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Abstract: The problem considered is the existence of heteroclinic, homoclinic and
periodic orbits of Hamiltonian systems in the classical mechanis case where bounded
trajectories u : R → Rn connect points on level sets of the potential function −W
and solve the systems : uxx = Wu(u) − cux and uxx = Wu(u). These level sets
considered have at most a finite number of distinct components.

Περίληψη: Το πρόβλημα που θα μελετήσουμε αφορά την ύπαρξη ετεροκλινών, ομοκλι-

νών και περιοδικών τροχιών Χαμιλτονιανών συστημάτων στην περίπτωση της κλασικής

μηχανικής όπου φραγμένες τροχιές u : R → Rn
συνδέουν σημεία απο ισοσταθμικά

σύνολα της συνάρτησης δυναμικού −W και λύνουν τα συστήματα : uxx = Wu(u)−cux
καί uxx = Wu(u). Τα εν λόγω ισοσταθμικά σύνολα, έχουν το πολύ πεπερασμένο
πλήθος διακριτών συνιστωσών.

4



Contents

1 Introduction 6

2 Heteroclinic connections for double well unbalanced potentials- The
travelling wave 8

3 Heteroclinic, Homoclinic and Periodic orbits as critical points of
the Action Functional 24

4 Epilogue: Remarks and complementary material 40

5



Chapter 1

Introduction

The first part of this dissertation(Chapter 2) consists of a presentation of a proof
of existence of an heteroclinic orbit that solves the system:

uxx = Wu(u)− cux

with Ω = R, Wu = (∂W
∂u1

, ..., ∂W
∂un

), u(x) = (u1(x), ..., un(x)) and W has a global
minimum a− and a local minimum a+(and some additional conditions). The proof
presented here follows the one in the book: Elliptic Systems of Phase Transition
Type(preprint)[6] by Alikakos N.,Fusco G., and Smyrnelis P. The idea that is pre-
sented is the constraint minimization, which was first introduced by Alikakos N. and
Fusco G. [1] and also applied by Alikakos N. and Katzourakis N. [2]. The last two
presented a proof of existence of an heteroclinic connection that was later simplified
in [6]. These trajectories are also known as a traveling waves and c denotes their
speed.

In Chapter 3, the Hamiltonian system:

uxx = Wu(u)

where the set {W = 0} possesses a finite number of distinct components is con-
sidered. The existence of heteroclinic, homoclinic and periodic orbits that connect
two distinct components of the set {W = 0} is proven for the vector case as well as
the asymptotic convergence of these solutions. The results presented in this chapter
derive mostly from the work of Smyrnelis P. and Antonopoulos P. [3] and Fusco G.,
Gronchi G. and Novaga M. [4]

6



Finally, in Chapter 4, some selected theorems and comments are presented along
with some remarks to complete this thesis.

Note that the proofs of some lemmas, propositions or corollaries have been delib-
erately excluded, partially of wholly. This happens because they are either very
technical or engage ideas from previous results. In any case, one can find them in
detail in the references mentioned, usually in [2],[3] and [6].
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Chapter 2

Heteroclinic connections for
double well unbalanced potentials-
The travelling wave

Let W be a potential having a global minimum at a− and a local minimum at a+

such that: W(a−) < 0 = W(a+),(see figure 2.1).

The travelling wave problem is:

u′′ −Wu(u) = −cu′, u : R→ Rm, c > 0 (2.1)

lim
x→−∞

u(x) = a−, lim
x→+∞

u(x) = a+ (2.2)

The system has variational structure as the equation is the Euler-Lagrange of the

weighted Action Functional : Jc(u) =
∫
R( |u̇|

2

2
+W (u))ecxdx

(cf. Fife and McLeod [5]).

Adopting the following Hypotheses, we will prove that there exists a function u :
R→ Rm and a unique c > 0 that solve (2.1).
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Figure 2.1:

Hypotheses:

H1 : The potential W : Rm → R is of class C2, with two minima a−, a+ such that:
W (a−) < 0 = W (a+), W(u) > W (a−) for every u 6= a+ and lim|u|→∞W (u) > 0.

H2 : {u: W(u) ≤ 0} = C−0 ∪{a+}, dist(C−0 , a
+) > 0 with C−0 being a strictly convex

set with C2 boundary ∂C−0 .

H3 : (i) ∇W·v > 0 on ∂C−0 , with v being the outward normal on ∂C−0 .

(ii) The eigenvalues of D2W − ε0I on ∂C−0 have non-negative real parts.

H4: (i) There is a r0 > 0 such that the function: r → W (a+ + rξ)
is strictly increasing for r ∈ (0, r0] and ξ ∈ Sm−1

(ii) The function: r → W (a− + rξ) has a strict positive derivative when a− + rξ
∈ C−0 . Assuming also that: B(a−, r0) ⊂ C−0 , ξ ∈ Sm−1.
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Under the Hypotheses H1 to H4 we can prove the following theorem:

Theorem 2.1. There exists a function u : R → Rm and a unique c∗ > 0 that
solve the traveling wave problem also satisfying the following statements:

Jc∗(u) = 0 (2.3)

c∗ =
−W (a−)∫
R |u̇|2dx

(2.4)

Remark: The speed c∗ can also be variationaly characterized as follows:

c∗ = sup
c>0
{inf
A
Jc(u) < 0} (2.5)

where A = {u ∈ W 1,2
loc (R,Rm) :3 x−u < x+

u (depending on u) such that: x ≤ x−u ⇒
|u(x)− a−| ≤ r0

2
and x ≥ x+

u ⇒ |u(x)− a+| ≤ r0
2
}.

Before presenting the proof, we will present a replacement lemma that was intro-
duced in [1](cf. section 3.3-Lemma 3.2 and lemma 3.1).
Note that in [1] this lemma gives information about the minimizers of the(unweighted)
Action Functional:

J0(u) =
∫
R( |u̇|

2

2
+W (u))dx

Which is used in the special case where the potential function W is balanced(W (a+) =
W (a−) = 0) and c = 0 in order to describe bounded solution of the Euler-Lagrange
of J(u). These solution are known as standing waves.
However it will also be applied to some parts of this proof as well.

Lemma 2.1: Let α be a point of minimum of W. Let a < b ∈ R, r ∈ R and
u ∈ W 1,2([a, b],Rm) be such that
(i) 0 < ρu(a) = ρu(b) = r ≤ r0

2

(ii) r ≤ ρu(x) for some x ∈ (a, b).
Then there exists a function v ∈ W 1,2([a, b],Rm) such that:
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v(a) = u(a), v(b) = u(b),
ρv(x) < r ∀ x ∈ (a, b),

J(v) < J(u) on [a,b]
where ρu(x) = |u(x)− a−| and ρv(x) = |v(x)− a−|.

The proof of that lemma derives from a pointwise deformation: v(x) = a−χ(−∞,a]∪[b,+∞)

+ a−+ rh(ρ(x))n(x) (when max[a,b] ρ(x) > r0) and when max[a,b] ρ(x) ≤ r0 the proof
utilizes another replacement lemma, still introduced in [1], also proved by deforming
u pointwise, and states the same results but with the differentiated hypotheses:
(i) 0 < ρu(a) = ρu(b) = r ≤ r0

(ii) r ≤ ρu(x) ≤ r0 for every x ∈ (a, b).

We will prove the existence of a solution by minimizing the Action Functional
Jc(u) over the class of functions A considering c an arbitrary parameter first. But,
minimization cannot be done directly because A is a non-compact space, thus, a
minimizing sequence may converge to the trivial minimizers a±. Also noticing that
the equation is translation invariant while the Action Functional is sensitive to trans-
lations:

Jc(u(x− s)) = ecsJc(u(x)) (2.6)

We understand that if Jc(u) 6= 0 the minimizing propery cannot be preserved.
In order to overcome these problems we will minimize the Action over the space:

AL = {u ∈ A : x+
u ≤ L, x−u ≥ −L,L ≥ 1}

considering c a free parameter. This space eliminates the problem of translations.

Figure 2.2:
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Afterwards, we will prove the existence and uniqueness of a c that satisfy (2.3)
and for that c we will show that for L large enough the constraint is not realized.
The last one is necessary because it is minimizer to touch the rims of the cylinders
above, and then it may not solve the Euler-Lagrange.

Proof of Theorem 2.1:

Proposition 2.1: Let L ≥ 1, then the variational problem:

minAL
∫
R( |u̇|

2

2
+W (u))ecx)dx

,
admits a minimizer uL depending of c > 0.

Proof of proposition 2.1:

Firstly, it can easily be checked that: Jc(u) > −∞, because:

Jc(u) ≥ −
∫
RW

−(u)ecxdx ≥ −W−(a−)
∫ L
−∞ e

cxdx = −W−(a−)
c

ecL ≥ −∞.

