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Chapter 1 Introduction

1 Introduction
In this work we present several results concerning mostly applications of Baire’s Cate-
gory theorem in Complex Analysis both in one and in several complex variables, com-
bined with known approximation results. Roughly speaking, we consider various com-
plete metric spaces (or Fréchet spaces) of complex functions and we examine particular
subsets of them that are usually defined as all elements of the space that satisfy a spe-
cific property, most of the times concerning universal approximation. Each such class
is proved to be topologically generic, in the sense that it contains a Gδ - dense subset.
This is mainly achieved by using Baire’s theorem, among other arguments.

In some of our results we do not make use of Baire’s theorem at all and we work from
the perspective of Functional Analysis in order to obtain results of different nature. We
consider various Fréchet spaces of functions and we examine whether they contain the
translation of a dense vector subspace (affine genericity), whether they contain a dense
vector subspace except 0 (algebraic genericity) and whether they contain a closed vector
subspace, except 0, of infinite dimension (spaceability). See also the relevant definitions
(Definitions 4.22, 4.29 and 4.34 for affine genericity, algebraic genericity and spaceability
respectively) for further details. We will now give a brief overview of the entire work per
chapter.

In chapter 2 we present a generic result in infinitely (denumerably) many complex
variables concerning Hypercyclicity (Theorem 2.4). We consider the following class of
functions

A = {f : ℓ∞ → C : for every n ∈ N, there exists a sequence of polynomials

converging uniformly on Bn to the restriction f|Bn}.

where Bn = B(0, n)
N

for every n ≥ 1 and ℓ∞ ≡ ℓ∞(C) is the set of all bounded
complex sequences. The class A is endowed with the seminorms

ρn(f) = ||f ||Bn = sup{|f(z)| : z ∈ Bn}

where n ≥ 1. In this way, if we set

ρ(f, g) =
+∞∑
n=0

1

2n
· ρn(f − g)

1 + ρn(f − g)
for every f, g ∈ A

then, it is known that (A, ρ) becomes a Fréchet space. Ourmain result in this chapter
(Theorem2.4) states that for for ever elementa ∈ ℓ∞\{0}, the corresponding translation
operator Ta : A → A with Ta(f) = f(z + a) is hypercyclic. Moreover, this result is
proved to be generic in the space (A, ρ).

At this point, it is important to highlight the following difference: although the pre-
vious result is an extension of Birkhoff ’s theorem in infinitely (denumerable) many vari-
ables, we are working on a subspace of holomorphic functions which comes from a dif-
ferent point of view of infinite dimensional holomorphy ([26]). However, if we work in
the whole space of entire functions in infinitely many variables, this result fails ([18]).
For other extensions of Birkhoff ’s theorem in CN (N ≥ 1) we refer to [10].
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Chapter 1 Introduction

In chapter 3 we deal with complex functions which are continuous and nowhere
differentiable. Initially, the main idea was to complexify the Weierstrass function, a well
known explicit example of a 2π - periodic function u0 : R → R which is continuous
and nowhere differentiable, and to obtain a relevant result (Theorem 3.2) concerning
functions of the disc algebra A(D), where both their real and imaginary part satisfy the
main properties as the Weierstrass function u0 on the boundary T of the unit circle D.
Moreover, this result (Theorem 3.2) is generic in the disc algebraA(D). We remind that
the class A(D) consists precisely of all functions f : D → C which are continuous on
D and holomorphic in D (where, clearly, D is the open unit disc centered at 0). This
class of functions endowed with the topology induced by the supremum norm || · ||∞ is
a complete metric space.

A similar idea was also developed in infinitely (denumerable) many complex vari-
ables in [17], but in the present work we do not insist towards this direction.

However, in Theorem 3.2 the notion of a nowhere differentiable function is with
respect to the parameter, since the set T = ∂D is a Jordan curve.

This work was later extended to more general Jordan domains in [28], presenting
many interesting results in one and in several complex variable. Once more, the notion
of nowhere differentiability in [28] was also considered with respect to the parametriza-
tion of the boundary.

A relevant approachwas later developed (in one variable) in [23] in simply connected
domains, but this time, the notion of nowhere differentiability was considered with re-
spect to the position, since a parametrization of the boundary was no longer required.
Most of the work in [23] is also presented in the second half og this chapter, where the
main relevant results (Theorems 3.6 and 3.9) express a dichotomy principle: the classes
of functions studied are either void orGδ - dense in suitable metric spaces. The chapter
ends with a few examples concerning the previous dichotomy results.

In chapter 4 we present some generic results concerning Padé approximants of sev-
eral types (see Definitions 4.6 and 4.7). The Padé approximants are rational functions
that satisfy specific properties (see Definition 4.1 for further details) and we used them
in order to obtain generic results of simultaneous approximation with the same indices.
However, the approximation is not necessarily meant only with the usual Euclidean dis-
tance | · | inC, but also with the chordal metric χ inC∪{∞}. Such results are presented
in the first half of the chapter.

All results concerning Padé approximants are proved to be generic by using Baire’s
theorem and are derived mainly from [27]. Moreover, they can be altered in order to
achieve simultaneous Padé - Taylor approximation with the same indices ([24]). How-
ever, many results of approximation presented in [27] are omitted, mainly those of Se-
leznev type (concerning formal power series) and those referring to the space X∞(Ω)
which is a closed subspace of A∞(Ω) (where Ω ⊆ C is an open set).

At this point we remind that given an open set Ω ⊆ C, a holomorphic function
f ∈ H(Ω) belongs to the A∞(Ω) if and only if for every ℓ ∈ {0, 1, 2, · · · } the ℓ -
th derivative f (ℓ) of f can be continuously extended to Ω. In A∞(Ω) we consider the
seminorms

ρn,ℓ(f, g) = sup
z∈Kn

|f (ℓ)(z)− g(ℓ)(z)|

for every n, ℓ ∈ N, where the family {Kn}n∈N consists of compact subsets ofΩ such
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Chapter 1 Introduction

that for every compact set L ⊆ Ω, there exists an index n0 ∈ N such that L ⊆ Kn0 . For
instance, it suffices to set Kn = Ω ∩ B(0, n) for every n ∈ N∗. It is known that with
these seminorms A∞(Ω) becomes a Fréchet space.

We also setX∞(Ω) to be the closure inA∞(Ω) of all rational functions with poles off
Ω. Thus,X∞(Ω) is a closed subset of a completemetric space and therefore is a complete
metric space itself. We refer to [27] and [37] for the further results and definitions.

In the second half of chapter 4 we present results of different nature concerning alge-
braic and affine genericity, as well as spaceability of certain classes of Padé approximants.
Our results do not make use of Baire’s theorem this time and are mostly constructive.

Finally, in chapter 5 we present a result concerning universal Laurent series on do-
mains of infinite connectivity. Our main result (Theorem 5.11) is proved to be generic
in a specific space of functions, once again by using Baire’s theorem. However, by apply-
ing Theorem 5.11 in different cases we obtain significantly different results. The most
striking application gives a generic result where universal approximation holds on a part
of the boundary of an open set, while on another disjoint part, the universal function is
smooth. Most of this chapter is contained in [25].

Each chapter of this work is carefully presented so that the reader could study each
chapter independently, apart, of course, from the necessary cross - references between
chapters. Naturally, many results were omitted, although we present most of the results
in [17], [23], [25] and [27] and we refer to these works (and also in [24]) for further
results, examples and information in general.

Last but not least, one could naturally ask for further relevant problems related to
this work. We only mention the following.

Problem 1.1. In Theorem 3.2 we mention the class S which is precisely the set of all
elements g ∈ A(D) such that both functions ug and vg (the real and the imaginary part
of g respectively) satisfy the following property

lim sup
t→t+0

∣∣∣ug(eit)− ug(e
it0)

t− t0

∣∣∣ = lim sup
t→t+0

∣∣∣vg(eit)− vg(e
it0)

t− t+0

∣∣∣ = +∞

for every t0 ∈ [0, 2π]. Is the class S affinely and / or algebraically generic? Is it
spaceable?

Problem 1.2. Consider the set of frequently universal martingales on trees in the sense
of [1]. Is this class algebraically generic and / or spaceable?
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Hypercyclicity of the translation operator

in infinitely many variables

2 Hypercyclicity of the translation operator in infinitely
many variables

2.1 A few things about Hypercyclicity
Birkhoff in [6] showed that there exists an entire function f : C → C such that its
translates f [n]

a (z) = f(z + na), n ∈ N are dense in the set of entire functions H(C)
endowed with the topology of uniform convergence on compacta, for a = 1. That is,
the translation operator T1 : H(C) → H(C), T1(f) = f

[1]
1 is hypercyclic. We remind

the following definition.

Definition 2.1 (Hypercyclic operators and Hypercyclic vectors). LetX be a topological
vector space and T : X → X a continuous linear operator. The operator T is called
hypercyclic if there exists a vector x ∈ X such that the set {T (n)(x) : n ≥ 1} is dense
inX . Obviously

T (n)(x) = T ◦ T · · · ◦ T (x)︸ ︷︷ ︸
n times

(2.1)

In addition, if such a vector exists, then it is called hypercyclic vector for the operator
T . It is also known ([21]) that the set of hypercyclic vectors of a hypercyclic operator is
aGδ - dense set, provided that it is not void.

Thus, the set of all functions f ∈ H(C) such that the set {f [n]
1 : n ∈ N} is dense in

H(C) isGδ - dense subset ofH(C). The previous results remain valid if 1 is replaced by
any a ∈ C \ {0}.

Baire’s theorem implies that if S ⊆ C \ {0} is denumerable, then there exists a
common hypercyclic function (vector) f ∈ H(C) for all operators Ta, a ∈ S and that
their set isGδ - dense set inH(C).

Costakis and Sambarino in [10] proved that the set of commonhypercyclic functions
f ∈ H(C) for all operators Ta, a ∈ C \ {0} is still residual inH(C).

Extensions of Birkhoff ’s result are known in CN ,N ∈ N. In infinite many variables
similar extensions fail ([19]). However, considering holomorphic functions on ℓ∞(N)
compatible with the notion of a holomorphic function in [26], it turns out that Birkhoff ’s
result can be extended in this case, provided we consider a smaller subspace of entire
functions. A similar result has been obtained earlier in [2] by using different methods.
It would be interesting to examine if the result of Costakis and Sambarino in [10] extends
as well or not.

2.2 Notations and preliminaries
We start with a few basic notations and preliminaries which will be used in order to
prove our main result concerning Hypercyclicity (Theorem (2.4)).

For every n ∈ N, we set Bn = B(0, n)
N
; that is a closed polydisc in the space CN

of infinitely many complex variables. We also consider the set of all bounded complex
sequences, i.e. the set

ℓ∞(C) ≡ ℓ∞ := {z ∈ CN : ∃ n ∈ N such that z ∈ Bn} =
∪
n≥0

Bn. (2.2)
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Moreover, ℓ∞ is endowed with the relevant (cartesian) topology, as a subspace ofCN.
Next, we consider the following set

A = {f : ℓ∞ → C : for every n ∈ N, there exists a sequence of polynomials

converging uniformly on Bn to the restriction f|Bn}. (2.3)

At this point we recall that every polynomial depends only on a finite number of
variables. It is also known ([26]) that for every f : ℓ∞ → C and for every n ∈ N,
(i) ⇐⇒ (ii) & (iii), where

(i) There exists a sequence of polynomials converging uniformly onBn to the restric-
tion f|Bn .

(ii) The restriction f|Bn is a continuous function with respect to the topology of point-
wise convergence.

(iii) The restriction f|Bn belongs separately, as a function of a single variable, to the
disc algebra A(B(0, n)).

By A(B(0, n)) we denote the algebra of the disc B(0, n), i.e. the set of all functions
h : B(0, n) → C which are continuous on B(0, n) and holomorphic in B(0, n).

Remark 2.2. Obviously, every function f : ℓ∞ → C which is separately holomorphic
and continuous on ℓ∞ with respect to the topology of pointwise convergence belongs to
A. The converse does not hold. Indeed, consider the following example.

Let f : ℓ∞ → C with

f(z1, z2, · · · ) =
+∞∑
j=1

zj
j2

(2.4)

for every z ≡ (z1, z2, · · · ) ∈ ℓ∞. In order to prove that f ∈ A, we consider the
polynomials

pN(z) =
N∑
j=1

zj
j2

(2.5)

for N ≥ 0. It is easy to verify that the sequence {PN}N≥0 converges uniformly on
Bn = B(0, n)

N
to f for every n ∈ N. It follows that f ∈ A.

We will show that f is not continuous on 0 ∈ ℓ∞, where ℓ∞ is consider endowed
with the relevant (cartesian) topology. Suppose that f is continuous on 0. Then, for
ε = 1, there exists an index N ∈ N and δ > 0 such that if |zj| < δ for j = 1, · · · , N
and zj ∈ C for j ≥ N + 1 it holds

|f((zj)j≥1)| < ε = 1 ⇔
∣∣∣ N∑
j=1

zj
j2

+
+∞∑

j=N+1

zj
j2

∣∣∣ < 1. (2.6)

We set zj = 0 for j = 1, · · · , N and zj = c ∈ C for j ≥ N + 1. Then

|c(
+∞∑

j=N+1

1

j2
)| < 1. (2.7)
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If

c1 =
+∞∑

j=N+1

1

j2
, (2.8)

then Relation (2.7) is equivalent to |cc1| < 1 for every c ∈ C, which is clearly false
for c→ ∞. Thus, f is not continuous on 0 ∈ ℓ∞.

Since f is a linear function, it follows that it is not continuous on any a ∈ ℓ∞.

Now, for every n ∈ N we consider the seminorms ρn : A → [0,+∞), defined for
every f ∈ A as follows

ρn(f) = ||f ||Bn = sup{|f(z)| : z ∈ Bn}. (2.9)

We know that if we set

ρ(f, g) =
+∞∑
n=0

1

2n
· ρn(f − g)

1 + ρn(f − g)
for every f, g ∈ A (2.10)

then ρ is a metric on A. In this way, (A, ρ) becomes a Fréchet space. Indeed, if
{fn}n≥0 ∈ A is a ρ - basic sequence of functions, then it is easy to see that the sequence
{fn}n≥0 is also ρk - basic and that this holds for every k ∈ N. Thus, for every ε > 0,
there exists an index n0 ∈ N such that for every n,m ≥ n0 it holds ||fn − fm||Bk < ε.
It follows that for every z ∈ Bk and for every n,m ≥ n0 it holds

|fn(z)− fm(z)| ≤ ||fn − fm||Bk < ε. (2.11)

It is now clear that for every z ∈ Bk the sequence {fn(z)}n≥0 is basic inC and since
C is a complete metric space, it converges. We set

f(z) = lim
n→+∞

fn(z) (2.12)

for every z ∈ Bk. In this way we have defined a function f : ℓ∞ → C which
is the pointwise limit of the sequence {fn}n≥0. By taking limits in Relation (2.11) for
m→ +∞, we obtain that |fn(z)−f(z)| ≤ ε for every z ∈ Bk, which yields the relation
||fn−f ||Bk ≤ ε for every n ≥ n0. Since fn ∈ A, it follows that there exists a polynomial
Pn such that ρn(fn, Pn) <

1
n

for all n. It follows easily that Pn → f uniformly on each
Bk. Hence f ∈ A. Therefore, ρ(fn, f) → 0 and thus (A, ρ) is a complete metric space.

Let a ∈ ℓ∞ \ {0} and f : ℓ∞ → C be a function. For every n ∈ N we use the
following notation

f [n]
a (z) = f(z + na) for every z ∈ ℓ∞. (2.13)

In the particular casewherea = (1, 1, · · · ) ∈ ℓ∞, we use the notation f [n](z) instead.
Finally, we will use the following well known result.

Proposition 2.3. (See Lemmas 1.1 and 1.2 of [13]) LetK1 andK2 two disjoint, compact
and convex subsets of CN (N ∈ N). Then the set K1 ∪ K2 is polynomially convex.
It follows that if p1 and p2 are two polynomials of N complex variables and ε > 0 ,
then there exists a polynomial p ofN complex variables such that ||p− p1||K1 < ε and
||p− p2||K2 < ε.

8



Chapter 2
Hypercyclicity of the translation operator

in infinitely many variables

2.3 A generic result about Hypercyclicity
In this section we prove that for every a ∈ ℓ∞ \ {0} the corresponding translation
operator Ta : A → A is hypercyclic.

Theorem 2.4. There exists a function f ∈ A such that the translations of f , i.e. the set
{f [n] : n ≥ 0} is dense in (A, ρ). Moreover, the set of all such functions f isGδ - dense
in (A, ρ).

Proof. We consider an enumeration {fj}j≥0 of polynomials with coefficients inQ+
iQ. Of course, every polynomial is a function that depends only on a finite number of
variables. One can verify that the set {fj : j ≥ 0} is dense in (A, ρ).

Next, for everym,n, j, s ∈ N we consider the following sets

Bm,n,j,s =
{
f ∈ A : ||f [n] − fj||Bm <

1

s

}
. (2.14)

IfB is the set of all functions satisfyingTheorem 2.4, one can verify that the following
holds

B =
∩
m,j,s

∪
n≥0

Bm,n,j,s. (2.15)

In order to use Baire’s theorem and prove that B is non void (in fact, a Gδ - dense
set), it suffices to prove the following.

Claim 2.5. For everym,n, j ∈ N and s ≥ 1 the sets Bm,n,j,s are open in A.

Proof of Claim 2.5 Let m,n, j, s ∈ C and f ∈ Bm,n,j,s be fixed. We need to find
an ε > 0 such that for every g ∈ A with ρ(f, g) < ε it follows that g ∈ Bm,n,j,s, or,
equivalently

||g[n] − fj||Bm <
1

s
(2.16)

The triangle inequality implies that

||g[n] − fj||Bm ≤ ||g[n] − f [n]||Bm + ||f [n] − fj||Bm . (2.17)

Thus, it suffices to prove the following

||g[n] − f [n]||Bm <
1

s
− ||f [n] − fj||Bm . (2.18)

We know that it holds

||g[n] − f [n]||Bm = sup
z∈Bm

|g(z + n)− f(z + n)| ≤ ||f − g||Bm+n . (2.19)

The quantity ||f − g||Bm+n can become arbitrary small, provided that ρ(f, g) < ε.
Thus, Bm,n,j,s is open in A.

■■
Claim 2.6. For everym, j ∈ N and s ≥ 1 the set∪

n≥0

Bm,n,j,s (2.20)

is dense in A.
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Proof of Claim 2.6We fix the parametersm, j ∈ N and s ≥ 1 and we want to prove
that the set in Relation (2.20) is dense in A.

Let g ∈ A, ε > 0 and M ∈ N. We want to find an index n0 ∈ N and a function
f ∈ Bm,n0,j,s such that ||f − g||BM < ε. There is no problem if we assume that it holds
ε < 1

s
. The function f must satisfy the following properties.

(i) ||f − g||BM < ε.

(ii) ||f [n0] − fj||Bm <
1

s
or, equivalently

sup
z ∈B(n0,m)

N
|f(z)− fj(z − n0 · a)| <

1

s
. (2.21)

Since g ∈ A, there exists a polynomial p1 such that ||p1 − g||BM < ε
2
. Sup-

pose that the polynomial p1 depends on n1 variables, while the polynomial fj depends
on n2 variables. Then we can consider both polynomials as functions from Cn1+n2 to
C. This allows us to use Proposition 2.3, since the closed polydiscs B(0,M)

n1+n2 and
B(n0,m)

n1+n2 in Cn1+n2 are compact, convex and disjoint sets, provided that n0 is
large enough. We set B = B(0,M)

n1+n2 ∪ B(n0,m)
n1+n2 . We consider the function

h : B → C defined as follows

h(z) =

{
p1(z), for z ∈ B(0,M)

n1+n2

fj(z − n0 · a), for z ∈ B(n0,M)
n1+n2

.
(2.22)

Since B is polynomially convex, according to Proposition 2.3 there exists a polyno-
mial p depending at most n1 + n2 variables such that ||p− h||B < ε

2
. It follows that

||p− p1||B(0,M)
n1+n2 <

ε

2
(2.23)

and also
||p− fj||B(n0,m)

n1+n2 <
ε

2
. (2.24)

We set f = p and we are done by the triangle inequality.
■■

We apply Baire’s theorem and that completes the proof.
■

Remark 2.7. The previous proof is valid for a = (1, 1, · · · ) ∈ ℓ∞. More generally, if
a ≡ (aj)j≥0 ∈ ℓ∞ \ {0}, then the same proof works. It suffices to consider n0 large
enough such that for some fixed j with aj ̸= 0we haveB(n0aj,m)∩B(0,M) = ∅. For
instance, it suffices to choose

n0 >
M +m

aj
. (2.25)

Thus, we obtain the following theorem.
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Theorem 2.8. For every a ∈ ℓ∞ \ {0} there exists a function f ∈ A such that the set
{f [n]

a : n ≥ 0} is dense in (A, ρ). Moreover, the set of all such functions is Gδ - dense
in (A, ρ).

Question 2.9. Is it possible to find a function f ∈ A such that the set {f [n]
a : n ≥ 0} is

dense in (A, ρ) simultaneously for all a ∈ CN \ {0}? If this is true, is it possible that the
set of all such functions is residual in (A, ρ)? This question relates to [10].
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Chapter 3 Nowhere differentiable functions

3 Nowhere differentiable functions

3.1 Nowhere differentiable functions in the disc algebra
In 1872, Weierstrass gave an explicit example of a function u0 : R → Rwhich is contin-
uous but nowhere differentiable. Although this is considered to be the first such known
result, as E. Maestre informed us, Bolzano has obtained a similar result before 1831 but
it was not published until 1930.

Theorem 3.1 (Weierstrass’ explicit example). Let 0 < α < 1 and b be an odd integer
satisfying ab > 1 + 3π

2
. Then, the function u0 : R → R defined as

u0(x) =
+∞∑
n=0

an cos(bnx) (3.1)

for every x ∈ R is continuous, 2π - periodic and nowhere differentiable. In fact,
something even stronger holds ([31]); for every x0 ∈ R we have that

lim sup
x→x+

0

∣∣∣u0(x)− u0(x0)

x− x0

∣∣∣ = +∞. (3.2)

In this section we prove that for almost every function f in the disc algebra A(D),
both functions uf (θ) = Re

(
f(eiθ)

)
and vf (θ) = Im

(
f(eiθ)

)
are continuous and

nowhere differentiable with respect to the real parameter θ. This result clearly indicates
that almost every function f ∈ A(D) is nowhere differentiable on T = {z ∈ C : |z| =
1}. In addition, the set of all functions satisfying this property is residual in A(D); that
is, it contains aGδ - dense set.

