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ABSTRACT

Supervised and unsupervised learning are two fundamental learning schemes whose difference

lies in the presence and absence of a supervisor (i.e. entity which provides examples)

respectively. On the other hand, transfer learning aims at improving the learning of a task

by using auxiliary knowledge. The goal of this thesis was to investigate how the two

fundamental paradigms, supervised and unsupervised learning, can collaborate in the setting

of transfer learning. As a result, we developed transfer-𝐾means, a transfer learning variant

of the popular 𝐾means heuristic.

The proposed method enhances the unsupervised nature of 𝐾means, using supervision from

a different but related context as a seeding technique, in order to improve the heuristic’s

performance towards more meaningful results. We provide approximation guarantees based

on the nature of the input and we experimentally validate the benefits of the proposed method

using documents as a real-world example.

SUBJECT AREA: Machine Learning

KEYWORDS: clustering, transfer learning, domain adaptation, density ratio estimation, natural

language processing



ΠΕΡΙΛΗΨΗ

Η επιτηρούμενη και η μη-επιτηρούμενη μάθηση είναι δύο θεμελιώδη σχήματα μάθησης,

των οποίων η διαφορά έγγυται στην παρουσία και απουσία ενός καθηγητή (δηλαδή

μιας οντότητας που παρέχει παραδείγματα) αντίστοιχα. Από την άλλη πλευρά, η

μεταφορά μάθησης είναι μια ιδέα που στοχεύει να βελτιώσει την μάθηση ενός έργου

χρησιμοποιώντας βοηθητική γνώση. Ο στόχος της παρούσας διπλωματικής είναι να

διερευνήσει πως αυτά τα δύο θεμελιώδη παραδείγματα μάθησης, επιτηρούμενη και μη-

επιτηρούμενη μάθηση, μπορούν να συνεργαστούν στο πλαίσιο της μεταφοράς μάθησης.

Ως αποτέλεσμα, αναπτύξαμε τη μέθοδο transfer-𝐾means, μια παραλλαγή της δημοφιλής

ευριστικής μεθόδου 𝐾means, που βασίζεται στην μεταφορά μάθησης.

Η προτεινόμενη μέθοδος εμπλουτίζει την μη-επιτηρούμενη φύση του 𝐾means χρησιμοποιώντας

επιτήρηση από ένα διαφορετικό αλλά σχετικό χώρο ως τεχνική αρχικοποίησης των

συστάδων, με σκοπό να βελτιώσει την απόδοση της ευριστικής αυτής μεθόδου. Παρέχουμε

προσεγγιστικές εγγυήσεις σύμφωνα με την φύση της εισόδου και επαληθεύουμε πειραματικά

τα οφέλη του transfer-𝐾means χρησιμοποιώντας κείμενα σε φυσική γλώσσα ως ρεαλιστική

εφαρμογή.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική Μάθηση

ΛΕΞΕΙΣ - ΚΛΕΙΔΙΑ: συσταδοποίηση, μηχανική μάθηση, προσαρμογή τομέα, εκτίμηση

λόγου κατανομών, επεξεργασία φυσικής γλώσσας
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1 Introduction

alter techno is more reliable than alter ego
— Pascal Chabot

“Rotwang, give the Machine-Man the likeness of that girl.” This is the moment where, in

the 1927 film Metropolis by Fritz Lang, the powerful ruler of the city Joh Fredersen instructs

the mad scientist Rotwang to give his evil robot the appearance of Maria, an influential

peace-preaching proletariat woman, in order to use her reputation to spread corruption among

the suffering workers. This movie is an emblematic instance of what Isaac Asimov called

“the Frankenstein complex”, the belief that science could produce something that it could not

control. Asimov, one of the fathers of the science fiction genre, envisioned an era where

humanity would be served by robots. After all, the word “robot”, coined around 1920

from the Czech author Karel Capek or his brother Josef, comes from the Czech word robota,
which means “forced labour, compulsory service, drudgery”. However Asimov, as a talented

dramaturgist, involved in his narrative the robots’ attempt to destroy their creators.

This plot archetype was and still is very popular, since it captures the audience’s imagination

and deepest fears. However, it has not remained just a fictional construction. With the

publicised achievements of Artificial Intelligence (AI) research, the Frankenstein complex has

infiltrated into the real life, having a widespread scientific and social impact. Many scientists

have raised concerns about the risks posed by future AI technology and the majority of the

general public feel more and more alienated from this technological progress.

The negative opinion about AI exhibits three important characteristics: it is justifiable, useful

but also misguided. For the first characteristic, we can easily consider two reasons. To begin

with, AI’s scandalous goal is to simulate one of the attributes that presumably place humans

at the top of the species’ pyramid: human cognition. It is very difficult for us to conceive

other entities sharing our place in this pyramid. However, the notion of difficulty here does

not relate with that of impossibility; it simply means that such a conception is outside of our

imaginative reach, the same way we cannot imagine a fourth dimension. Another reason why

this negative opinion is justifiable can be the existence of an emotional and cultural trauma:

humanity has a long history of science abuse, for instance with the advent of nuclear energy.

For the second characteristic, proponents of the Frankenstein complex actually offer themselves
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as an example of the scientific morality debate: how human values resonate in science? Such

a debate must remain open and active in order to question the purpose of the ongoing

technological progress and redefine frequently the relation of science with the rest of human

endeavours. However, the negative view of AI runs the risk of becoming a parochialism since

such a quest, to simulate the human mind, entails one of the most daunting and existential

questions: what is the human mind?

Reflection on this question can be traced back to antiquity and it has been one of the meeting

points of philosophical and scientific approaches. Many mind theories were created, yet none

of them radically changed our lives. It was only in the early 1930s that a variant of this

question prepared the ground for a jump to universality¹: is the human mind a machine?
That variant was not something new. In the 16th century, during the Scientific Revolution,

the philosophical doctrine of Mechanism came to prevalence, manifesting itself in the works

of Isaac Newton and René Descartes and holding the anti-teleological view that all physical

bodies (including humans) can be completely described by mechanistic laws of motion or in a

later modification, that all “vital” phenomena can be explained as physical and chemical facts.

This doctrine inevitably gave birth to a sub-field called Anthropic Mechanism where everything

about human beings can be explained in mechanical terms, as can everything about e.g. a

clockwork. For the body, most mechanist theories could hold their claim, but what about the

mind? Is the mind a machine, yet that complex that we are still unable to describe? Or is

there something more, a so-called spirit that cannot be reduced to a quantitative reality? This

sub-field is still active, having proponents in both sides and their fruitful debate mostly focus

on the abstract notions of consciousness and free will. Taking a brief look into this debate

and with a dangerous oversimplification, the argument of anti-mechanists is that a mechanistic

mind view is incompatible with commonsense intuitions. On the other side, the answer of

mechanists is that commonsense intuitions are simply wrong or such an incompatibility is a

paralogism and does not exist.

Although the mechanical aspect of the mind had been contemplated for so long, what changed

in the 1930s? It was the launch of the Computability theory, the glue that unified all the

necessary elements for the birth of the discipline that we now know as computer science

and paved the way towards the Digital Era we live in. The pioneers of this theory was a

group of mathematicians and logicians, among them the predominant figures of Kurt Gödel,

Alonzo Church and Alan Turing, who tried to explain the human experience of computation

and suggested how artificial computing devices should be built. They formalized the notion

of effective computability as a fixed finite procedure, assuming that only a finite number of

states of mind is “taken into account” at each stage [CPS13]. The existence of a device

simulating this notion was proven constructively by Turing and it was called the Universal

Turing machine, an automaton that operated on logical principles. The debate whether the

mind is a machine was still ongoing, but there was a consensus that the mind is more powerful

than any given Turing machine and Gödel’s incompleteness results², although not applicable

¹The jump to universality as described in [Deu11] is a concept that describes the situation where a solution for a specific problem

becomes useful for its own sake and can customize itself as a solution to other problems.

²Informally, Gödel showed that there exist true mathematical statements that are not provable (a proof cannot be computed). In

Turing’s view, these results also showed that there is no formal system of logic that can contain all possible methods of proof.
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to human reason, established limitations of such a mathematical formalism.

What is in the human mind that could not be expressed as a Turing machine? Focusing

only on human reasoning, Turing thought that it was the notion of intuition. The human

mind (at least that of an idealized mathematician), although at every stage is identical to

some Turing machine, when it searches around to find new solutions and methods of proof,

it transforms itself from one Turing machine to some other Turing machine. Intuition was

regarded as the non-mechanical process of choosing this other Turing machine. According

to Turing, a machine that can transform itself is in effect a machine with the ability to learn,
yet he provided no precise ways on how to accomplish such a transformation. Therefore after

computability, learning was the next step along the path of exploring the human mind. From

the 1980s, several mathematical models have attempted to explain this phenomenon, such

as the PAC learning theory [Val84] which formalized the concept of an efficient learner. But

unlike Turing machines and computability, none of them succeeded a jump to universality

yet.

Learning is an experience that is not fully understood in order to be properly defined. Precisely

because of its abstract flavour, many philosophical attempts exist such as this by Ellen Fridland

in [MnSDB15] where she defines learning as a process, where as a result of experience or
reasoning, the behaviour, mental processing or representations of subjects change in some
way that contributes to the satisfaction of their goal(s). The terms in this definition stay

unqualified to preserve a broad range of interpretations, yet remaining informative in the

sense that learning can be described by two conditions: flexibility and success. The flexibility

condition is expressed through a change and the success condition through the satisfaction

of a goal. A particular kind of flexibility is transferability: a change that is not bound to a

specific context but it can be applied in various settings and circumstances. For example, in

order to learn the concept BLUE one needs to be able to think various blue things: a blue

sky, a blue dress or a blue chair. Transfer learning, albeit in its infant mechanistic variant, will

be the main focus in this work.

Due to such a definitional challenge, it is no surprise that mathematicians have not yet

unanimously agreed on a formulation about learning. However, they are starting to get

influenced by another rapidly developing field: neuroscience. Why just talking about the

human mind, when we can have a look at how the human brain works ? The study of the

human neocortex - with its complex networks of neurons, how they generate and interact with

each other and their large-scale behaviour by integrating inputs from thousands of synapses

- has inspired new inventions and is considered to be the most promising way towards a

formation of AI [HA16].

Despite all the ongoing research so far, little progress has been made towards machines that

think. There exist ways to create programs that detect spam e-mails, recommend related items

or perform face recognition, but in fact, we don’t even have a test that could validate that it

is a program that generates the knowledge and not the programmer. Although AI has not

reach its goal, it’s getting closer. And this goal no longer seems scandalous but as it has

been discussed so far, it reflects our efforts to understand us better. As a counter-point of the
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Frankenstein complex, it is important to observe that even in the present stage of technological

evolution, the relation between humans and machines is no longer the master-slave bipolar but

it can be described as a collaboration. Gilbert Simondon demonstrated this by using memory

as an example: human memory is selective and stores only emotionally-trigerring details

whereas machine’s memory can retain every detail but is incapable of selectivity [Cha13].

Accepting us humans as “translators of information between machines” will be a successful

manifestation of the non-alienating positivity and productivity of a technical mentality [Sim06],

a mode of knowledge that has and will enhance our ability to find explanations even further.

Such an endeavour will be full of errors but as David Deutsch mentions in [Deu11] “Without
error-correction all information processing, and hence all knowledge-creation, is necessarily
bounded. Error-correction is the beginning of infinity.”

1.1 Thesis goal

Computational learning theory is the field that deals with the notion of learning from a

theoretical computer science perspective. Its two main branches are: statistical and algorithmic

learning theory. In statistical learning theory, as mentioned in [Han00], learning is considered

as the stochastic process of generalizing from a random finite sample of data. In algorithmic

learning theory, the sample of data is not assumed to be random. Its main focus is learning

in the limit: the bigger the sample, the better the learning. In this thesis, we will implicitly

follow the statistical approach.

Standard problems in computational learning theory can be classified into two fundamental

learning paradigms: supervised and unsupervised learning. Their core difference can be

understood by the existence of an entity called teacher: in supervised learning, there exists a

teacher which provides examples of some concept to a learner and the learner’s goal is to

learn the concept. For example, let’s assume that we want to learn a function 𝑓 ∶ 𝐴 → 𝐵
so that for any input 𝑥 ∈ 𝐴 we would like to predict the output 𝑓(𝑥) ∈ 𝐵. In supervised

learning, the teacher will provide us a finite set of labeled examples {𝑥𝑖, 𝑓(𝑥𝑖)}𝑚
𝑖=1 ⊂ 𝐴×𝐵,

which is a set of desired input-output pairs. Our goal is to predict the value of 𝑓 on an

unseen instance 𝑥𝑚+1 ∈ 𝐴. In unsupervised learning, the teacher does not exist. Therefore

the learner is given as input a finite set of unlabeled examples where the learning source is

the intrinsic structure of inputs and the goal of the learner is to find hidden patterns in this

structure, for instance by clustering or dimensionality reduction of the inputs. Let us refer to

the input provided to the learner as train set and the instances on which the learner makes

predictions as test set.

The combination of the above paradigms has given rise to interesting learning methods such as

semi-supervised and transductive learning. What these methods have in common is that some

part of the input is provided with a teacher while the other part is not. The input consists

of labeled and unlabeled examples. However they differ in their goal: in semi-supervised

learning the goal, as in supervised learning, is given the input to learn a general rule on

unseen instances. In transductive learning, the goal is to predict the labels of the unlabeled

part of the input. Therefore in transductive learning, the test set is available during training

4



time.

So far it has been implied that train and test sets are drawn from the same set 𝐴 × 𝐵, or

more generally from the same fixed but unknown distribution (in this way, we can model

uncertainty in the examples, e.g. a teacher can make mistakes). By removing this assumption

and allowing train and test sets to come from different distributions, we enter the field of

transfer learning. Introduced in 1996 by Thrun [Thr96], transfer learning aims to apply the

knowledge learned in one context to enhance the learning in a different but somewhat related

context. For instance, if we already know a way to separate documents about football and

documents about cars, can we use this knowledge to separate documents about hockey and

motorcycles?

As a sub-field of machine learning, transfer learning has gained significant attention in recent

years. To begin with, it is a new learning paradigm that allows the formulation of many

problems as well as enhancing the capabilities of already existing machine learning approaches.

In addition, it has a particular practical importance: in classical machine learning implementa-

tions, the work of the teacher is done by humans. For instance, a set of documents have

been manually annotated as hockey and motorcycles, which are then provided as input to

a program in order to learn to separate between these two concepts. However, the amount

of available data in our days is so big or become outdated so fast that annotating all of

them manually is a slow, expensive and error-prone process. To address such constraints, we

could re-use already annotated data, although from a somewhat different context, e.g. the

football-cars domain.

The goal of this thesis was to investigate how the two fundamental paradigms, supervised

and unsupervised learning, can collaborate in the setting of transfer learning. As a result,

we developed tr-𝐾means, a transfer learning variant of the popular 𝐾means heuristic, also

called Lloyd’s method [Llo82]. This heuristic is a typical example of unsupervised learning.

With supervision from a different but related context, we attempted to improve the heuristic’s

performance towards more meaningful results.

1.2 Thesis structure

The rest of thesis is organized as follows. In chapter 2 we offer a short survey of the existing

work on transfer learning. Section 2.1 provides some useful notations alongside a high-level

definition on transfer learning and sections 2.2-2.3 review the basic problem settings and

learning strategies for transfer learning and based on this categorization some known transfer

learning algorithms are discussed.

In chapter 3, we provide some background notations and definitions that will be used in this

thesis. In section 3.1 we formally define the problem under investigation, namely the Domain

Adaptation problem and we review some known theoretical results on the generalization

capabilities of a learner. In section 3.2 we provide the notion of context-similarity that we

will adopt in this work and discuss on existing approaches to compute this measure. Finally

in section 3.3 we elaborate on the pre-processing step of human-created data, a crucial step

5



in our experimental analysis provided in chapter 5.

In chapter 4 we discuss in detail our proposed approach, the tr-𝐾means heuristic. In section

?? we argue how and where it would be valuable to transfer knowledge and in section ??

we provide some approximation guarantees of the method.

In chapter 5 we conduct some experiments to illustrate the value of our method, both

on synthetic 5.2 and real 5.3 datasets. Finally in chapter 6 we summarize the observed

conclusions and we propose directions of future research.
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2 Related Work

This chapter offers a survey of the existent work related to transfer learning. In section 2.1

we provide some useful notations and a high-level definition on transfer learning. In section

2.2 we review the basic problem settings and learning strategies for transfer learning and

based on this categorization we discuss some well known transfer learning algorithms. Finally

in section 2.3 we focus on our setting, namely transductive transfer learning, and present a

by-no-means-complete literature review on this subdomain.

2.1 Useful Notation and Definitions

Following the notation in [PY10], let us define a domain to be the tuple 𝐷 = {𝐼, 𝑃 (𝐼)}
where 𝐼 is an input space (namely a feature set¹) and 𝑃(𝐼) is a marginal probability

distribution on this set. A domain can be considered as a generator of inputs. Given a

specific domain 𝐷, a task is a tuple 𝑇 = {𝑂, 𝑃(𝑂|𝐼)} where 𝑂 is the set of all possible

outputs (often called labels or information classes) and 𝑃(𝑂|𝐼) is a conditional probability

distribution which models what needs to be learned. It is worth mentioning that 𝑃(𝑂|𝐼) can

contain 𝑓(𝑥) = 𝑦, 𝑥 ∈ 𝐼 and 𝑦 ∈ 𝑂 as a special case (i.e. 𝑃(𝑓(𝑥)|𝑥) = 1). Finally let

us define a context to be the tuple 𝐶 = {𝐷, 𝑇 } which is governed by the joint distribution

𝑃(𝐼, 𝑂) = 𝑃(𝐼) ⋅ 𝑃 (𝑂|𝐼). We are now ready to give an informal definition on transfer

learning:

Definition 2.1.1. [Transfer Learning - informal] Given a source context 𝐶𝑠 and a target
context 𝐶𝑡, where 𝐶𝑠 ≠ 𝐶𝑡, transfer learning aims to improve the learning of the target
conditional distribution 𝑃𝑡(𝑂𝑡|𝐼𝑡) using the knowledge obtained from 𝐶𝑠.

So a learner, given inputs from the target domain 𝐷𝑡 and knowledge learned from at least

one source context 𝐶𝑠, will produce a so-called hypothesis function ℎ ∶ 𝐼𝑡 → 𝑂𝑡 which will

best approximate the target conditional distribution 𝑃𝑡(𝑂𝑡|𝐼𝑡). A more inclusive discussion of

learning is postponed until chapter 3, but for the moment let’s observe the following: what the

learner actually does is based on the input, it searches a function space 𝐻 = {𝑓|𝑓 ∶ 𝐼𝑡 → 𝑂𝑡}
¹In literature, the input or instance space is often intertwined with the feature space. In this thesis, we also follow this simplification.