Now, we consider the affine function:

uaff (x) = a−χ(−∞,−1] + 1−x
2
a− + 1+x

2
a+ + a+χ[1,+∞), with σ := Jc(uaff ) < +∞.

We can consider a minimizing sequence un that satisfies Jc(un) ≤ σ.

Also, one can check after a few calculation that the following estimate hold:

1
2

∫
R |u̇|e

cxdx ≤ Jc(uaff ) + W−(a−)
c

ecx := σ′

Since un(x) ∈ AL, it is obvious that for x ∈ (−∞,−L] ∪ [L,+∞)

we have the estimate: |un(x)| ≤ max{|a+|, |a−|}+ r0
2

.

Considering these, the following useful estimate can also be proven easily:

|un(x)| ≤ |un(−L)|+
∫ x
−L |u̇|e

ct
2 e
−ct
2 dx ≤ max |a+|, |a−|+ r0

2
+
√

2σ′
∫ L
−L e

−ctdt, and

|un(x)− un(y)| = |
∫ x
y
u̇dx| ≤

∫ x
y
|u̇|dx ≤

√∫ x
y
|u̇|2dx

√
(x− y) ≤

√
2σ′
√

(x− y).
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So, the minimizing sequence is uniformly bounded and equicontinuous on every
compact interval. Thus, by the Ascoli-Arzela theorem and a diagonal argument,
we can choose a subsequence uk that converges uniformly on compact intervals to a
function uL ∈ C(R,Rm).
Now, replacing the dx by the absolutely continuous dµ(x) = ecxdx and taking a
subsequence ukj we have that:

u′kj ⇀ u′L,

By the weak lower semicontinuity it is straightforward that:

lim inf
∫
R |u

′
kj
|2ecxdx ≥

∫
R |u

′
L|2ecxdx.

Finally, applying the fatou lemma to the non-negative measurable sequence:

W (ukj) +W−(a−)χ(−∞,L] we obtain that: Jc(uL) ≤ lim inf Jc(ukj) = infAL Jc

this completes the proof of the proposition.

Next, we will prove that inside the cylinders the constraint is not realized.

Proposition 2.2: For the arbitrary c >, the respective minimizer uL solves the
Euler-Lagrange of Jc(u) on every connected component of R \{-L,+L} and also sat-
isfy the “boundary” conditions (2.2).

Proof of Proposition 2.2:

Noticing that uL solves the equation (2.1) in (−L,+L) since it is a minimizer we will
prove the following two lemmas to show that (2.1) is also satisfied in R \ (−L,+L).

Lemma 2.2: Let ρ−L(x) := |uL(x)− α−|. Then the equation ρ−L(x) = r0
2

has a
unique solution λ−L ≥ −L. Moreover, the function ρ−L is strictly increasing in the
interval (−∞, λ−L ] and limx→−∞ ρ

−
L(x) = 0.
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Proof:

Lemma 2.1 (cf. [A-F]) is proved by a pointwise deformation of u, therefore it also
holds for the functional Jc. Let ρ−L(x) := |uL(x) − α−|. We will prove that ∀r ∈
(−∞, λ−L) the equation ρ−L(x) = r has a unique solution.
By lemma 2.1 we have that this equation has at most two solutions.To reach a
contradiction, suppose that there exists x1 < x3 such that ρ−L(x1) = ρ−L(x3) = r.
Then by lemma 2.1 we have that an x2 exists such that min[x1,x3] ρ

−
L(x) = ρL(x2).

We also have that ρ−L(x) ≥ r ∀ x ∈ (−∞, x1], since otherwise the equation ρ−L(x) =
r − ε for ε > 0 small enough would have more than two solutions and that would
contradict lemma 2.1.
Writing uL(x) in the polar form: uL(x) = α− + ρ−L(x)n−L(x), we define the function

v(x) := (a− + ρ−L(x2)n−L(x))χ(−∞,x2] + uL(x)χ[x2,+∞)

It is easy to check that Jc(v) < Jc(uL), which contradicts the minimality of uL. The
uniqueness of solution has been proved. Moreover, the fact that ρL(x) is strictly in-
creasing has been proved as well as that uL solves the Euler-Lagrange in (−∞, λ−L).
Now, we will show that limx→−∞ ρ

−
L(x) = 0. Indeed, if limx→−∞ ρ

−
L(x) > 0 then by

considering the functin f(x) := (ρ−L)2, which is bounded by definition, we can see
that due to the Hypothesis H4 and after a few calculations that the bound of f(x) in
(−∞, λ−L) is violated.

Lemma 2.3: Let ρ+
L(x) := |uL(x) − α+|. Then the equation ρ+

L(x) = r0
2

has a
unique solution λ+

L ≤ L. Moreover, the function ρ+
L is strictly increasing in the inter-

val [λ+
L ,∞) and limx→∞ ρ

+
L(x) = 0.

Proof:

Observe that there exists a sequence xn → +∞ as n → +∞ such that ρ+
L(x) → 0 ,

otherwise Jc(uL) = +∞. Now we will show that ∀ r ∈ (0, r0
2

] the equation ρ+
L = r

has a unique solution. Assume there exists a < b such that ρ+
L(a) = ρ+

L(b) = r. If
a y2 ∈ [a, b] such that uL(y2) ∈ ∂C−0 , it is obvious that a y1 < a such that uL(y1)
∈ ∂C−0 . Then, if we define the function:

v(x) = P (uL(x))χ[y1,y2] + uL(x)χ(−∞,y1]∪[y2,+∞)

Where P is the projection onto the (strictly) convex set C−0 . Projections onto strictly
convex sets of Hilbert spaces decrease distances: |P (a)−P (b)| < |a−b|, so, P ′(y) < 1
almost everywhere and thus: |P ′(uL)u′L|2 < |u′L(x)|2 a.e.
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The last one gives us: Jc(v) < Jc(uL). So, the curve cannot intersect C−0 for x
∈ [a, b], lemma 2.1 can be applied and since r ∈ (0, r0

2
] was arbitrary and considering

the fact that ρ+
L(x)→ 0 we reach a contradiction. The uniqueness of solutions of the

equation ρ+
L = r as well as the monotonicity of ρ+

L(x) are now obvious. The proof of
lemma 2.3 is complete.

Now, we introduce the convex set C−a .
Consider the set u : W (u) ≤ a for a ∈ (0, a0], with a0 small enough. We denote C−a
the stictly convex set that encloses a− and being such that C−a ∩ B(a−,

r0
2

) = ∅. For

that sets, we introduce the following results [A-F-S](6)):

Lemma 2.4: For every a ∈ (0, a0), there exists a unique λa
−
L ∈ (λ−L , λ

+
L) such that

uL(λ−L) ∈ ∂C−a and uL(λ−L) ∈ C−a if and only if x ≤ λa
−
L .

Proof of Lemma 2.4 : Suppose, by contradiction that there exists an a ∈ (0, a0), and
x2, x4 ∈ R such that u(x2) and u(x4) ∈ ∂C−a . We have that uL(x) cannot intersect
∂B(a+.r0/2) in [x2, x4] because then, an x5 > x4 such that ρ+

L(x5) = ρ+
L(x4) = r0/2

would exists and that would contradict lemma 2.3. Now, let’s consider the case when
uL /∈ C−a for some x ∈ [x2, x4], then by setting

v(x) = P (uL(x))χ[x2,x4] + uL(x)χ(−∞,x2]∪[x4,+∞)

with P being the projection onto the convex set C−a , thus, we obtain as before:
Jc(v) < Jc(uL), which is a contradiction to the minimality of uL. Now, if an x3

such that W (x3) ∈ C−a \ C−0 , then an x1 such that W (ux1) = W (ux3) < W (ux2),
and applying the same procedure as before, we reach to a contradiction. Thus, it
has to be that uL(x) ∈ C−a ∀x ∈ [x2, x4], but, even in that case, we reach to a
contradiction, and that is, because, there exists a y ∈ (x2, x4) such that u′L(y) 6= 0,
otherwise uL(x) would be constant in (x2, x4) and that contradicts hypotheses H3

since [x2, x4] ⊂ (−L,+L) and thus, uL solve the Euler-Lagrange equation there. For
δ small enough we define the function:

vδ(x) = Pδ(uL(x))χ[y,y+δ] + uL(x)χ(−∞,y]∪[y+δ,+∞),

with Pδ being the projection onto the line passing through uL(y) and uL(y), and
since the line is also a convex set, then again Jc(vδ) < Jc(uL). The proof of the
Lemma is complete.
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Summarizing the previous lemmas we get that:

(i) For every a positive and small uL exits C−a precisely once at x = λ
a−
L , u−1

L (C−a ) =
(−∞, λa−L ],
(ii) u−1

L (B(a+, r0/2)) = (λ+
L ,+∞),

(iii) x ∈ [λ
a−
L , λ+

L ] =⇒ W (uL(x)) ≥ α
(iv) λ±L are well defined as the unique values of x that uL crosses the spheres
∂B(a±, r0/2).