We remind thatD = {z ∈ C : |z| < 1} and a function f belongs to the disc algebra
A(D) if and only if f is continuous on D and holomorphic in D. The space A(D) is
endowed with the topology induced by the supremum norm on D

||f ||∞ = sup
|z|≤1

|f(z)|. (3.3)

Moreover, it is known that
(
A(D), || · ||∞

)
is a Banach space. We now return to

Theorem 3.1.
Let 0 < α < 1 and b be an odd integer satisfying ab > 1 + 3π

2
. We consider the

function f0 : D → C defined as

f0(z) =
+∞∑
n=0

anzb
n (3.4)

for every z ∈ D. The function f0 is well defined and it holds

u0(x) = Re
(
f0(e

ix)
)

(3.5)

for every x ∈ R. In addition, if ũ0 : R → R is the following function

ũ0(x) =
+∞∑
n=0

an sin(bnx) (3.6)

12



Chapter 3 Nowhere differentiable functions

for every x ∈ R, then clearly it holds

ũ0(x) = Im
(
f0(e

ix)
)

(3.7)

for every x ∈ R. The following relation explains the link between the functions
u0, ũ0 and f0 (restricted to T)

f0(e
ix) = Re

(
f0(e

ix)
)
+ iIm

(
f0(e

ix)
)
= u0(x) + iũ0(x) (3.8)

and that holds for every x ∈ R. The function f0 is continuous onD and holomorphic
in D because |anzbn | ≤ an for every |z| ≤ 1 and the series

∑+∞
n=0 a

n is convergent; in
other words f ∈ A(D).

We will also use the following notation: for every function g ∈ A(D) we consider
the functions ug, vg : R → R satisfying

ug(x) = Re
(
g(eix)

)
(3.9)

and
vg(x) = Im

(
g(eix)

)
(3.10)

for every x ∈ R. In addition, if h : R → R, we say that h satisfies Property (3.11)
below if it holds

lim sup
x→x+

0

∣∣∣h(x)− h(x0)

x− x0

∣∣∣ = +∞ (3.11)

for every x0 ∈ R. It is known that both functions u0 and ũ0 satisfy Property (3.11)
(see [31] for the function u0; for the function ũ0 a similar calculation works, at least if
λ ≡ 1mod4).

Theorem 3.2. ([[17], [16]) Let S ⊆ A(D) be the class of all functions g ∈ A(D) such
that both functions ug and vg satisfy Property (3.11). Then S isGδ - dense in A(D).

Proof. Weknow thatS ̸= ∅ since f0 ∈ S. For every n ≥ 1we consider the following
sets

Dn =
{
h : R → R : for every θ ∈ R there exists a θ0 ∈

(
θ, θ +

1

n

)
such that |h(θ)− h(θ0)| > n|θ − θ0|

}
. (3.12)

Also, for every n ≥ 1, let

En = {f ∈ A(D) : uf & vf ∈ Dn}. (3.13)

One can easily verify that it holds

S =
+∞∩
n=1

En. (3.14)

In order to use Baire’s theorem we have to prove that each En is an open and dense
set in A(D).

Claim 3.3. For every n ≥ 1 the sets En are open in A(D).

13



Chapter 3 Nowhere differentiable functions

Proof of Claim 3.3 Let n ≥ 1 be a fixed natural number. In order to prove that the
set En is open in A(D) we will prove equivalently that the set A(D) \ En is closed in
A(D).

We consider a sequence of functions {gm}m≥1 ⊆ A(D) \En and let g ∈ A(D) such
that gm → g in A(D). Now, since gm ̸∈ En, for every m ≥ 1 there exist θm ∈ R such
that

|ugm(θ)− ugm(θm)| ≤ n|θ − θm| (3.15)

for every θ ∈
(
θm, θm + 1

n

)
or there exist θ′m ∈ R such that

|vgm(θ)− vgm(θ
′
m)| ≤ n|θ − θ′m| (3.16)

for every θ ∈
(
θ′m, θ

′
m + 1

n

)
.

According to the definition of the functions ugm and vgm , since both of them are 2π -
periodic, we may assume that the sequences {θm}m≥1 and {θ′m}m≥1 are bounded ones;
thus, without loss of generality, we may assume that the former converges to a single
θ ∈ R and the latter converges to a single θ′ ∈ R.

Suppose that we are in the first case and Relation (3.15) holds for infinitely many
m ≥ 1. Let x ∈

(
θ, θ + 1

n

)
. Then, it is easy to see that there exists an index m0 ≥ 1

such that x ∈
(
θm, θm + 1

n

)
for everym ≥ m0. The triangle inequality implies that

|ug(x)− ug(θm)| ≤ |ug(x)− ugm(x)|+ |ugm(x)− ugm(θm)|
+ |ugm(θm)− ug(θm)|

≤ 2||ugm − ug||∞ + n|x− θm| (3.17)

By taking limits asm→ +∞ in Relation (3.17) we obtain that it holds

|ug(x)− ug(θ)| ≤ n|x− θ| (3.18)

for everyx ∈
(
θ, θ+ 1

n

)
. It follows thatug /∈ Dn and thus, in this case g ∈ A(D)\En.

We consider now the second case, where Relation (3.16) holds for infinitely many
m ≥ 1. Let y ∈

(
θ′, θ′ + 1

n

)
. Then, it is easy to see that there exists an index m1 ≥ 1

such that y ∈
(
θ′m, θ

′
m + 1

n

)
for everym ≥ m1. The triangle inequality implies that

|vg(y)− vg(θ
′
m)| ≤ |vg(y)− vgm(y)|+ |vgm(y)− vgm(θ

′
m)|

+ |vgm(θ′m)− vg(θ
′
m)|

≤ 2||vgm − vg||∞ + n|y − θ′m| (3.19)

By taking limits asm→ +∞ in Relation (3.19) we obtain that it holds

|ug(y)− ug(θ
′)| ≤ n|y − θ′| (3.20)

for every y ∈
(
θ′, θ′ + 1

n

)
. It follows that vg /∈ Dn and thus, in this case g ∈

A(D) \ En.
In any case, the set A(D) \ En is closed in A(D), or equivalently, the set En is open

in A(D). This part of the proof is complete.
■■

14



Chapter 3 Nowhere differentiable functions

Claim 3.4. For every n ≥ 1 the sets En are dense in A(D).

Proof of Claim 3.4 Let n ≥ 1 be a fixed number and f0 be the function defined in
Relation (3.4). Our aim is to prove that if p is a polynomial (restricted toD) then it holds
f0 + p ∈ En.

Indeed, let p be a polynomial (restricted to D). Since p′ is bounded in D, from the
Mean Value theorem, there exists aM > 0 such that

|up(y)− up(θ)| ≤M |y − θ| (3.21)

and also
|vp(y)− vp(θ)| ≤M |y − θ| (3.22)

for every y, θ ∈ R with y ̸= θ. Let θ ∈ R. Since f0 ∈ Es for every s ≥ 1, there exist
x, y ∈ (θ, θ + 1

s
) ⊆ (θ, θ + 1

n
) such that

|uf0(x)− uf0(θ)| > s|x− θ| (3.23)

and
|vf0(y)− vf0(θ)| > s|y − θ|. (3.24)

Let k > M + n. By using the triangle inequality, we obtain

|uf0+p(x)− uf0+p(θ)| = |
(
uf0(x)− uf0(θ)

)
+
(
up(x)− up(θ)

)
|

≥ |uf0(x)− uf0(θ)| − |up(x)− up(θ)|
> k|x− θ| −M |x− θ|
= (k −M)|x− θ|
> n|x− θ| (3.25)

In the same way, we can simultaneously prove that it holds

|vf0+p(y)− vf0+p(θ)| > n|y − θ|. (3.26)

Therefore, according to Relations (3.25) and (3.26) we conclude that

uf0+p, vf0+p ∈ Dn (3.27)

or equivalently, f0 + p ∈ En and this part of the proof is complete.
■■

Since A(D) is a complete metric space and the set of all polynomials (restricted to
D) is dense in A(D), we apply Baire’s theorem and that completes the proof.

■

Remark 3.5. The previous result (Theorem3.2) implies that the class S0 ⊆ A(D) con-
taining all f ∈ A(D) such that both functions uf and vf are nowhere differentiable is
residual in A(D), since it holds S ⊆ S0.

15



Chapter 3 Nowhere differentiable functions

3.2 Nowhere differentiable functions with respect to the position
In this section we present a few results concerning nowhere differentiable functions with
respect to the position. The main idea is the following: we consider a domain Ω ⊆ C
(bounded, or even unbounded) a compact set J ⊆ ∂Ω with no isolated points and we
study particular classes of functions f that satisfy the following property

lim sup
z→z0

z∈J\{z0}

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ = +∞ (3.28)

for every z0 ∈ J . These classes are proved to be either generic in suitable (complete)
metric spaces or simply void. Apparently, the respective classes of functions that are
nowhere differentiable on J are residual, since they contain a Gδ - dense sets. We also
mention that in every case no parametrization of the boundary is required.

At the end of this section we also give a few examples relevant to the previous results.
In some of them (Examples 3.12 and 3.13) the respective classes areGδ - dense, while in
Examples 3.14 and 3.15 the respective classes are void.

3.2.1 The case of bounded domains

Let K ⊆ C be a compact set. We denote with R(K) is the set of uniform limits on K
of rational functions with poles off K . Naturally, the space R(K) is endowed with the
topology induced by the supremum norm onK

||f ||∞ = sup
z∈K

|f(z)|. (3.29)

It is known that the space
(
R(K), ||·||∞

)
is a Banach space. LetΩ ⊆ C be a bounded

domain and J ⊆ ∂Ω be a compact set without isolated points. We denote with S(Ω, J)
the following class of functions

S(Ω, J) = {f ∈ R(Ω) : lim sup
z→z0

z∈J\{z0}

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ = +∞ for every z0 ∈ J}. (3.30)

Theorem 3.6. ([23]) Under the above assumptions and notations, the class S(Ω, J) is
either void orGδ - dense in R(Ω).

Proof. We suppose that it holds S(Ω, J) ̸= ∅ and let f ∈ S(Ω, J). We denote with
En the following sets

En =
{
g ∈ R(Ω) : for every z0 ∈ J there exists a z ∈ (J \ {z0}) ∩D

(
z0,

1

n

)
such that

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ > n
}
. (3.31)

The reader can verify that it holds

S(Ω, J) =
+∞∩
n=1

En. (3.32)

In order to use Baire’s theorem we have to prove that each En is an open and dense
set in R(Ω).

16
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Claim 3.7. For every n ≥ 1 the sets En are open in R(Ω).

Proof of Claim 3.7 Let n ≥ 1 be a fixed natural number. In order to prove that the
set En is open in R(Ω) we will prove equivalently that the set R(Ω) \ En is closed in
R(Ω).

Indeed, let {gm}m≥1 ⊆ R(Ω) \En and g ∈ R(Ω) such that gm → g inR(Ω). Then,
for everym ≥ 1, there exists a zm ∈ J satisfying∣∣∣gm(z)− gm(zm)

z − zm

∣∣∣ ≤ n (3.33)

for every z ∈ (J \ {zm}) ∩D(zm,
1
n
). Since J is a compact set, there exists a subse-

quence of {zm}m≥1 which converges to a single point z0 ∈ J . Without loss of generality,
we may assume that {zm}m≥1 converges to z0. Let z ∈ (J \ {z0}) ∩D(z0,

1
n
) be a fixed

point. Then, there exists an index m0 ≥ 1 satisfying z ∈ (J \ {zm}) ∩ D(zm,
1
n
) for

everym ≥ m0. Consequently, for everym ≥ m0, the triangle inequality implies that

|g(z)− g(z0)| ≤ |g(z)− gm(z)|+ |gm(z)− gm(zm)|+ |gm(zm)− g(z0)|
≤ |g(z)− gm(z)|+ n|zm − z|+ |gm(zm)− g(z0)|
≤ |g(z)− gm(z)|+ |gm(zm)− g(zm)|+ |g(zm)− g(z0)|+ n|zm − z|
≤ 2||gm − g||∞ + |g(zm)− g(z0)|+ n|zm − z|. (3.34)

Therefore, by taking limits asm→ +∞ in Relation (3.34) we obtain that it holds∣∣∣g(z)− g(z0)

z − z0

∣∣∣ ≤ n (3.35)

for every z ∈ (J \ {z0})∩D(z0,
1
n
). Relation (3.35) implies that g ∈ R(Ω) \En and

as a result, En is a closed set. This part of the proof is complete.
■■

Claim 3.8. For every n ≥ 1 the sets En are dense in R(Ω).

Proof of Claim 3.8 Let n ≥ 1 be a fixed natural number, g ∈ R(Ω) and ε > 0.
According to the definition of the classR(Ω), since g−f ∈ R(Ω), there exists a rational
function q ≡ qε with poles off Ω such that

||(g − f)− q||∞ < ε. (3.36)

Since q′ is continuous onΩ, there exists aM > 0 satisfying ||q′||∞ ≤M . Let z0 ∈ J
be a fixed point and a sequence {zm}m≥1 in J \ {z0} such that zm → z0 satisfying

lim
m→+∞

∣∣∣f(zm)− f(z0)

zm − z0

∣∣∣ = +∞. (3.37)

The triangle inequality implies that∣∣∣(f + q)(zm)− (f + q)(z0)

zm − z0

∣∣∣ = ∣∣∣f(zm)− f(z0)

zm − z0
+
qm(zm)− qm(z0)

zm − z0

∣∣∣
≥

∣∣∣f(zm)− f(z0)

zm − z0

∣∣∣− ∣∣∣q(zm)− q(z0)

zm − z0

∣∣∣. (3.38)

17
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At the same time, it also holds

lim
m→+∞

∣∣∣q(zm)− q(z0)

zm − z0

∣∣∣ = |q′(z0)| ≤M. (3.39)

Therefore, by combining Relations (3.38) and (3.39), we obtain that it holds∣∣∣(f + q)(zm)− (f + q)(z0)

zm

∣∣∣ > n (3.40)

form large enough. Consequently, we deduce that (f + q) ∈ En. Since ||g − (f +
q)||∞ < ε and ε > 0 is arbitrary, it follows that g ∈ En. Thus, the set En is dense in
R(Ω) and this part of the proof is complete.

■■
The result follows now from Baire’s theorem.

■

3.2.2 The case of unbounded domains

Let E ⊆ C be an unbounded open set. We denote with R̃(E) the set of all functions
which are uniform limits on each compact subset of E of rational functions with poles
off E. The natural topology of R̃(E) is the topology of uniform convergence on each
compact subset ofE. Equivalently, the topology of R̃(E) can be defined by the sequence
of seminorms

ρk(f, g) = sup
{
|f(z)− g(z)| : z ∈ E ∩B(0, k)

}
(3.41)

for every f, g ∈ R̃(E) and for every k ≥ 1. Moreover, the space R̃(E) endowed
with these seminorms is a Fréchet space.

Theorem 3.9. ([23]) Let Ω ⊆ C be an unbounded domain and J ⊆ ∂Ω be a compact
set without isolated points. Then, the class of functions

S(Ω, J) = {f ∈ R̃(Ω) : lim sup
z→z0

z∈J\{z0}

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ = +∞ for every z0 ∈ J} (3.42)

is either void orGδ - dense in R̃(Ω).

Proof. We suppose that it holds S(Ω, J) ̸= ∅ and let f ∈ S(Ω, J). We denote with
En the following sets

En =
{
g ∈ R̃(Ω) : for every z0 ∈ J there exists a z ∈ (J \ {z0}) ∩D(z0,

1

n
)

such that
∣∣∣g(z)− g(z0)

z − z0

∣∣∣ > n
}
. (3.43)

The reader could verify that it holds

S(Ω, J) =
+∞∩
n=1

En. (3.44)

Thus, in order to apply Baire’s theorem we have to prove the following.

18
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Claim 3.10. For every n ≥ 1 the sets En are open in R̃(Ω).

Proof of Claim 3.10 Let n ≥ 1 be a fixed natural number. In order to prove that the
set En is open in R̃(Ω) we will prove equivalently that the set R̃(Ω) \ En is closed in
R̃(Ω).

Indeed, let {gm}m≥1 be a sequence of functions in R̃(Ω) \En which converges uni-
formly on the compact subsets of Ω to a function g ∈ R̃(Ω). Then, for every m ≥ 1,
there exists a zm ∈ J satisfying ∣∣∣gm(z)− gm(zm)

z − zm

∣∣∣ ≤ n (3.45)

for every z ∈ (J \ {zm}) ∩D(zm,
1
n
). Since J is a compact set, there exists a subse-

quence of {zm}m≥1 which converges to a single point z0 ∈ J . Without loss of generality,
we may assume that {zm}m≥1 converges to z0. Let z ∈ (J \ {z0}) ∩D(z0,

1
n
) be a fixed

point. Then, there exists an index m0 ≥ 1 satisfying z ∈ (J \ {zm}) ∩ D(zm,
1
n
) for

everym ≥ m0. Consequently, for everym ≥ m0, the triangle inequality implies that

|g(z)− g(z0)| ≤ |g(z)− gm(z)|+ |gm(z)− gm(zm)|+ |gm(zm)− g(z0)|
≤ |g(z)− gm(z)|+ n|zm − z|+ |gm(zm)− g(z0)|
≤ |g(z)− gm(z)|+ |gm(zm)− g(zm)|+ |g(zm)− g(z0)|+ n|zm − z|
≤ 2ρ(f, g) + |g(zm)− g(z0)|+ n|zm − z| (3.46)

where, of course, ρ is the metric of R̃(Ω). Furthermore, the sequence {gm}m≥1 con-
verges uniformly on J to g, since J ⊆ Ω is a compact set. Therefore, by taking limits as
m→ +∞ in Relation (3.46) we obtain that it holds∣∣∣g(z)− g(z0)

z − z0

∣∣∣ ≤ n (3.47)

for every z ∈ (J \ {z0}) ∩ D(z0,
1
n
). Thus g ∈ R̃(Ω) \ En and as a result, En is a

closed set. This part of the proof is complete.
■■

Claim 3.11. For every n ≥ 1 the sets En are dense in R̃(Ω)

Proof of Claim 3.11 Let n ≥ 1 be a fixed natural number, g ∈ R̃(Ω). According to
the definition of the class R̃(Ω), there exists a sequence of rational functions {qm}m≥1

with poles offΩwhich converges uniformly to the function g−f on each compact subset
of Ω. Obviously, the sequence {f + qm}m≥1 converges uniformly to g on the compacts
subsets of Ω. Our aim is to show that (f + qk) ∈ En for every k ≥ 1. Let also k ≥ 1
be fixed. Since q′k is continuous on the compact set J ⊆ ∂Ω, there exists aM > 0 such
that |q′k(z)| ≤M for every z ∈ J . Let z0 ∈ J ; since it holds

lim sup
z→z0

z∈J\{z0}

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ = +∞ (3.48)
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there exists a sequence {zm}m≥1 in (J\{z0})∩B(z0,
1
n
) such that zm → z0 satisfying

lim
m→+∞

∣∣∣f(zm)− f(z0)

zm − z0

∣∣∣ = +∞. (3.49)

The triangle inequality implies that∣∣∣(f + qk)(zm)− (f + qk)(z0)

zm − z0

∣∣∣ = ∣∣∣f(zm)− f(z0)

zm − z0
+
qk(zm)− qk(z0)

zm − z0

∣∣∣
≥

∣∣∣f(zm)− f(z0)

zm − z0

∣∣∣− ∣∣∣qk(zm)− qk(z0)

zm − z0

∣∣∣. (3.50)

At the same time, it also holds

lim
m→+∞

∣∣∣qk(zm)− qk(z0)

zm − z0

∣∣∣ = |q′k(z0)| ≤M. (3.51)

Therefore, by combining Relations (3.50) and (3.51) we obtain that∣∣∣(f + qk)(zm)− (f + qk)(z0)

zm − z0

∣∣∣ > n (3.52)

form large enough. Therefore, we deduce that (f + qk) ∈ En for every k ≥ 1. This
part of the proof is complete.

■■
The result follows now from Baire’s Theorem.

■
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3.2.3 A few examples

We now present a few examples concerning Theorems 3.6 and 3.9. In Example 3.12 we
deal with an unbounded domain Ω ⊆ C (the open right half plane) and a closed set
J ⊆ ∂Ω of its boundary (the y - axis) and we prove that the respective class S(Ω, J) is
Gδ - dense in R̃(Ω). Notice that in this specific example the set J is not a compact one.

In Example 3.13 we deal with a bounded domain Ω ⊆ C (an angular sector) and
the compact set J = ∂Ω and we prove that the respective class S(Ω, J) isGδ - dense in
R(Ω).

In Example 3.14 we deal with a bounded domain Ω ⊆ C (an open disc minus a line
segment), where the respective class S(Ω, ∂Ω) is void in R(Ω).

Finally, in Example 3.15 we deal with an ubounded domain Ω ⊆ C (an open half
strip minus a half-line), where the respective class S(Ω, ∂Ω) is void in R̃(Ω).

Example 3.12. ([23]) We consider the (open) right half plane Ω = {z ∈ C : Re(z) >
0}.

x

y

0

Figure 1: The unbounded domain Ω of Example 3.12.

For every n ≥ 1 we consider the following classes of functions

S(Ω, Jn) = {f ∈ A(Ω) : lim sup
z→z0

z∈Jn\{z0}

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ = +∞ for every z0 ∈ Jn} (3.53)

where Jn = [−in,+in]. In addition, let

S(Ω, J) = {f ∈ A(Ω) : lim sup
z→z0

z∈J\{z0}

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ = +∞ for every z0 ∈ J} (3.54)

where

J =
+∞∪
n=1

Jn = iR. (3.55)
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Then, the class S(Ω, J) is Gδ - dense in A(Ω), where the space A(Ω) is endowed
with the topology of uniform convergence on the compact subsets of Ω.

Proof. We prove that each S(Ω, Jn) is Gδ - dense in A(Ω) = R̃(Ω). Since (C ∪
{∞}) \ (Ω ∩ D(0, n)) is a connected set, it follows that A((Ω)◦ ∩ D(0, n)) = R̃(Ω ∩
D(0, n)) for every n ≥ 1 and thus, according to Theorem 3.9, it is enough to prove that
each S(Ω, Jn) is non - void.

