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Abstract

Multiple-Input Multiple-Output (MIMO) communication is a rapidly developing wireless

technology which promises increased data-rates and link reliability with mobility and high

quality-of-service (QoS) for multiple users. Several antennas at both transmitter and re-

ceiver increase the channel capacity with efficient bandwidth utilization, due to multiple

data transmission over the same frequency bands. MIMO technologies, in combination with

the Orthogonal Frequency Division Multiplexing (OFDM) modulation, have been adopted

by many wireless standards such as WiFi (IEEE-802.11n/ac), Long Term Evolution (3GPP-

LTE) and WiMAX (IEEE-802.16e) and they expected to play a key role in the upcoming

WiFi (IEEE-802.11ax) standard and in the fifth generation (5G) mobile phone systems.

Nevertheless, the advantages provided by MIMO technologies come at the expense of a

substantial increase in the complexity mainly of the receiver, but in some cases also in the

transmitter side, which has a major impact on the implementation cost and power consump-

tion of MIMO-OFDM systems.

The modern integrated circuits has increased transistor capacity due to the advanced sub-

micron technology, which provide the flexibility to design a single chip to support multiple

protocols, with a Software Defined Radio (SDR) architecture. In a SDR system the com-

putational intensive and time-critical processes are mapped to hardware accelerator units,

which should have various operational modes and run-time reconfigurations to support the

system requirements of multiple protocols. Furthermore, these hardware units should have

increased scalability, low complexity and implementation cost and reduced power consump-

tion to support SDR systems running on battery. Therefore, the design of low-complexity

and power optimal SDR and MIMO architectures is an important issue, which is tackled

throughout this thesis.

The first part of this dissertation presents the state of the art FFT architectures for OFDM



x

systems with multiple data streams (MIMO-OFDM). A detailed analysis in terms of com-

plexity, scalability, implementation cost and power consumption is presented and the possi-

bility of SDR support is investigated, for these architectures. A novel memory-based FFT

architecture is proposed with increased scalability and support for operation on advanced

SDR systems. The efficient conflict-free addressing scheme reduces the complexity of the

interconnection network and the memory requirements of the FFT processor, resulting in

a low implementation cost and power consumption, even in the case of continuous-flow

operation. The reconfigurable architecture can be tailored to match any SDR system re-

quirements, while a scheduling mechanism can be used to optimize the processing latency

of the FFT processor, based on run-time parameters.

In the second part of this thesis MIMO detection architectures are investigated, in terms

of complexity and error-rate performance. The computationally intensive task of tree node

enumeration on sphere decoders is analyzed and the state of the art algorithms are presented,

for the cases of hard decision detection and detection with the use of soft information. An

advanced enumeration technique is proposed, for hard or soft sphere decoders, which can

guarantee the optimal detection for all scenarios and channel conditions. The proposed

method is based on a predefined visiting order, a single distance calculation unit and a tuned

pruning metric, which increases the number of visiting nodes but with low computational

requirements per node and reduced total complexity, for the detection process. The archi-

tecture of the proposed method is presented and the ASIC and FPGA implementation is

compared with implementations of the state of the art optimal enumeration algorithms. The

efficient architecture of the proposed technique leads to reduced implementation cost and

power consumption, resulting in its potential use in more complex MIMO-OFDM systems.

SUBJECT AREA: Real-Time and Parallel Baseband Architectures, MIMO-OFDM Base-

band Processing

KEYWORDS: Real-Time MIMO Baseband Architectures, FFT processor, Parallel FFT

Architectures, MIMO Detection, Sphere Decoder



Περίληψη

Η χρήση πολλαπλών κεραιών σε ασύρματα τηλεπικοινωνιακά συστήματα είναι μια άκρως

αναπτυσσόμενη τεχνολογία η οποία υπόσχεται αυξημένη ταχύτητα μεταφοράς δεδομένων

και αξιόπιστη διασύνδεση, για μεγαλύτερο αριθμό χρηστών με βελτιωμένη ποιότητα

υπηρεσιών. Η πιο αποδοτική χρήση του εύρους ζώνης οδηγεί σε αυξημένη χωρητικότητα

καναλιού, με δεδομένη τη πολλαπλή χρήση των ίδιων συχνοτήτων, για τη μετάδοση δε-

δομένων. Η τεχνολογία πολλαπλών κεραιών μετάδοσης και λήψης (MIMO), σε συνδ-

υασμό με τη διαμόρφωση ορθογώνιας πολυπλεξίας συχνότητας (OFDM) έχει υιοθετη-

θεί από πολλά σύγχρονα πρωτόκολλα ασύρματων επικοινωνιών, όπως το WiFi (IEEE-

802.11n/ac), το LTE (3GPP-LTE) και το WiMAX (IEEE-802.16e) και αναμένεται να δι-

αδραματίσει καθοριστικό ρόλο στα συστήματα κινητών επικοινωνιών πέμπτης γενιάς (5G),

καθώς και στο επόμενο πρωτόκολλοWiFi (IEEE-802.11ax). Παρά τα πλεονεκτήματα της

χρήσης πολλαπλών κεραιών εκπομπής και λήψης, η συγκεκριμένη τεχνολογία αυξάνει

σημαντικά τη πολυπλοκότητα του δέκτη και σε αρκετές περιπτώσεις και του πομπού, με

αποτέλεσμα την αύξηση του κόστους εφαρμογής και της κατανάλωσης ενέργειας στα

συστήματα MIMO-OFDM.

Η αυξημένη πυκνότητα σε τρανζίστορ, των σύγχρονων ολοκληρωμένων κυκλωμάτων,

λόγω της τεχνολογίας λιθογραφίας με διαστάσεις μικρότερες του μικρόμετρου, παρέχει

τη δυνατότητα υποστήριξης πολλαπλών πρωτοκόλλων ασύρματης επικοινωνίας σε ένα

μόνο ολοκληρωμένο κύκλωμα, με τη χρήση αρχιτεκτονικών καθορισμένων σε λογισμικό

(Software Defined Ratio - SDR). Σε τέτοιες αρχιτεκτονικές, οι υπομονάδες με μεγάλη

πολυπλοκότητα ή με κρίσιμη καθυστέρηση για το σύστημα υλοποιούνται σε υλικό με

τη μορφή μονάδων επιτάχυνσης. Τέτοιες μονάδες θα πρέπει να διαθέτουν πολλαπλούς

τρόπους λειτουργίας και να είναι σε θέση να αναδιαμορφωθούν σε πραγματικό χρόνο,

για να μπορούν να υποστηρίξουν τις απαιτήσεις πολλαπλών πρωτοκόλλων επικοινωνίας.



xii

Επιπλέον, οι μονάδες αυτές θα πρέπει να έχουν αυξημένη επεκτασιμότητα, μειωμένη πολυ-

πλοκότητα και κόστος εφαρμογής και μειωμένη κατανάλωση ενέργειας για να μπορούν

να υποστηρίξουν συστήματα SDR με χρήση μπαταρίας. Επομένως, η σχεδίαση μονάδων

χαμηλής πολυπλοκότητας με βελτιστοποιημένη κατανάλωση ενέργειας για συστήματα

πολλαπλών κεραιών μετάδοσης και λήψης (MIMO) και συστήματα SDR είναι σημαντική

και θα αντιμετωπιστεί στη παρούσα διατριβή.

Στο πρώτο τμήμα της εργασίας παρουσιάζονται σύγχρονες αρχιτεκτονικές επεξερ-

γαστή ταχυ-μετασχηματισμού Fourier (FFT), για συστήματα ορθογώνιας πολυπλεξίας

συχνότητας (OFDM) με πολλαπλές ροές δεδομένων (υποστήριξη συστημάτων MIMO-

OFDM). Η λεπτομερής ανάλυση των συγκεκριμένων αρχιτεκτονικών αφορά την πολυ-

πλοκότητα, την επεκτασιμότητα, το κόστος εφαρμογής και τη κατανάλωση ενέργειας,

καθώς επίσης ερευνάται και η πιθανότητα χρήσης των συγκεκριμένων αρχιτεκτονικών σε

συστήματα SDR. Προτείνεται μια πρωτοποριακή αρχιτεκτονική επεξεργαστή FFT, βασισ-

μένη σε μνήμη, με αυξημένη επεκτασιμότητα και δυνατότητα υποστήριξης πολύπλοκων

συστημάτων MIMO-OFDM και SDR. Χρησιμοποιώντας ένα αποδοτικό σύστημα διευ-

θυνσιοδότησης της μνήμης, με αποφυγή συγκρούσεων, είναι δυνατή η μείωση της πολυ-

πλοκότητας του δικτύου διασύνδεσης και των απαιτήσεων του επεξεργαστή σε μνήμη, με

αποτέλεσμα τη μείωση του κόστους εφαρμογής και της κατανάλωσης ενέργειας, ακόμα

και στη περίπτωση λειτουργίας συνεχούς ροής δεδομένων. Η αναδιαμορφώμενη αρχιτεκ-

τονική μπορεί να προσαρμοστεί με βάση τις απαιτήσεις ακόμα και των πιο πολύπλοκων

συστημάτων SDR, ενώ ο μηχανισμός χρονοπρογραμματισμού του επεξεργαστή μπορεί να

χρησιμοποιηθεί για τη βελτιστοποίηση της καθυστέρησης της επεξεργασίας με τη χρήση

παραμέτρων, που μπορούν να αλλάζουν κατά τη διάρκεια της λειτουργίας.

Στο δεύτερο τμήμα της διατριβής ερευνώνται αρχιτεκτονικές μονάδων αποκωδικοποίησης

σήματος σε συστήματα πολλαπλών κεραιών εκπομπής και λήψης, με βάση τη πολυ-

πλοκότητα και την απόδοσή τους. Αναλύεται η πολύπλοκη διεργασία της απαρίθμησης

των κόμβων του δέντρου, σε αρχιτεκτονικές αποκωδικοποιητή σφαίρας και παρουσιά-

ζονται σύγχρονοι αλγόριθμοι και τεχνικές για τις περιπτώσεις αποκωδικοποίησης με ή

χωρίς τη χρήση πληροφορίας αξιοπιστίας, για τα λαμβανόμενα δεδομένα στο δέκτη. Προ-

τείνεται ένας αποδοτικός αλγόριθμος απαρίθμησης κόμβων, ο οποίος μπορεί να εγγυη-

θεί την αποκωδικοποίηση μέγιστης πιθανοφάνειας, για αποκωδικοποιητές σφαίρας με
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ή χωρίς τη χρήση πληροφορίας αξιοπιστίας, για όλα τα πιθανά σενάρια λειτουργίας

και συνθήκες καναλιού. Η προτεινόμενη λύση βασίζεται σε μια προκαθορισμένη σειρά

επίσκεψης των κόμβων, σε μια και μόνο μονάδα υπολογισμού αποστάσεων, καθώς και σε

κατάλληλα προσαρμοσμένη μετρική για το κλάδεμα του δέντρου. Η συγκεκριμένη τεχνική

παρόλο που αυξάνει τον αριθμό των επισκέψιμων κόμβων, μειώνει την υπολογιστική

πολυπλοκότητα ανά κόμβο και άρα τη συνολική πολυπλοκότητα της αποκωδικοποίησης.

Επιπλέον, παρουσιάζεται η αρχιτεκτονική για το συγκεκριμένο αλγόριθμο απαρίθμησης

κόμβων και συγκρίνεται η υλοποίησή του σε ASIC και συσκευές FPGA με υλοποιήσεις

σύγχρονων τεχνικών απαρίθμησης, που μπορούν να εγγυηθούν την αποκωδικοποίηση

μέγιστης πιθανοφάνειας. Η αποδοτική υλοποίηση οδηγεί σε μείωση του κόστους εφαρ-

μογής και της κατανάλωσης ενέργειας με αποτέλεσμα τη πιθανή χρήση της και σε πιο

πολύπλοκα συστήματα MIMO-OFDM .

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αρχιτεκτονικές Πραγματικού Χρόνου για Επεξεργασία Δε-

δομένων Βασικής Ζώνης, Επεξεργασία Δεδομένων Βασικής Ζώνης για Συστήματα OFDM

με χρήση Πολλαπλών Κεραιών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Αρχιτεκτονικές Πραγματικού Χρόνου για Επεξεργασία Δεδομένων

Βασικής Ζώνης για Συστήματα Πολλαπλών Κεραιών, Επεξεργαστής Ταχυ-μετασχηματισμού

Fourier, Παράλληλες Αρχιτεκτονικές για Επεξεργαστές FFT, Αποκωδικοποίησης Σήμα-

τος σε Συστήματα Πολλαπλών Κεραιών, Αποκωδικοποιητής Σφαίρας
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Chapter 1

Introduction

In the last two decades, the increased demands for higher data-rates, better quality-of-service

(QoS), higher network capacity and user coverage, lead the research on wireless commu-

nication systems, to advanced techniques for improving the spectral efficiency and link re-

liability. The most popular technology for advanced wireless systems is the use of mul-

tiple antennas at the transmitter and/or receiver side. The Multiple-Input Multiple-Output

(MIMO) technology opens a new dimension (space), which if leveraged correctly can im-

prove the wireless system performance substantially. Wireless communication industry has

adopted MIMO technologies in several wireless standards, such as Wireless Local Area Net-

work (WLAN IEEE-802.11), Worldwide interoperability for Microwave Access (WiMAX

IEEE-802.16) and Long Term Evolution (LTE/LTE-Advanced). Furthermore, the MIMO

technology is expected to play a key role in the upcoming IEEE 802.11ax standard and in

the fifth generation (5G) mobile phone systems.

The majority of modern wireless communication systems use the Orthogonal Frequency

Division Multiplexing (OFDM) technology to increase the spectral efficiency. In an OFDM

system, the frequency domain bandwidth is divided into multiple non-overlapping sub-

channels, each of which hosts a specific carrier (sub-carrier). Each of the transmitted data

symbols is modulate a data sub-carrier, resulting in a frequency multiplexed signal, with

each of the sub-channel spectra to be orthogonal to each other. This orthogonality of the

sub-carriers ensures that the signals do not interfere with each other, when communicating

over distortionless channels. Key advantages of the OFDM systems are the Time-Division

Multiple Access (TDMA) [35], Frequency-Division Multiple Access (FDMA) [123], and
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Code-Division Multiple Access (CDMA) [310], [92].

The MIMO technology can be used in OFDM wireless communication systems to in-

crease capacity, coverage and reliability [23],[8]. The OFDM modulation converts a high-

speed data channel into a number of parallel, lower-speed channels, and the processing

required by MIMO techniques at higher speeds would be most manageable. The wide range

of advantages provided by MIMO-OFDM systems comes at the expense of a substantial in-

crease in the receiver complexity and sometimes in the transmitter complexity as well. The

multiple processing paths of a MIMO-OFDM wireless architecture, along with advanced

combined algorithms for high system performance over extreme channel conditions, in-

crease the computational requirements and the implementation cost.

The rapid growth on the integrated circuit design has been contributing significantly

to the trend of faster and more complex wireless communication systems during the past

decades. The increased total number of transistors and thus logical functions per chip, not

only enables the designers to integrate more complex algorithms, but also allows to speed up

the circuits and to reduce the energy consumption. Both implementation cost and power ef-

ficiency steadily improved by the technology scaling, while large systems can be integrated

in a single chip (System-on-Chip (SoC)). Furthermore, researchers provide algorithmic op-

timizations for complex MIMO processing functions, which reduce the computational re-

quirements and the power consumption of the wireless communication system.