By (iii), we can, intuitively say that if [λ
a−
L , λ+

L ] is large enough, then there would
be a problem with the fact that Jc(u) ≤ 0. Therefore, it is reasonable to expect
that an upper bound on |λ+

L − λa
−
L | holds. This upper bound should also depend

on c, since if c is very large, then the minimizer would have to enter B(a+, r0/2)
quickly, so that Jc(uL) remains non-positive(for the c that this is possible) and if the
opposite happens, then we can allow the minimizer to enter B(a+, r0/2) not that fast.

To write these down in a formalistic way, we will prove the following two lemmas,
that also provide us an L-independent bound on |λ+

L − λa
−
L | and on |λa−L − λ−L |.

Lemma 2.5: For all a ∈ (0, a0], L ≥ 1 and c > 0 such that Jc(uL) ≤ 0 the fol-
lowing estimate holds:

|λ+
L − λ

a−

L | ≤
1

c
ln(1 +

W−(a−)

a
) := Λ+

a (2.7)

Proof of Lemma 2.5:

We have the identity: Jc(uL) = −
∫ λ0−L
−∞ W−(uL)ecxdx+

∫ +∞
λ
0−
L

W+(uL)ecxdx+1
2

∫
R |u

′
L|2ecxdx.

We have that W (uL) ≥ α on [λ
a−
L , λ

a−
L ], W−(uL) ≤ W−(a−), also, the following

estimates hold: ∫ λ0−L
−∞ W−(uL)ecxdx ≤ W−(a−)

c
ecλ

a−
L

. ∫ +∞
λ
0−
L

W+(uL)ecxdx ≥
∫ λ+L
λ
a−
L

W+(uL)ecxdx ≥ α
c
[ecλ

+
L − ecλ

a−
L ],

da ≤ |uL(λ
a−
L )− uL(λ+

L)| ≤
∫ λ+L
λ
a−
L

|u̇|dx ≤
√

(
∫ λ+L
λ
a−
L

e−cxdx)(
∫ λ+L
λ
a−
L

|u̇|2dx)
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Where da denotes the distance between C−a and B(a+, r0/2).

Therefore:

0 ≥ Jc(uL) ≥ −W−(a−)
c

ecλ
a−
L + α

c
[ecλ

+
L − ecλ

a−
L ] + cd2a

2(e
−cλ

a−
L −e−cλ

+
L )
≥ ecλ

a−
L

(
− W−(a−)

c
+

α
c
(ec(λ

+
L−λ

a−
L ) +

cd2
a

2(1− e−c(λ+L−λLa− ))

)
≥ e

cλ
a−
L

c

(
−
(
W−(a−)

α
+ 1
)

+ ec(λ
+
L−λ

a−
L )
)

.

Now, the desired inequality is straightforward.

Lemma 2.6: For all a ∈ (0, a0], L ≥ 1 and c > 0 such tha Jc(uL) ≤ 0 the fol-
lowing estimate holds:

|λa−L − λ−L | ≤
1

w∗
{cRa

max +

√
(cRa

max)2 + 2w∗[(Ra
max −

r0

2
)]} := Λ−a (2.8)

where Ra
max := maxu∈∂C−a |u− a

−|

and w∗ := min{ d
dt
‖t=rW (a− + tξ) : r0

2
≤ r ≤ Ra

max, |ξ| = 1, a− + rξ ∈ C−a }

Proof of Lemma 2.6:

Considering the polar form: uL = a− + ρ−L(x)n(x) of u. By Hypotheses H4 and
since uL satisfies the Euler-Lagrange equation (2.1) on (λ−L , λ

a−
L ] ⊆ (−L,L] we have

the following inequality(with ρ(x) declaring ρ−L(x)):

ρ′′ + cρ′ = ρ|(n−L)′|2 +∇W (a− + ρn−L) ≥ w∗ > 0

If we integrate the above inequality from λ−L to x such that: λ−L < x < λ
a−
L and take

into account that ρ′(x) ≥ 0 for x a little bit greater than λ−L , then we obtain:

ρ′(x) + cρ(x) ≥ w∗(x− λ−L)

and integrating once more from λ−L to an x greater than this and lesser than λ
a−
L and

taking into account that 0 ≤ ρ(x) ≤ Ra
max we obtain:

(Ra
max − r0/2) + (λ

a−
L − λ

−
L)cRa

max ≥ w∗

2
(λ

a−
L − λ

−
L)2

From which the desired inequality follows.
Moreover, since limx→−∞ ρ

′(x) ≥ 0 integrating the first inequality from -∞ to an
x < λ

a−
L we get that ρ′(x) > 0 in (−∞, λL],i.e. ρ is strictly increasing there.
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Combining the above, which all bounds are L-independent, the following corollary
can be established:

Colollary 2.1: For all a ∈ (0, a0], L ≥ 1 and c > 0 such that Jc(uL) ≤ 0 the
following estimate holds:

|λ+
L − λ

−
L | ≤ Λ = an L-independent bound.

So far, we have proved, for every c > 0 and L > 1 a minimizer(depending on c and
L) exists, and for c such that Jc(uL) ≤ 0 then the time that uL crosses the spheres
B(a−,r0/2) and B(a+,r0/2) is bounded by a bound that only depends on c.

From now on, the (depended on c)minimizer uL will be denoted as: uL,c.

Now, we proceed to determine the speed c.

To do this, we will, among others, prove that ∀ ∈ [ c0
2
, 2c0] uniform bounds for the

minizizers uL,c, afterwards for a fixed c0 we will prove that the function: c→ Jc(uL,c0)
is continuous.

Proposition 2.3: Let L > 1 and c0 >, both fixed. Then, there exists a con-
stant k > 0 such that for every c ∈ [ c0

2
, 2c0] the following results are true:

(i) |uL,c(x)| ≤ k, for every x ∈ R,
(ii) The minimizers uL,c are equicontinuous on bounded intervals for c ∈ [ c0

2
, 2c0],

(iii) |u′L,c(x)| ≤ k, for every x ∈ R \ {−L,+L},
(iv) |uL,c(x)− a+| ≤ ke−cx, |W (uL,c(x))| ≤ ke−2cx and |u′L,c(x)| ≤ ke−cx ∀x > L.

Proof:

The first two statements((i)-(ii)) can easily be proved by proposition 2.1
To prove the third one(iii), we set: vL,c(x) := ecx/2uL,c(x). After a few calculations,
we have that ∀x ∈ R \ [−L − ε, L + ε] (for ε > 0): v′′L,c(x) = ecx/2Wu(uL,c(x)) +

(c2/4)uL,c(x) and utilizing the first two statements we deduce that: |v′L,c| ≤ Mecx/2

so |u′L,c| ≤M , for a positive constant M.

Now, we note that: d
dx

(W (uL,c(x))− 1
2
|u′L,c(x)|2) = c|u′L,c|2 ≥ 0,
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Thus, the function W (uL,c(x))− 1
2
|u′L,c(x)|2) is non-decreasing, so the one sided

limits at -L, +L exist. Integrating d
dx

(W (uL,c(x))− 1
2
|u′L,c(x)|2) = c|u′L,c|2 ≥ 0 we

obtain a uniform bound of |u′L,c| and again, utilizing the monotonicity we get the
uniform bound of u′L,c in R \ {−L,+L}.

To prove the last statement(iv), we need to notice Hypotheses H4 implies
ρ′′ + cρ′ ≥ 0 for x > , where ρ = ρL,c(x) := |uL,c(x)− a+| and utilizing (iii)
we obtain ρ′L,c(x) ≤Me−cx, for a positive constant M.

Integrating the last equation, we obtain |uL,c(x)− a+| ≤ ke−cx/2.

Now integrating equation 2.1 over the interval [x,+∞), for arbitrary x > L we
get the second inequality.
As for the third inequality, we introduce the function: sL,c(x) := ecx/2(uL,c− a+),
and deduce that s′L,c ≤Me−cx/2 ∀ x > L. Now, after a few calculations we can
easily prove: |u′L,c| ≤ ke−cx.

Corollary 2.2: For every L > 1 and c0 > 1 both fixed. The function: c→.
Jc(uL,c0) is continuous in the interval (c0/2, 2c0).

The proof of this result is conducted by utilizing the previous estimates and
applying the dominated convergence theorem (cf. Alikakos and Katzourakis [2]).

Corollary 2.3: Consider a fixed L>1, and a sequence cn that converges to c∗

and ∀n cn ∈ (c0/2, 2c0). If Jcn(uL,cn) ≤ 0 ∀n, then Jc∗(uL,c∗) ≤ 0.

