algebra

In 1872, Weierstrass gave an explicit example of a function u, : R — R which is contin-
uous but nowhere differentiable. Although this is considered to be the first such known
result, as E. Maestre informed us, Bolzano has obtained a similar result before 1831 but
it was not published until 1930.

Theorem 3.1 (Weierstrass’ explicit example). Let 0 < o < 1 and b be an odd integer
satisfying ab > 1 + 7. Then, the function ug : R — R defined as

“+o00

uo(x) = Z a" cos(b"x) (3.1)

n=0
for every x € R is continuous, 27 - periodic and nowhere differentiable. In fact,

something even stronger holds ([31]); for every xy € R we have that

uo(z) — up(zo
r — T

) \ = +o0. (3.2)

lim sup

+

In this section we prove that for almost every function f in the disc algebra A(D),
both functions us(f) = Re(f(e)) and vs(d) = Im(f(e")) are continuous and
nowhere differentiable with respect to the real parameter 6. This result clearly indicates
that almost every function f € A(D) is nowhere differentiableon T = {z € C : |z| =
1}. In addition, the set of all functions satisfying this property is residual in A(ID); that
is, it contains a G5 - dense set.

We remind that D = {z € C : |z| < 1} and a function f belongs to the disc algebra
A(D) if and only if f is continuous on D and holomorphic in . The space A(DD) is
endowed with the topology induced by the supremum norm on D

1 flloe = sup [f(2)]- (3.3)
|21<1
Moreover, it is known that (A(D), || - ||«) is a Banach space. We now return to

Theorem 3.1.
Let 0 < a < 1and b be an odd integer satisfying ab > 1 + 2F. We consider the
function fy : D — C defined as

+0o0
folz) =) aa" (3.4)
n=0

for every z € . The function f; is well defined and it holds
up(z) = Re(fo(e")) (3.5)

for every z € R. In addition, if 1y : R — R is the following function
+o0
uo(x) = Z a" sin(b"x) (3.6)
n=0

12
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for every z € R, then clearly it holds

to(z) = Im(fo(e'™)) (3.7)

for every x € R. The following relation explains the link between the functions
U, Uy and fo (restricted to T)

fo(e") = Re(fo(e™)) + iIm(fo(e™)) = uo(x) + itip() (3.8)

and that holds for every z € R. The function f; is continuous on D and holomorphic
in D because |a"2""| < a" for every |z| < 1 and the series Y ' a” is convergent; in
other words [ € A(D).

We will also use the following notation: for every function g € A(ID) we consider
the functions u,4, v, : R — R satisfying

ug(z) = Re(g(e"™)) (3.9)

and ‘
vg(z) = Im(g(e'™)) (3.10)

for every x € R. In addition, if h : R — R, we say that h satisfies Property (3.11)

below if it holds ) "
lim sup —(x) — hiwo)
r — g

+
flf—>1'0

‘ = 400 (3.11)

for every xy € R. It is known that both functions wu and uy satisfy Property (3.11)
(see [31] for the function wg; for the function ug a similar calculation works, at least if
A = 1lmod4).

Theorem 3.2. ([[17], [16]) Let S C A(ID) be the class of all functions g € A(DD) such
that both functions u, and v, satisfy Property (3.11). Then S is G5 - dense in A(D).

Proof. We know that S # () since f, € S. Foreveryn > 1 we consider the following
sets

1
D, = {h R — R: forevery f € R there existsa 6, € (0,9—1— —)
n

such that |2(8) — h(6p)| > n|0 — 90|}. (3.12)
Also, for every n > 1, let
E,={f€AD) :u; &vs € D,}. (3.13)

One can easily verify that it holds

+oo
S=()En (3.14)
n=1

In order to use Baire’s theorem we have to prove that each £, is an open and dense
setin A(D).

Claim 3.3. For every n > 1 the sets F,, are open in A(D).

13
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Proof of Claim 3.3 Let n > 1 be a fixed natural number. In order to prove that the
set £, is open in A(ID) we will prove equivalently that the set A(D) \ E,, is closed in
A(D).

We consider a sequence of functions {g,, }m>1 € A(D) \ E, andlet g € A(D) such
that g,, — g in A(D). Now, since g,, € E,, for every m > 1 there exist 6, € R such
that

|ug,, (0) — ug,, (0m)] < 1|0 — 6, (3.15)

for every 6 € <9m, O + %) or there exist ¢/, € R such that
[0g,, (6) = Vg, (07,)] < |6 — 0, (3.16)

for every 0 € (9’ o, + %)

m?’m
According to the definition of the functions u,,, and v,,,, since both of them are 27 -
periodic, we may assume that the sequences {0, },,>1 and {0/, },,>1 are bounded ones;
thus, without loss of generality, we may assume that the former converges to a single
6 € R and the latter converges to a single ' € R.
Suppose that we are in the first case and Relation (3.15) holds for infinitely many

m > 1. Letz € (9, 0+ %) Then, it is easy to see that there exists an index my > 1

such that x € (Gm, O + %) for every m > m,. The triangle inequality implies that

g () = ug(Om)] < Jug(x) — g, ()] + |ug,, () — g, (6m)]

+ [tug,, (Om) — ug(6m)]
< 2||ug,, — Uugl|low + njT — O (3.17)

By taking limits as m — 400 in Relation (3.17) we obtain that it holds
lug(z) — uy(8)| < njz — 46 (3.18)

foreveryx € <9, 9+%> . Itfollows that u, ¢ D, and thus, inthiscase g € A(D)\ E,,.
We consider now the second case, where Relation (3.16) holds for infinitely many
m > 1. Lety € (9’ 0+ %) Then, it is easy to see that there exists an index m; > 1

mr)’m

such that y € <9’ 0, + %) for every m > m;. The triangle inequality implies that

|U9(y> - Ug(‘%n” < ‘Ug(y) — Vg, ()| + |Ugm (y) — Ugm(e;n”
+ Vg, (07,) — v4(07,)]
< 2||Ugm _Ug||oo+n|?/_9;n| (3.19)

By taking limits as m — +4-oc in Relation (3.19) we obtain that it holds
Jug(y) — ug(0')] < nly — '] (3.20)
for every y € <9’ 0+ %) It follows that v, ¢ D, and thus, in this case g €
A(D)\ E,.
In any case, the set A(D) \ E, is closed in A(D), or equivalently, the set £, is open

in A(ID). This part of the proof is complete.
N
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Claim 3.4. For every n > 1 the sets E,, are dense in A(D).

Proof of Claim 3.4 Let n > 1 be a fixed number and f; be the function defined in
Relation (3.4). Our aim is to prove that if p is a polynomial (restricted to D) then it holds
fo+peE,.

Indeed, let p be a polynomial (restricted to D). Since p’ is bounded in D, from the
Mean Value theorem, there exists a M > 0 such that

up(y) — up(0)] < Mly — 0| (3.21)
and also
[vp(y) — vp(0)] < My — 0] (3.22)
for every y,0 € Rwithy # 6. Let § € R. Since fy € E; for every s > 1, there exist
z,y € (0,0 +1)C(0,0+ %) such that
‘ufo(x) - uf0(0)| > S‘ZE - 9| (3-23)
and
|Uf0 (y) — Ut (9)| > S‘y - 9’ (3-24)
Let kK > M + n. By using the triangle inequality, we obtain
|t foip(2) = tpeip(0)] = [ (ugy () — ug () + (up(x) — uy(0))]
> [ug, (2) — ugy (0)] — |up(x) — up(0)]
> klx — 0| — M|z — 6
= (k— M)|z — 0|
> nlr — 0| (3.25)

In the same way, we can simultaneously prove that it holds

|Uf0+p(y) - Uf0+P(9)| > n|y - 9| (3.26)

Therefore, according to Relations (3.25) and (3.26) we conclude that
U fotps Vfotp € D, (3.27)

or equivalently, fy + p € £, and this part of the proof is complete.
[
Since A(D) is a complete metric space and the set of all polynomials (restricted to
D) is dense in A(ID), we apply Baire’s theorem and that completes the proof.
[ |

Remark 3.5. The previous result (Theorem3.2) implies that the class Sy C A(ID) con-
taining all f € A(D) such that both functions u; and vy are nowhere differentiable is
residual in A(ID), since it holds S C 5.
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3.2 Nowhere differentiable functions with respect to the position

In this section we present a few results concerning nowhere differentiable functions with
respect to the position. The main idea is the following: we consider a domain {2 C C
(bounded, or even unbounded) a compact set J C 0f2 with no isolated points and we
study particular classes of functions f that satisfy the following property

lim sup f(z) = f(z0)| _ +o00 (3.28)
z—20 Z— 20
ze€J\{z0}

for every 2z, € J. These classes are proved to be either generic in suitable (complete)
metric spaces or simply void. Apparently, the respective classes of functions that are
nowhere differentiable on J are residual, since they contain a G5 - dense sets. We also
mention that in every case no parametrization of the boundary is required.

At the end of this section we also give a few examples relevant to the previous results.
In some of them (Examples 3.12 and 3.13) the respective classes are G5 - dense, while in
Examples 3.14 and 3.15 the respective classes are void.

3.2.1 The case of bounded domains

Let K C C be a compact set. We denote with R(K) is the set of uniform limits on K
of rational functions with poles off K. Naturally, the space R(K) is endowed with the
topology induced by the supremum norm on K

[ Flloe = sup [£(2)]. (3.29)
zeK
Itis known that the space (R(K), ||-|| ) is a Banach space. Let 2 C C be abounded
domain and J C 052 be a compact set without isolated points. We denote with S(€2, .J)
the following class of functions
_ f(z) = f(z0)| _
S(Q,J) ={f € R(Q) : limsup =

Z—20
ze€J\{z0}

+oo forevery zp € J}.  (3.30)
Z— 20

Theorem 3.6. ([23]) Under the_ above assumptions and notations, the class S(£2, J) is
either void or G - dense in R(2).

Proof. We suppose that it holds S(2, J) # (0 and let f € S(2, J). We denote with
E,, the following sets

. 1
E, = {g € R(Q) : forevery z; € J thereexistsa z € (J \ {20}) N D(Zo, —>
n

such that ’L‘ > } (3.31)

zZ— 20
The reader can verify that it holds

+0o0
= ﬂ E,. (3.32)

In order to use Baire’s theorem we have to prove that each F,, is an open and dense
setin R(€2).

16



Chapter 3 Nowhere differentiable functions

Claim 3.7. For everyn > 1 the sets F,, are open in R().

Proof of Claim 3.7 Let n > 1 be a fixed natural number. In order to prove that the
set 5, is open in R(Q) we will prove equivalently that the set R(Q2) \ E,, is closed in
R(Q).

Indeed, let {g,, }m>1 € R(Q) \ E, and g € R() such that g,,, — g in R(f2). Then,
for every m > 1, there exists a z,, € J satistying

gm(2) = gm(2m)

<n (3.33)

for every z € (J\ {zm}) N D(2m, +). Since J is a compact set, there exists a subse-
quence of { z,, },»>1 which converges to a single point zy € J. Without loss of generality,
we may assume that {z,, },>1 converges to zo. Let z € (J \ {20}) N D(zo, ) be a fixed
point. Then, there exists an index my > 1 satistying z € (J \ {z,}) N D(zm, 1) for
every m > my. Consequently, for every m > my, the triangle inequality implies that

19(2) = g(20)] < 9(2) = gm(2)] + |gm(2) = g (zm)| + |gm(2m) — 9(20)]
< 19(2) = gm(2)| + nlzm — 2| + |gm(2m) — 9(20)]
<19(2) = g ()| + |gm(2m) — 9(zm)| + |9(2m) — g(20)| + |z — 2|
< 2[|gm — glloo +19(2m) — g(20)[ + 1|2 — 2]. (3.34)

Therefore, by taking limits as m — 400 in Relation (3.34) we obtain that it holds

z— 2 - '

for every z € (J\ {z}) N D(z0, 1). Relation (3.35) implies that g € R(Q) \ E,, and
as a result, F, is a closed set. This part of the proof is complete.
En

Claim 3.8. For every n > 1 the sets F, are dense in R((2).

Proof of Claim 3.8 Let n > 1 be a fixed natural number, g € R(Q) and £ > 0.
According to the definition of the class 12({2), since g — f € R((2), there exists a rational
function ¢ = ¢. with poles off €2 such that

(g = f) —dllw <& (3.36)

Since ¢’ is continuous on (), there exists a M > 0 satisfying ||¢||oc < M. Letzy € J
be a fixed point and a sequence {z,, };n>1 in J \ {20} such that z,,, — 2 satisfying

lim
m—-+00

)L‘ = +o0. (3.37)
.

The triangle inequality implies that
(f + q)(zm) (f + q ZO ‘ ’f zm f(Z()) + Qm(zm) - qm(20>‘

Zm — 20 A T
. ‘f Zm) — f(Zo)‘ _ IQ(ZW) —q(z0) ‘ (3.38)
— ZO Zm - ZO

17
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At the same time, it also holds

lim
m——+00

‘w

= ld'(z0)] < M. (3.39)
m — R0

Therefore, by combining Relations (3.38) and (3.39), we obtain that it holds
‘ (f + ) (zm) = (f + 9)(20)

Zm

’ -n (3.40)

for m large enough. Consequently, we deduce that (f + ¢) € E,,. Since ||[g — (f +
q)||ooc < €and e > 0 is arbitrary, it follows that ¢ € E,,. Thus, the set £, is dense in

R(f2) and this part of the proof is complete.
[ J |
The result follows now from Baire’s theorem.
[ |

3.2.2 The case of unbounded domains

Let £ C C be an unbounded open set. We denote with E(E) the set of all functions
which are uniform limits on each compact subset of £ of rational functions with poles
off E. The natural topology of E(E ) is the topology of uniform convergence on each
compact subset of £. Equivalently, the topology of }NQ(E ) can be defined by the sequence
of seminorms

oe(f9) =sup {If() - g(=)| : 2 € EN B0, k) | (3.41)

for every f,g € R(E) and for every k > 1. Moreover, the space R(E) endowed
with these seminorms is a Fréchet space.

Theorem 3.9. ([23]) Let 2 C C be an unbounded domain and J C 02 be a compact
set without isolated points. Then, the class of functions

S(Q,J) = {f € R(Q) : limsup w
Z—20 — 20
z€J\{z0}

= +oo forevery zp € J}  (3.42)

is either void or Gy - dense in R(1).

Proof. We suppose that it holds S(€2, J) # 0 and let f € S(€2, J). We denote with
E,, the following sets

~ 1
E, = {g € R(Q) : forevery zy € J thereexistsa z € (J \ {z}) N D(zo, ﬁ)

such that M) > n} (3.43)
zZ— 20

The reader could verify that it holds
+oo
S(Q.J) =) E.. (3.44)
n=1

Thus, in order to apply Baire’s theorem we have to prove the following.

18
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Claim 3.10. For every n > 1 the sets £, are open in R().

Proof of Claim 3.10 Let n > 1 be a fixed natural number. In order to prove that the
set 5, is open in R(Q2) we will prove equivalently that the set B(Q) \ £, is closed in
R().