The increased transistor capacity on modern integrated circuits, provides the implemen-

tation flexibility of supporting multiple systems and protocols with a single chip and a Soft-

ware Defined Radio (SDR) architecture. In SDR wireless systems part (or all) of the physical

layer functionality can be implemented in software, running in one or more dedicated pro-

cessors, which are implemented in a SoC. Computationally intensive and/or time-critical

system functionality could be implemented as a hardware acceleration module, to reduce

the processor utilization and the power consumption of the chip. These hardware units

should be optimized to support the multiple protocol requirements, while having increased

scalability, low implementation cost and low power consumption.
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1.1 Motivation and Scope

The performance of the Fast Fourier Transform (FFT) and the Inverse FFT (IFFT) algo-

rithms plays a key role in emerging wireless technology standards that are based on OFDM

and MIMO-OFDM. The increased data-rates require executing the FFT/IFFT computations

at relatively high speeds, while cost constraints imply the use of minimal resources. More-

over, low-latency calculation is crucial for several wireless systems (e.g. IEEE-802.11),

while the significant high number of sub-carriers results in increased computational com-

plexity for the FFT processor (e.g. DAB, DVB-T, DVB-T2).

The use of MIMO technology on OFDM-based wireless systems, increase the compu-

tational requirements of the system, for the FFT/IFFT processor, linearly with the number

of spacial streams. A separate FFT computation should be performed for each of the data

streams, by using as many FFT processors as the MIMO channels or by using less proces-

sors, running at higher speed and a time-sharing scheduling scheme. Several FFT architec-

tures have been proposed in the literature for MIMO-OFDM systems, which use the idle

clock cycles of the butterfly processors, to perform the computations for the additional data

streams. These architectures reduce the total computational requirements of the FFT calcu-

lations, on a MIMO-OFDM system but they have low scalability in terms of MIMO streams

and variable FFT lengths.

In the case of SDR systems, the FFT processor should support operational modes in

which multiple protocols require FFT computations, sequentially or in parallel. A multi-

protocol SDR system with several antennas can support several OFDM or MIMO-OFDM

systems in parallel (e.g. 2x2 MIMO LTE and 3x3 MIMO IEEE-802.11ac). An efficient

implementation requires a single FFT processor performing all the needed calculations for

all the operational modes of the system. The advanced FFT architectures in the literature,

which support multiple data streams (MIMO-OFDM systems), are unable to support effi-

ciently multiple data streams from different protocols and variable FFT lengths (e.g. SDR

mode with two MIMO streams of 2048-points FFT for protocol A and three MIMO streams

of 128-points FFT for protocol B).

In a MIMO-OFDM communication system with MT transmit and MR receive antennas,

each of the MR antennas receives signal components of all MT transmitting antennas. The
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received signals include the line-of-sight signals as well as the multi-path reflected signal

components causing destructive MIMO channel effects. In order to recover the original

transmitted symbols, the MIMO receiver performs combined detection and synchronization,

demodulation and decoding operations on the received signals from the MR antennas. A core

idea in MIMO-OFDM wireless communication systems, is to use the multiple antennas to

transmit data in parallel, to increase the system data rate. The drawback to this system

performance improvement, is the considerable increase in complexity of signal processing

algorithms, needed for the separation of parallel data streams in the receiver side. MIMO

detectors are used in the processing path of the MIMO receiver, in order to recover the

transmitted symbols from the received symbol vectors.

The optimal MIMO detection, often is the most computational expensive algorithm in

a MIMO-OFDM receiver’s processing path, specially for systems with increased number

of antennas and dense constellations. An efficient way to reduce the detection complexity,

without compromising the system error-rate performance, is the use of the sphere decoding

algorithm, which translates the detection problem to a constrained tree traversal search. For

increased system error-rate performance, soft information, in the form of Log Likelihood

Ratios (LLRs), is used, instead of hard-decision bits for the MIMO detection and decoding

processes.

A Soft-Output sphere decoder can be used in combination with a Soft-Input channel de-

coder (Viterbi, Turbo, LDPC, etc.) to increase the wireless system error-rate performance,

for fading MIMO channels with high noise. The computational complexity of a Soft-Output

sphere decoder is increased, in comparison to a hard-decision detection, due to the search

of the counter-hypothesis tree nodes. Several sphere decoding algorithms have been pro-

posed in the literature, which try to reduce the high complexity of the soft-decision MIMO

detection process, by using alternative tree traversal strategies, efficient node enumeration

techniques or other complexity reduction schemes.

Advanced sphere decoding algorithms are used in Iterative MIMO receiver architec-

tures, in which iterations are performed between the MIMO detection and the channel de-

coder, resulting in increased system error-rate performance over extreme MIMO channels.

The exchange of soft-information between the channel detector and decoder, leads to the

use of Soft-Input Soft-Output (SISO) sphere decoding algorithms. In such cases the feed-
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back from the channel decoder, in the form of LLRs, should be considered in the detection

process of every iteration, resulting in increased computational complexity, in comparison

to the soft output MIMO detectors.

A key processing step for a sphere decoder algorithm, is the tree node ordering or node

enumeration, which has an impact on the decoder error-rate performance, throughput, com-

plexity and power consumption. The Schnorr and Euchner Enumeration (SEE), in which

the children nodes of a parent tree node, are visited in ascending order of their partial Eu-

clidean distances, is one of the most efficient node ordering schemes, which can guarantee

the optimal detection with reduced total number of visiting nodes. For sphere decoders with

soft information, the enumeration process utilize most of the computational complexity and

an efficient node ordering results in increase decoding throughput.

A few enumeration schemes, in the literature, reduce the enumeration complexity of the

SEE by exploiting geometrical characteristics of the constellation map, without compro-

mising the optimal solution. In most of the cases, the constellation points are splitted to

subsets, and the evaluation process of the next enumerated node, considers only one can-

didate node from each subset. Based on the total number of subsets, the computational

complexity can be reduced, in comparison to a Full Enumeration and Sort (FES) scheme.

Several techniques have been proposed in the literature, in which the complexity reduction is

based on calculations of non Euclidean distances or on pre-calculated visiting order of the

constellation points. These schemes, reduce further the complexity, in comparison to the

FES technique but they can not guarantee the maximum-likelihood (ML) or the maximum

a-posteriori (MAP) detection performance, resulting in decreased error-rate performance,

for specific channel conditions.

1.2 Key Contributions

This thesis tackles with the two of the most computational expensive processing units of a

MIMO-OFDM system, the FFT/IFFT processor and the MIMO detector.
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FFT/IFFT processor

Single FFT processor and time-sharing scheduling schemes have been used to handle the

multiple data streams, of a MIMO-OFDM system. These architectures requires higher clock

frequencies, for the FFT processor, proportional to the total number of MIMO channels.

Multiple processors with more complex scheduling schemes, can reduce the extreme high

clock frequencies, for large MIMO-OFDM systems, with increased hardware resources uti-

lization and high power consumption. The efficient use of the idle clock-cycles of an FFT

processor, for the computations of additional input data streams, increases the utilization

of the butterfly processor, with limited scalability and usability in large MIMO-OFDM and

SDR systems.

In this study, a detailed overview of the state of the art FFT architectures for multi-

ple input data streams, is presented in Section 4. Each of the architectures is analyzed, in

terms of computational complexity, processing latency, memory requirements, scalability

and usability. An efficient and scalable in-place FFT architecture [252], [134], supporting

multiple variable-length input data streams is proposed, in which a novel conflict-free ad-

dressing scheme is used to reduce the complexity of the FFT control unit, and to simplify

the interconnection network between the multiple butterfly units and memory banks. The

proposed FFT architecture can be tuned to support efficiently, large MIMO-OFDM or SDR

systems, while a specific scheduling scheme can be implemented to optimize the processing

latency, at run-time based on the total number of data streams and the FFT length of each

stream. Furthermore, the proposed memory-based FFT architecture can support continu-

ous flow operation for multiple data streams with different FFT lengths, with low memory

requirements and parallel, normal-order output of the data streams, in comparison to the

stream sequential output of the state of the art pipeline FFT architectures.

The reduced number of radix-2 butterfly processors and the efficient processor utilization

for the FFT computations of multiple variable-length data streams, is a key element for an

efficient implementation of an SDR MIMO-OFDM system. The increased scalability of the

proposed architecture and the support of multiple variable-length FFT calculations, different

for each of the data streams, is a unique characteristic, which make the proposed architecture

easily adaptable to any multi-protocol and/or MIMO, SDR OFDM system implementation.
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MIMO detector

The exponential computational complexity of the MIMO detection, based on exhaustive

search, is prohibitive for real-time implementations, for large MIMO systems and/or dense

constellations. The sphere decoding algorithm transforms the MIMO detection problem

to a constrained tree search, resulting in reduced computational complexity for real-time

implementations, without compromising the optimal solution, even in the cases of dense

constellations. Soft information (LLRs) is used in the MIMO detection and channel decod-

ing process, to increase the error-rate performance and the reliability of the system, under

extreme channel conditions. The use of soft information increases the complexity of the

sphere decoder, resulting in reduced throughput and increased power consumption.

To reduce the total number of visiting tree nodes and hence the total computational

complexity of the MIMO detection process, the Schnorr and Euchner Enumeration (SEE)

scheme have been proposed, in which the nodes are visited in increasing order of their

partial Euclidean distances. The computational expensive Euclidean distance calculations,

should be minimized to increase the decoding throughput and limit the power consumption

of the sphere decoder implementation. Several enumeration schemes have been proposed

in the literature, in which the reduction of the total distance calculations and visiting tree

nodes, results in decreased error-rate performance, due to the non-optimal MIMO detection.

The state of the art enumeration algorithms, which are not compromise the optimal solution,

are computational expensive due to the required multiple distance calculation units, several

comparison modules and/or complex memory structures (e.g. priority queues).

The proposed low-complexity, LUT-based enumeration technique [214] can guarantee

the optimal solution (ML or MAP), with the use of only one distance calculation unit and

small look-up tables. The specific algorithm results in increased number of visiting tree

nodes, with a portion of the computational complexity per node, compared to other optimal

enumeration schemes, and a reduced overall computational complexity for the MIMO de-

tection process, for any scenario and channel condition. Furthermore, due to single distance

calculation module the proposed implementation has reduced power consumption, com-

pared to other enumeration schemes, particularly for small sphere constraint radius, which

is the common case for sphere decoding algorithms with radius-update mechanism. Finally,

the specific implementation can be reconfigured to compute near-optimal solution, by com-
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promising the ML or MAP performance, to further reduce the power consumption of the

MIMO detection unit, with specific channel conditions.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 is a brief introduction to

MIMO wireless communication systems. In the first section a brief history of the wireless

systems and the use of multiple antennas in the transmitter and/or receiver is presented. The

next section is an introduction to the concept of the parallel transmission of data and the

Orthogonal Frequency Division Multiplexing (OFDM) systems. The numerous advantages

of the OFDM wireless systems are presented and the use of MIMO techniques for these

systems is analyzed, in term of increased throughput, reliability and Quality-of-Service. In

the last section of the chapter, the baseband processing of an OFDM wireless system is

presented and the transmitter and receiver processing paths are analyzed. For the case of

multiple transmit/receive antennas (MIMO-OFDM wireless systems) the complex multi-

ple processing paths of the baseband are illustrated and the high-complexity modules are

analyzed.

In Chapter 3 an introduction to the Fast Fourier Transform (FFT) algorithm is presented

along with the most common FFT processor architectures. The first section of the chapter

presents the different decompositions of the FFT algorithm along with the advantages and

disadvantages, in terms of computational complexity. The most common FFT architectures

are analyzed in the next section. The pipeline FFT architectures are presented in the first sub-

section, while the memory-based FFT architectures are analyzed in the second half of the

section. Several FFT architectures are presented in this section with various computational

complexity specifications, which can meet different system requirements. Advantages and

disadvantages of each of the architectures are analyzed, in terms of throughput, processing

latency and implementation cost.

The first section of Chapter 4 includes an overview of the common FFT architectures

which are used in MIMO-OFDM systems. Several pipeline FFT processors can be used

with multiple input streams, with the introduction of a time scheduling mechanism, or can

be tailored for specific MIMO-OFDM systems by reordering the input data streams and ex-
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ploiting the idle butterfly processing time. The next section presents an efficient and scalable

memory-based FFT architecture for SDR/MIMO OFDM systems, with variable FFT length

support. A novel conflict-free memory addressing scheme minimizes the processing latency,

reduces the memory requirements of the FFT processor and results in an efficient and fully

scalable architecture. The proposed FFT processor can be used in several multi-protocol

(SDR) and/or multi-stream (MIMO) OFDM systems, with reduced implementation cost

and increased computational efficiency. The next section of the chapter presents an analysis

of the fixed-point performance of an FFT processor, and a detailed comparison of several

techniques which are used to increase the SQNR performance of the FFT computations. In

the final section of the Chapter 4, a detailed implementation comparison of the proposed

FFT processor with state-of-the-art MIMO FFT architectures, is presented. Both FPGA and

ASIC implementations are considered, while several architectures are compared in terms of

implementation cost, performance efficiency and scalability.

Chapter 5 includes a brief introduction to the MIMO detection problem and the tech-

niques used for the recovery of the multiple transmitted data streams on Space Division

Multiplexing (SDM) MIMO wireless systems. The second section of the chapter analyzes

the MIMO system model and presents the mathematical equations for the problem of the

maximum likelihood MIMO detection. The next section provides an overview of the effi-

cient Sphere Decoding Algorithm (SDA), which transforms the MIMO detection problem

to a tree search problem with reduced computational complexity, compared to the exhaus-

tive search for the ML solution. Furthermore, the most common tree traversal strategies,

for the implementation of the SDA are presented and compared in terms of complexity and

decoding performance. The following section analyzes the use of soft information in the

sphere decoding algorithms for increased decoding performance of the MIMO wireless sys-

tem. Soft-Output sphere decoders can increase the reliability, of the wireless system, with

the use of Log-Likelihood Ratio (LLR) values, instead of hard-decoded bits. The concept

of the Iterative Decoding is presented with the use of Soft-Input Soft-Output (SISO) sphere

decoding algorithms, which can deliver exact MAP performance even with extreme chan-

nel conditions. The final section of the Chapter 5 presents several complexity optimization

techniques for various sphere decoding algorithms, which can reduce the implementation

cost and the decoding latency, with or without a bit-error rate performance penalty.
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Chapter 6 provides an overview of the most computational demanding process of the

sphere decoding algorithm, the node enumeration. An efficient way to visit the tree nodes is

in ascending order of their partial Euclidean distances (PED), to minimize the number of vis-

iting nodes, avoid redundant computations and increase the decoding throughput. For high

order, non-constant amplitude constellations, the enumeration process requires the calcula-

tion and sorting of all the partial Euclidean distances (Full Enumeration and Sort (FES)).

State-of-the-art enumeration schemes, avoid FES by performing PED computations and

sorting to a subset of the constellation points, which are selected by exploiting geometrical

characteristics of the constellation map. These enumeration techniques are presented in the

first four sections of Chapter 6, along with a comparison in terms of bit-error-rate decoding

performance and implementation cost. In the fifth section of Chapter 6, an advanced LUT-

based enumeration technique is presented, which reduce the total computational complexity

of the sphere decoder without compromising the detection performance. This novel enumer-

ation scheme can be used for Hard and Soft Output sphere decoders and it can be adapted

for the case of iterative decoding (SISO). The next section provides an algorithmic perfor-

mance evaluation for two versions of the proposed enumeration technique, one which can

guarantee the ML/MAP solution (“exact”) and one which further reduce the computational

complexity of the sphere detection, with a small performance penalty (“approximate”). The

final section of the chapter presents a comparison for FPGA and ASIC implementations,

for the two version of the proposed enumeration scheme, in terms of complexity and power

consumption.

Finally, Chapter 7 presents the conclusions obtained throughout this thesis and includes

some guidelines for future research lines, in the area of the efficient baseband processing

architectures for SDR and MIMO wireless communication systems.