Proof: According to the previous proposition, the sequences uL,cn and u′L,ce
cnx/2

are uniformly bounded in Rm and L2(R,Rm) respectively, with the first one being
also equicontinuous on compact intervals.

By the Ascoli-Arzela theorem and a diagonal argument, we can take a subse
quence of uL,cn that converges to u∗L,c on compact intervals. There is also a

subsequence of u′L,cne
cnx/2 that ⇀ v∗ weakly in L2, for a v∗ ∈ L2

loc(R,Rm). By
the lower semicontinuity of the L2 norm we have that:∫

R |v
∗(x)|2ec∗xdx ≤ lim inf

∫
R |u

′
n(x)|2ecnxdx

It can also be proved that (u∗)′ = v∗.
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Finally, thanks to the second inequality of (iv) of the previous proposition, we
can use the dominated convergence theorem and conclude that:∫

RW (u∗(x))ec
∗xdx = limn′

∫
RW (un′(x))ec

∗xdx

Where n′ denotes the subsequence. It is clear now that, Jc∗(uL,c∗) ≤ 0.

The proof of Corollary 2.3 is complete.

Now we will prove the existence of a unique c>0 such that: Jc(uL,c) = infAL Jc∗ =
0, ∀L > Λ.

Firstly, we will use a definition for the set of speeds established by Steffen Heinze,
who introduced this on his Ph.D thesis in Heidelberg in 1989:

C := {c > 0 : ∃L ≥ 1 : Jc(uL,c) < 0}.

The following results have been proved in [2]

Lemma 2.7: The set C’ is non-empty, open has
a supremum such that:

supC ≤
√

2W−(a−)(d−0 )−1,

where d−0 = dist(C−0 , r0/2).

Proof of Lemma 2.7:

We will prove the lemma using the following set of “speeds”:

C ′ = {c : ∃ v ∈ AL: Jc(v) < 0}

Firstly, we prove that C’ is open, then we prove that is upper bounded, and finally
we will prove the desired estimate.

Let c0 in C, then Jc0(uL,c0) < 0 and by corollary 2.2 we have that for c close to
c0: Jc(uL,c0) < 0, so C is open. Now, for the affine function introduced in
proposition 2.1 we have that: uaff ∈ ∩L≥1AL. We introduce now the C1 function:

f : (0,+∞)→ R, f(c) := e−c
(
− W−(a−)

c
+ e2cJ+

0 (uaff )
)

,
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where:

J+
0 (uaff ) :=

∫
R(
|u̇aff |2

2
+W+(uaff ))dx.

We also have that: limc→0 f(c) = −∞, f’(c) > 0, limc→∞ f(c) = +∞ and after a
few calculations, one can check that:

f(c) ≥ Jc(uaff )

therefore, a unique c0 such that f(c0) = 0. So, (0, c0) ⊆ C (and C 6= ∅).

Since uL is a minimizer then ∀ v ∈ C and by lemma 2.5 the following inequalities
hold:

0 > Jc(v) ≥ Jc(uL) ≥
(
− W−(a−)

c
+

cd2
a

2(1− e−c(λ+L−λLa− ))

)
which implies that: 0 ≥ c2d2

a − 2W−(a−).

Finally, by passing to the limit a→ 0 we conclude the desired bound.

Lemma 2.8: If c∗ = supC, then Jc∗(uL,c∗) = 0 ∀L ≥ Λ.

Proof of Lemma 2.8:

First,we get a sequence cm ⊂ C ′ such that cm → c∗ as m→ +∞. Now, by the
definition of C we have that there exists a sequence Lm such that:

Jcm(uLm,cm) < 0

By the L-independent bound proved in corollary 2.1 we have:

λ+
Lm
− λ−Lm ≤ Λ

Notice that these happen for every m ∈ N. Now, observe that λ+
Lm
≤ Lm by

definition. If, λ+
Lm

< Lm then by translating uL to the right, uLm,cm(x)→
uLm,cm(x− ε) (for ε positive), we reach to a contradiction since uL,c is the
minimizers and:

Jcm(uLm,cm(x)) = ecmεJc(uLm,cm(x− ε)) < Jcm(uLm,cm(x− ε)) < 0
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So, we must have λ+
Lm

= Lm. Now, since uLm ∈ AL ∀L ≥ Lm, we can choose Lm
such that Lm ≥ Λ. Translating uLm,cm by +Lm (uLm,cm(x)→ uLm,cm(x+ Lm))
we get that the last one is in AL and since uL,cm is a minimizer in AΛ we have
the inequality:

Jcm(uΛ,cm) ≤ Jcm(uLm,cm(: +Lm)) = e−cmΛmJc∗(uLm,cm).

.
Finally, taking the limit m→ +∞ we obtain the inequality:

Jcm(uΛ,cm) ≤ 0

and since C’ is an open and bounded subset of R we have that c := supC ′ /∈ C ′,
thus :

Jcm(uL,cm) = 0, ∀L ≥ Λ.

Proof of existence of solution:

Let an L > Λ. We have that Jc∗(uL,c∗) = 0, uL,c∗ cannot touch both because:
|λ+
L−λ

−
L | < Λ. If it touches one cylinder, we can translate the solution by δ small

enough in order not to avoid the rim. Therefore uL,c∗ is still a minimizer, and
thus it satisfies the Euler-Lagrange equation u′′ −Wu(u) = −c∗u′ along with the
asymptotic limits(proposition 2.2). The existence is proved.

Proposition 2.4:(Uniqueness of the speed)

There exists precisely one speed c∗ such that (uL,c∗ , c
∗) solves (1).

Proof:

Let (u,c) be a solution to the equation: u′′ −Wu(u) = −cu′, after a few
calculations we obtain:

|u′|2
2

+W (u) = e−cx
(
ecx

c

(
W (u)− |u̇|

2

2

))′
Now, let (u1, c

∗
1),(u2, c

∗
2) solutions to (2.1), with u1, u2 minimizing and 0 ≤ c1 < c2

without loss of generality. In the identity above if we replace c with c2, u with u2

and multiply by ec1x we have after a few calculations th identity:

c∗1Jc∗1(u2, (−t, t)) = (c∗1 − c∗2)
∫ t
−t |u̇|

2ec
∗
1xdx+ e−c

∗
1x
[
ec
∗
1x

c

(
W (u2)− |u̇2|

2

2

)]t
−t
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Letting t→ +∞ and taking into account the estimates in (iii) and (iv) of
proposition 2.3, the fact that: Jc∗2(u2) = 0 and c∗1 < c∗2 we finally obtain:

c∗1Jc∗1(u2) = (c∗1 − c∗2)
∫
R |u

′
2|2ec

∗
1xdx < 0

which is a contradiction due to the non-negativity of c∗1Jc∗1(u2).

The uniqueness of c is now proved.

The variational characterization:

Note that: C ′′ = {c : ∃ v ∈ A: Jc(v) < 0} = C = {c > 0 : ∃L ≥ 1 : Jc(uL,c) < 0}.
So c∗ = supC = supC ′ and thus, c∗ = supc>0{infA Jc(v) < 0}. We have that:
0 = Jc∗(u) = minA∗L Jc∗ ≥ infA Jc∗(v) ≥ 0, for L∗ ≥ Λ + δ (for δ > 0).

Lastly, we multiply the equation (1) and integrate all over R and obtain

c∗ = −W (a−)∫
R |u̇|2dx

.

The theorem is now proved.

Remark: In this thesis, we noticed that Hypotheses H4(ii) can be deduced by
the strict convexity assumption mentioned in hypotheses H2. Indeed, for a fixed
ξ ∈ Sm−1 considering the twice continuously differentiable f(r) = W (a−+ rξ) on
[0, rξ), where: rξ = sup{r > 0 : a− + rξ ∈ C−0 } we notice that:

f ′(r) = f ′(r)− f ′(0) =
∫ r

0
ξTD2W (a−)ξdx > 0

since f ′(0) = 0 and D2W (a−) is positive definite.
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Chapter 3

Heteroclinic, Homoclinic and
Periodic orbits as critical points of
the Action Functional

In this section, we consider the existence of bounded non trivial minimizers of W. Af-
ter presenting some requirements that need to be satisfied and proving them, we show
the existence of a heteroclinic, homoclinic and periodic orbits considering respective
hypothesis on W and also prove asymptotic convergence of these non-periodic orbits.

This part of this thesis follows [3].

The system we are interested to is: u′′(x) = ∇W (u(x)) (1)

First we introduce respective results happening in the scalar O.D.E. case and also
exist in literature:

Let W be the potential C2 function, such that W > 0 in (a−, a+) and W = 0 on a−

and a+. Then the following statements are true.