Indeed, let { g,, } m>1 be a sequence of functions in R( )\ E,, which converges uni-

formly on the compact subsets of {2 to a function g € R(S2). Then, for every m > 1,
there exists a z,, € J satisfying

gm(2) = Gm(Zm)

<n (3.45)

for every z € (J\ {zm}) N D(2m, £). Since .J is a compact set, there exists a subse-
quence of { z,, },»>1 which converges to a single point zy € J. Without loss of generality,
we may assume that {z,, },>1 converges to zo. Let z € (J \ {20}) N D(zp, ) be a fixed
point. Then, there exists an index my > 1 satisfying z € (J \ {z,,}) N D(zm, 1) for
every m > my. Consequently, for every m > my, the triangle inequality implies that

9(2) = gm(2)| + gm(2) = g (2n)| + |gm(2m) — g(20)]

9(2) = gn(2)| + nlzm — 2[ + [gm(2m) — 9(20)|

9(2) = gn(2)| + |gm(2m) — 9(zm)| + |9(2m) — g(20)| + |2 — 2|
2p(f,9) + 19(zm) — 9(20)| + nlzm — 2| (3.46)

N
(=]
~—

l9(2) — g(

I/\ VAN VARRVAN

where, of course, p is the metric of ]E(Q) Furthermore, the sequence {¢,, }»>1 con-
verges uniformly on J to g, since J C (2 is a compact set. Therefore, by taking limits as
m — oo in Relation (3.46) we obtain that it holds

9(2) — 9(20)

<n (3.47)

for every z € (J \ {20}) N D(z0,%). Thus g € R(Q) \ E, and as a result, E,, is a
closed set. This part of the proof is complete.
[ § |

Claim 3.11. For every n > 1 the sets F,, are dense in R())

Proof of Claim 3.11 Let n > 1 be a fixed natural number, g € E(Q) According to
the definition of the class R2(£2), there exists a sequence of rational functions {gu, m>1
with poles off Q which converges uniformly to the function g— f on each compact subset
of 2. Obviously, the sequence {f + ¢y, }m>1 converges uniformly to g on the compacts
subsets of . Our aim is to show that (f +qr) € E, foreveryk > 1. Letalso k > 1
be fixed. Since ¢, is continuous on the compact set J C 012, there existsa M > 0 such
that |¢,(2)| < M for every z € J. Let 2y € J; since it holds

lim sup M = 400 (3.48)
z—20 Z— 20
ze€J\{z20}
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there exists a sequence { z,,, }n>1 in (J\ {20} )N B(20, n) such that z,,, — 2 satisfying

)—f om) = <ZO)\ = +o0. (3.49)
m—>+<>o — 20
The triangle inequality implies that
(f +ar)(zm) — (f + 1) (20) ‘ _ ’f zm) — f(20) N qr(2m) — %(Zo)‘
Zm T 20 — 20 Zm T 20
> ‘f Zm —f(zo ‘ ‘Qk: (2m) —Qk(zo)‘_ (3.50)
— 20 — 20
At the same time, it also holds
= < .
mlﬁm‘ —0 = Jaj(z0)| < M. (3.51)

Therefore, by combining Relations (3.50) and (3.51) we obtain that

‘(f + qr)(zm) — (f + ar)(20)

Zm — 20

‘ >n (3.52)

for m large enough. Therefore, we deduce that (f + qx) € E,, for every k > 1. This
part of the proof is complete.
[
The result follows now from Baire’s Theorem.
[ |
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3.2.3 A few examples

We now present a few examples concerning Theorems 3.6 and 3.9. In Example 3.12 we
deal with an unbounded domain €2 C C (the open right half plane) and a closed set
J C 09 of its boundary (the y - axis) and we prove that the respective class S(€2, .J) is
G - dense in E(Q) Notice that in this specific example the set .J is not a compact one.

In Example 3.13 we deal with a bounded domain 2 C C (an angular sector) and
the compact set J = OS2 and we prove that the respective class S(§2, J) is G - dense in
R(Q).

In Example 3.14 we deal with a bounded domain 2 C C (an open disc minus a line
segment), where the respective class S(2, 99) is void in R().

Finally, in Example 3.15 we deal with an ubounded domain €2 C C (an open half
strip minus a half-line), where the respective class S(£, ) is void in R((2).

Example 3.12. ([23]) We consider the (open) right half plane Q@ = {z € C : Re(z) >
0}.

Figure 1: The unbounded domain (2 of Example 3.12.

For every n > 1 we consider the following classes of functions

S(Q,J,) ={f € AQ) : limsup ’f—)‘ = oo forevery 2o € J,,} (3.53)
z—z Z — Z
zGJ:\{Ozo} 0
where J,, = [—in, +in]. In addition, let
S(Q,J)={f € AQ) : limsup ‘f ’ = 400 forevery zp € J}  (3.54)
Z—20 Z— 20
z€J\{z0}
where
J=]J =ik (3.55)
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Then, the class S(2, J) is G; - dense in A(Q2), where the space A((2) is endowed
with the topology of uniform convergence on the compact subsets of (2.

Proof. We prove that each S(Q2, J,) is G5 - dense in A(2) = R(R). Since (C U
{oo}) \ (Q N D(0,n)) is a connected set, it follows that A((2)° N D(0,n)) = R(QN
D(0,n)) for every n > 1 and thus, according to Theorem 3.9, it is enough to prove that
each S(£2, J,,) is non - void.

We consider the entire function ¢ : C — C satisfying ¢p(w) = e~* for everyw € C.
Obviously, ¢'(w) = —e™™ # 0 for every w € C. We also consider the function f : @ —
Cwith f = fyo ¢, where f is the function defined in Relation (3.4). Obviously, it holds
»(2) € D(0,1) and ¢(.J,,) C T. The reader can easily verify that it holds f € S(2, J,,)
for every n > 1. Thus, the class S(€2, J,,) is G5 - dense in A(2) and since it holds

+oo
S=(5( ) (3.56)

n=1

Baire’s Theorem implies that the class S(€2, J) is G5 - dense in A(€2).

[ |
Example 3.13. ([23]) We consider the following sets
A= {rei%r 0<r<1} (3.57)
B { 7T<9<37T} (3.58)
=qe’: — — .
4~ — 4
and '

C={re'i:0<r<1}. (3.59)

Let (2 be the Jordan domain bounded by AUBUC'. It clearly holds 902 = AUBUC.
Then, the class of functions

3(9789) = {f € A(Q) : lim sup M
zegg\z{ozo} ZT %

= o0 for every z; € 00}

(3.60)
is G - dense in (A(Q), ] - ||co)-
Proof. We consider the following classes of functions
=

Z— 20

S(Q,A) ={f € A(Q) : limsup
Z—r20
z€A\{z0}

= +oo forevery zp € A} (3.61)

S(Q,B) ={f € A(Q) : limsup ‘f
2€B\ {20}

f(z0) ‘ = 400 for every 2o € B} (3.62)
Z — 20

S(Q,0) = {f € A(Q) : limsup ‘fz—z
— <0

Z—r20
z€C\{z0}

‘ = +oo for every zp € C}.  (3.63)
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ST
wl& i

Figure 2: The bounded (Jordan) domain €2 of Example 3.13.

Obviously, it holds S(2, A) N S(Q, B) N S(Q,C) C S(£2,09). From Example 3.12,
there exists a function h € A(R) (where R is the open right half plane) satisfying
lim sup M = 400 (3.64)

z—20 Z— 20
z€iR\{z0}

for every z, € iR. In the same way, one can prove that there exists a function ¢ €
A(L) (where L is the open left half plane) satisfying

lim sup 0(2) = 0(20) | _ +00 (3.65)
2—20 zZ— 20
z€iR\{z0}

for every 2z, € i{R. We consider the functions wy, ws € A(Q2) with
wi(2) = h(e™"17) (3.66)

and ‘
wa(2) = (e'?) (3.67)

for every z € ). We have proved that w; € S(2, A) and in the same way wy €
S(Q, C); thus, according to Theorem 3.6, the classes S(§2, A) and S(€2, C') are G5 - dense
in A(Q). In addition, if fj is the function defined in Relation (3.4), then the restriction
(fo Ta) € S(€, B) and therefore, the class S(2, B) is also G5 - dense in A(2). Ac-
cording to Baire’s Theorem, it follows that the class S(€2, A) N .S(2, B) N S(2,C) is Gy
- dense in A(Q2). Since S(Q2,A) N S(Q,B) N S(Q,C) C S(,012), we obtain that it

holds S(£2,09) # () and thus, the class S(2, 99) is also G5 - dense in A(Q2).
[ |

Example 3.14. ([23]) We consider the open set (2 = D\ [0, 1]. Then the class of functions

S(2,00) ={f € A(Q) : limsup J(z) = J(z0) = o0 for every z; € 00}
z—20 Z— 20
z€00\{20}

(3.68)
is void.
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Figure 3: The bounded domain €2 of Example 3.14.

Proof. Let f € A(Q). Then the function f is continuous on D and holomorphic in

D\R. From a known corollary of Moreras Theorem, it follows that f is also holomorphic
in D.

Therefore, we obtain that it holds
imeup L2 = 10

z—20 Z— 20
2€[0,31\{20}

= |f'(20)] < +o0 (3.69)

for every z; € [0, 3]. Relation (3.69) clearly implies that f ¢ S(£2, 92) and thus, we
conclude that S(Q, 9Q2) = 0.
|

Example 3.15. Let Q2 = {z € C: 0 < Re(2) & 0 < Im(z) < 1}\{z € C:0<
Re(2) & Im(z) = L}. Then it holds S(Q2, 09) = 0.

2

1/2

Figure 4: The unbounded domain €2 of Example 3.15.
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Proof. Let f € A(f2). Then the function f is continuous on 2 and holomorphic in
Q\{z € C:0 < Re(z) & Im(z) = 1}. From a known corollary of Morera’s Theorem,
it follows that f is also holomorphic in €2. The reader can fill in the necessary details as
in Example 3.14.

|
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4 Padé approximation

4.1 A few preliminaries

Definition 4.1 (Padé approximants). Let ( € C be a fixed element, {a,, },en € C and

f2) =) an(z=Q)" (4.1)

be a formal power series (centered at (). For every p, ¢ € N we consider a function
of the following form

Fnfales) = 50

where both functions A(z) and B(z) are polynomials satisfying the following con-
ditions

(4.2)

(1) degA < p and degB < q (4.3)
(ii) B(() =1 (4.4)
(iii) The Taylor expansion of the function

[fip/dle Z bn(z — (4.5)
at ( satisfies
a, = b, foreveryn =0,1,--- ;p+q. (4.6)

If such a rational function exists, then its irreducible form is unique, as it is well
known (see for example [9]) and it is called the (p, ¢) - Padé approximant of f (at ().

If we assume that the function A(z)/B(z) is irreducible, then obviously the poly-
nomials A(z) and B(z) are unique. However, the polynomials A(z) and B(z) may not
be unique in general, if we do not assume that the function A(z)/B(z) is irreducible,
even if it holds degA(z) < p,degB(z) < qand B({) = 1. A necessary and sufficient
condition for the uniqueness of the polynomials A(z) and B(z) is that degA(z) = p
or degB(z) = q and A(z)/B(z) being irreducible. This is equivalent to the non - van-
ishing of a particular determinant (see Relation (4.8) below). Then, it follows that the
(p, q) - Padé approximant exists and it has a unique representation as A(z)/B(z) with
degA(z) < p,degB(z) < gand B(() =

Remark 4.2. Definition 4.1 implies that for ¢ = 0 the (p,0) - Padé approximant of f
exists trivially for every p € N, since

[f5p/0)c(2) =D an(z= Q)" (4.7)

for every z € C. On the other hand, for ¢ > 1 Definition 4.1 does not necessarily
imply the existence of Padé approximants. However, if a Padé approximant exists, then it
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is unique as a rational function. Itis known ([3]) that a necessary and sufficient condition
for the existence and uniqueness of the polynomials A(z) and B(z) in Definition 4.1 is
that the following ¢ x ¢ Hankel determinant

Ap—g+1  Qp—q+2 " p
Ap—q+2 Gp—q+3 " Qpt1
Dpy(f,C) = det g .q g .q " (4.8)
ap ap+1 "+ Opyg—1

is not equal to 0; or, in other words D,, ,( f, () # 0. In the previous determinant we
set a, = 0 for every k < 0. In addition, if D, ,(f, () # 0 we also write f € D, ,(¢). In
this particular case, the (p, ¢) - Padé approximant of f (with center { € C) is given by
the following explicit formula

. AL 9(2)
[fip/dlc(2) = B0 (4.9)
where
(z — C)qu—q(fa O=) (- Oq_lsp—qﬂ(fa Oz) - Sp(f, 0)(2)
A(f7 C) (Z) = det Up—at1 Ap—q+2 T Ap+1
Qp Apt1 Ce Aptq
(4.10)
and
(=Q (=Qrt 1
B(f,0)(z) = det | 70t e T e (4.11)
ap Ap+1 “rr Opig
where clearly
k
(z=¢), ifk>0
Si(f,€)(2) = ;aj(z O k= (4.12)
0, ifk <0

Relations (4.9), (4.10) and (4.11) are known as Jacobi formulas. Notice that if f €
D, ,(C), apart from the explicit formula for the polynomials A(f, {)(z) and B(f, {)(z),

these functions do not have any common zeros in C.

It may happen D,, ,(f, () = 0 and still the Padé approximant [f; p/q|(z) may exist.
In that case itholds deg A(z) < pand degB(z) < ¢ and there are more than one possible
representations

A

Fip/dle(z) = EZ> (4.13)
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with degA(z) < p and degB(z) < ¢ and B(¢) = 1. For instance, consider the
following representation.

[fip/dlc(2) = g(z = . i (4.14)

S~—
D
—~
X
S—
—
N
|
S~
SN—
+
Mt

Such an example comes for every rational function

A(2)

B() (4.15)

with degA(z) < pand degB(z) < qgand B(0) = 1 for {( = 0. Then as f we take the
Taylor development at 0 of the function

AZ) & .
B~ ;anz . (4.16)

An explicit example is the function

1 =
o > (=1t (4.17)
n=0

for p > 0 and ¢ > 1. Then it holds

[fip/dlc(2) = ((11:3))2 = 141—2 (4.18)

where both representations are acceptable. We will also make use of the following
proposition.

Proposition 4.3. ([3]) We consider the rational function

A(2)

f(z) = B() (4.19)

and for the polynomials A(z) and B(z) let degA(z) = po and degB(z) = qo. Also,
suppose that the polynomials A(z) and B(z) do not have any common zero in C. Then
for every ¢ € C such that B(() # 0 it holds

() f € Dpyn(Q) (420)
(ii) f € D, 4(C) for every p > py (4.21)
(iii) f € D,y 4(C) for every ¢ > qq (4.22)

Moreover, for every pair (p, q) € N x N with p > pgand ¢ > ¢q it holds

[ & Dpq(Q) (4.23)
In all cases above it holds f(2) = [f;p/qlc(2).
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In some of the following results, we make use of the chordal metric x, which is a
metric defined on C U {oc}. The metric x is given by the following relations

( ——
|z — vl , ifz,weC
VI+[? /T4 [w]?
_ 1
X(zw)=9___ = if > € Cand w = oo (4.24)
V14 z)?
k0, if z=w

The reader could easily verify the following properties of the chordal metric

; 11
(1) X(z,w) = X(—, —) for every z,w € CU {00} (4.25)
2w
(ii) X(z,w) < |z —w| for every z,w € C (4.26)
(iii) (C U {o0}, X) is a complete metric space. (4.27)

Relation (4.26) implies that if a sequence of functions { f,, },en : X — C converges
uniformly to a function f : X — C with respect to the Euclidean metric | - |, then so
does it with respect to the chordal metric x. In addition, it is known that the metrics | - |
and x are uniformly equivalent on every compact subset of the complex plane.

We will also make use of the following known topological lemmas.

Lemma 4.4 (Existence of absorbing family, [29], [33], [36]). Let €2 be a domain in C.
Then there exists a sequence { K, },>1 of compact subsets of C \ 2 with connected
complements, such that for every compact set X' C C \ 2 with connected complement,
there exists an index m > 1 satisfying X' C K,,,.

Lemma 4.5 (Existence of exhausting family, [38]). Let {2 be an open setin C. Then there
exists a sequence { Ly } ;>1 of compact subsets of {2 such that

(i) Ly € Lg,, for every k > 1. It follows that the sequence { Ly }>1 is increasing.
(ii) For every compact set L C (2 there exists an index £ > 1 such that L C L.

(iii) Every connected component of C \ L, contains at least one connected component
of C \ Q (where C = CU {o0}).