We consider the entire function ϕ : C → C satisfying ϕ(w) = e−w for everyw ∈ C.
Obviously, ϕ′(w) = −e−w ̸= 0 for everyw ∈ C. We also consider the function f : Ω →
Cwith f = f0 ◦ϕ, where f0 is the function defined in Relation (3.4). Obviously, it holds
ϕ(Ω) ⊆ D(0, 1) and ϕ(Jn) ⊆ T. The reader can easily verify that it holds f ∈ S(Ω, Jn)
for every n ≥ 1. Thus, the class S(Ω, Jn) isGδ - dense in A(Ω) and since it holds

S =
+∞∩
n=1

S(Ω, Jn) (3.56)

Baire’s Theorem implies that the class S(Ω, J) isGδ - dense in A(Ω).
■

Example 3.13. ([23]) We consider the following sets

A = {rei
3π
4 : 0 ≤ r ≤ 1} (3.57)

B =
{
eiθ :

π

4
≤ θ ≤ 3π

4

}
(3.58)

and
C = {rei

π
4 : 0 ≤ r ≤ 1}. (3.59)

LetΩ be the Jordan domain bounded byA∪B∪C . It clearly holds ∂Ω = A∪B∪C .
Then, the class of functions

S(Ω, ∂Ω) = {f ∈ A(Ω) : lim sup
z→z0

z∈∂Ω\{z0}

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ = +∞ for every z0 ∈ ∂Ω}

(3.60)
isGδ - dense in (A(Ω), || · ||∞).

Proof. We consider the following classes of functions

S(Ω, A) = {f ∈ A(Ω) : lim sup
z→z0

z∈A\{z0}

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ = +∞ for every z0 ∈ A} (3.61)

S(Ω, B) = {f ∈ A(Ω) : lim sup
z→z0

z∈B\{z0}

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ = +∞ for every z0 ∈ B} (3.62)

S(Ω, C) = {f ∈ A(Ω) : lim sup
z→z0

z∈C\{z0}

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ = +∞ for every z0 ∈ C}. (3.63)
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Ω
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0
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1
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Figure 2: The bounded (Jordan) domain Ω of Example 3.13.

Obviously, it holds S(Ω, A) ∩ S(Ω, B) ∩ S(Ω, C) ⊆ S(Ω, ∂Ω). From Example 3.12,
there exists a function h ∈ A(R) (where R is the open right half plane) satisfying

lim sup
z→z0

z∈iR\{z0}

∣∣∣h(z)− h(z0)

z − z0

∣∣∣ = +∞ (3.64)

for every z0 ∈ iR. In the same way, one can prove that there exists a function ϕ ∈
A(L) (where L is the open left half plane) satisfying

lim sup
z→z0

z∈iR\{z0}

∣∣∣ϕ(z)− ϕ(z0)

z − z0

∣∣∣ = +∞ (3.65)

for every z0 ∈ iR. We consider the functions ω1, ω2 ∈ A(Ω) with

ω1(z) = h(e−iπ
4
z) (3.66)

and
ω2(z) = ϕ(ei

π
4
z) (3.67)

for every z ∈ Ω. We have proved that ω1 ∈ S(Ω, A) and in the same way ω2 ∈
S(Ω, C); thus, according toTheorem3.6, the classesS(Ω, A) andS(Ω, C) areGδ - dense
in A(Ω). In addition, if f0 is the function defined in Relation (3.4), then the restriction
(f0 ↾Ω) ∈ S(Ω, B) and therefore, the class S(Ω, B) is also Gδ - dense in A(Ω). Ac-
cording to Baire’s Theorem, it follows that the class S(Ω, A)∩ S(Ω, B)∩ S(Ω, C) isGδ

- dense in A(Ω). Since S(Ω, A) ∩ S(Ω, B) ∩ S(Ω, C) ⊆ S(Ω, ∂Ω), we obtain that it
holds S(Ω, ∂Ω) ̸= ∅ and thus, the class S(Ω, ∂Ω) is alsoGδ - dense in A(Ω).

■

Example 3.14. ([23])We consider the open setΩ = D\[0, 1
2
]. Then the class of functions

S(Ω, ∂Ω) = {f ∈ A(Ω) : lim sup
z→z0

z∈∂Ω\{z0}

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ = +∞ for every z0 ∈ ∂Ω}

(3.68)
is void.
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Ω
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y
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1
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Figure 3: The bounded domain Ω of Example 3.14.

Proof. Let f ∈ A(Ω). Then the function f is continuous on D and holomorphic in
D\R. From a known corollary ofMorera’sTheorem, it follows that f is also holomorphic
in D.

Therefore, we obtain that it holds

lim sup
z→z0

z∈[0, 1
2
]\{z0}

∣∣∣f(z)− f(z0)

z − z0

∣∣∣ = |f ′(z0)| < +∞ (3.69)

for every z0 ∈ [0, 1
2
]. Relation (3.69) clearly implies that f ̸∈ S(Ω, ∂Ω) and thus, we

conclude that S(Ω, ∂Ω) = ∅.
■

Example 3.15. Let Ω = {z ∈ C : 0 < Re(z) & 0 < Im(z) < 1} \ {z ∈ C : 0 <
Re(z) & Im(z) = 1

2
}. Then it holds S(Ω, ∂Ω) = ∅.

x

y

0

1/2

1

Ω

Figure 4: The unbounded domain Ω of Example 3.15.
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Proof. Let f ∈ A(Ω). Then the function f is continuous on Ω and holomorphic in
Ω \ {z ∈ C : 0 < Re(z) & Im(z) = 1

2
}. From a known corollary of Morera’s Theorem,

it follows that f is also holomorphic in Ω. The reader can fill in the necessary details as
in Example 3.14.

■
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Chapter 4 Padé approximation

4 Padé approximation

4.1 A few preliminaries
Definition 4.1 (Padé approximants). Let ζ ∈ C be a fixed element, {an}n∈N ⊆ C and

f(z) =
+∞∑
n=0

an(z − ζ)n (4.1)

be a formal power series (centered at ζ). For every p, q ∈ N we consider a function
of the following form

[f ; p/q]ζ(z) =
A(z)

B(z)
(4.2)

where both functions A(z) and B(z) are polynomials satisfying the following con-
ditions

(i) degA ≤ p and degB ≤ q (4.3)

(ii) B(ζ) = 1 (4.4)

(iii) The Taylor expansion of the function

[f ; p/q]ζ(z) =
+∞∑
n=0

bn(z − ζ)n (4.5)

at ζ satisfies
an = bn for every n = 0, 1, · · · , p+ q. (4.6)

If such a rational function exists, then its irreducible form is unique, as it is well
known (see for example [9]) and it is called the (p, q) - Padé approximant of f (at ζ).

If we assume that the function A(z)/B(z) is irreducible, then obviously the poly-
nomials A(z) and B(z) are unique. However, the polynomials A(z) and B(z) may not
be unique in general, if we do not assume that the function A(z)/B(z) is irreducible,
even if it holds degA(z) ≤ p, degB(z) ≤ q and B(ζ) = 1. A necessary and sufficient
condition for the uniqueness of the polynomials A(z) and B(z) is that degA(z) = p
or degB(z) = q and A(z)/B(z) being irreducible. This is equivalent to the non - van-
ishing of a particular determinant (see Relation (4.8) below). Then, it follows that the
(p, q) - Padé approximant exists and it has a unique representation as A(z)/B(z) with
degA(z) ≤ p, degB(z) ≤ q and B(ζ) = 1.

Remark 4.2. Definition 4.1 implies that for q = 0 the (p, 0) - Padé approximant of f
exists trivially for every p ∈ N, since

[f ; p/0]ζ(z) =

p∑
n=0

an(z − ζ)n (4.7)

for every z ∈ C. On the other hand, for q ≥ 1 Definition 4.1 does not necessarily
imply the existence of Padé approximants. However, if a Padé approximant exists, then it
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is unique as a rational function. It is known ([3]) that a necessary and sufficient condition
for the existence and uniqueness of the polynomials A(z) and B(z) in Definition 4.1 is
that the following q × q Hankel determinant

Dp,q(f, ζ) = det

∣∣∣∣∣∣∣∣∣∣
ap−q+1 ap−q+2 · · · ap

ap−q+2 ap−q+3 · · · ap+1

... ... . . . ...
ap ap+1 · · · ap+q−1

∣∣∣∣∣∣∣∣∣∣
(4.8)

is not equal to 0; or, in other wordsDp,q(f, ζ) ̸= 0. In the previous determinant we
set ak = 0 for every k < 0. In addition, ifDp,q(f, ζ) ̸= 0 we also write f ∈ Dp,q(ζ). In
this particular case, the (p, q) - Padé approximant of f (with center ζ ∈ C) is given by
the following explicit formula

[f ; p/q]ζ(z) =
A(f, ζ)(z)

B(f, ζ)(z)
(4.9)

where

A(f, ζ)(z) = det

∣∣∣∣∣∣∣∣∣∣
(z − ζ)qSp−q(f, ζ)(z) (z − ζ)q−1Sp−q+1(f, ζ)(z) · · · Sp(f, ζ)(z)

ap−q+1 ap−q+2 · · · ap+1

... ... . . . ...
ap ap+1 · · · ap+q

∣∣∣∣∣∣∣∣∣∣
(4.10)

and

B(f, ζ)(z) = det

∣∣∣∣∣∣∣∣∣∣
(z − ζ)q (z − ζ)q−1 · · · 1

ap−q+1 ap−q+2 · · · ap+1

... ... . . . ...
ap ap+1 · · · ap+q

∣∣∣∣∣∣∣∣∣∣
(4.11)

where clearly

Sk(f, ζ)(z) =


k∑

j=0

aj(z − ζ)j, if k ≥ 0

0, if k < 0

(4.12)

Relations (4.9), (4.10) and (4.11) are known as Jacobi formulas. Notice that if f ∈
Dp,q(ζ), apart from the explicit formula for the polynomialsA(f, ζ)(z) andB(f, ζ)(z),
these functions do not have any common zeros in C.

It may happenDp,q(f, ζ) = 0 and still the Padé approximant [f ; p/q]ζ(z)may exist.
In that case it holds degA(z) < p and degB(z) < q and there aremore than one possible
representations

[f ; p/q]ζ(z) =
Ã(z)

B̃(z)
(4.13)
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with degÃ(z) ≤ p and degB̃(z) ≤ q and B̃(ζ) = 1. For instance, consider the
following representation.

[f ; p/q]ζ(z) =
A(z)

B(z)
=
A(z)[(z − ζ) + 1]

B(z)[(z − ζ) + 1]
. (4.14)

Such an example comes for every rational function

A(z)

B(z)
(4.15)

with degA(z) < p and degB(z) < q andB(0) = 1 for ζ = 0. Then as f we take the
Taylor development at 0 of the function

A(z)

B(z)
=

+∞∑
n=0

anz
n. (4.16)

An explicit example is the function

1

1 + z
=

+∞∑
n=0

(−1)nzn (4.17)

for p > 0 and q > 1. Then it holds

[f ; p/q]ζ(z) =
(1 + z)

(1 + z)2
=

1

1 + z
(4.18)

where both representations are acceptable. We will also make use of the following
proposition.

Proposition 4.3. ([3]) We consider the rational function

f(z) =
A(z)

B(z)
(4.19)

and for the polynomials A(z) and B(z) let degA(z) = p0 and degB(z) = q0. Also,
suppose that the polynomialsA(z) andB(z) do not have any common zero inC. Then
for every ζ ∈ C such that B(ζ) ̸= 0 it holds

(i) f ∈ Dp0,q0(ζ) (4.20)

(ii) f ∈ Dp,q0(ζ) for every p ≥ p0 (4.21)

(iii) f ∈ Dp0,q(ζ) for every q ≥ q0 (4.22)

Moreover, for every pair (p, q) ∈ N× N with p > p0 and q > q0 it holds

f ̸∈ Dp,q(ζ). (4.23)

In all cases above it holds f(z) ≡ [f ; p/q]ζ(z).
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In some of the following results, we make use of the chordal metric χ, which is a
metric defined on C ∪ {∞}. The metric χ is given by the following relations

χ(z, w) =



|z − w|√
1 + |z|2 ·

√
1 + |w|2

, if z, w ∈ C

1√
1 + |z|2

, if z ∈ C and w = ∞

0, if z = w

(4.24)

The reader could easily verify the following properties of the chordal metric

(i) χ(z, w) = χ
(1
z
,
1

w

)
for every z, w ∈ C ∪ {∞} (4.25)

(ii) χ(z, w) ≤ |z − w| for every z, w ∈ C (4.26)

(iii)
(
C ∪ {∞}, χ

)
is a complete metric space. (4.27)

Relation (4.26) implies that if a sequence of functions {fn}n∈N : X → C converges
uniformly to a function f : X → C with respect to the Euclidean metric | · |, then so
does it with respect to the chordal metric χ. In addition, it is known that the metrics | · |
and χ are uniformly equivalent on every compact subset of the complex plane.

We will also make use of the following known topological lemmas.

Lemma 4.4 (Existence of absorbing family, [29], [33], [36]). Let Ω be a domain in C.
Then there exists a sequence {Km}m≥1 of compact subsets of C \ Ω with connected
complements, such that for every compact setK ⊆ C \Ω with connected complement,
there exists an indexm ≥ 1 satisfyingK ⊆ Km.

Lemma 4.5 (Existence of exhausting family, [38]). LetΩ be an open set inC. Then there
exists a sequence {Lk}k≥1 of compact subsets of Ω such that

(i) Lk ⊆ Lo
k+1 for every k ≥ 1. It follows that the sequence {Lk}k≥1 is increasing.

(ii) For every compact set L ⊆ Ω there exists an index k ≥ 1 such that L ⊆ Lk.

(iii) Every connected component of C̃\Lk contains at least one connected component
of C̃ \ Ω (where C̃ = C ∪ {∞}).

Let Ω ⊆ C be an open set and {Lk}k≥1 be an exhausting family of subsets of Ω that
satisfies the properties of Lemma 4.5. We consider the following class of functions

H(Ω) = {f : Ω → C : f is holomorphic in Ω} (4.28)

endowed with the family of seminorms

ρk(f, g) = sup
z∈Lk

|f(z)− g(z)| (4.29)
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for every k ≥ 1 and for every f, g ∈ H(Ω). It is known that if

ρ(f, g) =
+∞∑
k=1

1

2k
· ρk(f, g)

1 + ρk(f, g)
(4.30)

for every f, g ∈ H(Ω), then ρ is a metric in H(Ω) and
(
H(Ω), ρ

)
is a complete

metric space; in fact, it is a Fréchet space. Thus, Baire’s theorem is at our disposal.
Generally speaking, our results concern two types of universal Padé approximants.

Definition 4.6. ([12], [14]) [Universal Padé approximants of Type I]
Let (pn)n∈N, (qn)n∈N ⊆ N with pn → +∞, Ω ⊆ C be a simply connected domain

and ζ ∈ Ω be a fixed point. A holomorphic function f ∈ H(Ω) with Taylor expansion

f(z) =
+∞∑
n=0

f (n)(ζ)

n!
(z − ζ)n (4.31)

at ζ ∈ Ω has universal Padé approximants of Type I if for every compact set K ⊆
C \ Ω with connected complement and for every function h ∈ A(K), there exists a
subsequence (pkn)n∈N of the sequence (pn)n∈N satisfying the following.

(i) f ∈ Dpkn ,qkn
(ζ) for every n ∈ N.

(ii) sup
z∈K

|[f ; pkn/qkn ]ζ(z)− h(z)| → 0 as n→ +∞.

(iii) sup
z∈J

|[f ; pkn/qkn ]ζ(z)− f(z)| → 0 as n→ +∞ for every compact set J ⊆ Ω.

The set of universal Padé approximants of Type I is Gδ - dense in H(Ω), where the
space H(Ω) is endowed with the topology of uniform convergence on compacta. If
qn = 0, then this class of functions coincides with the class of universal Taylor series.

Definition 4.7. ([35]) [Universal Padé approximants of Type II]
Let (pn)n∈N, (qn)n∈N ⊆ N with pn, qn → +∞, Ω ⊆ C be a domain and ζ ∈ Ω be a

fixed point. A holomorphic function f ∈ H(Ω) with Taylor expansion

f(z) =
+∞∑
n=0

f (n)(ζ)

n!
(z − ζ)n (4.32)

at ζ ∈ Ω has universal Padé approximants of Type II if for every compact setK ⊆ C\
Ω and for every rational function h, there exist two subsequence (pkn)n∈N and (qkn)n∈N
of the sequences (pn)n∈N and (qn)n∈N respectively satisfying the following.

(i) f ∈ Dpkn ,qkn
(ζ) for every n ∈ N.

(ii) sup
z∈K

χ([f ; pkn/qkn ]ζ(z), h(z)) → 0 as n → +∞. The metric χ is the well known

distance defined on C ∪ {∞}.

(iii) sup
z∈J

|[f ; pkn/qkn ]ζ(z)− f(z)| → 0 as n→ +∞ for every compact set J ⊆ Ω.

The set of universal Padé approximants of Type II is Gδ - dense inH(Ω), where the
spaceH(Ω) is endowed with the topology of uniform convergence on compacta.
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4.2 Results of approximation for Universal Padé approximants of
Type I

In this section we present several results of simultaneous approximation concerning
Universal Padé approximants of Type I. Our results are generic in the space of holo-
morphic functions defined on an open set Ω ⊆ C; that is, the spaceH(Ω).

Theorem 4.8. ([27]) LetΩ ⊆ C be a simply connected domain andL ⊆ Ω be a compact
set. We consider a sequence (pn)n≥1 ⊆ N with pn → +∞. Now, for every n ≥ 1 let
q
(n)
1 , q

(n)
2 , · · · , q(n)N(n) ∈ N, where N(n) is another natural number. Then, there exists a

function f ∈ H(Ω) satisfying the following.
For every compact setK ⊆ C\Ωwith connected complement and for every function

h ∈ A(K), there exists a subsequence (pkn)n≥1 of the sequence (pn)n≥1 such that

(1) f ∈ D
pkn ,q

(kn)
j

(ζ)

for every ζ ∈ L, for every n ≥ 1 and for every j ∈ {1, · · · , N(kn)}.

(2) max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈K

|[f ; pkn/q
(kn)
j ]ζ(z)− h(z)| → 0

as n→ +∞.

(3) For every compact set J ⊆ Ω, it holds
max

j=1,··· ,N(kn)
sup
ζ∈L

sup
z∈J

|[f ; pkn/q
(kn)
j ]ζ(z)− f(z)| → 0

as n→ +∞.

Moreover, the set of all functions f satisfying the above properties is Gδ - dense in
H(Ω).

Proof. Let {fi}i≥1 be an enumeration of polynomials with coefficients in Q + iQ.
We fix a sequence {Km}m≥1 of compact subsets of C \ Ω satisfying Lemma 4.4 and a
sequence {Lk}k≥1 of compact subsets of Ω satisfying Lemma 4.5.

Now, for every i, s, n, k,m ≥ 1 and for every j ∈ {1, · · ·N(n)} we consider the
following sets

A(i, s,m, n, j) =
{
f ∈ H(Ω) : f ∈ D

pn,q
(n)
j
(ζ) for every ζ ∈ L

and sup
ζ∈L

sup
z∈Km

|[f ; pn/q(n)j ]ζ(z)− fi(z)| <
1

s

}
(4.33)

A(i, s,m, n) =
{
f ∈ H(Ω) : f ∈ D

pn,q
(n)
j
(ζ) for every ζ ∈ L and for every

j = 1, 2, · · · , N(n) and also max
j=1,··· ,N(n)

sup
ζ∈L

sup
z∈Km

|[f ; pn/q(n)j ]ζ(z)− fi(z)| <
1

s

}
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≡
N(n)∩
j=1

A(i, s,m, n, j) (4.34)

B(s, k, n, j) =
{
f ∈ H(Ω) : f ∈ D

pn,q
(n)
j
(ζ) for every ζ ∈ L

and sup
ζ∈L

sup
z∈Lk

|[f ; pn/q(n)j ]ζ(z)− f(z)| < 1

s

}
(4.35)

B(s, k, n) =
{
f ∈ H(Ω) : f ∈ D

pn,q
(n)
j
(ζ) for every ζ ∈ L and for every

j = 1, 2, · · · , N(n) and also max
j=1,··· ,N(n)

sup
ζ∈L

sup
z∈Lk

|[f ; pn/q(n)j ]ζ(z)− f(z)| < 1

s

}

≡
N(n)∩
j=1

B(s, k, n, j) (4.36)

One can verify (mainly by using Mergelyan’s theorem) that if U is the set of all func-
tions satisfying the properties of Theorem 4.8, then it holds

U =
∩

i,s,k,m≥1

( ∪
n≥1

(
A(i, s,m, n)∩B(s, k, n)

))

=
∩

i,s,k,m≥1

( ∪
n≥1

([N(n)∩
j=1

A(i, s,m, n, j)
]∩ [N(n)∩

j=1

B(s, k, n, j)
]))

. (4.37)

SinceH(Ω) is a complete metric space, in order to use Baire’s theorem, we will start
with proving the following.

Claim4.9. For every i, s, n, k,m ≥ 1 and for every j ∈ {1, · · ·N(n)} the setsB(s, k, n, j)
and A(i, s,m, n, j) are open inH(Ω).

Proof of Claim 4.9 The sets A(i, s,m, n, j) have been proven to be open in [29] for
q
(n)
j = 0. The sets B(s, k, n, j) have been proven to be open in [20] for q(n)j ≥ 1 and in

[29] for q(n)j = 0. We will now prove that each A(i, s,m, n, j) is an open set in H(Ω)

for q(n)j ≥ 1 (see also [24]).
We fix the parameters i, s,m, n ≥ 1 and j ∈ {1, · · · , N(n)} and we consider a

function f ∈ A(i, s,m, n, j). We want to select an ε > 0 such that if g ∈ H(Ω) with
ρ(f, g) < ε then it holds g ∈ A(i, s,m, n, j). Since f ∈ D

pn,q
(n)
j
(ζ) for every ζ ∈ L, the

Hankel determinant D
pn,q

(n)
j
(f, ζ) is not equal to zero and that holds for every ζ ∈ L.