(1) If a− and a+ are critical points of W, then there exists a C2 function:
u : R→ (a−, a+) that solves u′′ = W ′(u) and satisfies: limx→±∞ u(x) = a±.
This is the case of the heteroclinic connection.
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(2) If W ′(a−) = 0 and Wa+ 6= 0 the there exists a unique even solution
u : R→ (a−, a+] of u′′ = W ′(u) such that limx→±∞ u(x) = a− and u(0) = a+.
This is the homoclinic connection case.

(3) If W ′(a±) 6= 0 then there exists a periodic solution u : R→ [a−, a+] such that
u(0) = a−, u(T/2) = a+ and for every x ∈ R we have: u(x+ T ) = u(x),
u(x+ T/2) = u(−x+ T/2), for some T > 0.

We will prove the above results in the vector case by proving an abstract theo-
rem assuming, that θΩ is partitioned into two disjoint compact sets A±, where Ω is
a connected component of the set: {W > 0} and then particularizing it in the cases
when: ∇W (A±) = 0,∇W (A−) = 0 and ∇W (A+) 6= 0 and ∇W (A±) 6= 0 respec-
tively. After that, we will give some additional hypotheses on W that are sufficient
to give us asymptotic convergence.
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3.1 Conditions for existence of bounded local minimizers and
preliminaries

Assume W ∈ C2(R,Rm) a potential not necessarily non-negative. Let Ω ( Rm a
conencted component of the set {u ∈ Rm : W (u) > 0}. We can see that W = 0 on
∂Ω and consider the sets:

∂Ω0 := {u ∈ ∂Ω : ∇W (u) = 0}
∂Ω6= := {u ∈ ∂Ω : ∇W (u) 6= 0}
Z := {u ∈ Rm : W (u) = 0}

Heteroclinic orbit: Assume A± are two closed and disjoint subsets of ∂Ω0, we say
that a bounded solution u ∈ C2(R,Ω)to the system (1) such that d(u(x), A±) → 0
when x→ ±∞ is an heteroclinic orbit connecting A±.

Homoclinic orbit: Assume A± are two closed and disjoint subsets of ∂Ω such
that A− ⊆ ∂Ω0 and A+ ⊆ ∂Ω6=, we say that a bounded solution u ∈ C2(R,Ω)to the
system (1) such that:
(1) d(u(x), A±)→ 0 when x→ ±∞
(2) u(0) ∈ ∂Ω 6=
(3) d(u(x), A−)→ 0 as x → ±∞
is an homoclinic orbit.

Periodic Orbit Let a± points in ∂Ω6=, a solution u ∈ C2(R,Ω) of the system (1)
such that:
(1) u(0) = a−, u(T/2) = a+

(2) ∀x ∈ R : u(x+ T ) = u(x), u(x+ T/2) = u(−x+ T/2), for some T > 0.
(3) u(x) ∈ Ω ⇐⇒ x 6= k T

2
, k ∈ Z

By theory of O.D.E. we know that the Hamiltonian of the system u′′(x)−Wu(u(x))
H = 1

2
|u′(x)|2 −W (u(x)) is constant along solutions. For homoclinic and periodic

orbits I can easily be proved that: H = 0 since u′(0) = 0, W (u(0)) = 0 As for
heteroclinic orbits, the equipartition relation (H = 0) is proved as follows:

Equipartition of energy: Let u ∈ C2(R,Ω) be a bounded solution to the sys-
tem (1) such that: d(u(x), ∂Ω0)→ 0 as x→ −∞. Then H = 0.

Proof of equipartition: We immediately have that H ≥ 0 since W (u(x)) → 0 as
x→ −∞. Since, W (u(x))→ 0 as x→ −∞, we deduce that H ≥ 0.
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Now, if H > 0, we can see that for the function f(x) := |u(x)|2 the following state-
ment is true:

f ′′(x) = 2|u′(x)|2 + 2u(x)∇W (u(x)) = 4H + 4W (u(x)) + 2u(x)∇W (u(x))

We have by assumption ∇W (u(x))→ 0 when x→ −∞ we deduce that f ′′(x) ≥ 2H
for x < a, with a negative and |a| � 1. What we get now is that f ′(x) → −∞ and
f(x)→ +∞ as x→ −∞ which is a contradiction.

The equipartition of energy is proved.
Note that u(x) ∈ Ω∪∂Ω6= if the solution is not constant, since that if there was an x0

such that W (u(x0)) = 0 and ∇W (u(x0)) = 0 then u′(x0) = 0 and by the uniqueness
of O.D.E. follows that u(x) = u(x0).

Note also, that the previous result does not remain true if we assume only that:

limx→−∞ d(u(x), ∂Ω)→ 0

cf. remark 3 from paragraph 2 in [3] .

It is also easy to see that of W ≥ 0, then every solution u to the system (1) such
that JR(u) <∞ satisfies H = 0:

JR(u) =
∫
R(2W (u(x)) +H)dx =

∫
R(|u′(x)|2 −H)dx <∞ ⇐⇒ H = 0

We now establish some propositions as sufficient conditions for the existence of
bounded local minimizers.

Proposition 3.1: If there exists a local minimizer u ∈ L∞(R,Rm) for system (1),
then the potential W has a global minimum which is supposed to be 0 without loss of
generality. In addition, JR(u) <∞, lim|x|→∞W (u(x)) = 0 and lim|x|→∞ d(u(x), Z) =
0, with Z being the set of zeros of W.

Proof of proposition 3.1 : First, we notice that there is a sequence xn such that
xn → +∞ as n→ +∞ such that u(xn)→ b ∈ Rm, otherwise, u would be unbounded.
Suppose by contradiction that W does not have a global minimum, then there exists
an a ∈ R and an ε > 0 such that W (a) + ε ≤ min{W (υ) : |υ| ≤ ||u||L∞(R,Rm)}. Now
for n large enough we define the sequence of functions:
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υn(x) = ((1 + x0 − x)u(x0) + (x− x0))aχ[x0,x0+1] + aχ[x0+1,xn−1] + ((xn − x)a

+(x− xn + 1)u(xn))χ[xn−1,xn]

Since u is bounded by the hypotheses, and the intervals when u in engaged in the
integral of action have finite measure, we deduce that there is an M > 0 independent
of n such that:

J[x0,xn](υn) ≤ W (a)(xn − x0 − 2) +M

also:

J[x0,xn](u) ≥ (W (a) + ε)(xn − x0)

Now, since u(x) and υn(x) coincide at x0 and xn we can extend υn so that υn = u(x)
∀x ∈ R \ ((−∞, x0] ∪ [xn,+∞)) and by the minimality of u we can deduce the
following inequality for the integral of Action in [x0, xn]:

(W (a) + ε)(xn − x0) ≤ W (a)(xn − x0 − 2) +M

and a straightforward result is that: ε(xn−x0) ≤ −2W (a) +M and we have reached
a contradiction because this is impossible for n large enough.
So, the W has indeed a global minimum. We assume, without loss of generality that
minRmW (x) = 0

To prove the remaining statements of the proposition, we consider the sequence
of functions defined above with a ∈ R such that W (a) = minRmW (x) = 0
The sequence J[x0,xn](u(x)) is uniformly bounded because ∀n ∈ N is bounded by
J[x0,xn](υn) < M , so JR(u(x)) < ∞. By similar arguments we deduce the same re-
sult in (−∞, x0]. It is straightforward now that JR(u(x)) < ∞. Moreover, u(x) is
1
2
−Holder continuous,(and so uniformly continuous):

∀y ≥ x we have: |u(x)− u(y)| =
∫ y
x
|u̇|dx ≤

√∫ y
x
|u̇|2dx

√∫ y
x
dx ≤√∫ y

x
(|u̇|2 + 2W (u(x)))dx

√
|y − x| ≤

√
2JR(u)

√
|y − x|

Lastly, if W (u(x)) or d(u(x), Z) does not converge to 0 as |x| → ∞ then a sequence
xn → +∞ or −∞ and a b ∈ R such that u(x) → b and W (b) > 0. Due to the
uniform continuity of u we have that there exists an N > 0 and a δ > 0 such that

∀n > N and ∀x ∈ [xn − δ, xn+δ]: W (u(x)) ≥ W (b)/2

.
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Therefore: ∀n > N J[xn−δ,xn+δ](u) ≥ δW (u(x)).

and now, for n large enough, and passing to a subsequence if necessary we can see
that the intervals [xn − δ, xn + δ] are disjoint, and that contradicts JR(u) < ∞ and
the proof is complete.

Now, assuming that 0 is the global minimum of W. We define the equivalence
relation u ∼ υ on Z = u ∈ Rm : W (u) = 0, if and only if there exists a curve
γ ∈ W 1,2([a, b]),Rm) such that γ([a, b]) ∈ Z, and γ(a) = u and γ(b) = υ.

