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Abstract

Geometric proximity problems is a class of problems in computational geometry that involve

estimation of distances between geometric objects. In this work, we focus on two specific prob-

lems of this class, the computation of r-nets and the near neighbor decision problem on high

dimensional spaces under the Euclidean distance, both of which are powerful tools in com-

putational and metric geometry. Specifically, we present a new randomized algorithm which

efficiently computes high dimensional approximate r-nets with respect to Euclidean distance.

For any fixed ε > 0, the approximation factor is 1 + ε and the complexity is polynomial in the

dimension and subquadratic in the number of points; the algorithm succeeds with high prob-

ability. We improve upon the best previously known (LSH-based) construction of Eppstein et

al. in terms of complexity, by reducing the dependence on ε, provided that ε is sufficiently

small. Moreover, our method does not require LSH but follows Valiant’s approach in designing

a sequence of reductions of our problem to other problems in different spaces, under Euclidean

distance or inner product, for which r-nets are computed efficiently and the error can be con-

trolled. Our result immediately implies efficient solutions to a number of geometric problems

in high dimension, such as finding the (1 + ε)-approximate k-th nearest neighbor distance in

time subquadratic in the size of the input. Additionally, we propose a new and simple data

structure for the c-approximate near neighbor decision problem in high-dimensional spaces us-

ing linear space and sublinear query time for any c > 1: given an LSH family of functions for

some metric space, we randomly project points to vertices of the Hamming cube in dimension

≤ log n, where n is the number of input points. The projected space contains strings which

serve as keys for buckets containing the input points. The query algorithm simply projects the

query point, then examines points which are assigned to the same or nearby vertices on the

Hamming cube. We analyze in detail the query time for some standard LSH families.



Π ερ ίληψ η  

 

Τα γεωμετρικά προβλήματα εγγύτητας είναι μια κλάση προβλημάτων στην υπολογιστική 

γεωμετρία που περιλαμβάνει την εκτίμηση αποστάσεων μεταξύ  γεωμετρικών αντικειμένων. Σε 

αυτή την εργασία, εστιάζουμε σε δύο συγκεκριμένα προβλήματα της κλάσης αυτής, τον 

υπολογισμό των ρ-δικτύων και το πρόβλημα απόφασης του κοντινότερου γείτονα σε χώρους 

υψηλών διαστάσεων υπό την Ευκλείδεια απόσταση, τα οποία αποτελούν ισχυρά εργαλεία στην 

υπολογιστική και τη μετρική γεωμετρία. Συγκεκριμένα, παρουσιάζουμε έναν νέο πιθανοτικό 

αλγόριθμο που υπολογίζει αποδοτικά προσεγγιστικά ρ-δίκτυα ως προς την Ευκλείδια απόσταση. 

Για οποιοδήποτε σταθερό ε>0, ο προσεγγιστικός παράγοντας είναι 1+ε και η πολυπλοκότητα 

πολυωνυμική στη διάσταση και υποτετραγωνική στο πλήθος των σημείων. Ο αλγόριθμος 

επιτυγχάνει με μεγάλη πιθανότητα. Βελτιώνουμε ως προς την πολυπλοκότητα την προηγούμενη 

καλύτερη γνωστή κατασκευή του Eppstein που βασιζόταν στο LSH, μειώνοντας την εξάρτηση 

από το ε δεδομένου ότι το ε είναι επαρκώς μικρό. Η μέθοδός μας δεν χρησιμοποιεί το LSH, αλλά 

αντί αυτού ακολουθεί την προσέγγιση του Valiant, σχεδιάζοντας μια σειρά από αναγωγές του 

προβλήματός μας σε άλλα προβλήματα σε διαφορετικούς χώρους, υπό την Ευκλείδεια απόσταση ή 

το εσωτερικό γινόμενο, για τα οποία τα ρ-δίκτυα υπολογίζονται αποδοτικά και το σφάλμα μπορεί 

να ελεγχθεί. Το αποτέλεσμά μας άμεσα συνεπάγεται αποδοτικές λύσεις σε ένα πλήθος 

γεωμετρικών προβλημάτων σε υψηλές διαστάσεις, όπως η εύρεση της απόστασης του (1+ε)-

προσεγγιστικού κ-κοντινότερου γείτονα σε χρόνο υποτετραγωνικό στο μέγεθος της εισόδου. 

Επιπλέον, προτείνουμε μια νέα και απλή στην κατασκευή βάση δεδομένων για το πρόβλημα 

απόφασης του δ-προσεγγιστικού κοντινότερου γείτονα σε χώρους υψηλών διαστάσεων, 

χρησιμοποιώντας γραμμικό χώρο και υπογραμμικό χρόνο ερώτησης για οποιοδήποτε δ>1: 

δεδομένης μιας οικογένειας LSH συναρτήσεων για έναν μετρικό χώρο, προβάλουμε τυχαία τα 

σημεία σε κόμβους του κύβου Hamming διάστασης ≤ logν, όπου ν είναι ο αριθμός των σημείων 

εισόδου. Ο προβαλλόμενος χώρος περιέχει συμβολοσειρές που λειτουργούν ως κλειδιά για τους 

«κουβάδες» που περιέχουν τα σημεία της εισόδου. Ο αλγόριθμος ερώτησης απλά προβάλει το 

σημείο-ερώτηση κι έπειτα εξετάζει τα σημεία που έχουν αντιστοιχηθεί στον ίδιο ή διπλανό κόμβο 

του κύβου Hamming. Αναλύουμε λεπτομερώς τη χρονική πολυπλοκότητα της ερώτησης για 

κάποιες βασικές οικογένειες LSH. 
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An unexamined life is not worth living.

Socrates
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Chapter 1

Background & State-of-the-Art

1.1 Introduction

Geometric proximity problems is a class of problems in computational geometry that involve

estimation of distances between geometric objects. The computation of geometric and graph

structures based on proximity, such as the Voronoi diagram and the neighborhood graph, as

well as retrieval problems such as the nearest neighbor search and the concept of range search,

are typical problems in this area. Other important geometric proximity problems are the

the Euclidean minimum spanning tree, the computation of the diameter of a set of points in

the Euclidean space and the Euclidean k-center problem. All these problems have various

applications in diverse areas of computer science such as data mining, information retrieval,

statistical data analysis, computer vision and machine learning. Therefore, it is very important

to provide algorithms with strong theoretical guarantees as well as space and time efficiency in

practice.

Despite the extensive research towards providing efficient algorithms for proximity problems,

the curse of dimensionality when dealing with high dimensional data imposes a great barrier

to overcome. In an attempt to overcome this exponential explosion that constitutes the low

dimensional algorithms inefficient and useless in practice, we relax the accuracy of the solution

and aim for more efficient approximation schemes. The most common way to handle high

dimensional data sets is dimension reduction techniques. An important tool towards this direc-

tion is the JohnsonLindenstrauss lemma, which states that for any given pointset there exists a
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low-distortion embedding of the points from high-dimensional into low-dimensional Euclidean

space. Formally,

Definition 1.1 Given a pointset X ⊂ Rd, |X| = n, there exists a distribution over linear maps

f : Rd → Rd′ with d′ = O(log n/ε2) s.t., for any p, q ∈ Rd,

(1− ε)||p− q|| ≤ ||f(p)− f(q)|| ≤ (1 + ε)||p− q||.

This lemma is the cornerstone of dimensionality reduction, since it guarantees that a set of

point in a high-dimensional space can be embedded into a space of much lower dimension while

the distances between the points are nearly preserved.

Another important tool in high dimensional geometry is Locality-Sensitive Hashing (LSH).

LSH is a hash function that aims to maximize the probability of collision for two similar items.

Specifically, LSH hashes input items so that similar items map to the same buckets with high

probability, where the number of the buckets is much lower than the universe of possible input

items. We give the formal definition,

Definition 1.2 Let reals r > 0 (threshold), c > 0 (approximation factor), 1 > p1 > 0 and

1 > p2 > 0 (probabilities). We call a family F of hash functions an LSH family for a metric

space M if, for any x, y ∈M, and h distributed uniformly in F , it holds:

• dM(x, y) ≤ r =⇒ Pr[h(x) = h(y)] ≥ p1,

• dM(x, y) ≥ cr =⇒ Pr[h(x) = h(y)] ≤ p2.

We are usually interested in a family where p1 > p2. This family F is called (r, cr, p1, p2)-

sensitive. There are many renown LSH families, such as the projection on random lines [16]

and the projection with hyperplanes [13] which we will present later in Chapter 2.

In this work, we focus on two specific proximity problems, the computation of r-nets and the

near neighbor decision problem, both of which are powerful tools in computational and metric

geometry. We study these problems on high dimensional spaces under the Euclidean distance

and we present a novel approach for each one of them. On Chapter 2, we focus on nearest

neighbor search problem and we propose a simple and efficient in practice LSH-based approach,
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which we analyze for specific LSH families. On Chapter 3, we examine the efficient computation

of r-nets and we present a new approach to this problem introduced by Valiant [34], not LSH-

based, that actually takes advantage of phenomena that occur when the dimension is high. In

Chapter 4 we conclude with a summary of our contribution and discussion concerning future

research direction.

1.2 Nearest Neighbor Search

The search for a nearest neighbor among points on a specific database is a fundamental com-

putational task that arises in a variety of application areas, such as information retrieval, data

mining, pattern recognition, machine learning, computer vision, and statistical data analysis.

In many of these cases the database points are represented as vectors in some high dimensional

space. Although, dimension reduction techniques are commonly used in these applications,

vector spaces of several hundred dimensions are typical. Due to the curse of dimensionality

that appears in this problem when the dimension is high, we usually aim for an efficient ap-

proximation search, which is often as good as an exact search regarding practical applications.

1.2.1 Problem definition

In this subsection we focus on the problem of Approximate Nearest Neighbor search in Euclidean

or other metric spaces, when the dimension is high; Typically one assumes for dimension

d � log n, where n denotes the number of input data points; in fact, dimension is an input

parameter, so we need to address the curse of dimensionality. Due to known reductions, e.g. [20],

it is apparent that one may focus on designing an efficient data structure for the Approximate

Near Neighbor (ANN) problem instead of directly solving the Approximate Nearest Neighbor

problem. The former is a decision problem, whose output may contain a witness point (as in

Definition 1.3 below), whereas the latter is an optimization question. Here we trade exactness

for efficiency in order to tackle the case of general dimension, where dimension is an input

parameter. The (1 + ε, r)-ANN problem, where c = 1 + ε, is defined as follows.

Definition 1.3 (Approximate Near Neighbor problem) Let (M, dM) be a metric space.
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Given P ⊆ M, and reals r > 0 and ε > 0, build a data structure s.t. for any query q ∈ M,

there is an algorithm performing as follows:

• if ∃p∗ ∈ P s.t. dM(p∗, q) ≤ r, then return any point p′ ∈ P s.t. dM(p′, q) ≤ (1 + ε) · r,

• if ∀p ∈ P , dM(p, q) > (1 + ε) · r, then report “no”.

An important approach for such problems today is Locality Sensitive Hashing (LSH). It has

been designed precisely for problems in general dimension. The LSH method is based on the

idea of using hash functions enhanced with the property that it is more probable to map nearby

points to the same bucket.

Definition 1.4 Let reals r1 < r2 and p1 > p2 > 0. We call a family F of hash functions

(p1, p2, r1, r2)-sensitive for a metric space M if, for any x, y ∈M, and h distributed uniformly

in F , it holds:

• dM(x, y) ≤ r1 =⇒ Pr[h(x) = h(y)] ≥ p1,

• dM(x, y) ≥ r2 =⇒ Pr[h(x) = h(y)] ≤ p2.

1.2.2 Previous work

Let us survey previous work, focusing on methods whose complexity has polynomial, often even

linear, dependence on the dimension. LSH was introduced in [23, 20] and yields data structures

with query time O(dnρ) and space O(n1+ρ + dn). Since then, the optimal value of the LSH

exponent, ρ < 1, has been extensively studied for several interesting metrics, such as `1 and `2.

In a series of papers [23, 16, 29, 6, 30], it has been established that the optimal value for the

Euclidean metric is ρ = 1/c2 ± o(1), and that for the Hamming distance is ρ = 1/c± o(1).

In contrast to the definition above, which concerns data-independent LSH, quite recently the

focus has been shifted to data-dependent LSH. In the latter case, the algorithms exploit the

fact that every dataset has some structure and consequently this approach yields better bounds

for the LSH exponent. Specifically, in [10]they showed that ρ = 1/(2c− 1) for the `1 distance

and ρ = 1/(2c2 − 1) for the `2 distance.
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The data-dependent algorithms, though better in theory, are quite challenging in practice. In

[7], they present an efficient implementation of one part of [10]. Another attempt towards

practicality for a data-dependent algorithm was recently made in [9], where they presented a

new approach based on LSH forests. Typically though, data-independent algorithms, such as

the one proposed in this work, yield better results in practice than data-dependent algorithms.

For practical applications, an equally important parameter is memory usage. Most of the

previous work in the (near) linear space regime focuses on the case that c is greater than 1 by

a constant term. When c approaches 1, these methods become trivial in the sense that query

time becomes linear in n. One such LSH-based approach [31] offers query time proportional

to dnO(1/c), which is sublinear in n only for large enough c > 1. Improvements on practical

aspects of the above result leaded to the novel multi-probe scheme for LSH [27]. Two noteworthy

exceptions are the recently accepted papers [8] and [24], where they achieve near-linear space

and sublinear query time, even for c→ 1+.