Let Q C C be an open set and { L };>1 be an exhausting family of subsets of € that
satisfies the properties of Lemma 4.5. We consider the following class of functions

H(Q)={f:Q— C: f is holomorphic in Q} (4.28)
endowed with the family of seminorms

pr(f,9) = sup |f(2) — g(2)] (4.29)

ZELk
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for every k > 1 and for every f,g € H(2). It is known that if

(f ):fi.M (4.30)
P g k=1 2k 1+pk(fag> .

for every f,g € H((2), then p is a metric in H(Q2) and (H({2),p) is a complete
metric space; in fact, it is a Fréchet space. Thus, Baire’s theorem is at our disposal.
Generally speaking, our results concern two types of universal Padé approximants.

Definition 4.6. ([12], [14]) [Universal Padé approximants of Type I]
Let (pn)nen, (¢n)neny € N with p, — +o0, @ C C be a simply connected domain
and ¢ € 2 be a fixed point. A holomorphic function f € H(£2) with Taylor expansion

X fn)
=31 fo(z—o" (4.31)

n

at ¢ € () has universal Padé approximants of Type I if for every compact set X C
C \ Q with connected complement and for every function h € A(K), there exists a
subsequence (py, )nen of the sequence (p,,)nen satisfying the following.

(i) f € Dy, 4., (C) foreveryn € N.

(ii) su}g \[fs Prn /W ¢ (2) — R(2)| = 0 as n — +o0.
zZEe

(iii) sup |[f; Pk, /qk.)c(2) — f(2)] = 0asn — 4o0 for every compact set J C €.
zedJ
The set of universal Padé approximants of Type I is G5 - dense in H (£2), where the
space H(S2) is endowed with the topology of uniform convergence on compacta. If
¢n = 0, then this class of functions coincides with the class of universal Taylor series.

Definition 4.7. ([35]) [Universal Padé approximants of Type II]
Let (pn)nen, (¢n)nen € N with p,, ¢, — 400, 2 C C be a domain and { € 2 bea
fixed point. A holomorphic function f € H(f2) with Taylor expansion

2 pm)
Zf (©)

n!

f(z) = (z—=Q)" (4.32)

n=0

at ¢ € Q hasuniversal Padé approximants of Type I if for every compactset K C C\
(2 and for every rational function h, there exist two subsequence (py,, )nen and (g, )nen
of the sequences (p, )nen and (g, )nen respectively satisfying the following.

(i) f € Dy, 4., (C) foreveryn € N.

(i) sup x([f; Pk, /K, )c(2), h(2)) — 0asn — 4oo. The metric x is the well known
zeK
distance defined on C U {o0}.

(iii) sup |[f; Pk, /qk.]c(2) — f(2)] = 0asn — 400 for every compact set J C €.
zeJ

The set of universal Padé approximants of Type II is G5 - dense in H((2), where the
space H () is endowed with the topology of uniform convergence on compacta.
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4.2 Results of approximation for Universal Padé approximants of
Type I

In this section we present several results of simultaneous approximation concerning
Universal Padé approximants of Type I. Our results are generic in the space of holo-
morphic functions defined on an open set {2 C C; that is, the space H(£2).

Theorem 4.8. ([27]) Let 2 C C be a simply connected domain and L C €2 be a compact

set. We consider a sequence (p,),>1 € N with p, — +oo. Now, for every n > 1 let
qin), qén), cee, qj(?()n) € N, where N(n) is another natural number. Then, there exists a
function f € H((2) satisfying the following.

For every compactset K C C\ 2 with connected complement and for every function

h € A(K), there exists a subsequence (py, )n,>1 of the sequence (p,,),>; such that

(1) feD,  wn(C)

nidj

for every ( € L, for everyn > 1 and forevery j € {1,--- , N(k,)}.

(2) max  supsup |[f;px, /g5 ] (2) = h(z)| = 0

J=1,+,N(kn) ¢ceL 2K
asn — +oo.

(3) For every compact set J C €2, it holds
max - supsup|[f;pi, /6, c(2) = f(2)] = 0

J=1,+,N(kn) ceL 2eJ

asn — 4o0.

Moreover, the set of all functions f satisfying the above properties is G5 - dense in

H(9).

Proof. Let { f;};>1 be an enumeration of polynomials with coefficients in Q + Q.
We fix a sequence { K, },,>1 of compact subsets of C \ {2 satisfying Lemma 4.4 and a
sequence { Ly } ;> of compact subsets of €2 satisfying Lemma 4.5.

Now, for every i,s,n,k,m > 1 and for every j € {1,--- N(n)} we consider the
following sets

A(i,s,m,n, j) = {f EH(Q): fe€ meq;n)(g) forevery ¢ € L

and sup sup |[f;pa/q\"]c(2) — fi(2)] < é} (4.33)

CeEL zeKn,

A(i,s,m,n) = {f €EH): fe meq;m (¢) for every ¢ € L and for every

1
j =12 N(n)andalso _max sup sup |[f:p/q,")c(=) - fi2) < =}
J=1,+,N(n) ¢eL zeKnm, S
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=
z

A(i, s,m,n, j) (4.34)

<.
Il
—

B(s,k,n,j) = {f €EH(Q): fe Dpn7q§n)(C) forevery ¢ € L

and sup sup |[1:p. /" ]c(2) — F(2)] < -} (4.35)

CeL zeLy, S

B(s, k,n) = {f €EH(Q): fe€ meqj(_n)(C) for every ¢ € L and for every

1
j=1,2,--- ,N(n)andalso max sup sup |[f;pn/q](»n)]<(z) — f(2)| < —}

‘7:11"'1N(n) gEL ZELk S
N(n)

= ﬂ B(s,k,n,j) (4.36)
j=1

One can verify (mainly by using Mergelyan’s theorem) that if ¢/ is the set of all func-
tions satisfying the properties of Theorem 4.8, then it holds

U= ﬂ <U(A(i,s,m,n)mB(s,k,n)))

i,8,ky,m>1  n>1

N(n) N(n)
= [ (U (LY AGsmn )] OV B(S,k‘jn,j)])) (4.37)

Since H((2) is a complete metric space, in order to use Baire’s theorem, we will start
with proving the following.

Claim4.9. Foreveryi, s,n, k,m > landforeveryj € {1,--- N(n)} thesets B(s, k,n, j)
and A(i, s,m,n, j) are open in H(Q).

Proof of Claim 4.9 The sets A(i, s, m, n, j) have been proven to be open in [29] for
q(.") = 0. The sets B(s, k,n, j) have been proven to be open in [20] for qj(.") > landin
[29] for q§") = 0. We will now prove that each A(i, s, m,n, j) is an open set in H (£2)
for q](-”) > 1 (see also [24]).

We fix the parameters i,s,m,n > land j € {1,---,N(n)} and we consider a
function f € A(i,s,m,n,j). We want to select an € > 0 such that if g € H(2) with
p(f;g) < ethenitholds g € A(i,s,m,n, j). Since f € D= (C) forevery ¢ € L, the
Hankel determinant Dp o™ (f, () is not equal to zero and that holds for every ( € L.

The previous determinant varies continuously on the parameter ( € L and therefore,
since L is a compact set there exists a > 0 such that

J

(f,Ol>5 (4.38)

|D
2

g}
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for every ¢ € L. Since p(f, g) < £ we might assume that the first p + g + 1 Taylor
coefficients of ¢ are uniformly closed enough one by one to the corresponding Taylor
coefficients of f, provided that ¢ > 0 is small enough. This follows easily by using
Cauchy estimates. The function |Dpn7q;n) (9,C)],¢ € L is continuous on L and thus we

obtain

4]
1D, (9: 01> 5 (4.39)

Relation (4.39) clearly implies that g € Dp o) for every ( in the compact set L. It
n:d;

remains only to verify that it holds

n 1
sup sup |[g:pn/q")c(2) — fil2)] < = (4.40)
CeL zeKp, S

Indeed, by the triangle inequality it holds

sup sup |[g: pu/ai")c(2) — fi(2)] < sup sup |[g;pa/a"c(2) = [fspa/a)e(2)]

CEL zeKp, CeEL zeKp,
+sup sup |[fipn/a"]c(z) = filz)]  (441)
CeL zeKm
Let us denote by
o a0y = AL OE)
ipa/gel) = B ) (142)
e Alg.O(2)
. (n) _ Ay, 6)(=
900/ ;" ]c(2) = Blg.00) (4.43)

the Padé approximants of f and g (at { € L) respectively. We know that the polyno-
mials A(f, ()(z), B(f,{)(z), A(g,()(z) and B(g, ¢)(z) are given by the Jacobi formulas
and therefore, their coeflicients vary continuously with respect to the parameter .
Now, we have .
sup sup |[f:pa/g;")e(2) = fi(2)] < - (4.44)
CEL z€Km S
and thus, since the polynomials A( f, ()(z) and B(f, ¢)(z) do not have any common
zeros in C, it holds B(f,()(z) # 0 for every ¢ € L and for every z € K,,. Therefore,
by continuity, there exists a 6’ > 0 such that

1B(f,¢)(2)| > (4.45)

for every ¢ € L and for every z € K,, (the set L x K,, is a compact one). Since
the first p 4+ ¢ + 1 Taylor coefficients of g are uniformly closed enough one by one to the
corresponding Taylor coefficients of f for € > 0 small enough, we obtain
5/

[Blg: Q) > 5 (4.46)

The triangle inequality implies that

loin/71e(2) = s a7t = |0 = L0
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- (<§)z) B, Q)] JAU, () — Alg, O(2) (1.47)

Hence, if € > 0 is small enough, we obtain

sup sup |[g;pn/a\"]c(2) = [fipa/ai)c(2)] < l—sup sup |[f:pa/ai)c(2) — fi(2)]

CeEL zeKp, CeEL zeKn,
(4.48)
By combining Relations (4.44) and (4.48), we conclude that it holds
n 1
sup sup |[g:pa/a}"c(2) = fi2)| < | (4.49)

CeL zeKpy,

which in turn implies that g € A(i, s, m, n, 7). This part of the proof is complete.

[ J |
Claim 4.10. For every i, s, k, m > 1 the set
Ui, s, k,m) = U (A(i,s,m,n) (M B(s, k’,n))
n>1
(n) N(n)
= U ﬂ i s,m,n,j)] M [ ﬂ B(s,k,n,j)}) (4.50)
n>1  j=1 j=1

is dense in H(12).

Proof of Claim 4.10 We fix the parameters ¢, s, k,m > 1 and we want to prove that
the set U(i, s, k,m) is dense in H(2). Let g € H(2), L' C () be a compact set and
e > 0. Our aim is to find a function u € U(i, s, k, m) such that

sup |u(z) —g(z)| < e (4.51)
zeL!

There is no problem if we assume that ¢ < £. According to Lemma 4.5, we are able
to find an index ny > 1 satisfying L U L' U Ly, C L,,. Since L,, and K, are disjoint
compact sets with connected complements, the set L,,, U X, is also a compact one with
connected complement. Consider now the following function

) filz) ifze Ky
w(z) = {g(z) ifz € Ly,. (4:52)

The function w is well defined (because L,, N K,, = ) and it also holds w €
A(Ly, U K,,). We apply Mergelyan’s theorem and thus we find a polynomial p such that
€

sup |w(z) —p(2)] < 3 (4.53)
LingUKom
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Our assumption that p,, — +00 allows us to find an index p;,, > 1 such that p;, >
degp(z). Let u(z) = p(2) + dzP*, where d € C\ {0} and
1

sup  |2P¢ |+ 17
ZeLnOUKm

9
dl < - 4.54
4] < (4.54)

It is immediate that the function w is a polynomial with degu(z) = py,. We also
notice that it holds
sup  Ju(z) —w(z)| <e. (4.55)

2€Ln UK,

In order to complete the proof of Claim 4.10 we have to verify that u € U(i, s, k, m).

(i) u e A(i,s,m,ky,,j) forevery j = 1,--- | N(k,). Since u is a polynomial with
degu(z) = pi, we have that for every ¢ € Litholdsu € D,, o(¢). It follows that
u € Dpk q{km(o foreveryj =1,2,--- N(k,). We also have

niiy

1

- max sup sup |[u;pe, /a0 )c(2) — fi(2)] = sup sup |[u(z) — fi(2)] < -
J=1,+,N(kn) ccL 2€Kpm CEL z€Km, S
(4.56)

because [u;pkn/qj(-k")]g(z) = u(z)forevery( € Landforeveryj =1,--- N(k,),
according to Proposition 4.3.
(i) v € B(s,k,kp,j) for every j = 1,---  N(k,). We only have to verify that it
holds .
. (kn)
max  sup sup ||u;pk,/q; z)—u(z) =0< - (4.57)
joi ., SUP sup w3 Pk, /45 e (2) = u(2)] .

which is immediate, since [u; py, / q§k")] ¢(2) = u(z), due to the definition of the
polynomial .

Therefore
N(kn) N(kn)
u € [ ﬂ A(i,s,m,n,j)} M [ m B(s,k,n,j)} (4.58)
j=1 j=1

or, equivalently u € U(i, s, k,m). This part of the proof is complete.
(|
Since H(2) is a complete metric space, we apply Baire’s theorem and that completes
the proof.
[ |
We now present a consequence of Theorem 4.8.

Theorem4.11. ([27]) Let 2 C Cbeasimply connected domain. We consider a sequence
(Pn)n>1 € Nwith p, — +00. Now, for everyn > 1 let qi"), qé"), - ,q](\?()n) € N, where
N (n) is another natural number. Then there exists a function f € H({2) satisfying the
following.

For every compactset K C C\ 2 with connected complement and for every function

h € A(K) there exists a subsequence (p, )»>1 of the sequence (p,,),>1 such that
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(1) For every compact set L C (2, there existsan(L) > 1 such that f € Dpk o) )

for every ¢ € L, for every n > n(L) (where n(L) is a natural number depending
on L) and forevery j € {1,--- ,N(k,)}.

(2) max  sup sup|[f;pr, /)" ]c() = h(z)] = 0

J=1,+,N(kn) ¢ceL zeK

as n — 400, for every compact set L C €.

(3) max__supsup |[f;pp, /¢\"]c(2) — f(2)] = 0

j=1,+ ,N(kn) CeL zeL

as n — +o00, for every compact set L C ).

Moreover, the set of all functions f satisfying the above properties is G5 - dense in
H(Q).

Proof. Let C! be the set of all functions satisfying Theorem 4.11. We apply Theorem
4.8 for L = Lj (and that for every k& > 1) and thus we obtain a G5 - dense class of
functions in H (2); the class C{. The reader can verify that it holds

= (¢ (4.59)

k>1

The result follows now from Baire’s theorem.
[ |
We now present two results similar to Theorems 4.8 and 4.11 respectively where the
roles of p and ¢ have been interchanged.

Theorem4.12. ([27]) Let 2 C Cbeasimply connected domainand L C {2 bea compact
set. We consider an arbitrary sequence (¢,),>1 C N (may be bounded or unbounded).

Now, for every n > 1 let pgn), pgn), ceey pg\?()n) € N, where N(n) is another natural
number, such that
min , R — 400 (4.60)
jemin )}{pl e P}

as n — +oo. Then there exists a function f € H({2) satisfying the following.
For every compactset K C C\ 2 with connected complement and for every function
h € A(K) there exists a subsequence (g, ),>1 of the sequence (g,),>1 such that

(1) f €D, (©)
for every ¢ € L, for everyn € Nand forevery j € {1,--- , N(k,)}.

(2) max  sup sup |[f;p§k”)/qkn]c(z) —h(z)] =0

Jj=1,,N(kn) (el zeK

asn — +oo.
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(3) For every compact set .J C (2 it holds

(kn)
max  supsup |[f;p; 0(2) = f(2)] = 0
j=1,,N(kn) CEE ZEI;W p; " ke (z) — f(2)]

as n — +o0.