Proposition 3.2: Let W be a potential such that minRmW = 0. If u ∈ L∞(R,Rm)
is a local minimizer for system (1) and if there exists two sequences xn → −∞ and
yn → +∞ such that u(xn)→ a− and u(yn)→ a+, with a± ∈ Z and being connected
by a path that belongs to Z, then u is constant.

Proof:

Assume that γ ∈ W 1,2([0, l],Rm) be a path connecting a− = γ(0) and a+ = γ(l)
in Z.
For n large enough we define the sequence of functions:

υn(x) = ((1 + xn − x)u(xn) + (x− xn)a−)χ[xn,xn+1] + γ
( l(x−xn−1)
yn−xn−2

)
χ[xn+1,yn−1]+

((yn − x)a+ + (x− yn + 1)u(yn))χ[yn−1,xn]

After a few computations we get that:

J[xn,yn](υn) = o(1) + l2

2(yn−xn−2)2

∫ yn−1

xn+1
|γ′( l(x−xn−1)

yn−xn−2
)|2dx =

o(1) + l
2(yn−xn−2)

∫ yn−1

xn+1
|γ′(y)|2dy = o(1)

By constraction of the sequences we have: u(xn) = υn(xn) and u(yn) = υn(yn). As
in proposition 3.1 we deduce by the minimality of u that J[xn,yn](u) = o(1). Letting
n go to infity we deduce that JR(u) = 0, thus, u is constant.

A notable case, is the Ginzburg-Landau potential W (u) = 1
4
(|u|2 − 1)2, where for

m > 2 the zero level set is the unit sphere which is path-connected. Thus, by the
previous proposition, the only case where we have a non-trivial local minimizer is
the case where n = 1, otherwise, the minimizers are constant. To be more precise,
the solution u : R → Rm, u(x) = (tanh(x/

√
2, 0, ..., 0) connects (±1, 0, ..., 0) and is

minimal only when m = 1.
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Corollary 3.1: If W is a potential such that minRmW = 0 then every nontriv-
ial, bounded, local minimizer is an heteroclinic connection.

Proof:

Let u be a nontrivial, bounded, local minimizer. By the equipartition relation, we
know that u takes its values in a connected component Ω of the set {W > 0}. Let
A± be the set of limit points of u at ±∞, these are compact because u is bounded.
By proposition 3.1 we have: A± ⊆ ∂Ω and because u is non-constant we have that
A± are disjoint. Lastly, d(u(x), A±)→ 0 at ±∞, therefore, u is an heteroclinic con-
nection.

Note that the converse is not necessarily true. We will constract now a non-
negative potential H ∈ C∞(R2,R) which vanishes only at the points a±, and being
such that the matrix D2H(a±) is positive definite.
Consider the Ginzburg-Landau potential W (u) = 1

4
(|u|2−1)2 with u ∈ R2 ∼ C. After

a few calculation we conclude that the Action of the solution u(x) = (tanh(x/
√

2), 0)
in the interval [−R,R] is:

J[−R,R](u) =
√

2
[
|u(R)| − |(u(R))|3

3

]
→ 2

√
2

3
as R→ +∞

Now, defining the map: υ(x) = −u(R)ei
π(x+R)

2R for x ∈ [−R,R], we get that: υ(±R) =
u(±R) by construction and

J[−R,R] = 2RW (W (u(R))) + |u(R)|2 π2

4R
→ 0 as R→ +∞

Thus, for R large enough we have that J[−R,R](u) > J[−R,R](υ). Now, we have to
modify the potential W in order to make the zero level set not connected, since
otherwise the result would be trivial by the previous proposition.
For a fixed R large enough and an ε > 0 small enough we take a function φ(t) ∈
Ck(R, [0,+∞)) where k ∈ N and k ≥ 2 that satisfies:

φ(t) = 0 if t ≤ |u(R)|2 + ε and φ(t) = 1 if 1− ε ≤ t.

with ε < 1−|u(R)|2
2

and positive.

Now, we set the potential function: H(u1, u2) = W (u) + u2
2φ(|u|2) that satisfies

H(u1, 0) = W (u1, 0) and ∂H
∂u2

(u1, 0) = 0.
Finally, after a few calculations we conclude that:

u′′ = ∇H(u)

The proof is complete.
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The Main Theorem:

We will present now a central theorem, results about Heteroclinic, Homoclinic and
Periodic Orbits are obtained, depending on what hypothesis hold on A±.

Firstly, assume that:

H1 : The potential W ∈ C2(Rm, R) is such that ∂Ω is partitioned into two dis-
joint compact sets A±. Additionally Rm \ Ω is partitioned into two disjoint closed
sets F± with ∂F± = A±.

H2 : lim infu∈ΩW (u) > 0, if Ω is not bounded.

*The C2 smoothness of W is only needed in the proof of Homoclinic and Hete-
roclinic Orbits connecting portions of A± asymptotically, while in the proof of this
theorem we only need W to be continuous and in some cases of other results we need
it to be C1.

Theorem 3.1: Assume W : Rm → R satisfies H1 and H2. Then JR(u) admits
a minimizers u ∈ A such that:

JR(u) = minu∈A JR(u) <∞

limx→±∞ d(u(x), A±) = 0

where d denotes the Euclidean distance and:

A = {u ∈ W 1,2
loc (R,Ω) : d(u(x), A−) ≤ q ∀x ≤ x−u and d(u(x), A+) ≤ u ∀x ≥ x+

u }.

Proof: We first notice that the affine function:

u0(x) = a−χ(∞,0] + (a− + x(a+ − a−))χ[0,1] + a+χ[1,+∞)

has finite Action: JR(u0) < +∞, thus JR(u(x)) ≤ JR(u0) < ∞ since u0(x) is a
minimizer and:

infAb JR(u) = infA JR(u) < +∞

where:

Ab = A ∩ {JR(u) ≤ JR(u)}
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For A∗ = A+orA− and q, q′ such that: 0 < q′ < q/2 < q < q, we define U q′
q the set of

maps ∈ W 1,2 that satisfy:

d(u(a), A∗) ≥ q and d(u(b), A∗) ≤ q′.

We also define: υu : [β − 1, β]→ Ω setting: υu(x) = a∗ + (x− β + 1)(u(β)− a∗)

with a∗ ∈ A∗ such that d(u(β), A∗) = d(u(β), a∗)

Lemma 3.1: For each q ∈ (0, u] there exists q′ ∈ (0, q/2) such that:

J[a,b](u) ≥ J[β−1,β](υu)

for u ∈ U q′
q for A∗ = A±.

Proof: We define:

f(q) = min{W (u) : u ∈ Ω, q ≤ d(u,A∗) ≥ q}, q ∈ (0, q]

and

F (q) = max{W (u) : u ∈ Ω, d(u,A∗) ≥ q}, q ∈ (0, q]

and obtain:

J[a,b](u) ≥
∫ β
a

√
2W (u)|u̇|dx ≥

√
2φ(q/2)(q/2)

Jβ−1,β(υu) ≤ F (q′) + 1
2
|υ(β)− a∗|2 ≤ F (q′) + 1

2
(q′)2

Thus, for q ∈ (0, q] and q′ ∈ (0, q/2) small enough we obtain the inequality:

F (q′) + 1
2
(q′)2 <

√
2φ(q/2)(q/2)

We will utilize a minimizing sequence on the functional of Action and this lemma,
together with some other results that will be proved straightaway, give us information
about how the sequence will be chosen. This will give us the information we need to
prove the existence of a “suitable” minimizer.
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These can be understood by noticing:

1) For (x1, x2) ⊂ (∞, x−u ) and x2 − x1 ≥ 2JR(u0)
f(q′)

the function d(u(x), A−) cannot

be greater or equal than q′ for all x ∈ (x1, x2), because if it was we would reach a
contradiction:

φ(q′)(x2 − x1) ≤ J(x1,x2)(u) ≤ JR(u0)

A similar result holds also for A+ in (x1, x2) ⊂ (x+
u ,+∞) with x2 − x1 ≥ 2JR(u0)

f(q′)

2) For every u ∈ Ab there exists a function ū and an M > 0 such that

||ū|| ≤M
JR(ū) ≤ JR(u)

This is proved by noticing by the previous result that there exists an x0 ∈ (−∞, x−u )
such that d(u(x0), A−) < q′. Moreover, due to the finite Action of u we know that
for every ε > 0 there exist an xε such that d(u(xε), A

−) < ε. Let q′ be the number
given by lemma 3.1.(we can, indeed choose it as small as we want or decrease it).
Thus, there exists an:

x′u = max{x : d(u(x0), A−) ≤ q′}

Assume that there exists an a ∈ (−∞, x′u) such that:

d(u(a), A−) = q

and defining the function:

ū(x) = a−χ(−∞,x−u−1] + υu(x)χ[x−u−1,x−u ] + u(x)χ[x−u ,+∞)

where υu : [x−u − 1, x−u ]→ Ω is the function defined just before Lemma 3.1.