Another line of work that achieves linear space and sublinear query time for the Approximate

Nearest Neighbor problem is based on random projections to drastically lower-dimensional

spaces, where one can simply search using tree-based methods, such as BBD-trees [3, 4]. This

method relies on a projection extending the type of projections typically based on the Johnson-

Lindenstrauss lemma. The new projection only ensures that an approximate nearest neighbor

in the original space can be found among the preimages of k approximate nearest neighbors

in the projection. From the practical perspective, similar ideas have been employed in [32].

Random projections which preserve the relative order of points have been also considered in

[26].

1.2.3 Contribution

Towards practicality, we present a new data structure for the c-approximate near neighbor

decision problem in high-dimensional spaces for any c > 1. This problem has been mainly

addressed by Locality Sensitive Hashing (LSH), which offers polynomial dependence on the

dimension, query time sublinear in the size of the dataset, and subquadratic space requirement.

While, in practice, it is important to ensure linear space usage, most previous work in this

regime focuses on the case that c exceeds 1 by a constant term. In this work, we propose a

13



a simple data structure using linear space and sublinear query time for any c > 1: given an

LSH family of functions for some metric space, we randomly project points to vertices of the

Hamming cube in dimension ≤ log n, where n is the number of input points. The projected

space contains strings which serve as keys for buckets containing the input points. The query

algorithm simply projects the query point, then examines points which are assigned to the

same or nearby vertices on the Hamming cube. We analyze in detail the query time for some

standard LSH families.

1.3 R-nets

1.3.1 Problem definition

We study r-nets, a powerful tool in computational and metric geometry, with several appli-

cations in approximation algorithms. An r-net for a metric space (X, ‖·‖), |X| = n and for

numerical parameter r is a subset R ⊆ X such that the closed r/2-balls centered at the points

of R are disjoint, and the closed r-balls around the same points cover all of X. Thus, the

construction of r-nets provides a sketch of the point set for distances that are r or larger. Nets

are a useful tool in presenting point sets hierarchically. In particular, computing nets of differ-

ent resolutions and linking between different levels, leads to a tree like data-structure that can

be used to facilitate many tasks. Nets can be defined in any metric space, but in Euclidean

space a grid can sometimes provide an equivalent representation. Furthermore, the problem of

computing an r-net is closely related to the very well-studied k-center problem.

We define approximate r-nets analogously. Formally,

Definition 1.5 Given a pointset X ⊆ Rd, a distance parameter r ∈ R and an approximation

parameter ε > 0, a (1 + ε)r-net of X is a subset R ⊆ X s.t. the following properties hold:

1. (packing) For every p, q ∈ R, p 6= q, we have that ‖p− q‖2 ≥ r.

2. (covering) For every p ∈ X, there exists a q ∈ R s.t. ‖p− q‖2 ≤ (1 + ε)r.

The only difference between the definition of exact r-nets and approximate r-nets is that we

relax the covering property. This allows us to compute approximate r-nets in high dimensional

14
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Figure 1.1: The construction of r-nets depicted in 4 steps. Left-top: The input point set.
Right-top: All initial points are considered unmarked with balls of radius r centered at them.
Left-bottom: Net points are marked red and every net point covers points in distance at most
r. Any point may be covered by more than one net point. Right-bottom: The set of net points
representing the initial pointset in resolution r.

Euclidean space with time complexity subquadratic in the number of points and polynomial

in the dimension. Our algorithm outperforms the best known algorithm in this setting, by

reducing the dependence on ε and thus, allowing better tradeoff between solution quality and

running time.

1.3.2 Previous Work.

Finding r-nets can be addressed naively by considering initially all points of X unmarked: while

there remains an unmarked point p, the algorithm adds it to R and marks all other points within

distance r from p.(Figure 1) The performance of this algorithm can be improved by using grids

and hashing [19]. However, the complexity remains too large when dealing with big data in

high dimension. The naive algorithm is quadratic in n and the grid approach is in O(dd/2n),

hence it is relevant only for constant dimension d [22]. In [21], they show that an approximate
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net hierarchy for an arbitrary finite metric can be computed in O(2ddimn log n), where ddim is

the doubling dimension. This is satisfactory when doubling dimension is constant, but requires

a vast amount of resources when it is high.

When the dimension is high, there is need for algorithms with time complexity polynomial in d

and subquadratic in n. One approach, which computes (1 + ε)r-nets in high dimension, is that

of [17], which uses Locality Sensitive Hashing (LSH), see, e.g. [6]. For sufficiently small ε > 0,

the resulting time complexity is Õ(dn2−Θ(ε)), where Õ hides polylogarithmic factors.

In general, high dimensional analogues of classical geometric problems have been mainly ad-

dressed by LSH. For instance, the approximate closest pair problem can be trivially solved by

performing n approximate nearest neighbor (ANN) queries. For sufficiently small ε, this costs

Õ(dn2−Θ(ε)) time, due to the complexity factor of an LSH query. Several other problems have

been reduced to ANN queries [18]. Recently, Valiant [33], [34] presented an algorithm for the

approximate closest pair problem in time Õ(dn2−Θ(
√
ε)). This is a different approach in the

sense that while LSH exploits dimension reduction through random projections, the algorithm

of [34] is inspired by high dimensional phenomena. One main step of the algorithm is that of

lifting the pointset up to a higher dimension. Moreover, [2] improved on Valiant’s algorithm

for the approximate closest pair problem by presenting an algorithm with randomized time

near dn+ n2−Θ(ε1/3/ log 1/ε). This approach employs probabilistic polynomial threshold function

representations and improves the exponential dependence on the error ε from square root of ε

to cubic root of ε.

1.3.3 Contribution

In this work, we present a new randomized algorithm which efficiently computes high dimen-

sional approximate r-nets with respect to Euclidean distance. For any fixed ε > 0, the approx-

imation factor is 1 + ε and the complexity is polynomial in the dimension and subquadratic in

the number of points; the algorithm succeeds with high probability. Specifically, we improve

upon the best previously known (LSH-based) construction of Eppstein et al. [17] in terms of

complexity, by reducing the dependence on ε, provided that ε is sufficiently small. Moreover,

our method does not require LSH but follows Valiant’s [34] approach in designing a sequence

of reductions of our problem to other problems in different spaces, under Euclidean distance
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or inner product, for which r-nets are computed efficiently and the error can be controlled.

Our result immediately implies efficient solutions to a number of geometric problems in high

dimension, such as finding the (1 + ε)-approximate k-th nearest neighbor distance in time

subquadratic in the size of the input.
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Chapter 2

Practical linear-space approximate

near neighbors in high dimensions

2.1 Introduction

In this section, we address the problem of designing a data structure that allows efficient search

for approximate near neighbors. More specifically, given a database consisting of a set of vectors

in some high dimensional Euclidean space and a specific search radius, we construct a space-

efficient (linear to the input) data structure that, given a query vector, allows us to search for

a close or nearly close vector in the database with time complexity sublinear to the input.

Towards this end, we specify a random projection from any space endowed with an LSH-able

metric, to the vertices of the Hamming hypercube of dimension log n, {0, 1}logn, where n is

the number of input points. Random projections which map points from a high dimensional

Hamming space to lower dimensional Hamming space have been already used in the ANN

context [25]. The projected space contains strings which serve as keys for buckets containing

the input points. The query algorithm simply projects the query point, then examines points

which are assigned to the same or nearby vertices on the Hamming cube.

Our strategy resembles the multi-probe approach in the sense that after locating the query, we

start searching in ”nearby” buckets. However, in our case, nearby buckets are simply the ones

which are close to each other with respect to the Hamming distance of their keys, whereas in
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the multi-probe case, the nearby buckets are the ones with high probability of success for a

given query. Computing which are the right buckets to explore in the multi-probe approach is

potentially harder than in our case.

The random projection in our algorithm relies on the existence of an LSH family for the input

metric. We study standard LSH families for `2 and `1, for which we achieve query time O(dn1−δ)

where δ = Θ(ε2), ε ∈ (0, 1]. The constants appearing in δ vary with the LSH family, but it

holds that δ > 0 for any ε > 0. The space and preprocessing time are both linear for constant

probability of success, which is important in practical applications.

This approach is illustrated with an open-source implementation [12], that reports on a series

of experiments with n up to 106 and d up to 1000, where results are very encouraging. It is

evident that the proposed algorithm is 8.5–80 times faster than brute force search, depending

on the difficulty of the dataset. Furthermore, the experimental results suggest our algorithm

either is comparable or outperforms the LSH-based library [7] FALCONN in terms of memory

usage and query time.

The rest of the chapter is structured as follows. The next section states our main algorithmic

and complexity results for the (c, r)-ANN problem, assuming an LSH family. We conclude

this section with a discussion on the parameters of the algorithms. In section 2.3 we state our

results for the the Euclidean and Manhattan metrics. We conclude with section 2.4, where we

mention our implementation [12] and discuss the experimental results.

2.2 Data structures

This section introduces our main data structure, and the corresponding algorithmic tools.

We start our presentation with an idea applicable to any metric admitting an LSH-based

construction, aka LSH-able metric.

The algorithmic idea is to apply a random projection from any LSH-able metric to the Hamming

hypercube, as shown in the figure 2.1. Given an LSH family of functions for some metric space,

we uniformly select d′ hash functions, where d′ is specified later. The nonempty buckets defined

by any hash function are randomly mapped to {0, 1}, with equal probability for each bit. Thus,

points are projected to the Hamming cube of dimension d′. Thus, we obtain binary strings
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Figure 2.1: In this figure we illustrate the algorithmic idea of the proposed data structure. At
first, we partition the pointset into buckets using an LSH family and then we randomly project
them to the Hamming hypercube.

serving as keys for buckets containing the input points. The query algorithm projects a given

point, and tests points assigned to the same or nearby vertices on the hypercube. To achieve

the desired complexities, it suffices to choose d′ = log n.

In Algorithms 1 and 2, we present the preprocessing and query algorithms.

The main lemma below describes the general ANN data structure whose complexity and per-

formance depends on the LSH family that we assume is available. The proof details the data

structure construction.

Lemma 2.1 (Main) Given a (p1, p2, r, cr)-sensitive hash family F for some metric (M, dM)

and input dataset P ⊆M, there exists a data structure for the (c, r)-ANN problem with space

O(dn), time preprocessing O(dn), and query time O(dn1−δ + nH((1−p1)/2)), where

δ = δ(p1, p2) =
(p1 − p2)2

(1− p2)
· lge

4
,
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where e denotes the basis of the natural logarithm, and H(·) is the binary entropy function. The

bounds hold assuming that computing dM(.) and computing the hash function cost O(d). Given

some query q ∈M, the building process succeeds with constant probability.

Proof. The first step is a random projection to the Hamming space of dimension d′, for d′ to

be specified in the sequel. We first sample h1 ∈ F . We denote by h1(P ) the image of P under

h1, which is a set of nonempty buckets. Now each nonempty bucket x ∈ h1(P ) is mapped to

{0, 1}: with probability 1/2, set f1(x) = 0, otherwise set f1(x) = 1.

This is repeated d′ times, and eventually for p ∈M, we compute the function

f(p) = (f1(h1(p)), . . . , fd′(hd′(p)))

, where f : P → {0, 1}d′ . Now, observe that

dM(p, q) ≤ r =⇒ E[‖fi(hi(p))− fi(hi(q))‖1] ≤

≤ 0.5(1− p1), i = 1, . . . , d′ =⇒

=⇒ E[‖f(p)− f(q)‖1] ≤ 0.5 · d′ · (1− p1),

dM(p, q) ≥ cr =⇒ E[‖fi(hi(p)− fi(hi(q))‖1] ≥

≥ 0.5(1− p2), i = 1, . . . , d′ =⇒

=⇒ E[‖f(p)− f(q)‖1] ≥ 0.5 · d′ · (1− p2).

We distinguish two cases.

First, consider the case dM(p, q) ≤ r. Let µ = E[‖f(p)− f(q)‖1]. Then,

Pr[‖f(p)− f(q)‖1 ≥ µ] ≤ 1

2
,

since ‖f(p)− f(q)‖1 follows the binomial distribution.

Second, consider the case dM(p, q) ≥ cr. By typical Chernoff bounds, Pr[‖f(p) − f(q)‖1 ≤
1−p1
1−p2 · µ] ≤ exp(−0.5 · µ · (p1 − p2)2/(1− p2)2) ≤ exp(−d′ · (p1 − p2)2/4(1− p2)).
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After mapping the query q ∈ M to f(q) in the d′-dimensional Hamming space we search for

all “near” Hamming vectors f(p) s.t. ‖f(p) − f(q)‖1 ≤ 0.5 · d′ · (1 − p1). This search costs(
d′

1

)
+
(
d′

2

)
+ · · ·+

(
d′

bd′·(1−p1)/2c

)
≤ O(d′ ·2d′·H((1−p1)/2)), where H(·) is the binary entropy function.

The inequality is obtained from standard bounds on binomial coefficients, e.g. [28]. Now,

the expected number of points p ∈ P , for which dM(p, q) ≥ cr but are mapped ”near” q is

≤ n · exp(−d′ · (p1 − p2)2/4(1− p2))). If we set d′ = log n, we obtain expected query time

O(nH((1−p1)/2)) + dn1−δ),

where

δ =
(p1 − p2)2

(1− p2)
· lg e

4
.