Moreover, the set of all functions f satistying the above properties is G5 - dense in

Proof. Let { f;};>1 be an enumeration of polynomials with coefficients in Q + iQ.
Now, for every i,s,n,k,m > 1 and for every j € {1,--- N(n)} we consider the
following sets

A(i,s,m,n, j) = {f EH(Q): fe Dpﬁn)7qn(§“) forevery ¢ € L

and sup sup |[f;p\" /a.]c(2) — fi(2)] < %} (4.61)

CeEL zeKn,

A(i, s,m,n) = {f EH(Q): fe D ) qn(C) for every ¢ € L and for every

1
j=1,2,---  N(n)andalso max sup sup |[f;p§”)/qn]<(z) — fi(z)| < E}

J=1,+,N(n) ¢eL zeKn,

=
z

A(i, s,m,n, j) (4.62)

Il
—

J
B(s,k,n,j) = {f EH(Q): fe meqj(_m((’) forevery ¢ € L

and sup sup [[7:p" /.Je(=) — [(2)] < -} (4.63)

CeL zeLy S

B(s,k,n) = {f €EH): fe Dp§n>7qn(§) for every ¢ € L and for every

1
j=1,2,--- N(n)andalso max sup sup Hf;pg-n)/qn]c(z) — f(2)| < —}

j=1+,N(n) ¢ceL zeL, §
N(n)

= () B(s,k,n.j) (4.64)
j=1

One can verify (mainly by using Mergelyan's theorem) that if S is the class of all
functions satisfying the properties of Theorem 4.12, then it holds

S = ﬂ (U(A(i,s,m,n)mB(s,k,n)))

i,8,ky,m>1  n>1

N(n) N(n)
- N (UNAGsmn ) N[ Blskni)). @65
i,8,ky,m>1  n>1 j=1 j=1

Since H (£2) is a complete metric space, in order to use Baire’s theorem, it suffices to
prove the following.
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Claim4.13. Foreveryi, s,n, k,m > landforeveryj € {1,--- N(n)} thesets B(s, k,n, j)
and A(i, s,m,n, j) are open in H ().

For the proof of Claim 4.13 we refer to the proof of Claim 4.9.

Claim 4.14. For every i, s, k, m > 1 the set

S(i,s,k,m) = U (A(i,s,m,n) M B(s, k,n))

n>1
N(n)
= U ﬂ (7 s,m,n,j)] M [ ﬂ B(s,k‘,n,j)}) (4.66)
n>1  j=1 j=1

is dense in H(12).

Proof of Claim 4.14 We fix the parameters i, s, k,m > 1 and we want to prove that
the set S(i, s, k,m) is a dense subset of H(€2). Let g € H(2), L’ C € be a compact set
and € > 0. Our aim is to find a function v € S(i, s, k, m) such that

sup |u(z) — g(2)] < e. (4.67)
zeLl!

There is no problem if we assume that it holds ¢ < 1. According to Lemma 4.5, we
are able to find an index ny > 1 satisfying LU L' U Ly, C Ly,

Since L, and K, are disjoint compact sets with connected complements, the set
L,, U K,, is also a compact one with connected complement.

Consider now the following function

) filz), ifze K,
wz) = {g(z), if z € Ly,. (4.68)

The function w is well defined (because L,, N K,, = ) and also it holds w €
A(Ly, U K,;,). We apply Mergelyan’s theorem and we find a polynomial p such that

€
sup |w(z) —p(2)] < 3" (4.69)
Lng UK,
Since )
M — 400 4.70)
JefLn N >}{p1 P2 Piin} (

as n — 400, there exists an index k,,, > 1 such that

1 k”l (knl)
min , e > de 4.71)
j6{1,~~~,N(k"1)}{p1 Py N(k } gp(z).

Consider now the rational function
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where d € C\ {0} and 0 < |d| is small enough. We notice that it holds

p(2)
sup |p(z) —u(z)| = su ’pz——
Lnou};{m! (2) — u(z)] Lnou};(m (2) T dam
= su dz"m p(z)
= LnOUII)(m 1 +qukn1
£
e 4.
< 5 (4.73)
provided that 0 < |d| is small enough. It follows that
sup |w(z) —u(z)| <e. (4.74)

L”O UKm

In order to complete the proof we have to verify that it holds v € S(i, s, k, m).

(1) we D Nt (¢) for every ¢ € L,, U K and for every j € {1,--- , N(ky,)},

nl

accordmg to Proposition 4.3. In particular, this holds for every ( € L.

(2) [u; pj /anl]c(z) = u(z) for every ¢ € L,, U K, for every z € K and for every
j € {l,---,N(ky,)} according to Proposition 4.3. In particular, this holds for

every ¢ € L.
Therefore
N(kn) N(kn
ue[ ﬂ A(i,s,m,ny ﬂ sk‘nj (4.75)
i=1 =1

or, equivalently u € §(3, s, k, m). This part of the proof is complete.
[ ]
Since H (£2) is a complete metric space, we apply Baire’s theorem and that completes
the proof.
|
We now present a consequence of Theorem 4.12.

Theorem 4.15. ([27]) Let {2 C C be a simply connected domain. We consider an arbi-
trary sequence (¢,)n>1 C N (may be bounded or unbounded). Now, for every n € N

let py ),p(zn), e pgv) € N, where N(n) is another natural number, such that

).

min {p1 , Dy (n ,pN )} = +o0 (4.76)

je{lv"' vN( )}

asn — +oo. Then there exists a function f € H({2) satisfying the following.
For every compact set X' C C\ 2 with connected complement and for every function
h € A(K), there exists a subsequence (gy,, ),>1 of the sequence (¢,),>1 such that

(1) Forevery compactset L C (2, there existsan(L) € Nsuch that f € D o, (€)
for everyn > n(L), forevery j € {1,--- , N(k,)} and for every ¢ € L.
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(2) . max  sup I[f;p§k")/qkn]<(2) —h(z)| =0
.]:17"" ( ’ﬂ) zeK

asn — 4o0.

(3) For every compact set L C €2 it holds

kn)
max su Ny n z) — z 3 O
j= ,“',N(kn) ZGEHf pj /Qk }C( ) f( )|

as n — +oo.

Moreover, the set of all functions f satistying the above properties is G5 - dense in

Proof. Let C? be the set of all functions satisfying Theorem 4.15. We apply Theorem
4.12 for L = Ly (and that for every £ > 1) and thus we obtain a G5 - dense class of
functions in H (2); the class C7. The reader can verify that it holds

c¢’=(c. (4.77)
k>1

The result follows now from Baire’s theorem.

4.3 Results of approximation for Universal Padé approximants of
Type II
In this section we present several results of simultaneous approximation concerning

Universal Padé approximants of Type II. Our results are generic in the space of holo-
morphic functions defined on an open set {2 C C; that is, the space H(£2).

Theorem 4.16. ([27]) Let 2 C C be an open set and L, L’ C () two compact sets. Let

also K C C \ 2 be another compact set. We consider a sequence (p,,),>1 C N with

P — +00. Now, for every n > 1let ¢\ ¢\, -+ q%l()n) € N, where N(n) is another

natural number. Suppose also that it holds

Then there exists a function f € H({2) such that for every rational function h, there
exists a subsequence (py, )n>1 of the sequence (p;,),>1 satisfying the following.

(1) feD  wun(C)

Pkn 45

for every ( € L, for everyn € Nand forevery j € {1,---, N(k,)}.

(2) max_ supsup x([fip, /q")c(2) h(z)) = 0
j=1,+,N(kn) ¢ceL 2eK

asn — 4o0.
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(3) max_ sup sup |[f;pp, /a\"]c(2) — F(2)] = 0

j=1,+,N(kn) ceL »eL’

asn — +oo.

Moreover, the set of all functions f satisfying the above properties is G5 - dense in
H(Q).
Proof. Let { f;};>1 be an enumeration of all rational functions with the coeflicients

of the numerator and denominator in Q + Q. There is also no problem to assume that
for every i > 1, the numerator and the denominator do not have any common zeros in
C.

Now, for every i, s,n > 1 and for every j € {1,--- N(n)} we consider the following
sets

A(j,n, s) = { feH®Q):feD, w(C) and

sup sup[f: p /") (=) — f(2)] < - } (1.79)

CeL zeL

A(n,s) = {f EH): fe meqy)(g) forevery j =1,2,--- ,N(n) and

max sup sup |[f; pn/q]n)] (2) = f(2)] < 1}

j=1,+,N(n) ¢ceL zeL! S

7’L

ﬂ (7,m,s)

B(i,j,n,s) = {f e H(): f €D, () and

sup sup X([f: pn/a""c(2), fi(2)) < é} (4.80)

CeL zeK

B(i,n,s) = {f €eHQ): fe Dpn’qj(_n)({’) forevery j =1,2,---,N(n) and

max  supsup x((:p /g (2). £i(2)) < 1)

J=1,+,N(n) ¢ceL zeK S
ﬂ (i,4,n,8) (4.81)
7j=1
One can verify that if ¢/ is the set of all functions satisfying the properties of Theorem
4.16, then it holds

U= ﬂ (U A(n,s) (N B(i,n, 3))

,s>1 n>1
ﬂ(U[ﬂAJ’”S] [ﬂn B(i,j.n.5)| ). (4.82)
iws>1 n>1  j=1 j=1
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Since H({2) is a complete metric space, in order to use Baire’s theorem, it suffices to
prove the following.

Claim 4.17. The sets A(j, n, s) and B(i, j, n, s) are open for every parameter.

Proof of Claim 4.17 The sets A(j, n, s) and B(3, j, n, s) have been proven to be open
for every parameter in [35]. Thus, the sets A(n, s) and B(i, n, s) are also open, as a finite
intersection of open sets. It follows that the class I/ is a G5 subset of H(2).

[ |
Claim 4.18. The set
N(n) N(n)
U, s) = U [ ﬂ A(y, n,s)} M [ m B(i,j,n,s)} (4.83)
n>1 - j=1 j=1

is dense for every i,s > 1.

Proof of Claim 4.18 We fix the parameters i,s > 1. Let L” C () be a compact
set, € H(Q2) and ¢ > 0. We may assume that ¢ < <. Our aim is to find a function
g € U(i, s) such that

sup [p(z) — g(2)| <e. (4.84)
zeL"”

Without loss of generality, we suppose that L U L' C (L”)° and also that every
connected component of CU{oo}\ L” contains a connected component of CU{oco}\ Q2.
For instance, that can be achieved by using Lemma 4.5.

Consider now the following function

w(z) = {fi(z) ifze X (4.85)
o(z) ifzel.

The set of poles of f; on K is finite; let 1+ denote the sum of the principal parts of
fi on these poles. Thus, the function w — p is holomorphic in an open set containing
L" U K. We apply Runge’s theorem to approximate the function w — x uniformly on
L" U K with respect to the Euclidean metric by a sequence of rational functions

A
An(2) (4.86)
B, (z)
Hence, there exists a natural number n, > 1 satisfying the following
Ay
sup |(w(z) — p(2)) — ~—(Z) << for every n. > ny. (4.87)
2€L/'UK Bn(z)! 2

In particular, B,,(z) # 0 for every z € L” U K and for every n > ny. There is also
no problem to assume that the polynomials A,,(z) and B,,(z) have no common zeros in
C. On the other hand, the sequence of functions

w(z) + = = (4.88)
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defined for n > ny, satisfies

g
sup X (fi(2), p(z) + 5 (Z)) <3 (4.89)
and _
An(2) £
sup ¢(z) — p(z) — B <2 (4.90)

for everyn > ny. We notice that the polynomials A,,(z) and B,,(2) have no common
zeros in C, since

A A A
s D) )+ D) A) o)
B, (z) By (2) B, (2)
and also that it holds B,,(z) # 0 for every z € L” and for every n > ng, because the

polynomials B, (2) satisfy the same property for every n > ny.

Since p,, — +ocand mm{q1 ,q(") . ,qN } — +00, there exists an index k,,, >
ng > 1 such that
Phn, > max {degA,,(2),degBn,(2)} (4.92)
and (kng)  (kng) (kng)
mln{q "0 y 4o "0 4 ang )} > d@ano( ) (493)

We sett = py,  — degBp,(z) and we consider the function

Ang(2) | 4 Ang(2) +d2" By (2)
Bu() T Bal)
Now, for every d € C, the polynomials A,,,(z) 4+ dz'B,,,(z) and B,,(z) do not have

common zeros in C, because the same holds for the polynomials A4,,,(z) and B, (2). If
the parameter d € C is close to zero, for instance, if

(4.94)

d- sup |2) < c (4.95)
(zeL,/EK| |> 2
then, it holds 4 (2)
z
su +dtw <e (4.96)
ZEEX(BnO(Z) ( >)
and
Any(2)
sup |—2"2 +d2t — w(z ‘ <e. (4.97)
zELB’ Bno(z) ( )

Since degB,,,(z) < mln{q1 ,qékno), - ,q](%g:o)}, ford € C\ {0} it holds
(1) deg(Ano (Z) + dZtBno (Z>> = DPknyy-
(2) According to Proposition 4.3, it holds

A (2) Apo(2) + d2' By (2)
Ot = 0 D " 498
Bno(z) +dz Bno(z) S _— q;k o)(C) ( )

forevery j € {1,2,---, N(k,,)} and for every ( € C such that B,,,(¢) # 0; in
particular this holds for every ¢ € L.
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(3) Ay (2) Any(2)
[Bno(z) By, (2)

forevery j € {1,2,--- , N(k,,)} and for every ¢ € L.

kn,
t+ 2 Pl /4] [(2) = + d2t (4.99)

Therefore, we obtain

Ang(2) | 4 (Fng)
max sup su +d2"p, [q; | (2), fi(2)) <e (4.100
e <£Ze£X([BnO(Z) Pino /45 "] (2), fi(2)) )
and
Any (2) (o) Any (2) 1
max sup su +d2tp, Jq; 0] (2)— (FES S Hd) | =0< - <€
3€{1,2,+ \N(kng)} CEEzELR [Bn()('z) ‘ O/ ! ]C( ) (Bno(z) ) s
(4.101)
In addition, it holds
Ay (2) t
sup tdst - gb(z)‘ < (4.102)
ze L BnO(Z)

Since the polynomials A, (z) +dz" and B, (z) have no common zeros, we have that

min {|A,,(2) + dz' By, (2)|* + | B, (2)]*} > 0. (4.103)

zeL’'UK

One can verify that these polynomials are the ones given by the Jacobi formulas for
the function

[Ano (2)
By, (2)

for any ( € C with B,,,({) # 0 and for every j € {1,2,--- , N(k,,)}-
Since every connected component of CU{oo} \ L” contains a connected component
of CU {00} \ , every zero of B,,,(z) in 2\ L” lies in the same connected componet of
CU{oo}\ L" with a pointin CU{o0o} \ 2. Therefore, we may approximate the function

Any(2)
By (2)

kn
+d2t pry J0y ] (2) (4.104)

+ d2t (4.105)

by a function g € H (). The approximations is uniform on L” with respect to the
Euclidean metric. Since L C (L”)®, there exists » > 0 such that

{zeC:|z—¢| <r}C (L") forall ¢ € L. (4.106)

Now, Cauchy estimates allow us to show that a finite number of Taylor coefficients
of g with center ( € L are uniformly close one by one to the corresponding coefficients
of the function

Any (2)

B, (2)
It is now easy to see that g satisfies all requirements; the only difference of g from the
2228 + d2" is that it is not true that [g; px,,, /q](-kno)}c(z) = ¢(z), but instead,
the triangle inequality implies that

+d2' (4.107)

function

. (o)
max Sup su ' Dkng /4 zZ)— gz
JE{1.2, N (kng)} CGEZGBHg ko /4 Jc(2) — 9(2)]
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(kng) Ay (2) . () ’
= ? i — [P 4 dzhs (kng n
S 2™ oy PSP 95 Pk, /4G () — | B () "% Prng /45 "] (2)
A(z) (k
b e e +d2"; "0 — ‘ 4.108
je{172,~-,N(knO)}ZSB [B(z) Z5 pkno/qj L(Z) 9(z) ( )

kn,
where the last two terms are small enough because py,, and q](- o)

and thus we know which set of Taylor coeflicients we have to control.
This part of the proof is now complete.

are already fixed

[
Since H(2) is a complete metric space, we apply Baire’s theorem and that completes
the proof.
[ |
The following result is a consequence of Theorem 4.16.