However, in [BDBCP07] they separate the actual input from its feature representation via a representation function, effectively formalizing

the pre-processing in typical machine learning applications.
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Figure 2.1.1: The four subsettings of transfer learning: green circles denote the target context and pink circles

the source context. The superscript 𝑇 denotes the existence of labels (teacher) in each context.

to find the best candidate function ℎ ∈ 𝐻 for 𝑇𝑡. Given that |𝐻| = |𝑂𝑡||𝐼𝑡|, learning can be

impossible in practice. Therefore, we restrict the search space to be 𝐻𝐴 ⊂ 𝐻 , where 𝐴 is a

set of parameters and 𝐻𝐴 = {𝑓𝑎|𝑎 ∈ 𝐴 and 𝑓𝑎 ∈ 𝐻}. Intuitively 𝐴 can be thought of as

the inductive bias or the assumptions of the learner about the true distribution of the training

set, e.g. the (unknown) function to be learned is a polynomial. As explained in [Mit80],

a learner without bias cannot generalize and will only memorize the given inputs. We will

refer to the restricted search space 𝐻𝐴 as the hypothesis space of the learner. It is worth

mentioning that there is no guarantee that the target function 𝑓 will be a member of 𝐻𝐴.
Transfer learning aims to improve the search inside 𝐻𝐴.

2.2 Transfer Learning

Whether labeled examples (i.e. a teacher) are given in each context, transfer learning

can be categorized into four main subsettings: inductive, transductive, semi-supervised and

unsupervised transfer learning. Inductive transfer learning (ITL) requires a teacher in the target

context: a few labeled examples are required in the target context in order to induce a target

predictive function, but in addition labeled or unlabeled examples from the source context are

available to boost the learning performance. Semi-supervised (STL) and transductive transfer

learning (TTL) require a teacher only in the source context: the learner’s input consists of

labeled examples from the source context and unlabeled examples from the target domain.

As mentioned earlier, in semi-supervised transfer learning the test set is not available during

training time, in contrast with transductive transfer learning. It is natural to claim that the

setting of inductive transfer learning serves as a rough upper-bound to the performance of

a learner based on transductive transfer learning or semi-supervised learning. One final note

for these two last settings is about the labels: it is required that either the labels in both

contexts are the same or there is a learnable correspondence between the label spaces (e.g.

see [KP13] for a treatment of different label spaces). Finally, unsupervised transfer learning

(UTL) is the setting where no teacher exists in any context: unlabeled examples from both

contexts are available to the learner and the goal is to estimate the underlying distribution

(often called density estimation) or find hidden patterns in this structure, for instance by

clustering or dimensionality reduction of the inputs.

As mentioned in the Definition 2.1.1, the core idea of transfer learning is that knowledge

from one context can potentially improve the learning performance in a related, but different
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context. One useful question is where we can apply this knowledge. By taking a careful look

into the basic components of a learner, the answer to this question can reveal some of the

frequently used strategies in the transfer learning literature.

A learner or learning algorithm receives inputs along with a feature representation, potentially

with the presence of labels and has a set of assumptions, i.e. model parameters. Based

on these, we can identify four major transfer learning strategies: input-based or re-weighting

methods, feature-based or projection methods, parameter-based and label-based methods.

Although this taxonomy is by no means complete², it demonstrates the current trends in the

TL literature.

2.2.1 Inductive Transfer Learning

In Inductive Transfer Learning, the train set consists of some labeled target-domain instances

and source-domain instances (labeled or not). We will denote the train set as 𝑋, its target

part 𝑋𝑡 which will always be labeled and its source part as 𝑋𝑠.

In [DYXY] they propose trAdaBoost, an ITL meta-algorithm based on the assumption

that feature and label spaces are the same. They iteratively improve (boost) a learner by

checking its performance on 𝑋𝑡. Both source and target train data are labeled and they

are re-weighted in each iteration, however with a different goal: for 𝑋𝑠 the goal of the

re-weighting mechanism is to reduce or increase its impact in the next iterations, where impact

here is translated as the data’s contribution to the average empirical error ( the empirical error

�̂� is measured on the train set, see 3). For 𝑋𝑡 the goal of the re-weighting mechanism

is to make the incorrectly-classified target train instances receive more attention in the next

iterations. After a fixed number of iterations, the algorithm outputs the improved learner for

which they provide convergence and generalization guarantees.

In [KHA09] they propose trBagg, also an ITL meta-algorithm which combines multiple

weak-learners into an aggregated one. At first, they generate from 𝑋 a fixed number of

sampled-train sets via bootstrap sampling (i.e. sampling uniformly with replacement). We

can assume that for each sample-train set, each train instance (either from the source or the

target domain) is assigned a weight which corresponds to its number of appearances in this

set. Weak learners are trained on these sample-sets, a process which can be done in parallel.

After this learning phase, the method iteratively find a subset of these learners whose majority

voting on the 𝑋𝑡 has smaller empirical error (on 𝑋𝑡) than a fallback learner trained only on

𝑋𝑡. This filtered subset will be the aggregated learner which the method gives as an output.

It is argued that this instance-weighting method affects the variance³ factor of the aggregated

learner, a factor which highly influences its generalization error.

In [HMT05] they are given a lot of labeled source train data 𝑋𝑠 and a limited number

²For more information, we refer the interesting reader to [PY10]. In this thesis, only statistical methods will be discussed, since

geometrical methods don’t rely on the distribution of the input, therefore the domain difference is of no importance to them (however,

an interesting approach can be seen in [DJX+09]).
³If a learner is sensitive to small changes in the train set, then we say that it is a high-variance learner. Therefore reducing its

variance factor, we make the learner less sensitive to changes in the train set and therefore we can argue that it has better generalization

capabilities.
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of target train data 𝑋𝑡. Their goal is roughly to adapt a grammar-driven parser trained on

newspaper text to a biomedical domain. Under the constraints imposed by 𝑋𝑡 they try to

estimate the conditional distribution 𝑃𝑡(𝑦|𝑥) using the maximum entropy principle: from all

the probability distributions that satisfy these constraints, chose the one with the maximum

entropy. In this approach, often called minimum divergence modelling, there is a reference

distribution 𝑃𝑟(𝑦|𝑥) which is used to incorporate prior knowledge into the model. Usually

this is the uniform distribution over all the possible labels an instance can take, so the model

measures the divergence of 𝑃𝑡(𝑦|𝑥) from the uniform distribution (which is the distribution

with the maximal entropy). Their idea is to take advantage of the plentiful labeled source

data to model 𝑃𝑠(𝑦|𝑥) which they incorporate as a prior in their model to estimate 𝑃𝑡(𝑦|𝑥).
Therefore they apply transfer learning in the parameters of the model.

In [DI07] they propose EA: a method that tries to alleviate the difference between the

domains so that standard supervised methods can be employed. Given labeled train data from

both domains and under the assumption that the feature space is shared, they replicate each

feature with domain-specific versions of it. So given there are only two domains, source and

target, let 𝑥 ∈ ℝ𝑚 be an instance in the source domain where the input space is the set of

𝑚-dimensional real numbers. Then it is transformed to the vector ⟨𝑥, 𝑥, 𝟎⟩ in ℝ3𝑚 where

𝟎 ∈ ℝ𝑚. Accordingly, if 𝑥 belongs to the target domain then it is transformed to the vector

⟨𝑥, 𝟎, 𝑥⟩. The first 𝑚-block of features is common for all instances whereas the second and

the third are activated only for source and target instances respectively. So features that are

shared in both domains will be given more attention by the learner in the new augmented

feature space.

In [RBL+07] they are given labeled target data 𝑋𝑡 and many unlabeled source data 𝑋𝑠.
Roughly they use the unlabeled 𝑋𝑠 to learn a higher-level representation which in effect will

be more succinct and will capture commonalities among the instances in the source domain.

For instance, if the instances are images given in pixels, a higher-level representation might

detect certain strong correlations between rows of pixels, and therefore learn that most images

have many edges. Then they apply this new representation to the labeled 𝑋𝑡 and employ

a standard supervised method on this new labeled train set. It is argued that given that

the domains are of the same type or modality (e.g. images, text, audio), the new feature

representation learned in the source domain can boost the performance of a learner in the

target domain.

2.2.2 Semi-supervised Transfer Learning

In Semi-supervised Transfer Learning, the train set consists of unlabeled target-domain instances

and labeled source-domain instances. We will denote the train set as 𝑋, its target part 𝑋𝑡
which will always be unlabeled and its source part as 𝑋𝑠 which will always be labeled. The

goal is to predict the label of a new target instance.

In [KP13] they propose TL-PLSA, a generative STL method under the assumptions the

feature space is shared but the label spaces are different, although there is a shared subset of

them between the domains. They assume two different kinds of higher-level representation
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(which in the context of text domain is usually referred as a set of topics): one set of topics

for instances and one for features. In particular, the method assumes that an instance 𝑥
is generated as follows: pick an instance-topic with probability 𝑃(𝑧) and select an instance

conditioned on the given instance-topic with probability 𝑃(𝑥|𝑧). For each feature 𝑓 of the

instance 𝑥: select a feature-topic conditioned on the instance-topic with probability 𝑃(𝑘|𝑧)
and select the feature conditioned on the given feature-topic with probability 𝑃(𝑓|𝑘). So

overall 𝑃(𝑥, 𝑓) = ∑𝑧,𝑘 𝑃(𝑘, 𝑧) ⋅ 𝑃 (𝑥|𝑧) ⋅ 𝑃 (𝑓|𝑘) since it is assumed that instances and

features are conditionally independent from the respective topics. All the parameters in the

summation are estimated so as to maximize the predictive probability of the observed features.

By letting instance-topics 𝑧 correspond to the label spaces, we can observe that instance-topics

are separated to source 𝑧𝑠 and target 𝑧𝑡 with a subset of them being shared 𝑧𝑠𝑡. For the

source instance-topics, the parameters can be initialized based on the labeled source domain,

therefore applying transfer learning in the model’s parameters. In addition, given the number

of source, target and shared classes, they can identify which instance-topics are shared, in

order to transfer knowledge only where it is appropriate.

Another example of parameter-based STL is presented in [HLCN+15], where they assume that
the feature and label space is common. In particular, they deploy the simplifying Naive Bayes

assumption which states that for an instance 𝑥 = {𝑥1, … , 𝑥𝑛}, its features are independently

chosen, meaning that for a label 𝑦 and for 𝑖 = 1, … , 𝑛 it holds that 𝑃(𝑥|𝑦) = ∏𝑖 𝑃 (𝑥𝑖|𝑦).
If we had an estimate of the label-priors 𝑃(𝑦) and the conditionals 𝑃(𝑥𝑖|𝑦) for every

feature and every label, then we could label a new instance 𝑦∗ = argmax𝑦 𝑃(𝑦|𝑥𝑛𝑒𝑤) ∝
argmax𝑦 𝑃(𝑦) ⋅ ∏𝑖 𝑃(𝑥𝑖|𝑦). They initialize the required parameters with the labeled source

data and they iteratively improve the estimation on the unlabeled target data so as to maximize

the predictive probability of the observed features in the target domain.

In [HPS13] they propose SLDAB, an iterative non-probabilistic method which can be catego-

rized as a label-based method. They iteratively build a learner which simultaneously optimizes

the source classification error and preserves a low discrepancy distance between the source

and the target distribution. The latter condition ensures the generalization capabilities of the

learned hypothesis. In each iteration, target data are iteratively self labeled and distributions

over both datasets are maintained, in order to measure their divergence. They employ as

divergence a measure computed by a maximum graph matching procedure and they provide

convergence and generalization guarantees for their method.

In [SS07] they provide a feature-based TTL method where they try to transform instances

so that the distributions become more similar and therefore standard supervised methods can

be employed under this transformation. In particular, they attempt to minimize efficiently the

source classification error by identifying a subset of good features where the distributions exhibit

low discrepancy distance. Since no labels are provided for 𝑋𝑡, they use the poor estimation

from a shift-unaware learner. The result learner, since it will be trained on generalizable

features, it is argued to exhibit good generalization capabilities in the target domain.
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2.2.3 Unsupervised Transfer Learning

In Unsupervised Transfer Learning, the train set consists of unlabeled instances from both

domains.

In [BHLS13] they try to find a new feature space where the source and target distributions,

estimated by the unlabeled samples, are as similar as possible. Although they demonstrate

the power of their method in the presence of source labels, it is evident that it could be

used for unsupervised tasks as well. In this way, target patterns can be found using structural

information from the source domain as well.

Another feature-based UTL method is proposed in [DYXY08]. Their objective is to find

a good clustering for the given unlabeled target data with the help of a clustering on the

unlabeled source data as well as a clustering of the shared feature space. A feature-clustering

in effect groups together features that exhibit similar behaviour among instances. In effect they

provide a transfer learning variant of the co-clustering algorithm proposed in [DMM03], which

tries to minimize the loss in mutual information⁴ between instances and features before and

after the co-clustering. Their idea is to simultaneously perform two co-clustering operations in

the source and target instances, where both operations will share the same feature clustering.

They experimentally tune a trade-off parameter which balances the influence between the

domains and they prove that their iterative method exhibits convergence guarantees.

2.3 Transductive Transfer Learning

In Transductive Transfer Learning, the train set consists of unlabeled target-domain instances

and labeled source-domain instances. We will denote the train set as 𝑋, its target part 𝑋𝑡
which will always be unlabeled and its source part as 𝑋𝑠 which will always be labeled. The

goal is to predict the labels of the 𝑋𝑡. So unlike the Semi-supervised Transfer Learning, the

test set is available at training time.

In [TCWX09] they propose ANB, a weighted transfer version of the famous Naive Bayes

Classifier (see [Lew98] for a detailed reference). Their core idea is to identify a set of domain-

independent features so when a learner is trained on the source instances, it will not be biased

by source-specific features. They pick the generalizable features if two criteria are met: they

occur frequently in both domains and they have similar occurring probability. Furthermore, they

deploy the simplifying Naive Bayes assumption that all features are conditionally independent.

So they initiate a learner with the labeled restricted source data and they iteratively improve the

estimation using also the unlabeled target data so as to maximize the predictive probability of

the observed features in the target domain. In each iteration, they use only the generalizable

features for the source instances and all the features on the target instances in order to

enhance the learner’s generalization capabilities.

In [BGJV09] they propose CGC, an iterative method that uses source information in order to

⁴Mutual Information between two random variables 𝑋, 𝑌 is a measure of how much one random variable tells us about another.

It is defined as 𝐼(𝑋,𝑌 ) = ∑𝑥∈𝑋 ∑𝑦∈𝑌 𝑝(𝑥,𝑦) ⋅ log 𝑝(𝑥,𝑦)
𝑝(𝑥)⋅𝑝(𝑦) . Higher mutual information values indicate more certainty that one

random variable depends on another.
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supervise a clustering on the target domain. Since the source data are already labeled, we

can assume that an optimal clustering for them is provided. In each iteration, the criterion

of homogeneity between clusters in the target domain is therefore extended to incorporate

the alignment between the domains. In particular the cross-domain alignment is found by

constructing a complete bipartite graph that has one set of vertices corresponding to the source

centroids and another set corresponding to the target centroids. The edges of the graph

are assigned a user-defined similarity measure and therefore to find the best alignment is

equivalent to find the maximum weighted bipartite match in the graph. Since feature spaces

might be different, they identify a shared set of features on which they project the rest of the

features and incorporate this knowledge inside the cross-domain similarity measure (resulting

in a parameter-based TL method).

In [DrXYY07] they propose NBTC, another weighted transfer version of the Naive Bayes

Classifier. Label and feature spaces are considered shared and they assume all features are

conditionally independent (Naive Bayes Assumption). As in previous works, they initiate a

learner on the labeled source data and iteratively improve this poor estimation using also the

unlabeled target data so as to maximize the predictive probability of the observed features in

the target domain. Although similar methods have already been mentioned, they all had an

experimentally-tuned trade-off parameter to balance the influence of the source and target data

in each iteration. However, this method attempts to automate the choice of this parameter by

setting it as a function of a divergence measure between the estimated probability distributions

of the observed data. Therefore, if the distributions are very similar, then source and target

data equally influence the learning method, otherwise the method will be biased towards one

domain and the improvement will be lessened.

In [XDXY07] they propose bridged refinement, a TTL method which aims at refining

the target labels of 𝑋𝑡. Label and feature spaces are assumed to be the same as well as

the conditional distributions 𝑃𝑠(𝑂|𝐼) , 𝑃𝑡(𝑂|𝐼) among domains. Inspired by the Page Rank

[PBMW99], they assume a mutual reinforcement principle among instances: if the neighbours

of an instance 𝑥 have high confidence of belonging to a label 𝑦, then 𝑥 may receive also

high score to 𝑦. This confidence can be regarded as an estimation of 𝑃(𝑥|𝑦). The method

consists of 2 iterations: the first (pre-processing phase) is applied to the whole dataset 𝑋
and the second (refinement phase) to 𝑋𝑡. In each iteration, a confidence score is updated

for each instance and for each label based on the confidence of the 𝐾 (tunable parameter)

closest neighbours (under some measure). The initial confidences for the first iteration are

set from a domain-unaware classifier trained on 𝑋𝑠 and applied to 𝑋𝑡, whereas the initial

confidences for the second iteration are the output of the first iteration (projected on 𝑋𝑡).
At the end of the second iteration, we label each instance in 𝑋𝑡 with the label that has the

highest confidence.

In [DXYY07] they propose CoCC, a TTL iterative method where they use co-clustering as a

bridge to propagate source information in the target domain. Label and feature spaces are

assumed to be the same as well as the conditional distributions 𝑃𝑠(𝑂|𝐼) , 𝑃𝑡(𝑂|𝐼) among

domains. Their core idea is to use the labels provided in 𝑋𝑠 in order to constrain the feature

clusters which are shared among the domains. Since in the target domain, instance and
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feature clusters are identified simultaneously, their idea is argued to allow the clusters of 𝑋𝑡
to be mapped to a corresponding source label. In effect, given that 𝐼 is the feature set

and 𝑂 the label space, they develop a co-clustering method that simultaneously minimizes

a loss function in the mutual information between the instance-feature target co-clustering

(𝑋𝑡 , 𝐼) and between the label-feature co-clustering (𝐼 , 𝑂) before and after the co-clustering.

They experimentally tune the number of feature clusters and a trade-off parameter which

balances the influence of (𝐼 , 𝑂) to (𝑋𝑡 , 𝐼) and they prove that their iterative method

exhibits convergence guarantees.
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3 Background

In this chapter, we introduce some notations and definitions that will be used in this thesis.

In section 3.1 we formally define the problem under investigation, namely the Domain

Adaptation problem and we review some known results on generalization bounds. In section

3.2 we provide the notion of context-similarity we will adopt in this work and discuss on

existing approaches to compute this measure. Finally in section 3.3 we elaborate on the

pre-processing step of human-created data, a crucial step in our experimental analysis provided

in chapter 5.