Chapter 2

MIMO Wireless Communication

Systems

The explosion of the communication market has irreversibly marked the end of the sec-

ond millennium. Everyone now recognizes that we are in the beginning of an era of data

communication. Wireless system designers are faced with a number of challenges. These

include the limited availability of the radio frequency spectrum, a complex time-varying

wireless environment (fading and multipath), the increased demand for higher data rates,

better quality of service (QoS), higher network capacity and user coverage. Several innova-

tive techniques are proposed to improve the spectral efficiency and link reliability. The use

of multiple antennas at the receiver and/or transmitter in a wireless system, known as space-

time or multiantenna communications is an emerging technology that promises significant

improvements in these measures.

2.1 Wireless Communication Systems

Maxwell proposed, in 1861, a mathematical theory of electromagnetic waves. A practi-

cal demonstration of the existence of such waves was performed by Hertz in 1887, using

stationary waves. The first radio telegraph was built and demonstrated by Marconi, in the

summer of 1895. In the next few years, Marconi integrated many new technologies into his

sophisticated radio equipment, including the diode valve developed by Fleming, the crystal
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detector, continuous wave transmission developed by Poulsen,Ferssenden and Alexander-

son, and the triode valve or audion developed by Forrest.

The installation of the first 2MHz land mobile radiotelephone system in 1921, by the

Detroit Police Department for police car dispatch, was the first civilian use of wireless tech-

nology. In 1933 Armstrong invented the frequency modulation (FM), which made possible

high quality radio communications. As demand for public wireless services began to grow,

the Improved Mobile Telephone Service (IMTS) using FM technology was developed by

AT&T. These were the first mobile systems to connect with the public telephone network

using a fixed number of radio channels in a single geographic area. Extending such tech-

nology to a large number of users needed excessive bandwidth. A solution was found in

the cellular concept (cellularization), conceived by Ring at Bell Laboratories in 1947. This

concept required dividing the service area into smaller cells, and using a subset of the total

available radio channels in each cell. The first high capacity analog cellular telephone sys-

tem called the Advanced Mobile Phone Service (AMPS), was proposed by AT&T in 1970.

Mobile cellular systems have evolved rapidly since then, incorporating digital communica-

tion technology and serve more than one billion subscribers worldwide.

The use of multiple antennas at the transmitter and /or receiver in a wireless commu-

nication link opens a new dimension − space, which if leveraged correctly can improve

performance substantially. The use of multiple receive antennas for diversity goes back to

Marconi and the early radio pioneers. So does the realization that steerable receive antenna

arrays can be used to mitigate co-channel interference in radio systems. During and after the

World War II, the use of antenna arrays was an active research area in radar systems. The ar-

rival of digital signal processors in the 1970s, results in development of more sophisticated

systems with adaptive signal processing at the wireless receiver for improving diversity and

interference reduction, mainly for military applications. In 1994 Paulraj and Kailath pro-

posed a technique for increasing the capacity of a wireless link using multiple antennas at

both the transmitter and the receiver, while in 1996 Roy and Ottersten proposed the use of

base-station antennas to support co-channel users. These ideas along with the fundamental

research done at Bell Labs began a new revolution in information and communications the-

ory in the mid 1990s. The goal is to approach performance limits and to explore efficient

but pragmatic coding and modulation schemes for wireless links using multiple antennas.
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Figure 2.1 Antenna configurations in Space-Time wireless systems

Figure 2.1 shows the different antenna configurations for Space-Time (ST) wireless links.

The SISO (Single Input Single Output) is the familiar wireless configuration in which only

one antenna is used in both the transmitter and receiver. In SIMO (Single Input Multiple

Output) wireless systems multiple antennas (MR) are used only in the receiver, while in

MISO (Multiple Input Single Output) systems multiple antennas (MT ) are used only in the

transmitter. In a MIMO (Multiple Input Multiple Output) wireless system, multiple (MT )

transmit antennas and multiple (MR) receive antennas are used. Finally, the MU-MIMO

(Multi User MIMO) configuration refers to the case where a base-station with multiple (M)

antennas communicates with P users each with one or more antennas.

In wireless systems with multiple antennas on the receiver, the transmitter or both, an

average increase in the SNR at the receiver can be achieved with the coherent combining

effect of multiple antennas. This signal gain is known as Array gain. In a SIMO system

signals arriving at the receive antennas have different amplitudes and phases. The receiver

can combine the signals coherently so that the resultant signal is enhanced. The average

increase is signal power at the receiver is proportional to the number of receive antennas. In

wireless systems with multiple transmit antennas (MISO or MIMO), array gain exploitation
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requires channel knowledge at the transmitter.

Wireless channels can reduce significantly the signal power in random times. These

channel fluctuations, also known as fades (fading channels), can be handled with diversity.

Receive antenna diversity can be used in SIMO systems in which receiver see independently

faded versions of the same signal. The receiver is able to combine these signals so that the

resultant signal exhibits considerably reduced amplitude variability (fading), in comparison

with the signal at any of the antennas. The diversity order is the number of independently

fading branches, and is equal to the number of receive antennas in SIMO wireless systems.

Transmit diversity is applicable to MISO systems with or without channel knowledge at the

transmitter. Suitable design of the transmitted signal is required to extract diversity. ST di-

versity coding is a transmit diversity technique that relies on coding across space (transmit

antennas) to extract diversity in the absence of channel knowledge at the transmitter. Uti-

lization of diversity in MIMO wireless systems requires a combination of the receive and

transmit diversity described above.

2.2 OFDM Introduction

The concept of parallel transmission of data over dispersive channels was first mentioned as

early as 1957, in the pioneering work of Doelz et al. [70], while the first OFDM (Orthogonal

Frequency Division Multiplexing) schemes date back to the 1960s, which were proposed

by Chang [38] and Saltzberg [250]. The frequency domain bandwidth is divided into a

number of non-overlapping sub-channels, each of which hosts a specific carrier, referred

as subcarrier. Each subcarrier is modulated by a data symbol, resulting in a frequency-

multiplexed signal, with each of the sub-channel spectra to be orthogonal to each other. This

ensures that the subcarrier signals do not interfere with each other, when communicating

over perfectly distortionless channels, as a consequence of their orthogonality.

The first OFDM schemes [38], [250], [37] had increased implementation complexity,

due to the required banks of sinusoidal subcarrier generators and demodulators. In 1971,

Weinstein and Ebert [324] suggested that the Discrete Fourier Transform (DFT) can be used

for the OFDM modulation and demodulation processes, which significantly reduces the im-

plementation complexity of OFDM. Peled and Ruiz [231], in the early 1980s, proposed a
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simplified frequency domain data transmission method using a cyclic prefix-aided technique

and exploited reduced-complexity algorithms for achieving a significantly lower compu-

tational complexity than that of classic single-carrier time-domain Quadrature Amplitude

Modulation (QAM) modems. Hirosaki in [101] proposed a subchannel-based equalizer for

an orthogonally multiplexed QAM system, while a DFT-based implementation of an OFDM

system was introduced in [102], on the basis of which, a so-called group-band data modem

was developed [103]. The performance of OFDM modems in mobile communication chan-

nels was investigated by Cimini [56] and Kalet [132], while Alard and Lassalle [5] introduce

the OFDM concept in digital broadcasting systems, which was the pioneering work of the

European DAB standard established in the mid-1990s.

Some key advantages of the OFDM over other widely used wireless access techniques,

are Time-Division Multiple Access (TDMA) [35], Frequency-Division Multiple Access

(FDMA) [123], and Code-Division Multiple Access (CDMA) [310], [92]. In an OFDM sys-

tem the radio channel is divided into many narrowband, low-rate, frequency-non-selective

subchannels or subcarriers [24], so that multiple symbols can be transmitted in parallel,

while maintaining a high spectral efficiency. Information for different users can be delivered

with the use of different subcarriers, resulting in a simple multiple-access scheme known as

Orthogonal Frequency-Division Multiple Access (OFDMA) [138],[146],[34]. This enables

different media such as video, graphics, speech, text or other data to be transmitted within

the same radio link, depending on the specific types of services and their Quality-of-Service

(QoS) requirements.

The implementation flexibility and the low complexity of the transmission and reception,

as well as the high performance, render OFDM highly attractive candidate for high-data-rate

communications over time-varying frequency-selective radio channels. In classic single-

carrier systems, complex equalizers are used at the receiver, for the reduction of the Inter-

Symbol Interference (ISI) introduced by multi-path propagation. By contrast, when using a

cyclic prefix [231], OFDM exhibits a high resilience against the ISI. Incorporating channel

coding techniques into OFDM systems, which results in Coded OFDM (COFDM) [195],

[170], allows us to maintain robustness against frequency-selective fading channels, where

busty errors are encountered at specific subcarriers in the frequency domain.

However, besides its significant advantages, OFDM also has a few disadvantages. One



16 MIMO Wireless Communication Systems

problem is the associated increased Peak-to-Average Power Ratio (PAPR) in comparison

with single-carrier systems [91], requiring a large linear range for the OFDM transmitter’s

output amplifier. In addition, OFDM is sensitive to carrier frequency offset, resulting in

Inter-Carrier Interference (ICI) [205]. Several techniques has been proposed in the literature

to efficient handle these problems in OFDM systems.

2.2.1 MIMO-OFDM

The main parameters, by which the quality of a wireless link can be described are the trans-

mission rate, the transmission range and the transmission reliability. By reducing the trans-

mission range and reliability we can increase the transmission rate. On the other hand,

transmission range may be extended at the cost of a lower transmission rate and reliability,

while the transmission reliability may be improved by reducing the transmission rate and

range. Nevertheless, the use of MIMO technology in OFDM systems, may simultaneously

improve the above-mentioned three parameters, of the wireless link quality [50].

MIMO techniques can be used in OFDM communication systems to increase capacity,

coverage and reliability [23],[8]. The processing required by MIMO at higher speeds would

be most manageable using OFDM modulation, because OFDM converts a high-speed data

channel into a number of parallel, lower-speed channels. MIMO-OFDM is the foundation

for most advanced wireless local area network (wireless LAN) and mobile broadband net-

work standards because it achieves the greatest spectral efficiency and, therefore, delivers

the highest capacity and data throughput [8],[274].

The research of Gregory Raleigh was the first in which MIMO technology was used in

OFDM systems. He proved in [242], that with a proper type of MIMO system the multi-

path propagation could be exploited, resulting in increased capacity for the wireless link.

Before Raleigh’s work, researchers was trying to identify modulation and coding schemes

that perform robustly over time-varing, dispersive, multipath channels. Raleigh published

additional research on MIMO-OFDM under time-varying conditions [245], [243], MIMO-

OFDM channel estimation [129], [244], synchronization techniques for MIMO-OFDM sys-

tems [129] and the performance of the first experimental MIMO-OFDM system [243].

In his PhD dissertation a comparison of three MIMO systems was performed in terms of

performance and computational complexity. The MIMO-OFDM system was the only one in
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which the computational complexity, of the receiver, was grown log-linearly as data rate was

increased, in comparison with the quadratically increase of the other two MIMO systems

(QAM and DSSS). In 1996 Raleigh founded the Clarity Wireless and developed the speci-

fications that led to the IEEE 802.16 (WiMAX) and LTE standards, both of which support

MIMO. The first MIMO-OFDM chipset (which later led to the IEEE 802.11n standard) was

implemented by the Airgo Networks, which was founded in 2001 by Raleigh. The new IEEE

802.11ac (WiFi) standard includes the MIMO-OFDM, and is expected, MIMO-OFDM to

play a major role, in the upcoming IEEE 802.11ax standard and in the fifth generation (5G)

mobile phone systems.

2.2.2 Multi-User MIMO

Another benefit of the MIMO technology is to be able to deploy multiple antennas base

stations to support multiple users with one or more antennas per user terminal. This tech-

nique refers as Multi-User MIMO or MU-MIMO. The exploitation of the spatial dimension

(spatial signature), makes it possible to identify the individual users, even when they are in

the same time/frequency/code domains, resulting in increased system capacity. Figure 2.2

shows a Multi-User MIMO system with one Base Station and multiple user terminals. Each

user simultaneously communicates with the Base Station, which is equipped with an array

of antennas. This technology is also known as Space-Division Multiple Access (SDMA)

[304],[249],[140], [67],[305].

The SDMA technique can be considered as a specific branch of the family of MIMO

systems, where the transmissions of the multiple-transmitter antennas cannot be coordi-

nated, simply because they belong to different users. The major advantages of the SDMA

technology can be summarized as:

• Range extension: The coverage area of high-integrity reception, with an antenna array,

can be significantly larger than that of any single-antenna-aided system. For a given

geographic area the number of required cells can be substantially reduced with the

use of SDMA technology.

• Multi-path mitigation: The SDMA systems can benefit from the MIMO technology to

efficiently mitigate the detrimental effects of multi-path propagations. Furthermore,
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Figure 2.2 Multi-User MIMO (SDMA) System: One multi-antenna Base station with mul-
tiple user terminals with one or more antennas.

in specific scenarios the multi-path phenomenon can even be exploited to enhance the

desired users’ signals by employing efficient receiver diversity schemes.

• Capacity increase: Theoretically, SDMA can be incorporated into any existing multiple-

access standard at the cost of a limited increase in system complexity, while attaining

a substantial increase in capacity. For instance, by applying SDMA to a conventional

TDMA system, two or more users can share the same time slots, resulting in a doubled

or higher overall system capacity.

• Interference suppression: The interference imposed by other systems and by users

in other cells can be significantly reduced by exploiting the desired user’s unique,

user-specific Channel Impulse Responses (CIRs).

• Compatibility: SDMA is compatible with most of the existing modulation schemes,

carrier frequencies and other specifications. Furthermore, it can be readily imple-

mented using various array geometries and antenna types.

The use of MU-MIMO or SDMA techniques on an OFDM system can be beneficial
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due to the advantages of both technologies [6], [297], [306], [307], [7]. The new IEEE

802.11ac (WiFi) along with the LTE-Advanced (4G) standards use these new technologies

to increase user data rates, network capacity and user coverage, while having better quality

of service (QoS) for increased number of users. The OFDM and MU-MIMO techniques are

in the core of the future standards as IEEE 802.11ax and fifth generation (5G) mobile phone

system, and in the main focus of research for wireless communications [366], [62], [296],

[64], [122], [364], [363], [180].

2.3 Baseband Processing

Orthogonal Frequency Division Multiplexing (OFDM) is a block modulation scheme, where

a block of N information symbols is transmitted in parallel on N subcarriers. An OFDM

modulator can be implemented by an Inverse Discrete Fourier Transform (I-DFT) on the

block of information symbols followed by an Digital-to-Analog Converter (DAC). Typi-

cally, a cyclic prefix (CP) is introduced to the output of the IDFT, for the mitigation of the

effects of the inter-symbol interference (ISI), caused by the channel time spread. For each

transmission block a preceded cyclic prefix is introduced, containing a repetition of the last

modulated subcarriers of the OFDM symbol. The length of the CP works as a guard interval

between two consecutive OFDM symbols, while the repetition of the subcarriers in the CP

allows the linear convolution of a frequency-selective multipath channel to be modeled as

circular convolution, which results in low complexity frequency-domain processing at the

receiver, for the tasks of channel estimation and equalization.

The physical layer of a telecommunication system includes a frequency-domain digital

processing, a time-domain digital processing and the analog front-end. In a OFDM-based

system, the Inverted Discrete Fourier Transform (IDFT) is used at the end of the frequency-

domain processing, while the Digital-to-Analog Converter (DAC) is used at the start of the

analog front-end (end of time-domain processing), at the transmission path. At the recep-

tion path the Analog-to-Digital Converter (ADC) is used at the end of the analog front-end,

while the Discrete Fourier Transform (DFT) is used at the start of the frequency-domain

processing (end of time-domain processing). Figure 2.3 shows a typical OFDM-based sys-

tem transmission and reception processing paths. The frequency-domain digital processing
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is also known as Baseband Processing.