Theorem 4.19. ([27]) Let 2 C Cbean open We consider asequence (p,,)n>1 € Nwith
pn — +00. Now, for every n > 1 let ¢; ), q(n) ,qN y €N, where N(n) is another

natural number. Suppose that it holds

min{q\"”, ¢§", -- ,qN(n)} — +o0. (4.109)

Then there exists a function f € H(£2) such that for every compact set K C C\
and for every rational function h, there exists a subsequence (py,, ),>1 of the sequence
(pn)n>1 satisfying the following

(1) Forevery compactset L C (), there existsan(L) € Nsuch that f € D, Q)

ndyj

for every ( € L, for everyn > n(L) and forevery j € {1,--- , N(k,)}.

(2)  max sup sup x([f; pkn/qj ] (2),h(2)) = 0asn — +oo
j=1,+,N(kn) ¢ccL €K

for every compact set L C €.

(3) max sup sup |[f; pkn/q(k")] (z2) — f(2)] > 0asn — 400
j=1,+,N(kn) ceL zeL

for every compact set L C (.

Moreover, the set of all functions f satisfying the above properties is G5 - dense in
H(Q).

Proof. We apply Theorem 4.16 for L = L' = L and for K = K, and that for every
k,m > 1. In that way we obtain a G5 - dense class U, ,, of H(£2). One can verify (by
using a diagonal argument) that if /! is the class of all functions of H ((2) satisfying the
above properties, then it holds

U .. (4.110)
n,m>1

The result follows once more from Baire’s theorem.
[ |
Now we present without proof two results similar to Theorems 4.16 and 4.19 respec-
tively where the roles of p and ¢ have been interchanged.
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Theorem 4.20. ([27]) Let 2 C C be an open set and L, L' C ) two compact sets. Let

also K C C\ Q be another compact set We consider a sequence (¢, ),>1 C N with

qn — +00. Now, for everyn > 1 let p; ),p(") . ,pN m €N where N (n) is another

natural number. Suppose also that it holds
min{p{"”, p{", - ,pN )} = +oo. (4.111)

Then there exists a function f € H({2) such that for every rational function h, there
exists a subsequence (g, ),>1 of the sequence (g, ),>1 satisfying the following.

(1) f€Dywn ,, (C)
for every ¢ € L, for everyn € Nand forevery j € {1,--- ,N(k,)}.

(2) max supsup x([f;p§"" [k, Jc(2), h(2)) = 0

J=1,+,N(kn) ¢ceL 2eK

asn — +oo.

(3) max ~ sup sup |[f; P o (2) = f(2)] = 0

j=1,--,N(kn) CeL zel!

asn — 4o0.

Moreover, the set of all functions f satistfying the above properties is G5 - dense in
H().

Theorem 4.21. ([27]) Let Q2 C C be an open set We consider a sequence (¢,),>1 € N

with ¢, — +00. Now, for every n € N let p1 ,p(") e ,pg\?()n) € N, where N(n) is

another natural number. Suppose that it holds
min{p{"”, py"”, - - ,pN )} = +oo. (4.112)

Then there exists a function f € H () such that for every compact set X C C\
and for every rational function h, there exists a subsequence (g, ),>1 of the sequence
(Gn)n>1 satisfying the following

(1) For every compact set L C (), there existsan(L) € Nsuch that f € D o, (€)
for everyn > n(L) and for every j € {1,--- , N(k,)}.

(2) max  sup sup XU 08 far,)e(2), h(2)) — 0

j::l:"'z (kn) CEL zeK

as n — +oo for every compact set L C 2.

(3) max_ supsup |[f; 9\ /g ]c(2) — F(2)] = 0

j=1,N(kn) ¢eL ceL

as n — 400 for every compact set L C (.

Moreover, the set of all functions f satistying the above properties is G5 - dense in
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Proof. We apply Theorem 4.21 for L. = L' = L and for K = K, and that for every
k,m > 1. In that way we obtain a G5 - dense class U}, ,, of H(Q2). One can verify (by
using a diagonal argument) that if /? is the class of all functions of H ({2) satisfying the
above properties, then it holds

u=J . (4.113)

n,m>1

The result follows once more from Baire’s theorem.
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4.4 Affine genericity of a class of functions

In this section we deal with the class of functions on a simply connected domain {2 C C
which satisfy the requirements of Theorem 4.8 for a fixed center of expansion ( € (2
the class A.

We construct a particular function f in the above class. Our construction is based on
the observation that [f; p/q|¢(2) = S,(f,()(z) withg > lifand onlyif a,,1 = ap40 =

- = a,,, = 0, where, of course, f(z) = > a,(z — ()" is the Taylor expansion of

the function f, centered at ( € ().

We recall the following definition.

Definition 4.22 (Affine genericity). Let {2 C C be an open set. We consider the space
H(2) endowed with its natural topology and let A C H(f2). Let V' < H(f2) be a dense
subspace of H(Q2) and g € H(2) such that g + V' C A. Then the class A is called
(densely) affinely generic; that is it contains the translation of a dense subspace.

Theorem 4.23. ([27]) Let 2 C C be a simply connected domain and ¢ € €2 be a fixed
point. Let also (p,)n,>1 € N be a sequence such that p,, — +0c. Now, for every n > 1,

let qﬁn), cee qj(y()n) € N, where N(n) is another natural number.
Then, there exists a function f € H(f2), with Taylor expansion at ¢ of the form
f(2) = 327 a, (2 — ()" satisfying the following.

For every compact set K C C\ 2 with connected complement and for every function
h € A(K), there exists a subsequence (py, ),>1 of the sequence (p,,),>1 such that

(1) sup [Sp,, (f,¢)(2) = h(2)] = 0,asn — +oo.
zeK

(2) sup |S,, (f.¢)(2) = f(2)| = 0,as n — +oo0 for every compact set J C 2.
zeJ

Furthermore, for every n > 1 it holds a,, # 0and a,, ; = 0 for every s =
™ (n) .. (k)
) 7max{q1 ) 7qN(kn)}

Proof. Let {f;};>1 be an enumeration of polynomials with coeflicients of Q + Q.
Let also { K, }rn>1 and { Ly }r>1 be two fixed families of compact subsets of C satisfying
Lemmas 4.4 and 4.5 respectively. The set { (K, f;) : m,j > 1} is infinite denumerable
and thus we consider a function ¢ : N — N such that {(K,,, f;) : m,j > 1} =
{(Kp,, fj) : t > 1}, where we suppose that each pair (K,,,, f;,) appears infinitely
many times'.

Step 1. We consider the function

fi(2), ifze K,
= 4114
() {0, if 2 € L. (4.114)

Notice that w; € A(K,,, U Ly). We apply Mergelyan’s theorem and in this way
we find a polynomial A, such that
sup  |wi(2) — hi(2)] < 1. (4.115)

ZeKle ULy

'In any other case, see Remark 3.21 of [27].
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We consider an index k; > 1 such that degh(z) < pi,. Next, we selecta ¢; €
C\ {0} such that

sup  |wi(2) — (hi(2) + c1(z — ()P)| < 1. (4.116)
2€Km Ul

Notice that such a choice is possible. We set Hi(z) = hi(z) + ¢1(z — ()=
Clearly, the function H, is a polynomial with degH;(z) = px,. Finally, we select

aty > 1+max{g”, - qy)y}

Step 2. We consider the function

fn(2) = Hi(2)
wa(z) = (z = )pth
0, if z c L2.

if 2 € Kon, (4.117)

Notice that wy € A(K,,, U Ly). We apply Mergelyan’s theorem and in this way
we find a polynomial A such that

sup  [wa(2) — ha(2)] < — ! (4.118)

2 — (|PR T )
2€Km,ULz 2 ol

We consider an index k; > 1 such that deg(ha(z) - (z — ()P ") < py,. Next,
we selecta cy € C\ {0} such that

sup \(z—é)%*“-(wz(z)—hz(z))—c2(z—<)pk2H<%. (4.119)

ZEKm2 ULo

Notice that such a choice is possible. We set Hy(z) = (2 — {)Pr1 1 hy(2) 4 co(2 —
¢)Pk2. Clearly, the function Hj is a polynomial with degHs(2) = py,. Finally, we
selectty > 1+ max{q?), e ,q](\?zm}.

Step n. So far, we have defined the polynomials H, - - - , H,,_; with degH;(z) = py, for

everyi = 1,--- ,n — 1. We consider the function
n—2
Fin(2) = (Hi(2) + ) (2 = QPP Hy 1)
= N=1 .
wy(2) (2 = O)on ¥ , ifze K,
07 if z € Ln

(4.120)

Notice that w,, € A(K,,, U L,). We apply Mergelyan’s theorem and in this way
we find a polynomial &, such that

1 1
—h <= . (4121
" 2€Km,, ULy,
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We consider an index k,, > 1 such that

deg((z — Q)PFn1"1 - by (2)) < pg,. (4.122)
Next, we selecta ¢, € C\ {0} such that

sup  [(z— )P T (W (2) = ha(2)) — calz = (P | < % (4.123)
2€EKm, ULy n

Notice that such a choice is possible. We set H,,(z) = (z — ()P -1 h,(2) + ¢, (2 —
¢)Pn. Clearly, the function H,, is a polynomial with degH,,(2) = py,,. Finally, we
selectat, > 1+ ma${q§n), e ,q%()n)}.

From Weierstrass’s theorem, the sequence of polynomials
Hi(2) + Hy(2) + -+ Ho(2) + - - (4.124)

converges uniformly on every compact subset J C € to a function f € H(£2). We
notice that from Cauchy’s integral formula, for every n > 1 it holds

Spen (£:0)(2) = Hi(2) + > Hyya(2). (4.125)

We will show that the function f meets the requirements of Theorem 4.23.

e LetJ C Q) beacompact set. We consider an index & > 1 such that J C L. Then

—+00

sup |5,,, (£, (=) ~ R < Y 5 =0 (4.126

Z€Ly, s=M(n)

asn — +o00, where M (n) > 1 and M(n) — +oo asn — 400 as well.

o Let K C C\ Q be a compact set with connected complement, h € A(K) and
e > 0. We consider an index m > 1 such that KX C K,,,. We use Mergelyan’s
theorem in order to find a polynomial f; such that

sup |h(z) — f;(2)| < % (4.127)

zeK

Then, according to our initial hypothesis, (K,,, f;) = (K, f;) for infinitely
many ¢ > 1. Also, according to the construction of f, it holds

sup [/3(2) = Sy, (1O < (4128)

9
ZEKmt t

for infinitely many ¢ > 1. Equivalently,

sup 113(2) ~ Sy, (1O < 5. (4129)

z€EKm
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for infinitely many ¢ > 1. For ¢ — +o0, we select a ty > 1 such that

sup 1f3,(2) = S, (HOE] < 35 < 5 (4130)

zeK m
The triangle inequality yields now the result.

[ |
As we have already commented before, if U/ is the class of all functions satisfying

Theorem 4.8 for a fixed center of expansion and f is the function constructed in Theorem
4.23,thenitholds f € U .

Definition 4.24. We denote with B = B(.A(") the set of all functions satisfying Theorem
4.23.

Proposition 4.25. ([27]) Let f € B(AW) and p be a polynomial. Then f + p €
B(AWM) C U. Thus, the class U contains an affine dense subspace of H (). It follows
that I/ is affinely generic.

Proof. This is obvious, according to the construction of the class B(L{ My c U,
since the condition a,, ;, = 0 for everys = 1,--- 7max{q%lg”), e 7qN e )} implies

that [f;pkn/q§k")]g = Sy, (f,¢) foreveryj = 1,---, M(k,). The previous relations
combined with the fact that a,,, # 0 for every n > 1imply that f € D ) (C) for

everyj =1,--- M(k,).
[ |
We will now strengthen Theorem 4.23. We consider a finite of infinite denumerable
family of systems

AD = ((p0),51, N(1,n),¢\7 fori=1,---  N(l,n)),l € I (4.131)

where / = N or [ is finite. As expected, for every [ € [ it holds

@) (pn Jn>1 €N

(ii) pg) — +ooasn — +00
(iii) +o00 > N(I,n) > 1foreveryn > 1
(iv) ql(:) € Nforeveryi=1,---,N(l,n)

(v) max{ql(ﬁ),--- ,ql(Nln}—>+ooasn—>+oo

Each system defines a new class of functions, namely the class B(A"), according to
Theorem 4.23.
We will now show that the class

(B(AY) (4.132)

lel

is a dense subset of H(€2), for [ a finite or an infinite denumerable set.
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Theorem 4.26. ([27]) Let I # () be a finite or infinite denumerable set. We consider a
family of systems {.A(!)},c; as above. Then the class

(B(AY) (4.133)
lel

is a dense subset of H(€2) and every function

fe()B(AY) (4.134)
leT
with Taylor expansion at ¢ of the form f(2) = 320 a,,(» — ()" satisfies the follow-

ing.
For every compact set K C C \ €2 with connected complement, for every function
h € A(K) and for every [ € I, there exists a subsequence (p,(ﬁlz (y)n>1 of the sequence

(pg))nzl such that

(1) sup|S o (f,¢{)(2) —h(z)| = 0,asn — +o0.
sk Prn(®)

(2) sup |Sp(l) (f,Q)(2) — f(2)] = 0,as n — o0 for every compact set J C (.
zeJ kn (1)

Furthermore, for every ! € I and for everyn > litholdsa oy # Oanda ()

pkn(l) pk7L(l)+s
kn(l kn(l
Oforeverys=1,--- ,maX{QZ(,1 ())a T >ql(,N((z,)13n(l))}-

Proof. The proof is based on that of Theorem 4.23. We will not provide in-depth
details but instead, we will give a sketch of the proof, explaining the main idea behind it.
We examine each one of the two cases concerning the cardinality of the set I separately.

(1) Suppose that the set I is finite. In this case, without loss of the generality, we
suppose thatitholds I = {1,2,--- , N}, for an index N > 1.

Selection 1)

Sequence

Step 1 ° - -
Step 2 - ° .
Step N - - °
Step N +1 . - -
Step N + 2 - . -

Step 2N - - - o

Figure 5: A natural choice in the case where [ is a finite set.
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In each step of the proof we repeat the same arguments as we did in the one of
Theorem 4.23, but this time, the specific argument is used for a different sequence.
See Figure 5 for details. The class

(B(AY) (4.135)

lel

is proved to be a dense subset of H (£2) in the same way. In addition, every function

fe(BAY) (4.136)

lel

meets the requirements of Theorem 4.26 in the same way as in Theorem 4.23.

Remark 4.27. A more general selection from the above is the following.

We fix a permutation (i.e. a1 - 1 and onto function) o : {1,--- N} — {1,--- | N}
and we repeat the same construction as above, but this time, in every “block” of
N steps, starting from step kN + 1 and stopping at step (k + 1)N (where ap-
parently & > 0), the kN + j term of the sequence is chosen from the sequence

(pgf(j +1)))n21. See for instance the following table as an example.

Selection .
Sequence Pzt Bzt Gzt G )zt G )zt (0 )ns

Step kN + 1 - . - - - -
Step kN + 2 . - - - - -
Step KN + 3 - - . - - -
Step kN + 4 - - - - - .
Step EN + 5 - - - ° - -
Step (k + 1)N - - - - o -

Figure 6: A more general selection in the case where [ is a finite set (here, N = 6).

(2) Suppose that the set [ is infinite denumerable. In this case, without loss of the
generality, we suppose that it holds / = N.

In each step of the proof we repeat the same arguments as we did in the one of
Theorem 4.23, but this time, the specific argument is used for a different sequence.
See the following table for details.
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Sequence welecton Pzt (P )ezt @)z o ezt 0 )
Step 1 ° - - . , _
Step 2 . . - o - -
Step N ° ° ces e ° .
Step NV + 1 . . ° ... o o i

Figure 7: A natural selection in the case where [ is infinitely denumerable.

The class
(B(AY) (4.137)

lel

is proved to be a dense subset of H (£2) in the same way. In addition, every function

fe()B(AY) (4.138)

lel

meets the requirements of Theorem 4.26 in the same way as in Theorem 4.23.