If we stop searching after having seen, say 10n1−δ points for which dM(p, q) ≥ cr , then we

obtain the same time with constant probability of success. Notice that ”success” translates to

successful preprocessing for a fixed query q ∈M. The space required is O(dn). �

The value of δ could be somewhat larger, but we have used simplified Chernoff bounds to keep

our exposition simple.

Discussion on parameters. We set the dimension d′ = log n (which denotes the binary

logarithm), since it minimizes the expected number of candidates under the linear space re-

striction. We note that it is possible to set d′ < log n and still have sublinear query time. This

choice of d′ is interesting in practical applications since it improves space requirement. The

number of candidate points is set to n1−δ for the purposes of Lemma 2.1 and under worst case

assumptions on the input. In practice, this should be a user-defined parameter and hence it is

denoted by the parameter StopSearch in Algorithm 2.

2.3 The ANN under Euclidean and Manhattan metrics

In this section, we study some classical LSH families which are also simple to implement. At

first, we examine the case were the distance is the Euclidean metric and we consider two LSH

families, the projection on random lines [16] and the hyperplane LSH [13]. Then, we study
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Algorithm 1 Dolphinn: Preprocessing (data structure)

Input: Metric (M, dM), radius r > 0, approximation factor c > 1, LSH family F = F (c, r),
data set P ⊂M, parameter d′.
Initialize empty hashtable T .
for i = 1 to d′ do

Sample hi ∈ F u.a.r.
for each x ∈ hi(P ) do

Flip a fair coin and assign the result to fi(x).
end for

end for
For all p ∈ P , f(p) = (f1(h1(p)), . . . , fd′(hd′(p))).
For all p ∈ P , add p to the bucket of T with key f(p).

the approximate near neighbor problem under the l1 metric, where we consider an LSH family

whose buckets correspond to cells of a randomly shifted grid [5].

2.3.1 The `2 case

In this subsection, we consider the (c, r)-ANN problem when the dataset consists of n points

P ⊂ Rd, the query is q ∈ Rd, and the distance is the Euclidean metric.

We may assume, without loss of generality, that r = 1, since we can uniformly scale (Rd, ‖ · ‖2).

We shall consider two LSH families, for which we obtain slightly different results. The first is

based on projecting points to random lines, and it is the algorithm used in our implementation,

see Section 2.4. The second family relies on reducing the Euclidean problem to points on the

sphere, and then partitioning the sphere with random hyperplanes.

Project on random lines

Let p, q two points in Rd and η the distance between them. Let w > 0 be a real parameter,

and let t be a random number distributed uniformly in the interval [0, w]. In [16], they present

the following LSH family. For p ∈ Rd, consider the random function

h(p) =

⌊
〈p, v〉+ t

w

⌋
, p, v ∈ Rd, (2.1)
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Algorithm 2 Dolphinn: Query Algorithm

Input: Metric (M, dM), LSH family F , data set P ⊂M, parameter d′, integer StopSearch,
query q. (We assume that this algorithm has access to the ANN data structure created in
Algorithm 1)
Output: Point p ∈ P or ”no”
for i = 1 to d′ do

if fi(hi(q)) is not defined in Algorithm 1 then
Flip a fair coin and assign the result to fi(hi(q)).

else
Compute fi(hi(q)).

end if
end for
i=0
for each x in f(P ) s.t. ‖x− f(q)‖1 ≤ 0.5 · d′ · (1− p1) do

for each point p inside the bucket with key x do
if dM(p, q) ≤ c · r then

return p.
end if
i← i+ 1
if i > StopSearch then

return ”no”.
end if

end for
end for
return ”no”

where v is a vector randomly distributed with the d-dimensional normal distribution. This

function describes the projection on a random line, where the parameter t represents the random

shift and the parameter w the discretization of the line. For this LSH family, the probability

of collision is

α(η, w) =

∫ w

t=0

2√
2πη

exp
(
− t2

2η2

)(
1− t

w

)
dt.

Lemma 2.2 Given a set of n points P ⊆ Rd, there exists a data structure for the (c, r)-ANN

problem under the Euclidean metric, requiring space O(dn), time preprocessing O(dn), and

query time O(dn1−δ + n0.9), where

δ ≥ 0.03 (c− 1)2.

Given some query point q ∈ Rd, the building process succeeds with constant probability.
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Proof. In the sequel we use the standard Gauss error function, denoted by erf(·). For

probabilities p1, p2, it holds that

p1 = α(1, w) =

∫ w

t=0

2√
2π

exp
(
− t2

2

)(
1− t

w

)
dt =

erf
( w√

2

)
−
√

2

π

1

w

(
1− exp

(
− w2

2

))
,

and also that

p2 = α(c, w) =

∫ w

t=0

2√
2πc

exp
(
− t2

2c2

)(
1− t

w

)
dt =

= erf
( w√

2c

)
−
√

2

π

c

w

(
1− exp

(
− w2

2c2

))
.

The LSH scheme is parameterized by w. One possible value is w = 3, as we have checked on a

computer algebra system. On the other hand, w = c gives similar results, and they are simpler

to obtain. In particular, we have

p1 − p2 = erf
( c√

2

)
−
√

2

π

1

c

(
1− exp

(
− c2

2

))
−

−erf
( 1√

2

)
+

√
2

π

(
1− exp

(
− 1

2

))
.

We shall prove that, given w = c, for c ∈ (1, 2], it holds that p1 − p2 >
5(c−1)

21
. Let us define

g(c) = p1 − p2 −
5(c− 1)

21
= erf

( c√
2

)
− erf

( 1√
2

)
−

−
√

2

π

1

c

(
1− exp

(
− c2

2

))
+

√
2

π

(
1− exp

(
− 1

2

))
− 5(c− 1)

21
,

c ∈ (1, 2]. Using elementary calculus, it is easy to show that g(c) is concave over c ∈ (1, 2].

Also, g(1) = 0 and g(2) > 0, thus ∀c ∈ (1, 2], g(c) > 0 and consequently p1 − p2 >
5(c−1)

21
. In

addition, w = c implies 1− p2 = 1− erf
(

1√
2

)
+
√

2
π

(
1− exp(−1

2
)
)
< 0.64, and H

(
1−p1

2

)
< 0.9.

Hence, for w = c and c ∈ (1, 2], δ > 0.03(c− 1)2. �
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Hyperplane LSH

This section reduces the Euclidean ANN to an instance of ANN for which the points lie on a

unit sphere. The latter admits an LSH scheme based on partitioning the space by randomly

selected halfspaces.

In Euclidean space Rd, let us assume that the dimension is d = O(log n · log log n), since

one can project points à la Johnson-Lindenstrauss [15], and preserve pairwise distances up to

multiplicative factors of 1±o(1). Then, we partition Rd using a randomly shifted grid, with cell

edge of length O(
√
d) = O((log n · log log n)1/2). Any two points p, q ∈ Rd for which ‖p−q‖2 ≤ 1

lie in the same cell with constant probability. Let us focus on the set of points lying inside one

cell. This set of points has diameter bounded by O((log n · log log n)1/2). Now, a reduction of

[34], reduces the problem to an instance of ANN for which all points lie on a unit sphere Sd−1,

and the search radius is roughly r′ = Θ((log n · log log n)−1/2). These steps have been also used

in [8], as a data-independent reduction to the spherical instance.

Let us now consider the LSH family introduced in [13]. Given n unit vectors P ⊂ Sd−1, we

define, for each q ∈ Sd−1, hash function h(q) = sign〈q, v〉, where v is a random unit vector.

Obviously, Pr[h(p) = h(q)] = 1 − θ(p,q)
π

, where θ(p, q) denotes the angle formed by the vectors

p 6= q ∈ Sd−1. Instead of directly using the family of [13], we employ its amplified version,

obtained by concatenating k ≈ 1/r′ functions h(·), each chosen independently and uniformly

at random from the underlying family. The amplified function g(·) shall be fully defined in the

proof below. This procedure leads to the following.

Lemma 2.3 Given a set of n points P ⊂ Rd, there exists a data structure for the (c, r)-ANN

problem under the Euclidean metric, requiring space O(dn), time preprocessing O(dn), and

query time O(dn1−δ + n0.91), where

δ ≥ 0.05 ·
(c− 1

c

)2

.

Given some query q ∈ Rd, the building process succeeds with constant probability.

Proof. We exploit the reduction described above that translates the Euclidean ANN to a

spherical instance of ANN with search radius r′ = Θ((log n · log log n)−1/2). The latter is
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handled by a hyperplane LSH scheme based on [13] as detailed immediately below.

Let us denote by F the aforementioned LSH family of [13]. We build a new (amplified) family

of functions Gk = {g(x) = (h1(x), . . . , hk(x)) : i = 1 . . . k, hi ∈ F )}. Now, obviously, for any

two unit vectors p 6= q, we have

Prg∈G[g(p) = g(q)] =
(

1− θ(p, q)

π

)k
.

Hence, ‖p− q‖2 ≤ r′ =⇒ 2 sin
(
θ(p,q)

2

)
≤ r′ =⇒ θ(p, q) ≤ 2 arcsin

(
r′

2

)
= θr, which defines θr.

Moreover, ‖p− q‖2 ≥ cr′ =⇒ 2 sin
(
θ(p,q)

2

)
≥ cr′ =⇒ θ(p, q) ≥ 2 arcsin

(
cr′

2

)
.

By using elementary calculus, it is easy to prove that 2 arcsin
(
cr′

2

)
≥ 2c · arcsin

(
r′

2

)
=⇒

θ(p, q) ≥ c · θr. Hence, for k = bπ/θrc and since r′ = Θ((log n · log log n)−1/2) =⇒ θr = o(1),

p1 = Pr[g(p) = g(q) | ‖p− q‖2 ≤ r] ≥
(

1− θr
π

)k
≥

≥ exp(− π

(π − θr)
) ≥ 1

e1+o(1)
,

p2 = Pr[g(p) = g(q) | ‖p− q‖2 ≥ c · r] ≤
(

1− c · θr
π

)k
≤

≤ exp(−cθr
π
· ( π
θr
− 1)) ≤ 1

c · e1−o(1)
.

Now applying Lemma 2.1 yields

δ ≥ 1

e2+o(1)
·
(

1− eo(1)

c

)2

· 1

1− (c · e)−1
· log(e)

4
≥

≥ 0.059 ·
(

1− 1

c

)2

, for c ∈ (1, 2].

The space required is O(dn + n(d′ + k)) where d′ is defined in Lemma 2.1. Since k � d, and

d′ � d the total space is O(dn). Notice also that H(1−p1
2

) ≤ 0.91. �

The data structure of Lemma 2.3 provides slightly better query time than that of Lemma 2.2,

when c is small enough.
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2.3.2 The `1 case

In this section, we study the (c, r)-ANN problem under the `1 metric. The dataset consists

again of n points P ⊂ Rd and the query point is q ∈ Rd.

For this case, let us consider the following LSH family, introduced in [5]. A point p is hashed

as follows:

h(p) =
(⌊p1 + t1

w

⌋
,

⌊
p2 + t2
w

⌋
, . . . ,

⌊
pd + td
w

⌋)
,

where p = (p1, p2, . . . , pd) is a point in P , w = αr, and the ti are drawn uniformly at random

from [0, . . . , w). Buckets correspond to cells of a randomly shifted grid.

Now, in order to obtain a better lower bound, we employ an amplified hash function, defined

by concatenation of k = α functions h(·) chosen uniformly at random from the above family.

Lemma 2.4 Given a set of n points P ⊆ Rd, there exists a data structure for the (c, r)-ANN

problem under the `1 metric, requiring space O(dn), time preprocessing O(dn), and query time

O(dn1−δ + n0.91), where

δ ≥ 0.05 ·
(c− 1

c

)2

.

Given some query point q ∈ Rd, the building process succeeds with constant probability.

Proof. We denote by F the previously introduced LSH family of [5], which is (1 − 1
α
, 1 −

c
c+α

, 1, c)-sensitive. We build the amplified family of functions Gk = {g(x) = (h1(x), . . . , hk(x)) :

i = 1, . . . , k, hi ∈ F )}. Setting α = k = log n, we have:

p1 =
(

1− 1

α

)k
=
(

1− 1

log n

)logn

≥

≥
(

exp
(
− 1

log n− 1

))logn

≥ 1

e1+o(1)
,

p2 =
(

1− c

α + c

)k
=
(

1− c

log n+ c

)logn

.

Hence,

p2 ≥ exp(−c) ≥ 1

e · (2c− 1)
,
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and

p2 ≤ exp
(
− c

1 + c
logn

)
= exp

(
− c

1 + o(1)

)
≤

≤ exp
(
− c+ o(1)

)
≤ eo(1)

ec
.

Therefore, for n large enough, it holds that

δ =

(
p1 − p2

)2(
1− p2

) · log e

4
≥ 1

e2+o(1)
·

(1− 1
c
)
2

1− 1
e(2c−1)

· log e

4
≥

≥ 0.055 · (1− 1

c
)2, for c ∈ (1, 2].

Notice that H((1− p1)/2) ≤ 0.91. �

2.4 Implementation and experimental results

The algorithm presented has been implemented. Our C++ library, named Dolphinn is available

online 1. The project is open source, under the BSD 2-clause license.

Our implementation is based on the algorithm from Subsection 2.3.1 and supports similarity

search under the Euclidean metric. We compare Dolphinn with the state-of-the-art LSH-based

FALCONN2 library, and the straightforward brute force approach. More information about the

parameters of the implementation are available in [12], where important implementation issues

focusing on efficiency are discussed and the experimental results are thoroughly analyzed.