The analog front-end path may contain analog amplifiers, synthesizers, mixers, filters,

etc. along with the analog-to-digital and digital-to-analog converters. The time-domain pro-

cessing path on the transmitter may contain FIR filters, IQ imbalances correction modules,

predistortion modules, etc. while in the receiver path may contain FIR filters, Automatic-

Gain Controllers (AGC), Synchronization and packet detection modules, Carrier-Frequency-

Offset (CFO) estimation and correction units, Channel estimation and equalization units,

Phase Noise estimators, etc.

2.3.1 OFDM Baseband processing

The Medium Access Control (MAC) layer forwards the data packet to be transmitted to

the baseband processing path of the transmitter, in the form of a data bit stream. It is a

common practice, for baseband processing, to “scramble” the bit stream of the data packet.

This technique is used to eliminate consecutive zeros or ones in the bit stream, and in many

cases it is implemented with a simple Linear-Feedback Shift Register (LFSR) unit. The

output of the scrambler unit is forwarded to the Forward-Error-Correction (FEC) unit. This

module contains the implementation of one or more error codes and constructs a new data bit

stream, which contains information from the scrambled bit stream and additional embedded
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information for the error correction procedure on the receiver processing path. The FEC

module introduces additional information to the data bit stream and the selected coding rate

indicates the amount of these additional information compared to the initial data bit stream.

For specific error codes, which are sensitive to localized errors in the bit stream (like BCC,

TurboCodes, etc), an additional module is used to shuffle the bit stream, based on specific

permutations (Interleaver). The use of the interleaving technique eliminates the possibility,

localized channel interference to produce localized data errors in the bit stream. For error

codes which are robust to localized errors (like LDPC codes) this technique is not used.

The output data of the FEC module are forwarded to the constellation mapping unit,

which maps block of bits to vectors in the IQ space (complex numbers), based on the se-

lected constellation. State information about the channel (signal-to-noise ratio, interference,

fading, etc.) are gathered by the MAC layer, based on several measurements on the transmit-

ter (packet-error-rate, receiver channel feedback, etc.). Based on these information a specific

constellation is selected for the next packet transmission. There are constellations which

are robust to channel noise, interference and fading (BPSK,QPSK,PSK,DPSK) and con-

stellations which are sensitive to low singal-to-noise ratios (SNR) and fading (16-QAM,64-

QAM,256-QAM, etc.). A constellation map contains specific points in the IQ space, which

are represented by IQ vectors. The indices of the constellation points are used for the map-

ping of the data bit stream. The more the points of a constellation map, the more bits can

be mapped to a specific IQ vector (increased transmission throughput), with the disadvan-

tage of increased sensitivity to channel noise. The IQ space has specific dimensions and

more constellation points results in decreased distances between the points, and therefore

increased possibility for demapping errors in the receiver, with high channel interference.

The IQ vectors at the output of the constellation mapping module are forwarded to the

IDFT unit. The majority of the OFDM-based systems use a power of two OFDM symbol

size for low complexity implementation of the IDFT module, by using the Inversed Fast

Fourier Transform (IFFT). Each of the OFDM symbols, at the input of the IFFT unit, con-

tains the data subcarriers (blocks of data bits mapped to IQ vectors), the null subcarriers

(zero-value IQ vectors) and the pilot subcarriers (specific IQ vectors, which are known to

the receiver). Null subcarriers at the “edges” of the OFDM symbols act as guard intervals

between consecutive symbols, eliminating the Inter-Symbol-Interference, while null sub-
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carriers at the “center” of the OFDM symbol decrease the implementation complexity of

the Digital-to-Analog and Analog-to-Digital converters [219]. Pilot subcarriers are specific

IQ vectors which are spread inside the OFDM symbols. The values of the pilot IQ vectors

are known to the receiver and they can be constant for each symbol or can be produced

based on a specific sequence, by using an LFSR unit. These known values are used in the

receiver processing path for channel estimation and tracking, synchronization, carrier fre-

quency offset (CFO), sampling clock offset (SCO) and Phase noise (PHN) estimation [60],

[168], [178], [357], [239], [360], [206]. The output of the IFFT processor is a sequence

of time-domain IQ samples. A portion of the start of the sequence, for each of the trans-

mission symbols, is appended at the end of the sequence as Cyclic Prefix to eliminate the

Inter-Symbol-Interference and reduce the complexity of the channel estimation and syn-

chronization on the receiver processing path. Figure 2.4 shows an example of an OFDM

transmission baseband processing path. The module with the higher computational com-

plexity, in the transmitter processing path, is the IFFT unit, where for specific channel codes

the FEC block can have increased complexity.

At the receiver, the time-domain processing path forwards the received IQ samples se-

quence to the baseband processing path. The cyclic prefix can be used for the synchroniza-

tion of the symbols [258], while the time-domain IQ samples are forwarded to the FFT mod-

ule. Carrier frequency offset, sample clock offset, phase noise and channel noise estimations

can be calculated by using time-domain IQ samples or frequency-domain IQ vectors, de-

pending on the selected algorithms [303], [33],[205], [42], [63], [215], [79]. The FFT unit

outputs the IQ vectors, which can be equalized based on the above mentioned estimations,

before the constellation demapper module. Furthermore, the pilot subcarriers can be used

for CFO and SCO estimation and compensation and for channel tracking and channel esti-

mation corrections, when the channel interference changes during a packet reception [188],

[347].

In the case of rapidly time varying channels (mobile or vehicular systems) enhanced
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techniques for channel tracking is used. Advanced algorithms for channel estimation and

tracking, based on preamble symbols and pilot subcarriers, or the introduction of more com-

plex pilot subcarriers in the OFDM symbols shown promising results in terms of system

performance, with increased computational complexity [276], [253], [84]. The introduction

of specific pilot OFDM symbols, in the middle of the packet transmission, or the chan-

nel tracking based on received data subcarriers (along with the pilot subcarriers) increase

the system reliability on mobile and vehicular channels with the drawback of decreased

throughput and increased complexity [136], [71], [83]. An enhanced technique for increas-

ing the performance and reliability of the system, in rapidly time varying wireless channels

is the Decision-Feedback Equalization method. The receiver performs part of the trans-

mission processing path, to the output data of the FEC decoder and calculates a possible

channel interference for the specific OFDM symbol. Using this technique, the channel state

information on the receiver, can be updated with the latest channel interference, providing a

reliable channel tracking mechanism [53], [58], [165], [1], [26].

Based on the FEC decoder used, the constellation demapper can produce decoded bit

stream (Hard-Decision Demapper) or stream of soft-information bits (Soft-Decision Demap-

per). The most common soft-information used in OFDM systems, is the Log-Likelihood

Ratio (LLR) which indicates the probability for a specific bit to be “1” or “0”. The FEC

decoder unit uses this soft-information to calculate the probability of an error on a specific

bit or block of bits, for more efficient error correction. Soft-Decision demappers and Soft-

information FEC decoders have increased computational complexity, compared to Hard-

Decision processing paths with the benefit of increased error correction capability. Based

on the expecting channel conditions of a wireless system and complexity requirements, the

soft-information processing paths are commonly selected to increase the system throughput,

due to enhanced error correction capability with increased channel interference [299], [232],

[212], [320], [248]. For specific error correction codes (BCC, Turbo, etc) a De-Interleaver

module is used to un-shuffle the data bits or LLRs based on the same permutations which

are used in the Interleaver module of the transmission processing path.

A more advanced Demapping-Decoding scheme is that in which the FEC decoder unit

outputs also soft-information bits, which then forwarded to the Soft-Decision demapper for

re-evaluation of the demapped values. The demapper module outputs new soft-information
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Figure 2.5 An example of an OFDM reception baseband processing path with channel,
CFO, SCO and PHN estimation and compensation units, Pilot SC processing unit, Iterative
Decoding mechanism and Decision-Feedback Equalization method for channel tracking.

bits with decreased probability of errors and the FEC decoder can evaluate the new soft-

information for a more reliable and error-free output. This iterative process (Iterative De-

coding) between the demapper and the decoder continue until the new soft-information,

from the demapper, does not affect the output of the decoder. The iterative decoding tech-

niques increase the system reliability in extreme channel conditions with the disadvantage

of increased system complexity and latency [150],[295],[358], [362]. For error correction

codes which use interleaving techniques the De-Interleaver/Interleaver modules are used in

each iteration of the algorithm, for the un-shuffling/shuffling of the soft-information LLRs.

Figure 2.5 shows an example of an OFDM-based receiver baseband processing path.

The Iterative Decoding and Decision-Feedback Equalization techniques are illustrated. The

computation complexity is higher than that of the transmission processing path, with the

FEC decoder, FFT and Channel Estimation units having increased complexity compared

to other modules. Based on the selected algorithms the CFO/SCO/PHN estimation and

compensation units and the Soft-Decision Demapper could have increased computational

complexity.
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Figure 2.6 An example of a MIMO-OFDM transmission baseband processing path (Spatial
Multiplexing MIMO mode)

2.3.2 MIMO-OFDM Baseband processing

In the case of MIMO-OFDM systems, multiple processing paths are commonly used for

the processing of multiple data streams. Depending on the MIMO mode, the transmission

processing path can be splitted in multiple paths either before or after the IFFT module. In

MIMO cases with increased system throughput requirements (spatial multiplexing - SM),

the data stream after the scrambler unit, is divided into several Encoder Streams , using mul-

tiple encoder units. For reducing the computational complexity on the receiver processing

path, it is common to use less encoder streams than spatial MIMO streams (reducing the

number of FEC decoder units). An example is the IEEE 802.11ac protocol, in which for

4 spatial streams a maximum number of 3 encoder streams are used. An additional unit

(stream parser) is required for the permutation of the X encoder data streams to Y spatial

data streams, while the total number of the encoder streams should have the same through-

put as the total number of spatial streams. Figure 2.6 shows an example of a MIMO-OFDM

transmitter baseband processing path, for the case of spatial multiplexing MIMO mode.

In MIMO cases with increased system reliability requirements, the same information is

transmitted over multiple antennas and the single processing path is commonly splitted to

multiple ones, after the IFFT module.

In the receiver processing path more complex architectures are required, for a MIMO-

OFDM system. In the common case the synchronization, channel estimation, CFO/SCO/PHN

estimation and channel equalization can not be splitted easily to multiple units, due to the

interference between the spatial streams (multistream interference - MSI) [8], [274], [141],
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Figure 2.7 An example of a MIMO-OFDM receiver baseband processing path (Spatial Mul-
tiplexing MIMO mode)

[135], [164]. Advanced algorithms are used for these processing tasks with increased com-

putational complexity [272], [284], [350], [204], [257], while more complex feedback ar-

chitectures are used for channel estimation and tracking in rapidly time-varying channel

conditions [20], [277], [279], [104].

The FFT calculation unit used in OFDM-based systems can be used also in MIMO-

OFDM systems, for the computation of the transform in multiple streams. MIMO require-

ments demand FFT modules that can handle the increased throughput of the multiple spa-

cial streams. Receiver architectures with multiple FFT processors, a single time-sharing

FFT module or efficient data scheduling FFT schemes has been proposed, to handle the

high throughput requirements of a MIMO-OFDM system. Moreover, the demapper unit

from the OFDM baseband processing path, can also be used in MIMO-OFDM systems with

increased throughput requirements. More advanced algorithms for MIMO Detection can

be used to increase both system performance and reliability in several channel conditions

[147], [77]. These algorithms consider the interference between the spacial streams and the

estimated channel conditions and they estimate the most likely transmitted symbols [8]. The

high throughput requirements of MIMO-OFDM systems in comparison with the increased

computational complexity of these algorithms, is the main subject in several research arti-

cles [29], [88], [68], [19], [275], [105].

Figure 2.7 shows a typical example of a MIMO-OFDM receiver baseband processing

path with multiple spatial and encoder streams. In several MIMO-OFDM systems the re-

ceiver architecture could be more complex, with advanced channel estimation and tracking
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implementations, increased complexity CFO/SCO/PHN estimation and compensation units,

iterative decoding schemes, etc.





Chapter 3

Fast Fourier Transform

The Fourier transform is widely used in physics, engineering, statistics and applied math-

ematics. A key property of the Fourier transform is its ability to allow one to examine a

function or waveform from the perspective of both the time and frequency domains. The

fast Fourier transform (FFT) is the efficient algorithm for the calculation of the discrete

Fourier transform (DFT) of a sequence of N numbers. In digital signal processing the DFT

is the most widely used transform and it has been applied in a wide range of fields such

as noise reduction, global motion estimation, speech synthesis and recognition, music syn-

thesis, cardiac patients diagnosis, digital audio/video broadcasting (DAB/DVB), orthogonal

frequency division multiplexing (OFDM) systems.

J.W. Cooley and J.W. Tukey in 1965 [117] showed that the computational complexity

of a N-point DFT can be reduced from O(N2) to O(N · logN) by using the new FFT al-

gorithm. This publication caught the attention of the science and engineering community

but was not the first one to propose the FFT algorithm. In 1805, two years before the work

of Jean Baptiste Joseph Fourier on representations of functions as infinite harmonic series,

Carl Friedrich Gauss propose the techniques, that we now call the fast Fourier transform

(FFT), for calculating the coefficients in a trigonometric expansion of an asteroid’s orbit

[98]. This algorithm is as general and powerful as the Cooley-Tukey common-factor algo-

rithm and is, in fact, equivalent to a decimation-in-frequency algorithm adapted to a real

data sequence. Nevertheless, the FFT algorithm had a revolutionary effect on many dig-

ital processing methods, and remains the most widely used method of computing Fourier

transforms.
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3.1 Introduction

The discrete Fourier transform (DFT) of a sequence x [n] is calculated based on the following

equation:

X [k] =
N−1∑
n=0

x [n] ·W nk
N , k = 0,1, . . . ,N−1, where W nk

N = e− j(2π/N)kn (3.1)

The computational complexity of the DFT calculation can be reduced by decomposing the

computation into smaller DFT calculations. By exploiting the symmetry and the periodicity

of the twiddle factors (W kn
N ) we can reduce the required calculations. Algorithms in which

the decomposition is based on decomposing the sequence x [n] into successively smaller

subsequences are called decimation-in-time algorithms, while the decimation-in-frequency

algorithms are based on the decomposition of the sequence X [k] into successively smaller

subsequences [194].

Radix-2 Decimation-in-Time Decomposition

Assuming that N is an integer power of 2, i.e., N = 2ν we can use the decimation-in-time

algorithm to calculate the X [k], by separating x [n] into two (N/2)-point sequences consist-

ing of the even-numbered points in x [n] and the odd-numbered points in x [n]. From (3.1)

we have:

X [k] =
∑

n even

x [n] ·W nk
N +

∑
n odd

x [n] ·W nk
N (3.2)

With the substitution of variables n = 2r for n even and n = 2r+1 for n odd,

X [k] =
(N/2)−1∑

r=0
x [2r] ·W 2rk

N +
(N/2)−1∑

r=0
x [2r+1] ·W (2r+1)k

N

=
(N/2)−1∑

r=0
x [2r] ·

(
W 2

N
)rk

+W k
N ·

(N/2)−1∑
r=0

x [2r+1] ·
(
W 2

N
)rk

(3.3)

We can substitute the W 2
N with WN/2, since:

W 2
N = e−2 j(2π/N) = e− j2π/(N/2) =WN/2 (3.4)
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From (3.3) and (3.4) we can evaluate the X [k] as:

X [k] =
(N/2)−1∑

r=0
x [2r] ·W rk

N/2 +W k
N ·

(N/2)−1∑
r=0

x [2r+1] ·W rk
N/2

= G [k]+W k
N ·H [k] , k = 0,1, . . . ,N−1

(3.5)

In (3.5) each of the sums is an (N/2)-point DFT, the first sum is the (N/2)-point DFT of

the even-numbered points of the original sequence and the second sum is the (N/2)-point

DFT of the odd-numbered points of the original sequence. Although the index k ranges

over N values (k = 0,1, . . . ,N−1), each of the sums in (3.5), must be evaluated only for k

between 0 and (N/2)−1, since G [k] and H [k] are each periodic in k with period N/2. After

the calculation of the two (N/2)-point DFT (G[k] and H[k]), we can combine them and

compute the N-point DFT (X [k]). Figure 3.1 shows the decimation-in-time decomposition,

based on (3.5), for an 8-point DFT, where the G[k] designating the 4-point DFT of the even-

numbered points and H[k] designating the 4-point DFT of the odd-numbered points.