Proposition 4.28. ([27]) Let I # () be a finite or infinite denumerable set, { AV} ;c; a
family of systems as above,

g€ BAY) (4.139)

and p be a polynomial. Then, it holds

g+pe()BAY). (4.140)
lel
It follows that the class
(B(AY) (4.141)
lel

is a dense subset of H(2).

Proof. The proof is the same as the one of Proposition 4.25 and therefore is omitted.
|
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4.5 Algebraic genericity of a class of functions

In this section we deal with a class of functions on a simply connected domain 2 C C
that “almost” satisfy Theorem 4.8 for a fixed center of expansion ¢ € (2. There are two
differences.

(1) This time, we do not require the uniqueness of Padé approximants but instead, we
only require their existence.

(2) We consider a slight change concerning our choice of indices, which is more gen-
eral than the one we have used before.

Therefore, this new class of functions is larger than the one satisfying Theorem 4.8,
mainly due to condition (1) above.
We recall the following definition.

Definition 4.29 (Algebraic genericity). Let {2 C Cbe an open set. We consider the space
H($2) endowed with its natural topology and let A C H(f2). Suppose that there exists
a dense subspace V' < H(2) such that V' \ {0} C A. Then, the class A is algebraically
generic in H (2); that is, it contains a dense subspace of H (2) (except 0).

Theorem 4.30. ([27]) Let (pn)nen > 1 with p, — +o00. For every n > 1,1let N(n) be a
natural number and qgn), cee qJ(\T,L()n) € N. Let Q2 C Cbe asimply connected domain and
¢ € Q2 beafixed element. Then, there exists a function f € H({2) with Taylor expansion

at ¢ of the form

To0 £(n)
o= g (4142)
n=0 '

n

such that for every polynomial / and for every compact set K’ C C \ €2 with con-
nected complement there exists a subsequence (py, ),>1 of the sequence (p,,),>1 satis-
tying the following.

(i) The Padé approximant [f; py, / qu;;i)]ﬁ exists for every n > 1 and for every selec-

tion o : N* — N* satistying o(k,,) € {1,--- , N(k,)} for everyn > 1.

(i) sup |[f3 2k, /4,5 e () = h(2)| 0
S

for every selection o : N* — N* satisfying o(k,) € {1,---, N(k,)} for every
n > 1.

(iii) sup L3 Pra 05 Je (2) = F(2)] = 0
zE

for every compact set J C () and for every selection o : N* — N* satistying
o(kn,) € {1,---,N(k,)} for everyn > 1.

We will now prove that there exists a dense subspace V' of H((2) such that V'\ {0} C

U', where U’ is the class of all functions f € H(2) satisfying Theorem 4.30. This by
definition implies that the class U/’ is algrebraically generic in H(€2).
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Theorem 4.31. ([27]) There exists a dense vector subspace V' of H({2) such that V' \
{0} CU'.

Proof. Let {K,,}m>1 and {Ly},>1 be two fixed families of compact subsets of C
satisfying Lemmas 4.4 and 4.5 respectively for the specific set 2. Let also { f; };>1 be an
enumeration of polynomials with coefficients in Q + Q.

Step 1. We consider a function g; € B(AW) satisfying the following properties.

(1) plgr, f1) < 1.

(2) For every m > 1, there exists a subsequence (p\i)),>1 of the sequence
(Pn)n>1 such that

sup ]Sp(l) (91,0)(2) — 0| = 0 as n — +o0. (4.143)
z2€EKm mon
sup |Sp7<%?n (91,0)(2) — g1(2)| = 0 as n — 400 (4.144)

zeJ

for every compact J C (2.

So, at the end of Step 1 we have constructed infinitely many subsequences of the
sequence (py,)n>1; the sequences (p%?n)nZI form > 1.

Step 2. We consider the system
A — (D Jnz1, N (1) m),0), 04l )
fori=1,--- ,N(((l),m),n),m> 1. (4.145)

According to Theorem 4.26, there exists a function

g2 € (] B(AM™) (4.146)

satisfying the following properties.

(1) plga, f2) < 3.
(1)

(2) Foreverym > 1 there existsa subsequence (pg?n)nzl of the sequence (Prmn)n>1

such that
sup ]Spm (92,¢)(2) — 0] = 0 as n — +o0. (4.147)
€K, m,n
sup|S @ (92,¢)(2) — g2(2)] = 0 as n — fo0 (4.148)
zeJ ’

for every compact J C ).

So, at the end of Step 2 we have constructed infinitely many subsequences of the
sequence (py, )n>1, since for every m > 1 the sequence (pg?n)nzl is a subsequence
of (p%,)n)nzl-
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Step N. We consider the system
A((N),m) = (( 57]1\,[7:1))71217 N(((N - 1)a m)> 77,), qi(,ng]\fflym)

fori=1,---,N(((N —1),m),n),m > 1. (4.149)

According to Theorem 4.26, there exists a function

gy € ) B(Am) (4.150)

satisfying the following properties.

(1) plgn, fn) < 7

(2) Foreverym > 1there exists a subsequence (p%v %)nzl of the sequence (p%V Y
such that
sup ]Spm) (9n,C)(2) — 0] = 0 as n — +o0. (4.151)
z€EK mn
sup |Sp(N) (gn,0)(2) —gn(2)| = 0asn — +o0 (4.152)
e m,n

for every compact J C ).

So, at the end of Step N we have constructed infinitely many subsequences of the
sequence (pp)n>1, since for every m > 1 the sequence (p%v %)nzl is a subsequence

of (p%\fgl))nZL

We consider now the linear span < g, : n > 1> C H(Q). Let 1 < j; < -+ < js
and a;,, - ,a;, € C\ {0}. Wesetg = a;,g;, + -+ a;,g;,. Our aim is to prove that
the function ¢ is a universal Taylor series and belong to the class /.

Let K C C\ €2 be a compact set with connected complement and h € A(K). We
consider an index m > 1 such that K C K,,. Since

gi. € ] BA©Gm™) (4.153)
meN

there exists a subsequence (pfjn ))n21 of the sequence ( g%f%)nzl such that

h(z

(1) sup |Sp(js)(ng,C)(z) — ( )| — 0asn — +oo.
z2EKm kn Js

@ Sup [0 (95,+C)(2) — 95, (2)] = 0 as m = o0

n

zeJ

for every compact set J C €.

Since (p;(;is))ng is a subsequence of the sequence (g%f%)nzl we obtain that for every

t < sitholds
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(1) sup |S (gs)(g]t, ¢)(z) — 0] = 0asn — +o0.
ZGKm
(2) sup [ S, 60 (90 O)(2) — g (2)| = Oas n — o0
zeg  Phn

for every compact set J C ().

Thus, it follows that
(1) sup S, <J5>(9>C)( ) = h(2)]
= sup Sy (@ia s + -+ a5.95., O)(2) = h(z)]
= sup [ S ytier (955 O () + - + 5,8 601 (95, ) (2) = h(2)]
<Zs€uilag15<m(gm OGN+ +Zs€1;gm|ags oSy (G-, O (2) [+
# 50p 035,003 O)2) — h(2)] 0 (4154
asn — +oo.

(2) ZIEJIJ>|5 6 (9,€)(2) = g(2)] = 0 (4.155)

as n — +00, for every compact set .JJ C ).

Finally, we notice that for every n > 1 it holds

;92 fay3) e (2) = Sy (9,€)(2) (4.156)

foreveryi =1,--- N((js), kn). That completes the proof.
|

Remark 4.32. In the above construction we may have that a,, = 0 for somen > 1,
which would imply that g ¢ D,, ,, (¢) and also that g ¢ U/. But still, we have that it
holdsg € U'.

Remark 4.33. If ¢ # 0, then every function belonging to the class ¢’ has some Taylor
coeflicients equal to zero. It follows that I/’ is meager in H (£2). Since the set of universal
Taylor series is G5 - dense in H (£2), it follows that the result of Theorem 4.31 can not be
deduced from the known results about algebraic genericity of the set of universal Taylor
series.
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4.6 Spaceability of a class of functions

In this section we consider a simply connected domain 2 C C, a fixed element ¢ € (2
and the respective class U’ of Theorem 4.30 and we prove that the classt/’U{0} C H ()
is spaceable.

In [4] E Bayart proved initially the spaceability of the class of Universal Taylor series
in the sense of V. Nestoridis. In [7] S. Charpentier gave afterwards similar results in a
more general framework, which were later improved in [30] by Q. Menet. Also, relevant
results were later developed in [8] by S. Charpentier and A. Mouze.

We will need the following definitions and lemmas.

Definition 4.34 (Spaceability). Let {2 C C be an open set. We consider the space H (£2)
endowed with its natural topology and let A C H((2). Suppose that there exists a closed
subspace V' < H() of infinite dimension such that V' \ {0} C A. Then, the class A
is spaceable in H (£2); that is, it contains a closed subspace of infinite dimension (except
0).

Definition 4.35 (Basic sequence of a Fréchet space, [9]). Let X be a Fréchet space over
a field K and {u, },>0 C X. The sequence {u, },>¢ is called a basic sequence, if it is a
Schauder basis of the set < u,, : n > 0 >; that is, if every element x €< u,, : n > 0 >
has a unique representation in X of the following form

—+00

T = Z QpUn, (4.157)

n=0
for a sequence {a, },>0 C K.

Lemma 4.36 (Lemma 4.18 of [9], Lemme 2.2 of [30]). Let X be a Fréchet space over
a field K(= R or C) with a continuous norm, {p, },>¢ be an increasing sequence of
continuous norms defining its topology and {£,},>0 be a sequence in (0, +00) such

that
+o00

B=]](1+en) < +oo. (4.158)

n=0
If {u, >0 € X is a sequence such that for every n > 0, for every 0 < j < n and
for every ag, - - - , a,+1 € K the following property holds

n n+1

Pj(z aguy) < (1+ 5n)pj(z ary) (4.159)

k=0 k=0
then {u,, },,>0 is a basic sequence in X.

Definition 4.37 (Constant of basicity, [9]). In the previous lemma (Lemma 4.36), the
infimum of the constant B satisfying Properties (4.158) and (4.159) is called constant of
basicity of the sequence {uy, }n>0.

Lemma 4.38 (Lemma 4.10 of [9], Lemme 2.3 of [30]). Let X be a Fréchet space over
a field K(= R or C) with a continuous norm, {p,},>o be an increasing sequence of
continuous norms defining its topology and M an infinite dimensional subspace of X.
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Then, for every ¢ > 0, for every ug, - - ,u, € X, there exists a u,,.; € M such that
p1(tn41) = 1 and also, for every 0 < j < n and for every ag, - - - , a,+1 € K it holds
n n+1
pj(z apug) < (1+ €n)pj(z apuy) (4.160)
k=0 k=0

Definition 4.39 (Equivalent sequences of a Fréchet space, Definition 4.20 of [9]). Two
basic sequences {¢, }»>0 and {f, },>0 of a Fréchet space X are equivalent if for any
sequence {a, },>0 C K it holds

+oo +oo
[the sequence Z axgy converges inX ] = [the sequence Z ay fi, converges inX |.
k=0 k=0

(4.161)

Lemma 4.40 (Lemma 4.21 of [9], Lemme 2.5 of [30]). Let X be a Fréchet space over
a field K(= R or C) with a continuous norm, {p, },>¢ be an increasing sequence of
continuous norms defining its topology. If {u,, },,>0 is a basic sequence in X such that
forevery k > 0Oitholds p; (ux) = 1 and for everyn > 0, the sequence {uy, }>,, is basicin
(X, pn) = X,, with constant of basicity less than B, then every sequence { f,, },>0 C X
satisfying

“+o0
> 2Bp,(u, — fa) <1 (4.162)
n=0

is basic in X. Moreover, the sequences {u,, },,>0 and { f,, }.,>¢ are equivalent in X.

Lemma 4.41 (Similar to Lemma 4.4 of [9]; slightly extended, [9]). Let {2 C Cbeasimply
connected domainand a € C\, ¢ € Q be two fixed elements. Letalso K C C\QU{a}
and L C () two compact sets with connected complements and h € A(K). Then, for
every € > 0, for every denumerable set () ## W C C and for every p € N*, there exists
a polynomial

P(z) =) a2 (4.163)
satisfying the following properties
(1) Pla) ¢ WU{(}
(2) |[|P—hllk <e€

Proof. Lete > 0,() # W C C a denumerable set and p € N*. We consider the
function f : K U L — C defined as follows

0, ifzeL

f(z) = (zhﬁzg)w o (4.164)
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Then, it holds that f € A(K U L), where the set K U L is a compact one with
connected complement. We apply Mergelyan’s theorem and thus we find a polynomial
Q(z) such that

5 1
11Q — fllxur < 5

5 1o 1z = Plleor. (4.165)

Consider now any ¢ € C. We set

P(z) = (2 = OP(Q(2) + ¢) = (2 = ()" Q(2) + ¢z = ()" (4.166)

The polynomial P(z) satisfies the following properties.

. 1Pl = [I(z = O)PQ(2) + e(z = ¢)”[l.
< Iz = ¢)lle - (I1Q(2) +cllz)
< Iz ="l - (IQ]L + Iel)

€ 1
<=0 (5 T ot )

< §+ el - 11z = Ollxu. (4.167)

Thus, Property (3) is verified, provided that |c| is small enough.

. 1P = bll = 1I(z = CPQUe) + ez — ¢ — i)l
< e = 6Pl (1) +— nle)
< e = 6Pl (19— Tl + e
€ 1
<l =<l (5 T =g+ )

= g+|0| 1z = Ol v (4.168)

Thus, Property (2) is also verified, provided that |c| is small enough.

In particular, if
€ 1
S T O
it holds || P||;, < ¢ and at the same time ||P — h||x < e. In addition, in order to
verify Property (1), it suffices to select

(4.169)

ch{(a_Op—Q(a):wEWU{C}}. (4.170)

and that completes the proof.
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Let (2 C C be a simply connected domain and ¢ € €2 be a fixed element. If M = <
(z —¢)¥ : k > 0 >, then M is an infinite dimensional subspace of H(2). The set M
will be fixed from now on.

We now present the main result of this section. Its proof is s close adaptation to that
of Theorem 4.17 in [9].

Theorem 4.42. Let (2 C C be a simply connected domain and ¢ € €2 be a fixed element.
Then, the class 4/’ U {0} is spaceable.

Proof. In order to prove Theorem 4.42, we fix the following.

(1) {L,}n>0 a family of compact subsets of () satisfying Lemma 4.5 with the extra
property Lj N § # () for every k > 0. Notice that such a choice is possible.

(2) {K.n}m>0 a family of compact subsets of C \ €2 satisfying Lemma 4.4.
(3) {P,}n>0 an enumeration of polynomials with coefficients in Q + iQ.

(4) Two functions ¢, : N — N such that for every pair (a,b) € N x N, there exist
infinitely many n € N such that (¢(n), ¥ (n)) = (a, b).

We denote with < the lexicographical order on N x N. Thus, by definition, for every
(a,b),(a’,b") € N x Nit holds

(a,b) X (V)& [a<d]orla=d and b <V]. (4.171)

Suppose that (N,,),>0 C (0, +00) is a sequence decreasing to 0 “fast enough”. We
will build by induction three sequences of polynomials; namely the sequences {uy, } x>0,
{9nk tn>k>0 and { fi, x }n>k>0 satisfying the following properties for everyn > k > 0.

(0) {u}r>o is a basic sequence in H (£2) (according to Definition 4.35).

Remark 4.43. We notice that Lemmas 4.36 and 4.38 imply the existence of a basic
sequence in H (£2). Thus, Relation (0) has meaning.