The previous determinant varies continuously on the parameter ζ ∈ L and therefore,
since L is a compact set there exists a δ > 0 such that

|D
pn,q

(n)
j
(f, ζ)| > δ

2
(4.38)

32



Chapter 4 Padé approximation

for every ζ ∈ L. Since ρ(f, g) < ε we might assume that the first p + q + 1 Taylor
coefficients of g are uniformly closed enough one by one to the corresponding Taylor
coefficients of f , provided that ε > 0 is small enough. This follows easily by using
Cauchy estimates. The function |D

pn,q
(n)
j
(g, ζ)|, ζ ∈ L is continuous on L and thus we

obtain
|D

pn,q
(n)
j
(g, ζ)| > δ

2
(4.39)

Relation (4.39) clearly implies that g ∈ D
pn,q

(n)
j

for every ζ in the compact set L. It
remains only to verify that it holds

sup
ζ∈L

sup
z∈Km

|[g; pn/q(n)j ]ζ(z)− fi(z)| <
1

s
. (4.40)

Indeed, by the triangle inequality it holds

sup
ζ∈L

sup
z∈Km

|[g; pn/q(n)j ]ζ(z)− fi(z)| ≤ sup
ζ∈L

sup
z∈Km

|[g; pn/q(n)j ]ζ(z)− [f ; pn/q
(n)
j ]ζ(z)|

+ sup
ζ∈L

sup
z∈Km

|[f ; pn/q(n)j ]ζ(z)− fi(z)| (4.41)

Let us denote by

[f ; pn/q
(n)
j ]ζ(z) =

A(f, ζ)(z)

B(f, ζ)(z)
(4.42)

and
[g; pn/q

(n)
j ]ζ(z) =

A(g, ζ)(z)

B(g, ζ)(z)
(4.43)

the Padé approximants of f and g (at ζ ∈ L) respectively. We know that the polyno-
mialsA(f, ζ)(z), B(f, ζ)(z), A(g, ζ)(z) andB(g, ζ)(z) are given by the Jacobi formulas
and therefore, their coefficients vary continuously with respect to the parameter ζ .

Now, we have
sup
ζ∈L

sup
z∈Km

|[f ; pn/q(n)j ]ζ(z)− fi(z)| <
1

s
(4.44)

and thus, since the polynomialsA(f, ζ)(z) andB(f, ζ)(z) do not have any common
zeros in C, it holds B(f, ζ)(z) ̸= 0 for every ζ ∈ L and for every z ∈ Km. Therefore,
by continuity, there exists a δ′ > 0 such that

|B(f, ζ)(z)| > δ′ (4.45)

for every ζ ∈ L and for every z ∈ Km (the set L × Km is a compact one). Since
the first p+ q+1 Taylor coefficients of g are uniformly closed enough one by one to the
corresponding Taylor coefficients of f for ε > 0 small enough, we obtain

|B(g, ζ)(z)| > δ′

2
(4.46)

The triangle inequality implies that

|[g; pn/q(n)j ]ζ(z)− [f ; pn/q
(n)
j ]ζ(z)| =

∣∣∣A(g, ζ)(z)
B(g, ζ)(z)

− A(f, ζ)(z)

B(f, ζ)(z)

∣∣∣
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≤
∣∣∣A(g, ζ)(z)B(f, ζ)(z)−B(g, ζ)(z)A(f, ζ)(z)

B(f, ζ)(z)B(g, ζ)(z)

∣∣∣
≤

( 2

(δ′)2

)
|A(g, ζ)(z)B(f, ζ)(z)−B(g, ζ)(z)A(f, ζ)(z)|

≤
( 2

(δ′)2

)
|A(f, ζ)(z)| · |B(f, ζ)(z)−B(g, ζ)(z)|

+
( 2

(δ′)2

)
|B(f, ζ)(z)| · |A(f, ζ)(z)− A(g, ζ)(z)| (4.47)

Hence, if ε > 0 is small enough, we obtain

sup
ζ∈L

sup
z∈Km

|[g; pn/q(n)j ]ζ(z)− [f ; pn/q
(n)
j ]ζ(z)| <

1

s
− sup

ζ∈L
sup
z∈Km

|[f ; pn/q(n)j ]ζ(z)− fi(z)|

(4.48)
By combining Relations (4.44) and (4.48), we conclude that it holds

sup
ζ∈L

sup
z∈Km

|[g; pn/q(n)j ]ζ(z)− fi(z)| <
1

s
(4.49)

which in turn implies that g ∈ A(i, s,m, n, j). This part of the proof is complete.
■■

Claim 4.10. For every i, s, k,m ≥ 1 the set

U(i, s, k,m) =
∪
n≥1

(
A(i, s,m, n)∩B(s, k, n)

)
=

∪
n≥1

([N(n)∩
j=1

A(i, s,m, n, j)
]∩ [N(n)∩

j=1

B(s, k, n, j)
])

(4.50)

is dense inH(Ω).

Proof of Claim 4.10 We fix the parameters i, s, k,m ≥ 1 and we want to prove that
the set U(i, s, k,m) is dense in H(Ω). Let g ∈ H(Ω), L′ ⊆ Ω be a compact set and
ε > 0. Our aim is to find a function u ∈ U(i, s, k,m) such that

sup
z∈L′

|u(z)− g(z)| < ε (4.51)

There is no problem if we assume that ε < 1
s
. According to Lemma 4.5, we are able

to find an index n0 ≥ 1 satisfying L ∪ L′ ∪ Lk ⊆ Ln0 . Since Ln0 and Km are disjoint
compact sets with connected complements, the setLn0 ∪Km is also a compact one with
connected complement. Consider now the following function

w(z) =

{
fi(z) if z ∈ Km

g(z) if z ∈ Ln0 .
(4.52)

The function w is well defined (because Ln0 ∩ Km = ∅) and it also holds w ∈
A(Ln0 ∪Km). We apply Mergelyan’s theorem and thus we find a polynomial p such that

sup
Ln0∪Km

|w(z)− p(z)| < ε

2
. (4.53)
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Our assumption that pn → +∞ allows us to find an index pkn ≥ 1 such that pkn >
degp(z). Let u(z) = p(z) + dzpkn , where d ∈ C \ {0} and

|d| < ε

2
· 1

sup
z∈Ln0∪Km

|zpkn |+ 1
. (4.54)

It is immediate that the function u is a polynomial with degu(z) = pkn . We also
notice that it holds

sup
z∈Ln0∪Km

|u(z)− w(z)| < ε. (4.55)

In order to complete the proof of Claim 4.10 we have to verify that u ∈ U(i, s, k,m).

(i) u ∈ A(i, s,m, kn, j) for every j = 1, · · · , N(kn). Since u is a polynomial with
degu(z) = pkn we have that for every ζ ∈ L it holds u ∈ Dpkn ,0

(ζ). It follows that
u ∈ D

pkn ,q
(kn)
j

(ζ) for every j = 1, 2, · · · , N(kn). We also have

max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈Km

|[u; pkn/q
(kn)
j ]ζ(z)− fi(z)| = sup

ζ∈L
sup
z∈Km

|[u(z)− fi(z)| <
1

s
(4.56)

because [u; pkn/q
(kn)
j ]ζ(z) = u(z) for every ζ ∈ L and for every j = 1, · · · , N(kn),

according to Proposition 4.3.

(ii) u ∈ B(s, k, kn, j) for every j = 1, · · · , N(kn). We only have to verify that it
holds

max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈Lk

|[u; pkn/q
(kn)
j ]ζ(z)− u(z)| = 0 <

1

s
(4.57)

which is immediate, since [u; pkn/q
(kn)
j ]ζ(z) = u(z), due to the definition of the

polynomial u.

Therefore

u ∈
[N(kn)∩

j=1

A(i, s,m, n, j)
]∩ [N(kn)∩

j=1

B(s, k, n, j)
]

(4.58)

or, equivalently u ∈ U(i, s, k,m). This part of the proof is complete.
■■

SinceH(Ω) is a complete metric space, we apply Baire’s theorem and that completes
the proof.

■
We now present a consequence of Theorem 4.8.

Theorem4.11. ([27]) LetΩ ⊆ C be a simply connected domain. We consider a sequence
(pn)n≥1 ⊆ Nwith pn → +∞. Now, for every n ≥ 1 let q(n)1 , q

(n)
2 , · · · , q(n)N(n) ∈ N, where

N(n) is another natural number. Then there exists a function f ∈ H(Ω) satisfying the
following.

For every compact setK ⊆ C\Ωwith connected complement and for every function
h ∈ A(K) there exists a subsequence (pkn)n≥1 of the sequence (pn)n≥1 such that
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(1) For every compact set L ⊆ Ω, there exists a n(L) ≥ 1 such that f ∈ D
pkn ,q

(kn)
j

(ζ)

for every ζ ∈ L, for every n ≥ n(L) (where n(L) is a natural number depending
on L) and for every j ∈ {1, · · · , N(kn)}.

(2) max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈K

|[f ; pkn/q
(kn)
j ]ζ(z)− h(z)| → 0

as n→ +∞, for every compact set L ⊆ Ω.

(3) max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈L

|[f ; pkn/q
(kn)
j ]ζ(z)− f(z)| → 0

as n→ +∞, for every compact set L ⊆ Ω.

Moreover, the set of all functions f satisfying the above properties is Gδ - dense in
H(Ω).

Proof. Let C1 be the set of all functions satisfying Theorem 4.11. We apply Theorem
4.8 for L = Lk (and that for every k ≥ 1) and thus we obtain a Gδ - dense class of
functions inH(Ω); the class C1

k . The reader can verify that it holds

C1 =
∩
k≥1

C1
k . (4.59)

The result follows now from Baire’s theorem.
■

We now present two results similar to Theorems 4.8 and 4.11 respectively where the
roles of p and q have been interchanged.

Theorem4.12. ([27]) LetΩ ⊆ Cbe a simply connected domain andL ⊆ Ω be a compact
set. We consider an arbitrary sequence (qn)n≥1 ⊆ N (may be bounded or unbounded).
Now, for every n ≥ 1 let p(n)1 , p

(n)
2 , · · · , p(n)N(n) ∈ N, where N(n) is another natural

number, such that

min
j∈{1,··· ,N(n)}

{p(n)1 , p
(n)
2 , · · · , p(n)N(n)} → +∞ (4.60)

as n→ +∞. Then there exists a function f ∈ H(Ω) satisfying the following.
For every compact setK ⊆ C\Ωwith connected complement and for every function

h ∈ A(K) there exists a subsequence (qkn)n≥1 of the sequence (qn)n≥1 such that

(1) f ∈ D
p
(kn)
j ,qkn

(ζ)

for every ζ ∈ L, for every n ∈ N and for every j ∈ {1, · · · , N(kn)}.

(2) max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈K

|[f ; p(kn)j /qkn ]ζ(z)− h(z)| → 0

as n→ +∞.
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(3) For every compact set J ⊆ Ω it holds
max

j=1,··· ,N(kn)
sup
ζ∈L

sup
z∈J

|[f ; p(kn)j /qkn ]ζ(z)− f(z)| → 0

as n→ +∞.

Moreover, the set of all functions f satisfying the above properties is Gδ - dense in
H(Ω).

Proof. Let {fi}i≥1 be an enumeration of polynomials with coefficients in Q+ iQ.
Now, for every i, s, n, k,m ≥ 1 and for every j ∈ {1, · · ·N(n)} we consider the

following sets

A(i, s,m, n, j) =
{
f ∈ H(Ω) : f ∈ D

p
(n)
j ,qn

(ζ) for every ζ ∈ L

and sup
ζ∈L

sup
z∈Km

|[f ; p(n)j /qn]ζ(z)− fi(z)| <
1

s

}
(4.61)

A(i, s,m, n) =
{
f ∈ H(Ω) : f ∈ D

p
(n)
j ,qn

(ζ) for every ζ ∈ L and for every

j = 1, 2, · · · , N(n) and also max
j=1,··· ,N(n)

sup
ζ∈L

sup
z∈Km

|[f ; p(n)j /qn]ζ(z)− fi(z)| <
1

s

}
≡

N(n)∩
j=1

A(i, s,m, n, j) (4.62)

B(s, k, n, j) =
{
f ∈ H(Ω) : f ∈ D

pn,q
(n)
j
(ζ) for every ζ ∈ L

and sup
ζ∈L

sup
z∈Lk

|[f ; p(n)j /qn]ζ(z)− f(z)| < 1

s

}
(4.63)

B(s, k, n) =
{
f ∈ H(Ω) : f ∈ D

p
(n)
j ,qn

(ζ) for every ζ ∈ L and for every

j = 1, 2, · · · , N(n) and also max
j=1,··· ,N(n)

sup
ζ∈L

sup
z∈Lk

|[f ; p(n)j /qn]ζ(z)− f(z)| < 1

s

}
≡

N(n)∩
j=1

B(s, k, n, j) (4.64)

One can verify (mainly by using Mergelyan’s theorem) that if S is the class of all
functions satisfying the properties of Theorem 4.12, then it holds

S =
∩

i,s,k,m≥1

( ∪
n≥1

(
A(i, s,m, n)∩B(s, k, n)

))

=
∩

i,s,k,m≥1

( ∪
n≥1

([N(n)∩
j=1

A(i, s,m, n, j)
]∩ [N(n)∩

j=1

B(s, k, n, j)
]))

. (4.65)

SinceH(Ω) is a complete metric space, in order to use Baire’s theorem, it suffices to
prove the following.
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Claim4.13. For every i, s, n, k,m ≥ 1 and for every j ∈ {1, · · ·N(n)} the setsB(s, k, n, j)
and A(i, s,m, n, j) are open inH(Ω).

For the proof of Claim 4.13 we refer to the proof of Claim 4.9.

Claim 4.14. For every i, s, k,m ≥ 1 the set

S(i, s, k,m) =
∪
n≥1

(
A(i, s,m, n)∩B(s, k, n)

)
=

∪
n≥1

([N(n)∩
j=1

A(i, s,m, n, j)
]∩ [N(n)∩

j=1

B(s, k, n, j)
])

(4.66)

is dense inH(Ω).

Proof of Claim 4.14 We fix the parameters i, s, k,m ≥ 1 and we want to prove that
the set S(i, s, k,m) is a dense subset ofH(Ω). Let g ∈ H(Ω), L′ ⊆ Ω be a compact set
and ε > 0. Our aim is to find a function u ∈ S(i, s, k,m) such that

sup
z∈L′

|u(z)− g(z)| < ε. (4.67)

There is no problem if we assume that it holds ε < 1
s
. According to Lemma 4.5, we

are able to find an index n0 ≥ 1 satisfying L ∪ L′ ∪ Lk ⊆ Ln0 .
Since Ln0 and Km are disjoint compact sets with connected complements, the set

Ln0 ∪Km is also a compact one with connected complement.
Consider now the following function

w(z) =

{
fi(z), if z ∈ Km

g(z), if z ∈ Ln0 .
(4.68)

The function w is well defined (because Ln0 ∩ Km = ∅) and also it holds w ∈
A(Ln0 ∪Km). We apply Mergelyan’s theorem and we find a polynomial p such that

sup
Ln0∪Km

|w(z)− p(z)| < ε

2
. (4.69)

Since
min

j∈{1,··· ,N(n)}
{p(n)1 , p

(n)
2 , · · · , p(n)N(n)} → +∞ (4.70)

as n→ +∞, there exists an index kn1 ≥ 1 such that

min
j∈{1,··· ,N(kn1 )}

{p(kn1)1 , p
(kn1 )
2 , · · · , p(kn1 )N(kn1 )

} > degp(z). (4.71)

Consider now the rational function

u(z) =
p(z)

1 + dzqkn1
(4.72)
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where d ∈ C \ {0} and 0 < |d| is small enough. We notice that it holds

sup
Ln0∪Km

|p(z)− u(z)| = sup
Ln0∪Km

∣∣∣p(z)− p(z)

1 + dzqkn1

∣∣∣
= sup

Ln0∪Km

∣∣∣dzqkn1 p(z)
1 + dzqkn1

∣∣∣
<
ε

2
(4.73)

provided that 0 < |d| is small enough. It follows that

sup
Ln0∪Km

|w(z)− u(z)| < ε. (4.74)

In order to complete the proof we have to verify that it holds u ∈ S(i, s, k,m).

(1) u ∈ D
p
(kn1 )

j ,qkn1

(ζ) for every ζ ∈ Ln0 ∪ K and for every j ∈ {1, · · · , N(kn1)},
according to Proposition 4.3. In particular, this holds for every ζ ∈ L.

(2) [u; p
(kn1 )

j /qkn1 ]ζ(z) = u(z) for every ζ ∈ Ln0 ∪K , for every z ∈ K and for every
j ∈ {1, · · · , N(kn1)}, according to Proposition 4.3. In particular, this holds for
every ζ ∈ L.

Therefore

u ∈
[N(kn)∩

j=1

A(i, s,m, n, j)
]∩ [N(kn)∩

j=1

B(s, k, n, j)
]

(4.75)

or, equivalently u ∈ S(i, s, k,m). This part of the proof is complete.
■■

SinceH(Ω) is a complete metric space, we apply Baire’s theorem and that completes
the proof.

■
We now present a consequence of Theorem 4.12.

Theorem 4.15. ([27]) Let Ω ⊆ C be a simply connected domain. We consider an arbi-
trary sequence (qn)n≥1 ⊆ N (may be bounded or unbounded). Now, for every n ∈ N
let p(n)1 , p

(n)
2 , · · · , p(n)N(n) ∈ N, whereN(n) is another natural number, such that

min
j∈{1,··· ,N(n)}

{p(n)1 , p
(n)
2 , · · · , p(n)N(n)} → +∞ (4.76)

as n→ +∞. Then there exists a function f ∈ H(Ω) satisfying the following.
For every compact setK ⊆ C\Ωwith connected complement and for every function

h ∈ A(K), there exists a subsequence (qkn)n≥1 of the sequence (qn)n≥1 such that

(1) For every compact set L ⊆ Ω, there exists a n(L) ∈ N such that f ∈ D
p
(kn)
j ,qkn

(ζ)

for every n ≥ n(L), for every j ∈ {1, · · · , N(kn)} and for every ζ ∈ L.
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(2) max
j=1,··· ,N(kn)

sup
z∈K

|[f ; p(kn)j /qkn ]ζ(z)− h(z)| → 0

as n→ +∞.

(3) For every compact set L ⊆ Ω it holds
max

j=1,··· ,N(kn)
sup
z∈L

|[f ; p(kn)j /qkn ]ζ(z)− f(z)| → 0

as n→ +∞.

Moreover, the set of all functions f satisfying the above properties is Gδ - dense in
H(Ω).

Proof. Let C2 be the set of all functions satisfying Theorem 4.15. We apply Theorem
4.12 for L = Lk (and that for every k ≥ 1) and thus we obtain a Gδ - dense class of
functions inH(Ω); the class C2

k . The reader can verify that it holds

C2 =
∩
k≥1

C2
k . (4.77)

The result follows now from Baire’s theorem.
■

4.3 Results of approximation for Universal Padé approximants of
Type II

In this section we present several results of simultaneous approximation concerning
Universal Padé approximants of Type II. Our results are generic in the space of holo-
morphic functions defined on an open set Ω ⊆ C; that is, the spaceH(Ω).

Theorem 4.16. ([27]) Let Ω ⊆ C be an open set and L,L′ ⊆ Ω two compact sets. Let
also K ⊆ C \ Ω be another compact set. We consider a sequence (pn)n≥1 ⊆ N with
pn → +∞. Now, for every n ≥ 1 let q(n)1 , q

(n)
2 , · · · , q(n)N(n) ∈ N, where N(n) is another

natural number. Suppose also that it holds

min{q(n)1 , q
(n)
2 , · · · , q(n)N(n)} → +∞. (4.78)

Then there exists a function f ∈ H(Ω) such that for every rational function h, there
exists a subsequence (pkn)n≥1 of the sequence (pn)n≥1 satisfying the following.

(1) f ∈ D
pkn ,q

(kn)
j

(ζ)

for every ζ ∈ L, for every n ∈ N and for every j ∈ {1, · · · , N(kn)}.

(2) max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈K

χ([f ; pkn/q
(kn)
j ]ζ(z), h(z)) → 0

as n→ +∞.
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(3) max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈L′

|[f ; pkn/q
(kn)
j ]ζ(z)− f(z)| → 0

as n→ +∞.

Moreover, the set of all functions f satisfying the above properties is Gδ - dense in
H(Ω).

Proof. Let {fi}i≥1 be an enumeration of all rational functions with the coefficients
of the numerator and denominator in Q+ iQ. There is also no problem to assume that
for every i ≥ 1, the numerator and the denominator do not have any common zeros in
C .

Now, for every i, s, n ≥ 1 and for every j ∈ {1, · · ·N(n)}we consider the following
sets

A(j, n, s) =
{
f ∈ H(Ω) : f ∈ D

pn,q
(n)
j
(ζ) and

sup
ζ∈L

sup
z∈L′

|[f ; pn/q(n)j ]ζ(z)− f(z)| < 1

s

}
(4.79)

A(n, s) =
{
f ∈ H(Ω) : f ∈ D

pn,q
(n)
j
(ζ) for every j = 1, 2, · · · , N(n) and

max
j=1,··· ,N(n)

sup
ζ∈L

sup
z∈L′

|[f ; pn/q(n)j ]ζ(z)− f(z)| < 1

s

}
≡

N(n)∩
j=1

A(j, n, s)

B(i, j, n, s) =
{
f ∈ H(Ω) : f ∈ D

pn,q
(n)
j
(ζ) and

sup
ζ∈L

sup
z∈K

χ([f ; pn/q
(n)
j ]ζ(z), fi(z)) <

1

s

}
(4.80)

B(i, n, s) =
{
f ∈ H(Ω) : f ∈ D

pn,q
(n)
j
(ζ) for every j = 1, 2, · · · , N(n) and

max
j=1,··· ,N(n)

sup
ζ∈L

sup
z∈K

χ([f ; pn/q
(n)
j ]ζ(z), fi(z)) <

1

s

}
≡

N(n)∩
j=1

B(i, j, n, s) (4.81)

One can verify that ifU is the set of all functions satisfying the properties ofTheorem
4.16, then it holds

U =
∩
i,s≥1

( ∪
n≥1

A(n, s)∩B(i, n, s)
)

=
∩
i,s≥1

( ∪
n≥1

[N(n)∩
j=1

A(j, n, s)
]
∩

[N(n)∩
j=1

B(i, j, n, s)
])
. (4.82)
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SinceH(Ω) is a complete metric space, in order to use Baire’s theorem, it suffices to
prove the following.

Claim 4.17. The sets A(j, n, s) and B(i, j, n, s) are open for every parameter.

Proof of Claim 4.17The setsA(j, n, s) andB(i, j, n, s) have been proven to be open
for every parameter in [35]. Thus, the setsA(n, s) andB(i, n, s) are also open, as a finite
intersection of open sets. It follows that the class U is aGδ subset ofH(Ω).