Based on (3.1) the direct computation of the DFT (X [k]) requires a total of N2 complex

multiplications and N2 complex additions1. By comparison, (3.5) requires the computation

of two (N/2)-point DFTs, which require 2(N/2)2 complex multiplications and approx-

imately 2(N/2)2 complex additions, if we calculate the (N/2)-point DFTs with the direct

method (eq. (3.1)). Extra computations are needed to calculate the final N-point DFT, which

require N complex multiplications and N complex additions. The computation of (3.5) re-

quires at most N + 2(N/2)2 or N +N2/2 complex multiplications and complex additions,

which are less than the N2 required by the direct computation (for N > 2).

If N/2 is even, in (3.5), we can use the same decomposition for the calculation of each

of the (N/2)-point DFTs. The computation of G[k] (and H[k]) can be done by first cal-

culate two (N/4)-point DFTs and then combine the results. Thus, G[k] in (3.5) would be

represented as:

G [k] =
(N/2)−1∑

r=0

g [r] ·W rk
N/2 =

(N/4)−1∑
l=0

g [2l] ·W 2lk
N/2 +

(N/4)−1∑
l=0

g [2l +1] ·W (2l+1)k
N/2

1The total required complex additions are N(N−1) but for large values of N, (N−1) can be approximated
by N.
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Figure 3.2 Flow graph of the decimation-in-time decomposition of an N-point DFT compu-
tation into four (N/4)-point DFT computations for N=8.

or

G [k] =
(N/4)−1∑

l=0

g [2l] ·W lk
N/4 +W k

N/2

(N/4)−1∑
l=0

g [2l +1] ·W lk
N/4 (3.6)

Similarly, H[k] would be represented as:

H [k] =
(N/4)−1∑

l=0

h [2l] ·W lk
N/4 +W k

N/2

(N/4)−1∑
l=0

h [2l +1] ·W lk
N/4 (3.7)

Figure 3.2 shows the decimation-in-time decomposition, based on (3.6) and (3.7), for an

8-point DFT.

In the general case that N is an integer power of 2, we can decompose the DFT com-

putation further until we were left with only 2-point transforms. This requires v = log2N

stages of computation. Figure 3.3 shows the complete decimation-in-time decomposition of

an 8-point DFT computation. There are 3 stages of decomposition (v= log2N = 3) and each

stage has N complex multiplications and N complex additions. Since there are v = log2N

stages, we have a total of N · log2N complex multiplications and additions.
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Figure 3.4 Flow graph of basic butterfly computation in Fig. 3.3
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Figure 3.5 Flow graph of simplified butterfly computation requiring only one complex mul-
tiplication.

In proceeding from one stage to the next in Fig. 3.3, the basic computation is in the

form of Fig. 3.4. A pair of values in one stage (m-th stage) is obtained by a pair of values in

the preceding stage ((m-1)-th stage), where the coefficients are always power of WN and the

exponents are separated by N/2. The flow graph of Fig. 3.4 is an elementary computation

and it is called butterfly. A more accurate name for this flow graph is Decimation-in-Time

Radix-2 butterfly, due to the fact that it is a computation with 2 inputs and 2 outputs and it

is based on the decimation-in-time decomposition.

Since

W N/2
N = e− j(2π/N)N/2 = e− jπ =−1 (3.8)

the factor W r+N/2
N can be written as

W r+N/2
N =W N/2

N ·W r
N =−W r

N (3.9)

This will result in a simplified butterfly computation which requires only one complex mul-

tiplication instead of two. The simplified butterfly is shown in Fig. 3.5. By using the basic

flow graph of Fig. 3.5 in the computation of a N-point DFT (Fig. 3.3) we can reduce the

number of required complex multiplications by a factor of 2. Figure 3.6 shows the flow

graph of an 8-point DFT computation using the simplified butterfly computations. Note that

there are trivial complex multiplications in the flow graph of Fig. 3.6. The multiplication

with W 0
N = 1 can be removed while the multiplication with W N/4

N =− j can be evaluated by

exchanging the real and imaginary parts of the number.

Figure 3.6 shows that for the calculation of a N-point DFT we need N/2 coefficient

values (W r
N). These values are independent from the input values of the DFT and can be

precomputed and stored in a look-up-table (LUT). Several DFT/FFT implementations use
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a LUT structure to store the coefficient values to speedup the computation. Nevertheless,

there are cases that the LUT structure is too big (for large values of N) or the memory re-

quirements prohibit the use of precomputed coefficient values. We can exploit the symmetry

and periodicity of the coefficients to reduce the required number of precomputed coefficient

(twiddle factors) values. The twiddle factors for the computation of a N-point DFT are:

W r
N = e

− j2πr
N

= cos
2πr
N
− j sin

2πr
N

, 0≤ r ≤ N
2
−1 (3.10)

We can split the coefficients into two groups and calculate their values based on N/4 pre-

computed sine and cosine values:

W r
N = cos 2πr

N − j sin 2πr
N

W r+N/4
N = sin 2πr

N − j cos 2πr
N

, 0≤ r ≤ N
4 −1 (3.11)

The required precomputed sine and cosine values are N/4+N/4 = N/2 real values com-

pared to N/2 complex values (or N real values) of (3.10).
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Furthermore, we can reduce the required pre-calculated values by splitting the twiddle

factors in four groups:

W r
N = cos 2πr

N − j sin 2πr
N

W r+N/8
N =

√
2

2

(
cos 2πr

N + sin 2πr
N

)
+ j
√

2
2

(
sin 2πr

N − cos 2πr
N

)
W r+N/4

N = sin 2πr
N − j cos 2πr

N

W r+3N/8
N =

√
2

2

(
sin 2πr

N − cos 2πr
N

)
− j
√

2
2

(
cos 2πr

N + sin 2πr
N

)
(3.12)

with , 0≤ r ≤ N
8 −1, or

W r
N = cos 2πr

N − j sin 2πr
N

W r+N/8
N = A+ jB

W r+N/4
N = sin 2πr

N − j cos 2πr
N

W r+3N/8
N = B− jA

, 0≤ r ≤ N
8 −1 (3.13)

where A =
√

2
2

(
cos 2πr

N + sin 2πr
N

)
and B =

√
2

2

(
sin 2πr

N − cos 2πr
N

)
.

The required precomputed values for this case are the N/8+N/8 = N/4 sine and cosine

real values and the constant value of
√

2
2 , compared to the N/2 real values of (3.11) and N

real values of (3.10). The extra computational steps of (3.13) and (3.11) increase the com-

plexity of the FFT calculation with the benefit of reduced memory requirements. Depending

on the application we can select the most beneficial method for storing the coefficient factors

needed for the FFT computation.

Radix-4 Decimation-in-Time Decomposition

In cases that N is an integer power of 4 (N = 4v) we can further reduce the computational

cost of the DFT, by using the Radix-4 decomposition algorithm. We can rewrite the (3.1) in
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terms of four partial sums:

X [k] =
(N/4)−1∑

r=0
x [4r] ·W 4rk

N +
(N/4)−1∑

r=0
x [4r+1] ·W (4r+1)k

N

+
(N/4)−1∑

r=0
x [4r+2] ·W (4r+2)k

N +
(N/4)−1∑

r=0
x [4r+3] ·W (4r+3)k

N

=

(
(N/4)−1∑

r=0
x [4r] ·

(
W 4

N
)rk

)
+W k

N ·

(
(N/4)−1∑

r=0
x [4r+1] ·

(
W 4

N
)rk

)

+W 2k
N ·

(
(N/4)−1∑

r=0
x [4r+2] ·

(
W 4

N
)rk

)
+W 3k

N ·

(
(N/4)−1∑

r=0
x [4r+3] ·

(
W 4

N
)rk

)
(3.14)

and since W 4
N =WN/4 we have:

X [k] =

(
(N/4)−1∑

r=0
x [4r] ·W rk

N/4

)
+W k

N ·

(
(N/4)−1∑

r=0
x [4r+1] ·W rk

N/4

)

+W 2k
N ·

(
(N/4)−1∑

r=0
x [4r+2] ·W rk

N/4

)
+W 3k

N ·

(
(N/4)−1∑

r=0
x [4r+3] ·W rk

N/4

)

= G [k]+W k
NH [k]+W 2k

N Z [k]+W 3k
N Y [k]

(3.15)

where G [k], H [k], Z [k] and Y [k] are N/4-point DFTs. Therefore they are periodic with

period N/4, and based on the identities W N/4
N =− j, W N/2

N =−1 and W 3N/4
N = j we have:

X
[
k+ N

4

]
= G [k]+W k+N/4

N H [k]+W 2(k+N/4)
N Z [k]+W 3(k+N/4)

N Y [k]

= G [k]− jW k
NH [k]−W 2k

N Z [k]+ jW 3k
N Y [k]

(3.16)
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where k = 0,1, . . . ,N/4−1.

Similarly:

X
[
k+ N

2

]
= G [k]−W k

NH [k]+W 2k
N Z [k]−W 3k

N Y [k] , k = 0,1, . . . ,N/4−1 (3.17)

X
[
k+ 3N

4

]
= G [k]+ jW k

NH [k]−W 2k
N Z [k]− jW 3k

N Y [k] , k = 0,1, . . . ,N/4−1 (3.18)

Figure 3.7 shows the flow graph of the Radix-4 Decimation-in-Time butterfly computa-

tion. From the flow graph we can see that the Radix-4 DIT butterfly needs three complex
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multiplications, twelve complex additions and eight trivial multiplication with specific con-

stant values. We can use Radix-2 butterflies to calculate the Radix-4 computation. Figure

3.8 shows the simplified Radix-4 Decimation-in-Time butterfly, which uses four Radix-2

butterflies to reduce the number of complex additions. This Radix-22 butterfly computation

needs three complex multiplications, eight complex additions and five trivial multiplications

with constant values.

Radix-2s Decimation-in-Time Decomposition

We can generalized the decomposition technique from the above subsections to construct the

Radix-2s Decimation-in-Time decomposition. Setting q = 2s, a radix-q DIT FFT algorithm

may be developed from decomposing (3.1) into q partial sums:

X [k] =
N−1∑
n=0

x [n] ·W nk
N

=
q−1∑
u=0

N/q−1∑
r=0

x [qr+u] ·W k(qr+u)
N

=
q−1∑
u=0

W uk
N

N/q−1∑
r=0

x [qr+u] ·W k(qr)
N

=
q−1∑
u=0

W uk
N

N/q−1∑
r=0

x [qr+u] ·
(
W q

N
)rk

=
q−1∑
u=0

W uk
N

(
N/q−1∑

r=0
x [qr+u] ·W rk

N/q

)

(3.19)

Note that (3.5) and (3.15) are special cases of the equation (3.19) when q = 2 and q = 4.

According to (3.19), the time series can be decimated into q = 2s sets so that each of the

q partial sums, can be recursively computed independent of each other. Each of the partial

sums represents the DFT of a subproblem of size N/q.
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3.2 FFT Architectures

Several FFT architectures for hardware implementation have been proposed in the literature.

Each architecture differentiated in terms of the used radix butterfly processing elements and

the data management scheme used [246]. The majority of the hardware FFT architectures

can be categorized, based mainly on the data management scheme, in the following three

groups:

• Fully parallel FFT architectures

• Pipeline/Cascaded FFT architectures

• Memory-Based/Column FFT architectures

A Fully parallel or Array FFT architecture is a direct mapping of the FFT signal flow

graph to hardware. For a N-point FFT fully parallel architecture, (N/2) · log2N radix-2 but-

terfly units are required (log2N stages with N/2 radix-2 butterfly units each). The data from

one stage to the next should be permuted based on the FFT algorithm. This architecture can

be pipelined to take N inputs and produce N outputs at each clock cycle [43]. We can im-

plement fully parallel FFT architectures with higher radixes or split/mixed radixes. In such

cases the permutation network from one stage to another become extremely complex. As N

grows the required processing elements are increased linearly and the routing complexity of

the architecture becomes significantly, even in the simple case of radix-2 butterfly units.

The fully parallel architecture of the FFT has increased throughput and low latency

compare to other FFT architectures but the significantly area and power overhead can be

prohibitive for implementation of FFT processors supporting large numbers of N. Further-

more, these FFT architectures can be used only in applications that all the inputs of the FFT

are available at every clock cycle, to maximize the throughput and with only small number

of FFT points, to minimize the area and power overhead of the FFT processor.

Another category of FFT hardware architectures is that of the Pipeline or Cascaded FFT

architectures. For the majority of the pipeline architectures there is only one butterfly pro-

cessing unit for each of the FFT stages. In case of a N-point FFT with radix-r butterfly units

there are logrN stages and processing units. In contrast with the fully parallel architecture,

in the case of cascaded architectures there is no need for all the input data of the FFT, to be
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available at each clock cycle, to maximize the throughput. For the case of a radix-r pipeline

FFT processor, only r input data are needed at every clock-cycle.

At each FFT stage, the butterfly calculations performed in data, with different “dis-

tances” between them (e.g. for the case of a radix-2 DIT butterfly unit at the first stage of

the FFT calculation, the data entering the butterfly should have “distance” of N/2 between

them, while for the butterfly unit at the second stage of the FFT, the input data should have

“distance” of N/4). In a pipeline FFT architecture the correct “distances” between the data

elements entering the butterfly unit, at each FFT stage, is guaranteed with the use of mem-

ory elements. A cascaded FFT processor can start the calculation of the next FFT frame

while processing the previous one (e.g the butterfly unit of the first stage, after processing

the last input of the previous frame it can store the first input of the next FFT frame, for the

“distance” correction process). This feature makes this architecture favorable for real-time,

streaming and high-throughput applications. The pipeline FFT processors can be further

sub-categorized, based on the radix and memory architecture used. The various pipeline

FFT architectures are presented in the following section.

The Memory-based or Column FFT architecture utilizes one or more butterfly units for

all the FFT stages, while storing the input data and the intermediate results to memories. In

the case of a N-point FFT with one radix-r butterfly unit, the memory based FFT processor

requires, at least, N/r clock cycles to perform the calculations for one FFT stage and store

the intermediate results to memory, assuming that it can read and write r data in parallel

from the memory (memory can be splitted in r different banks for parallel access). A total

number of (N/r) · logrN clock cycles and memory requirements of at least N data required,

for a memory-based FFT architecture, to perform one FFT calculation. A disadvantage of

the memory-based FFT architecture is that it can not process the next FFT frame before the

end of the FFT calculations on the current frame. A memory-based FFT processor mini-

mizes the hardware resources needed and can be used in low area/power applications. There

are several memory-based FFT architectures that can be used in real-time and streaming ap-

plications (Continues-Flow architectures), by using high-radix butterflies, memory buffers

and higher clock frequencies (than that of the input data sampling frequency).

A straight forward implementation of a memory-based FFT processor, will include two

memories of N data each, one for the inputs of the butterfly unit (outputs of the previous
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Figure 3.9 Radix-2 DIF MDC Architecture for an 8-point FFT

stage) and one for the butterfly unit outputs (input of the next stage). A more efficient

implementation should have only one memory to store N data, and the butterfly unit should

write the output data in the same memory positions with the input data (which reads). This

requires an addressing scheme based on specific permutations which ensure that the butterfly

unit can read and write at the same memory positions, for each of the FFT stages, the correct

data for the FFT calculations. These FFT architectures is a sub-category of the memory-

based FFT processors and they are known as In-Place FFT architectures. The sub-categories

of the memory-based FFT architectures are presented in Section 3.2.2.