3.1 Learning under Domain Adaptation

In this thesis, we focus on transductive transfer learning and we restrict to the case where only

the source and target domains differ. This problem is often called Domain Adaptation. In

particular, we consider two contexts, a source context 𝐶𝑠 = {𝐷𝑠, 𝑇𝑠} and a target context
𝐶𝑡 = {𝐷𝑡, 𝑇𝑡} where source and target input spaces are the same 𝐼𝑠 = 𝐼𝑡 = 𝐼 and

tasks are considered the same 𝑇𝑠 = 𝑇𝑡. Therefore the set of all possible outputs (namely

the label space) is the same for both contexts 𝑂𝑠 = 𝑂𝑡 = 𝑂 as well as the conditional

probability distributions 𝑃𝑠(𝑦|𝑥) = 𝑃𝑡(𝑦|𝑥), for 𝑥 ∈ 𝐼 and 𝑦 ∈ 𝑂. Furthermore, we make

the assumption that only the marginal distributions differ, that is: 𝑃𝑠(𝑥) ≠ 𝑃𝑡(𝑥). This

situation is often termed covariate shift.

Although the assumptions may seem restrictive, they are quite natural in many real-world

problems such as document classification. As a motivation for this setting, let us imagine we

have been given documents in English coming from two contexts: movie-reviews and book-

reviews. Movie-reviews have already been annotated as positive-negative but book-reviews are

still left to be determined. In both cases the task is to automatically recognize if the review is

positive or negative, so labels are the same. Since all documents are in the same language,

then input spaces are also the same. Finally, we can conclude that if two documents are very

similar (for instance they contain synonym words), it would be natural to categorize them in

the same class, therefore conditional probability distributions should also be the same. A toy

example is shown in Figure 2: squares are coloured as purple, and a triangle seams more

similar to a square then a circle, so we might chose to color the triangles as purple as well.
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Figure 3.1.1: What color would you paint triangles and polygons?

In this setting, let us consider two sets 𝑋𝑠 = {𝑥𝑠
𝑙 }𝑁𝑠

𝑙=1 and 𝑋𝑡 = {𝑥𝑡
𝑢}𝑁𝑡

𝑢=1 composed of

𝑁𝑠 source-domain and 𝑁𝑡 target-domain instances, sampled from the unknown marginal

distributions 𝑃𝑠(𝑥) and 𝑃𝑡(𝑥) respectively. Let us further assume that 𝑥𝑠 , 𝑥𝑡 ∈ ℝ𝑚, that is

each instance is a 𝑚-dimensional real vector, where 𝑚 represents the dimensionality of the

common input space 𝐼 = ℝ𝑚. The same set of 𝐾 classes 𝑂 = {𝑜𝑘}𝐾
𝑘=1 characterizes both

domains 𝐷𝑠 and 𝐷𝑡. A set of true labels 𝑌𝑠 = {𝑦𝑠
𝑙 }𝑁𝑠

𝑙=1 for 𝑋𝑠 is available, where 𝑦𝑠 ∈ 𝑂,

thus it is possible to define a source labeled set 𝑇 𝑟𝑠 = {𝑋𝑠, 𝑌𝑠} = {(𝑥𝑠
𝑙 , 𝑦𝑠

𝑙 )}𝑁𝑠
𝑙=1 for 𝐷𝑠

drawn from the probability distribution 𝑃𝑠(𝑥, 𝑦) = 𝑃𝑠(𝑥) ⋅ 𝑃𝑠(𝑦|𝑥). Given 𝑇 𝑟𝑠 and 𝑋𝑡, our
goal is to find a set of labels 𝑌𝑡 = {𝑦𝑡

𝑢}𝑁𝑡
𝑢=1 for 𝑋𝑡 such that {𝑋𝑡, 𝑌𝑡} best approximates

the unknown distribution 𝑃𝑡(𝑥, 𝑦) = 𝑃𝑡(𝑥) ⋅ 𝑃𝑡(𝑦|𝑥) = 𝑃𝑡(𝑥) ⋅ 𝑃𝑠(𝑦|𝑥).
In order to provide a formal definition of the problem, let us review some terminology

from Learning Theory in [Vap98]: let 𝐺 be a generator of random vectors 𝑥 ∈ 𝐼 chosen

independently from a fixed but unknown distribution 𝑃(𝑥), where 𝐼 is an input space. Let

𝑇 be a teacher which returns for every input 𝑥 an answer 𝑦 ∈ 𝑂 according to some fixed but

unknown function 𝑓 ∶ 𝐼 → 𝑂, where 𝑂 is the set of all possible information classes. Therefore

we consider the existence of a target function 𝑓 and a labeled train set 𝑇 𝑟 = {(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1.

So a learning machine 𝑀 , given the train set 𝑇 𝑟 will produce a so-called hypothesis function

ℎ ∶ 𝐼 → 𝑂 which will best approximate the target function 𝑓 . We have already mentioned

in 2.1 that a learning machine needs to be associated with a set of parameters 𝐴 that will

in effect characterize its bias or its hypothesis space 𝐻𝐴. Therefore let 𝑀𝐴 be a learning

machine capable of computing a set of functions 𝐻𝐴 = {ℎ𝑎(𝑥)|ℎ ∶ 𝐼 → 𝑂 and 𝑎 ∈ 𝐴}
where 𝐴 a set of parameters. Then the learning problem is: Given generator 𝐺, teacher
𝑇 , a train set 𝑇 𝑟 and a learner 𝑀𝐴, the goal of 𝑀𝐴 is to choose from 𝐻𝐴 a function
(hypothesis) that bests approximates the answers of 𝑇 . An optimal prediction depends on

how much an error can cost. This concept can be quantified with the use of a loss function

𝐿( ̂𝑦, 𝑦) ∶ 𝑂×𝑂 → ℝ which measures how much the prediction ̂𝑦 = ℎ𝑎(𝑥) of the hypothesis

function differs from the real answer 𝑦 = 𝑓(𝑥). Therefore we can define the risk or expected
error of choosing a hypothesis to be 𝑅(𝑎) = 𝐸

(𝑥,𝑦)←𝑃(𝑥,𝑦)
[𝐿(ℎ𝑎(𝑥), 𝑦)] (we will often omit

the subscript 𝑎 unless otherwise stated). Therefore the learning problem can be formulated

as follows:

Definition 3.1.1. [Learning problem] Given a generator 𝐺, a teacher 𝑇 , a train set 𝑇 𝑟,
a learner 𝑀𝐴 and a loss function 𝐿, the goal of 𝑀𝐴 is to find a function 𝑀𝐴(𝑇 𝑟) =
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ℎ𝑎∗(𝑥) ∈ 𝐻𝐴 such that 𝑎∗ =argmin
𝑎∈𝐴

𝑅(𝑎).

Unfortunately, since 𝑃(𝑥, 𝑦) is unknown, the expected error cannot be computed. However,

we can define the empirical error to be �̂�(𝑎) = 1𝑛 ∑𝑛
𝑖=1 𝐿(ℎ𝑎(𝑥𝑖), 𝑦𝑖) which is the average

cost of the hypothesis ℎ𝑎 on the train set. We say that a hypothesis is consistent with

𝑇 𝑟 if the empirical error is zero, meaning that the chosen hypothesis made no mistakes on

the train set. Although we can measure this quantity, how close will it be to the expected

error? Before showing this, let us mention a useful notion related with the hypothesis space.

Given an input space 𝑋 and a hypothesis space 𝐻 defined over 𝑋, let us call dichotomy a

partition of the sample set 𝑋 into two disjoint subsets. We say that 𝑋 is shattered by 𝐻
if for every dichotomy of 𝑋 there exists a hypothesis ℎ ∈ 𝐻 which is consistent with this

dichotomy. Therefore, the size of the largest finite subset of 𝑋 shattered by 𝐻 is called the
Vapnik-Chervonenkis dimension of 𝐻 and is denoted as 𝑉 𝐶(𝐻). If arbitrarily large finite

subsets of 𝑋 can be shattered by 𝐻 then 𝑉 𝐶(𝐻) = ∞. Intuitively, 𝑉 𝐶 dimension is a

quantitative way to measure the capacity (or complexity or richness) of a learner. It has been

shown in [Vap98]:

Theorem 3.1.1. Let 𝑆 ⊆ 𝑋 be a train set of size 𝑁 over an input space 𝑋 identically
and independently drawn from a distribution 𝑃(𝑥, 𝑦), let 𝑀𝐴 be a learner characterized
by a hypothesis space 𝐻𝐴 such that 𝑉 𝐶(𝐻𝐴) = 𝑣 and let 𝑅(𝑎), �̂�(𝑎) the expected and
empirical errors respectively. Then for any 0 ≤ 𝛿 ≤ 1 it holds that with probability 1 − 𝛿

𝑅(𝑎) ≤ �̂�(𝑎) + √ 1
𝑁 [𝑣(log 2𝑁

𝑣 + 1) − log 𝛿
4]

The result above holds for finite 𝑣 ≪ 𝑁 and for binary functions ℎ ∈ 𝐻𝐴. There are many

proposed theories to extend this result that are out of scope for this thesis but the useful point

here is that under some conditions, we can bound the generalization error with the empirical

error and the capacity of the learner.

Going back to our setting, the train set consists of a labeled part 𝑇 𝑟𝑠 and an unlabeled part

𝑋𝑡 coming from different distributions and our goal is to predict on the unlabeled part on

the input. Therefore we can adapt Definition 3.1.1 as follows:

Definition 3.1.2. [Domain Adaptation problem] Given a generator 𝐺, a teacher 𝑇 , a
source labeled train set 𝑇 𝑟𝑠, a target unlabeled train set 𝑋𝑡, a learner 𝑀𝐴 and a loss
function 𝐿, the goal of 𝑀𝐴 is to find a function 𝑀𝐴(𝑇 𝑟𝑠, 𝑋𝑡) = ℎ𝑎∗(𝑥) ∈ 𝐻𝐴 such that
𝑎∗ =argmin

𝑎∈𝐴
𝑅𝑡(𝑎) =argmin

𝑎∈𝐴
𝐸

(𝑥,𝑦)←𝑃𝑡(𝑥,𝑦)
[𝐿(ℎ𝑎(𝑥), 𝑦)].

In the Domain Adaptation scenario, there is no known similar bound with 3.1.1 (to the best

of our knowledge). However, this is an active area of research in Transfer Learning that has

already produced some partial results. For instance, in [BCK+08] they show generalization

bounds in the case of Unsupervised and Inductive Transfer Learning, where in the latter they

specialize on learners that try to minimize a convex combination of empirical source and target
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errors. In both cases, apart from the VC-dimension, another measure that is used in the

bounds is the similarity between the contexts and in particular of the probability distributions

governing them. For their case, they define similarity based on a hypothesis space-specific

distance measure.

To stress the significance of the notion of context-similarity, we can observe that the core idea

of all the discussed methods in chapter 2 is based on how they define (implicitly or explicitly)

and exploit context-similarity. Therefore, it is of no surprise that this notion will also play a

crucial role in our method. For reasons that will be elaborated in section 4.3 and based on

our assumption that only the marginal distributions differ, we will base the notion of similarity

on the ratio 𝑤(𝑥) = 𝑃𝑡(𝑥)/𝑃𝑠(𝑥). Since the marginal probability densities are unknown,

we cannot compute exactly 𝑤(𝑥). So the question now is how to accurately estimate it. In

the following section we review some existing approaches on the Density¹ Ratio Estimation.

3.2 Density Ratio Estimation

It has been argued that directly estimating the ratio is much more effective (both in time

and accuracy) than estimating the densities separately and then computing the ratio (see

[HMSW04] where they discuss on the hardness of density estimation for high-dimensional

data). In literature there exist several methods that allow us to directly estimate this ratio.

Despite not having theoretical approximation guarantees, they are experimentally tested and

mostly focus on scalability (both in the sample size and the dimensionality of the input space).

In principle, they provide a specific model for the ratio and they determine its parameters so

that a specific function is minimized, resulting in a convex optimization problem. Below we

briefly review some of these methods but we refer the interesting reader to [SSK12] for more

details. In Table 3.1 a succinct summary of these characteristics is presented.

In KLIEP [SNK+08] they model the ratio with a linear model �̂�(𝑥) = ∑𝑏
𝑙=1 𝑎𝑙 ⋅ 𝜙𝑙(𝑥) =

⟨𝑎 ⋅ 𝜙(𝑥)⟩ and they estimate its parameters 𝑎𝑙 by maximizing the log-loss function 𝐽 =
∫ log �̂�(𝑥)𝑝𝑡(𝑥)𝑑𝑥 which in effect minimizes the Kullback-Leibler divergence between 𝑃𝑡(𝑥)
and ̂𝑃𝑡(𝑥) = �̂�(𝑥) ⋅ 𝑃𝑠(𝑥). Kullback-Leibler divergence, also known as relative entropy, is

defined as defined as:

𝐾𝐿(𝑝, 𝑞) =∑
𝑥

𝑝(𝑥) log 𝑝(𝑥)
𝑞(𝑥)

where 𝑝 , 𝑞 are probability densities. The method also deals with the automated selection of

the basis functions 𝜙𝑙 in order to maximize 𝐽 and it is suggested to use spherical Gaussian

kernels as the search space of them. The Gaussian centers are set at the test samples in

order to allocate many kernels at high test input density regions where it is expected that

the density ratio tends to take large values. However, this method needs to solve a convex

optimization problem which is non-linear, making it computationally rather expensive and with

scalability issues.

To solve the non-linearity, in LSIF [KHS09], they study KLIEP by minimizing the squared-

¹In this thesis, probability distribution and probability density function are used interchangeably.
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loss function 𝐽 = 1
2 ∫(�̂�(𝑥) − 𝑤(𝑥))2𝑝𝑡(𝑥)𝑑𝑥. The resulting optimization problem is

quadratic and a convergence analysis is provided. Again they suggest as promising model

candidates the spherical Gaussian kernels for 𝜙𝑙. Due to accumulation of numerical errors, they

further propose an approximation version of LSIF called unconstrained LSIF (uLSIF) which is

experimentally argued to perform better computationally. They also provide convergence as

well as approximation bounds for uLSIF, the latter being dependable on tunable parameters.

Again here there is no focus on scalability issues.

To deal with scalability, in LL-KLIEP [TKH+09] they argue that KLIEP idea can be naturally

applied to log-linear models, so they use the normalized model �̂�(𝑥) = 𝑒𝑥𝑝(⟨𝑎⋅𝜙(𝑥)⟩)
1

𝑁𝑠 ∑𝑥′∈𝑋𝑠
𝑒𝑥𝑝(⟨𝑎⋅𝜙(𝑥′)⟩) .

Their motivation comes from the observation that in KLIEP, in each step of the gradient

ascent (an algorithm that solves the optimization problem) the summation over all test samples

needs to be computed, which is prohibitively slow in large-scale problems. They make KLIEP

feasible in the setting of large-scale test dataset, yet dimensionality issues was not the focus.

The main advantage is computational efficiency since the computation time of LL-KLIEP is

nearly independent of the amount of test data (under some pre-processing assumptions). Also

they experimentally confirmed that the accuracy of the proposed method is good enough.

In GM-KLIEP [YS09] they argue that KLIEP idea can be naturally applied to Gaussian mixture

models. Their motivation comes from the following observation: in a typical implementation

of KLIEP a spherical Gaussian kernel model is employed and the Gaussian width is shared by

all the basis functions 𝜙𝑙. This means that when the true importance function is correlated,

the performance of KLIEP could be degraded. To cope with this problem, they propose to

use a Gaussian mixture model �̂�(𝑥) = ∑𝑏
𝑙=1 𝜋𝑙𝒩(𝑥|𝑚𝑙, Σ𝑙) and learn the covariance matrix

of the Gaussian components at the same time (through an iterative estimation procedure). So,

they learn the importance function more adaptively even when the true importance function

contains high correlation. Since the optimization function is the same as in KLIEP, this method

inherits scalability issues and may suffer from numerical instability in certain data samples.

In order to deal with high-dimensional input spaces, in D3-HSA [YS11] they employ the

idea of performing density ratio estimation only in a subspace where the two distributions are

significantly different and in particular where they are are maximally different under the Pearson
divergence. Pearson divergence is a squared-loss variant of the Kullback-Leibler divergence

and it is defined as

𝑃𝐸(𝑝, 𝑞) = 1
2 ∫ 𝑞(𝑥) (𝑝(𝑥)

𝑞(𝑥) − 1)
2

𝑑𝑥

where 𝑝 , 𝑞 are probability densities. They refer to this subspace as hetero-distributional
subspace (HDS). Intuitively, in such a subspace the train and test samples will be maximally

separated. After finding such an HDS, they perform the aforementioned uLSIF in this

low-dimensional subspace.

Density ratios have two natural limitations: they can be unbounded even for simple cases (see

[CMM10]) and they are asymmetric and thus the ”direction” needs to be determined by a

user. In our case, the direction will be set in section 4.3 so the only thing to tackle is that

they can be unbounded. For that reason, we chose to use the RuLSIF method [YSK+11].
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Table 3.1: Characteristics of Density Ratio Estimation methods

Name Loss Function Model Scalability

KLIEP
log loss linear not efficient for high dimensional spaces

𝐽 = ∫ log �̂�(𝑥)𝑝𝑡(𝑥)𝑑𝑥 Gaussian kernels not efficient if many test data

LSIF
squared loss linear approx. uLSIF

𝐽0(𝛼) = 1
2 ∫(�̂�(𝑥) − 𝑤(𝑥))2𝑝𝑡(𝑥)𝑑𝑥 Gaussian kernels due to numerical issues

LL-KLIEP
log loss log linear scalable on sample size𝐽 = ∫ log �̂�(𝑥)𝑝𝑡(𝑥)𝑑𝑥

GM-KLIEP
log loss

Gaussian mixture
has KLIEP’s scalability issues

𝐽 = ∫ log �̂�(𝑥)𝑝𝑡(𝑥)𝑑𝑥 numerical issues

D3-HSA
squared loss linear efficient

𝐽0(𝛼) = 1
2 ∫(�̂�(𝑥) − 𝑤(𝑥))2𝑝𝑡(𝑥)𝑑𝑥 Epanechnikov kernels scalable on dimensionality

RuLSIF
squared loss linear

smoothed extension of uLSIF𝐽(𝜃) = 1
2𝐸𝑞𝛼(𝑥)[(𝑔(𝑥; 𝜃) − 𝑤𝛼(𝑥))2] Gaussian kernels

In this method, they introduce the notion of the 𝛼-relative density ratio as

𝑤𝑎(𝑥) = 𝑝(𝑥)
𝛼 ⋅ 𝑝(𝑥) + (1 − 𝑎) ⋅ 𝑞(𝑥) = 𝑝(𝑥)

𝑞𝑎(𝑥)
where it is easy to observe that for 𝛼 = 0 it reduces to the usual definition of the ratio. They

model this relative ratio with a linear model �̂�(𝑥) = ∑𝑏
𝑙=1 𝜃𝑙 ⋅ 𝜙𝑙(𝑥) = ⟨𝜃 ⋅ 𝜙(𝑥)⟩ where

𝑏 = 𝑛𝑠 the number of source samples and they estimate its parameters 𝜃𝑙 by maximizing the

function 𝐽 = 1
2 ∫ 𝑞𝛼(𝑥) (𝑟𝑎(𝑥) − 1)2 𝑑𝑥 which in effect minimizes the relative analogue of

the Pearson divergence. Pearson divergence is argued to be more efficient than the Kullback-

Leibler, due to the absence of the non-linear log function. This method is regarded as an

extension of uLSIF to the 𝛼-relative density ratio and they also provide extensive convergence

analysis. As before, it is suggested to use the family of spherical Gaussian kernels as the

basis functions.