(1) [Pom) = gnkll Ky < No- (4.172)
(2) el Ko yry < N (4.173)
(3) [ forre = frkllnps < Na (4.174)
(4) | froe = gnellz, < N (4.175)
(5) I fr — wel|n, < Ni. (4.176)

*This point will be clarified further on.
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(6) Forevery j > kweset gj11x = fir+ P(gj+1.k fik) where P(gji1, fix)isa
polynomial with

val(P(gj+1k, fix)) = min{p, : p, > {deg(fn' W)}

(/k/
+  max {q§”)---,qN )+ 2},

(' k) < (3,h)
(4.177)

We remind that if p(z) = a,2™ + - - - + a1z + ay is a polynomial, then we denote
with val(p) the following
val(p) = min{n € N : a,, # 0}. (4.178)

In addition, for every k € N we set gi x = ui, + P(gk k. ur), where P(gg k, ug) is
a polynomial with

val(P (g, ux)) > min{p, : p, > deg(uy) + max{q%k), e 7QN k) b+ 2}

(4.179)
(7) Foreveryj > kweset fjr = g;x + R(fjx, gjx), where R(f;x, g;x) is a polyno-
mial with
val(R(fjk: gjx)) = min{py : pn > o {deg(gn )}
o ma {0, o} + 2
(4.180)
(8) ||ug||L, = 1 for every k € N. (4.181)

In the next figure (Figure 7) we present the first steps of our construction.

Of course, we have to explain why such a construction is possible. This is mainly
done by using Lemma 4.38 and Lemma 4.41. See Figure 7 for further details.

Lemma 4.38 is used to move from the top of one column to the top of the column
on the immediate right, in order to build the basic sequence {uy }r>o with the desired
properties, while Lemma 4.41 is used in two cases.

(i) In each single column, in order to move from one block to the block immediately
below.

(ii) At the top of each column, in order to build the functions g, ; and fj 1.

However, suppose that such a construction is possible for the time being. Next, for
every k € N we set

+oo
fe = Zk(fnﬂk — fog) + frg = Nl_i)ffrloo SNtk (4.182)
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Column 1 Column 2 Column 3 Column 4

Uy — Go,0 — foo

Lemma | 4.41 N\, Lemma 4.38

910 = fio ur = g11 — fia

Lemma | 4.41 Lemma | 4.41 N\, Lemma 4.38

92,0 — f2,0 92,1 — fa1 Uy — ga2 — fa2

Lemma | 4.41 Lemma | 4.41 Lemma | 4.41 N\, Lemma 4.38

930 — f30 931 — f31 932 — [32 us — g33 — f33

Figure 8: The very first steps in the construction of the sequences {u } x>0, {gn.k }n>k>0
and { fr k fn>k>0-

Relation (3) implies that for every k£ € N it holds f; € H(2). In order to explain
this, we fix a £ € N and we notice that for every N > £ it holds

N

Z(fn—l—l,k — fak) + frok = fnein (4.183)

n=~k
We fix any j € N and we want to show that the sequence

N

Sy = Z(fn+1,k — for) + Jop = ik (4.184)

n=k

(defined for N > k) converges uniformly on L;. We select an index Ny € N such
that Ny > 7, k. Thus, for every N > N, we obtain

N
Sy = Z(fn—i—l,k — fak) + frr
n=~k
No N
= Z(fnJrl,k — fng) + frn + Z (fasrke — fok)
n=~k n=Np+1
= fNtik- (4.185)
The first term
No
Z(fn+1,k — fak) + fr (4.186)
n=k
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is fixed, while the second one

N

Z (frr1k = fui) (4.187)

n=Ng+1

changes, depending on N € N. Therefore, we obtain

N
IS8, = 1) (Fasrk = fak) + forlli,
n=~k

No N
< || Z(fnJrl,k - fn,k) + fk'>kHLj + H Z (fn+1,k - fn7k>HLj
n=~k n=No+1
No N
< Z(fnJrl,k = for) + frwlle; + Z (forre = Fapllr;
n==k n=Np+1
No N
<[ Z(fnJrl,k = fug) + Jiplle, + Z (fatre = Fra)l Lo
n==k n=Np+1

No N
< v = fua) + frall, + Y N
n==k

n=No+1

No +o00

S H Z(fn—i—l,k - fn,k) + fk,kHLj + Z Nn
n==k n=0

< +00.

Thus, according to Weierstrasss theorem, the sequence {Sy } >, converges uni-
formly on every compact set L C €2 to the function f;, € H((Q2).

By combining Relation (5) and Lemma 4.40 it follows that { f; }r>0 is a basic se-
quence of H((2) equivalent to the sequence {uy}x>o. Indeed, if B is the constant of
basicity for the sequence {uy }r>o then, according to Lemma 4.40, it suffices to prove
that

+o0 400
1
2Bpn (U, — fn 1 n— JIn —. 4.188
> 2Bl =) <1 X llun = hll, < 5 (4.185)
Since for every k£ € N it holds
+o0
Jo —up = Z(fn—i—l,k: — fok) + fror — uk (4.189)
n>k
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we obtain the following

+oo
e — ugllr, < Z otk = Fapllg + | fer — urllr,

n>k

+o00
< Z | frs1k — frrllo, + Nk

n>k

“+oo
< Z [ frrik = frkllLn: + Nk
n>k
+oo
< Z N, + N. (4.190)

n>k
Thus, the desired inequality (Relation (4.188)) holds® provided that

400 +4oo

DO N+ Ny < %. (4.191)

k=0 n>k

Next, we consider the following set

F=<fp:k>0>. (4.192)

Since the sequences { fi }r>0 and {uy }r>0 are equivalent, Relation (0) implies that
{fx x>0 is linearly independent and thus F is an infinite dimensional subspace of H (2).
Indeed, let j; < -+ < jnv € N, aj,---,a;, € C\ {0} and suppose that a;, f;, +
-+ a;y fix = 0. The previous relation implies that the element 0 € F has (at least)
two distinct representations as an infinite linear combination of the functions { f; } x>0,
which contradicts the basicity of { fx } >0-

Our aim now is to show that for every f € F \ {0} it holds f € U’. Let

400
F=>"anfr € F\{0} (4.193)
k=0
and j > k > 0. We set
Pn(ik) = min{n € N:p, > g;1}. (4.194)
According to our construction, the (py,(j ), qgn(j ’k))) - Padé approximant of f (cen-

tered at ¢ € (2) will be the sums of all blocks of the form g;: r or f; ; (up the coef-
ficients ay) appearing in the f;’s with (j', k") < (4, k) and that holds for every s =
L,---,N(n(j,k)). This sum is a polynomial with degree < p,;x) by definition and
since the valuation of any other blocks g,/ 4 or f; v with (j,k) < (5, k') is strictly big-

ger than p,, ;) + q§"<j k) 4 1, the Taylor expansion of this sum (centered at ¢ € 2) will

+o0
*Property 1 (pl) for the sequence (N, ),>0. Here, we can also consider that it holds Z N < +00
k=0
and also that the sequence (N,,),, >0 is strictly decreasing.
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coincide with that of the function f up to the index py,; ) + qﬁ”(j *)) 1 1 and that holds
foreverys =1,--- ,N(n(j, k)).

It remains to enumerate all those blocks of g;/ ;s or f; ;» appearing in the f;’s with
(7, k") = (4, k). The block with the bigger degree is g, ; by definition. The blocks that
have been built before g; s, are the f;_; ;s with 0 < £’ < j — 1 and the f;;’s with
0 < k" < k — 1. Next, we observe that the block f;_;  is a part of g;, according to
the construction, while every f;_; s is a part of f; ;s for 0 < k' < k — 1. Moreover, any
other blocks gj x» or f; j» with j* < j — 2 are a part of f;_; 4. So, by avoiding to count
more than once the same blocks, we obtain

k—1 7j—1
3P/ 4] = Sy (F) = argin + Y aifiw + D aifjaw  (4195)
k'=0 k' =k+1

and that holds for every s = 1,--- | N(n(j, k)).
Next, we observe that the sequence (a)r>0 C N is bounded by some constant M.
In order to explain this, we notice that since the sequences { fi } x>0 and {uy }r>o are

equivalent, the series
+oo

> apu (4.196)

k=0
converges and according to Relation (9) the following holds

—+00

lak| = ||aruk| |, < 2B ZakukHLo~ (4.197)
k=0

We set M = 2B. In order to complete the proof, we have to show that the function
f has the desired universal approximation properties.

(o) Let K C C\ Q be acompact set with connected complement and h € A(K). Let
also kg = min{k € N : a; # 0}. We select an index r € N such that K C K,
and we also consider a polynomial /. By the initial hypothesis for the functions ¢
and v, there exists a sequence (v;),;>0 C N such that (v;),;>¢ is strictly increasing
and also (¢(v;), ¢ (v;)) = (I,r) for every 7 > 0, while v; > k for every j > 0.

We set pr (v, ko) = Min{p, : p, > deg(gu, r,)}. From Properties (1) and (2) and
the previous, for every s = 1,--- , N(n(v;, ko)) we obtain the following

’|[f;pn(vj,ko)/qgn(vj7k0))]ﬁ - akOPlHKr

”Uj—l
= ||akogv,jvk0 + Z e fos—1 = ak0P¢(vj)||Kw(”j>
k'=ko+1
vj—1
< > lawl - lfomawllzeg,, + lawol - 19000 = Powpllxy,)
k'=ko+1
'Uj—l
SM Z ij—1+MNUj
k'=ko+1
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< M(v; — ko) Ny, 1. (4.198)
By choosing (NV,,),>0 decreasing to 0 fast enough*, we obtain the desired result.

(o) Letn € N. For j € N large enough and for every s = 1,--- , N(n(vj, ko)), by
using Relations (3) and (4), one can verify that it holds

L3 Doy o) /65" = £l

+oo
= 113 Pugos o /2] = Y ag fioll 1,
k'=ko
v;—1 400
= ||[f; Pr(o; o) /a7 F] c — Z ar i — Z ar fi|lL.,
k'=ko k'=v;
Uj—l
IS5 Py oy /4] — Z ar [l + 1| Z aw fil| L,
k'=ko k'=v;
7.1]'—1 —+o00 ’Uj—l
< ||[f;pn(uj,ko)/qsn(vj’ko»]g— Z ar Z Jost = Fa)— Z Clkffuj—1,k’| Ln
k'=ko n>v;j—1 k'=ko
+oo
HI Y awfullr,
k/:’l)j
vj—1
<5 Py /4N = () s foy -1k + g foy 1001
k'=ko+1
vj—1
+| Z ar ( Z forrw = Fap )L, + ] Z ar firllL,
n>v;—1 k'=wv;
vj—1
< ko Goj ko — Ao Jo;—1,k0 |2, + 1] Z ap ( Z foriw = faw)llL,
k'= kO n>vj—1
+oo
Y aw fullr,
k'=v;

< ||akogvj,ko - akofv]yko + akofvj,ko - akofvj—l,ko”Ln

vj—1 +o0

+|| Z ap ( Z frvrw = o)L, + 1| Z aw fi||L.
k'=ko

n>v;j—1 k'=v;

< |ak0| : ||g'U4j7kO - fuj7k0||Ln + |ak0| ' ||fuj7k?0 - fuj_Lk'O“Ln

*Property 2 (p2) for the sequence (N, ),>0. Here it suffices to demand that it holds lirB nN,_1 =

n—-+oo
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v;—1
+/| Z ar ( Z fast g — Far) o, +1] Z ax firllL.,
n>v;j—1
< M(Hgvj,ko - fvj,koHLuj + ||ij,k0 - fvj—LkoHij)
v;—1
+/| Z ar ( Z fost g — Far) o, + 1] Z ar firllL.,
n>’Uj—1 klivﬂ
v;—1
<2MN, + 1Y aw Z Frrir = Fap) e, + | Z ar fiv |z,
k'=ko n>v;—1 k'=v;
’L)Jfl 400
< 2MN,, + | Z ap fioll + Y lawl( Y farip = fapllr,)
k/—vj k'=kg n>v;—1
v;—1 400
< 2MN,, + | Z arfiolle, + D lawl( Y No)
k/_UJ k'=ko n>v;—1
+00 +oo
<2MN, + || Y aw fulln, + Mlo; — kol Y N (4.199)
k;’:yj TLZ’UJ'—I

Thus, by choosing (/N,,),>o decreasing to 0 fast enough®, we obtain the result.

This completes the proof.
[ |

Remark 4.44. It suffices to set N,, = 5= for every n € N, since the sequence (N, ),>0
satisfies all properties (p1), (p2) and (p3).

*Property 3 (p3) for the sequence (N,),>o. Here it suffices to demand that it holds
—+oo

lim &( N,) =0.
k—+oo
n>k—1
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5 Universal Laurent series

In this section we deal with compact subsets F' of (C U {oo}, x) which satisfy the fol-
lowing topological condition ([34]).

Condition 5.1. Let 2 = C U {oo} \ F' be a domain. Suppose that it holds co € Fj
therefore (2 C C. We assume that the following conditions hold.

() Among the connected components of F, there exists a distinct sequence Fi, Fy, - - -
such that every F is a compact subset of C.

.. —+00
) F=cd(JF) (5.1)
j=1

where x is the chordal distance on C U {o0}.

(74i) For every ¢ > 1, there exists a §; > 0 such that

X(Fy, Fy) = inf{x(z,w) : 2z € Fy &w € F;} > & (5.2)
for every j > 1 with j # /.
(iv) For every j > 1itholds F;° # 0.

Let 2 C CU{oo} be a domain such that its complement F' = CU {oo} \ (2 satisfies
Condition (5.1). We assume that co € F; thus 2 C C. Moreover, for every ¢ > 1 we
selectac, € Fyandweset ' = cl,{c, : £ > 1}. Obviously, the set I is a compact subset
of (C U {00}, x) but this does not necessarily imply that co € I'.

We assume that there exists a sequence of compact subsets of {2, namely the sequence
{L,}n>1, satisfying the following properties.

(0) {Ly}n>1 is increasing; thatis L,, C L, for everyn > 1.
(1) L,NQ = L, foreveryn > 1.

(2) Each connected component of CU {co} \ L,, contains a connected component of

CU{occ}\ Q.
(3) For every compact set J C 2, there exists an index n > 1 such that J C L,,.
(4) Every connected component of C U {cc} \ L,, containsa ¢, € F.

Under the above assumptions, we define the space 7°°(€2) as the space of all (ana-
lytic) functions f € H () such that for every derivative f(*) of f (¢ > 0) and for every
n > 1, the function fl((e].zn no) is uniformly continuous on L,, M2 and therefore it extends
continuously on L,, N 2 = L,, (see also [40]; there the space 7°°(£2) has been defined
without property (4) above).

The space T>°(2) = T°°(2, { L, } n>1) is endowed with the topology induced by the
seminorms

sup | ()] (5.3)

z€Ly
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(for every ¢ > 0 and for every n > 1). Itis known that in this way 7°°({2) becomes a
Fréchet space. We also consider the set Y*°(€2) to be the closure of the set of all rational
functions with poles off | J7>] L,, with respect to the topology of 7°°(€). Thus, Y>°()
is a closed subset of a complete metric space and therefore is a complete metric space
itself.

We also assume that there exists a sequence { K, },,,>1 of compact subsets of C\ (22U
') C C such that every K, has connected complement and also it holds L,, N K,,, = ()
for every n,m > 1.

One could naturally ask whether the sequences {L,},>1 and { K, },>1 satisfying
the requested properties may exist or not. For this purpose, we present the following
examples.

Example 5.2. For every { € N we set ¢, = £ and let F;, = B(cy, 3) be the Euclidean disc
with center ¢, = ¢ and radius 3. We set /' = cl, (U, 55 F2) = (U5 Blee, 1)) U {0}
and Q@ = CU {oo} \ F. Also, letI' = cl,{c; : ¢ > 0} = NU {o0o}. Itis obvious that
00 € F and therefore co ¢ (). It is easy to check that the set F’ satisfies Condition (5.1).

For each n € N* we set L,, = QN B(0,n). Again, it is easy to see that the family
{Ly,}n>1 meets the requirements to define the space 7°°°(2).

Let K C C\(QUTI") be acompact set with connected complement such that KN L,, =
() for every n > 1. By definition of the sequence { L, },>1 it holds that @ = (J/5 L,,.
The previous relation implies that K N Q = () = K C C\ (QUT). In addition, since
K is a compact set, there exists a n € N such that K C B(0,n).