3.2.1 Pipeline FFT Architectures

Pipelined FFT processors characterized by the continues processing of the input data, which

arrive in word sequential format. As mentioned before, the cascaded FFT architecture, uti-

lizes one butterfly unit for each of the FFT stages. The FFT calculation requires that the

input data, for each of the butterfly processing elements, should have the correct “distance”

between them, based on the FFT length and the FFT stage. Different approaches in “dis-

tance” correction mechanism and butterfly radixes used, result in various memory and but-

terfly utilization factors and different pipeline architecture.

Multi-path Delay Commutator Architectures

The Multi-path Delay Commutator (MDC) or Feed-Forward architecture [240], utilizes de-

lay elements (memory buffers) and switching circuits to ensure the correct “distance” be-

tween the input data of each butterfly processing unit. The input samples are splitted into

parallel streams, based on the used radix, and float forward to the butterfly units. Shuffling

circuits (commutators) and delay buffers are responsible to “align” the output data from one

butterfly (FFT stage) to the next, based on the FFT data flow graph.
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Figure 3.10 Radix-4 DIF MDC Architecture for an 64-point FFT

A radix-2 Decimation-in-Frequency (DIF) MDC architecture, for an 8-point FFT, is

depicted in Fig. 3.9. The first commutator circuit splits the single input stream to two

parallel data streams. The upper data stream is delayed for N/2 cycles with the use of a

delay buffer, before entering the radix-2 butterfly unit. The second output of the butterfly

is multiplied with the appropriate coefficient, before the second delay buffer (delay of N/4

cycles). The second commutator rearrange the data streams and the first data stream is

delayed for N/4 cycles before the second butterfly unit. Again the second output of the

butterfly unit is multiplied with the appropriate coefficient, and a delay buffer is used before

the last commutator circuit. The last butterfly unit forwards the FFT output in two parallel

streams.

The radix-2 DIF MDC architecture utilizes log2N butterfly elements, log2N−2 complex

multiplier modules and 3N/2− 2 registers for the delay buffers. It has a 50% utilization

on both the butterfly elements and the complex multiplier modules [95], [128]. The low

utilization factor of the hardware resources and the large number of delay elements are the

main disadvantages of the MDC architecture. On the other hand this architecture has a very

simple control and can process input samples in parallel streams.

Figure 3.10 shows an 64-point radix-4 DIF MDC architecture. The first commutator

splits the input samples into four data streams and delay buffers align the streams before

the first radix-4 butterfly unit. The three outputs of the butterfly are multiplied with the

appropriate twiddle factors and with the use of delay buffers are forwarded to the next

commutator circuit. A similar approach is used for the next two stages and the last radix-4

butterfly element forwards the FFT output data in four parallel streams.

The architecture of Fig. 3.10 utilizes log4N radix-4 butterfly units, 3log4N complex

multiplier modules and 5N/2−4 registers for the delay buffers. It has a very low utilization

factor of 25% for the hardware resources and a very simple control logic. We can increase

the utilization factor by processing multiple FFT frames in parallel [95], [128], [40], [352].
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Furthermore, we can increase the throughput of the MDC-FFT processor by using high-

radix butterflies [251], [130], [4], [78] or mixed-radix architectures [359], [152].

Single-path Delay Feedback Architecture

The Single-path Delay Feedback architecture [86], [334], has a more efficient way of using

the registers, by storing some of the butterfly outputs in feedback shift registers. Only a

single data stream goes through the multiplier at every stage, regardless of the selected

radix implementation. It has the same number of butterfly units as in the MDC approach,

but with reduced memory requirements.

A radix-2 DIT SDF architecture for an 8-point FFT, is depicted in Fig. 3.11, assuming

that the input samples are in bit-reversed order. The upper output of the butterfly at the first

stage, is stored in a feedback shift register of size “1” and it can be used as input in the

same butterfly with a 3rd input sample (delay of 1 clock cycle). The other output of the first

butterfly is forwarded to the multiplier of the next stage of the FFT calculation. The second

stage of the SDF FFT architecture has a similar butterfly but the feedback shift register has

the double size of that of the first stage. Each of the FFT stages, of the radix-2 DIT SDF

architecture, has a feedback shift register of double size than that of the previous stage.

The radix-2 DIT SDF architecture utilizes log2N butterfly elements, log2N−2 complex

multipliers and only N−1 registers for the feedback buffers, compared to 3N/2−2 registers

of the MDC architecture. The memory requirements for the SDF architecture is minimal

[96]. The utilization of the butterfly and the complex multiplier module is the same as in the

MDC architecture (50%) while the control is more complex.

Figure 3.12 shows a 64-point radix-4 DIT SDF architecture. At the first stage, three out

of four butterfly outputs are stored in three feedback shift registers of size “1” each. Only
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Figure 3.12 Radix-4 DIT SDF Architecture for an 64-point FFT

one of the butterfly outputs is forwarded to the next stage. Each of the FFT stages has four

times more registers, for the feedback shift register units, than that of the previous stage, for

each of the three butterfly outputs.

The radix-4 SDF FFT architecture utilizes log4N radix-4 butterfly processors but only

log4N − 1 complex multiplier modules, compared to the 3log4N complex multipliers of

the MDC architecture. The utilization of the complex multiplier modules is increased to

75% compared to 25% of the radix-4 MDC architecture, but the utilization of the more

complex butterfly unit is only 25% [97]. Furthermore, the memory requirements of the

radix-4 SDF architecture are the same as in the radix-2 SDF architecture (N−1 registers),

while the radix-4 MDC FFT architecture requires 5N/2−4 registers. Finally, the control of

the radix-4 SDF architecture is considerably more complex than that of the radix-4 MDC

architecture [21]. We can increase the hardware utilization of the SDF FFT architectures

by using high-radix [72], [21], [95] [96], [131], [97] split-radix [356], [153] or mixed-radix

implementations [348], [334], [45] or by using parallel memory structures [54].

Multi-path Delay Feedback Architectures

The Multi-path Delay Feedback (MDF) or Parallel Feedback FFT architectures, extends

the SDF FFT architecture for high-throughput applications, by using parallel paths (MDC

architecture) and feedback loops (SDF architecture) [316], [273], [151], [158]. In contrast to

SDF architecture, parallel input streams can be handled by multiple butterfly modules. Each

of the butterfly units, in the same FFT stage, has a separate delay shift register structure and

complex multiplier module. Additional delay registers and shuffling circuits are needed

(Data Commutators) between the FFT stages [41], [51], [294]. In general, the MDF FFT

architecture contains multiple interconnected SDF paths, and each path is responsible for
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managing one of the parallel input streams of data.

This architecture has an efficient use of memory resources, but suffers of small utiliza-

tion for the arithmetic units, which is a common problem of feedback FFT architectures.

We can decrease the number of complex multiplication modules needed, by using radix-2i

butterfly structures [41], [175], [151], [158], [51], [273] or mixed-radix architectures [314],

[49], [172], [161]. By reordering the input data samples and rescheduling the timing of

the complex multiplications we can increase the utilization of the hardware resources [174].

A mixed DIF/DIT flavor of the MDF architecture is proposed in [316], where higher uti-

lization of the arithmetic modules is achieved with an increase of the number of complex

multipliers and adders. A substitution of the complex multipliers with shift-add multipliers

in [176], has as result a higher utilization of the multiplication units.

The flexible radix configuration MDF architecture in [293] supports variable-length

FFTs and multiple input streams (MIMO), with improved hardware efficiency and power

consumption. A reduction on constant twiddle factor multiplication modules, by relocating

and sharing the units on different processing paths, is proposed in [353]. In a single-path

pipeline FFT architecture (such as SDF architectures) the process of bit-reversing either the

input data samples (DIT), or the output FFT data (DIF) is performed by a reordering cir-

cuit with low complexity. For architectures with multiple parallel processing paths (such

as MDC and MDF), the task of bit-reversal is more complex. In [359] the reordering cir-

cuit is part of the input/output commutator, while in [352] a FIFO-like memory structure is

performed the reordering of the FTT output data. Finally, a generic parallel bit-reversing

scheme, for MDC and MDF FFT architectures is proposed in [46], based on single-port

memories and area efficient architecture.

Single-path Delay Commutator Architectures

The Single-path Delay Commutator (SDC) architecture is an Single-path pipeline architec-

ture, based on the SDF, which uses data commutators to minimize the number of arithmetic

units, while increasing their utilization [321]. It uses delay elements to reorder the data,

in each stage, to achieve better utilization with reduced hardware resources. The number

of needed complex multipliers are the same as in the SDF architecture, while it needs less

complex adders and more memory elements [40], [179]. The control logic of the SDC
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architecture is more complex, compared to that of the SDF or MDC architecture.

By changing the reordering on the last data commutators of an SDC architecture, we

can reduce the complexity of the bit-reversal circuit at the output of the FFT calculation

[40], [179]. Furthermore, we can combine the SDC and SDF architectures, in a hybrid

pipeline architecture, with reduced arithmetic units, increased hardware utilization and re-

duced memory requirements for the bit-reversal circuit [321], [317]. This hybrid pipeline

architecture has optimized usage for the delay elements and reduced power consumption,

without any cost on the FFT throughput [317].

The SDC pipeline architecture can be used with high-radix butterflies to further reduce

the number of arithmetic units with more complex butterfly structures [22], [317]. A matrix

decomposition of the FFT can result in a generic matricial expression for efficient radix-rk

SDF or SDC pipeline architectures [61]. This method can be used for efficient pipeline

architectures, for large FFT calculations with high radix butterflies.

3.2.2 Memory-based FFT Architectures

All the pipeline FFT architectures use the memory elements only for the re-arrange of in-

put data and intermediate results, to correct the “distance” of butterfly inputs at every FFT

stage. Each of the FFT stages has each own processing unit and the results from one stage

“flows” to the next, without any need for storage. This architecture maximize the FFT

throughput with an impact on the hardware resources requirements. For large FFT lengths

the pipeline architecture may not be suitable, due to high hardware resources demands. The

memory-based FFT architectures can balance the trade-off between hardware resources and

throughput performance, where one processing element is usually used to compute all the

butterfly operations of the FFT calculation, while the intermediate results are stored to mem-

ory elements, from one stage to the next. Therefore, these architectures are more suitable

for low-area and low-power applications, than the pipeline FFT architectures [119], [90].

A memory-based FFT architecture needs at least N/r clock-cycles to perform all the

calculations for one FFT stage, assuming a single radix-r butterfly processor and r memory

banks, for parallel memory accesses. A total processing latency of at least (N/r) · logrN

clock-cycles is needed for a radix-r memory-based FFT architecture to perform one FFT

calculation. We can reduce the total processing time by using multiple butterfly processors.
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An architecture with k radix-r butterfly units, has a total processing latency of at least ( N
rk) ·

logrN clock-cycles, but it needs rk memory banks for parallel accesses. For streaming

applications the memory-based FFT architectures, need additional memories to store the

input data of the next FFT frame, while processing the current FFT frame, and to forward

the previous FFT frame. There are several techniques to reduce the storage requirements of

these Continuous-flow memory-based FFT architectures [11], [241].

The memory-based FFT architectures can be categorized into three groups, based mainly

on the memory hierarchy used. The Dual-Memory FFT architectures use two memories, of

size N, for the intermediate results of the FFT calculation, as shown in the Fig 3.13. For

the first FFT stage the butterfly unit reads data from Memory A and stores the outputs to

Memory B. At the second FFT stage the butterfly processor reads data from Memory B

(outputs of first FFT stage) and writes the results to Memory A. At each of the FFT stages

the read and write memories are swap with simple muxing logic. This architecture has a

simple control logic and it can be implemented with single-port memories. The memory

addressing scheme has reduced complexity but the specific architecture has increased data

storage requirements and a low memory utilization factor [69], [121].

The Single-Memory or In-Place FFT architectures have low storage requirements by us-

ing an “in-place” addressing scheme, where output data are written to the same memory

locations from where input data are read, for each of the FFT stages (butterfly calculations),
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as shown in Fig. 3.14b. These architectures have a complex control and memory addressing

logic. The majority of these architectures need dual-port memories for parallel read/write

operations (low-latency architectures) with an increased memory utilization factor, com-

pared to Dual-Memory architectures [59], [181], [278]. Finally, there are the Buffer-Memory

or Cache-Memory FFT architectures, which use intermediate buffers or cache memory to

store butterfly results, as shown in Fig. 3.14a. This cache-based operation can be used

in In-Place architectures, either to eliminate the memory address conflict problems or to re-

duce the power consumption by using a combination of single-port memories with dual-port

cache/buffer memories [36], [143], [10], [142], [173]. Another solution for the memory

address conflicts is the use of conflict-free addressing schemes for in-place architectures,

which increase the circuit complexity [189], [127], [290], [228].

Buffer/Cache-based In-Place FFT Architectures

The main concept of the cached FFT architectures, is to reduce the number of main memory

accesses, by using a small cache memory closer to the processing datapath. For every FFT

stage all N data should be read from memory, processed by the butterfly unit and written

back to the memory. At the next FFT stage the same data (results from previous stage)

should be read, processed and written back to the memory. A cached FFT architecture uses

an additional smaller storage unit, to perform more than one stage calculations on a small

portion of the data [10], [142]. This technique results to reduced main memory accesses

with the overhead of a small additional storage element. The power consumption of the

memories on a memory-based FFT architecture is a large portion of the power dissipation

of the FFT processor [163]. By using a small additional memory, cached FFT architecture

reduces the accesses on the large main memories resulting in lower power consumption for

the FFT processor.

The first cache-based FFT algorithms, consider the computation of a large FFT us-

ing multi-processor systems with distributed memories, when the total main memory was

smaller than the FFT dataset. These algorithms split the input data (stored on external

storage) in smaller portions and perform several small FFT calculations with intermediate

transposition steps on the data. The key idea was to minimize the use of the slow external

storage unit for intermediate FFT results. The “Four-step” FFT algorithm is quite effective



3.2 FFT Architectures 51

in reducing the number of passes through the dataset by using buffers smaller than N, while

increasing the arithmetic computations [3], [288], [80]. These algorithms are natural or-

der FFT calculations and there is no need for any bit-reversing of the input or output data.

The “Six-step” and “Two-pass” algorithms reduce further the number of passes through the

dataset to two, while using larger buffers, more arithmetic operations and increased mem-

ory accesses [13], [289]. These algorithms are used mainly on software implementations,

for the FFT computation on multi-processor systems with shared/distributed memory, but

they can used also on hardware implementations, when the total main memory of the FFT

processor is limited and smaller than N.

As mentioned above, the cached-based FFT architectures are mainly used to reduce

the power consumption by minimizing the memory accesses, on the FFT processor. A

ping-pong cache scheme of two 32 words buffers [9] is used on the memory-based FFT

architecture of [10], to reduce the main memory traffic by a factor of 5, on a 1024-point

FFT processor. A variable length pipeline of 9 or 10 stages on the butterfly unit is used to

solve the memory access conflict problem and handle the read-after-write data hazard on

the cache buffers. A similar ping-pong cache scheme, with two 64 words caches, is used

on the dual-stream (MIMO 2x2), continuous-flow FFT architecture of [48]. A mixed-radix

butterfly, supporting radix-23/22/2 configurations is used for variable-length FFT (128 ∼
2048 points) support, while a simple control circuits for the cache buffers saves the half of

the main memory accesses. A variable-length FFT processor based on radix-2 butterfly is

presented in [142] and [143]. By merging three radix-2 stages in one super stage and using

a small cache memory, the main memory accesses are reduced. Additional permutations

on the output data of each super stage are required for the FFT calculation. Finally, a three

level cache scheme is used in [173], to minimize the power consumption of an 8192-point

FFT processor. The main memory banks and the second level, prefetch buffer cache, can be

implemented with low power single-port memories, while a third level buffer cache is used

with a three-step radix-8 butterfly to reduce the processing latency of the FFT processor.