■■

Claim 4.18. The set

U(i, s) =
∪
n≥1

[N(n)∩
j=1

A(j, n, s)
]
∩

[N(n)∩
j=1

B(i, j, n, s)
]

(4.83)

is dense for every i, s ≥ 1.

Proof of Claim 4.18 We fix the parameters i, s ≥ 1. Let L′′ ⊆ Ω be a compact
set, ϕ ∈ H(Ω) and ε > 0. We may assume that ε < 1

s
. Our aim is to find a function

g ∈ U(i, s) such that
sup
z∈L′′

|ϕ(z)− g(z)| < ε. (4.84)

Without loss of generality, we suppose that L ∪ L′ ⊆ (L′′)o and also that every
connected component ofC∪{∞}\L′′ contains a connected component ofC∪{∞}\Ω.
For instance, that can be achieved by using Lemma 4.5.

Consider now the following function

w(z) =

{
fi(z) if z ∈ K

ϕ(z) if z ∈ L′′.
(4.85)

The set of poles of fi on K is finite; let µ denote the sum of the principal parts of
fi on these poles. Thus, the function ω − µ is holomorphic in an open set containing
L′′ ∪ K . We apply Runge’s theorem to approximate the function ω − µ uniformly on
L′′ ∪K with respect to the Euclidean metric by a sequence of rational functions

Ãn(z)

B̃n(z)
. (4.86)

Hence, there exists a natural number n0 ≥ 1 satisfying the following

sup
z∈L′′∪K

∣∣∣(ω(z)− µ(z))− Ãn(z)

B̃n(z)

∣∣∣ < ε

2
for every n ≥ n0. (4.87)

In particular, B̃n(z) ̸= 0 for every z ∈ L′′ ∪K and for every n ≥ n0. There is also
no problem to assume that the polynomials Ãn(z) and B̃n(z) have no common zeros in
C. On the other hand, the sequence of functions

µ(z) +
Ãn(z)

B̃n(z)
=
An(z)

Bn(z)
(4.88)
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defined for n ≥ n0, satisfies

sup
z∈K

χ
(
fi(z), µ(z) +

Ãn(z)

B̃n(z)

)
<
ε

2
(4.89)

and

sup
z∈L′′

∣∣∣ϕ(z)− µ(z)− Ãn(z)

B̃n(z)

∣∣∣ < ε

2
(4.90)

for everyn ≥ n0. We notice that the polynomialsAn(z) andBn(z) have no common
zeros in C, since

µ(z) +
Ãn(z)

B̃n(z)
=
µ(z) + Ãn(z)

B̃n(z)
=
An(z)

Bn(z)
(4.91)

and also that it holdsBn(z) ̸= 0 for every z ∈ L′′ and for every n ≥ n0, because the
polynomials B̃n(z) satisfy the same property for every n ≥ n0.

Since pn → +∞ andmin{q(n)1 , q
(n)
2 , · · · , q(n)N(n)} → +∞, there exists an index kn0 >

n0 ≥ 1 such that
pkn0 > max {degAn0(z), degBn0(z)} (4.92)

and
min{q(kn0 )1 , q

(kn0 )
2 , · · · , q(kn0 )N(kn0 )

} > degBn0(z). (4.93)

We set t = pkn0 − degBn0(z) and we consider the function

An0(z)

Bn0(z)
+ dzt =

An0(z) + dztBn0(z)

Bn0(z)
. (4.94)

Now, for every d ∈ C, the polynomialsAn0(z)+ dztBn0(z) andBn0(z) do not have
common zeros in C, because the same holds for the polynomials An0(z) and Bn0(z). If
the parameter d ∈ C is close to zero, for instance, if

d ·
(

sup
z∈L′′∪K

|zt|
)
<
ε

2
(4.95)

then, it holds
sup
z∈K

χ
(An0(z)

Bn0(z)
+ dzt, ω(z)

)
< ε (4.96)

and
sup
z∈L′′

∣∣∣An0(z)

Bn0(z)
+ dzt − ω(z)

∣∣∣ < ε. (4.97)

Since degBn0(z) < min{q(kn0 )1 , q
(kn0 )
2 , · · · , q(kn0 )N(kn0 )

}, for d ∈ C \ {0} it holds

(1) deg(An0(z) + dztBn0(z)) = pkn0 .

(2) According to Proposition 4.3, it holds

An0(z)

Bn0(z)
+ dzt =

An0(z) + dztBn0(z)

Bn0(z)
∈ D

pkn0
,q

(kn0 )

j

(ζ) (4.98)

for every j ∈ {1, 2, · · · , N(kn0)} and for every ζ ∈ C such that Bn0(ζ) ̸= 0; in
particular this holds for every ζ ∈ L.
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(3) [An0(z)

Bn0(z)
+ dzt; p(kn0 )/q

(kn0)

j

]
ζ
(z) =

An0(z)

Bn0(z)
+ dzt (4.99)

for every j ∈ {1, 2, · · · , N(kn0)} and for every ζ ∈ L.

Therefore, we obtain

max
j∈{1,2,··· ,N(kn0 )}

sup
ζ∈L

sup
z∈K

χ
([An0(z)

Bn0(z)
+ dzt; pkn0/q

(kn0 )

j

]
ζ
(z), fi(z)

)
< ε (4.100)

and

max
j∈{1,2,··· ,N(kn0 )}

sup
ζ∈L

sup
z∈L′

∣∣∣[An0(z)

Bn0(z)
+dzt; pkn0/q

(kn0 )

j

]
ζ
(z)−

(An0(z)

Bn0(z)
+dzt

)∣∣∣ = 0 <
1

s
< ε

(4.101)
In addition, it holds

sup
z∈L′′

∣∣∣An0(z)

Bn0(z)
+ dzt − ϕ(z)

∣∣∣ < ε. (4.102)

Since the polynomialsAn0(z)+dz
t andBn0(z) have no common zeros, we have that

min
z∈L′∪K

{|An0(z) + dztBn0(z)|2 + |Bn0(z)|2} > 0. (4.103)

One can verify that these polynomials are the ones given by the Jacobi formulas for
the function [An0(z)

Bn0(z)
+ dzt; pkn0/q

(kn0 )

j

]
ζ
(z) (4.104)

for any ζ ∈ C with Bn0(ζ) ̸= 0 and for every j ∈ {1, 2, · · · , N(kn0)}.
Since every connected component ofC∪{∞}\L′′ contains a connected component

ofC∪{∞} \Ω, every zero ofBn0(z) inΩ \L′′ lies in the same connected componet of
C∪{∞}\L′′ with a point inC∪{∞}\Ω. Therefore, wemay approximate the function

An0(z)

Bn0(z)
+ dzt (4.105)

by a function g ∈ H(Ω). The approximations is uniform on L′′ with respect to the
Euclidean metric. Since L ⊆ (L′′)o, there exists r > 0 such that

{z ∈ C : |z − ζ| ≤ r} ⊆ (L′′)o for all ζ ∈ L. (4.106)

Now, Cauchy estimates allow us to show that a finite number of Taylor coefficients
of g with center ζ ∈ L are uniformly close one by one to the corresponding coefficients
of the function

An0(z)

Bn0(z)
+ dzt. (4.107)

It is now easy to see that g satisfies all requirements; the only difference of g from the
function An0 (z)

Bn0 (z)
+ dzt is that it is not true that [g; pkn0/q

(kn0 )

j ]ζ(z) = g(z), but instead,
the triangle inequality implies that

max
j∈{1,2,··· ,N(kn0 )}

sup
ζ∈L

sup
z∈L′

|[g; pkn0/q
(kn0 )

j ]ζ(z)− g(z)|
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≤ max
j∈{1,2,··· ,N(kn0 )}

sup
ζ∈L

sup
z∈L′

∣∣∣[g; pkn0/q(kn0 )j ]ζ(z)−
[An0(z)

Bn0(z)
+ dzt; pkn0/q

(kn0 )

j

]
ζ
(z)

∣∣∣+
+ max

j∈{1,2,··· ,N(kn0 )}
sup
z∈L′

∣∣∣[A(z)
B(z)

+ dzt; pkn0/q
(kn0 )

j

]
ζ
(z)− g(z)

∣∣∣ (4.108)

where the last two terms are small enough because pkn0 and q(kn0 )j are already fixed
and thus we know which set of Taylor coefficients we have to control.

This part of the proof is now complete.
■■

SinceH(Ω) is a complete metric space, we apply Baire’s theorem and that completes
the proof.

■
The following result is a consequence of Theorem 4.16.

Theorem 4.19. ([27]) LetΩ ⊆ C be an open. We consider a sequence (pn)n≥1 ⊆ Nwith
pn → +∞. Now, for every n ≥ 1 let q(n)1 , q

(n)
2 , · · · , q(n)N(n) ∈ N, where N(n) is another

natural number. Suppose that it holds

min{q(n)1 , q
(n)
2 , · · · , q(n)N(n)} → +∞. (4.109)

Then there exists a function f ∈ H(Ω) such that for every compact setK ⊆ C \ Ω
and for every rational function h, there exists a subsequence (pkn)n≥1 of the sequence
(pn)n≥1 satisfying the following

(1) For every compact set L ⊆ Ω, there exists a n(L) ∈ N such that f ∈ D
pkn ,q

(kn)
j

(ζ)

for every ζ ∈ L, for every n ≥ n(L) and for every j ∈ {1, · · · , N(kn)}.

(2) max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈K

χ([f ; pkn/q
(kn)
j ]ζ(z), h(z)) → 0 as n→ +∞

for every compact set L ⊆ Ω.

(3) max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈L

|[f ; pkn/q
(kn)
j ]ζ(z)− f(z)| → 0 as n→ +∞

for every compact set L ⊆ Ω.

Moreover, the set of all functions f satisfying the above properties is Gδ - dense in
H(Ω).

Proof. We apply Theorem 4.16 forL = L′ = Lk and forK = Km and that for every
k,m ≥ 1. In that way we obtain a Gδ - dense class U1

k,m of H(Ω). One can verify (by
using a diagonal argument) that if U1 is the class of all functions ofH(Ω) satisfying the
above properties, then it holds

U1 =
∪

n,m≥1

U1
k,m. (4.110)

The result follows once more from Baire’s theorem.
■

Now we present without proof two results similar to Theorems 4.16 and 4.19 respec-
tively where the roles of p and q have been interchanged.
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Theorem 4.20. ([27]) Let Ω ⊆ C be an open set and L,L′ ⊆ Ω two compact sets. Let
also K ⊆ C \ Ω be another compact set. We consider a sequence (qn)n≥1 ⊆ N with
qn → +∞. Now, for every n ≥ 1 let p(n)1 , p

(n)
2 , · · · , p(n)N(n) ∈ N, where N(n) is another

natural number. Suppose also that it holds

min{p(n)1 , p
(n)
2 , · · · , p(n)N(n)} → +∞. (4.111)

Then there exists a function f ∈ H(Ω) such that for every rational function h, there
exists a subsequence (qkn)n≥1 of the sequence (qn)n≥1 satisfying the following.

(1) f ∈ D
p
(kn)
j ,qkn

(ζ)

for every ζ ∈ L, for every n ∈ N and for every j ∈ {1, · · · , N(kn)}.

(2) max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈K

χ([f ; p
(kn)
j /qkn ]ζ(z), h(z)) → 0

as n→ +∞.

(3) max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈L′

|[f ; p(kn)j /qkn ]ζ(z)− f(z)| → 0

as n→ +∞.

Moreover, the set of all functions f satisfying the above properties is Gδ - dense in
H(Ω).

Theorem 4.21. ([27]) Let Ω ⊆ C be an open set. We consider a sequence (qn)n≥1 ⊆ N
with qn → +∞. Now, for every n ∈ N let p(n)1 , p

(n)
2 , · · · , p(n)N(n) ∈ N, where N(n) is

another natural number. Suppose that it holds

min{p(n)1 , p
(n)
2 , · · · , p(n)N(n)} → +∞. (4.112)

Then there exists a function f ∈ H(Ω) such that for every compact setK ⊆ C \ Ω
and for every rational function h, there exists a subsequence (qkn)n≥1 of the sequence
(qn)n≥1 satisfying the following

(1) For every compact set L ⊆ Ω, there exists a n(L) ∈ N such that f ∈ D
p
(kn)
j ,qkn

(ζ)

for every n ≥ n(L) and for every j ∈ {1, · · · , N(kn)}.

(2) max
j=1,··· ,N(kn)

sup
ζ∈L

sup
z∈K

χ([f ; p
(kn)
j /qkn ]ζ(z), h(z)) → 0

as n→ +∞ for every compact set L ⊆ Ω.

(3) max
j=1,··· ,N(kn)

sup
ζ∈L

sup
ζ∈L

|[f ; p(kn)j /qkn ]ζ(z)− f(z)| → 0

as n→ +∞ for every compact set L ⊆ Ω.

Moreover, the set of all functions f satisfying the above properties is Gδ - dense in
H(Ω).
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Proof. We apply Theorem 4.21 forL = L′ = Lk and forK = Km and that for every
k,m ≥ 1. In that way we obtain a Gδ - dense class U2

k,m of H(Ω). One can verify (by
using a diagonal argument) that if U2 is the class of all functions ofH(Ω) satisfying the
above properties, then it holds

U2 =
∪

n,m≥1

U2
k,m. (4.113)

The result follows once more from Baire’s theorem.
■
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4.4 Affine genericity of a class of functions
In this section we deal with the class of functions on a simply connected domainΩ ⊆ C
which satisfy the requirements of Theorem 4.8 for a fixed center of expansion ζ ∈ Ω:
the class A.

We construct a particular function f in the above class. Our construction is based on
the observation that [f ; p/q]ζ(z) ≡ Sp(f, ζ)(z) with q ≥ 1 if and only if ap+1 = ap+2 =
· · · = ap+q = 0, where, of course, f(z) =

∑+∞
n=0 an(z − ζ)n is the Taylor expansion of

the function f , centered at ζ ∈ Ω.
We recall the following definition.

Definition 4.22 (Affine genericity). Let Ω ⊆ C be an open set. We consider the space
H(Ω) endowed with its natural topology and letA ⊆ H(Ω). Let V ≤ H(Ω) be a dense
subspace of H(Ω) and g ∈ H(Ω) such that g + V ⊆ A. Then the class A is called
(densely) affinely generic; that is it contains the translation of a dense subspace.

Theorem 4.23. ([27]) Let Ω ⊆ C be a simply connected domain and ζ ∈ Ω be a fixed
point. Let also (pn)n≥1 ⊆ N be a sequence such that pn → +∞. Now, for every n ≥ 1,
let q(n)1 , · · · , q(n)N(n) ∈ N, whereN(n) is another natural number.

Then, there exists a function f ∈ H(Ω), with Taylor expansion at ζ of the form
f(z) =

∑+∞
n=0 an(z − ζ)n satisfying the following.

For every compact setK ⊆ C\Ωwith connected complement and for every function
h ∈ A(K), there exists a subsequence (pkn)n≥1 of the sequence (pn)n≥1 such that

(1) sup
z∈K

|Spkn
(f, ζ)(z)− h(z)| → 0, as n→ +∞.

(2) sup
z∈J

|Spkn
(f, ζ)(z)− f(z)| → 0, as n→ +∞ for every compact set J ⊆ Ω.

Furthermore, for every n ≥ 1 it holds apkn ̸= 0 and apkn+s = 0 for every s =

1, · · · ,max{q(kn)1 , · · · , q(kn)N(kn)
}.

Proof. Let {fj}j≥1 be an enumeration of polynomials with coefficients of Q + iQ.
Let also {Km}m≥1 and {Lk}k≥1 be two fixed families of compact subsets ofC satisfying
Lemmas 4.4 and 4.5 respectively. The set {(Km, fj) : m, j ≥ 1} is infinite denumerable
and thus we consider a function t : N → N such that {(Km, fj) : m, j ≥ 1} =
{(Kmt , fjt) : t ≥ 1}, where we suppose that each pair (Kmt , fjt) appears infinitely
many times1.

Step 1. We consider the function

w1(z) =

{
fj1(z), if z ∈ Km1

0, if z ∈ L1.
(4.114)

Notice that w1 ∈ A(Km1 ∪ L1). We apply Mergelyan’s theorem and in this way
we find a polynomial h1 such that

sup
z∈Km1∪L1

|w1(z)− h1(z)| < 1. (4.115)

1In any other case, see Remark 3.21 of [27].
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We consider an index k1 ≥ 1 such that degh1(z) < pk1 . Next, we select a c1 ∈
C \ {0} such that

sup
z∈Km1∪L1

|w1(z)− (h1(z) + c1(z − ζ)pk1 )| < 1. (4.116)

Notice that such a choice is possible. We set H1(z) = h1(z) + c1(z − ζ)pk1 .
Clearly, the functionH1 is a polynomial with degH1(z) = pk1 . Finally, we select
a t1 ≥ 1 + max{q(1)1 , · · · , q(1)N(1)}.

Step 2. We consider the function

w2(z) =


fj2(z)−H1(z)

(z − ζ)pk1+t1
, if z ∈ Km2

0, if z ∈ L2.

(4.117)

Notice that w2 ∈ A(Km2 ∪ L2). We apply Mergelyan’s theorem and in this way
we find a polynomial h2 such that

sup
z∈Km2∪L2

|w2(z)− h2(z)| <
1

22
· 1

max
z∈Km2∪L2

|z − ζ|pk1+t1 + 1
. (4.118)

We consider an index k2 ≥ 1 such that deg
(
h2(z) · (z − ζ)pk1+t1

)
< pk2 . Next,

we select a c2 ∈ C \ {0} such that

sup
z∈Km2∪L2

∣∣(z − ζ)pk1+t1 ·
(
w2(z)− h2(z)

)
− c2(z − ζ)pk2

]∣∣ < 1

22
. (4.119)

Notice that such a choice is possible. We setH2(z) = (z− ζ)pk1+t1h2(z)+ c2(z−
ζ)pk2 . Clearly, the functionH2 is a polynomial with degH2(z) = pk2 . Finally, we
select t2 ≥ 1 + max{q(2)1 , · · · , q(2)N(2)}.

Step n. So far, we have defined the polynomialsH1, · · · , Hn−1 with degHi(z) = pki for
every i = 1, · · · , n− 1. We consider the function

wn(z) =


fjn(z)− (H1(z) +

n−2∑
N=1

(z − ζ)pkN+tNHN+1)

(z − ζ)pkn−1
+tn−1

, if z ∈ Kmn

0, if z ∈ Ln.

(4.120)
Notice that wn ∈ A(Kmn ∪ Ln). We apply Mergelyan’s theorem and in this way
we find a polynomial hn such that

sup
z∈Kmn∪Ln

|wn(z)− hn(z)| <
1

n2
· 1

max
z∈Kmn∪Ln

|z − ζ|pkn−1
+tn−1 + 1

. (4.121)
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We consider an index kn ≥ 1 such that

deg
(
(z − ζ)pkn−1

+tn−1 · hn(z)
)
< pkn . (4.122)

Next, we select a cn ∈ C \ {0} such that

sup
z∈Kmn∪Ln

∣∣(z− ζ)pkn−1
+tn−1 ·

(
wn(z)− hn(z)

)
− cn(z− ζ)pkn

]∣∣ < 1

n2
. (4.123)

Notice that such a choice is possible. We setHn(z) = (z− ζ)pkn−1hn(z)+ cn(z−
ζ)pkn . Clearly, the functionHn is a polynomial with degHn(z) = pkn . Finally, we
select a tn ≥ 1 +max{q(n)1 , · · · , q(n)N(n)}.

From Weierstrass’s theorem, the sequence of polynomials

H1(z) +H2(z) + · · ·+Hn(z) + · · · (4.124)

converges uniformly on every compact subset J ⊆ Ω to a function f ∈ H(Ω). We
notice that from Cauchy’s integral formula, for every n ≥ 1 it holds

Spkn
(f, ζ)(z) = H1(z) +

pkn−1∑
N=1

HN+1(z). (4.125)

We will show that the function f meets the requirements of Theorem 4.23.

• Let J ⊆ Ω be a compact set. We consider an index k ≥ 1 such that J ⊆ Lk. Then

sup
z∈Lk

|Spkn
(f, ζ)(z)− f(z)| ≤

+∞∑
s=M(n)

1

s2
→ 0 (4.126)

as n→ +∞, whereM(n) ≥ 1 andM(n) → +∞ as n→ +∞ as well.

• Let K ⊆ C \ Ω be a compact set with connected complement, h ∈ A(K) and
ε > 0. We consider an index m ≥ 1 such that K ⊆ Km. We use Mergelyan’s
theorem in order to find a polynomial fj such that

sup
z∈K

|h(z)− fj(z)| <
ε

3
. (4.127)

Then, according to our initial hypothesis, (Km, fj) = (Kmt , fjt) for infinitely
many t ≥ 1. Also, according to the construction of f , it holds

sup
z∈Kmt

|fjt(z)− Spkjt
(f, ζ)(z)| < 1

t2
. (4.128)

for infinitely many t ≥ 1. Equivalently,

sup
z∈Km

|fjt(z)− Spkjt
(f, ζ)(z)| < 1

t2
. (4.129)
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for infinitely many t ≥ 1. For t→ +∞, we select a t0 ≥ 1 such that

sup
z∈Km

|fjt0 (z)− Spkjt0
(f, ζ)(z)| < 1

t2
<
ε

3
. (4.130)

The triangle inequality yields now the result.

■
As we have already commented before, if U is the class of all functions satisfying

Theorem4.8 for a fixed center of expansion and f is the function constructed inTheorem
4.23, then it holds f ∈ U .

Definition 4.24. WedenotewithB ≡ B(A(1)) the set of all functions satisfyingTheorem
4.23.

Proposition 4.25. ([27]) Let f ∈ B(A(1)) and p be a polynomial. Then f + p ∈
B(A(1)) ⊆ U . Thus, the class U contains an affine dense subspace of H(Ω). It follows
that U is affinely generic.

Proof. This is obvious, according to the construction of the class B(U (1)) ⊆ U ,
since the condition apkn+s = 0 for every s = 1, · · · ,max{q(kn)1 , · · · , q(kn)N(kn)

} implies
that [f ; pkn/q

(kn)
j ]ζ ≡ Spkn

(f, ζ) for every j = 1, · · · ,M(kn). The previous relations
combined with the fact that apkn ̸= 0 for every n ≥ 1 imply that f ∈ D

pkn ,q
(kn)
j

(ζ) for
every j = 1, · · · ,M(kn).