Lets summarize the experimental results in order to illustrate the contribution of our imple-

mentation. We examine build and search times, as well as memory consumption. Dolphinn

and FALCONN, both, have equal memory consumption. The preprocessing time of Dolphinn has

a linear dependence in n and d, as expected. Moreover, Dolphinn is observed to be competitive

with FALCONN when employing a specific LSH family. In general, our algorithm is significantly

faster than brute force as expected, and scales well, namely sublinearly in n and linearly in

d. Last but not least, Dolphinn either outperforms or has comparable performance with the

implementation of FALCONN, regarding query times.

1https://github.com/Anonymous-ICML/Dolphinn
2https://falconn-lib.org/
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Chapter 3

High-dimensional approximate r-nets

3.1 Introduction

In this section, we present a new randomized algorithm that computes approximate r-nets in

time subquadratic in n and polynomial in D, and improves upon the complexity of the best

known algorithm. Our method does not employ LSH and, with probability 1 − o(1), returns

R ⊆ X, which is a (1 + ε)r-net of X.

We reduce the problem of an approximate r-net for arbitrary vectors (points) under Euclidean

distance to the same problem for vectors on the unit sphere. Then, depending on the magnitude

of distance r, either an algorithm handling “small” distances or an algorithm handling “large”

distances is called. These algorithms reduce the Euclidean problem of r-nets on unit vectors to

finding an r-net for unit vectors under inner product (Section 3.3). This step requires that the

multiplicative 1 + ε approximation of the distance corresponds to an additive cε approximation

of the inner product, for suitable constant c > 0.

We convert the vectors having unit norm into vectors with entries {−1,+1} (Section 3.2). This

transformation is necessary in order to apply the Chebyshev embedding of [34], an embedding

that damps the magnitude of the inner product of “far” vectors, while preserving the magnitude

of the inner product of “close” vectors. For the final step of the algorithm, we first apply a

procedure that allows us to efficiently compute (1+ε)-nets when the number of “small” distances

is large. Then, we apply a modified version of the Vector Aggregation algorithm of [34] that
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exploits fast matrix multiplication in order to achieve the desired running time.

In short, we extend Valiant’s framework [34] and compute r-nets in time Õ(dn2−Θ(
√
ε)), thus

improving on the exponent of the LSH-based construction in [17], when ε is sufficiently small.

This improvement by
√
ε in the exponent is the same as the complexity improvement obtained

in [34] over the LSH-based algorithm for the approximate closest-pair problem.

Our study is motivated by the observation that computing efficiently an r-net leads to efficient

solutions for several geometric problems, specifically by means of approximation algorithms.

In particular, our extension of r-nets in high dimensional Euclidean space can serve in the

framework of [22]. This framework has many applications, notably to computing the distance

to the k-th nearest neighbor, for which we obtain a 1 + ε approximation, in time Õ(dn2−Θ(
√
ε)).

Other applications may include preprocessing for finding the approximate nearest neighbor to

ANN, see e.g. [3].

This work offers a complete version of our results, initially presented in [11], including full

proofs and discussion. Section 3.2 presents an algorithm for computing an approximate net

with respect to the inner product for a set of unit vectors. Section 3.3 translates the problem of

finding r-nets under Euclidean distance to the same problem under inner product. In Section

3.4, we discuss applications of our construction and possible future work.

Throughout this work, we use ‖·‖ to denote the Euclidean norm ‖·‖2.

3.2 Points on a sphere under inner product

In this section, we design an algorithm for constructing an approximate ρ-net of vectors on the

sphere under inner product. To that end, we reduce the problem to constructing an approximate

net under absolute inner product for vectors that lie on the vertices of a unit hypercube.

Since our ultimate goal is a solution to computing r-nets with respect to Euclidean distance,

we allow additive error in the approximation, which under certain assumptions, translates to

multiplicative error in Euclidean distance. In the following, we define rigorously the notion of

approximate ρ-nets under inner product.
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Figure 3.1: The red vector is ρ-correlated with the black vectors, but is not ρ-correlated with
the blue points on the equator, since it is almost orthogonal to them.

Definition 3.1 For any X ⊂ Sd−1, an approximate ρ-net for (X, 〈·, ·〉) , with additive approx-

imation parameter ε > 0, is a subset C ⊆ X which satisfies the following properties:

• for any two p 6= q ∈ C, 〈p, q〉 < ρ, and

• for any x ∈ X, there exists p ∈ C s.t. 〈x, p〉 ≥ ρ− ε.

One relevant notion is that of ε-kernels [1]. In ε-kernels, one is interested in finding a subset

of the input pointset, which approximates its directional width. Such constructions have been

extensively studied when the dimension is low, due to their relatively small size.

3.2.1 Crude approximate nets.

In this subsection we develop our basic tool, which is based on the Vector Aggregation Algorithm

by [34]. This tool aims to compute approximate ρ-nets with multiplicative error, in contrast

with our final goal for this section, namely to bound additive error. Moreover, in the context of

this subsection, two vectors are close to each other when the magnitude of their inner product

is large, and two vectors are far from each other when the magnitude of their inner product is

small. Let |〈·, ·〉| denote the magnitude of the inner product of two vectors.

Definition 3.2 For any X = [x1, . . . , xn], X ′ = [x′1, . . . , x
′
n] ⊂ Rd×n, a crude approximate ρ-net

for (X,X ′, |〈·, ·〉|), with multiplicative approximation factor c > 1, is a subset C ⊆ [n] which

satisfies the following properties:
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• for any two i 6= j ∈ C, |〈xi, x′j〉| < cρ, and

• for any i ∈ [n], there exists j ∈ C s.t. |〈xi, x′j〉| ≥ ρ.

In Figure 3.1, we illustrate the notion of ρ-correlated vectors. Vector Aggregation follows the

exposition of [34]. The main difference is that, instead of the “compressed” matrix ZTZ, we use

the form XTZ, where Z derives from vector aggregation. Both forms encode the information

in the Gram matrix XTX. The matrix XTZ is better suited for our purposes, since each row

corresponds to an input vector instead of an aggregated subset; this extra information may be

useful in further problems.

Vector Aggregation

Input: X = [x1, . . . , xn] ∈ Rd×n, X ′ = [x′1, . . . , x
′
n] ∈ Rd×n, α ∈ (0, 1), τ > 0.

Output: n× n1−α matrix W and random partition S1, . . . , Sn1−α of {x′1, . . . , x′n}.

• Randomly partition {x′1, . . . , x′n} into n1−α disjoint subsets, each of size nα , denoting

the sets S1, . . . , Sn1−α .

• For each i = 1, 2, . . . , 78 log n:

– Select n coefficients q1, . . . , qn ∈ {−1,+1} at random.

– Form the d × n1−α matrix Zi with entries zij,k =
∑

l:x′l∈Sk
ql · x′j,l, where x′j,l are

entries of X ′.

– W i = XTZi.

• Define the n×n1−α matrix W with wi,j = quartile(|w1
i,j|, . . . |w

78 logn
i,j |) (quartile is the

smallest value greater than the lowest 75% of the entries).

• Output W and S1, . . . , Sn1−α .

Theorem 3.1 Let X = [x1, . . . , xn] ∈ Rd×n, X ′ = [x′1, . . . , x
′
n] ∈ Rd×n, α ∈ (0, 1), τ > 0 the

input of Vector Aggregation. Then, the algorithm returns a matrix W of size n× n1−α and
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a random partition S1, . . . , Sn1−α of {x′1, . . . , x′n}, which with probability 1 − O(1/n3) satisfies

the following:

• For all j ∈ [n] and k ∈ [n1−α], if ∀u ∈ Sk, |〈xj, u〉| ≤ τ then |wj,k| < 3 · nατ .

• For all j ∈ [n] and k ∈ [n1−α] if ∃u ∈ Sk, |〈xj, u〉| ≥ 3nατ then |wj,k| ≥ 3 · nατ .

Moreover, the algorithm runs in time Õ(dn+ n2−α +MatrixMul(n× d, d× n1−α)).

The following anti-concentration Lemma is crucial for the proof of Theorem 3.1, since it argues

that if an entry of W i contains a contribution from a pair of columns with large inner product,

then with reasonable probability over the random choice of q1, . . . , qn this entry will not be too

small. In other words, after applying Vector Aggregation algorithm, we can still distinguish

pairs of vectors which were initially correlated from pairs of vectors which were uncorrelated

in the first place. The proof of the Lemma shows that by randomly flipping the signs of each

vector we can achieve pairwise independence between the inner products of different pairs of

vectors, thus roughly preserving the magnitude of inner products between vectors after the

aggregation step.

Lemma 3.2 (Anti-concentration) Let q1, . . . , qt ∈ {−1, 1} be chosen independently and uni-

formly at random, and let a1, . . . , at ∈ R s.t. |a1| = maxi |ai|. Then,

Pr[|
t∑
i=1

qi · ai| ≥ |a1|] ≥ 1/2.

Proof. Consider a given assignment for q2, . . . , qt. Then if

t∑
i=2

qi · ai = 0 =⇒ |
t∑
i=1

qi · ai| = |q1 · a1| = |a1|.

Otherwise,

Pr[|
t∑
i=1

qi · ai| ≥ |a1|] ≥
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≥ Pr[sign(q1 · a1) = sign(
t∑
i=2

qi · ai = 0)] = 1/2.

�

Proof of Theorem 3.1. Notice that

wij,k =
∑
x′i∈Sk

qi · 〈xj, x′i〉

and since q1, . . . , q|Sk| ∈ {−1, 1} are independent and chosen uniformly at random, we obtain

E[wij,k] = 0.

If ∀u ∈ Sk, |〈xj, u〉| ≤ τ , then

V ar(wij,k) = E[(wij,k)
2] ≤ n2ατ 2

By Chebyshev’s inequality:

Pr[|wij,k| ≥ 3 · nατ ] ≤ 1/9

With m repetitions, the number of successes N , that is the number of indices i for which

|wij,k| ≤ 3 · nατ , follows the binomial distribution. Hence,

Pr[N ≤ 3m/4] ≤ exp(−m/26).

We consider as bad event the event that for some j, k, more than 25% of the repetitions fail,

that is |wij,k| ≥ 3 · nατ . By the union bound, this probability is ≤ n2−α · exp(−m/26), which

for m ≥ 78 log n implies a probability of failure ≤ 1/n3.

Now consider xj, and x′l ∈ Sk s.t. |〈xj, x′l〉| ≥ 3 · nατ , then by Lemma 3.2, with probability

1/2, |wij,k| ≥ 3 · nατ . We consider as bad event the event that for j, l, more than 75% of the

repetitions fail, that is |wij,k| ≤ 3 · nατ . Hence,

Pr[N ≤ m/4] ≤ exp(−m/8),
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which for m ≥ 78 log n implies a probability of failure ≤ 1/n3.

The runtime of the algorithm is dominated, up to polylogarithmic factors, by the computation

of matrix Z, taking time O(dn), the computation of matrix W , taking time n2−a, or the

computation of the product W i, taking time MatrixMul(n× d, d× n1−a). �

For the case of pointsets with many “small” distances, we rely crucially on the fact that the

expected number of near neighbors for a randomly chosen point is large. So, if we iteratively

choose random points and delete these and their neighbors, we will end up with a pointset

which satisfies the property of having sufficiently few “small” distances. Then, we apply Vector

Aggregation.

Crude ApprxNet

Input: X = [x1, . . . , xn] ∈ Rd×n, X ′ = [x′1, . . . , x
′
n] ∈ Rd×n, α ∈ (0, 1), τ > 0.

Output: C ′ ⊆ [n], F ′ ⊆ [n].

• C ← ∅, F1 ← ∅, F2 ← {x1, . . . , xn}

• Repeat n0.5 times:

– Choose a column xi uniformly at random.

– C ← C ∪ {xi}.

– Delete column i from matrix X and column i from matrix X ′.

– Delete each column k from matrix X, X ′ s.t. |〈xi, x′k〉| ≥ τ .

– If there is no column k from matrix X s.t. |〈xi, x′k〉| ≥ τ , then F1 ← F1 ∪ {xi}

• Run Vector Aggregation with input X, X ′, α, τ and output W , S1, . . . , Sn1−α .

• For each of the remaining rows i = 1, . . .:

– For any |wi,j| ≥ 3nατ :

∗ If more than n1.7 times in here, output ”ERROR”.
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∗ Compute inner products between xi and vectors in Sj. For each vector

x′k ∈ Sj s.t. k 6= i and |〈xi, x′k〉| ≥ τ , delete row k and F2 ← F2\{xi}.

– C ← C ∪ {xi}

• Output indices of C and F ← {F1 ∪ F2}.

Theorem 3.3 On input X = [x1, . . . , xn] ∈ Rd×n, X ′ = [x′1, . . . , x
′
n] ∈ Rd×n, α ∈ (0, 1), τ > 0,

Crude ApprxNet, computes a crude 3nα-approximate τ -net for X, X ′, following the notation

of Definition 3.2. The algorithm costs time:

Õ(n2−α + d · n1.7+α +MatrixMul(n× d, d× n1−α)),

and succeeds with probability 1−O(1/n0.2). Additionally, it outputs a set F ⊆ {x1, . . . , xn} with

the following property: {xi | ∀j 6= i |〈x′j, xi〉| < τ} ⊆ F ⊆ {xi | ∀j 6= i |〈x′j, xi〉| < 3naτ}.

Proof. We perform n0.5 iterations and for each, we compare the inner products between the

randomly chosen vector and all other vectors. Hence, the time needed is O(dn1.5).