Conflict-Free In-Place FFT Architectures

As mentioned above the Single-Memory FFT architectures with conflict-free addressing

schemes reduce the storage requirements of the FFT processor, to a minimum of N words,
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for the FFT calculation. These architectures [181],[308] store the butterfly results in the

same memory locations as the butterfly inputs without the need of an intermediate buffer

(Cache-Memory architectures). A radix-r butterfly unit has r input and r output data ports.

All the input data should be read simultaneously from the memory for increased throughput.

The parallel memory access on single-memory architectures is performed by implementing

the storage unit with several memory banks. For r parallel accesses we should have at least

r memory banks, with N/r words capacity each [278], [127], [290]. For each butterfly

operation we should read r data from r memory banks and write r data back to the storage

unit. A conflict-free addressing scheme should ensure that all r input data of the butterfly

can be read simultaneously from the storage unit and all r output data can be stored back

to the memory. This property should be hold for all butterfly operations at each of the FFT

calculation stages.

Pease in [230] observed that the address parities of butterfly inputs are different, and he

proposed a scheme to segment the memory into several banks using this property to meet

the memory access requirement. Cohen in [59] proposed a simple addressing scheme for

a radix-2 FFT processor with two memory banks. This addressing scheme is based on the

Pease’s observation, and parity calculations are needed for the selection of the memory bank.

Furthermore, there is the need for interchanging circuits for data addresses and butterfly

input and output data. Johnson in [127] proposed a generic radix-r conflict-free addressing

scheme, with r memory banks. The address generation circuit includes a tree of modulo-r

adders and the bank selection performed with barrel-shifters. The high complexity of the

addressing scheme grows logarithmically in the transform size N.

Ma in [189] proposed a more simple addressing scheme, for the case of radix-2 FFT

processor, which includes barrel-shifters for the address generation and swapping circuits

for the addresses and data ports of the memory banks. Furthermore, four additional reg-

isters are needed, for the memory address and data ports, to avoid conflicts on the write

operations. In [190] Ma and Wanhammar proposed a similar addressing scheme with four

memory banks for radix-2 FFT processors. The new addressing scheme does not require

the additional registers and swapping circuit for the memory address port and the additional

registers for the memory data port. A reordering of the sequence of the butterfly calculations

and a memory-cache architecture for the twiddle factors result in reduced RAM and ROM
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accesses and power consumption, for the FFT processor. Parallel memory addressing in

FFT processors with multiple butterfly units is proposed in [100]. The access conflicts are

avoided by reordering the operands with the use of an interconnection network. The reorder-

ing is performed in time and space, which requires additional operand registers. Takala in

[290] proposed a generic radix-r addressing scheme for parallel memory access on a multi-

butterfly FFT processor. In comparison with Johnson’s addressing scheme [127] the new

address generation requires only rotation and XOR calculations on a subset of the address

bits, while supporting multiple butterfly units.

Xiao et al. [345], propose a heuristic approach for the radix-2 FFT algorithm. A mod-

ified butterfly unit, with exchange circuits for both input and output ports, is used for re-

ordering the FFT processing. The conflict-free in-place address generation does not require

any addition steps and is based on counters, shifters and delay elements. Compared to Ma’s

scheme [189] this scheme has reduced complexity and delay, but can be used only for radix-

2 FFT architectures. A radix-4 conflict-free scheme with four memory banks is presented

by Xiao et al., in [346]. Similar to [345], this heuristic approach does not require addition

steps for the address generation and has barrel-shifters for the exchange operations on the

butterfly input and output ports. Furthermore, this scheme requires four registers for each

of the four input and output ports of the radix-4 butterfly (32 registers in total), and addi-

tional barrel-shifters for these data-path registers, to avoid memory conflicts. The address

generation circuit is based on counters and barrel-shifters. A total number of 2r2 data-path

registers, 4r multiplexers (4r to 1) and the address generation circuit are require for a radix-r

implementation of the FFT processor.

Authors in [247] present a mathematical proof that there exists at least one set of per-

mutations that can be used to resolve the memory conflicts. Furthermore, they prove that

these permutations result in a correct FFT algorithm, for arbitrary radix decomposition, and

can be used for parallel memory access in both pipeline and in-place FFT architectures.

The presented technique permutes the addresses of the elements prior to memory write op-

erations of each stage and uses the inverse permutation for reading from the memory in

the following stage. The advantages of this technique, compared to Ma’s scheme [189],

are the efficient extension to arbitrary radix decompositions of the FFT and the elimination

of the requirement for any kind of auxiliary queue registers for the results of the butterfly
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processor.

In [209], authors propose a parallel accessing scheme for radix-2 FFT processors, with

two memory banks, based on permutations. A mathematical proof is presented that the

specific permutation provides the correct FFT calculations and that it resolves the memory

conflicts. The proposed technique applies a specific permutation to the output data of each

butterfly, so that the data of any transformation pair at the following stage will be located in

different memory banks. The delay for the address generation circuit is that of a counter and

a single XOR gate compared to that of a counter and an adder in [127], a counter, a shifter

and three muxes in [345] and to the LUTs in [247]. Furthermore, the presented technique in

[209], eliminates the butterfly output queues [189] and it also results in a regular addressing

during all the FFT stages compared to [345]. A radix-2 FFT processor with parallel data

access and a single memory bank implementation is proposed in [236]. Authors, present a

specific permutation, which allows the FFT data to be stored as pairs in a single memory

with N/2 locations. The butterfly implementation includes 4 input and 4 output data reg-

isters and multiplexers to perform the permutations on data ports. The address generation

circuit includes a simple circular counter and a specific permutation must be applied only

for the first stage of the FFT calculations.

As mentioned above the in-place FFT architectures use one memory buffer of size N, for

the butterfly intermediate results. In a streaming application the data for the next FFT frame

should be stored in a separate memory buffer, while the FFT processor computes the current

FFT frame. Another memory buffer is needed to output the previous FFT frame. Conclu-

sively, a straight-forward implementation of an in-place continuous-flow FFT processor,

requires 3 memory buffers of size N [308]. In [241], authors propose a radix-2 in-place

FFT architecture, in which Decimation In Time (DIT) and Decimation in Frequency (DIF)

decompositions are used for concurrent FFT frames. This technique reduces the memory

requirements of the continuous-flow FFT processor, to two main memories of size N, one

for the FFT calculations (computation buffer) and one for the I/O operations (I/O buffer). A

new FFT frame can be written to the I/O buffer while the previous FFT frame is computed

(using the computation buffer), and the twice previous frame is read out from I/O buffer.

The key idea is that for the two FFT frames that must be written to and read out from the

I/O buffer a different decomposition is used, so the same memory addresses can be used
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for write and read operations: while the symbol k is read out from I/O buffer in bit-reversed

order (DIF decomposition) the symbol k+2 can be written in bit-reversed order, to the same

memory locations, and it should be processed with the DIT decomposition.

Authors in [11] present a mixed radix-4/2 in-place FFT architecture, based on the conflict-

free addressing scheme of [127]. Exchange circuits on the input and output ports of the but-

terfly are used, on specific FFT stages, to avoid memory conflicts and to ensure continuous

flow operation with only two memory modules. Furthermore, a more complex addressing

scheme is adopted, in comparison with that of [127], to support the mixed radix-4/2 architec-

ture. A similar continuous-flow approach is presented in [125] with conflict-free addressing

scheme based on tree of modulo-4 adders. Moreover, this approach is used in [112] for a

variable-size, mixed radix-2/4 FFT processor with continuous-flow operation. A different

approach based on radix-2q MDC units in presented in [301] and [344]. Authors propose a

generic conflict-free addressing scheme for FFT architectures with multiple radix-2q MDC

butterfly units. This approach supports variable-size FFT calculations with mixed-radix

implementations and continuous-flow operation with 2N words storage requirements.





Chapter 4

FFT Architectures for MIMO Systems

4.1 Introduction

The performance of the Fast Fourier Transform (FFT) and the Inverse FFT (IFFT) algo-

rithms plays a crucial role in emerging wireless technology standards that are based on

Orthogonal Frequency Division Multiplexing (OFDM). There are several standards that

use OFDM as a core function in their baseband processing including the IEEE 802.11

(WiFi), IEEE 802.16 (WiMAX), and the 3G Long Term Evolution (LTE) standard which

has emerged as a comprehensive evolution of the Universal Mobile Telecommunications

System (UMTS). These standards support high-data rates that require executing FFT/IFFT

at relatively high speeds, while cost constraints imply the use of minimal resources. The

problem of achieving high throughput rates leads to a pipelined execution by using a pro-

cessor for each FFT stage. Single datapath Delay Feedback (SDF) architectures [298] and

variations proposed for OFDM systems [282], [97], [96], [95] have been considered as the

most appropriate solution because, apart their pipelined structure, they need minimal mem-

ory volume for data storing.

The majority of the new standards for wireless communications, supports Multiple-Input

Multiple-Output (MIMO) for higher data rates, better quality of service and increased net-

work capacity and spectral efficiency. The core idea behind MIMO is that signals sampled

in the spatial domain at both ends are combined is such a way that they either create effective

multiple parallel spatial data pipes (therefore increasing the data rate), and/or add diversity
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to improve the quality (bit-error rate) of the communication [302], [274], [141]. However,

the MIMO-OFDM systems has increased computational complexity, for the baseband pro-

cessing, compared to the Single-Input Single-Output (SISO) OFDM systems, due to the

parallel data streams. Furthermore, several bandwidths should be supported for each proto-

col resulting in increased computational complexity and control. A baseline MIMO-OFDM

system has multiple transmitter/receiver baseband chains, one for each of the MIMO data

streams. This results in demanding resource requirements mainly because same blocks, with

high computational complexity are used in the multiple baseband processing paths [233],

[284]. In such systems adopting the SDF solution, for the FFT processor architecture, leads

to a large number of multiplication processing units, which increase the complexity and the

power consumption of the system.

4.2 FFT Schemes for MIMO Systems

The demanding computation of the FFT and IFFT is part of every OFDM system. Multiple

bandwidths support in several protocols, results in FFT computations, in the baseband pro-

cessing, with several FFT lengths. In the concept of MIMO-OFDM systems multiple FFT

computations should be performed for the parallel data streams. Several FFT architectures

has been proposed in the literature, which focus in the resource sharing between the multiple

data streams, in a MIMO-OFDM system, to reduce the hardware requirements, compared

to multiple FFT processors. Various FFT architectures also supports variable-length FFT

computations for the case of multiple bandwidths.

4.2.1 SDF-based Architectures

The authors of [260] propose an FFT architecture in which several MIMO data streams can

be processed by fewer FFT processors which are running at higher clock frequencies, than

that of the sampling frequency of the system. A round-robin scheduling with input and

output buffers is responsible to handle the FFT computations of multiple data streams, with

one or more FFT processors. A single radix-24 SDF architecture is proposed for the com-

putation of 2048-point FFTs on a 4x4 MIMO-OFDM system. In [226] and [227] authors

propose a similar scheduling scheme with reduced memory requirements for the I/O buffers.
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Both scheduling schemes introduce the resource sharing between the MIMO streams, in the

module level and have the disadvantage of restricted scalability in terms of MIMO streams

and operational frequency of the FFT processor.

Several FFT architectures has been proposed to support multiple data streams. In [361],

a mixed-radix SDF-based architecture is proposed with an efficient data-flow scheduling

scheme. The proposed processor computes 256-point FFT for two parallel data streams, to

support 2x2 MIMO-OFDM systems. The specific architecture is based on radix-2 butter-

flies and single-port memories, for the delay buffers, operating at double frequency than that

of the input sampling. The data-flow scheduling exploits the “idle” time of each butterfly

for the calculations of the second data stream. Another SDF architecture for multiple data

streams is proposed in [108]. The FFT processor is based on radix-42 and radix-4/2 butter-

flies to support variable-length FFT calculations (128∼ 2048 points) for 4x4 MIMO-OFDM

systems (e.g. WiMAX, LTE). Authors, use the 75% “idle” time of the radix-4 butterfly for

the processing of the multiple data streams, while changes in the data flow and associ-

ated memory access improve the storage utilization. This memory re-allocation reduces the

feed-back memory requirements and results in an efficient sharing of the multiplier units,

between the multiple data sequences.

A generic framework for automatic FFT IP generation for SISO/MIMO OFDM systems

is presented in [300]. The FFT architecture for the SISO (Single-Input Single-Output) case

is SDF based mixed-radix decomposition with radix-2/22/23 butterfly processors. The se-

lected architecture for the case of multiple data sequences, is a hybrid solution based on SDF

and MDC pipeline architectures. Based on the number of MIMO channels the first section

of the FFT processor, is based on the specific high radix butterflies to exploit the parallel

paths of the MDC architecture, while the last section of the processor in based on parallel

small radix SDF sub-FFT processors, to reduce the memory requirements. A heuristic ap-

proach is used to determine the data-path bit-width at each stage to increase the fix-point

performance of the processor without compromising the complexity of the architecture.

4.2.2 MDC-based Architectures

The multi-path structure of the MDC pipeline FFT architectures is attractive for parallel data

stream processing. In [152] a multi-channel mixed-radix MDC architecture is proposed for
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FFT processing on MIMO-OFDM systems. The mixed-radix implementation reduces the

number of non-trivial multipliers, while extra delay commutator units are introduced for the

appropriate alignment of the multiple data sequences. A similar mixed-radix MDC archi-

tecture, based on radix-4/2 butterflies is proposed in [133] and [76] for 4x4 MIMO-OFDM

systems, with variable symbol lengths (64/128). The extra, low-complexity commutator

units in [133] result in an efficient sharing of the resources between multiple data streams.

In [76] a memory-based reordering unit interleaves the data sequences for an improved

sharing of the butterflies and multiplier units.

Authors in [359] propose an area and power efficient FFT processor, for 8x8 MIMO-

OFDM systems, based on the mixed-radix MDC architecture. Two radix-8 butterflies are

used with several parallel radix-2 processors, to support 128-point FFT computations. The

delay commutator units are replaced with I/O buffers and additional address generator cir-

cuits, implementing the pre- and post- commutator logic, are used to align the eight data

sequences. A similar architecture is proposed in [269] with optimized delay commutator

units. A memory array transpose unit is used for the proper alignment of the parallel in-

put sequences and a complex delay commutator is used for the bit-reversing of the output

data, instead of the two I/O buffers of [359]. The radix-8 processor of [359] is implemented

with radix-23 decomposition to reduce the butterfly computational complexity, while the

radix-4 booth encoding multiplier is used to improve the circuit complexity of the complex

multiplier unit.

A variable-length FFT processor based on mixed-radix (radix-2/4) MDC pipeline ar-

chitecture, for 4x4 MIMO-OFDM systems with variable symbol-length (64 ∼ 2048), is

proposed in [349]. A data mapping module is responsible to align the multiple input data

sequences, by using several delay elements and switches, and forward the data to specific

butterflies based on the selected FFT length. The proposed mixed-radix decomposition

method reduces the number of non-trivial complex multiplication units, compared to radix-

2 SDF and MDC architectures. Researchers at [352] propose a mixed-radix MDC pipeline

FFT architecture with memory scheduling and input data shuffling to increase the butter-

flies utilization. The architecture is based on radix-4/8 butterfly processors, including a

memory-based input data shuffling unit which align the multiple data sequences appropri-

ately before the FFT computations. The four radix-4 stages includes FIFO-based commu-
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tators with switching networks (barrel-shifters), while the last module is responsible to un-

shuffle the output data, with several FIFOs and complex switching networks. A total amount

of (5+ 1
4)N memory storage is required for the support of 4x4 MIMO-OFDM systems with

variable symbol length (128 ∼ 2048).