■
We will now strengthen Theorem 4.23. We consider a finite of infinite denumerable

family of systems

A(l) =
(
(p(l)n )n≥1, N(l, n), q

(n)
l,i for i = 1, · · · , N(l, n)

)
, l ∈ I (4.131)

where I = N or I is finite. As expected, for every l ∈ I it holds

(i) (p
(l)
n )n≥1 ⊆ N

(ii) p(l)n → +∞ as n→ +∞

(iii) +∞ > N(l, n) ≥ 1 for every n ≥ 1

(iv) q(n)l,i ∈ N for every i = 1, · · · , N(l, n)

(v) max{q(n)l,1 , · · · , q
(n)
l,N(l,n)} → +∞ as n→ +∞.

Each system defines a new class of functions, namely the class B(A(l)), according to
Theorem 4.23.

We will now show that the class ∩
l∈I

B(A(l)) (4.132)

is a dense subset ofH(Ω), for I a finite or an infinite denumerable set.
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Theorem 4.26. ([27]) Let I ̸= ∅ be a finite or infinite denumerable set. We consider a
family of systems {A(l)}l∈I as above. Then the class∩

l∈I

B(A(l)) (4.133)

is a dense subset ofH(Ω) and every function

f ∈
∩
l∈I

B(A(l)) (4.134)

with Taylor expansion at ζ of the form f(z) =
∑+∞

n=0 an(z− ζ)n satisfies the follow-
ing.

For every compact setK ⊆ C \ Ω with connected complement, for every function
h ∈ A(K) and for every l ∈ I , there exists a subsequence (p(l)kn(l))n≥1 of the sequence
(p

(l)
n )n≥1 such that

(1) sup
z∈K

|S
p
(l)
kn(l)

(f, ζ)(z)− h(z)| → 0, as n→ +∞.

(2) sup
z∈J

|S
p
(l)
kn(l)

(f, ζ)(z)− f(z)| → 0, as n→ +∞ for every compact set J ⊆ Ω.

Furthermore, for every l ∈ I and for every n ≥ 1 it holds a
p
(l)
kn(l)

̸= 0 and a
p
(l)
kn(l)

+s
=

0 for every s = 1, · · · ,max{q(kn(l))l,1 , · · · , q(kn(l))l,N(l,kn(l))
}.

Proof. The proof is based on that of Theorem 4.23. We will not provide in-depth
details but instead, we will give a sketch of the proof, explaining the main idea behind it.
We examine each one of the two cases concerning the cardinality of the set I separately.

(1) Suppose that the set I is finite. In this case, without loss of the generality, we
suppose that it holds I = {1, 2, · · · , N}, for an indexN ≥ 1.

Sequence
Selection

(p
(1)
n )n≥1 (p

(2)
n )n≥1 · · · (p

(N)
n )n≥1

Step 1 • - · · · -
Step 2 - • · · · -

... ... ... . . . ...
StepN - - · · · •

StepN + 1 • - · · · -
StepN + 2 - • · · · -

... ... ... . . . ...
Step 2N - - · · · •

... ... ... · · · ...

Figure 5: A natural choice in the case where I is a finite set.
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In each step of the proof we repeat the same arguments as we did in the one of
Theorem 4.23, but this time, the specific argument is used for a different sequence.
See Figure 5 for details. The class ∩

l∈I

B(A(l)) (4.135)

is proved to be a dense subset ofH(Ω) in the sameway. In addition, every function

f ∈
∩
l∈I

B(A(l)) (4.136)

meets the requirements of Theorem 4.26 in the same way as in Theorem 4.23.

Remark 4.27. A more general selection from the above is the following.
Wefix a permutation (i.e. a 1 - 1 andonto function)σ : {1, · · · , N} → {1, · · · , N}
and we repeat the same construction as above, but this time, in every “block” of
N steps, starting from step kN + 1 and stopping at step (k + 1)N (where ap-
parently k ≥ 0), the kN + j term of the sequence is chosen from the sequence
(p

(σ(j+1))
n )n≥1. See for instance the following table as an example.

Sequence
Selection

(p
(1)
n )n≥1 (p

(2)
n )n≥1 (p

(3)
n )n≥1 (p

(4)
n )n≥1 (p

(5)
n )n≥1 (p

(6)
n )n≥1

... ... ... ... ... ... ...
Step kN + 1 - • - - - -
Step kN + 2 • - - - - -
Step kN + 3 - - • - - -
Step kN + 4 - - - - - •
Step kN + 5 - - - • - -

Step (k + 1)N - - - - • -
... ... ... ... ... ... ...

Figure 6: A more general selection in the case where I is a finite set (here,N = 6).

(2) Suppose that the set I is infinite denumerable. In this case, without loss of the
generality, we suppose that it holds I = N.
In each step of the proof we repeat the same arguments as we did in the one of
Theorem 4.23, but this time, the specific argument is used for a different sequence.
See the following table for details.
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Sequence
Selection

(p
(1)
n )n≥1 (p

(2)
n )n≥1 (p

(3)
n )n≥1 · · · (p

(N)
n )n≥1 (p

(N+1)
n )n≥1 · · ·

Step 1 • - - · · · - - · · ·
Step 2 • • - · · · - - · · ·

... ... ... ... . . . ... ... · · ·
StepN • • · · · · · · • - · · ·

StepN + 1 • • • · · · • • -
... ... ... · · · . . . ... · · · · · ·

Figure 7: A natural selection in the case where I is infinitely denumerable.

The class ∩
l∈I

B(A(l)) (4.137)

is proved to be a dense subset ofH(Ω) in the sameway. In addition, every function

f ∈
∩
l∈I

B(A(l)) (4.138)

meets the requirements of Theorem 4.26 in the same way as in Theorem 4.23.

■

Proposition 4.28. ([27]) Let I ̸= ∅ be a finite or infinite denumerable set, {A(l)}l∈I a
family of systems as above,

g ∈
∩
l∈I

B(A(l)) (4.139)

and p be a polynomial. Then, it holds

g + p ∈
∩
l∈I

B(A(l)). (4.140)

It follows that the class ∩
l∈I

B(A(l)) (4.141)

is a dense subset ofH(Ω).

Proof. The proof is the same as the one of Proposition 4.25 and therefore is omitted.
■
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4.5 Algebraic genericity of a class of functions
In this section we deal with a class of functions on a simply connected domain Ω ⊆ C
that “almost” satisfy Theorem 4.8 for a fixed center of expansion ζ ∈ Ω. There are two
differences.

(1) This time, we do not require the uniqueness of Padé approximants but instead, we
only require their existence.

(2) We consider a slight change concerning our choice of indices, which is more gen-
eral than the one we have used before.

Therefore, this new class of functions is larger than the one satisfying Theorem 4.8,
mainly due to condition (1) above.

We recall the following definition.

Definition 4.29 (Algebraic genericity). LetΩ ⊆ C be an open set. We consider the space
H(Ω) endowed with its natural topology and let A ⊆ H(Ω). Suppose that there exists
a dense subspace V ≤ H(Ω) such that V \ {0} ⊆ A. Then, the class A is algebraically
generic inH(Ω); that is, it contains a dense subspace ofH(Ω) (except 0).

Theorem 4.30. ([27]) Let (pn)n∈N ≥ 1 with pn → +∞. For every n ≥ 1, letN(n) be a
natural number and q(n)1 , · · · , q(n)N(n) ∈ N. LetΩ ⊆ C be a simply connected domain and
ζ ∈ Ω be a fixed element. Then, there exists a function f ∈ H(Ω)with Taylor expansion
at ζ of the form

f(z) =
+∞∑
n=0

f (n)(ζ)

n!
(z − ζ)n (4.142)

such that for every polynomial h and for every compact set K ⊆ C \ Ω with con-
nected complement there exists a subsequence (pkn)n≥1 of the sequence (pn)n≥1 satis-
fying the following.

(i) The Padé approximant [f ; pkn/q
(kn)
σ(kn)

]ζ exists for every n ≥ 1 and for every selec-
tion σ : N∗ → N∗ satisfying σ(kn) ∈ {1, · · · , N(kn)} for every n ≥ 1.

(ii) sup
z∈K

|[f ; pkn/q
(kn)
σ(kn)

]ζ(z)− h(z)| → 0

for every selection σ : N∗ → N∗ satisfying σ(kn) ∈ {1, · · · , N(kn)} for every
n ≥ 1.

(iii) sup
z∈J

|[f ; pkn/q
(kn)
σ(kn)

]ζ(z)− f(z)| → 0

for every compact set J ⊆ Ω and for every selection σ : N∗ → N∗ satisfying
σ(kn) ∈ {1, · · · , N(kn)} for every n ≥ 1.

We will now prove that there exists a dense subspace V ofH(Ω) such that V \{0} ⊆
U ′, where U ′ is the class of all functions f ∈ H(Ω) satisfying Theorem 4.30. This by
definition implies that the class U ′ is algrebraically generic inH(Ω).
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Theorem 4.31. ([27]) There exists a dense vector subspace V of H(Ω) such that V \
{0} ⊆ U ′.

Proof. Let {Km}m≥1 and {Lk}k≥1 be two fixed families of compact subsets of C
satisfying Lemmas 4.4 and 4.5 respectively for the specific set Ω. Let also {fi}i≥1 be an
enumeration of polynomials with coefficients in Q+ iQ.

Step 1. We consider a function g1 ∈ B(A(1)) satisfying the following properties.

(1) ρ(g1, f1) < 1
1
.

(2) For every m ≥ 1, there exists a subsequence (p
(1)
m,n)n≥1 of the sequence

(pn)n≥1 such that

sup
z∈Km

|S
p
(1)
m,n

(g1, ζ)(z)− 0| → 0 as n→ +∞. (4.143)

sup
z∈J

|S
p
(1)
m,n

(g1, ζ)(z)− g1(z)| → 0 as n→ +∞ (4.144)

for every compact J ⊆ Ω.

So, at the end of Step 1 we have constructed infinitely many subsequences of the
sequence (pn)n≥1; the sequences (p(1)m,n)n≥1 form ≥ 1.

Step 2. We consider the system

A((1),m) =
(
(p(1)m,n)n≥1, N(((1),m), n), q

(n)
i,((1),m)

for i = 1, · · · , N(((1),m), n
)
,m ≥ 1. (4.145)

According to Theorem 4.26, there exists a function

g2 ∈
∩
m∈N

B(A((1),m)) (4.146)

satisfying the following properties.

(1) ρ(g2, f2) < 1
2
.

(2) For everym ≥ 1 there exists a subsequence (p(2)m,n)n≥1 of the sequence (p(1)m,n)n≥1

such that
sup
z∈Km

|S
p
(2)
m,n

(g2, ζ)(z)− 0| → 0 as n→ +∞. (4.147)

sup
z∈J

|S
p
(2)
m,n

(g2, ζ)(z)− g2(z)| → 0 as n→ +∞ (4.148)

for every compact J ⊆ Ω.

So, at the end of Step 2 we have constructed infinitely many subsequences of the
sequence (pn)n≥1, since for everym ≥ 1 the sequence (p(2)m,n)n≥1 is a subsequence
of (p(1)m,n)n≥1.
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Step N. We consider the system

A((N),m) =
(
(p(N−1)

m,n )n≥1, N(((N − 1),m), n), q
(n)
i,((N−1),m)

for i = 1, · · · , N(((N − 1),m), n
)
,m ≥ 1. (4.149)

According to Theorem 4.26, there exists a function

gN ∈
∩
m∈N

B(A((N),m)) (4.150)

satisfying the following properties.

(1) ρ(gN , fN) < 1
N
.

(2) For everym ≥ 1 there exists a subsequence (p(N)
m,n)n≥1 of the sequence (p(N−1)

m,n )n≥1

such that
sup
z∈Km

|S
p
(N)
m,n

(gN , ζ)(z)− 0| → 0 as n→ +∞. (4.151)

sup
z∈J

|S
p
(N)
m,n

(gN , ζ)(z)− gN(z)| → 0 as n→ +∞ (4.152)

for every compact J ⊆ Ω.

So, at the end of Step N we have constructed infinitely many subsequences of the
sequence (pn)n≥1, since for everym ≥ 1 the sequence (p(N)

m,n)n≥1 is a subsequence
of (p(N−1)

m,n )n≥1.

We consider now the linear span < gn : n ≥ 1 > ⊆ H(Ω). Let 1 ≤ j1 < · · · < js
and aj1 , · · · , ajs ∈ C \ {0}. We set g ≡ aj1gj1 + · · · + ajsgjs . Our aim is to prove that
the function g is a universal Taylor series and belong to the class U ′.

Let K ⊆ C \ Ω be a compact set with connected complement and h ∈ A(K). We
consider an indexm ≥ 1 such thatK ⊆ Km. Since

gjs ∈
∩
m∈N

B(A((js),m)) (4.153)

there exists a subsequence (p(js)kn
)n≥1 of the sequence (g(js)m,n)n≥1 such that

(1) sup
z∈Km

|S
p
(js)
kn

(gjs , ζ)(z)−
h(z)

ajs
| → 0 as n→ +∞.

(2) sup
z∈J

|S
p
(js)
kn

(gjs , ζ)(z)− gjs(z)| → 0 as n→ +∞

for every compact set J ⊆ Ω.

Since (p(js)kn
)n≥1 is a subsequence of the sequence (g(js)m,n)n≥1 we obtain that for every

t < s it holds
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(1) sup
z∈Km

|S
p
(js)
kn

(gjt , ζ)(z)− 0| → 0 as n→ +∞.

(2) sup
z∈J

|S
p
(js)
kn

(gjt , ζ)(z)− gjt(z)| → 0 as n→ +∞

for every compact set J ⊆ Ω.

Thus, it follows that

(1) sup
z∈Km

|S
p
(js)
kn

(g, ζ)(z)− h(z)|

= sup
z∈Km

|S
p
(js)
kn

(aj1gj1 + · · ·+ ajsgjs , ζ)(z)− h(z)|

= sup
z∈Km

|aj1Sp
(js)
kn

(gj1 , ζ)(z) + · · ·+ ajsSp
(js)
kn

(gjs , ζ)(z)− h(z)|

≤ sup
z∈Km

|aj1Sp
(js)
kn

(gj1 , ζ)(z)|+ · · ·+ sup
z∈Km

|ajs−1Sp
(js)
kn

(gjs−1 , ζ)(z)|+

+ sup
z∈Km

|aj1Sp
(js)
kn

(gjs , ζ)(z)− h(z)| → 0 (4.154)

as n→ +∞.

(2) sup
z∈J

|S
p
(js)
kn

(g, ζ)(z)− g(z)| → 0 (4.155)

as n→ +∞, for every compact set J ⊆ Ω.

Finally, we notice that for every n ≥ 1 it holds

[g; p
(js)
kn

/q
(kn)
(js),i

]ζ(z) = S
p
(js)
kn

(g, ζ)(z) (4.156)

for every i = 1, · · ·N((js), kn). That completes the proof.
■

Remark 4.32. In the above construction we may have that apkn = 0 for some n ≥ 1,
which would imply that g ̸∈ Dpkn ,pkn

(ζ) and also that g ̸∈ U . But still, we have that it
holdsg ∈ U ′.

Remark 4.33. If q(i)n ̸= 0, then every function belonging to the class U ′ has some Taylor
coefficients equal to zero. It follows that U ′ is meager inH(Ω). Since the set of universal
Taylor series isGδ - dense inH(Ω), it follows that the result of Theorem 4.31 can not be
deduced from the known results about algebraic genericity of the set of universal Taylor
series.
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4.6 Spaceability of a class of functions
In this section we consider a simply connected domain Ω ⊆ C, a fixed element ζ ∈ Ω
and the respective classU ′ ofTheorem 4.30 andwe prove that the classU ′∪{0} ⊆ H(Ω)
is spaceable.

In [4] F. Bayart proved initially the spaceability of the class of Universal Taylor series
in the sense of V. Nestoridis. In [7] S. Charpentier gave afterwards similar results in a
more general framework, which were later improved in [30] by Q. Menet. Also, relevant
results were later developed in [8] by S. Charpentier and A. Mouze.

We will need the following definitions and lemmas.

Definition 4.34 (Spaceability). Let Ω ⊆ C be an open set. We consider the spaceH(Ω)
endowed with its natural topology and letA ⊆ H(Ω). Suppose that there exists a closed
subspace V ≤ H(Ω) of infinite dimension such that V \ {0} ⊆ A. Then, the class A
is spaceable inH(Ω); that is, it contains a closed subspace of infinite dimension (except
0).

Definition 4.35 (Basic sequence of a Fréchet space, [9]). LetX be a Fréchet space over
a field K and {un}n≥0 ⊆ X . The sequence {un}n≥0 is called a basic sequence, if it is a
Schauder basis of the set < un : n ≥ 0 >; that is, if every element x ∈< un : n ≥ 0 >
has a unique representation inX of the following form

x =
+∞∑
n=0

anun (4.157)

for a sequence {an}n≥0 ⊆ K.

Lemma 4.36 (Lemma 4.18 of [9], Lemme 2.2 of [30]). Let X be a Fréchet space over
a field K(= R or C) with a continuous norm, {ρn}n≥0 be an increasing sequence of
continuous norms defining its topology and {εn}n≥0 be a sequence in (0,+∞) such
that

B =
+∞∏
n=0

(1 + εn) < +∞. (4.158)

If {un}n≥0 ⊆ X is a sequence such that for every n ≥ 0, for every 0 ≤ j ≤ n and
for every a0, · · · , an+1 ∈ K the following property holds

pj(
n∑

k=0

akuk) ≤ (1 + εn)pj(
n+1∑
k=0

akuk) (4.159)

then {un}n≥0 is a basic sequence inX .

Definition 4.37 (Constant of basicity, [9]). In the previous lemma (Lemma 4.36), the
infimum of the constantB satisfying Properties (4.158) and (4.159) is called constant of
basicity of the sequence {un}n≥0.

Lemma 4.38 (Lemma 4.10 of [9], Lemme 2.3 of [30]). Let X be a Fréchet space over
a field K(= R or C) with a continuous norm, {ρn}n≥0 be an increasing sequence of
continuous norms defining its topology andM an infinite dimensional subspace ofX .
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Then, for every ε > 0, for every u0, · · · , un ∈ X , there exists a un+1 ∈ M such that
ρ1(un+1) = 1 and also, for every 0 ≤ j ≤ n and for every a0, · · · , an+1 ∈ K it holds

pj(
n∑

k=0

akuk) ≤ (1 + εn)pj(
n+1∑
k=0

akuk) (4.160)

Definition 4.39 (Equivalent sequences of a Fréchet space, Definition 4.20 of [9]). Two
basic sequences {gn}n≥0 and {fn}n≥0 of a Fréchet space X are equivalent if for any
sequence {an}n≥0 ⊆ K it holds

[
the sequence

+∞∑
k=0

akgk converges inX
]
⇐⇒

[
the sequence

+∞∑
k=0

akfk converges inX
]
.

(4.161)

Lemma 4.40 (Lemma 4.21 of [9], Lemme 2.5 of [30]). Let X be a Fréchet space over
a field K(= R or C) with a continuous norm, {ρn}n≥0 be an increasing sequence of
continuous norms defining its topology. If {un}n≥0 is a basic sequence in X such that
for every k ≥ 0 it holds p1(uk) = 1 and for everyn ≥ 0, the sequence {uk}k≥n is basic in
(X, ρn) ≡ Xn with constant of basicity less than B, then every sequence {fn}n≥0 ⊆ X
satisfying

+∞∑
n=0

2Bρn(un − fn) < 1 (4.162)

is basic inX . Moreover, the sequences {un}n≥0 and {fn}n≥0 are equivalent inX .

Lemma4.41 (Similar to Lemma 4.4 of [9]; slightly extended, [9]). LetΩ ⊆ C be a simply
connected domain and a ∈ C\Ω, ζ ∈ Ω be two fixed elements. Let alsoK ⊆ C\Ω∪{a}
and L ⊆ Ω two compact sets with connected complements and h ∈ A(K). Then, for
every ε > 0, for every denumerable set ∅ ̸= W ⊆ C and for every p ∈ N∗, there exists
a polynomial

P (z) =

q∑
k=p

akz
k (4.163)

satisfying the following properties

(1) P (a) ̸∈ W ∪ {ζ}

(2) ||P − h||K < ε

(3) ||P ||L < ε.

Proof. Let ε > 0, ∅ ̸= W ⊆ C a denumerable set and p ∈ N∗. We consider the
function f : K ∪ L→ C defined as follows

f(z) =


0, if z ∈ L

h(z)

(z − ζ)p
, if z ∈ K.

(4.164)
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Then, it holds that f ∈ A(K ∪ L), where the set K ∪ L is a compact one with
connected complement. We apply Mergelyan’s theorem and thus we find a polynomial
Q(z) such that

||Q− f ||K∪L <
ε

2
·

1

1 + ||(z − ζ)p||K∪L
. (4.165)

Consider now any c ∈ C. We set

P (z) = (z − ζ)p(Q(z) + c) = (z − ζ)pQ(z) + c(z − ζ)p. (4.166)

The polynomial P (z) satisfies the following properties.

• ||P ||L = ||(z − ζ)pQ(z) + c(z − ζ)p||L
≤ ||(z − ζ)p||L ·

(
||Q(z) + c||L

)
≤ ||(z − ζ)p||L ·

(
||Q||L + |c|

)
< ||(z − ζ)p||L ·

(ε
2
·

1

1 + ||(z − ζ)p||K∪L
+ |c|

)
<
ε

2
+ |c| · ||(z − ζ)p||K∪L. (4.167)

Thus, Property (3) is verified, provided that |c| is small enough.

• ||P − h||K = ||(z − ζ)pQ(z) + c(z − ζ)p − h(z)||K

≤ ||(z − ζ)p||L ·
(
||Q(z) + c−

h(z)

(z − ζ)p
||K

)
≤ ||(z − ζ)p||K ·

(
||Q−

h(z)

(z − ζ)p
||K + |c|

)
< ||(z − ζ)p||K ·

(ε
2
·

1

1 + ||(z − ζ)p||K∪L
+ |c|

)
<
ε

2
+ |c| · ||(z − ζ)p||K∪L. (4.168)

Thus, Property (2) is also verified, provided that |c| is small enough.

In particular, if

|c| < ε

2
·

1

1 + ||(z − ζ)p||K∪L
(4.169)

it holds ||P ||L < ε and at the same time ||P − h||K < ε. In addition, in order to
verify Property (1), it suffices to select

c ̸∈
{ w

(a− ζ)p
−Q(a) : w ∈ W ∪ {ζ}

}
. (4.170)

and that completes the proof.
■
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Let Ω ⊆ C be a simply connected domain and ζ ∈ Ω be a fixed element. If M = <
(z − ζ)k : k ≥ 0 >, then M is an infinite dimensional subspace of H(Ω). The set M
will be fixed from now on.