Since none of the above methods is equipped with theoretical approximation guarantees, we

performed experiments in chapter 5 and focused our attention to a comparison between uLSIF

and RuLSIF. Despite being simple and readily available in [Lab], our two candidates were

chosen based on their unique properties: uLSIF is arguably the fastest proposed method

whereas RuLSIF handles unbounded ratios smoothly and in a tunable way.

Experiments usually supplement the theoretical study, allow the investigation of tunable pa-

rameters but they also indicate practical limitations and technicalities of the proposed methods.

As it is typical in the machine learning literature we conducted experiments on synthetic as well

as on real data. Synthetic data are crafted input instances generated from known distributions

and are usually employed to justify the predictive power of a learner on good instances as

well as its limitations in bad instances. In this thesis, we created 3 synthetic experiments that

allowed us to investigate further the behaviour of our method as well as the selection of the

most suitable density ratio estimator. The generation and discussion on them can be found

in chapter 5.

On the other hand, real data are input instances generated by unknown distributions. They
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are employed as an application of the proposed method in a realistic scenario in order to

investigate accuracy and scalability issues, since real data typically come in large amounts from

a high-dimensional space. Despite being arbitrary input instances, their modality is usually

known, e.g. the data are documents, images or audio. In this thesis we chose to experiment

with documents. Such human-created instances, usually require a pre-processing step that

transforms them in a computer-friendly representation.

3.3 Document Pre-processing

Earlier we mentioned that the input consists of data which are 𝑚-dimensional feature vectors.

However, this is just a theoretical formulation and it fails to describe the nature of all

available data, especially the ones generated by humans. In order to conduct experiments,

a transformation needs to take place so that real data can be represented by explicit feature

vectors and in effect the learning systems can be operational. Such a pre-processing phase

can be considered as data-compression: we try to transform data from a highly-expressive,

complex and unstructured representation, such as natural language in the case of documents,

to a more restrictive and structured one, that is easier for a computer to manipulate. The

goal in this phase is to minimize the loss of information by preserving the semantic richness

of the data, yet efficiently resulting in a more manageable form.

This phase is actually one of the main active research topics in the Information Retrieval

field. For documents, many models have been proposed such as the Boolean model (set-

theoretic approach), the Vector Space model (algebraic approach) and the Probabilistic model

(probabilistic approach). We refer the interesting reader to [RM11] (chapter 6) for a detailed

overview and focus our attention to the Vector Space model. Although it is quite simple and

inevitably results in loss of information, yet we select it because of its popularity and because it

is equipped with a natural mechanism for distance and similarity. Since our proposed method

in chapter 4 involves a clustering phase, this mechanism will prove to be very useful when

we will experimentally validate the method in chapter 5.

The Vector Space model [SWY75] is based on the idea that the meaning of a document

is conveyed by the words used in it. This model does not take into account the order of

the words, it simply considers documents as bags of words. In particular, a document 𝐱
is represented as a feature vector 𝐱 = {𝑥1, … , 𝑥𝑚} where each feature 𝑥𝑖 is a weight

representing the importance of the word 𝑖 in the document. Therefore 𝑚 denotes the

cardinality of a set 𝑉 containing all the possible words and often referred to as vocabulary.
Typically, the weight 𝑤𝑖 is the number of appearances of word 𝑖 in the document 𝑥, denoted
as 𝑤𝑖 = 𝑛𝑥,𝑖. If the word 𝑖 does not appear in the document 𝑥, then 𝑤𝑖 = 0, so we

guarantee that all documents have the same dimensionality 𝑚.

Since 𝑉 was defined as a set containing all the possible words, its cardinality will not provide

the manageability we aim for. Therefore we can initially restrict the vocabulary to contain only

words that appear in the documents provided as input. In the case of Domain Adaptation, this

includes the documents of the source and the target domain. Since in this setting, our goal

is to predict the labels on the given target documents, with this simplification no document
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will be left without a valid representation. In addition, the universality of vocabulary 𝑉 realizes

our assumption that the feature space is shared among domains. In addition, very frequent

words such as the, is, at, which, and on (often referred to as stopwords) usually provide no

useful information to discriminate between documents, so they could also be removed. Finally

some other common heuristics that seem to work well in practice for document classification

and reduce the dimensionality of the feature space (i.e. the size of the vocabulary) are :

remove rare words, for example words that appear less then 3 times in the whole corpus of

documents and instead of using the words, use their respective word stems².

Previously, we defined as word-importance the number of the word’s appearances in a

document. However, this definition may seem a bit inadequate. If a word appears frequent in

one document but is absent in another document generated from the same domain, how well

can we argue that this feature characterizes the domain? Following this line of thought, some

other ways have been proposed to better capture the importance of a word by taking into

account not only the document under examination but the whole corpus of documents. One

of the most popular candidates is the tf-idf weighting. Tf-idf stands for term frequency-inverse

document frequency and it is a two-fold statistical measure: if a word appears frequently in

a document (term frequency 𝑡𝑓 ), it must be important but if it appears in many documents

(document frequency 𝑑𝑓 ), then it must not be a unique identifier of the domain. So for

every word 𝑖 ∈ 𝑉 :

𝑤𝑥,𝑖 = 𝑡𝑓𝑖 ⋅ 𝑖𝑑𝑓𝑖 = 𝑛𝑥,𝑖
𝑛𝑥

⋅ log (|𝐷|
𝑛𝑖

)

where 𝑛𝑥 is the total number of words in document 𝑥, 𝑛𝑖 is the number of documents

where word 𝑖 appears and |𝐷| is the size of the corpus, i.e. the total number of documents.

The logarithm used here is merely to smooth out the presence of rare words, since if a word

appears in very few documents, then |𝐷|/𝑛𝑖 would be boosted too much.

In Domain Adaptation, we inevitably reach the following dilemma: shall we compute the

document frequency on both target and source domains, or for each domain separately? In

other words, what happens if a word appears often in many source documents but not so

often in target documents?

In this case, we can either use a local tf-idf weighting for each domain respectively or we

can use a global tf-idf weighting where both domains are combined. We argue that a local

tf-idf weighting is more suitable for two reasons. First, the pre-processing of the domains

can be done independently reducing the computational cost and allowing for adaptability

on various source and target domains. Secondly, a local tf-idf weighting encapsulates the

domain-difference in the feature-representation of the data. To illustrate this better, let us

consider the extreme case of a one-dimensional feature space. In the case of global tf-idf,

this single feature/word has the same document frequency on every document therefore its

importance is solely determined by its term frequency. Let us assume the word appears the

same number of times in a target and a source document. Then in the global case, these

²A stem is a portion of a word that is left after the removal of its affixes (prefixes and suffixes), e.g. hetero is the word stem

from which we can derive words like heterogeneous, heterogamy, heterodox. Many stemming approaches exist like brute-force look

up, stripping the affixes, using word 𝑛-grams etc. In this thesis, we chose to use the popular Porter stemmer [Por80] that utilizes

suffix stripping.
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documents will look identical. However, in the case of local tf-idf, the feature might appear

less important in the source document but more important in the target document if it is

observed often in the source but not so often in the target domain. Therefore the documents

will not look identical, effectively capturing the domain-difference. This argument is further

validated experimentally in in chapter 5.
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4 Proposed Approach

In this chapter, we present the proposed method of this work. In Section 1. we introduce the

clustering problem and review the current literature. In Section 2. we motivate and present

a Domain Adaptation method and in Section 3. we offer an analysis of this method under

certain assumptions.

4.1 Introduction

“Clustering is the grouping of similar objects” [Har75, p.1], therefore given a set of objects,

the problem is to find subsets or clusters which are homogeneous and/or well separated.

There exists a vast literature around this problem and its applications can be found in almost

any scientific discipline, such as psychology, data mining, bioinformatics and computer graphics.

Depending on the application, research has studied different types of clusterings: hierarchical

(where nested sub-clusters inside a cluster are allowed), partitional (where no sub-clusters are

allowed), hard (where each object belongs only in one cluster), soft (where each object can

belong to one or more clusters), complete (where all objects are assigned to some cluster),

partial (where some objects might not be assigned to some cluster) etc. In this work, we

focus on complete hard partitional clusterings.

In addition, depending on the nature of objects, there exists different types of clusters:

prototype-based (where a cluster is defined as a set of objects closer to the prototype or

center that defines the cluster than to the center of any other cluster), density-based (where

a cluster is defined as a dense region of objects surrounded by a region of low density),

graph-based (where objects are represented as a graph and a cluster is defined as a connected

component of the graph, i.e. a group of objects that are connected with each other and have

no other connection outside the group) etc. In this work, we focus on prototype-based clusters,

where every cluster can be succinctly represented by a center, such that objects belonging to

this cluster will be more similar to its center than to any other center. The notion of center

effectively captures a common application of clustering: to approximate a large set of objects

by a small set of representatives. Yet, how shall we define similarity?

In literature, there exist many notions of similarity and a standard way of expressing it is through

a set of distances between pairs of objects. The selection of a suitable distance function
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is highly correlated with the nature of the objects, since “a serious difficulty in choosing a

distance lies in the fact that a clustering structure is more primitive than a distance function

and that knowledge of clusters changes the choice of distance function” [Har75, p.58]. For

two 𝑚-dimensional vectors 𝑎, 𝑏, some examples of similarity measures are the cosine similarity

𝑐𝑜𝑠(𝑎, 𝑏) = (∑𝑚
𝑖=1 𝑎𝑖 ∗ 𝑏𝑖) ∗ (|𝑎||𝑏|)−1, the manhattan distance 𝑚(𝑎, 𝑏) = ∑𝑚

𝑖=1 |𝑎𝑖 − 𝑏𝑖|
and the chebychev distance 𝑐(𝑎, 𝑏) = max𝑖∈[𝑚] |𝑎𝑖 − 𝑏𝑖| but perhaps the most popular one,

is the euclidean distance 𝑑(𝑎, 𝑏) = (∑𝑚
𝑖=1(𝑎𝑖 − 𝑏𝑖)2)1/2 which some argue that mostly

corresponds to our everyday experience and perceptions.

Given a set of centers, let’s assume we assign each object to its closest center with respect

to the euclidean distance. Therefore a set of clusters is created and there are different ways

to evaluate the cost of such a clustering. The choice of the cost allows us to create useful

clustering problems, such as the 𝐾means, the 𝐾medians and the 𝐾 center problems. For

the 𝐾means problem, which will be the focus of this work, the cost is defined as the sum of

the squared Euclidean distances from every object to its nearest center. Formally

Definition 4.1.1. [𝐾means problem] Given a set of 𝑛 points 𝑋 = {𝑥1, … , 𝑥𝑛} in ℝ𝑚 find
a set of 𝐾 > 1 points 𝐵 = {𝑏1, … , 𝑏𝐾} ⊂ ℝ𝑚 such that

∑
𝑥∈𝑋

𝑑2(𝑥, 𝐵)

is minimized. The minimum value, also called potential function, is denoted as 𝜙𝑂𝑃𝑇 (𝑋, 𝐾)
and 𝑑2(𝑥, 𝐵) is the squared Euclidean distance from 𝑥 to the nearest point in 𝐵 i.e.
𝑑2(𝑥, 𝐵) = min

1≤𝑘≤𝐾
𝑑2(𝑥, 𝑏𝑘).

To provide some intuition for this problem, let us assume that we have some data generated

by an equally weighted combination of Gaussian distributions, all with unit variance. The

real parameters of the Gaussian distributions (namely the mean values) are unknown. By

minimizing the sum of the squared euclidean distances of each point to its closest center is

like estimating the parameters that most likely generated the given data, namely the mean

values (for more detail, see [BBM02]). Furthermore it was shown in [DH04] that such a cost

function tries to minimize the intra-cluster distance while maximizing the inter-cluster distance,

two desired properties of any intuitively good clustering. Despite its simple definition, this

clustering problem is a rather hard one. In fact, when the dimension 𝑚 is not fixed, then

the 𝐾means problem has been shown to be NP-hard even for 𝐾 = 2 (many reductions

exist, e.g. [Das08]). In addition, if 𝑚 = 2 and 𝐾 is part of the input, then the so-called

planar-𝐾means has also been shown to be NP-hard [MNV09]. When both 𝐾 and the

dimension 𝑚 of the input are fixed, the problem can be solved exactly in polynomial time

[IKI94]. If only 𝐾 is fixed, then the problem admits polynomial-time approximation schemes

(PTAS), e.g. see [SSK04].

The 𝐾medians problem is similar to the 𝐾means with the only difference that the cost

function is the sum of the distances (not squared) from every object to its nearest center.

Kariv and Hakimi in [KH79b] showed that the general 𝐾medians problem is NP-complete
even in the plane 𝑚 = 2. Furthermore, if 𝑚 = 2 and the euclidean distance is used, then
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it was shown in [MS84] that 𝐾medians remains NP-complete. To make things worse, in

[JMS02] it was shown that it is even hard to approximate 𝐾medians within a factor 1+2/𝑒.
However if we restrict to the Euclidean space, 𝐾medians was shown to admit a PTAS (first in

[ARR98] and later improved by [KR99] and [HPM04]). The best result so far is a (3 + 𝜖)
approximation algorithm by [AGK+01].

The 𝐾center problem requires that the maximum distance of any object to its nearest center

is minimized, i.e. 𝜙𝑂𝑃𝑇 (𝑋, 𝐾) = min max𝑥∈𝑋 𝑑(𝑥, 𝐵). Intuitively, this problem attempts

to minimize the maximum radius of any cluster and therefore is highly sensitive to outliers.

Even under the metric restriction of a metric space ¹, when 𝐾 and 𝑚 are part of the input,

𝐾center is NP-hard [KH79a], as well as its discrete variant (where centers are allowed to

be only objects of 𝑋). It remains NP-hard even if 𝑚 = 2 but 𝐾 still part of the input

[MS84] (also the discrete version). The news don’t get any better if we want to find good

approximation solutions. In [FG88] it was shown that it is NP-hard to approximate within a

factor < 2 even under the 𝐿∞ metric². It is of no surprise that if the space is not metric, then

it is NP-hard to approximate within any factor (see [Hoc97, p.378] if the triangle inequality

is left out and [CGH+04] if the symmetry property is left out). Despite these pessimistic

results, there exist 2-approximation algorithms (e.g. see [HS86], [Gon85] and [FG88]).

4.2 Proposed Approach

As stated in 2.1.1 the goal of Transfer Learning is to improve the efficiency and accuracy of

learning in a target context 𝐶𝑡 using knowledge obtained from a source context 𝐶𝑠. In our

setting, the goal is to discover a good clustering of the target dataset 𝑋𝑡 given an optimal

clustering in a different but similar dataset 𝑋𝑠. The underlying cluster problem will follow the

definition of the 𝐾means problem 4.1.1. The proposed method of this work is a transfer

learning variant of the widely-known Lloyd’s method, therefore we motivate our result by first

reviewing this algorithm.

4.2.1 Lloyd’s method

As stated in [ORSS13], there is a wide unsatisfactory gap between the practical and the

theoretical clustering literatures. Popular heuristics such as the Lloyd’s method, although

lacking in theoretical guarantees, they are still widely used because they outperform (in terms

of time complexity) the implementations of theoretically-guaranteed alternatives. In particular,

Lloyd’s method is a simple algorithm that attempts to locally improve an arbitrary 𝐾means

clustering. Initially, 𝐾 centers 𝐵 = {𝑏1, … , 𝑏𝐾} are chosen independently and uniformly

at random from the input dataset 𝑋. Therefore, an initial clustering 𝐶 = {𝑆1, … , 𝑆𝐾}
is formed, where each cluster 𝑆𝑖 is assigned the set of points in 𝑋 that are closer to the

center 𝑏𝑖 than to any other center. After the assignment, the centers are updated to be the

center of mass of all the points in the respective cluster. The whole process iterates until the

¹A metric space (𝒳, 𝜌) consists of a set 𝒳 and a distance function 𝜌 ∶ 𝒳×𝒳 → ℝ that satisfies the three properties of a metric:

reflexivity 𝜌(𝑥, 𝑦) ≥ 0 with equality iff 𝑥 = 𝑦, symmetry 𝜌(𝑥, 𝑦) = 𝜌(𝑦, 𝑥) and triangle inequality 𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑧) + 𝜌(𝑧, 𝑦).
²Given two vectors 𝑎, 𝑏 ∈ ℝ𝑚, their infinity norm is defined as 𝐿∞(𝑎, 𝑏) = max𝑖 ∈ [𝑚]|𝑎𝑖 − 𝑏𝑖|.
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clustering 𝐶 no longer changes. The pseudocode of Lloyd’s method is provided in Figure

4.2.1.

..

Algorithm: Lloyd's method
Input:

𝑋: data set in ℝ𝑚

𝐾: the number of clusters

Output:

𝐶: a local minimum clustering

Method:

1.Initialization 𝐵 = {𝑏𝑖}𝐾
𝑖=1 where 𝑏𝑖

𝑟⟵ 𝑋
2.Assignment 𝐶 = {𝑆𝑖 ∶ ∀𝑖 ∈ 𝐾} where

𝑆𝑖 = {𝑥 ∈ 𝑋 ∶ 𝑏𝑖 =argmin
𝑏∈𝐵

𝑑(𝑥, 𝑏)} for 𝑖 = 1, … , 𝑘

3.Update 𝑏𝑖 = |𝑆𝑖|−1 ∑𝑥∈𝑆𝑖
𝑥 for 𝑖 = 1, … , 𝑘

4.Convergence Repeat 2-3 until 𝐶 no longer changes

5.Output 𝐶

Figure 4.2.1: Pseudocode of Lloyd’s method

By taking a closer look, we can observe that during the Assignment (step 2.) the algorithm

makes a locally optimal decision ( that is, each point is assigned to its nearest center). Each

point moves to another cluster if and only if its distance from the new center is smaller

then the distance from its current center. Therefore we can argue that this greedy criterion

guarantees to decrease the potential function 𝜙. In fact, if 𝜙 does not decrease then the

current clustering 𝐶 did not change, therefore the algorithm terminates. We can also provide

a similar argument for the Update phase (step 3.), yet we first need to state the following

useful property (a review of its proof can be found in Lemma B.0.1):

Lemma 4.2.1. [centroid property] Let 𝑆 ⊆ ℝ𝑚 be a set of points with center of mass
𝑠∗ = |𝑆|−1 ∑𝑠∈𝑆 𝑠 , 𝑑(𝑎, 𝑏) the euclidean distance of 𝑎, 𝑏 ∈ ℝ𝑚 and let 𝑥 ∈ ℝ𝑚 be an
arbitrary point. Then, it holds that

∑
𝑠∈𝑆

𝑑2(𝑠, 𝑥) = ∑
𝑠∈𝑆

𝑑2(𝑠, 𝑠∗) + |𝑆| ⋅ 𝑑2(𝑠∗, 𝑥)

For any set 𝑆 , lemma 4.2.1 states that if we select as representative its center of mass 𝑠∗

then that would be the best choice in order to minimize its 𝐾means potential function 𝜙(𝑆).
If any other point 𝑥 of the input space is selected as representative, then 𝜙(𝑆) will increase

by a quantifiable factor which depends both on the distance of 𝑥 from the best choice and

the size of the set. Going back to the Update phase of Lloyd’s method, we observe that for

every current cluster 𝑆𝑖 the algorithm updates its center with the best possible representative

with respect to 𝜙, guaranteeing again that 𝜙 will decrease.