It follows that:

|ū(x)− a−| ≤ q′ < q for every x ∈ (−∞, x−u ]

J(∞,x−u )(ū) = J(x−u−1,x−u )(υu) ≤ J[a,x−u ](u) ≤ J(−∞,x−u ](u)

Similarly, we can prove that there exists an x+
u such that:

x+
u = min{x : d(u(x), A+) ≤ q′}.
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By this way, one can also conclude that u can be constructed such that:

d(u(x), A+) ≤ q for every x ∈ [x,+∞)

Now, from w = min{W (u) : u ∈ Ω, d(u, ∂Ω) ≥ q′} and by the definition of x±u :

w(x+
u − x−u ) ≤ J(x−u ,x

+
u )(u) ≤ JR(u0)

and now for x ∈ [x−u , x
+
u ] we obtain:

|ū(x)− ū(x−u )| = |u(x)− u(x−u )| = (
√
x− x−u )

∫ x
x−u
|u̇|2dx ≤

√
( 2
w

)JR(u0) < +∞

and the boundness of u(x) has been proved.

Note that, if d(u(x), A−) < q ∀x ∈ (−∞, x−) then we can get analogous results, for
example a uniform bound of (x+

u − x−u ) with w = min{W (u) : u ∈ Ω, d(u, ∂Ω) ≥ q}.
Then, for u = u the rest of the results are proven the same way and the respective
inequality is trivial.

Now, for each u ∈ Ab we have:

limx→±∞ d(u(x), A±) = 0

This can easily be proved by noticing that if there was a sequence xn → +∞ and a
q0 ∈ (0, q) such that d(u(xn), A+) ≥ q0 for every n. Now, u is uniformly continuous
since it belongs to Sb, so, there exists a δ > 0 such that:

d(u(x), A+) ≥ q0
2

for every x ∈ (xn − δ, xn + δ) for every n > 0 large enough with δ > 0 independent
of n.
Therefore, we obtain:

J(xn−δ,xn+δ)(u) ≥ 2δf( q0
2

)

for every n large enough. Considering a subsequence of necessary we can assume that
the intervals (xn − δ, xn+δ) ∀n inN are disjoint are contradict and that contradicts
JR(u) < +∞.

Now, we note that:

|u(x2)− u(x1)| = (
√
x2 − x1)

∫ x2
x1
|u̇|2dx ≤

√
( 2
w

)JR(u0)

holds for every u ∈ Ab, so Ab is an equicontinuous set of functions.
Thus, if un ⊂ Ab is a minimizing sequence then we can also assume that uk ⊂
L∞(R,Rm) is uniformly bounded, i.e. equibounded.
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By the translation invariance of JR(u) we can assume that:

x−un = 0, x+
un ≤

JR(u0)
w

for every n ∈ N

Considering a subsequence if necessary, and still call it un, we have that:

1) un � u uniformly on compact intervals, with u being continuous. This fol-
lows from the embedding:

i)

||u||L2([−K,K],Rm) ≤
√

2K||u||C([−K,K])

in L2
loc(R,Rm) for every k ∈ N, this follows from the Ascoli-Arzela theorem and a

diagonal argument on it.

ii) u̇k converges weakly in L2(R,Rm) to some υ ∈ L2(R,Rm), since the uniform
bound: ∫

R |u̇k|
2dx ≤ 2JR(u0).

By the fact that the derivative operator is weakly closed, we deduce that u̇ = υ,
thus, u ∈ W 1,2

loc (R,Rm).

By the lower semicontinuity of L2 norm we get:

lim inf
∫
R |u̇k|

2dx ≥
∫
R |u̇|

2dx

also, uk converges pointwise to u, so we can apply the Fatou’s lemma to the sequence
of non-negative functions:

lim inf
∫
RW (uk)dx ≥

∫
RW (u)dx

Finally, by adding these inequalities we obtain:

JR(u) ≤ lim inf
∫
R
|u̇k|

2

2
dx+ lim inf

∫
RW (uk)dx ≤ lim JR(uk) = infAb JR(u) ≤ JR(u0)

Therefore, u is a minimizer belonging to Ab that satisfies the “boundary” conditions.
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Heteroclinic, Homoclinic and Periodic orbits

Now, taking into account the previous theorem, we will consider some additional
conditions on ∂Ω, to find out some cases in which heteroclinic, homoclinic and peri-
odic orbits exist.

First, we present a basic proposition that states(for W continuously differentiable)
the Euler-Lagrange equation is satisfied for an interval where W (u(x)) > 0

Proposition 3.3. There exists L− and L+ with: −∞ < L− < 0 < L+ < +∞ such
that: (L−, L+) = x ∈ R : u(x) ∈ Ω and if L−(respectively L+) ∈ R then ∀ x ≤ L− we
have u(x) = u(L−) ∈ A−, with a respective result for x ≥ L+ ∈ A+. Moreover, on
(L−, L+) the minimizer u(from the previous theorem) satisties the Euler-Lagrange
equation:

u′′(x) = ∇W (u(x))

and the equipartition relation:

|u′|2
2

= W (u(x)).

By the translation invariance of J(u(x)), we can assume without loss of generality
that u(0) ∈ Ω. Also, we define:

L− = inf{x < 0 : u((x, 0]) ⊂ Ω}

L+ = sup{x > 0 : u([0, x)) ⊂ Ω}

Taking into account proposition 3.2, since u is a minimizer we deduce that u is con-
stant on the intervals (−∞, L−], [L+,+∞), so it solves the Euler-Lagrange equation
on them, and by its minimality we have that u solves the Euler-Lagrange also in
(L−, L+).
As for the Hamiltonian:

H := 1
2
|u′|2 −W (u(x))

we have that if L+ = +∞ and/or L− = −∞ then H = 0. This can be seen by
noticing:

+∞ > J(L−,L+)(u) =
∫ L+

L−
(1

2
|u′|2 +W (u(x)))dx =

∫ L+

L−
(H + 2W (u(x)))dx,

if (L+ − L−) = +∞, the boundness of J(u) above holds if H = 0.
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Now, for L+ < +∞ and L− > −∞ we define the functions:

υk = u(x)χ(−∞,0] + u(x/k)χ[0,+∞)

with k > 1. We calculate:

J(0,+∞)(υ) =
∫ kL+

0
( 1

2k2
|u̇(x/k)|2 +W (u(x/k)))dx =

∫ L+

0
( 1

2k
|u̇(t)|2 + kW (u(t)))dt =∫ L+

0
(H
k

+ (k
2+1
2

)W (u(t)))dt = HL+

k
+
∫ L+

0
(k

2+1
2

)W (u(t)))dt.

We note that since u is a local minimizer and coincides with υ for x ≤ 0 the folllowing
inequality holds:

J(0,+∞)(u) ≤ J(0,+∞)(υ)⇒ HL+ ≤ (k − 1)
∫ L+

0
W (u(x))dx

If we let k → 1 we get that H ≤ 0.

We also see, that limx→L±W (u(x)) = 0 implies H ≥ 0. Therefore, H = 0.

From now on, the proofs of most Theorems, corollaries and propositions will not
be explicitly written but descriptive. However, all of them can be found in [3](A-S).

Now, we assume that the one of the following conditions holds for A∗ = A+ or
A−:

He: ∇W (u) = 0, ∀u ∈ A∗
Ho: ∇W (u) 6= 0, ∀u ∈ A∗

Depending on which one of these conditions holds on A− or A+ we will distinguish
the cases where an heteroclinic, homoclinic or periodic orbit exists.

Theorem 3.2(Heteroclinic orbit): If He holds on both A+, A−, and W is C2 smooth,
then the minimizer u constructed in Theorem 3.1 is an heteroclinic connection that
solves the Euler-Lagrange on R.
Moreover, L± = ±∞ and if W ≥ 0, then u is also a local minimizer.

Proof:

The fact that L± = ±∞ is proved by noting that since the equipartition of en-
ergy holds, the O.D.E.: u′′(x) = ∇W (u(x)) equipped with the facts: u′(L+) = 0,
∇W (u(x)) = 0 has a solution u(x) = u(L+) which is unique(the same holds if we
replace L+ with L−).
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Now, suppose that W ≥ 0, and let z ∈ W 1,2
loc (R,Rm) a map such that: z(x) = u(x)

∀x ∈ R \ [a, b] for some a < b. If z(x) ∈ Ω ∀x ∈ R the we immediately have by
the definition of minimizer that JR(u(x)) = JR(z(x)). In any other case,
suppose that there exists an s ∈ R such that z(s) /∈ Ω. Assume without loss of
generality that z(s) ∈ F− and set: s− = max{s ∈ R : z(s) ∈ F−}. Now, if a
t > s− such that z(t) ∈ F+ exists, we set: s+ = min{t > s− : z(t) ∈ F+}, and
since s− < s+, z(s±) ∈ ∂F±, z([s−, s+]) = Ω we immediately have that:
JR(u) ≤ J[s−,s+](z) ≤ JR(z), and the last inequality remains true even when
s− = −∞ and/or s+ = +∞. Finally, since z ∈ A was arbitrary, we get that u is
a local minimizer.