In the following, we denote by Xi the number of vectors which have “large” magnitude of the

inner product with the randomly chosen point in the ith iteration. Towards proving correctness,

suppose first that E[Xi] > 2n0.5 for all i = 1, . . . n0.5. The expected number of vectors we delete

in each iteration of the algorithm is more than 2n0.5 + 1. So, after n0.5 iterations, the expected

total number of deleted vectors will be greater than n. This means that if the hypothesis holds

for all iterations we will end up with a proper net.

Now suppose that there is an iteration j where E[Xj] ≤ 2n0.5. After all iterations, the number

of “small” distances are at most n1.5 on expectation. By Markov’s inequality, when the Vector

Aggregation algorithm is called, the following is satisfied with probability 1− n−0.2 :

|{(i, k) | |〈xi, x′k〉| ≥ τ, i 6= k}| ≤ n1.7.

By Theorem 3.1 and the above discussion, the number of entries in the matrix W that we need
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to visit is at most n1.7. For each entry, we perform brute force which costs dnα.

Now notice that the first iteration stores centers c and deletes all points p for which |〈c, p〉| ≥ τ .

Hence, any two centers c, c′ satisfy |〈c, c′〉| < τ . In the second iteration, over the columns of W ,

notice that by Theorem 3.1, for any two centers c, c′ we have |〈c, c′〉| < 3nατ. �

Notice that the constants in the analysis above was chosen to facilitate our purposes. No further

attempts were made towards optimization.

3.2.2 Approximate inner product nets.

In this subsection, we show that the problem of computing ρ-nets for the inner product of unit

vectors reduces to the less natural problem of Definition 3.2, which refers to the magnitude of

the inner product.

The first step consists of mapping the unit vectors to vectors in {−1, 1}d′ . The mapping is

essentially Charikar’s LSH scheme [13] and we include it for reasons of completeness (Make

Uniform). Then, we apply the Chebyshev embedding of [34] in order to achieve gap amplifica-

tion, and finally we call algorithm Crude ApprxNet, which will now return a proper ρ-net with

additive error.

Make Uniform

Input: An d× n matrix X with entries xi,j ∈ R whose columns have unit Euclidean norm

and δ ∈ (0, 1).

Output: An d′ × n matrix Y with entries yi,j ∈ {±1}, where d′ = 10 logn
δ2

.

• For each i = 1, · · · , d′, select a random unit vector u ∈ Rd, and let w = utX. For all

j = 1, · · · , n set yi,j = sign(wj).

The following theorem describes the performance of the algorithm that converts the set of unit

vectors into the set of vectors with entries in {−1, 1}d′ . This transformation is necessary in

order to apply Chebyshev embedding and ensures that the entries of the vectors returned by the
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embedding have the same magnitudes. Then, we can apply Chernoff bounds to guarantee that

the inner products between the returned vectors are concentrated about their expectations.

Theorem 3.4 [34] There exists an algorithm, Make Uniform, with the following properties.

Let d′ = O( logn
δ2

) and Y ∈ Rd′×n denote its output on input X, and δ, where X is a matrix

whose columns have unit norm. Then, with probability 1− o(1/n2), for all pairs i, j ∈ [n], the

following difference has an absolute value bounded as follows:

∣∣∣〈Yi, Yj〉
d′

− 1 + 2 · cos−1(〈Xi, Xj〉)
π

∣∣∣ ≤ δ,

where Xi, Yi denote the i-th column of X and Y respectively. Additionally, the runtime of the

algorithm is O(dn log n/δ2).

Next, we present the theorem describing the performance of Chebyshev embedding, while we

include the algorithm Chebyshev Embedding to facilitate the reader; a randomized embedding

that reduces the magnitude of the inner product between “far away” vectors, while preserving

the magnitude of the inner product between “close” vectors. The statement is taken from [34,

Prop.6], except that we additionally establish an asymptotically better probability of success.

Before proceeding to the proof, we define the Chebyshev polynomial of the first kind. The

proof is the same, but since we claim stronger guarantees on success probability, we include the

complete proof.

Definition 3.3 Let

Tq(x) =
(x−

√
x2 − 1)q + (x+

√
x2 − 1)q

2
,

be the qth Chebyshev polynomial of the first kind.

Chebyshev Embedding

Input: Two d × n matrices X,X ′ with entries xi,j ∈ {±1}, real numbers τ−, τ+ ∈

[−1, 1]withτ− < τ+ and integers q and d′.

Output: Two d′ × n matrices Y, Y ′ with entries yi,j ∈ {±1}.
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• Let Tq denote the degree q Chebyshev polynomial (of the first kind), with roots at

r1, · · · , rq ∈ (0, 1).

• Each of the d′ rows of the output matrices Y, Z are populated as follows:

– We will populate two sets of q vectors s1, · · · , sq, and t1, · · · , tq each of length n

as follows. For i = 1, · · · , q :

∗ With probability 1/2, choose a random index j ∈ [d] and set both si to be

the jth row of X and ti to be the jth row of X ′.

∗ Let ci = τ− + 1+ri
2

(τ+ − τ−) be the location of the ith root of Tq after the

support has been scaled so that the roots lie within [τ−, τ+] rather than

[1, 1].

∗ With probability 1−ci
4

set both si and ti to be the all ones vectors.

∗ With probability 1+ci
4

set si to be the all ones vector, and ti to be the all

minus ones vector.

– Define the ith rows of Y and Y ′ to be the component-wise products of the sis

and tis respectively:

Yi,j =
∏
l=1

qsl(j), Y ′i,j =
∏
l=1

qtl(j),

where sl(j) and tl(j) denote the jth entries of the vectors sl and tl, respectively.

Theorem 3.5 Let Y , Y ′ be the matrices output by algorithm Chebyshev Embedding on input

X,X ′ ∈ {−1, 1}d×n, τ+ ∈ [−1, 1], τ− ∈ [−1, 1] with τ− < τ+ , integers q, d′. With probability

1− o(1/n) over the randomness in the construction of Y, Y ′, for all i, j ∈ [n], 〈Yi, Y ′j 〉 is within
√
d′ log n from the value

Tq

(
2
〈Xi, X

′
j〉/d′ − τ−

τ+ − τ−
− 1
)
· d′ · (τ+ − τ−)q

23q−1
,

where Tq is the degree-q Chebyshev polynomial of the first kind. The algorithm runs in time

O(d′ · n · q).
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For the proof of Theorem 3.5 we refer to [34, Algorithm 3: Chebyshev Embedding], which we

included for completeness. The proof is the same with that of [34], apart from indicating that

the probability of success is actually 1 − o(1/n) instead of 1 − o(1) as stated in [34]. While

1 − o(1/n) probability of success is enough for our purposes, even better probability bounds

can be achieved.

Proof. The fact that all inner products are concentrated within ±
√
d log n about their expec-

tations follows from the fact that each row of Y , Y ′ is generated identically and independently

from the other rows, and all entries of these matrices are ±1; thus, each inner product is a

sum of independent and identically distributed random ±1 random variables, and we can apply

the basic Chernoff bound to each inner product, and then a union bound over the O(n2) inner

products. Let Xi ∈ ±1 i.i.d. random variables. The basic chernoff bound gives probability,

Pr[ |
d′∑
i=1

Xi − E[
d′∑
i=1

Xi]| >
√
d′ log n] ≤

≤ 2 · exp(−Θ(log2 n)) = o(1/n3).

Given this concentration, we now analyze the expectation of the inner products. Let u, u′

be columns of X,X ′ , respectively, and v, v′ the corresponding columns of Y, Y ′. Letting

x = 〈u, u′〉/d, we argue that by [34, Lemma 3.3], E[v, v′] = d′
∑q

i=1
x−ci

2
(1), where ci is the

location of the ith root of the qth Chebyshev polynomial after the roots have been scaled to

lie in the interval [τ−, τ+]. To see why this is the case, note that each coordinate of u, u′, is

generated by computing the product of q random variables that are all ±1; namely, a given

entry of u is given by
∏q

l=1 sv(l), with the corresponding entry of u′ given by
∏q

l=1 sv′(l). Note

that for i 6= j, sv(i) is independent of sv(j) and tv′(j), although by construction, sv(i) and tv′(i)

are not independent. We now argue that E[sv(i)tv′(i)] = x−ci
2

, from which Eq. (1) will follow

by the fact that the expectation of the product of independent random variables is the product

of their expectations.

By construction, in Step (1) of the inner loop of the algorithm, with probability 1/2, E[sv(i)tv′(i)] =

〈v, v′〉/d = x. Steps (2)(4) ensure that with the remaining 1/2 probability, E[sv(i)tv(i)] =

1−ci
2

(1)−1+ci
2

(−1) = −ci.Hence, in aggregate over the randomness of Steps (1)(4), E[sv(i)tv′(i)] =
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x/2− ci/2i , as claimed, establishing Eq. (1).

To show that Eq. (1) yields the statement of the proposition, we simply reexpress the poly-

nomial
∏q

i=1
x−ci

2
in terms of the qth Chebyshev polynomial Tq. Note that the qth Chebyshev

polynomial has leading coefficient 2q−1, whereas this expression (as a polynomial in x) has lead-

ing coefficient 1/2q, disregarding the factor of the dimension m′. If one has two monic degree q

polynomials, P and Q where the roots of Q are given by scaling the roots of P by a factor of

α, then the values at corresponding locations differ by a multiplicative factor of 1/αq; since the

roots of Tq lie between [−1, 1] and the roots of the polynomial constructed in the embedding

lie between [τ−, τ+], this corresponds to taking α = 2
τ+−τ− . �

Inner product ApprxNet

Input: X = [x1, . . . , xn] with each xi ∈ Sd−1, ρ ∈ [−1, 1], ε ∈ (0, 1/2].

Output: Sets C,F ⊆ [n].

• If ρ ≤ ε, then:

– C ← ∅, F ← ∅, W ← {x1, . . . , xn}

– While W 6= ∅:

∗ Choose arbitrary vector x ∈ W .

∗ W ← W \ {y ∈ W | 〈x, y〉 ≥ ρ− ε}

∗ C ← C ∪ {x}

∗ If ∀y ∈ W , 〈x, y〉 < ρ− ε then F ← F ∪ {x}

– Return indices of C, F .

• Apply Theorem 3.4 for input X, δ = ε/2π and output Y ∈ {−1, 1}d′×n for d′ =

O(log n/δ2).

• Apply Theorem 3.5 for input Y , d′′ = n0.2, q = 50−1 log n, τ− = −1, τ+ = 1 −
2 cos−1(ρ−ε)

π
+ δ and output Z,Z ′.

42



• Run algorithm Crude ApprxNet with input τ = 3n0.16, α =
√
ε/500, Z,Z ′ and output

C, F .

• Return C, F .

Theorem 3.6 The algorithm Inner product ApprxNet, on input X = [x1, . . . , xn] with each

xi ∈ Sd−1, ρ ∈ [−1, 1] and ε ∈ (0, 1/2], computes an approximate ρ-net with additive error ε,

using the notation of definition 3.1. The algorithm runs in time Õ(dn+n2−
√
ε/600) and succeeds

with probability 1 − O(1/n0.2). Additionally, it computes a set F with the following property:

{xi | ∀xj 6= xi 〈xj, xi〉 < ρ− ε} ⊆ F ⊆ {xi | ∀xj 6= xi 〈xj, xi〉 < ρ}.

The proof of Theorem 3.6 relies on fast matrix multiplication and specifically it employs Cop-

persmith’s result presented below.

Theorem 3.7 [14] For any positive γ > 0, provided that β < 0.29, the product of a k × kβ

with a kβ × k matrix can be computed in time O(k2+γ).

Corollary 3.8 For any positive γ > 0, provided that β < 0.29 · α < 1, the product of a n× nβ

by a nβ × nα matrix can be computed in time O(n1+α+αγ).

Proof. The idea is to perform n1−α multiplications of matrices of size nα × nβ and nβ × nα.

Hence, by Theorem 3.7, the total cost is:

O(n1−α(nα(2+γ))) = O(n1+α+αγ).

�

The following fact describes important properties of the Chebyshev polynomial (of the first

kind) that we will rely on, specifically for the proof of theorem 3.6.

Fact 3.9 Let Tq(x) denote the qth Chebyshev polynomial of the first kind, then the following

hold:
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• For x ∈ [−1, 1], |Tq(x)| ≤ 1.

• For δ ∈ (0, 1/2], Tq(1 + δ) ≥ 1
2
eq
√
δ.

Claim 3.1 For ρ ∈ [−1, 1], ε ∈ (0, 1), it holds cos−1(ρ− ε)− cos−1(ρ) ≥ ε/2.

Proof. If (ρ− ε)2 6= 1 then we have

cos−1(ρ− ε)− cos−1(ρ) =

=

∫ 1

ρ−ε

1√
1− x2

dx−
∫ 1

ρ

1√
1− x2

dx =

=

∫ ρ

ρ−ε

1√
1− x2

dx =

∫ ε

0

1√
1− (ρ− ε+ y)2

dy ≥

≥
∫ ε

0

1√
1− (ρ− ε)2

dy =
ε√

1− (ρ− ε)2
≥ ε.

Now if (ρ− ε)2 6= 1 =⇒ ρ− ε = −1 then,

cos−1(ρ− ε)− cos−1(ρ) =

∫ −1+ε

−1

1√
1− x2

dx ≥

≥ ε√
2ε− ε2

≥ ε/2.