We now present the main result of this section. Its proof is s close adaptation to that
of Theorem 4.17 in [9].

Theorem 4.42. LetΩ ⊆ C be a simply connected domain and ζ ∈ Ω be a fixed element.
Then, the class U ′ ∪ {0} is spaceable.

Proof. In order to prove Theorem 4.42, we fix the following.

(1) {Ln}n≥0 a family of compact subsets of Ω satisfying Lemma 4.5 with the extra
property L′

k ∩ Ω ̸= ∅ for every k ≥ 0. Notice that such a choice is possible.

(2) {Km}m≥0 a family of compact subsets of C \ Ω satisfying Lemma 4.4.

(3) {Pn}n≥0 an enumeration of polynomials with coefficients in Q+ iQ.

(4) Two functions ϕ, ψ : N → N such that for every pair (a, b) ∈ N × N, there exist
infinitely many n ∈ N such that (ϕ(n), ψ(n)) = (a, b).

We denote with⪯ the lexicographical order onN×N. Thus, by definition, for every
(a, b), (a′, b′) ∈ N× N it holds

(a, b) ⪯ (a′, b′) ⇔ [a < a′] or [a = a′ and b ≤ b′]. (4.171)

Suppose that (Nn)n≥0 ⊆ (0,+∞) is a sequence decreasing to 0 “fast enough”2. We
will build by induction three sequences of polynomials; namely the sequences {uk}k≥0,
{gn,k}n≥k≥0 and {fn,k}n≥k≥0 satisfying the following properties for every n ≥ k ≥ 0.

(0) {uk}k≥0 is a basic sequence inH(Ω) (according to Definition 4.35).

Remark 4.43. We notice that Lemmas 4.36 and 4.38 imply the existence of a basic
sequence inH(Ω). Thus, Relation (0) has meaning.

(1) ||PΦ(n) − gn,k||KΨ(n)
≤ Nn. (4.172)

(2) ||fn,k||KΨ(n+1)
≤ Nn. (4.173)

(3) ||fn+1,k − fn,k||Ln+1 ≤ Nn. (4.174)

(4) ||fn,k − gn,k||Ln ≤ Nn. (4.175)

(5) ||fk,k − uk||Lk ≤ Nk. (4.176)
2This point will be clarified further on.
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(6) For every j ≥ k we set gj+1,k = fj,k + P (gj+1,k, fj,k), where P (gj+1,k, fj,k) is a
polynomial with

val(P (gj+1,k, fj,k)) ≥ min{pn : pn ≥ max
(n′,k′) ⪯ (j,k)

{deg(fn′,k′)}

+ max
(n′,k′) ⪯ (j,k)

{q(n
′)

1 , · · · , q(n
′)

N(n′)}+ 2}.

(4.177)

We remind that if p(z) = anz
n + · · ·+ a1z + a0 is a polynomial, then we denote

with val(p) the following
val(p) = min{n ∈ N : an ̸= 0}. (4.178)

In addition, for every k ∈ N we set gk,k = uk + P (gk,k, uk), where P (gk,k, uk) is
a polynomial with

val(P (gk,k, uk)) ≥ min{pn : pn ≥ deg(uk) + max{q(k)1 , · · · , q(k)N(k)}+ 2}.
(4.179)

(7) For every j ≥ k we set fj,k = gj,k + R(fj,k, gj,k), where R(fj,k, gj,k) is a polyno-
mial with

val(R(fj,k, gj,k)) ≥ min{pn : pn ≥ max
(n′,k′) ⪯ (j,k)

{deg(gn′,k′)}

+ max
(n′,k′) ⪯ (j,k)

{q(n
′)

1 , · · · , q(n
′)

N(n′)}+ 2}.

(4.180)

(8) ||uk||L0 = 1 for every k ∈ N. (4.181)

In the next figure (Figure 7) we present the first steps of our construction.

Of course, we have to explain why such a construction is possible. This is mainly
done by using Lemma 4.38 and Lemma 4.41. See Figure 7 for further details.

Lemma 4.38 is used to move from the top of one column to the top of the column
on the immediate right, in order to build the basic sequence {uk}k≥0 with the desired
properties, while Lemma 4.41 is used in two cases.

(i) In each single column, in order to move from one block to the block immediately
below.

(ii) At the top of each column, in order to build the functions gk,k and fk,k.

However, suppose that such a construction is possible for the time being. Next, for
every k ∈ N we set

fk =
+∞∑
n=k

(fn+1,k − fn,k) + fk,k = lim
N→+∞

fN+1,k. (4.182)
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Column 1 Column 2 Column 3 Column 4

u0 → g0,0 → f0,0

Lemma ↓ 4.41 ↘ Lemma 4.38

g1,0 → f1,0 u1 → g1,1 → f1,1

Lemma ↓ 4.41 Lemma ↓ 4.41 ↘ Lemma 4.38

g2,0 → f2,0 g2,1 → f2,1 u2 → g2,2 → f2,2

Lemma ↓ 4.41 Lemma ↓ 4.41 Lemma ↓ 4.41 ↘ Lemma 4.38

g3,0 → f3,0 g3,1 → f3,1 g3,2 → f3,2 u3 → g3,3 → f3,3

Figure 8: The very first steps in the construction of the sequences {uk}k≥0, {gn,k}n≥k≥0

and {fn,k}n≥k≥0.

Relation (3) implies that for every k ∈ N it holds fk ∈ H(Ω). In order to explain
this, we fix a k ∈ N and we notice that for everyN ≥ k it holds

N∑
n=k

(fn+1,k − fn,k) + fk,k = fN+1,k. (4.183)

We fix any j ∈ N and we want to show that the sequence

SN =
N∑

n=k

(fn+1,k − fn,k) + fk,k = fN+1,k (4.184)

(defined for N ≥ k) converges uniformly on Lj . We select an index N0 ∈ N such
thatN0 > j, k. Thus, for everyN > N0 we obtain

SN =
N∑

n=k

(fn+1,k − fn,k) + fk,k

=

N0∑
n=k

(fn+1,k − fn,k) + fk,k +
N∑

n=N0+1

(fn+1,k − fn,k)

= fN+1,k. (4.185)

The first term
N0∑
n=k

(fn+1,k − fn,k) + fk,k (4.186)
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is fixed, while the second one

N∑
n=N0+1

(fn+1,k − fn,k) (4.187)

changes, depending onN ∈ N. Therefore, we obtain

||SN ||Lj = ||
N∑

n=k

(fn+1,k − fn,k) + fk,k||Lj

≤ ||
N0∑
n=k

(fn+1,k − fn,k) + fk,k||Lj + ||
N∑

n=N0+1

(fn+1,k − fn,k)||Lj

≤ ||
N0∑
n=k

(fn+1,k − fn,k) + fk,k||Lj +
N∑

n=N0+1

||(fn+1,k − fn,k)||Lj

≤ ||
N0∑
n=k

(fn+1,k − fn,k) + fk,k||Lj +
N∑

n=N0+1

||(fn+1,k − fn,k)||Ln+1

≤ ||
N0∑
n=k

(fn+1,k − fn,k) + fk,k||Lj +
N∑

n=N0+1

Nn

≤ ||
N0∑
n=k

(fn+1,k − fn,k) + fk,k||Lj +
+∞∑
n=0

Nn

< +∞.

Thus, according to Weierstrass’s theorem, the sequence {SN}N≥k converges uni-
formly on every compact set L ⊆ Ω to the function fk ∈ H(Ω).

By combining Relation (5) and Lemma 4.40 it follows that {fk}k≥0 is a basic se-
quence of H(Ω) equivalent to the sequence {uk}k≥0. Indeed, if B is the constant of
basicity for the sequence {uk}k≥0 then, according to Lemma 4.40, it suffices to prove
that

+∞∑
n=0

2Bρn(un − fn) < 1 ⇔
+∞∑
n=0

||un − fn||Ln <
1

2B
. (4.188)

Since for every k ∈ N it holds

fk − uk =
+∞∑
n≥k

(fn+1,k − fn,k) + fk,k − uk (4.189)
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we obtain the following

||fk − uk||Lk ≤
+∞∑
n≥k

||fn+1,k − fn,k||Lk + ||fk,k − uk||Lk

≤
+∞∑
n≥k

||fn+1,k − fn,k||Lk +Nk

≤
+∞∑
n≥k

||fn+1,k − fn,k||Ln+1 +Nk

≤
+∞∑
n≥k

Nn +Nk. (4.190)

Thus, the desired inequality (Relation (4.188)) holds3 provided that

+∞∑
k=0

(
+∞∑
n≥k

Nn +Nk) <
1

2B
. (4.191)

Next, we consider the following set

F = < fk : k ≥ 0 >. (4.192)

Since the sequences {fk}k≥0 and {uk}k≥0 are equivalent, Relation (0) implies that
{fk}k≥0 is linearly independent and thusF is an infinite dimensional subspace ofH(Ω).
Indeed, let j1 < · · · < jN ∈ N, aj1 , · · · , ajN ∈ C \ {0} and suppose that aj1fj1 +
· · · + ajNfjN = 0. The previous relation implies that the element 0 ∈ F has (at least)
two distinct representations as an infinite linear combination of the functions {fk}k≥0,
which contradicts the basicity of {fk}k≥0.

Our aim now is to show that for every f ∈ F \ {0} it holds f ∈ U ′. Let

f =
+∞∑
k=0

akfk ∈ F \ {0} (4.193)

and j > k ≥ 0. We set

pn(j,k) = min{n ∈ N : pn ≥ gj,k}. (4.194)

According to our construction, the (pn(j,k), q(n(j,k))s ) - Padé approximant of f (cen-
tered at ζ ∈ Ω) will be the sums of all blocks of the form gj′,k′ or fj′,k′ (up the coef-
ficients ak) appearing in the fk’s with (j′, k′) ⪯ (j, k) and that holds for every s =
1, · · · , N(n(j, k)). This sum is a polynomial with degree ≤ pn(j,k) by definition and
since the valuation of any other blocks gj′,k′ or fj′,k′ with (j, k) ≺ (j′, k′) is strictly big-
ger than pn(j,k) + q

(n(j,k))
s + 1, the Taylor expansion of this sum (centered at ζ ∈ Ω) will

3Property 1 (p1) for the sequence (Nn)n≥0. Here, we can also consider that it holds
+∞∑
k=0

Nk < +∞

and also that the sequence (Nn)n≥0 is strictly decreasing.
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coincide with that of the function f up to the index pn(j,k) + q
(n(j,k))
s + 1 and that holds

for every s = 1, · · · , N(n(j, k)).
It remains to enumerate all those blocks of gj′,k′ or fj′,k′ appearing in the fk’s with

(j′, k′) ⪯ (j, k). The block with the bigger degree is gj,k by definition. The blocks that
have been built before gj,k are the fj−1,k′ ’s with 0 ≤ k′ ≤ j − 1 and the fj,k′ ’s with
0 ≤ k′ ≤ k − 1. Next, we observe that the block fj−1,k is a part of gj,k, according to
the construction, while every fj−1,k′ is a part of fj,k′ for 0 ≤ k′ ≤ k − 1. Moreover, any
other blocks gj′,k′ or fj′,k′ with j′ ≤ j − 2 are a part of fj−1,k′ . So, by avoiding to count
more than once the same blocks, we obtain

[f ; pn(j,k)/q
(n(j,k))
s ]ζ = Spn(j,k)(f) = akgj,k +

k−1∑
k′=0

a′kfj,k′ +

j−1∑
k′=k+1

a′kfj−1,k′ (4.195)

and that holds for every s = 1, · · · , N(n(j, k)).
Next, we observe that the sequence (ak)k≥0 ⊆ N is bounded by some constant M .

In order to explain this, we notice that since the sequences {fk}k≥0 and {uk}k≥0 are
equivalent, the series

+∞∑
k=0

akuk (4.196)

converges and according to Relation (9) the following holds

|ak| = ||akuk||L0 ≤ 2B||
+∞∑
k=0

akuk||L0 . (4.197)

We setM = 2B. In order to complete the proof, we have to show that the function
f has the desired universal approximation properties.

(•) LetK ⊆ C \Ω be a compact set with connected complement and h ∈ A(K). Let
also k0 = min{k ∈ N : ak ̸= 0}. We select an index r ∈ N such that K ⊆ Kr

and we also consider a polynomialPl. By the initial hypothesis for the functions ϕ
and ψ, there exists a sequence (vj)j≥0 ⊆ N such that (vj)j≥0 is strictly increasing
and also (ϕ(vj), ψ(vj)) = (l, r) for every j ≥ 0, while vj > k0 for every j ≥ 0.
We set pn(vj ,k0) = min{pn : pn ≥ deg(gvj ,k0)}. From Properties (1) and (2) and
the previous, for every s = 1, · · · , N(n(vj, k0)) we obtain the following

||[f ; pn(vj ,k0)/q(n(vj ,k0))s ]ζ − ak0Pl||Kr

= ||ak0gvj ,k0 +
vj−1∑

k′=k0+1

ak′fvj−1,k′ − ak0Pϕ(vj)||Kψ(vj)

≤
vj−1∑

k′=k0+1

|ak′| · ||fvj−1,k′||Kψ(vj)
+ |ak0 | · ||gvj ,k0 − Pϕ(vj)||Kψ(vj)

≤M

vj−1∑
k′=k0+1

Nvj−1 +MNvj
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≤M(vj − k0)Nvj−1. (4.198)

By choosing (Nn)n≥0 decreasing to 0 fast enough⁴, we obtain the desired result.

(•) Let n ∈ N. For j ∈ N large enough and for every s = 1, · · · , N(n(vj, k0)), by
using Relations (3) and (4), one can verify that it holds

||[f ; pn(vj ,k0)/q(n(vj ,k0))s ]ζ − f ||Ln

= ||[f ; pn(vj ,k0)/q(n(vj ,k0))s ]ζ −
+∞∑
k′=k0

ak′fk′||Ln

= ||[f ; pn(vj ,k0)/q(n(vj ,k0))s ]ζ −
vj−1∑
k′=k0

ak′fk′ −
+∞∑
k′=vj

ak′fk′ ||Ln

≤ ||[f ; pn(vj ,k0)/q(n(vj ,k0))s ]ζ −
vj−1∑
k′=k0

ak′fk′||Ln + ||
+∞∑
k′=vj

ak′fk′||Ln

≤ ||[f ; pn(vj ,k0)/q(n(vj ,k0))s ]ζ−
vj−1∑
k′=k0

ak′(
+∞∑

n≥vj−1

fn+1,k′−fn,k′)−
vj−1∑
k′=k0

ak′fvj−1,k′||Ln

+||
+∞∑
k′=vj

ak′fk′||Ln

≤ ||[f ; pn(vj ,k0)/q(n(vj ,k0))s ]ζ − (

vj−1∑
k′=k0+1

ak′fvj−1,k′ + ak0fvj−1,k0)||Ln

+||
vj−1∑
k′=k0

ak′(
+∞∑

n≥vj−1

fn+1,k′ − fn,k′)||Ln + ||
+∞∑
k′=vj

ak′fk′ ||Ln

≤ ||ak0gvj ,k0 − ak0fvj−1,k0 ||Ln + ||
vj−1∑
k′=k0

ak′(
+∞∑

n≥vj−1

fn+1,k′ − fn,k′)||Ln

+||
+∞∑
k′=vj

ak′fk′||Ln

≤ ||ak0gvj ,k0 − ak0fvj ,k0 + ak0fvj ,k0 − ak0fvj−1,k0 ||Ln

+||
vj−1∑
k′=k0

ak′(
+∞∑

n≥vj−1

fn+1,k′ − fn,k′)||Ln + ||
+∞∑
k′=vj

ak′fk′ ||Ln

≤ |ak0 | · ||guj ,k0 − fuj ,k0 ||Ln + |ak0 | · ||fuj ,k0 − fuj−1,k0 ||Ln

⁴Property 2 (p2) for the sequence (Nn)n≥0. Here it suffices to demand that it holds lim
n→+∞

nNn−1 =

0.
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+||
vj−1∑
k′=k0

ak′(
+∞∑

n≥vj−1

fn+1,k′ − fn,k′)||Ln + ||
+∞∑
k′=vj

ak′fk′ ||Ln

≤M(||gvj ,k0 − fvj ,k0 ||Lvj + ||fvj ,k0 − fvj−1,k0 ||Lvj )

+||
vj−1∑
k′=k0

ak′(
+∞∑

n≥vj−1

fn+1,k′ − fn,k′)||Ln + ||
+∞∑
k′=vj

ak′fk′ ||Ln

≤ 2MNvj + ||
vj−1∑
k′=k0

ak′(
+∞∑

n≥vj−1

fn+1,k′ − fn,k′)||Ln + ||
+∞∑
k′=vj

ak′fk′||Ln

≤ 2MNvj + ||
+∞∑
k′=vj

ak′fk′||Ln +
vj−1∑
k′=k0

|ak′ |(
+∞∑

n≥vj−1

||fn+1,k′ − fn,k′ ||Ln)

≤ 2MNvj + ||
+∞∑
k′=vj

ak′fk′||Ln +
vj−1∑
k′=k0

|ak′|(
+∞∑

n≥vj−1

Nn)

≤ 2MNvj + ||
+∞∑
k′=vj

ak′fk′ ||Ln +M |vj − k0|
+∞∑

n≥vj−1

Nn. (4.199)

Thus, by choosing (Nn)n≥0 decreasing to 0 fast enough⁵, we obtain the result.

This completes the proof.
■

Remark 4.44. It suffices to set Nn = 1
2n

for every n ∈ N, since the sequence (Nn)n≥0

satisfies all properties (p1), (p2) and (p3).

⁵Property 3 (p3) for the sequence (Nn)n≥0. Here it suffices to demand that it holds

lim
k→+∞

k(
+∞∑

n≥k−1

Nn) = 0.
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5 Universal Laurent series
In this section we deal with compact subsets F of (C ∪ {∞}, χ) which satisfy the fol-
lowing topological condition ([34]).

Condition 5.1. Let Ω = C ∪ {∞} \ F be a domain. Suppose that it holds ∞ ∈ F ;
therefore Ω ⊆ C. We assume that the following conditions hold.

(i) Among the connected components ofF , there exists a distinct sequenceF1,F2, · · ·
such that every Fj is a compact subset of C.

(ii)
F = clχ(

+∞∪
j=1

Fj) (5.1)

where χ is the chordal distance on C ∪ {∞}.

(iii) For every ℓ ≥ 1, there exists a δℓ > 0 such that

χ(Fℓ, Fj) ≡ inf{χ(z, w) : z ∈ Fℓ & w ∈ Fj} > δℓ (5.2)

for every j ≥ 1 with j ̸= ℓ.

(iv) For every j ≥ 1 it holds Fj
o ̸= ∅.

LetΩ ⊆ C∪{∞} be a domain such that its complement F = C∪{∞}\Ω satisfies
Condition (5.1). We assume that ∞ ∈ F ; thus Ω ⊆ C. Moreover, for every ℓ ≥ 1 we
select a cℓ ∈ F o

j and we set Γ = clχ{cℓ : ℓ ≥ 1}. Obviously, the set Γ is a compact subset
of (C ∪ {∞}, χ) but this does not necessarily imply that ∞ ∈ Γ.

We assume that there exists a sequence of compact subsets ofΩ, namely the sequence
{Ln}n≥1, satisfying the following properties.

(0) {Ln}n≥1 is increasing; that is Ln ⊆ Ln+1 for every n ≥ 1.

(1) Ln ∩ Ω = Ln for every n ≥ 1.

(2) Each connected component ofC∪{∞}\Ln contains a connected component of
C ∪ {∞} \ Ω.

(3) For every compact set J ⊆ Ω, there exists an index n ≥ 1 such that J ⊆ Ln.

(4) Every connected component of C ∪ {∞} \ Ln contains a cℓ ∈ F .

Under the above assumptions, we define the space T∞(Ω) as the space of all (ana-
lytic) functions f ∈ H(Ω) such that for every derivative f (ℓ) of f (ℓ ≥ 0) and for every
n ≥ 1, the function f (ℓ)

|(Ln∩Ω) is uniformly continuous onLn∩Ω and therefore it extends
continuously on Ln ∩ Ω = Ln (see also [40]; there the space T∞(Ω) has been defined
without property (4) above).

The space T∞(Ω) ≡ T∞(Ω, {Ln}n≥1) is endowed with the topology induced by the
seminorms

sup
z∈Ln

|f (ℓ)(z)| (5.3)
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(for every ℓ ≥ 0 and for every n ≥ 1). It is known that in this way T∞(Ω) becomes a
Fréchet space. We also consider the set Y ∞(Ω) to be the closure of the set of all rational
functions with poles off

∪+∞
n=1 Ln with respect to the topology of T∞(Ω). Thus, Y ∞(Ω)

is a closed subset of a complete metric space and therefore is a complete metric space
itself.

We also assume that there exists a sequence {Km}m≥1 of compact subsets ofC\(Ω∪
Γ) ⊆ C such that everyKm has connected complement and also it holds Ln ∩Km = ∅
for every n,m ≥ 1.

One could naturally ask whether the sequences {Ln}n≥1 and {Km}m≥1 satisfying
the requested properties may exist or not. For this purpose, we present the following
examples.

Example 5.2. For every ℓ ∈ N we set cℓ = ℓ and let Fℓ = B(cℓ,
1
3
) be the Euclidean disc

with center cℓ = ℓ and radius 1
3
. We set F = clχ(

∪+∞
ℓ=0 Fℓ) =

(∪+∞
ℓ=0 B(cℓ,

1
3
)
)
∪ {∞}

and Ω = C ∪ {∞} \ F . Also, let Γ = clχ{cℓ : ℓ ≥ 0} = N ∪ {∞}. It is obvious that
∞ ∈ F and therefore∞ ̸∈ Ω. It is easy to check that the set F satisfies Condition (5.1).

For each n ∈ N∗ we set Ln = Ω ∩ B(0, n). Again, it is easy to see that the family
{Ln}n≥1 meets the requirements to define the space T∞(Ω).

LetK ⊆ C\(Ω∪Γ)be a compact setwith connected complement such thatK∩Ln =
∅ for every n ≥ 1. By definition of the sequence {Ln}n≥1 it holds that Ω =

∪+∞
n=1 Ln.

The previous relation implies thatK ∩ Ω = ∅ ⇒ K ⊆ C \ (Ω ∪ Γ). In addition, since
K is a compact set, there exists a n ∈ N such thatK ⊆ B(0, n).