Since the potential function decreases in every iteration, the algorithm will converge to a local

optimum. However, in the Initialization phase (step 1.) the centers are chosen uniformly at
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random from 𝑋, therefore this local optimum can be quite poor and in fact, to the best

of author’s knowledge, there are no approximation guarantees of how poor can it be. In

practice, multiple repetitions of the algorithm help to smooth out this effect (at the expense

of computational time). Also, there exist better initialization schemas that allow to estimate

how poor the resulted local optimum can be, as for example the famous work by Arthur and

Vassilvitskii [AV07]. Their variation of Lloyd’s method, called 𝐾means++ employs a different

Initialization phase and guarantees that, even from the first iteration, it will result in a local

optimum at most 𝑂(log 𝑘) times worse than the optimal solution.

4.2.2 tr-𝐾means

As mentioned earlier, the method provided in this thesis is a variation of the Initialization

phase of Lloyd’s method. In the setting of Domain Adaptation, we integrate in this phase

the knowledge of some auxiliary data. To introduce some helpful notation, let us assume

the existence of a source and a target context 𝐶𝑠 = {𝐷𝑠, 𝑇𝑠}, 𝐶𝑡 = {𝐷𝑡, 𝑇𝑡} governed by

the unknown but fixed joint distributions 𝑃𝑠(𝑥, 𝑦) , 𝑃𝑡(𝑥, 𝑦) respectively. Let us consider two

sample sets 𝑋𝑠 = {𝑥𝑠
𝑙 }𝑁𝑠

𝑙=1 and 𝑋𝑡 = {𝑥𝑡
𝑢}𝑁𝑡

𝑢=1 composed of 𝑁𝑠 source-domain and 𝑁𝑡
target-domain instances, sampled from the unknown marginal distributions 𝑃𝑠(𝑥) and 𝑃𝑡(𝑥)
respectively. It holds that 𝑥𝑠 , 𝑥𝑡 ∈ ℝ𝑚, that is each instance is a 𝑚-dimensional real vector,

where 𝑚 represents the dimensionality of the common input space 𝐼 = ℝ𝑚. The same set

of 𝐾 classes 𝑂 = {𝑜𝑘}𝐾
𝑘=1 characterizes both domains 𝐷𝑠 and 𝐷𝑡. A set of true labels

𝑌𝑠 = {𝑦𝑠
𝑙 }𝑁𝑠

𝑙=1 for 𝑋𝑠 is available, where 𝑦𝑠 ∈ 𝑂. Thus the input consists of a labeled

source set 𝑇 𝑟𝑠 = {𝑋𝑠, 𝑌𝑠} = {(𝑥𝑠
𝑙 , 𝑦𝑠

𝑙 )}𝑁𝑠
𝑙=1 and an unlabeled target set 𝑋𝑡 with total

size 𝑂(𝑚 ⋅ (𝑁𝑠 + 𝑁𝑡)). Considering that labeling is a costly process, we may assume that

𝑁𝑡 ≫ 𝑁𝑠 therefore the size of the input is 𝑂(𝑚 ⋅ 𝑁𝑡).
Based on the definition of Domain Adaptation in 3.1.2, one natural limitation that can appear

in the form of two extreme cases is: a) if 𝑃𝑠(𝑥, 𝑦) ≡ 𝑃𝑡(𝑥, 𝑦) then adaptation is not

necessary and b) if 𝑃𝑠(𝑥, 𝑦) and 𝑃𝑡(𝑥, 𝑦) are uncorrelated then adaptation is useless and

can be misleading, a situation often referred to as negative transfer. Therefore, it is of great

importance to identify when the transfer of knowledge can be useful or not. In particular, if

a) is the case, then standard classification methods under the transductive learning framework

can be employed whereas if b) is the case, then 𝑇𝑠 should be ignored resulting in a typical

unsupervised learning problem where standard clustering methods can be used.

This observation motivated our study and as a result, we have developed a transfer learning

algorithm that intertwines these two learning paradigms to achieve higher efficiency and accuracy

than its building components. Our basic idea is to discover target instances similar to the

source domain in order to transfer knowledge and guide a centroid-based clustering algorithm.

We call such good target instances as friends 𝐹 , i.e. a subset of the target dataset 𝑋𝑡 that

is believed to contain the most similar target instances with the source dataset 𝑋𝑠. Once we

have discovered friends, a source-trained classifier is naively applied to the set 𝐹 in order to

reveal a small portion of the desired clustering in the target domain. In essence, the classifier

provides an initial seeded clustering of 𝐹 (a labeling that partitions 𝐹 into 𝐾 subsets). The
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centers are then initialized at the mass centres of the seeded clustering. In detail, the proposed

Initialization phase consists of the following two steps:

1. Friends identification: this step partitions the target set 𝑋𝑡 into two subsets: friends 𝐹
and non-friends 𝑋𝑡 − 𝐹 with respect to the source domain. Friends are target instances

that appear to be similar to 𝐷𝑠 (under some specific notion of similarity which we

will soon define) whereas non-friends are target instances that are not friends of 𝐷𝑠.
Intuitively, friends are target instances where transfer of knowledge is most likely to be

valuable.

2. Centers generation: in this step, we pseudo-label friends 𝐹 by applying a classifier

trained on the source domain. Since friends are the target instances most similar to the

source domain, we expect the naive classifier will give us results with high confidence.

This labeling in effect partitions friends in 𝐾 subsets. The centroids of 𝐾means are

then initialized at the mass centres of these subsets.

After the initialization phase, our method proceeds just like the Lloyd’s method, i.e. by

assigning all target instances (friends and non-friends) to their closest centroid and adjusting

the centroids to be the center of mass of each resulted cluster, with the goal to minimize the

sum of the squared distances from every target instance to its closest center. The only thing

left to conclude our method description is the notion of similarity between source and target

instances. For reasons that will become clear during the analysis of the method in section 4.3

we chose to use the ratio between the source and target distributions as similarity measure.

That is

Definition 4.2.1. [Friends set] Given 0 ≤ 𝑒𝐹 < 1, we define friends as a set 𝐹 such that

𝑥 ∈ 𝐹 ⟺ 𝑥 ∈ 𝑋𝑡 and 1 − 𝜖𝐹 ≤ 𝑃𝑡(𝑥)
𝑃𝑠(𝑥) ≤ 1 + 𝜖𝐹

It is straightforward to observe, that the closer the ratio gets to one, the more similar the

distributions. Furthermore, the user-defined parameter 𝜖𝐹 allows to control the bias induced

by the source-trained learner. The more tolerance we allow in the ratio of the distributions,

the worse will be our friends selection. We call the proposed method tr-𝐾means and the

pseudocode is available in figure 4.2.2.

Such an initialization phase achieves two important things: the first is to alleviate randomness

from the algorithm itself and place it to the external environment (i.e. randomness becomes

part of the input) and the second is to establish a correspondence between source and target

label spaces. The seeded clustering of 𝐹 is in accordance with the source domain, therefore

it can be used as prior information to find a good global clustering in the target domain. In

effect, our initialization step is a transfer learning variation of the Seeded-𝐾Means proposed
in [BBM02]. We observe that since the seeded clustering can be noisy due to the learner’s

generalization error, we pose no restrictions to the following iterations of the algorithm, which

proceeds as the Lloyd’s method.
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..

Algorithm: tr-𝐾means

Input:

𝖳𝗋𝗌 = (𝖷𝗌, 𝖸𝗌): labelled source data

𝖪: the cardinality of label space 𝑂
𝖷𝗍: unlabelled target data

𝖠: a supervised learner

𝜖𝖥: parameter describing the friends set

Output:

𝖸𝗍: target labels on 𝖷𝗍
Method:
1.Initialization

1a. Friends Selection 𝐹 ← {𝑥 ∈ 𝑋𝑡 ∶ 1 − 𝜖𝐹 ≤ 𝑃𝑡(𝑥)
𝑃𝑠(𝑥) ≤ 1 + 𝜖𝐹 }

1b. Centers generation

ℎ𝐴 ← 𝐴(𝑋𝑠)
𝑌𝐹 ← ℎ𝐴(𝐹)
𝑏𝑖 = 𝜇({𝑥 ∈ 𝐹 ∶ 𝑌𝐹 (𝑥) = 𝑖}) for 𝑖 = 1, … , 𝑘

2.Assignment 𝐶 = {𝑆𝑖 ∶ ∀𝑖 ∈ 𝐾} where

𝑆𝑖 = {𝑥 ∈ 𝑋𝑡 ∶ 𝑏𝑖 =argmin
𝑏∈𝐵

𝑑(𝑥, 𝑏)} for 𝑖 = 1, … , 𝑘
3.Update 𝑏𝑖 = |𝑆𝑖|−1 ∑𝑥∈𝑆𝑖

𝑥
4.Convergence Repeat 2-3 until 𝐶 no longer changes

5.Output 𝑌𝑡 = {𝑖 ∈ 𝐾 ∶ 𝑥 ∈ 𝑆𝑖 , ∀𝑥 ∈ 𝑋𝑡}

Figure 4.2.2: Pseudocode of tr-𝐾means

We can expect that the gains of this method will be bi-directional: clustering helps the

classification and classification helps the clustering. For the first direction, as it will be apparent

in more detail in section 4.3, during the initialization step the pseudo-labeled friends hold

labels from a source-trained classifier. This labeling might be noisy due to the inherent

generalization error of the chosen classifier but also due to the domain-difference. Clustering

phase will smooth out the noise induced by the domain-difference by applying its homogeneity

criterion in the target domain. For the second direction, classification can be considered as a

teacher on friends, giving a prior knowledge to an unsupervised method and transforming it

to a semi-supervised one. By removing the randomness from the algorithm itself, not only we

avoid the error-prone initialization but we expect that it will reduce its computational cost. As

a final note, 𝐾means was chosen because the number of clusters 𝐾 is considered given (as

we have access to the label space) and it is considerably one of the most famous and efficient

clustering algorithms. However, it is evident that our idea is plug-and-play: any classifier can

be used to pseudo-label friends and any semi-supervised clustering can be applied after.

4.3 Analysis

In this section we provide some insights on the capabilities of tr-𝐾means. As it is typical in

the clustering literature (see [Ben15] for a nice overview), we start by defining a notion of

clusterability over the optimal clusters of any dataset: the bounded-scattering. In particular,
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we consider

Definition 4.3.1. [𝜆-scattered set] For 𝜆 ∈ ℝ+, a cluster 𝑆 is 𝜆-scattered iff for any 𝑥 ∈ 𝑆
and the centroid 𝑠 = 𝜇(𝑆) it holds that

𝑑2(𝑥, 𝑠) ≤ 𝜆𝜌 where 𝜌 =
∑

𝑥,𝑦∈𝑆
𝑑2(𝑥, 𝑦)

|𝑆|2

In the above definition, 𝜌 is the average pairwise 𝐾means distance between the points of

the cluster 𝑆 and intuitively the more scattered 𝑆 is, the bigger the value of 𝜌 will get.

The choice of the squared euclidean distance reflects that this notion is in alignment with

the cost function of the problem under investigation. We can extend the above definition

by observing that for an integer 𝐾 > 1 and a set 𝑋 that admits an optimal clustering

𝐶𝑂𝑃𝑇 = {𝑆1, … , 𝑆𝐾}, it holds that ∃Λ ∈ ℝ+ s.t. every optimal cluster 𝑆𝑖 is Λ-scattered
(simply Λ = max{𝜆𝑖 ∶ 𝑆𝑖 is 𝜆𝑖-scattered, ∀𝑖 = 1, … , 𝐾}). Therefore we will define 𝑋 as

a Λ-scattered set.

This definition indicates that an optimal clustering can be described by its most scattered

cluster. The more homogeneous the optimal clusters are, the smaller their scattering will be

and the easier it will be to discover them.

Having defined our well-clusterability notion, let us assume that 𝑋 admits an optimal clustering

𝐶𝑂𝑃𝑇 = {𝑆1, … , 𝑆𝐾} for an integer 𝐾 > 1, where none of the clusters is empty (non-

degenerate case). To simplify the analysis, we consider the idealized case where the seeding

clustering is given without noise. To formalize this ideal scenario, we consider the existence of

an oracle 𝒪, which given a set 𝑋 and an integer 𝐾 , the oracle knows an optimal 𝐾means

clustering for 𝑋 and reveals a part of it. That is, given 𝑋 and 𝐾 , 𝒪 returns a seeding

clustering i.e. 𝒪(𝑋, 𝐾) = 𝒜 where 𝒜 = {𝐴1, … , 𝐴𝐾} and for all 𝑖 = 1, … , 𝐾 it holds

that 𝐴𝑖 ⊆ 𝑆𝑖 and |𝐴𝑖| ≥ 1. The lower bound on the seeding clusters is a reasonable

restriction, which guarantees that every 𝐴𝑖 is a non-empty set, that is 𝒪 reveals a non-trivial

part of the 𝐾means solution. Under these assumptions, we prove the following lemma:

Lemma 4.3.1. Given a Λ-scattered set 𝑋 and a seeding clustering 𝒜, let 𝜙𝒜(𝑋) denote
the idealized tr-𝐾means potential on this set. Then it holds that ∃Λ ∈ ℝ+ such that
𝜙𝒜(𝑋) ≤ (1 + 2Λ)𝜙𝑂𝑃𝑇 (𝑋).

To prove this lemma, let us first consider the case of only one optimal cluster 𝑆 ∈ 𝐶𝑂𝑃𝑇
where 𝑆 ⊆ 𝑋. To choose an initial center for this cluster, the idealized version of tr-𝐾means

requests from an oracle 𝒪 to reveal a seeding clustering for 𝑋, that is we get 𝒜 = 𝒪(𝑋, 𝐾)
and we pick as center the center of mass of the set 𝐴 i.e. 𝑎 = 𝑐(𝐴) = ∑𝑥∈𝐴 𝑥

|𝐴| where 𝐴 ∈ 𝒜
and 𝐴 ⊆ 𝑆 , resulting in a potential 𝜙𝐴(𝑆) for this cluster, i.e. 𝜙𝐴(𝑆) = ∑𝑥∈𝑆 𝑑2(𝑥, 𝑐(𝐴)).
The following lemma establishes a relation between the optimal 𝐾means potential and the

idealized tr-𝐾means cost.

Lemma 4.3.2. Let 𝑆 ∈ 𝐶𝑂𝑃𝑇 be an arbitrary optimal 𝜆-scattered cluster for some 𝜆 ∈ ℝ+

and 𝜙𝐴(𝑆) the idealized tr-𝐾means potential on this cluster. Then it holds that 𝜙𝐴(𝑆) ≤
(1 + 2𝜆)𝜙𝑂𝑃𝑇 (𝑆).
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Proof. In the idealized version of tr-𝐾means, the seeding oracle 𝒪 reveals a part 𝐴 of the

cluster 𝑆. Since, during the first iteration, the center picked by the algorithm for this cluster

is 𝑎 = 𝑐(𝐴) and 𝑠 = 𝑐(𝑆) is the optimal center for this cluster, then from the centroid

property 4.2.1 it holds that

𝜙𝐴(𝑆) = 𝜙(𝑆, 𝑎) = 𝜙𝑂𝑃𝑇 (𝑆) + |𝑆|𝑑2(𝑎, 𝑠) (4.1)

Let 𝑜 = argmax𝑥∈𝑆 𝑑(𝑥, 𝑠) denote the most extreme point of the set. We can bound the

distance 𝑑(𝑜, 𝑠) using the following two observations about the bounded scattering of the

cluster 𝑆:

|𝑆|
∑
𝑖=1

|𝑆|
∑
𝑗=1

𝑑2(𝑥𝑖, 𝑥𝑗) =
|𝑆|
∑
𝑖=1

𝑑2(𝑥𝑖, 𝑆) (1)=
|𝑆|
∑
𝑖=1

(𝑑2(𝑠, 𝑆) + |𝑆|𝑑2(𝑥𝑖, 𝑠)) = 2|𝑆|𝜙𝑂𝑃𝑇 (𝑆)

(4.2)

𝜌 =

|𝑆|
∑
𝑖=1

|𝑆|
∑
𝑗=1

𝑑2(𝑥𝑖, 𝑥𝑗)

|𝑆|2
4.2= 2 ⋅ 𝜙𝑂𝑃𝑇 (𝑆)

|𝑆|
(4.3)

Since the cluster 𝑆 is 𝜆-scattered then for all 𝑥 ∈ 𝑆 it holds that 𝑑2(𝑥, 𝑠) ≤ 𝜆 ⋅𝜌. Therefore

using 4.3 we can conclude that for all 𝑥 ∈ 𝑆 it holds that 𝑑2(𝑥, 𝑠) ≤ 2𝜆|𝑆|−1 ⋅ 𝜙𝑂𝑃𝑇 (𝑆).
The existence of the oracle 𝒪 guarantees that 𝑎 lies inside the convex hull of 𝑆 therefore

𝑑(𝑎, 𝑠) ≤ 𝑑(𝑜, 𝑠). Therefore from 4.1 it holds that 𝜙𝐴(𝑆) ≤ (1 + 2𝜆)𝜙𝑂𝑃𝑇 (𝑆) which

concludes our proof.

■

To motivate this result, we present two tight cases of the above approximation result as

depicted in Figure 4.3.1. For the first example, we consider 𝑆 as a chain of five equidistant

points, i.e. 𝑆 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0)} as shown in Figure 4.3.1a. We can

observe that 𝜙𝑂𝑃𝑇 (𝑆) = 10 and 𝜌 = 4 according to equation 4.3. The worst selection

is to choose any of the corner points. Since 𝑑2(𝑜, 𝑠) = 4, then 𝜆 = 1 and the result in

lemma 4.3.2 states that the cost of tr-𝐾means would be at most 3 times worst than the

optimal. In fact, for 𝐴 = {𝑜} where 𝑜 a corner point of the chain, we can easily see that

𝜙𝐴(𝑆) = 30 = 3𝜙𝑂𝑃𝑇 (𝑆). Another case is to consider 𝑆 as a circle of equidistant points

with radius 𝑟 as depicted in Figure 4.3.1b. We can observe that 𝜙𝑂𝑃𝑇 (𝑆) = |𝑆|𝑟2 and

𝜌 = 2 ⋅ 𝑟2 according to equation 4.3. The worst selection is to choose only one point from

the circle, since for a bigger number of selected points the tr-𝐾means center will lie inside the

convex hull of the circle, therefore it will be closer to the optimal center 𝑠. Since 𝑑2(𝑜, 𝑠) = 𝑟2,
then 𝜆 = 0.5 and the result in lemma 4.3.2 states that the cost of tr-𝐾means would be

at most 2 times worst than the optimal. In fact, for 𝐴 = {𝑜} where 𝑜 is any 𝑥 ∈ 𝑆 we

can easily see that 𝜙𝐴(𝑆) = ∑𝑥∈𝑆 𝑑2(𝑜, 𝑥) = |𝑆|−1 ∑𝑦∈𝑆 ∑𝑥∈𝑆 𝑑2(𝑦, 𝑥) = 2𝜙𝑂𝑃𝑇 (𝑆),
where the last equality holds from equation 4.2.
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(a) Chain example (b) Circle example

Figure 4.3.1: Approximation Examples - in every figure, the points of the cluster 𝑆 are depicted in black and

the red point is the optimal center 𝑠. A polygone shape indicates a center that does not belong to the cluster.