�

Proof of Theorem 3.6. If ρ ≤ ε, our approach ensures that for any x, y ∈ C, it holds

〈x, y〉 < ρ − ε ≤ 0. We show that |C| ≤ d + 1, due to a simple packing argument. Let

x1, . . . , xd+2 such that ∀i 6= j ∈ [d+ 2] we have 〈xi, xj〉 < 0. Then, there exist λ1, . . . , λd+1 ∈ R

not all zero for which
∑d+1

i=1 λixi = 0. Now consider two subsets I, J ⊆ [d+2] of indices such

that ∀i ∈ I, λi > 0 and ∀j ∈ J, λj < 0. We can write

∑
i∈I

λixi =
∑
j∈J

−λjxj =⇒ 0 ≤ 〈
∑
i∈I

λixi,−
∑
j∈J

λjxj〉 = −
∑

i∈I,j∈J

λiλj〈xi, xj〉 < 0

which leads to contradiction. If J = ∅ (or equivalently if I = ∅), then 0 = 〈xd+2,
∑

i∈I λixi〉 < 0,

which leads again to contradiction.
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We now focus on the case ρ > ε. By Theorem 3.4, with probability 1− o(1/n2), the matrix Y

returned by the corresponding algorithm will have the property that any pair of columns

〈Xi, Xj〉 ≥ ρ =⇒ 〈Yi, Yj〉
d′

≥ 1− 2 cos−1(ρ)

π
− δ

〈Xi, Xj〉 ≤ ρ− ε =⇒ 〈Yi, Yj〉
d′

≤ 1− 2 cos−1(ρ− ε)
π

+ δ.

Hence, according to Claim 3.1, it suffices to set δ = ε/3π in order to distinguish between the

two cases:

1− 2 cos−1(ρ− ε)
π

+ 2δ ≤ 1− 2 cos−1(ρ)

π
− δ.

Now we set τ+ = 1− 2 cos−1(ρ−ε)
π

+ δ > −1. By Theorem 3.5, with probability 1− o(1),

〈Yi, Yj〉 ≤ τ+d′ ≤ =⇒ |〈Zi, Zj〉| ≤

≤ d′′
2q

23q−1
+
√
d′′ log n ≤ 3n0.16

for large enough n. Moreover, let Yi, Yj s.t. 〈Yi, Yj〉 ≥ (τ+ + δ)d′. Then,

|〈Zi, Z ′j〉| ≥ d′′ · Tq
(

1 + 2
δ

τ+ + 1

) 2q

23q−1
−
√
d′′ log n >

>
1

2
· Tq
(

1 + 2
δ

τ+ + 1

)
· n0.16

for large enough n.

Then, by Fact 3.9,

|〈Zi, Z ′j〉| · n−0.16 ≥ 1

4
eq
√
δ =

1

4
n
√
δ/50 ≥

≥ 3n
√
δ/100 ≥ 3n

√
ε/400,

where some of the inequalities hold for large enough n.

Now, by Theorems 3.4, 3.5, 3.3 and Corollary 3.8 the time complexity is Õ(dn + n2−
√
ε/600), if

we set as γ in Corollary 3.8 a sufficiently small multiple of
√
ε. Finally,, the subroutine with

the higher probability of failure is Crude ApprxNet and by the union bound, it dominates the
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total probability of failure. �

3.3 Approximate nets in high dimensions

In this section, we translate the problem of computing r-nets in (Rd, ‖ · ‖) to the problem

of computing ρ-nets for unit vectors under inner product. One intermediate step is that of

computing r-nets for unit vectors under Euclidean distance.

3.3.1 From arbitrary to unit vectors.

In this subsection, we show that if one is interested in finding an r-net for (Rd, ‖ · ‖), it is

sufficient to solve the problem for points on the unit sphere. One analogous statement is used

in [34], where they prove that one can apply a randomized mapping from the general Euclidean

space to points on a unit sphere, while preserving the ratio of distances for any two pairs of

points. For reasons of completeness, we include the algorithm, Standardize, [34] that applies

this randomized mapping. The claim derives by the simple observation that an r-net in the

initial space can be approximated by computing an εr/c-net on the sphere, where c is the

maximum norm of any given point envisaged as a vector. Our exposition is simple since we

can directly employ the analogous theorem from [34].

Standardize

Input: A d× n matrix X with entries xi,j ∈ R, constant ε ∈ (0, 1).

Output: A m′ × n matrix Y with all columns having unit norm and m′ = log3n.

• Perform a Johnson-Lindenstrauss transformation of the columns of X into dimension

m′ to yield matrix X ′.

• Let c denote the magnitude of the largest column of X ′.

• Choose a random m′-dimensional vector u of length 8c/ε.
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• Let Y be the result of adding u to each column of X ′ and normalizing all columns so

as to have unit norm.

Corollary 3.10 There exists an algorithm, Standardize, which, on input a d × n matrix X

with entries xi,j ∈ R, a constant ε ∈ (0, 1) and a distance parameter r ∈ R, outputs a m′ × n

matrix Y , with columns having unit norm and m′ = log3 n, and a distance parameter ρ ∈ R,

such that a ρ-net of Y is an approximate r-net of X, with probability 1− o(1/poly(n)).

Towards improving the Corollary above we employ an algorithm introduced in [34], which

guarantees that there is a randomized mapping from Euclidean space to points on the unit

sphere that preserves the ratio of the distances of any two pair of points with only an additive

error.

Theorem 3.11 [34] There exists an algorithm, Standardize which on input a d × n matrix

X with entries xi,j ∈ R and a constant ε ∈ (0, 1) outputs a m′ × n matrix Y with columns

having unit norm and m′ = log3 n, such that, with probability 1 − o(1/poly(n)) for all sets of

four columns Y1, Y2, Y3, Y4 of matrix Y , with X1, X2, X3, X4 being the corresponding columns of

matrix X, it holds that

‖Y1 − Y2‖
‖Y3 − Y4‖

‖X3 −X4‖
‖X1 −X2‖

∈ [1− ε

10
, 1 +

ε

10
].

Now, let us define two d-dimensional vectors Xn+1, Xn+2, s.t. r′ = Xn+1 −Xn+2 and ‖r′‖ = r,

where X is a d × n matrix with entries xi,j ∈ R and r ∈ R is the radius of the r-net of X.

Also, let matrix X ′ denote the concatenation of X, Xn+1 and Xn+2 with size d× (n+ 2). After

applying Theorem 3.11 on input X ′ and ε/10, we define ρ := ‖Yn+1 − Yn+2‖ to be the new

radius of Y . Then, we claim that the following hold with probability 1 − o(1/poly(n)), which

immediately implies Corollary 3.10:

• For all Xi, Xj ∈ X and their corresponding Yi, Yj ∈ Y , if ‖Xi−Xj‖ ≤ r then ‖Yi−Yj‖ ≤

(1 + ε/10)ρ.
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• For all Xi, Xj ∈ X and their corresponding Yi, Yj ∈ Y , if ‖Xi − Xj‖ ≥ (1 + ε)r then

‖Yi − Yj‖ ≥ (1 + ε/2)ρ.

Proof of Corollary 3.10. From Theorem 3.11, we easily derive that for all Xi, Xj ∈ X and

their corresponding Yi, Yj ∈ Y , it holds that

‖Yi − Yj‖ ≤ (1 + ε/10)
‖Xi −Xj‖

r
ρ

Therefore, if ‖Xi −Xj‖ ≤ r, we have ‖Yi − Yj‖ ≤ (1 + ε/10)ρ. For the other direction, we use

the opposite side of Theorem 3.11, thus we have that for all Xi, Xj ∈ X and their corresponding

Yi, Yj ∈ Y :

‖Yi − Yj‖ ≥ (1− ε/10)
‖Xi −Xj‖

r
ρ.

It follows that ‖Xi−Xj‖ ≥ (1+ ε)r ⇒ ‖Yi−Yj‖ ≥ (1− ε/10)(1+ ε)ρ⇒ ‖Yi−Yj‖ ≥ (1+ ε/2)ρ.

�

3.3.2 Approximate nets under Euclidean distance.

In this subsection, we show that one can translate the problem of computing an r-net for points

on the unit sphere under Euclidean distance, to finding an r-net for unit vectors under inner

product as defined in Section 3.2. Moreover, we identify the subset of the r-net which contains

the centers that are approximately far from any other point. Formally,

Definition 3.4 Given a set of points X and ε > 0, a set F ⊆ X of (1 + ε)-approximate r-far

points is defined by the following property: {x ∈ X | ∀y ∈ X\{x} ‖x − y‖ > (1 + ε)r} ⊆ F ⊆

{x ∈ X | ∀y ∈ X\{x} ‖x− y‖ > r}.

If r is greater than some constant, the problem can be immediately solved by the law of cosines.

If r cannot be considered as constant, we distinguish cases r ≥ 1/n0.9 and r < 1/n0.9. The first

case is solved by a simple modification of an analogous algorithm in [34, p.13:28]. The second

case is not straightforward and requires partitioning the pointset in a manner which allows

computing r-nets for each part separately. Each part has bounded diameter which implies

that we need to solve a “large r” subproblem. Below, we present an algorithm that finds an
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(1 + ε)-approximate r-net for points on the unit sphere under Euclidean distance, given that

the radius r is appropriately large.

ApprxNet(Large radius)

Input: X = [x1, . . . , xn]T with each xi ∈ Sd−1 with d = log3 n, r > 1/n0.9, ε ∈ (0, 1/2].

Output: Sets R,F ⊆ [n].

• If r > 0.2 run Inner Product ApprxNet with error parameter ε/25 and ρ = 1− r2

2
.

• Otherwise, define the d × n matrix Z as follows: for each i ∈ [d], select q =⌊
π

2 cos−1(1−r2/2)

⌋
uniformly random vectors v1, . . . , vq and for all j ∈ [n], set

zi,j = sign
k=q∏
k=1

XT
j vk,

where Xj is the jth column of matrix X.

• Run Inner Product ApprxNet with ρ =
(

1− 2 cos−1(1−r2/2)
π

)q
, error parameter ε/100

and input matrix Z with all entries scaled by 1/
√
d to make them have unit norm.

Theorem 3.12 There exists an algorithm, ApprxNet(Large radius), which, for any constant

ε ∈ (0, 1/2], X ⊂ Sd−1 s.t. |X| = n, outputs a (1 + ε)r-net and a set of (1 + ε)-approximate

r-far points with probability 1−O(1/n0.2). Additionally, provided r > 1/n0.9 the runtime of the

algorithm is Õ(dn2−Θ(
√
ε)).

Proof. In the case of r > 0.2 we will show that the 1 + ε multiplicative approximation on

the distance translates to cε additive approximation to the inner product. Applying the law

of cosines, the first condition yields 〈p, q〉 ≥ 1 − r2

2
and the second condition yields 〈p, q〉 ≤

1− r2

2
− 2εr2+(εr)2

2
< 1− r2

2
− ε

25
. So, it suffices to take c = 1/25.

Now suppose that r < 0.2. For each random vector v we have that E[sign(XT
i v ·XT

j v)] = 1−
2θ(Xi,Xj)

π
, where θ(Xi, Xj) denotes the angle between Xi, Xj. Since expectations of independent

random variables multiply, we have that, for each k,
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E[zk,izk,j] = (1− 2 · θ(Xi, Xj)/π)q.

Now let θr = cos−1(1− r2/2),

‖Xi −Xj‖ ≤ r =⇒ θ(Xi, Xj) ≤ θr =⇒

=⇒ E[〈Zi, Zj〉] ≥ d(1− 2θr/π)q

‖Xi −Xj‖ ≥ (1 + ε)r =⇒ θ(Xi, Xj) ≥ (1 + ε/2)θr =⇒

=⇒ E[〈Zi, Zj〉] ≤ d(1− 2(1 + ε/2)θr/π)q.

Notice that,
(1− 2(1 + ε/2)θr/π)q

(1− 2θr/π)q
< 1− ε/10,

for q = bπ/(2θr)c and since n−0.9 ≤ r ≤ 0.2. Notice that d(1− 2θr/π)q ∈ [0.3d, 0.5d]. Hence, if

‖Xi −Xj‖ ≤ r and ‖Xl −Xk‖ ≥ (1 + ε)r,

E[〈Zl, Zk〉] < (1− ε/10)E[〈Zi, Zj〉] ≤

≤ E[〈Zi, Zj〉]− 0.3dε/10,

By a union bound over Chernoff bounds, since d = log3 n, with probability 1 − o(1/poly(n)),

the inner products between any two columns of Z differs from their expectations by o(d). After

performing the scaling procedure, and due to the fact that d(1 − 2θr/π)q ≤ 0.5d, we conclude

that it suffices to compute Inner Product ApprxNet with ρ = (1−2·θr/π)q and approximation

error ε/100.

The runtime of all components of the algorithm aside from the calls to Inner Product ApprxNet

is bounded by Õ(n/ cos−1(1− r2/2)) = Õ(n1.9). �

Let us now present an algorithm which translates the problem of finding an r-net for r < 1/n0.9

to the problem of computing an r-net for r ≥ 1/n0.9. The main idea, illustrated in figure 3.2,

is that we compute disjoint subsets Si, which are far enough from each other, so that we can

compute r-nets for each Si independently. We show that for each Si we can compute Ti ⊆ Si

which has bounded diameter and T ′i ⊆ Si such that Ti, T
′
i are disjoint, each point in Ti is far
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Sj

Sk

Ti

T ′i
Si

r′

r′

Figure 3.2: Illustration of the algorithm ApproxNet(Small radius). For each disjoint subject
Si, Sj, ... we compute an r-net independently. The set Ti is bounded in the diameter, hence we
construct an r-net by employing Standardize and ApproxNet(Large radius). In T ′i ’s case
we recurse the entire algorithm.

from each point in T ′i , and |T ′i | ≤ 3|Si|/4. It is then easy to find r-nets for Ti by employing

the ApprxNet(Large radius) algorithm. Then, we recurse on T ′i which contains a constant

fraction of points from |Si|. Finally, we cover points in Si \ (Ti ∪ T ′i ) and points which do not

belong to any Si.