It follows that K’ C K (n, s,t), where

K(n,s,t) :mﬂ{z cC:d(z,Q) > %}ﬂ{z € CU{oo} : x(2,T) > %} (5.4)

for some ¢, s € N*. Now, it is easy to check that every K (n, s, t) is a compact subset
of C and also that it holds

CU{oo} \ K(n,s,t) = ({z € C: |z| > n} U{oo})
U({= €€ d(z0) < -} U {oo))
U{ZGCU{OO}:X(Z,F)<%}. (5.5)
Itis easy to see that
ntie(zeCilel > Ul N (€ C1d(= D) < TJUf})  (56)
and also that
ntle({zeC: |z >n}U{oo})N{zeCUoc}: x(zT) < %}; (57)

thus, the union C U {oo} \ K(n, s, t) is also a connected set. In other words, each
K(n, s, t) has connected complement.

We also notice that K (n,s,t) € C\ (QUT) C C\ (QUT). This implies that
K(n,s,t) N L,, = () for every parameter n, s,t and m. An enumeration { K, },,>1 of
the sets K (n, s, t) yields the result.
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Remark 5.3. In Example 5.2 we have that 02 C :{3 L,; in particular, it holds 02 N
L, # () for every n > 1. In addition, K,,, N 92 = () for every m > 1. It can be easily
seen that in this particular case it holds 7°°(€2) = A>(£2) and Y*°(£2) = X >°(£2), where
X>(€2) denotes the closure in A>(£2) of the set of rational functions with poles off
(see [37] for the relevant definitions). Moreover, in this example it also holds X () =

A>(Q) (see [37]).

Lemma 5.4. (Lemma 2.2 from [11].) Let G be a domain in C, with G # C. We assume
that (CU{oc} \ G) has a finite number of components Ay, Ay, - - - , Ay, for some k > 0
and we fix co € Ag,a; € Ay, -+ ,ar € Ag. Then there exists a sequence of compact
sets A,, € C\ ({a1,--,ax} U G) with connected complement such that for every
compact set X C C\ ({ay, -+ ,ar} UG) with connected complement, there exists an
index m > 1 such that K C A,,,.

Example 5.5. Consider the same F| Fy, ¢,, I and €2 as in Example 5.2. For every n > 0,
we apply Lemma 5.4 for the domain ©,, = QN B(0,n + 3). Each C U {oo} \ Q,
has precisely n + 2 connected components; the sets £} (for 0 < ¢ < n) and the set
CU{oo}\ B(0,n+3). Since ¢, € F; forevery ¢ > 0and 0o € CU{oo}\ B(0,n+3),
it follows from Lemma 5.4 that there exists a sequence of compact sets {A,, ;,, },,,>1 with
connected complement, such that A,, ,,, C C\ ({¢,: 0 < ¢ <n}uUQ,)foreverym > 1
and also for every compact set K C C\ ({¢; : 0 < ¢ < n} U(,) with connected
complement, there exists an index m > 1 such that K C A,, ,,.

At this point, we notice the following: let K C C\ ({¢; : 0 < ¢ < n} U,) be
a compact set with connected complement. Then we can split K in two disjoint pieces
K = K, U K5, where K; and K, are compact sets with connected complements such
that K1 C (Uy_g F2) \ {cz: 0 < ¢ < n}and K, C CU{oo} \ B(0,n + 3). We leave
the proof of this claim to the reader.

We split each A, ,,, separately in two disjoint compact pieces with connected com-
plementsas A, ,,, = AN UAR,, where AL, C (Upzo Fo) \ {ce : 0 < £ < n} for every
m > 1land AY), C CU {oo} \ B(0,n + 3) for every m > 1. An enumeration of the
set {Ag;n :m,m > 1} gives us the family { K, }>1.

On the other hand, foreveryn > 1,weset L,, = {z € Q : |z| <nand d(z,C\Q) >
L}, Again, it is easy to check that the sequence {L, },>1 satisfies properties (0) — (4).
In addition, for every n,m > 1itholds L,, N K, = 0, since for every s,¢ > 1 it holds
AL} € F,while L, C Q.

Remark 5.6. We notice that in Exampe 5.5 it holds L,, N 9 = () for every n > 1 and

also that 9Q C | J; %, K. In this case Y>°(Q2) = H (), where H(2) is the space of all
holomorphic functions in €2.

Example 5.7. Consider the same F', F, ¢;,I" and €2 as in Example 5.2. We consider an
exhausting family {L,, ; },>1 of compact sets of €2 (see [38]). By definition, the family
{Ly1}n>1 satisfies the following properties.

(1) Ly, C Lyyag

for everyn > 1.
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(23") If J C Q2 is a compact set, then there exists an indexn > 1 such that J C L,, ;.

(i77") Every connected component of C U {00} \ L,, ; contains a connected component
of CU {oco} \ Q.

Next, for every n, m > 1 we consider the following sets

Lno={2€Q:|z| <nand Imz > 0} (5.8)

1
Km:{ZEC\Q:|z|§mand [ng—a} (5.9)

We set L,, = L, 1 U Ly for every n > 1. The families {L,, },,>1 and { K, }.;n>1
consist of compact sets and also it is easy to verify that for every n,m > 1 it holds
L, N K,, = 0. Now, for every m > 1 we have that it holds C \ K,,, = Q U (C\
B(0,m))U{z € C : Imz > —=+}, where (m + 1)i € QN (C\ B(0,m)) and
2i € QN (C\{z € C: Imz > —L}); therefore the set C \ K, is connected (or
equivalently, K, has connected complement).

In order to complete this example we have to show that the family {L,, },,>1 satisfies
properties (0) — (4). Properties (0), (1) & (3) are almost immediate. For Properties (2)
and (4) we work as it follows.

For everyn > 1itholds CU {oo} \ L, = (CU{oco} \ Ln1) N (CU {0} \ Ly2) =
(CU{co}\ L, )N[(CU{cc\QU({z € C : Imz < 0}U{oo})U(CU{oc}\ B(0,n))],
where the set C U {oo} \ L, 2 is connected. Thus, every connected component B of
CU{oo} \ Ly is of the form ANC U {oo} \ L, 2, where A is a connected component
of CU {oo} \ Ly, ;. It follows that B contains an entire I and therefore a ¢, and we are
done.

Remark 5.8. In Example 5.7 we have that 9Q C |, .~
every n,m > 1itholds 92N L, # 0 and 9Q N K, # (.

(L, U K,,) and also that for

Now, we return to the general case. Let f € Y*°(Q) be a function and ¢ > 1.
We consider a closed polygonal curve v, C Q N C such that Ind(v,,¢;) = —1 and
Ind(v;,cj) = 0 for every j # (. This can be done due to assumption (7i¢) of Condition
(5.1). For every ¢ > 1, we consider the function

fo(z) = L/ f¢) d¢ (5.10)

2w ,C— 2

which is well defined, extends holomorhically in C U {oco} \ F; and also satisfies
fe(00) = 0. In addition, each such function f, has a Laurent expansion in CU{oo}\ F}
(centered at ¢, € F') of the following form

+oo
1
= —_—. 5.11
Consider {e;, },,>0 an enumeration of the set {am(fg)m : £ >1and m > 0}.

Then, one may consider the operators 7,, : Y*°(Q2) — Hy(2 \ I';,), where I, is a finite
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subset of {¢y : £ > 1}, to be the sum T, = ¢y + - - - + e, and that for every n > 0. We
recall that H,(U) for an open set U denotes the set of holomorphic functions f : U — C
such that

lim f(z) = 0. (5.12)

Z—r 00
zeU

In our case U = 2\ I';, contains a neighbourhood of co in C. Then, the family
{T},}n>0 satisfies the following conditions.

(5) Each T, is a continuous function of f in Y*°(£2).

(6) For every rational function g € Y*>°(Q2) with polesin {c, : £ = 1,2,---} there
exists an index ky € N such that 7;(g) = ¢ for every k > k.

(7) For every A > 0, it also holds that T Y>(Q) — Hy(2\ I'), where e
denotes the Ath derivative of 7},.

A particular case is when

T.(f) =) Sulfe), (5.13)

=0
where S, (f;) is the nth partial sum of the series

+oo 1

fo(2) = Z am(fe)(

e —— (5.14)
z—cp)™

m=1

Our results are valid for general operators {7}, },>¢ satisfying properties (5) - (7)
above.
We will also use the following lemma (see [34], [15] and [39]).

Lemma5.9. Let K C CU{oco} bea compactsetand A C CU{oo} be a set intersecting
every connected component of C U {oo} \ K. Letalso K C V' C C U {cc} be an open
set. Then, there exists an openset K C W C V C CU {oo} such that every connected
component of C U {oco} \ W intersects A.

5.1 A generic result of Laurent approximation

We consider an open set 2 C C and F' its complement in C U {oo} that satisfies Con-
dition 5.1. Thus, it holds oo € F'. Moreover, for every £ > 1 we selecta ¢, € IY and we
setI' =cly{c,: 0 > 1}

We assume that there exists an increasing sequence of compact subsets of {2, namely
the sequence { L, },>1, satisfying properties (0) - (4). We fix such a sequence {L,, },>1.
Therefore, the spaces 7°°(§2) and Y *°(£2) can be defined as in the preliminaries section.

We also assume that there exists a sequence { K, },,>1 of compact subsets of C\ (U
') C C such that every K, has connected complement and also it holds L,, N K,,, = ()
for every n, m > 1. We also fix such a sequence { K, }>1.
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Definition 5.10 (Definition of the class £). We define a class of functions £ C Y*°(Q)
as follows: f € £ C Y°(Q) if and only if for every compact set K = K, for some

m = 1,2, --- and for every polynomial p, there exists a sequence (A\,,),>1 C N so that
the following hold.
(£.1) sup |T§i)(f)(z) —pY(2)] = 0asn — +oo

zeK

for every ¢ € N.
(£.2) sup [T (f)(2) — fO(2)] = 0 as n — +o0

z€L
for every ¢ > 0 and for every compactset L = L, C {2, forsome 7 =1,2,---.
We now present the main result of this section.
Theorem 5.11. The class £ is a G - dense subset of Y°°(£2) and therefore £ # .

Proof. We consider { f;};>1 an enumeration of polynomials with coefficients in Q +

Q.
Next, for every parameter 7,m, j, k, s and N, we consider the following sets
1
B(Km, fisk 5, N) = {f € Y=(@): sup [T(N(:) = [0 <
ZEKm
forevery { =0,--- ,N}. (5.15)
o 1
P(Le ks, N) = {f € Y(9) sup [T2()(z) = fO(:)] <
z€Lr
forevery ¢ =0,--- ,N}. (5.16)

Then, one should verify that the following relation holds.

+00 +00 400 +00 +00 —+00

c= NN (UEEn, fi.k s, N)VF(L; k5, N)). (5.17)

r=1m=1s=1j=1 N=0 k=0
In order to apply Baire’s theorem, we have to prove the following.

Claim 5.12. For every parameter, the set
+oo
A(r,m,s,5,N) = | J(E(Kp, fj, k.5, N)(VF(Ly, k, 5, N)) (5.18)
k=0
is dense in Y*°((2).
Proof of Claim 5.12 We fix the parameters 7,m, s,j > 1 and N > 0 and we want
to prove that the set A(7,m, s, j, V) is dense in Y>°({2).
Let f € Y*°(£2) and V/ be an open basic neighbourhood of f in Y*°(€2). We may
assume that
Vi={g€T>0Q): sup |f92) —g¥(2)| <eforevery =0,--- , M}NY>(Q),
ZeLnl
(5.19)
where M/ > Nand L, C L,,. Ouraimisto findafunctiong € VyNA(T,m, s, j, N).
We notice the following.
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(8) Every connected component of C U {oco} \ K, U L, containsalsoac, € F.
9) K,NL, =0.

From our initial assumptions about the sequence {L,, },,>1 we have that every con-
nected component of C U {oo} \ L,,, contains a ¢,.

Let V' be a component of C U {oco} \ L,, (which is an open set). Then, the set
V' N K, has connected complement and also the set V' \ K, is connected. In order to
explain property (8), if CU {oo} \ L,, = U;esA; is the disjoint union of its connected
components, then every connected component of C U {oo} \ (K, U Ly,) is exactly
of the form (CU {oo} \ K,,) N A; = A; \ K, where C U {oo} \ K,, is connected,
[' C CU{oo} \ K, and therefore, according to property (7), for every single i € I we
are able to selecta ¢, € (CU {00} \ K,,,) N A;. Property (9) is immediate.

We consider the function # : K, U L,,, — C as follows.

) fi(z), ifze Ky
H(z) = {f(z), ifze€ Ly,. (5.20)

According to Lemma 5.9, it is possible to find an open neighbourhood S; C CU{o0}
of K, U L, , such that every bounded connected component of C U {oc} \ S} contains
a ¢y € F. This can be done by setting A = {¢, : { > 1} U{o0}, V = CU {o0}
and K = K,,, U L,,. We apply Runge’s theorem in order to approximate the function
H uniformly on each compact subset of S; with rational functions with poles only in
{ce : € > 1} U {o0}. Since S is open, Weierstrass’ theorem implies that the previous
approximation is valid for every finite set of derivatives. Thus, it is possible to find a
rational function g with poles only in {¢, : ¢ > 1} U {oo} and an index ky € N such
that 7, (g) = g forevery k > kpand g € Vy N A(7,m, s, j, N). Obviously, g € Y>(Q).

[

Claim 5.13. For every parameter, the sets E(K,,, f;,k,s, N) and F(L;,k,s, N) are
open subsets of Y>°((2).

Proof of Claim 5.13 Let {g,. },>1 € Y>°() \ F(L,,k,s,N)and g € Y*(Q2) such

that g, — gasr — 400 in Y°(Q). It follows that there exists an £y € {0,--- , N} such
that
1
= < sup |11 (g,)(2) — g (2)|
S ZGLT
¢ ‘
< sup T (9:)(2) = T (9) (=)
z€lir
‘
+ sup [T, (9)(2) — g (2)]
zelir
+ sup [g“0(2) = g{(2)]. (5.21)
z€L,

Since every Tk%) is a continuous function, by taking limits in Relation (5.21) as r —
+o0 it follows that.

< sup [T (9)(2) — ¢ (2)| (5.22)
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and thus, the set Y°(Q) \ F/(L,, k, s, N) is a closed one in Y>°(£2). The proof that
every E(K,,, f;,k,s,N) is also an open subset of Y*°(2) is similar and therefore is
omitted.
[
We apply Baire’s theorem and that completes the proof.
|

Remark 5.14. In the class £ the approximation (£.1) is more generally valid for every
set K satisfying K C K, for some m > 1; in particular for every compact set K with
connected complement such that K C K, for some m > 1.

Indeed, let K be such a compact set and f € L. We consider the following class of
functions.

+00 400 400 +00 —+00

cK) =N N (UEW K ks, N)(VF(L,, k,5,N)) (5.23)

7=1s=135=1 N=0 k=0

where for every parameter 7, j, k, s and NV, we consider the following sets

B(fy, K ks, N) = {f € V() ssup [T (1))~ 1) <

J
zeK

forevery ¢ =0,--- ,N}. (5.24)

F(Look s, N) = 1 € Y2(@) < sup [TO(1)() — fO(:)] < -

ZGLT

forevery { =0,--- ,N}. (5.25)
It is almost immediate that £ C L£(K) because if K C K, it follows that
E(f;, K, k,s,N) C E(f;,K,k,s,N). (5.26)
The last relation yields the result.

Remark 5.15. Theorem 5.11 in the case of Example 5.2 gives a generic result in the space
A>(Q) of holomorphic functions in 2 whose all derivatives extend continuously on
Q. In that example the universal approximation in not requested at any point of the
boundary. In the case of Example 5.5, Theorem 5.11 gives a generic result in H({2) (see
[34]). Finally, in the case of Example 5.7, Theorem 5.11 gives a generic result where the
universal approximation is valid on a part of the boundary and on another disjoint part
of the boundary the universal function is smooth.
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