With 𝑜 we denote the most extreme point of the set.

So far we showed what happens if the center of 𝑆 was the first center produced by the

idealized version of tr-𝐾means. Our next step is to show what happens to 𝑆 if the center

set 𝐵 selected by idealized tr-𝐾means method is already non-empty, that is |𝐵| > 0.
Lemma 4.3.3. Let 𝐶 be the clustering produced so far from the idealized tr-𝐾means
method and let 𝑆 ∈ 𝐶𝑂𝑃𝑇 be an arbitrary optimal 𝜆-scattered cluster for some 𝜆 ∈ ℝ+

that has not been visited yet and 𝜙𝐴(𝑆) the idealized tr-𝐾means potential on this cluster.
If we add to 𝐶 a center chosen according to tr-𝐾means then 𝜙𝐴(𝑆) ≤ (1+2𝜆)𝜙𝑂𝑃𝑇 (𝑆).

Proof. As before, in the first iteration of the idealized version of tr-𝐾means, the seeding

oracle 𝒪 reveals a part 𝐴 of the cluster 𝑆. Let 𝑎 = 𝑐(𝐴) denote the center picked by

the algorithm for this cluster and 𝑠 = 𝑐(𝑆) denote the optimal center for this cluster. If we

denote as 𝐷(𝑥) the shortest distance from a data point 𝑥 ∈ 𝑋 to the closest center so far,

then

𝜙𝐴(𝑆) =∑
𝑥∈𝑆

min(𝐷(𝑥), 𝑑(𝑥, 𝑎))2 ≤∑
𝑥∈𝑆

𝑑2(𝑥, 𝑎) ≤ (1 + 2𝜆)𝜙𝑂𝑃𝑇 (𝑆)

where the last inequality follows from Lemma 4.3.2. ■

Therefore, with lemmata 4.3.2 and 4.3.3 we guarantee that in the first iteration of the

idealized tr-𝐾means, the cost for a single optimal 𝜆-scattered cluster 𝑆 will be at most

(1 + 2𝜆) times worse than its optimal cost. Therefore, under the bounded-scattering notion

for the set 𝑋, it is straightforward to see that

𝜙𝒜(𝑋) =
𝐾

∑
𝑘=1

𝜙𝐴𝑘
(𝑆𝑘) ≤

𝐾
∑
𝑘=1

(1 + 2𝜆𝑘)𝜙𝑂𝑃𝑇 (𝑆𝑘) ≤ (1 + 2Λ)𝜙𝑂𝑃𝑇 (𝑋) (4.4)

where Λ = max{𝜆1, … , 𝜆𝐾} and which concludes the proof of lemma 4.3.1. So far, it has

been assumed that the seeding clustering is noise free. However, in the actual tr-𝐾means

the seeding clustering is provided by a learner and that may introduce errors. To find the

probability of an error, let us review how the seeding clustering is actually derived. A learner

is given a set of labelled examples from a different yet similar source context 𝐶𝑠 and picks a

hypothesis ℎ that best approximates the underlying target function in that context. As described
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in definition 3.1.1, this hypothesis is selected because it minimizes a specified loss function 𝐿
(that is, 𝐿 is part of the learning model). Therefore the expected error of the learner is defined

as 𝑅𝑠(ℎ) = 𝐸[𝐿(ℎ(𝑥), 𝑦)] where the expected value is computed over the joint distribution

𝑃𝑠(𝑥, 𝑦) that governs 𝐶𝑠. By choosing the loss function 𝐿 to be the indicator function we

can see that the source expected error of the learner is 𝑅𝑠(ℎ) = 𝑃𝑟[ℎ(𝑥) ≠ 𝑦] = 𝜖𝑠. That

would be the probability of an error if ℎ was applied on new instances generated from the

marginal distribution 𝑃𝑠(𝑥). However, in our case ℎ is applied on instances generated from

a different target distribution 𝑃𝑡(𝑥), therefore we have no concrete idea of what would be

the expected error of the learner in such a setting.

The good news is that we do not apply ℎ to any kind of target instances, but we select

the ones that are very similar to 𝑃𝑠, the friends. Reviewing the definition 4.2.1, as similarity

measure we chose the ratio 𝑃𝑡/𝑃𝑠 and friends 𝐹 are the target instances whose ratio is within

a user-defined radius 𝜖𝐹 around 1. The reason why this similarity was selected is because it

allows us to assess the expected error of the learner in the target context as follows:

𝑅𝑡(ℎ) = 𝐸
(𝑥,𝑦)←𝑃𝑡(𝑥,𝑦)

[𝐿(ℎ(𝑥), 𝑦)]

= ∑
(𝑥,𝑦)

𝐿(ℎ(𝑥), 𝑦)𝑃𝑡(𝑥, 𝑦)

= ∑
(𝑥,𝑦)

𝐿(ℎ(𝑥), 𝑦) 𝑃𝑠(𝑥, 𝑦)
𝑃𝑠(𝑥, 𝑦)𝑃𝑡(𝑥, 𝑦)

= ∑
(𝑥,𝑦)

𝐿(ℎ(𝑥), 𝑦) 𝑃𝑡(𝑥) ⋅ 𝑃𝑡(𝑦|𝑥)
𝑃𝑠(𝑥) ⋅ 𝑃𝑠(𝑦|𝑥)𝑃𝑠(𝑥, 𝑦)

= ∑
(𝑥,𝑦)

𝑃𝑡(𝑥)
𝑃𝑠(𝑥) 𝐿(ℎ(𝑥), 𝑦) 𝑃𝑠(𝑥, 𝑦)

(4.5)

Therefore we can observe that

1 − 𝜖𝐹 ≤ 𝑃𝑡(𝑥)
𝑃𝑠(𝑥) ≤ 1 + 𝜖𝐹

4.5⟹ (1 − 𝜖𝐹 )𝑅𝑠(ℎ) ≤ 𝑅𝐹
𝑡 (ℎ) ≤ (1 + 𝜖𝐹 )𝑅𝑠(ℎ) (4.6)

In fact, based on Theorem 3.1.1 we can even measure this target error from the empirical

source error provided the capacity of the learner (for example, binary linear classifiers have

𝑉 𝐶-dimension equal to 𝑚 + 1 where 𝑚 is the dimension of the input space). Therefore,

using again the indicator as a loss function, we can conclude that the probability of the learner

making a wrong prediction in the target domain is 𝑅𝑡(ℎ) ≤ (1 + 𝜖𝐹 )𝜖𝑠. At this stage, we

can observe two potential sources of noise being introduced in the seeding clustering: the first

source is the intrinsic expected error of the learner 𝜖𝑠 and the smaller it gets, the more accurate

our seeding clustering will be. The second source of noise is the difference 𝜖𝐹 between the

source and target contexts as measured by the ratio. Since this is a user-defined parameter,

it can be as small as it gets up until the point where it still produces a reasonably sized

seeding clustering (|𝐹 | must be at least 𝐾 , the number of clusters). In the case of negative

transfer, namely when the source and target domain are unrelated, this pseudo-labeling of
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friends might give very noisy results, but for tr-𝐾means the initialization step will just seem as

any random initialization, falling back to the traditional 𝐾means heuristic. This is expected,

since in the absence of any prior information, unsupervised learning is the only paradigm to

follow.

Going back to the lemma 4.3.1, we could argue that the probability that the result holds (i.e.

the probability that the learner gives a noise-free seeding clustering) is the union bound over

the misclassified friends, that is |𝐹 |(1 + 𝜖𝐹 )𝜖𝑠. However, such a statement looks meaningless

for a probability measure and in fact it is rather pessimistic since it has been experimentally

observed (see chapter 5) that friends are located in high-density areas and not on the margins

between clusters. Therefore it is highly likely that the seeding clustering will be very noisy

and we leave the investigation on this matter for further research.

As a final note, the time complexity of tr-𝐾means cannot be asserted in a rigid way, since

the supervised learner in the initialization phase of the clustering, as well as the estimation of

the density ratios, are defined by the user. Given that the input size is 𝑂(𝑚 ⋅ (𝑁𝑠 + 𝑁𝑡))
where 𝑚 is the dimension of the input and 𝑁𝑠, 𝑁𝑡 the size of the source and target data

respectively, we observed experimentally that in the presence of a linear supervised learner

(such as the Naive Bayes classifier), the computation was dominated by the standard 𝐾means
which is known to have worst case time complexity exponential to the input size. Interestingly

enough, it has been shown in [RW16] that Lloyd’s method is actually trying to solve much

harder problems, i.e. PSPACE-complete problems, providing an explanation for its worst-

case running time. In practice, assuming that 𝑡 are the iteration steps until Lloyd’s method

converges to a local minimum, the time complexity of this heuristic is 𝑂(𝑡 ⋅ 𝑚 ⋅ 𝑁𝑡). In

the experiments performed in Chapter 5, we observed that 𝑡 < 20, making the practical

performance of tr-𝐾means linear with respect to the input.
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5 Experimental Results

In order to assess the quality of the proposed tr-𝐾means method, in this chapter we carry

out experiments on several datasets. In Section 5.2 we consider a set of two-dimensional

toy problems on domain adaptation with different topologies. In Section 5.3 we consider

a real domain adaptation problem in the framework of topic classification on documents.

Before presenting the results, in section 5.1 we mention the tools we will use to conduct the

experiments.

5.1 Useful Tools

5.1.1 Evaluation Strategy

For all the experiments, the shared label space 𝑂 between the domains is binary, so it can

take only two values: 1 (Positive) and 0 (Negative). True labels are available for both the

source and the target-domain instances but the target labels are used only for a quantitative

assessment of the effectiveness of the proposed method and they are not taken into account

in the training phase. But how shall we define the term effectiveness? As described in

chapter 3, a domain adaptation algorithm will try to predict the target labels. Given the set of

predictions, what can we say about the quality of the algorithm? Effectiveness or performance

measure or evaluation strategy is precisely the way that we assess the learning efficiency. In

our scenario, we could for example consider as a performance measure the misclassification

rate, i.e. the ratio of the labels that were wrongly predicted. Recall that the expected error

of choosing a hypothesis ℎ𝑎 ∈ 𝐻𝐴 was defined as

𝑅(𝑎) = 𝐸
(𝑥,𝑦)←𝑃(𝑥,𝑦)

[𝐿(ℎ𝑎(𝑥), 𝑦)]

where 𝐿 is a loss function that intuitively quantifies how much an error can cost. Since the

joint distribution 𝑃 (𝑥, 𝑦) is unknown, we also defined the empirical error as

�̂�(𝑎) = 1
𝑛

𝑛
∑
𝑖=1

𝐿(ℎ𝑎(𝑥𝑖), 𝑦𝑖)

Let us define the loss function 𝐿 as the 0-1 loss function, i.e. 𝐿(ℎ𝑎(𝑥), 𝑦) = 𝐼(ℎ𝑎(𝑥) ≠ 𝑦)
so that 𝐿(ℎ𝑎(𝑥), 𝑦) = 1 iff ℎ𝑎(𝑥) ≠ 𝑦 otherwise 𝐿(ℎ𝑎(𝑥), 𝑦) = 0. We can observe that
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the misclassification rate corresponds to the empirical error with the 0-1 loss function and

intuitively measures how often the algorithm was wrong. Alternatively, we can check how

often the algorithm is right, which is another performance measure often called accuracy. It

is straightforward to see that accuracy = 1 − misclassification rate. Although accuracy is a

widely used performance measure, there is a small trap when it is practically used.

Considering a binary label space as in our case, what happens if the true target classes are

imbalanced? For instance, most of the data belong to the Positive class (therefore their

true label is 1) and very few belong to the Negative class (therefore their true label is 0).

A simple classifier that just assigns everything to the Positive class, will actually exhibit high

learning efficiency based on the above definitions. To solve this, many different performance

measures have been proposed (see [FK15] for a nice overview). However, these measures are

label-dependent, meaning that if we interchange the labels on the data the learning algorithm

will exhibit different learning efficiency. In order to avoid the label-dependency, we chose to

use accuracy as our performance measure. For the results to be meaningful, we make sure

that our experiments contain balanced classes.

5.1.2 Density Ratio Estimators

As presented in Chapter 4, our algorithm is plug-and-play, meaning that it can adjust to the

needs of every dataset. So for every experiment, there are three choices to be made: a

density ratio estimator, a classifier and a semi-supervised clustering method. The selection of

the density ratio estimator will prepare the way to identify the friends in the target domain.

From the discussion in Section 3.2, we will showcase the results of the uLSIF and RuLSIF

estimators available in [Lab]. The parameters for these estimators are set to the default

suggestions provided in the code. Although in [YSK+11] they comment that the higher the

relative parameter 𝑎 gets the better is the estimation quality of the RuLSIF, the parameter 𝑎
should be carefully tuned so as to smooth out but not to reduce significantly the complexity

of the true density-ratio function. To balance the tradeoff between these observations, it was

experimentally chosen to set 𝑎 = 0.5, estimating in effect the 0.5-relative density ratio

𝑤0.5(𝑥) = 2 ⋅ 𝑝𝑡(𝑥)
𝑝𝑡(𝑥) + 𝑝𝑠(𝑥)

where we recall that 𝑝𝑡(𝑥), 𝑝𝑠(𝑥) are the unknown marginal distributions that generated the

target and source instances respectively. We will denote the ratio estimation as �̂�0.5(𝑥).

5.1.3 Friends Selection

Given the density ratio estimations, we have to select the parameter 𝜖𝐹 that characterizes the

friends set, as described in Definition 4.2.1. An important aspect for choosing this parameter

is the cardinality of the resulted friends set |𝐹 |: it should not be too small, because we want

to initialize the cluster centroids to high-density regions of the target domain, but it should

also not be too big, because we want to avoid the source domain bias. With this line of

thought, we decided to fix the friends cardinality |𝐹 | = 𝛽 ⋅ 𝑁𝑡 where 𝑁𝑡 is the cardinality of
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the total target set 𝑋𝑡 and 𝛽 was manually set to 0.2. Now we can compute the parameter

𝜖𝐹 that provides us with this careful abundance of friends. Therefore our goal is

find 𝜖𝐹 s.t. |{𝑥 ∈ 𝑋𝑡 ∶ |�̂�(𝑥) − 1| ≤ 𝜖𝐹 }| = 𝛽 ⋅ 𝑁𝑡

In practice, it has been observed that the ratio estimators do not always return values in

the [0, 1] range. After investigation, we observed that this fact is related with the data

representation as well as the method itself, i.e. different estimators produce different value

range. Moreover, let us assume that for some 𝑥 ∈ 𝑋𝑡 an estimator 𝐸 returns �̂�(𝑥) = 23.
Since the estimated ratio has such a large value, can we conclude that 𝑥 has a large similarity

with the source domain or that it is very dissimilar precisely because it is far away from the

value 1?
In order to bypass this issue, we created the following heuristic: given an instance 𝑥, if the
estimator 𝐸 can distinguish well between the two source classes, then this instance is a friend.

To explain this heuristic in more detail, recall that so far the input to the selected estimator is

the target set 𝑋𝑡 and the source set 𝑋𝑠 : 𝐸0 = 𝐸(𝑋𝑠, 𝑋𝑡). Since the source labels can be

used during training, we deploy two versions of 𝐸: the first contains only the source data that

belong to the Positive class 𝐸1 = 𝐸(𝑋𝑠1, 𝑋𝑡) and the second contains only the source data

that belong to the Negative class 𝐸2 = 𝐸(𝑋𝑠2, 𝑋𝑡). Intuitively, the estimator 𝐸1 estimates

the target similarity with the source Positive class and 𝐸2 estimates the target similarity with

the source Negative class. We argue that given an instance 𝑥 ∈ 𝑋𝑡, if �̂�1(𝑥) ≃ �̂�2(𝑥)
then the estimator 𝐸 cannot distinguish between the source classes so the instance 𝑥 is not

similar with the source domain. So we alter the previous goal as follows

find 𝜖𝐹 s.t. |{𝑥 ∈ 𝑋𝑡 ∶ |�̂�1(𝑥) − �̂�2(𝑥)| ≥ 𝜖𝐹 }| = 𝛽 ⋅ 𝑁𝑡

This goal is very easily implemented since we only need to sort in a descending order the

differences among the ratio estimations. Furthermore, before calculating the differences we

normalized separately the estimations �̂�1, �̂�2 in the range [0, 1] to smooth out the effect of

range-value imbalances. For example, let us assume that �̂�1(𝑥) = 0.7 and �̂�2(𝑥) = 1.3.
If we consider a radius 0.3 around the value 1, these estimations translate to the same case:

the ratio for the instance 𝑥 is 0.3 units away from 1, so the estimator could not distinguish

between the source classes. The difference calculation however will not reflect this intuition.

By normalizing appropriately¹ the values that are greater than 1, we expect to derive a more

meaningful friends’ selection.

5.1.4 Classifiers

In order to initialize tr-𝐾means, we train a classifier on the source domain and apply it to

the friends of the target domain. After that, the initial centers will be the centroids of this

pseudo-labeling. It is therefore crucial to select a classifier appropriate for the data under

investigation. For instance, in the case of documents it is widely argued that the simple Naive

Bayes classifier (see [Ng] for a nice overview) performs remarkably well.

¹The further they are from the value 1, the closer they will be to the value 0 after normalization.
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Despite the big variety, for our experiments we only required two simple classifiers: the Naive

Bayes and the 𝐾-Nearest Neighbour classifier (see [Sut12] for a nice overview). Naive Bayes

is a simple yet core technique for building algorithms for classification, quite popular in the

text retrieval community since the ’60s. The main idea behind this technique is the use of

Bayes’ theorem in the classifier’s decision rule

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴) ⋅ 𝑃 (𝐴)
𝑃(𝐵)

Intuitively, the Naive Bayes classifier tries to learn the joint distribution that generated the

labeled train instances (in our case, this is the source set 𝑋𝑠 along with their labels). Although

in [Ng] a more detailed overview is available, we mention one important aspect of this classifier:

it makes the assumption that all the features that represent our data are independent from

each other. Such an assumption might seem restrictive, but it works remarkably well in practice

on specific data such as documents and reduces significantly the time complexity of learning.