ApprxNet(Small radius)

Input: X = [x1, . . . , xn]T with each xi ∈ Sd−1, r < 1/n0.9, ε ∈ (0, 1/2].

Output: Sets R,F ⊆ [n].

1. Project points on a uniform random unit vector and consider projections p1, . . . , pn

which wlog correspond to x1, . . . , xn ∈ Rd.

2. Traverse the list as follows:

• If |{j | pj ∈ [pi − r, pi]}| ≤ n0.6 or i = n:

– If |{j | pj < pi}| ≤ n0.9 remove from the list all points pj s.t. pj < pi− r and

save set K = {xj | pj ∈ [pi − r, pi]}.
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– If |{j | pj < pi}| > n0.9 save sets Ki = {xj | pj ∈ [pi − r, pi]} ∪K, Si = {xj |

pj < pi − r} \K and remove projections of Si and Ki from the list.

3. After traversing the list if we have not saved any Si go to 5; otherwise for each Si:

• For each u ∈ Si, sample n0.1 distances between u and randomly chosen xk ∈ Si.

Stop if for the selected u ∈ Si, more than 1/3 of the sampled points are in distance

≤ rn0.6. This means that one has found u s.t. |{xk ∈ Si, ‖u − xk‖ ≤ rn0.6}| ≥

|Si|/4 with high probability. If no such point was found, output ”ERROR”.

• Let 0 ≤ d1 ≤ . . . ≤ d|Si| be the distances between u and all other points in Si.

Find c ∈ [rn0.6, 2rn0.6] s.t. |{j ∈ [n] | dj ∈ [c, c + r]}| < n0.4, store Wi = {xj |

dj ∈ [c, c+ r]}, and remove Wi from Si.

• Construct the sets Ti = {xj ∈ Si | dj < c} and T ′i = {xj ∈ Si | dj > c+ r}.

– For Ti, subtract u from all vectors in Ti, run Standardize, then ApprxNet

(Large radius), both with ε/4. Save points which correspond to output at

Ri, Fi respectively.

– Recurse on T ′i the whole algorithm, and notice that |T ′i | ≤ 3|Si|/4. Save

output at R′i, and F ′i respectively.

4. Let R←
⋃
iRi ∪R′i and F ←

⋃
i Fi ∪ F ′i . Return to the list p1, . . . , pn.

(a) Remove from F all points which cover at least one point from
⋃
iWi or

⋃
iKi.

(b) Delete all points (
⋃
i Ti) \ (

⋃
iRi), and (

⋃
i T
′
i ) \ (

⋃
iR
′
i).

(c) For each i delete all points in Wi covered by Ri, or covered by R′i.

(d) For each i delete all points in Ki covered by R.

(e) Finally delete R from the list. Store the remaining points at F ′.

5. R′ ← ∅. Traverse the list as follows: For each pi, check the distances from all xj s.t.

pj ∈ [pi − r, pi].

• If ∃xj ∈ R′ : ‖xi − xj‖ ≤ r, delete xi from the list, set F ′ ← F ′\{xi, xj} and

continue traversing the list.
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• If there is no such point xj then R← R ∪ {xi} and continue traversing the list.

6. Output indices of R← R ∪R′ and F ← F ∪ F ′.

Theorem 3.13 For any constant ε > 0, X ⊂ Sd−1 s.t. |X| = n, and r < 1/n0.9, ApprxNet(Small

radius) will output a (1 + ε)r-net and a set of (1 + ε)-approximate r-far points in time

Õ(dn2−Θ(
√
ε)), with probability 1− o(1/n0.04).

Proof. Note that points in Si had projections pi in sets of contiguous intervals of width r;

each interval had ≥ n0.6 points, hence the diameter of the projection of Si is ≤ n0.4r. By the

Johnson Lindenstrauss Lemma [15] we have that for v ∈ Sd−1 chosen uniformly at random:

Pr
[
〈u, v〉2 ≤ ‖u‖

2

n0.4

]
≤
√
d
√
e

n0.2
.

Hence, E[|{xk, xj ∈ Si | ‖xk − xj‖ ≥ n0.6r and ‖pk − pj‖ ≤ n0.4r}|] ≤ |Si|2 ·
√
ed

n0.2 , and the

probability Pr[|{xk, xj ∈ Si | ‖xk − xj‖ ≥ n0.6r and ‖pk − pj‖ ≤ n0.4r}| ≥ |Si|1.95] ≤ |Si|0.05 ·
√
ed·n−0.2 ≤

√
ed·n−0.15. Taking a union bound over all sets Si yields a probability of failure

o(1/n0.045). This implies that (for large enough n, which implies large enough |Si|) at least

(
|Si|
2

)
− |Si|1.95 ≥ |Si|

2

4

distances between points in Si are indeed small (≤ n0.6r). Hence, there exists some point pk ∈ Si
which (n0.6r)-covers |Si|/2 points. For each possible pk we sample n0.1 distances to other points,

and by Chernoff bounds, if a point (n0.6r)-covers a fraction of more than 1/2 of the points in

Si, then it covers more than n0.1/3 sampled points with high probability. Similarly, if a point

(n0.6r)-covers a fraction of less than 1/4 of the points in Si, then it covers less than n0.1/3

sampled points with high probability. More precisely, for some fixed u ∈ Si, let Xj = 1 when

for the jth randomly chosen point v ∈ Si, it holds ‖u − v‖ ≤ n0.6r and let Xj = 0 otherwise.

Then, for Y =
∑n0.1

j=1 Xj, it holds:

E[Y ] ≥ n0.1/2 =⇒ Pr[Y ≤ n0.1/3] ≤ exp(−Θ(n0.1)),
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E[Y ] ≤ n0.1/4 =⇒ Pr[Y ≥ n0.1/3] ≤ exp(−Θ(n0.1)).

Since for any point x ∈ Ti and any point y ∈ T ′i we have ‖x− y‖ > r, the packing property of

r-nets is preserved when we build r-nets for Ti and T ′i independently. For each Ti, we succeed

in building r-nets with probability 1 − O(1/n0.2). By a union bound over all sets Ti, we have

a probability of failure O(1/n0.1). Furthermore, points which belong to sets Wi and Ki are

possibly covered and need to be checked.

For the analysis of the runtime of the algorithm, notice that step 4b costs time O(d · (
∑

i |Ti|+∑
i |T ′i |)) = O(dn). Then, step 4c costs time O(d ·

∑
i |Wi| · |Ti|+ d ·

∑
i |Wi| · |T ′i |) = O(dn1.4).

Finally, notice that we have at most n0.1 sets Ki. Each Ki contains at most 2n0.6 points, hence

checking each point in
⋃
iKi with each point in R costs O(dn1.7).

Now regarding step 5, consider any interval [pi − r, pi] in the initial list, where all points are

projected. If |{j | pj ∈ [pi − r, pi]} ≤ 2n0.9 then the ith iteration in step 5 will obviously cost

O(n0.9), since previous steps only delete points. If |{j | pj ∈ [pi − r, pi]} > 2n0.9, we claim

that |{j < i | pj ∈ [pi − r, pi] and Kj is created}| ≤ 1. Consider the smallest j < i s.t. Kj is

created and pj ∈ [pi − r, pi]. This means that all points pk, for k ≤ j, are deleted when pj is

visited. Now assume that there exists integer l ∈ (j, i) s.t. Kl is created. This means that the

remaining points in the interval [pl − r, pl] are ≤ n0.6 and all of the remaining points pk < pl

are more than n0.9. This leads to contradiction, since by the deletion in the jth iteration, we

know that all of the remaining points pk < pl lie in the interval [pl − r, pl].

Now, assume that there exists one j < i s.t. pj ∈ [pi − r, pi] and Kj is created. Then, when pi

is visited, there at least 2n0.9 − n0.6 > n0.9 remaining points in the interval [pi − r, pi]. Hence,

there exists l ≥ i for which the remaining points in the interval [pi − r, pi] are contained in

Sl ∪Kl. Hence in this case, in step 5, there exist at most O(n0.6) points which are not deleted

and belong to the interval [pi − r, pi]. Now assume that there does not exist any j < i s.t.

pj ∈ [pi − r, pi] and Kj is created. This directly implies that there exists l ≥ i for which the

remaining points in the interval [pi − r, pi] are contained in Sl ∪Kl.

At last, the total time of the above algorithm is dominated by the calls to the construction of the

partial r-nets of the sets Ti. Thus, the total running time is O(
∑

i |Ti|
2−Θ(

√
ε)+
∑

i |Ti|′
2−Θ(

√
ε)) =

O(
∑

i |Ti|
2−Θ(

√
ε) +

∑
i (3|Ti|/4)2−Θ(

√
ε)) = Õ(n2−Θ(

√
ε))). Finally, taking a union bound over all

recursive calls of the algorithm we obtain a probability of failure o(1/n0.04). �
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We now present an algorithm for an (1 + ε)r-net for points in Rd under Euclidean distance.

ApprxNet

Input: Matrix X = [x1, . . . , xn] with each xi ∈ Rd, parameter r ∈ R, constant ε ∈ (0, 1/2].

Output: R ⊆ {x1, . . . , xn}

• Let Y , r′ be the output of algorithm Standardize on input X, r with parameter ε/4.

• If r′ ≥ 1/n0.9 run ApprxNet(Large radius) on input Y , ε/4, r′ and return points

which correspond to the set R.

• If r′ < 1/n0.9 run ApprxNet(Small radius) on input Y , ε/4, r′ and return points

which correspond to the set R.

Theorem 3.14 Given n points in Rd, a distance parameter r ∈ R and an approximation

parameter ε ∈ (0, 1/2], with probability 1 − o(1/n0.04), ApprxNet will return a (1 + ε)r − net,

R, in Õ(dn2−Θ(
√
ε)) time.

Proof. The theorem is a direct implication of Theorems 3.12, 3.13, and Corollary 3.10. �

Moreover, we present a randomized approximation algorithm which, given a pointset in Rd and

distance parameter r, returns the points that have at least one neighbor at distance at most r,

as shown in the figure 3.3. This algorithm will be used on the applications on Section 4.

DelFar

Input: Matrix X = [x1, . . . , xn] with each xi ∈ Rd, parameter r ∈ R, constant ε ∈ (0, 1/2].

Output: F ′ ⊆ {x1, . . . , xn}.

• Let Y , r′ be the output by algorithm Standardize on input X, r with parameter ε/4.

55



• If r ≥ 1/n0.9 run ApprxNet(Large radius) on input Y , ε/4, r and return points

which correspond to the set F ′ ← X\F .

• If r < 1/n0.9 run ApprxNet(Small radius) on input Y , ε/4, r and return points

which correspond to the set F ′ ← X\F .

Theorem 3.15 Given X ⊂ Rd such that |X| = n, a distance parameter r ∈ R and an ap-

proximation parameter ε ∈ (0, 1/2], there exists an algorithm, DelFar, that will return, with

probability 1− o(1/n0.04), a set F ′ with the following properties in Õ(dn2−Θ(
√
ε)) time:

• If for a point p ∈ X it holds that ∀q 6= p, q ∈ X we have ‖p− q‖ > (1 + ε)r, then p /∈ F ′.

• If for a point p ∈ X it holds that ∃q 6= p, q ∈ X s.t. ‖p− q‖ ≤ r, then p ∈ F ′.

Proof. By Theorems 3.12, 3.13, 3.10, both ApprxNet(Large radius) and ApprxNet(Small

radius) return a set F , the subset of the centers of r-net that are isolated, i.e. the points

that do not have any neighbor at distance (1 + ε)r. Also, both procedures run in Õ(dn2−Θ(
√
ε)).

Thus, DelFar on input a d × n matrix X, a radius r ∈ R and a fixed constant ε ∈ (0, 1/2]

returns a set F ′ ⊆ {x1, . . . , xn}, which contains all the points (vectors) of X that have at least

one neighbor at distance r. Additionally, the algorithm costs Õ(dn2−Θ(
√
ε)) time and succeeds

with probability 1− o(n0.04). �

3.4 Applications

Concerning applications, in [22], they design an approximation scheme, which solves various

distance optimization problems. The technique employs a grid-based construction of r-nets

which is linear in n, but exponential in d. The main prerequisite of the method is the existence

of a linear-time decider (formally defined in Appendix 3.4.1). The framework is especially

interesting when the dimension is constant, since the whole algorithm costs time linear in n

which, for some problems, improves upon previously known near-linear algorithms. When the

dimension is high, we aim for polynomial dependency on d, and subquadratic dependency on
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Figure 3.3: The ApprxNet algorithm returns both red and blue points of this figure, while the
DelFar algorithm returns only the red points that have at least one r-close neighbor.

n. In the first subsection, we present the modified framework for high dimensional data sets,

employing the algorithms ApprxNet and DelFar from this work. In the last subsection, we

discuss more possible applications and other research directions in order to improve this result

even more.