It follows thatK ⊆ K(n, s, t), where

K(n, s, t) = B(0, n)∩
{
z ∈ C : d(z,Ω) ≥ 1

s

}
∩
{
z ∈ C∪{∞} : χ(z,Γ) ≥ 1

t

}
(5.4)

for some t, s ∈ N∗. Now, it is easy to check that everyK(n, s, t) is a compact subset
of C and also that it holds

C ∪ {∞} \K(n, s, t) = ({z ∈ C : |z| > n} ∪ {∞})

∪ ({z ∈ C : d(z,Ω) <
1

s
} ∪ {∞})

∪
{
z ∈ C ∪ {∞} : χ(z,Γ) <

1

t

}
. (5.5)

It is easy to see that

n+
1

3
∈ ({z ∈ C : |z| > n} ∪ {∞}) ∩ ({z ∈ C : d(z,Ω) <

1

s
} ∪ {∞}) (5.6)

and also that

n+ 1 ∈ ({z ∈ C : |z| > n} ∪ {∞}) ∩ {z ∈ C ∪ {∞} : χ(z,Γ) <
1

t
}; (5.7)

thus, the union C ∪ {∞} \K(n, s, t) is also a connected set. In other words, each
K(n, s, t) has connected complement.

We also notice that K(n, s, t) ⊆ C \ (Ω ∪ Γ) ⊆ C \ (Ω ∪ Γ). This implies that
K(n, s, t) ∩ Lm = ∅ for every parameter n, s, t and m. An enumeration {Km}m≥1 of
the setsK(n, s, t) yields the result.
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Remark 5.3. In Example 5.2 we have that ∂Ω ⊆
∪+∞

n=1 Ln; in particular, it holds ∂Ω ∩
Ln ̸= ∅ for every n ≥ 1. In addition, Km ∩ ∂Ω = ∅ for everym ≥ 1. It can be easily
seen that in this particular case it holdsT∞(Ω) = A∞(Ω) andY ∞(Ω) = X∞(Ω), where
X∞(Ω) denotes the closure in A∞(Ω) of the set of rational functions with poles off Ω
(see [37] for the relevant definitions). Moreover, in this example it also holdsX∞(Ω) =
A∞(Ω) (see [37]).

Lemma 5.4. (Lemma 2.2 from [11].) LetG be a domain in C, withG ̸= C. We assume
that (C∪{∞}\G) has a finite number of componentsA0, A1, · · · , Ak, for some k ≥ 0
and we fix ∞ ∈ A0, a1 ∈ A1, · · · , ak ∈ Ak. Then there exists a sequence of compact
sets Λm ⊆ C \ ({a1, · · · , ak} ∪ G) with connected complement such that for every
compact setK ⊆ C \ ({a1, · · · , ak} ∪G) with connected complement, there exists an
indexm ≥ 1 such thatK ⊆ Λm.

Example 5.5. Consider the same F, Fℓ, cℓ,Γ and Ω as in Example 5.2. For every n ≥ 0,
we apply Lemma 5.4 for the domain Ωn = Ω ∩ B(0, n + 1

2
). Each C ∪ {∞} \ Ωn

has precisely n + 2 connected components; the sets Fℓ (for 0 ≤ ℓ ≤ n) and the set
C∪{∞}\B(0, n+ 1

2
). Since cℓ ∈ Fℓ for every ℓ ≥ 0 and∞ ∈ C∪{∞}\B(0, n+ 1

2
),

it follows from Lemma 5.4 that there exists a sequence of compact sets {Λn,m}m≥1 with
connected complement, such thatΛn,m ⊆ C\ ({cℓ : 0 ≤ ℓ ≤ n}∪Ωn) for everym ≥ 1
and also for every compact set K ⊆ C \ ({cℓ : 0 ≤ ℓ ≤ n} ∪ Ωn) with connected
complement, there exists an indexm ≥ 1 such thatK ⊆ Λn,m.

At this point, we notice the following: let K ⊆ C \ ({cℓ : 0 ≤ ℓ ≤ n} ∪ Ωn) be
a compact set with connected complement. Then we can split K in two disjoint pieces
K = K1 ∪K2, where K1 and K2 are compact sets with connected complements such
thatK1 ⊆ (

∪n
ℓ=0 Fℓ) \ {cℓ : 0 ≤ ℓ ≤ n} andK2 ⊆ C ∪ {∞} \ B(0, n + 1

2
). We leave

the proof of this claim to the reader.
We split each Λn,m separately in two disjoint compact pieces with connected com-

plements asΛn,m = Λ
(1)
n,m∪Λ

(2)
n,m, whereΛ(1)

n,m ⊆ (
∪n

ℓ=0 Fℓ)\{cℓ : 0 ≤ ℓ ≤ n} for every
m ≥ 1 and Λ

(2)
n,m ⊆ C ∪ {∞} \ B(0, n + 1

2
) for everym ≥ 1. An enumeration of the

set {Λ(1)
n,m : n,m ≥ 1} gives us the family {Km}m≥1.

On the other hand, for everyn ≥ 1, we setLn = {z ∈ Ω : |z| ≤ n and d(z,C\Ω) ≥
1
n
}. Again, it is easy to check that the sequence {Ln}n≥1 satisfies properties (0) − (4).

In addition, for every n,m ≥ 1 it holds Ln ∩Km = ∅, since for every s, t ≥ 1 it holds
Λ

(1)
s,t ⊆ F , while Ln ⊆ Ω.

Remark 5.6. We notice that in Exampe 5.5 it holds Ln ∩ ∂Ω = ∅ for every n ≥ 1 and
also that ∂Ω ⊆

∪+∞
m=1Km. In this case Y ∞(Ω) = H(Ω), whereH(Ω) is the space of all

holomorphic functions in Ω.

Example 5.7. Consider the same F, Fℓ, cℓ,Γ and Ω as in Example 5.2. We consider an
exhausting family {Ln,1}n≥1 of compact sets of Ω (see [38]). By definition, the family
{Ln,1}n≥1 satisfies the following properties.

(i′) Lo
n,1 ⊆ Ln+1,1

for every n ≥ 1.
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(ii′) If J ⊆ Ω is a compact set, then there exists an index n ≥ 1 such that J ⊆ Ln,1.

(iii′) Every connected component ofC∪{∞}\Ln,1 contains a connected component
of C ∪ {∞} \ Ω.

Next, for every n,m ≥ 1 we consider the following sets

Ln,2 = {z ∈ Ω : |z| ≤ n and Imz ≥ 0} (5.8)

Km =
{
z ∈ C \ Ω : |z| ≤ m and Imz ≤ − 1

m

}
(5.9)

We set Ln = Ln,1 ∪ Ln,2 for every n ≥ 1. The families {Ln}n≥1 and {Km}m≥1

consist of compact sets and also it is easy to verify that for every n,m ≥ 1 it holds
Ln ∩ Km = ∅. Now, for every m ≥ 1 we have that it holds C \ Km = Ω ∪ (C \
B(0,m)) ∪ {z ∈ C : Imz > − 1

m
}, where (m + 1)i ∈ Ω ∩ (C \ B(0,m)) and

2
3
i ∈ Ω ∩ (C \ {z ∈ C : Imz > − 1

m
}); therefore the set C \ Km is connected (or

equivalently,Km has connected complement).
In order to complete this example we have to show that the family {Ln}n≥1 satisfies

properties (0)− (4). Properties (0), (1) & (3) are almost immediate. For Properties (2)
and (4) we work as it follows.

For every n ≥ 1 it holdsC∪ {∞} \Ln = (C∪ {∞} \Ln,1)∩ (C∪ {∞} \Ln,2) =

(C∪{∞}\Ln,1)∩[(C∪{∞}\Ω)∪({z ∈ C : Imz < 0}∪{∞})∪(C∪{∞}\B(0, n))],
where the set C ∪ {∞} \ Ln,2 is connected. Thus, every connected component B of
C ∪ {∞} \ Ln is of the form A ∩ C ∪ {∞} \ Ln,2, where A is a connected component
ofC∪ {∞} \Ln,1. It follows thatB contains an entire F o

ℓ and therefore a cℓ and we are
done.

Remark 5.8. In Example 5.7 we have that ∂Ω ⊆
∪

n,m≥1(Ln ∪ Km) and also that for
every n,m ≥ 1 it holds ∂Ω ∩ Ln ̸= ∅ and ∂Ω ∩Km ̸= ∅.

Now, we return to the general case. Let f ∈ Y ∞(Ω) be a function and ℓ ≥ 1.
We consider a closed polygonal curve γℓ ⊆ Ω ∩ C such that Ind(γℓ, cℓ) = −1 and
Ind(γj, cj) = 0 for every j ̸= ℓ. This can be done due to assumption (iii) of Condition
(5.1). For every ℓ ≥ 1, we consider the function

fℓ(z) =
1

2πi

∫
γℓ

f(ζ)

ζ − z
dζ (5.10)

which is well defined, extends holomorhically in C ∪ {∞} \ Fℓ and also satisfies
fℓ(∞) = 0. In addition, each such function fℓ has a Laurent expansion inC∪{∞}\Fℓ

(centered at cℓ ∈ F ) of the following form

fℓ(z) =
+∞∑
m=1

am(fℓ)
1

(z − cℓ)m
. (5.11)

Consider {en}n≥0 an enumeration of the set {am(fℓ) 1
(z−cℓ)m

: ℓ ≥ 1 and m ≥ 0}.
Then, one may consider the operators Tn : Y ∞(Ω) → H0(Ω \ Γn), where Γn is a finite
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subset of {cℓ : ℓ ≥ 1}, to be the sum Tn = e0 + · · · + en and that for every n ≥ 0. We
recall thatH0(U) for an open setU denotes the set of holomorphic functions f : U → C
such that

lim
z→∞
z∈U

f(z) = 0. (5.12)

In our case U = Ω \ Γn contains a neighbourhood of ∞ in C. Then, the family
{Tn}n≥0 satisfies the following conditions.

(5) Each Tn is a continuous function of f in Y ∞(Ω).

(6) For every rational function g ∈ Y ∞(Ω) with poles in {cℓ : ℓ = 1, 2, · · · } there
exists an index k0 ∈ N such that Tk(g) = g for every k ≥ k0.

(7) For every λ ≥ 0, it also holds that T (λ)
n : Y ∞(Ω) → H0(Ω \ Γ), where T (λ)

n

denotes the λth derivative of Tn.

A particular case is when

Tn(f) =
n∑

ℓ=0

Sn(fℓ), (5.13)

where Sn(fℓ) is the nth partial sum of the series

fℓ(z) =
+∞∑
m=1

am(fℓ)
1

(z − cℓ)m
. (5.14)

Our results are valid for general operators {Tn}n≥0 satisfying properties (5) - (7)
above.

We will also use the following lemma (see [34], [15] and [39]).

Lemma 5.9. LetK ⊆ C∪{∞} be a compact set andA ⊆ C∪{∞} be a set intersecting
every connected component of C∪ {∞} \K . Let alsoK ⊆ V ⊆ C∪ {∞} be an open
set. Then, there exists an open setK ⊆ W ⊆ V ⊆ C∪ {∞} such that every connected
component of C ∪ {∞} \W intersects A.

5.1 A generic result of Laurent approximation
We consider an open set Ω ⊆ C and F its complement in C ∪ {∞} that satisfies Con-
dition 5.1. Thus, it holds ∞ ∈ F . Moreover, for every ℓ ≥ 1 we select a cℓ ∈ F o

j and we
set Γ = clχ{cℓ : ℓ ≥ 1}.

We assume that there exists an increasing sequence of compact subsets ofΩ, namely
the sequence {Ln}n≥1, satisfying properties (0) - (4). We fix such a sequence {Ln}n≥1.
Therefore, the spaces T∞(Ω) and Y ∞(Ω) can be defined as in the preliminaries section.

We also assume that there exists a sequence {Km}m≥1 of compact subsets ofC\(Ω∪
Γ) ⊆ C such that everyKm has connected complement and also it holds Ln ∩Km = ∅
for every n,m ≥ 1. We also fix such a sequence {Km}m≥1.
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Definition 5.10 (Definition of the class L). We define a class of functions L ⊆ Y ∞(Ω)
as follows: f ∈ L ⊆ Y ∞(Ω) if and only if for every compact set K = Km for some
m = 1, 2, · · · and for every polynomial p, there exists a sequence (λn)n≥1 ⊆ N so that
the following hold.

(L.1) sup
z∈K

|T (ℓ)
λn

(f)(z)− p(ℓ)(z)| → 0 as n→ +∞

for every ℓ ∈ N.

(L.2) sup
z∈L

|T (ℓ)
λn

(f)(z)− f (ℓ)(z)| → 0 as n→ +∞

for every ℓ ≥ 0 and for every compact set L = Lτ ⊆ Ω, for some τ = 1, 2, · · · .

We now present the main result of this section.
Theorem 5.11. The class L is aGδ - dense subset of Y ∞(Ω) and therefore L ̸= ∅.

Proof. We consider {fj}j≥1 an enumeration of polynomials with coefficients inQ+
iQ.

Next, for every parameter τ,m, j, k, s andN , we consider the following sets

E(Km, fj, k, s,N) = {f ∈ Y ∞(Ω) : sup
z∈Km

|T (ℓ)
k (f)(z)− f

(ℓ)
j (z)| < 1

s

for every ℓ = 0, · · · , N}. (5.15)

F (Lτ , k, s,N) = {f ∈ Y ∞(Ω) : sup
z∈Lτ

|T (ℓ)
k (f)(z)− f (ℓ)(z)| < 1

s

for every ℓ = 0, · · · , N}. (5.16)

Then, one should verify that the following relation holds.

L =
+∞∩
τ=1

+∞∩
m=1

+∞∩
s=1

+∞∩
j=1

+∞∩
N=0

( +∞∪
k=0

E(Km, fj, k, s,N)∩ F (Lτ , k, s,N)
)
. (5.17)

In order to apply Baire’s theorem, we have to prove the following.
Claim 5.12. For every parameter, the set

A(τ,m, s, j, N) ≡
+∞∪
k=0

(E(Km, fj, k, s,N)∩ F (Lτ , k, s,N)) (5.18)

is dense in Y ∞(Ω).
Proof of Claim 5.12 We fix the parameters τ,m, s, j ≥ 1 and N ≥ 0 and we want

to prove that the set A(τ,m, s, j, N) is dense in Y ∞(Ω).
Let f ∈ Y ∞(Ω) and Vf be an open basic neighbourhood of f in Y ∞(Ω). We may

assume that

Vf = {g ∈ T∞(Ω) : sup
z∈Ln1

|f (ℓ)(z)− g(ℓ)(z)| < ε for every ℓ = 0, · · · ,M} ∩ Y ∞(Ω),

(5.19)
whereM ≥ N andLτ ⊆ Ln1 . Our aim is to find a function g ∈ Vf∩A(τ,m, s, j,N).

We notice the following.
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(8) Every connected component of C ∪ {∞} \Km ∪ Ln1 contains also a cℓ ∈ F .

(9) Km ∩ Ln1 = ∅.

From our initial assumptions about the sequence {Ln}n≥1 we have that every con-
nected component of C ∪ {∞} \ Ln1 contains a cℓ.

Let V be a component of C ∪ {∞} \ Ln1 (which is an open set). Then, the set
V ∩Km has connected complement and also the set V \Km is connected. In order to
explain property (8), if C ∪ {∞} \ Ln1 = ∪i∈IAi is the disjoint union of its connected
components, then every connected component of C ∪ {∞} \ (Km ∪ Ln1) is exactly
of the form (C ∪ {∞} \ Km) ∩ Ai = Ai \ Km, where C ∪ {∞} \ Km is connected,
Γ ⊆ C ∪ {∞} \Km and therefore, according to property (7), for every single i ∈ I we
are able to select a cℓ ∈ (C ∪ {∞} \Km) ∩ Ai. Property (9) is immediate.

We consider the functionH : Km ∪ Ln1 → C as follows.

H(z) =

{
fj(z), if z ∈ Km

f(z), if z ∈ Ln1 .
(5.20)

According to Lemma5.9, it is possible to find an openneighbourhoodS1 ⊆ C∪{∞}
ofKm ∪Ln1 , such that every bounded connected component ofC∪{∞}\S1 contains
a cℓ′ ∈ F . This can be done by setting A = {cℓ : ℓ ≥ 1} ∪ {∞}, V = C ∪ {∞}
and K = Km ∪ Ln1 . We apply Runge’s theorem in order to approximate the function
H uniformly on each compact subset of S1 with rational functions with poles only in
{cℓ : ℓ ≥ 1} ∪ {∞}. Since S1 is open, Weierstrass’ theorem implies that the previous
approximation is valid for every finite set of derivatives. Thus, it is possible to find a
rational function g with poles only in {cℓ : ℓ ≥ 1} ∪ {∞} and an index k0 ∈ N such
that Tk(g) = g for every k ≥ k0 and g ∈ Vf ∩A(τ,m, s, j,N). Obviously, g ∈ Y ∞(Ω).

■■

Claim 5.13. For every parameter, the sets E(Km, fj, k, s,N) and F (Lτ , k, s,N) are
open subsets of Y ∞(Ω).

Proof of Claim 5.13 Let {gr}r≥1 ∈ Y ∞(Ω) \ F (Lτ , k, s,N) and g ∈ Y ∞(Ω) such
that gr → g as r → +∞ in Y ∞(Ω). It follows that there exists an ℓ0 ∈ {0, · · · , N} such
that

1

s
≤ sup

z∈Lτ
|T (ℓ0)

k (gr)(z)− g(ℓ0)r (z)|

≤ sup
z∈Lτ

|T (ℓ0)
k (gr)(z)− T

(ℓ0)
k (g)(z)|

+ sup
z∈Lτ

|T (ℓ0)
k (g)(z)− g(ℓ0)(z)|

+ sup
z∈Lτ

|g(ℓ0)(z)− g(ℓ0)r (z)|. (5.21)

Since every T (ℓ0)
k is a continuous function, by taking limits in Relation (5.21) as r →

+∞ it follows that.
1

s
≤ sup

z∈Lτ
|T (ℓ0)

k (g)(z)− g(ℓ0)(z)| (5.22)
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and thus, the set Y ∞(Ω) \ F (Ln, k, s,N) is a closed one in Y ∞(Ω). The proof that
every E(Km, fj, k, s,N) is also an open subset of Y ∞(Ω) is similar and therefore is
omitted.

■■
We apply Baire’s theorem and that completes the proof.

■

Remark 5.14. In the class L the approximation (L.1) is more generally valid for every
setK satisfyingK ⊆ Km for somem ≥ 1; in particular for every compact setK with
connected complement such thatK ⊆ Km for somem ≥ 1.

Indeed, letK be such a compact set and f ∈ L. We consider the following class of
functions.

L(K) =
+∞∩
τ=1

+∞∩
s=1

+∞∩
j=1

+∞∩
N=0

( +∞∪
k=0

E(fj, K, k, s,N)∩ F (Lτ , k, s,N)
)

(5.23)

where for every parameter τ, j, k, s andN , we consider the following sets

E(fj, K, k, s,N) = {f ∈ Y ∞(Ω) : sup
z∈K

|T (ℓ)
k (f)(z)− f

(ℓ)
j (z)| < 1

s

for every ℓ = 0, · · · , N}. (5.24)

F (Lτ , k, s,N) = {f ∈ Y ∞(Ω) : sup
z∈Lτ

|T (ℓ)
k (f)(z)− f (ℓ)(z)| < 1

s

for every ℓ = 0, · · · , N}. (5.25)

It is almost immediate that L ⊆ L(K) because ifK ⊆ Km it follows that

E(fj, Km, k, s,N) ⊆ E(fj, K, k, s,N). (5.26)

The last relation yields the result.

Remark 5.15. Theorem 5.11 in the case of Example 5.2 gives a generic result in the space
A∞(Ω) of holomorphic functions in Ω whose all derivatives extend continuously on
Ω. In that example the universal approximation in not requested at any point of the
boundary. In the case of Example 5.5, Theorem 5.11 gives a generic result inH(Ω) (see
[34]). Finally, in the case of Example 5.7, Theorem 5.11 gives a generic result where the
universal approximation is valid on a part of the boundary and on another disjoint part
of the boundary the universal function is smooth.

77



6 Acknowledgment
I would like to express my gratitude to my supervisor Professor Vassili Nestoridis for his
invaluable guidance, help and support all these years during the creation of this work. I
do not think I can write enough about working with him in a few lines and I address my
most honest “thank you” to him.

I would like to thank my friends and colleagues A. Eskenazis and K. Kavvadias for
the very productive collaborations we had during the creation of the works in [17] and
[23] respectively. I wish them the best for the years to come.

I wish to thank Professors S. Charpentier and E. Maestre for their valuable remarks
and corrections.

In addition, I would like to thank Professors S. Charpentier, G. Costakis, A. Katavo-
los, E.Maestre, I. Papadoperakis and V. Vlachou for accepting to participate in the thesis
committee.

I also would like to thank Professors N. J. Daras, T. Hatziafratis, C. Papadimitropou-
los and N. Tsirivas for their interest in this work.

Of course, apart from all the help I received from the peoplementioned above, which
I highly value and deeply appreciate, I would also like to thank my family, my friends
and Thea for their patience and help, all these years, from the very beginning until today
(and hopefully, for many years to come!).

Lastly, on my behalf as an author, I acknowledge financial support from Program
70/3/13297 from ELKE, University of Athens, Greece for the works in [23] and [25].

78



7 References
[1] Abakumov E.; Nestoridis V. and Picardello M. A. Universal properties of harmonic

functions on trees (J.M.A.A. 445 (2017) No. 2, 1181 - 1187).

[2] Aron R. and Bès J. Hypercyclic Differentiation Operators (Function spaces (Ed-
wardsville, IL, 1998), 39 - 46, Contemp. Math., 232, Amer. Math. Soc., Providence,
RI, 1999).

[3] Baker Jr. G. A. and Graves - Morris P. R. Convergence of rows of the Padé table (J.
Math. Anal. Vol. 57 (1977) 323 - 339).

[4] Bayart F. Linearity of sets of strange functions (Michigan Math. J. 53 (2005), 291 -
303).

[5] Bayart F.; Grosse - Erdmann K. - G.; Nestoridis V. and Papadimitropoulos C. Ab-
stract theory of universal series and applications (Proc. Lond.Math. Soc. (3) 96 (2008)
No. 2, 417 - 463).

[6] Birkhoff G. D. Démonstration d’un théorèm élèmentaire sur les fonctions entiérs
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