In the case some feature has value 0, it is typical to introduce a small value indicating the

lowest value a feature can get. This is often called Laplacian smoothing and through the

experiments we will set it to be 1.
The 𝐾-Nearest Neighbour classifier is a lazy classifier which given a labelled train and an

unlabeled test set, assigns for every instance in the test set the majority vote of its 𝐾 closest

neighbours from the train set. The definition of closeness depends on the nature of the data

and we will specify it along with the value 𝐾 in every experiment.

5.1.5 Variations of 𝐾means

The traditional version of 𝐾means heuristic uses the squared Euclidean distance as the cluster

homogeneity’s criterion. Depending on the nature of the data, this criterion might need to be

modified. In the following experiments, we either use the traditional criterion or another really

popular distance measure: the cosine similarity. Given two vectors 𝑣, 𝑢 ∈ ℝ𝑚, the cosine

similarity between them is defined as

𝑐𝑜𝑠(𝑣, 𝑢) = 𝑣 ⋅ 𝑢
‖𝑣‖‖𝑢‖ =

𝑚
∑
𝑖=1

𝑣𝑖 ⋅ 𝑢𝑖

‖𝑣‖‖𝑢‖

where as usual the notation ‖⋅‖ denotes the Euclidean norm. This is a measure that actually

calculates the cosine of the angle between the vectors so it intuitively expresses how much the

two vectors are pointing in the same direction. If we make sure that the vectors are normalized

such that‖𝑣‖ =‖𝑢‖ = 1 then we can define the cosine distance to be 1−𝑐𝑜𝑠(𝑣, 𝑢) = 1−𝑣⋅𝑢.
If we use this distance modification in 𝐾means then we result to the often called spherical-
𝐾means and in every experiment we will explicitly state which variation is being used and we

will try to justify our choice.
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5.2 Synthetic Data

In this Section we present 3 different synthetic experiments: S1, S2, S3. Each of these

experiments has been constructed in order to study the effectiveness of our method in every

stage.

5.2.1 Experiment S1

For the experiment S1 we generate two-dimensional data from similar multivariate normal

distributions, a generalization of the normal distribution

𝒩(𝜇, 𝜎2) = 1
𝜎

√
2𝜋

𝑒− (𝑥−𝜇)2
2𝜎2

to higher dimensions. We consider the covariance matrix Σ to be Σ = 𝜎2𝐼 where 𝐼 is the

identity matrix. Since Σ is diagonal, the instances generated bellow will be simply a collection

of independent Gaussian random two-dimensional variables with mean 𝜇 and variance 𝜎2

respectively. In particular, the source instances 𝑋𝑠 consist of 150 instances randomly drawn

from 𝒩((1, 1), 1) for the Positive class (black color) and 150 instances randomly drawn

from 𝒩((1, 1), 1
8) for the Negative class (blue color). The target instances 𝑋𝑡 consist of

500 instances randomly drawn from 𝒩((1, 1), 1) for the Positive class (red color) and 500

instances randomly drawn from 𝒩((4, 4), 1
8) for the Negative class (green color).
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Figure 5.2.1: Synthetic experiment S1

As we can observe in Figure 5.2.1 Positive class in both domains is drawn from the same

distribution. The target Negative class is related (mean-value modification) but not the same

with the source Negative class. So during phase 1 (separation phase), we expect that the

density ratio estimator will identify many friends located in the target Positive class. As

discussed in the previous Section, we use the uLSIF and RuLSIF estimators for friends

identification.

Both estimators, as we can observe in Figure 5.2.2 (for the moment let us ignore the color

assignment), located friends mostly at the boundaries of the Positive target class. This was

due to the ratio normalization that we discussed in Section 5.1, because they produced many

values out of the [0, 1] range. One interesting difference is that the RuLSIF estimator not only

located friends at the boundaries of the Positive target class but also to its center. Based on
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Figure 5.2.2: Friends Pseudolabeling for S1

the topology of the source domain, this is a clear indication that this estimator made a harder

work to detect friends, not only from the Positive class which is the same for both domains,

but also for the source Negative class, which although different yet it is closely related as

a slightly modified Gaussian distribution. This result is strongly linked with the fact that the

RuLSIF estimated the 𝑎-relative ratio where 𝑎 was tuned to 0.5: the more the 𝑎 increases,

the more is smoothed out the true density ratio. The next step is to train a classifier on the

source domain and directly apply it on the selected friends. For this experiment, we utilized

the 𝐾-Nearest Neighbour with 𝐾 = √𝑁𝑡 as it is typically used and we applied the euclidean

distance to define the closeness between the data, mostly due to the low dimensionality and

the linear separability of the target classes. Giving more focus now to the color assignment

in Figure 5.2.2, the overlapping of the source classes challenges not only the density ratio

estimators but also the classifier. It is of no surprise that the distance-based classifier we used

did not succeed to classify all friends correctly. A correct classification would label all friends

solely to the Positive class, therefore an initial centroid for the Negative class would have to

be chosen at random. However we can avoid randomness either by selecting the instance

that is furthest from the already specified centroid or by selecting an instance with the seeding

technique proposed in [AV07]. We keep the noisy classifier to showcase that such an error

is acceptable from our method.
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Figure 5.2.3: Final result of tr-𝐾means for S1

The final result of tr-𝐾means succeeded to classify the target documents with high accuracy.
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It is interesting to observe in Figure 5.2.3 that both estimators led to the same result. In every

clustering iteration we preserved a class correspondence between the source and the target

domain by checking the closeness of each target centroid with the source centroids induced by

the labelled source data. Here as well, closeness was defined in terms of euclidean distance.

Despite the fact that source centroids are really close to each other due to the homocentricity

of the source domain, the class correspondence has been successful for this experiment

due to the friends pseudolabeling result. A naive clustering with no class correspondence

between the domains, although it would succeed to identify the “well-separable” clusters, it

might revert the target predictions since no information is available of what is negative and

what is positive. Furthermore, a naive 𝐾-Nearest Neighbour classifier would suffer from the

overlapping of the source classes. In Figure 5.2.4 we present the result obtained from naive

versions of a supervised and an unsupervised approach. As a general practice, we selected

the components that were employed by the tr-𝐾means in order to investigate whereas our

method outperforms its building blocks and the Figure 5.2.13 shows in more detail that this

is the case. In particular, we employ 𝐾-Nearest Neighbour with 𝐾 = √𝑁𝑡 and euclidean

distance for the supervised case and standard 𝐾means with random centroid selection from

the target data with euclidean distance as the homogeneity criterion for the unsupervised

case. In order to overcome a bad random initialization, we repeated 𝐾means 30 times.

As we can see, each naive method suffers from luck of additional information. In Domain

Adaptation, additional related information is available and the way our method intertwines

these two paradigms indicates the bi-directional gain mentioned in Chapter 4: clustering helps

the classification and classification helps the clustering.
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Figure 5.2.4: Final result of naive supervised and unsupervised methods for S1

5.2.2 Experiment S2

In the previous experiment, all data were generated from four similar Gaussian Distributions.

In the following S2 experiment we make our setup a little bit more difficult and alter one

distribution to something unrelated to a Gaussian. In particular, the target instances 𝑋𝑡, similar
as before, consist of 150 instances randomly drawn from 𝒩((0, −3), 1

4) for the Positive class

(red color) and 150 instances randomly drawn from 𝒩((2, −1), 1) for the Negative class

(green color). The source instances 𝑋𝑠 consist of 500 instances randomly drawn from
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𝒩((1, 1), 1
4) for the Positive class (black color) and 500 instances for the Negative class

(blue color) were randomly and uniformly sampled from an ellipse as depicted in Figure 5.2.5.
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Figure 5.2.5: Synthetic experiment S2

Due to the unrelatedness between the source and target Negative classes, we expect that the

density ratio estimator will identify most of the friends located in the target Positive class, since

the data in this class are generated from the most related distributions. Surprisingly enough,

as we can observe in Figure 5.2.6, the uLSIF estimator failed our intuition and located most

of the friends in the target Negative class. This may occurred because of the high variance

in the data: as we briefly mentioned in Section 3.2, the uLSIF method randomly chooses

centers for the kernel functions whose combination approximates the real density ratio. Since

the spread of the target Negative data is very high, most of the centers will be chosen in this

class. On the opposite, the RuLSIF estimated a more smoothed version of the density ratio

(as discussed in the previous experiment), therefore it successfully identified many friends also

in the target Positive class as expected.
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Figure 5.2.6: Friends Pseudolabeling for S2

Again, we utilized the 𝐾-Nearest Neighbour with 𝐾 = √𝑁𝑡 and we applied the euclidean

distance to define the closeness between the data, mostly due to the low dimensionality and

the linear separability of the target classes. Since there is no overlapping of the source classes

for the part that concerns the target data (observe that the closest part of the source data

to the target ones resides in the bottom left corner of the source domain as depicted in the

combination section of Figure 5.2.5), the classifier was not confused, however since it is a

distance-based learner, it was misguided for the friends of the Positive class as we can observe
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from Figure 5.2.6. In particular for the result of the uLSIF estimator, where no friends

were located in the target Positive class, there is no initialization for the Positive centroid. As

discussed before, we applied the simple heuristic to choose the target instance that is the

furthest one (in terms of euclidean distance) from the already chosen Negative centroid.
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Figure 5.2.7: Final result of tr-𝐾means for S2

Given our initialization and the easiness of class correspondence, the final result of tr-𝐾means

powered with euclidean distance, succeeded to classify the target documents with high accuracy.

As we can observe in Figure 5.2.7 both estimators led to the same result. To investigate the

gains of our method, in Figure 5.2.8 we present the result obtained from naive versions of

a supervised and an unsupervised approach. In particular, we employ 𝐾-Nearest Neighbour

with 𝐾 = √𝑁𝑡 and euclidean distance for the supervised case and standard 𝐾means with

random centroid initialization and euclidean distance for the unsupervised case. In order to

overcome a bad random initialization, we repeated 𝐾means 30 times. As we can see, the

unsupervised naive method converged to a bad local minimum for our needs and even if it

could identify the clusters properly, there is no guarantee of class correspondence with the

source domain. Also, the supervised method was distant-misguided by the topology of the

source domain and gave poor results. Again the Figure 5.2.13 shows in more detail the

comparison of our method with its building components.
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Figure 5.2.8: Final result of naive supervised and unsupervised methods for S2
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5.2.3 Experiment S3

In the following S3 experiment we make our setup again a little bit more difficult and alter

the whole target domain to something unrelated to a Gaussian distribution. In particular,

the source instances 𝑋𝑠 consist of 150 instances randomly drawn from 𝒩((1, 1), 1
8) for

the Positive class (black color) and 150 instances randomly drawn from 𝒩((1, 4), 1) for the

Negative class (blue color). The target instances 𝑋𝑡, consist of 500 instances randomly drawn

from a noisy sinusoidal function for the Positive class (red color) and 500 instances randomly

drawn from a noisy cosinusoidal function for the Negative class (green color), as depicted in

Figure 5.2.9.
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Figure 5.2.9: Synthetic experiment S3

It is difficult to make any assumptions of what to expect from a density ratio estimator but

Figure 5.2.10 shows again that the RuLSIF estimator smoothed out the true density ratio

and as a result it located equally many friends to target areas that were closer to both source

classes, as opposed to the uLSIF estimator that made a more unintuitive friends identification,

yet located in high density areas of the target domain. In this experiment, we employ a

different classifier since the euclidean version of the 𝐾 Nearest Neighbour will be again

misguided and assign most of the target data to the Positive class due to scale limitations.

We therefore choose the Naive Bayes classifier with Laplacian smoothing set to 1.
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Figure 5.2.10: Friends Pseudolabeling for S3

Despite the low quality of the classifier’s result, the final result of tr-𝐾means powered with

euclidean distance, classified the target documents with optimal accuracy in both cases, as we

can observe in Figure 5.2.11.
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Figure 5.2.11: Final result of tr-𝐾means for S3

To investigate the gains of our method, in Figure 5.2.12 we present the result obtained from

naive versions of a supervised and an unsupervised approach. In particular, we used Naive

Bayes for the supervised case and standard 𝐾means with random centroid selection from the

target data with euclidean distance for the unsupervised case. Again to avoid bad random

initialization, we repeated 𝐾means 30 times. As we can see, the unsupervised naive method

is sensitive to random initialization and had no information to make the class correspondence

with the source domain. Also the supervised method, did not succeed to transfer well the

learned generative model of the source domain. Again the Figure 5.2.13 shows in more

detail the comparison of our method with its building components. For the naive 𝐾means,

we included the accuracy as if the class correspondence has been correct.
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Figure 5.2.12: Final result of naive supervised and unsupervised methods for S3
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S1 S2 S3
classifier 34.9 49.9 82

Kmeans 41.9 87.8 87.5

tr-Kmeans 99.4 94.5 100

0

20

40

60

80

100

Figure 5.2.13: Accuracy Comparison on Synthetic Experiments

5.3 Real Data

In this Section we present a real domain adaptation experiment on the framework of documents.

We will see that the result of tr-𝐾means is comparable with state-of-the-art domain adaptation

methods, yet remaining simple and efficient.

For this experiment, we chose the widely used 20 Newsgroup dataset, which is a collection

of UseNet posts from 1993. It was originally collected by Ken Lang and contained 20.017

articles divided almost evenly among 20 different discussion topics. Articles are related by topic

and date but also, some of the topics are close to each other so they are further categorized

into six super-topics: recreation (rec), computers (comp), science (sci), politics (talk.politics),

religion (talk.religion) and for-sale (misc.forsale). We used Jason Rennie’s “bydate” version from

[Ren] where documents are sorted by date, duplicates are removed and no topic-identifying

headers are included. This version contains 18.846 documents in total.

Following the usual transfer learning bibliography, we created six different experiments with

different source and target distributions by mixing several topics as described in Table 5.1.

As in the synthetic case, for each experiment we construct a source domain (blue colour) and

a target domain (red colour), each one having two classes: Positive and Negative. Similar

classes in both domains are generated by the same super-topic but from different sub-topics

within it. This effectively creates the difference but also the relatedness between the domains:

e.g. a document from the source Positive class and a document from the target Positive

class belong to different sub-topics of the same super-topic. We restrict our experiments to

problems in which each document belongs to exactly one class.

Before we apply any learning system, we need to transform these human generated documents

into something more manageable as discussed in Section 3.3. For every experiment, since

documents from both domains are available during training time, we remove stopwords and

rare words (i.e. words that appear less then 4 times in the whole corpus) and replace words by

their respective word stem. Based on this pre-process, a vocabulary is being created containing

a list of all the possible words/features for this experiment. Each document is therefore
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DataSet Train/Test data Positive Negative Number of Samples

ds1
train rec.{autos, motorcycles} talk.politics{guns, misc} 3660

test rec.sport.{baseball, hockey} talk.{politics.mideast, religion.misc} 3554

ds2
train rec.{autos, sport.baseball} sci.{med, space} 3949

test rec.{motorcycles, sport.hockey} sci.{crypt, electronics} 3961

ds3
train comp.{graphics, sys.mac.hardware, windows.x} talk.{politics.mideast, religion.misc} 4475

test comp.{os.ms-windows.misc, sys.ibm.pc.hardware} talk.politics.{guns, misc} 3623

ds4
train comp.{graphics, os.ms-windows.misc} sci.{crypt, electronics} 3906

test comp.{ sys.ibm.pc.hardware, sys.mac.hardware, windows.x} sci.{med, space} 4888

ds5
train comp.{graphics, sys.ibm.pc.hardware, sys.mac.hardware} rec.{motorcycles, sport.hockey} 4894

test comp.{ os.ms-windows.misc, windows.x} rec.{autos, sport.baseball} 3924

ds6
train sci.{electronics, med} talk.{politics.misc, religion.misc} 3369

test sci.{crypt, space} talk.politics.{guns, mideast} 3821

Table 5.1: 20Newsgroup - Data Sets Composition

transformed into a feature vector 𝑥 = {𝑥1, … , 𝑥𝑚} where 𝑥𝑖 = 𝑤𝑥,𝑖 is the importance of

word 𝑖 for this document in terms of tf-idf weighting.

As argued in Section 3.3, we can either choose local or global tf-idf, i.e. the document

frequency is computed for each domain separately or on both domains. In Figure 5.3.1 we

present the accuracy obtained by tr-𝐾means for every experiment with these two different

weighting schemes. In particular, we experimented with the two proposed density ratio

estimators uLSIF and RuLSIF with the relative factor 𝑎 set to 0.5. To initialize the centroids,

we used the Naive Bayes classifier on the identified friends. It is widely accepted that the

Naive Bayes classifier performs remarkably well on documents, despite the feature independence

assumption. For documents, due to the high dimensionality of the feature space, it is preferred

to use the spherical 𝐾means where the homogeneity criterion is based on the cosine distance

of normalized vectors.

It can be observed in Figure 5.3.1 that in most experiments both weighting schemes were

comparable, except in the dataset 5 where clearly the local tf-idf was better. For this reason,

we can argue that the use of local tf-idf is a promising alternative weighting scheme for

domain adaptation problems on documents, not only for accuracy reasons but also in terms

of memory and time optimization: each domain is pre-processed independently on its own.

It is important to note that the density ratio estimators were highly influenced by the data

representation: a different weighting scheme may result for the same estimator to identify

a different set of friends. Furthermore, we observe that both estimators gave similar results

for most of the experiments but RuLSIF was slightly better, especially for dataset 5. As we

saw with the synthetic experiments, since RuLSIF is more biased towards the source domain

than the uLSIF method, we can argue that the dataset 5 exhibits bigger domain difference

than the rest of the datasets. So despite the fact that the uLSIF method is more fast for

high-dimensional data, we prefer the use of the RuLSIF estimator to better capture in a

balanced way the domain divergence. Since the density ratio estimation can be included in

the pre-processing step, we can refrain from taking it into account when calculating the time

complexity of tr-𝐾means.

To investigate the usefulness of our method, in Figure 5.3.2 we compare tr-𝐾means with the

result obtained by its domain unaware components: the Naive Bayes classifier with Laplacian

smoothing set to 1 for the supervised case and the spherical-𝐾means with random centroid
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Figure 5.3.1: Tf-idf Comparison

Figure 5.3.2: Overall Comparison

initialization for the unsupervised case. Again, in order to overcome bad initialization, we repeat

spherical-𝐾means 30 times. In addition, the results of tr-𝐾means are also compared with the

Multistep Fuzzy Bridged Refinement Domain Adaptation (MFBRDA) algorithm [BLZP15].

This algorithm is a fuzzy variant of the bridge refinement algorithm that was mentioned in

Section 2.3. Through the use of fuzzy sets², a soft class assignment is assumed, which

informally means that in a binary class problem, an instance can belong to both classes

with some probability. Such a scenario is assumed when there is data uncertainty or it

is more convenient to have a more probabilistic flavour in the predictions of the learner

²A fuzzy set is a set that contains not only the elements but a number associated with each element indicating membership-strength,

meaning how likely is it for the element to belong to this set.

49



(instead of binary responses). We select this method for benchmarking since it has been

already compared in [BLZP15] with many advanced domain adaptation methods and exhibited

comparable accuracy performance.