3.4.1 A general framework for high dimensional distance problems

In this subsection, we modify a framework originally introduced by [22], which provides an

efficient way for constructing approximation algorithms for a variety of well known distance

problems. We present the algorithm Net and Prune of [22], modified to call the algorithms

ApprxNet and DelFar. We claim that this algorithm computes, with high probability, a constant

spread interval and costs O(dn1.999999) time.

We assume the existence of a fast approximate decider procedure for the problems we want to

address using this framework, specifically an algorithm that runs in Õ(dn2−Θ(
√
ε)), where ε is
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the approximation factor. Formally,

Definition 3.5 Given a function f : X → R, we call a decider procedure a (1 + ε)-decider for

f , if for any x ∈ X and r > 0, decider(r, x) returns one of the following: (i) f(x) ∈ [α, (1+ε)α],

where α is some real number, (ii) f(x) < r, or (iii) f(x) > r.

Additionally, we assume the problems we seek to improve with this method have the following

property: if the decider returns that the optimal solution is smaller than a fixed value r, we

can efficiently remove all points that do not have any neighbor at distance at most r and this

does not affect the optimal solution. Let us denote f(X) the optimal solution of a problem for

input X.

Net & Prune

Input: An instance (X,Γ) s.t. X ⊆ Rd.

Output: An interval [x, y] containing the optimal value.

• X0 = X, i = 0

• While TRUE do

– Choose at random a point x ∈ Xi and compute its nearest neighbor distance, li

– Call 3
2
-decider(2li/3, Xi) and 3

2
-decider(cli, Xi). Do one of the following:

∗ If 3
2
-decider(2li/3, Xi) returns f(Xi) ∈ [x, y], return f(X) ∈ [x/2, 2y]

∗ If 3
2
-decider(cli, Xi) returns f(Xi) ∈ [x′, y′], return f(X) ∈ [x′/2, 2y′]

∗ If 2li/3 is too small and cli too large, return [li/3, 2cli]

∗ If 2li/3 is too large, call Xi+1 =DelFar(2li/3, Xi,
3
2
)

∗ If cli is too small, Xi+1 =ApprxNet(4li, Xi,
3
2
)

– i = i+ 1,

Let us denote as |Xi
≤l| and |Xi

≥l| the set of points in X, whose nearest neighbor distance is

smaller than l and greater than l, respectively.
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Theorem 3.16 Assume that the DelFar algorithm and the ApprxNet algorithm succeed with

probability 1− 1
n0.01 . The algorithm Net & Prune (X,Γ) runs in expected O(dn1.999999) time.

Proof. In each iteration of the while loop the algorithm calls on input Xi the 3
2
-decider

procedure and either ApprxNet or DelFar, all of which cost O(d|Xi|1.999999) time. Thus, the

total running time of the algorithm is O(
∑i=k−1

i=0 d|Xi|1.999999), where k denotes the last iteration

of the while loop.

In the (i + 1)th iteration of the while loop, where (i + 1 < k), lets assume that x1, x2, . . . , xm

is the points’ labels in increasing order of their nearest neighbor distance in Xi. If j is the

index of the chosen point on the first step of the algorithm and Xi
≥j and Xi

≤j are the subsets

of points with index ≥ j and ≤ j, respectively, then we call i a successful iteration when

j ∈ [m/4, 3m/4]. Then, we have that |X≥ji | ≥ |Xi+1|/4 and |X≤ji | ≥ |Xi+1|/4 for a successful

iteration. The probability that i+ 1 is a successful iteration is 1/2.

At each iteration, but the last, either ApprxNet or DelFar gets called. Thus, for any successful

iteration, a constant fraction of the point set is removed (it follows from Lemma 3.2.3 in [22]

and Theorem 3.15). Also, the algorithms (1 + ε)-decider, ApprxNet and DelFar succeed at

every call with probability 1 − O(logn)
n0.01 = 1 − o(1), since the expected number of iterations is

O(log n). Hence, the expected running time of the algorithm is O(dn1.999999), given the above

algorithms succeed. �

At every step, either far points are being removed or we net the points. If the DelFar algorithm

is called, then with small probability we remove a point which is not far. This obviously affects

the optimal value, thus we will prove the correctness of the algorithm with high probability.

On the other hand, if the ApprxNet algorithm is called, the net radius is always significantly

smaller than the optimal value, so the accumulated error in the end, which is proportional to

the radius of the last net computation, is also much smaller than the optimal value. For the

following proofs we assume both DelFar and ApprxNet algorithms succeed, which occurs with

probability 1− o(1).

Lemma 3.17 For every iteration i, we have |f(Xi)− f(X0)| ≤ 16li.
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Proof. Let I be the set of indices of the ApprxNet iterations up to the ith iteration. Similarly,

let I ′ be the set of iterations where DelFar is called.

If ApprxNet was called in the jth iteration, then Xj is at most a 6lj-drift of Xj−1, therefore

|f(Xj)− f(Xj−1)| ≤ 12lj. Also, if DelFar is called in the jth iteration, then f(Xj) = f(Xj−1)

(by Theorem 3.15). Let m=maxI, we have that,

|f(Xi)− f(X0)| ≤
i∑

j=1

|f(Xj)− f(Xj−1)| =

=
∑
j∈I

|f(Xj)− f(Xj−1)|+
∑
j∈I′
|f(Xj)− f(Xj−1)|

≤
∑
j∈I

12lj +
∑
j∈I′

0 ≤ 12lm

∞∑
j=0

(
1

4

)j
≤ 16lm ≤ 16li,

where the second inequality holds since for every j < i, in the beginning of the jth iteration of

the while loop, the set of points Xj−1 is a subset of the net points of a 4li-net, therefore lj ≥ 4li.

�

Lemma 3.18 For any iteration i of the while loop such that ApprxNet gets called, we have

li ≤ f(X0)/η, where η = c− 16.

Proof. We will prove this with induction. Let m1,m2, . . . ,mt be the indices of the iterations

of the while loop in which ApprxNet gets called.

Base: In order for ApprxNet to get called we must have ηlm1 < clm1 < f(Xm1−1) and since this

is the first time ApprxNet gets called we have f(Xm1−1) = f(X0). Therefore, ηlm1 < f(X0).

Inductive step: Suppose that lmj ≤ f(X0)/η, for all mj < mi. If a call to 3
2
-rNet is made in

iteration mi then again clmi < f(X(mi)−1) = f(Xmi−1
). Thus, by the induction hypothesis and

Lemma 3.17 we have,

lmi <
f(Xmi−1

)

c
≤
f(X0) + 16lmi−1

c
≤

≤ f(X0) + 16f(X0)/η

c
=

1 + 16/η

c
f(X0) = f(X0)/η.

�
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Therefore, if we set c = 64 we have η = 48, thus by Lemma 3.17 and Lemma 3.18,

|f(Xi)− f(X0)| ≤ 16li ≤ 16f(X0)/η = f(X0)/3.

Corollary 3.19 For c ≥ 64 and for any iteration i we have:

• (2/3)f(X0) ≤ f(Xi) ≤ (4/3)f(X0),

• if f(Xi) ∈ [x, y], then f(X0) ∈ [(3/4)x, (3/2)y] ⊆ [x/2, 2y],

• if f(X0) > 0 then f(Xi) > 0.

Theorem 3.20 For c ≥ 64, the Net & Prune algorithm computes in O(dn1.999999) time a

constant spread interval containing the optimal value f(X), with probability 1− o(1).

Proof. Consider the iteration of the while loop at which Net & Prune terminates. If the

interval [x, y] was computed by the 3
2
-decider, then it has spread ≤ 3

2
. Thus, by Corollary

3.19 the returned interval [x′, y′] = [x/2, 2y] contains the optimal value and its spread is ≤ 6.

Similarly, if 2li/3 is too small and cli too large, then the returned interval is [ li
3
, 2cli] and its

spread is 384. �

3.4.2 k-th nearest neighbor distance

Let us focus on the problem of approximating the kth nearest neighbor distance.

Definition 3.6 Let X ⊂ Rd be a set of n points, approximation error ε > 0, and let d1 ≤ . . . ≤

dn be the nearest neighbor distances. The problem of computing an (1+ ε)-approximation to the

kth nearest neighbor distance asks for a pair x, y ∈ X such that ‖x− y‖ ∈ [(1− ε)dk, (1 + ε)dk].

Now we present an approximate decider for the problem above. This procedure combined with

the framework we mentioned earlier, which employs our net construction, results in an efficient

solution for this problem in high dimension.
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kth NND Decider

Input: X ⊆ Rd, constant ε ∈ (0, 1/2], integer k > 0.

Output: An interval for the optimal value f(X, k).

• Call DelFar(X, r
1+ε/4

, ε/4) and store its output in W1.

• Call DelFar(X, r, ε/4) and store its output in W2.

• Do one of the following:

– If |W1| > k, then output “f(X, k) < r”.

– If |W2| < k, then output “f(X, k) > r”.

– If |W1| ≤ k and |W2| ≥ k, then output “f(X, k) ∈ [ r
1+ε/4

, 1+ε/4
r

]”.

Theorem 3.21 Given a pointset X ⊆ Rd, one can compute a (1+ε)-approximation to the k-th

nearest neighbor in Õ(dn2−Θ(
√
ε)), with probability 1− o(1).

Proof. For this particular problem, the optimal solution is not affected by the DelFar’s

removal of the points with no other point at distance at most r. Also, each time the ApprxNet

algorithm is called, for a fixed distance r, the drift of the optimal solution is at most 2r. Thus,

Theorem 3.20 holds, and we compute a constant spread interval [x, y] containing the optimal

value, with high probability. We then apply binary search on values x, (1 + ε)x, (1 + ε)2x, . . . , y

using the algorithm kth NND Decider. We perform O(1/ log(1 + ε)) = O(1/ε2) iterations,

hence the total amount of time needed is Õ(dn2−Θ(
√
ε)) and the algorithm succeeds with high

probability 1− o(1). �

To the best of our knowledge, this is the best high dimensional solution for this problem, when

ε is sufficiently small. Setting k = n and applying Theorem 3.21 one can compute the farthest

nearest neighbor in Õ(dn2−Θ(
√
ε)) with high probability.
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Chapter 4

Conclusion

4.1 Summary of Thesis Achievements

The novel results of the thesis are thoroughly presented in chapters 2 and 3. In chapter 2 we

propose a simple data structure for approximating the near neighbor decision problem, while in

chapter 3 we present an improved -in terms of time complexity- algorithm for the construction

of r-nets. Both those problems are examined when the dimension is high.

To be more specific, we have designed a conceptually simple method for a fast and compact

approach to Near Neighbor queries, and have tested it experimentally. This offers a competitive

approach to Approximate Nearest Neighbor search. Our method is optimal in space, with

sublinear query time for any constant approximation factor c > 1. The algorithm randomly

projects points to the Hamming hypercube. The query algorithm simply projects the query

point, then examines points which are assigned to the same or nearby vertices on the hypercube.

We have analyzed the query time for the Euclidean and Manhattan metrics.

However, the critical contribution of the thesis’ author concerns the algorithm for constructing

r-nets, presented in chapter 3. In this work, we focus on high-dimensional spaces and present

a new randomized algorithm which efficiently computes approximate r-nets with respect to

Euclidean distance. The complexity of the algorithm is polynomial in the dimension and

subquadratic in the number of points, while the the approximation factor is 1 + ε, for any fixed

ε > 0. The algorithm succeeds with high probability and our result improves upon the best

63



previously known (LSH-based) construction of Eppstein et al. [17] in terms of complexity, by

reducing the dependence on ε, provided that ε is sufficiently small. Moreover, our method does

not require LSH but follows Valiant’s [34] approach in designing a sequence of reductions of our

problem to other problems in different spaces, under Euclidean distance or inner product, for

which r-nets are computed efficiently and the error can be controlled. Our result immediately

implies efficient solutions to a number of geometric problems in high dimension, such as finding

the (1 + ε)-approximate k-th nearest neighbor distance in time subquadratic in the size of the

input.

4.2 Future Work

Regarding our work on approximate nearest neighbor search, we have focused only on data-

independent methods for ANN, while data-dependent methods achieve better guarantees in

theory. Hence, designing a practical data-dependent variant of our method will be a challenging

step. Moreover, since our implementation easily extends to other LSH families, it would be

interesting to implement and conduct experiments for other metrics.

Concerning future work on our results on approximate r-nets on high dimensional data sets, let

us start with the problem of finding a greedy permutation. A permutation Π =< π1, π2, · · · >

of the vertices of a metric space (X, ‖·‖) is a greedy permutation if each vertex πi is the farthest

in X from the preceding vertices Πi−1 =< π1, . . . , πi−1 >. The computation of r-nets is closely

related to that of the greedy permutation.

Furthermore, our algorithm can be plugged into the framework of [22] to achieve a (4 + ε)

approximation for the k-center problem in time Õ(dn2−Θ(
√
ε). By [17], a simple modification of

our net construction implies an algorithm for the (1 + ε) approximate greedy permutation in

time Õ(dn2−Θ(
√
ε) log Φ) where Φ denotes the spread of the pointset. Then, approximating the

greedy permutation implies a (2 + ε) approximation algorithm for k-center clustering problem.

We expect that one can avoid any dependencies on Φ.

Recently, [2] improved on the algorithm by [34] for the approximate closest pair problem, by

presenting an algorithm with randomized time near dn+ n2−Θ(ε1/3/ log(1/ε)). It is possible that a

similar improvement can be achieved for the problem of approximating r-nets.
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