The proof of the Theorem is complete.

Note that, for Z = {a1, ..., ak}, with k being a positive integer greater than 1,
if we set A− = ai for any i ∈ {1, ...k}, and A+ = Z \ {ai}, then from the previous
theorem we can easily deduce that there exists an aj ∈ Z \ {ai} and a solution
to the Euler-Lagrange that connects these two.

Theorem 3.3(Homoclinic Orbit) If He and Ho hold on A− and A+ respectively,
then there exists an even function υ such that: υ is a homoclinic to A− connection
solving the Euler-Lagrange on R with υ(x) ∈ Ω ∀ x 6= 0 and υ(x) ∈ A+ iff x = 0.

Moreover, it minimizes the Action functional in the class:

AHo = {u ∈ W 1,2
loc (R,Ω) : d(u(x), A−) ≤ q for |x| � 1, and u(0) ∈ A−}

The proof of Theorem 3.3 states that if L+ = +∞, then since the equipartition
relation holds, for x > 0 large enough we would have that there exists an ε > 0
such that:

d2W (u)
dx2

(x) = |∇W (u)|2 +D2W (u(x))(u′, u′) ≥ ε > 0

.
Therefore, W (u(x))→ +∞ as x→ +∞ which is a contradiction, so L+ must be
finite. Now, defining the function:

υ(x) = u(x+ L+)χ(−∞,0] + u(−x+ L+)χ[0,+∞)

It is easy to see that υ ∈ AHo .
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The derivative of υ exists and vanishes due to the equipartition relation and by
symmetry we have that υ twice continuously differentiable and satisfies the Euler-
Lagrange on all R, minimizes the Action in the class AHo and also: JR(υ) = 2JR(υ).

Theorem 3.4(Periodic Orbit): If Ho holds on A±, then there exists an even T-
periodic function υ that solves the Euler-Lagrange on R with:
υ(x+ T/2) = υ(−x+ T/2), υ(0) ∈ A−, υ(T/2) ∈ A+ and υ(x) ∈ Ω iff x /∈ T

2
Z

and can be variationally characterized as follows:

J[0,T/2](υ) = min{J[0,l](u) : u ∈ W 1,2([0, l],Ω), u(0) ∈ A−, u(l) ∈ A+, l > 0}

Proof description: As in Theorem 3.3, it is first proven that: |L±| < +∞
Now, for T := 2(T+ − T−) we define the function:

υ(x) = u(x+ L−)χ[0,T/2] + u(−x+ 2L+ − L−)χ[T/2,T ]

where u is the minimizer given in the main Theorem. We extend it periodically and
it is easy to check that u has the stated properties, as well as that is twice contin-
uously differentiable, satisfies the Euler-Lagrange and last but not least, it can be
variationally characterized as declared.

Finally, it has been proved in [3] (A-S) that if A− is a twice continuously differ-
entiable compact orientable surface with a unit normal vector n and if W satisfies
He and ∂2W (u)/∂n2 on A− then the connection approaches A− exponentially and
the limit exists. An observation that is utilized to prove these, is that if A− has
positive diameter and u(x) approaches A− like a spiral then the curve would have
infinite length, thus |u′(x)| will not be integrable. Similarly for A+.

39



Chapter 4

Epilogue: Remarks and
complementary material

Solutions to the problem: u′′ = ∇W − cu′, u(±) = a± with: c > 0, W (a+) = 0 >
W (a−) are known as travelling waves, while solutions to the respective problem with
c = 0 = W (a+) = W (a−) are known as standing waves. This is because they can
be viewed as special solution of the form: U(z− ct) = u(z, t) to the diffusion system
with gradient structure:

ut = uzz −∇W (u), u = u(z, t) : R× (0,+∞)→ Rn

By equation (2.4) we can see that there is a linear dependence between c and W (a−).

The existence of standing waves have been proven in various ways. A proof via
a contrained minimization, as in the traveling wave presented in this thesis, is con-
structed by Alikakos N. and Fusco G. in [1](A-F) as we said in chapter 2. Also,
there exists a very similar proof that states the existence of such solutions when the
potential has exactly two global minima, this proof is presented in [6](A-F-S).

A second proof that is presented here, is a proof invented by Antonopoulos P. and
Smyrnelis P. in [3] (A-S), which is simpler but also more general than the one in [1]
or in [6], since it not only proves the existence of such solutions where the zero set of
the potential has several disjoint components, but also when it is connected, and not
just single points(when the components of the zero set are writen with capital letters
we mean they are sets - and with small letters we mean they are single points).
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Another proof of existence of standing waves that doesn’t utilize the idea of the
constrained minimization can be found in [6](A-F-S) and in [4](F-G-N). The proof in
in [6], is actually a special case of a more general result presented in [4], and at the
same time, it is more general than the one in [3] for the case when the zero set of W
is finite. The one in [4] states that there exists an heteroclinic connection between
two disjoint connected components of the zero set of W, where the critical points are
allowed to be included in these components and the last of them can have positive
diameter. Both of these proofs discuss, as in [3] the existence of a connection were
W has several global minima along with the possibility that the solution u connects
these minima at finite time. Moreover they allow W to be just continuous and decay
to 0 at infinity provided that there exists a non-negative function γ(s) and an r0 > 0
such that: √

W (u) ≥ γ(|u|) for |u| ≥ r0 and
∫ +∞
r0

γ(s)ds = +∞

The fact that this condition is good enough to provide us the results we want is
justified by utilizing the Jacobi functional:

A[a,b](u(x)) =
∫ b
a

√
2W (u(x))|u′(x)|dx

We can easily check that for integrals with infinite length, if the Jacobi functional is
finite on them and the previous hypotheses on W holds, then u is bounded.

Note that, in the case when the number of components of the zero set of W is
greater than two, then a connection between any of these two components does not
exist in general. For example, consider the case when W (u) : R → R≥0 and has
just three global minima a1 < a2 < a3, then it is easy to prove that an heteroclinic
connection between a1 and a3 does not exist since it would certainly have to pass
through a2 which contradicts the uniqueness of O.D.E.

For the case when the zero set of W is a finite set, Z = {u ∈ Rm : W = 0} =
{a1, ..., ak}, a sufficient condition for the existence of an orbit that connects ai and
aj. for i 6= j ∈ {1, 2, ...k} is:

σij < σih + σhj, ∀ah ∈ Z \ {ai, aj}, where σij = infu∈Aij J(u)

where J(u) is the Action fuctional and

Aij = {u ∈ W 1,2
loc ((l−u , l

+
u ),Rm) : −∞ ≤ l−u < l+u ≤ +∞, limx→l−u u(x) = ai,

limx→l+u u(x) = aj}.
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This condition and its proof can be found in [6](A-F-S).
As far as I know the question if this condition is also necessary is an open problem
yet.

The proof of existence of a traveling wave, utilizes some lemmas from the proof
of existence of a standing wave, introduced in [1] as well as [2], therefore these
two proofs have some thing in common. However, they have some major
differences.

In the standing wave case, the proof is much simpler, since there it is straight-
forward that the solution u will exit one cylinder and enter the second one in
finite time, while in the traveling wave case this is more complicated because c
has to be chosen in a way such that the total energy, i.e. Action functional, is
equal to zero. Otherwise we are not sure that we can construct a uniform bound.

Another thing is, that due to the fact that W (a−) < 0 if the hypotheses on a−

was not H4(ii) and just H4(i) as it is stated on both on the standing wave, then
it is not guaranteed that the minimizer would converge to a− as x→ −∞ if
B(a−, r0) ⊂ C−0 , thus, we need hypotheses H4(ii).

Also, in the traveling wave case, the solution has to pass through some points of
the zero set of W (W = 0), so, to avoid the possibility that the minimizer
converges to an equilibrium solution, we assume Hypothesis H3 in order for these
points not to be critical points (in this case, however, equation 2.3 would be
satified). By the convexity hypothesis in H3, we can make manipulations and
overcome these difficulties.

Finally, note that since the wave profiles u(x) in the balanced case of W are not
unique in general, since if W is symmetric to the line that connects the two
minima, then at least two solutions of the standing wave problem exist, each one
of them lies completely in one of the respective half-planes. Therefore, we do not
expect a unique solution for the traveling wave problem.

∼ The End ∼
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