As we can observe from Figure 5.3.2, in all experiments the method outperformed the shift-

unaware Naive Bayes classifier. It also outperformed in most cases the naive spherical-𝐾means,

which sometimes failed to guess the correct class correspondence between the domains. So

far there is a strong evidence that tr-𝐾means is more accurate than its building components.

Furthermore, our method outperformed in half of the experiments the MFBRDA algorithm

and for the rest experiments, the accuracy difference was no higher than 3.5%. Therefore

despite its simplicity, we can argue that tr-𝐾means is comparable with state-of-the-art domain

adaptation methods.
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6 Conclusions

This work set out to investigate the combination of the supervised and unsupervised learning

paradigm in the setting of Domain Adaptation. As a result, a new transfer learning algorithm

tr-𝐾means is proposed. In this final chapter, we argue on the research contributions of this

thesis. Analytically, in Section 6.1 we discuss on the usefulness of the proposed method.

In Section 6.2 we report experimental observations for density ratio estimators (as introduced

in Section 3.2) and in Section 6.3 we review some experimental findings on document

pre-processing. Finally in Section 6.4 we discuss possible directions for future research.

6.1 tr-𝐾means

The main contribution of this thesis is a transfer learning variant of the popular Lloyd’s

method. Powered with some prior information in the form of a different but similar domain

(source domain), the algorithm tries to initiate the cluster centroids in order to obtain a good

and meaningful clustering result in the target domain.

Given the prior knowledge, supervised learning is used in order to transfer this information to

the target domain. By estimating the distribution ratio of the two domains, we can identify

the target instances where such a transfer is more valuable, namely the target instances whose

distribution appears to be more alike with the source distribution (referred to as friends). A

classifier trained on the source domain, provides initial labels (pseudo-labels) on the friends,

representing in this way the transferred knowledge. By initializing the centroids of the clustering

to the mass centers of this transferred information, we theoretically guarantee that with high

probability the unsupervised method will converge to a near-optimal solution.

As demonstrated experimentally the gains are bi-directional: clustering helps the classification

and the other way around. For the first direction, in the initialization step, the pseudo-labeling

of friends might be noisy due to the inherent generalization error of the chosen classifier but

also due to the domain-difference. Clustering phase will smooth out the noise induced by the

domain-difference by applying its homogeneity criterion in the target domain. For the second

direction, classification can be considered as a teacher on friends, giving a prior knowledge

to an unsupervised method and transforming it to a semi-supervised task. The unsupervised

method does no longer depend only on the inherent structure of the data but is powered
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with extra information to bias the search of the implicitly defined hypothesis space of the

target task.

By removing the randomness of 𝐾means, not only we avoid the error-prone initialization

but we reduce its computational cost. In addition, after training the classifier, the source

dataset is no longer used, resulting in an important memory reduction. Furthermore, it is

evident that our idea is plug-and-play: any classifier can be used to pseudo-label friends

and any semi-supervised clustering can be applied after. This allows the method to adapt to

data-dependent needs accordingly. In the case of negative transfer, namely when the source

and target domain are unrelated, the pseudo-labeling of friends might give very noisy results,

but for tr-𝐾means the initialization step will just seem as any random initialization, falling

back to the traditional 𝐾means heuristic. This is expected, since in the absence of any prior

information, unsupervised learning is the only viable paradigm to follow.

It has been experimentally observed that tr-𝐾means outperforms its domain-unaware building

components and it has been compared with the MFBRDA algorithm which has been shown

to compete with state-of-the-art domain adaptation methods. For half of the experiments, our

method outperformed MFBRDA and for the rest, the accuracy difference was quite small. This

result not only demonstrates that our method is competing with advanced domain adaptation

methods but also it showcases an interesting tradeoff: in MFBRDA, for creating the bridge

between the domains, it is required that source data are available for the most part of the

algorithm. This approach to transfer the label structure, might suffer from high memory

demands. Observing the little accuracy improvement of their method as opposed to ours, it

is worth investigating for which instances such a memory overhead is actually necessary.

6.2 Density Ratio Estimators

A crucial step in tr-𝐾means is to identify where to transfer the source knowledge, i.e. find

target instances that are similar with the source domain (friends set). In the proposed method,

this notion of similarity is assumed to be probabilistic: a target instance whose distribution

appears to be really close with the source distribution will be included in the friends set. Since

all distributions are unknown, this measure is computed with the use of density ratio estimators:

algorithms that given samples from two distributions 𝐴 and 𝐵, will output estimations of the

ratio 𝐴/𝐵 on the samples provided from 𝐴. In our case, 𝐴 and 𝐵 are the target and source

distributions respectively.

Although we could choose as friends the target instances whose estimated density ratio

appears to be close to 1, we observed in binary-class experiments that higher accuracy can

be obtained if we employ class-specific density ratio estimators, that is estimators that try

to separate between the two different classes that compose the source domain. Since the

samples from the source domain are categorized into positive and negative instances, we can

use this information to estimate the positive and the negative density ratios on the target

instances, feeding the positive (resp. negative) estimator with all the target instances but only

the positive (resp. negative) source instances. A target instance that is close to the source

domain will belong to one of these classes, so we expect that the class-specific estimators
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will disagree (have high difference on the output values for this instance) since the instance

is more similar with one class than the other. On the opposite, for a target instance that is

not close to the source domain, the class-specific estimators will not be able to disagree since

both source classes will look unrelated with the instance. So friends are considered the target

instances with the highest value-difference between these class-specific density ratios.

In our experiments, we considered two density ratio estimators: the uLSIF and the RuLSIF.

Our two candidates were chosen based on the following properties: uLSIF is arguably one of

the fastest proposed methods whereas RuLSIF handles unbounded ratios smoothly and in a

tunable way. Both estimators almost always resulted in similar prediction accuracy, indicating

that the computationally efficiency of uLSIF is more useful than the slight accuracy gain from

RuLSIF. However, for experiments with high domain divergence, the RuLSIF method gave

better results, arguably due to the smoothness introduced to the density ratio through the

relative parameter 𝑎. Although in [YSK+11] they comment that the higher the 𝑎 gets the

better the estimation quality of the RuLSIF estimator, the parameter 𝑎 should be carefully

tuned so as not to reduce significantly the complexity of the true density-ratio function. To

balance the tradeoff between these observations, it was experimentally chosen to set 𝑎 = 0.5.
As a final observation, the data representation heavily influences the result of any density

ratio estimator. Therefore, the selection of an estimator and the pre-processing phase must

be seen as correlated processes.

6.3 Document Pre-processing

In any machine learning task, human generated data such as documents require a pre-

processing phase in order to transform into a manageable and succinct form. In this thesis,

we selected the popular Vector space model where each document is considered as a bag

of words, the order of which is not taken into consideration. Documents are therefore

transformed into feature vectors, where each feature captures the importance of the respective

word it represents. For the notion of importance, in this work we experimented with two

different weighting schemes: the local tf-idf where the document frequency is calculated in each

domain separately and the global tf-idf where document frequency takes into consideration

the whole input of documents from both domains. We experimentally observed that the local

tf-idf did not deteriorate the accuracy of the proposed method and was particularly useful

for experiments that exhibit high domain divergence. This weighting scheme also exhibited

memory and time optimization: each domain is pre-processed independently on its own. For

all these reasons, we consider the local tf-idf a promising alternative weighting scheme for

Domain Adaptation problems in the framework of documents.

Once the documents are transformed into feature vectors, one other popular pre-processing

technique is to normalize this vector in the [0, 1] range. This technique however is argued

to smooth out the effect of outliers, which in some cases are required to track the domain

divergence. In initial experiments, both in local and global flavour (i.e. normalizing each

domain separately or the whole corpus), it was observed that normalization heavily influenced

the density ratio estimators and the overall accuracy of tr-𝐾means. In fact, the global version
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of normalization was experimentally less accurate and introduced slower convergence to the

clustering phase. This technique was therefore overruled from the pre-processing phase.

6.4 Future Work

In this final section, we will discuss some possible directions for future research of this work.

To begin with, it has already been mentioned that the core idea of this thesis can be seen

as a meta-algorithm: in a domain adaptation problem, we identify in the target domain the

instances that are friends with the source domain, use the labeled examples of the source to

train a supervised learner which will later be applied to the target friends and finally we use

this pseudo-labeling to initiate a semi-supervised learner in the target domain. Any supervised

learner can be plugged in for the initialization phase and such a selection depends on the

nature of data for a given experiment. It would be interesting to investigate if such a selection

can be automated and a suitable supervised learner can be found via data statistics.

Furthermore, in our case we modified the traditional 𝐾means heuristic into a semi-supervised

variant to incorporate the friends’ pseudo-labeling. We followed the semi-supervised clustering

direction in order to investigate the combination of classification and clustering in the domain

adaptation realm. We can observe however, that once some target instances have been

initially labeled, any transductive learner can be used to complete the domain adaptation task,

since friends and strangers belong to the same domain and are available during the training

phase. Since the source domain is no longer involved, standard machine learning techniques

for transductive learning can be employed and it would be of interest to go into this direction.

This might also allow to see the behaviour of the proposed method in the extreme case where

there is no domain divergence, namely the source and the target domains are the same. As a

final note, given a rigid formulation of the noise introduced in the pseudo-labeling of friends,

it could be the case that new generalization bounds for the Domain Adaptation problem might

emerge. In fact, the notion of negative transfer can smoothly integrate itself in this line of

thought, observing that the higher the noise in the pseudo-labeling, the higher the occurrence

of negative transfer.

Focusing more on the separation phase of our method, two density ratio estimators were

used: uLSIF and RuLSIF. In particular, for RuLSIF we experimentally tuned the relative

parameter 𝑎 to 0.5. However further study would be required in order to select and possibly

automate this tuning in order to improve friends’ selection. There is an indication that such

an automation might be a data-dependent task. In addition, it easy to see that density ratios

are asymmetric and as an alternative we could experiment with density-difference estimators

(such as [SKS+12]) which are symmetric and always bounded as long as both densities are

bounded.

Finally, documents form good instances for clustering as it can be observed from the visual-

ization presented in Appendix A. We would be further interested to investigate the gains as

well as the limitations of our method not only to documents but also to real data of different

modalities, such as images and audio.
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A Document Visualization

In this thesis, we experimented with documents as a real case scenario for the application of a

domain adaptation method such as tr-𝐾means. We employed the Vector space model to

transform them into feature vectors, yet this representation gives a high dimensional flavour to

our data, making it impossible to visualize them in order to extract meaningful observations.

Such a visualization task might be useful to check the inherent structure of the data and the

meaning of the clustering result in an informal level. In addition, visualization might help us

investigate the limitations of the pre-processing phase and perhaps dictate us the need for

a feature selection so that the clusters are likely to be compact and isolated, making them

an easy instance for a simple clustering algorithm. Several methods exist in literature that try

to reduce the feature space to a two dimensional plane while trying to preserve as much as

possible the information carried by the data (see Hendrik Strobelt’s lecture [Str15] for a nice

overview) and we chose the method described in [FGM05].

Informally, their method is composed by three basic building blocks: text documents are pre-

processed using the Vector Space model and the tf-idf weighting. These high dimensional

vectors are fed to Latent Semantic Indexing (LSI) in order to extract main concepts, followed

by multidimensional scaling (MDS) to gracefully descend to two dimensions. LSI is an

automatic statistical technique (data-independent), that takes the matrix of the high-dimensional

vectors 𝑋 = {𝑥1, … , 𝑥𝑛} where 𝑥𝑖 ∈ ℝ𝑚 and performs a Singular Value Decomposition

𝑋 = 𝑈𝑆𝑉 𝑇 , where matrices 𝑈 and 𝑉 are orthogonal, called left and right singular vectors
respectively for 𝑋 and 𝑆 is a diagonal matrix which can be arranged to be no negative and

in order of decreasing magnitude. The positive entries of 𝑆 are called singular values of 𝑋.

SVD arises from finding an orthogonal basis for 𝑋’s row space that gets transformed into an

orthogonal basis for its column space: 𝑋𝑣𝑖 = 𝑠𝑖𝑢𝑖. Intuitively, the factorization from SVD

tells us how to choose orthogonal bases so that the linear transformation imposed by 𝑋 is

represented by a matrix with the simplest possible form, that is, the diagonal 𝑆. After that

decomposition, LSI keeps the 𝑘 largest singular values of 𝑋 and then projects 𝑋 to this

reduced 𝑘-dimensional space. The choice of 𝑘 is selected in their proposed method so that

it holds

Σ𝑘
Σ𝑛

≥ 𝜖
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where Σ𝑖𝑖 = 𝑆2
11 + … + 𝑆2

𝑖𝑖 for 𝑖 = 1, … , 𝑛 and 𝜖 was experimentally set to 0.5. It

is guaranteed by the principles of linear algebra that the reduced vector matrix is a good

approximation of the original one, therefore we expect that there is no big loss of information in

this reduction. MDS is a family of scaling methods for discovering structures in multidimensional

data in order to reduce the data in two dimensions, yet preserve as possible the relations

between them. Typically points representing the data are positioned into two dimensions so

they minimize some energy function. The implicit optimization problem that MDS solves is:

find points in the plane so the better the distances between points on the plane approximate

real similarity between the original data, the lower the value of the energy function. Many

energy functions exist with the most basic being the

𝐸 =∑
𝑖≠𝑗

(𝛿𝑖𝑗 − 𝑑(𝑥𝑖, 𝑥𝑗))2

where 𝑥𝑖, 𝑥𝑗 are the points in the plane, 𝑑 is their euclidean distance and 𝛿 is the similarity

(or the dissimilarity) between the original data.

In order to get a better insight in the nature of documents and the validity of devised transfer

learning experiments, we applied this method to 3 datasets created from the 20 Newsgroup

corpus:

1. RA: this dataset consists of 300 train and 700 test documents from related subcategories

of Religion and Autos (alt.atheism/rec.motorcycles and soc.religion.christian/rec.autos) -

Figure A.0.1

2. HP: this dataset consists of 248 train and 800 test documents from related sub-

categories of Hardware and Politics (comp.sys.ibm.pc.hardware/talk.politics.mideast and

sci.electronics/talk.politics.misc) - Figure A.0.2

3. GS: this dataset consists of 200 train and 500 test documents from related subcategories

of Graphics and Sport (comp.graphics/rec.sport.baseball and comp.windows.x/rec.sport.hockey)

- Figure A.0.3
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Figure A.0.1: Visualization of RA dataset

In particular, we applied the method separately for each domain, both for efficiency and in

order to investigate the relation of the main concepts that LSI extracted from each domain.
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Figure A.0.2: Visualization of HP dataset
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Figure A.0.3: Visualization of GS dataset

As an energy function, we chose the Sammon’s criterion [Sam69]

𝐸 = 1
∑
𝑙<𝑘

𝛿𝑙𝑘
∑
𝑖<𝑗

(𝑑(𝑥𝑖, 𝑥𝑗) − 𝛿𝑖𝑗)2

𝛿𝑖𝑗

For similarity in the original vectors, we selected the cosine similarity as it is appropriate for

documents. This weighting scheme normalizes the squared-errors in pairwise distances by

using the dissimilarities 𝛿 in the original space. As a result, Sammon’s criterion preserves the

small 𝛿𝑖𝑗 values, giving them more importance in this fitting procedure than the larger 𝛿𝑖𝑗
values. In the case of documents with the tf-idf weighting, this energy function gave the

most meaningful results, since we can observe in Figures A.0.1, A.0.2 and A.0.3 that related

classes of both domains overlap, indicating a well-formed transfer learning experiment.
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B Useful Proofs

In this Appendix, we gather proofs of Lemmata used through this thesis.

Lemma B.0.1. [centroid property] Let 𝑆 ⊆ ℝ𝑚 be a set of points with center of mass
𝑠∗ = 1

|𝑆| ∑𝑠∈𝑆 𝑠 and let 𝑥 ∈ ℝ𝑚 be an arbitrary point. Then, for the squared euclidean
distance 𝑑(𝑎, 𝑏) = (𝑎 − 𝑏) ⋅ (𝑎 − 𝑏) = ∑𝑚

𝑖=1(𝑎𝑖 − 𝑏𝑖)2 it holds that

∑
𝑠∈𝑆

𝑑(𝑠, 𝑥) = ∑
𝑠∈𝑆

𝑑(𝑠, 𝑠∗) + |𝑆| ⋅ 𝑑(𝑠∗, 𝑥)

Proof. By the definition of the mass center 𝑠∗, let us observe that

∑
𝑠∈𝑆

(𝑠 − 𝑠∗) = 1
|𝑆| ∑

𝑠∈𝑆
(𝑠 − ∑

𝑠′∈𝑆
𝑠′) = 1

|𝑆|(∑𝑠∈𝑆
𝑠 − ∑

𝑠′∈𝑆
𝑠′) = 0 (B.1)

Then:

∑
𝑠∈𝑆

𝑑(𝑠, 𝑥) = ∑
𝑠∈𝑆

(𝑠 − 𝑥) ⋅ (𝑠 − 𝑥)

= ∑
𝑠∈𝑆

(((𝑠 − 𝑠∗) + (𝑠∗ − 𝑥)) ⋅ ((𝑠 − 𝑠∗) + (𝑠∗ − 𝑥)))

= ∑
𝑠∈𝑆

(((𝑠 − 𝑠∗) ⋅ (𝑠 − 𝑠∗)) + 2(𝑠 − 𝑠∗)(𝑠∗ − 𝑥) + ((𝑠∗ − 𝑥) ⋅ (𝑠∗ − 𝑥)))

= ∑
𝑠∈𝑆

𝑑(𝑠, 𝑠∗) + 2(𝑠∗ − 𝑥) ∑
𝑠∈𝑆

(𝑠 − 𝑠∗) + |𝑆| ⋅ 𝑑(𝑠∗, 𝑥)

𝐵.1= ∑
𝑠∈𝑆

𝑑(𝑠, 𝑠∗) + |𝑆| ⋅ 𝑑(𝑠∗, 𝑥)

(B.2)

■

Lemma B.0.2. Let 𝑑 denote the squared euclidean distance. Then for 𝑎, 𝑏, 𝑐 ∈ ℝ𝑚 it holds
that

𝑑(𝑎, 𝑐) ≤ 2 ⋅ (𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐))
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Proof. Using the triangle inequality of the Euclidean distance we obtain

𝑑(𝑎, 𝑐) =‖𝑎 − 𝑐‖2
2 = (𝑎 − 𝑐)2

≤ ((𝑎 − 𝑏) + (𝑏 − 𝑐))2

= 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐) + 2(𝑎 − 𝑏)(𝑏 − 𝑐)
(B.3)

We can observe that

((𝑎 − 𝑏) − (𝑏 − 𝑐))2 ≥ 0 ⇒
⇒ (𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 − 2(𝑎 − 𝑏)(𝑏 − 𝑐) ≥ 0 ⇒

⇒ 2(𝑎 − 𝑏)(𝑏 − 𝑐) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐)
(B.4)

From B.3, B.4 the result follows. ■
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