Authors in [118] propose an area-efficient FFT processor for MIMO-OFDM Software

Defined Radio (SDR) systems. It support up to 4 MIMO channels with variable length

(64 ∼ 2048 and 1536), for WiFi (IEEE 802.11n), WiMAX (IEEE 802.16e) and 3GPP LTE

systems. It is based on a mixed-radix MDC pipeline architecture with radix-3, radix-2 and

radix-4 butterfly processors. A FIFO-based data mapping module is responsible for the

alignment of the input data sequences, by using commutator logic, while a data re-ordering

module re-arrange the output data streams. The proposed architecture has reduced area and

memory requirements, compared to radix-2/3 SDF and MDC pipeline architectures, while

on the other hand, it can not support concurrent multi-protocol operation.

4.2.3 MDF-based Architectures

The parallel data sequences of a MIMO-OFDM system can be handled also by an MDF-

based pipeline FFT architecture. An unfolding mixed-radix MDF FFT processor, based on

radix-2/23 butterfly structures is proposed in [172] and [171]. The specific architecture sup-

ports up to 4 data streams and variable symbol lengths (64/128) and it is suitable for WiFi

(IEEE 802.11n) MIMO-OFDM systems. The multiple input data streams are reordered

and grouped, before the first stage of the FFT computations, by a commutator-like module.

The first processing unit includes four parallel radix-2 butterfly processors, while the sec-

ond and third units contains four parallel radix-23 processors. All the processing modules

include several FIFOs to align the butterfly inputs, while there is an extra module for the

re-ordering of the output data. The high radix implementation results in reduction of the

complex multipliers, while the data scheduling and delay feedback approach reduces the

memory requirements of the FFT processor.

A similar mixed-radix MDF pipeline FFT architecture is presented in [175]. Researchers

propose a high-radix decomposition based on radix-24 to reduce the number of non-trivial

complex multiplication units in the design. The specific FFT processor support up to 4

MIMO channels, with four parallel processing paths, and variable-length symbols (64/128)
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to support WiFi (IEEE 802.11n) MIMO-OFDM systems. The high-radix implementation

results in more complex control logic for the processor, while a four-parallel Booth multi-

plier module is introduced to reduce the complexity of non-trivial complex multiplication

units. Authors in [162], propose a mixed-radix MDF architecture based on radix-4 and

radix-2/22 structures to support up to 4 parallel data streams and variable FFT lengths

(128/256) for WiMAX (IEEE 802.11e) MIMO-ODFM systems. The first pipeline stage

in constructed with four parallel radix-2/22 butterfly units, while the remaining three stages

include four parallel radix-4 processors. Several commutators and memory elements are

used on each of the stages, to support the four parallel data sequences, while extra modules

are responsible to re-order the data streams at the input and the output of the FFT processor.

4.2.4 Memory-based Architectures

Memory-based FFT architectures, while targeting low area and low power applications, they

considered not suitable for high throughput implementations, such as MIMO-OFDM sys-

tems. Nevertheless, high-radix and/or parallel butterfly implementations, of memory-based

FFT processors, have increased throughput, while having reduced hardware complexity and

power consumption. Moreover, the majority of the pipeline architectures which supports

multiple data streams, have the disadvantage of interleaving the data in a FFT-frame ba-

sis and forwarding the MIMO streams sequentially (first stream FFT-frame, second stream

FFT-frame, etc). The modules which process the IFFT/FFT processor outputs, are mainly

implemented to support parallel data streams as inputs (MIMO support) and not to support

multiple MIMO channels sequentially. The memory-based FFT architectures can easily

support the parallel data streams output, due to the fact that all the output data are stored

in memories. Finally, the specific FFT architecture can easily support variable-length FFT

computations for multi-bandwidth and/or multi-protocol SDR applications.

A cached-based FFT architecture, which supports variable-length (128 ∼ 2048) FFT

processing for a 2x2 MIMO system, is presented in [48]. One mixed-radix butterfly proces-

sor, capable of processing one radix-23, two radix-22, or four radix-2 is used. The proposed

ping-pong cache memory scheme supports two radix-23 stages processing with the half ac-

cesses, on the main memory, with the use of a 64-words cache storage unit. A continuous-

flow architecture, based on [125] is proposed to reduce the memory requirements, while
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the two 4K words memories are implemented with eight banks each for parallel access. A

block-scaling technique is used to increase the SQNR performance of the FFT processor,

with reduced data-path bit-widths. The proposed architecture supports the computation of

two 2048-point FFTs within 2052 cycles, supporting 2x2 MIMO WiMAX systems, with

operational frequency same as the sampling rate of the system. On the other hand this ar-

chitecture has limited scalability, to support more than two multiple data streams, while the

control of the continuous-flow operations and cache memory handling is complex. Further-

more, the mixed-radix, single cycle butterfly processor has a “long” critical path, resulting

in increased power consumption.

A similar FFT architecture is proposed in [109]. The same mixed-radix (radix-23/22/2)

butterfly processor and ping-pong cache scheme is used to support variable-length (1024 ∼
8192) FFT computations for up to 4 MIMO channels (only for the case of 1024 and 2048-

point FFTs), with increased operational frequency. The same continuous flow technique

[125] is adopted, while two 8K words main memories with eight banks each are used as

calculation and I/O buffers. A more efficient block-scaling method is proposed to increase

the SQNR performance of the FFT processor, while various FFT length and MIMO chan-

nel combinations are supported. The proposed architecture is more flexible and supports

both long FFT computations with single data stream or shorter FFT calculations with multi-

ple data streams and increased operational frequency, than the sampling rate of the system.

On the other hand, the computational complexity of the continuous flow operations, on the

main memories, is increased for multi-channel configurations. In these cases several data,

from multiple streams, should be written on the same memory bank at the same clock cycle,

for further processing by the FFT processor, while multiple previous results should be read

from the same bank to construct the FFT output. Authors, do not consider the computational

complexity of a complex scheduling scheme and/or intermediate buffers which should be

used to avoid memory bank conflicts, with the specific continuous-flow technique. Alter-

nately, 8 banks per MIMO channel should be used with a reduced complexity addressing

scheme for the continuous-flow operation.

The memory-based architectures in [48] and [109] are high-radix/high-throughput FFT

processors which are able to process multiple FFT frames in a single FFT frame sampling

latency, which can be used to support multiple data streams, in a time-interleaved basis.
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This technique can be used with several high-throughput memory-based FFT processors.

The radix-22 reconfigurable FFT processor in [335] can support variable-length (16 ∼ 128)

computations, with a low-power memory-based implementation. Multiple data streams can

be easily supported with proper I/O buffering and increased operational frequency. The

mixed-radix (radix-4/2), continuous-flow memory-based FFT architecture in [112] can be

used for multiple data streams, with a reduced I/O buffering and increased operational fre-

quency. Finally, the optimized radix-16 continuous-flow FFT architecture in [106] can be

used for parallel data streams processing, due to the high throughput implementation. The

normal-order I/O buffering of the FFT processor results in reduced complexity of the buffer-

ing scheme for a multi-channel MIMO support.

High-radix implementations result in high-throughput FFT architectures, with the dis-

advantage of more complex control and addressing schemes. The increased computational

complexity of the high-radix butterflies also affects the critical path of the FFT processor

and the needed pipeline stages inside the butterfly module, result in increased latency for

each of the FFT stages. The support of multiple data streams further increases, the hardware

complexity of the I/O buffering, while the requirement of regular MIMO data-ordering at the

input and output of the FFT processor, can result in extreme storage requirements and very

complex interconnection networks. The majority of the FFT architectures does not consider

the requirement of the regular data-ordering for the case of multiple data streams support.

This requirement is essential for an FFT processor which is a part of a pipeline processing

path, and without proper data ordering these architectures can only be used with additional

memory structures which result in increased hardware complexity and power dissipation for

the pipeline processing path.

4.3 Efficient and Scalable In-Place FFT Architecture for

SDR/MIMO Systems

This section presents a scalable Macro-Pipelined FFT architecture for concurrent multi-

symbol processing on SDR/MIMO OFDM systems [134], [252]. This reconfigurable FFT

architecture can perform the FFT computations of multiple data streams with variable FFT

lengths. The proposed FFT architecture can be used in multi-protocol SDR wireless sys-
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tems to perform all the FFT calculations by supporting single or multiple MIMO channels

for each of the different protocols (SDR mode), or in large MIMO-OFDM systems with

increased number of data streams and support for various bandwidth configurations (MIMO

mode). The fully scalable architecture is independent of the FFT length of each data stream

and the number of multiple data streams and it can be easily configured to match the FFT

computational requirements of any multi-protocol SDR or single-protocol MIMO OFDM

wireless system.

In the rest of this chapter a configuration with 4 data streams and FFT lengths of 128

∼ 2048-points is considered as an example implementation of the proposed architecture.

The FFT processor can be used in a SDR system, which supports LTE with 2 MIMO chan-

nels (128 ∼ 2048-points FFTs) and IEEE 802.16e (WiMAX) with 2 MIMO streams (128

∼ 2048 points FFTs), for all the FFT computations. In cases of MIMO-OFDM single-

protocol systems the proposed FFT engine can perform multiple FFT computations of the

same length (MIMO mode), while supporting variable bandwidth requirements. A IEEE

802.16e (WiMAX) system (128 ∼ 2048 points FFTs) with up to 4 MIMO channels can be

handled by a single FFT module.

The architecture’s processing core consists of a parallel structure involving multiple

radix-2 butterfly processors and memory banks. Each processor can be reconfigured at run

time to compute FFTs of 32, 64 or 128 complex points, while an interconnection network

allows each butterfly processor to load (store) data from (to) the memory banks of other

processors. The proposed architecture can process a single FFT frame with maximum length

or multiple smaller frames in parallel, while sustaining the required throughput for multiple

data streams. An optimized interprocessor communication scheme and a novel conflict-free

in-place addressing technique, result in a low processing latency architecture with reduced

hardware resources and power consumption.

4.3.1 The FFT Organization

The basis of the proposed design is a parallel and fully pipelined architecture capable of pro-

cessing multiple variable-length OFDM symbols concurrently. The FFT engine computes

decimation in time (DIT) FFT algorithms of variable length by using in-place technique

with radix-2 factorization. It consists of several parallel butterfly processors and memory
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banks while an interconnection network is used to group the processors in sets of 2, 4, 8

or 16. Each processor can be reconfigured at run time to compute FFTs of 32, 64 or 128

complex points. As mentioned before the proposed architecture is fully scalable and can be

configured to support multiple data streams and/or larger FFT computations with increased

processing elements, but the example implementation we consider in this chapter supports

up to four data streams and 128 ∼ 2048-points FFT calculations.

The execution of the radix-2 FFT algorithm for 32/64/128 points computations requires

5, 6 or 7 stages, respectively. At these stages, each processor Pi updates two points per

cycle and uses only two memory banks for storing all the intermediate results: its private

bank Bi,0 and its auxiliary bank Bi,1. FFTs of length 128, 256, 512, etc are computed by

allowing the processors to cooperate in groups and execute the remaining stages of the

algorithm, in parallel. During these higher stages of the FFT computation, the processor

Pi uses the interconnection network to access the auxiliary bank Bk,1 of another processor

Pk. The indices i and k are defined by the computation flow of the FFT algorithm (the

required butterfly calculation) and by a specific conflict-free in-place technique described in

the following subsections. The application of this novel technique leads to the reduction of

the interconnection network and to the minimization of the total computation cycles: only

half of the memory banks need to be shared among the processors (i.e. the auxiliary banks)

and, moreover, no conflicts stall the execution of the algorithm. The main FFT organization,

for the case of 16 parallel radix-2 butterfly processors, which supports up to 4 multiple data

streams with variable FFT lengths (128 ∼ 2048), is shown in Fig. 4.1.

The proposed FFT processor can be used as a FFT accelerator engine in multi-protocol

SDR/MIMO OFDM systems with multiple data streams, to perform all the required FFT

computations. Each of the input streams can be configured at run-time for the FFT com-

putation of variable length. For this operational mode the minimum memory requirements,

for the FFT calculations, is N words, where N is the maximum FFT length supported. The

architecture computes either one FFT frame of N-points, or two frames of N/2-point or

four of N/4, etc points in parallel, with the minimum memory requirements. The support

for multiple data streams is based on the parallel processing elements architecture, which

accelerates the maximum length FFT computations for each data stream, while processes

multiple smaller FFT lengths in parallel. Furthermore, the fully scalable architecture can be
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Figure 4.1 The main FFT organization

configured to support larger FFT sizes and/or increased number of multiple streams, with

additional processing elements and increased memory requirements or it can configured to

support smaller FFT sizes and/or decreased number of parallel data streams, with reduced

processing elements and storage requirements.

The same FFT processor can be used in a multi-protocol SDR/MIMO pipeline path, as a

continuous-flow FFT engine. For this operational mode the minimum memory requirements

are 3∗N words per data stream, where N is the maximum FFT length supported. This FFT

organization supports normal-order of parallel streams, for the input and output data. Simple

re-ordering and bit-reversing circuits are required for the input data streams, while simple

address generator modules are required for the output data. Additional simple mux-based

interconnect circuits are used for the I/O buffers and computational memory selection. In the

specific continuous-flow SDR/MIMO FFT architecture there is no requirements for delay

memories/FIFOs, while the output data ordering is the same as the normal-order parallel

input data streams. The overview of the continuous-flow SDR/MIMO FFT organization,

for the case of up to four parallel data streams and maximum FFT length of 2048-points,

is shown in Fig. 4.2. In the following subsections the case of a FFT organization which

supports up to four multiple data streams of variable length up to 2048-points is considered.
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Figure 4.2 The overall continues-flow FFT organization

Processing Elements Scheduler

The reconfiguration and the grouping of the 16 radix-2 processors are determined by an

internal scheduler, depending on the total number of parallel processing elements (PEs) and

the length of the multiple FFTs (input FFT frames) at each time. This scheduler is responsi-

ble to efficiently group and configure the butterfly processors for multi-stream SDR/MIMO

applications, with specific throughput and latency requirements. The scheduler design (for

the case of four parallel data streams with variable FFT lengths 128 ∼ 2048) has focused

on sustaining the required throughput rate of each data stream, while it has two distinct

operational modes.

The first mode is used when there is at least one data stream with symbol length greater

than or equal to 1024. For such cases, the scheduler will use all the processing elements,

for the FFT computations of a specific data stream, while caching the input data from the

other streams, for the next processing stage. The caching mechanism uses the input buffer

to collect symbols of the same length, whose sum is 2048, i.e. 16 symbols of length 128, 8

symbols of length 256, etc. The collection of 2048 data belongs to the same data stream and

constitutes the input to the 16-processor engine. The collections are processed sequentially

in a round-robin fashion, sustaining an average throughput for each stream equal to its input

rate. Each processor is configured to perform 128-points FFT.

The second operational mode handles the remaining cases (where all symbols have

length N ≤ 512). The scheduler assigns the symbol of each stream to a dedicated group
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of four processors. The input streams are processed in parallel, as the processor groups op-

erate independently from each another. Each processing element is configured to perform

FFT with length equal to 1/4 of the symbol size assigned to its group, for maximizing the

throughput while reducing the processing latency of the FFT computation per each data

stream.

These two operational modes can handle both SDR and MIMO configurations, while

a hybrid operational mode, based on these two, can be tailored to a specific SDR and/or

MIMO system, for efficient and low area/power FFT calculations. Note that, in order to

sustain the required throughput even in the worst case (4 FFTs of 2048 points each), the

operating clock frequency of the FFT processor is set to fop = 1.375× fin, where fin denotes

the input sampling rate. Furthermore, the proposed FFT organization is independent from

the FFT size of each of the four streams and it can be easy adapted to handle efficiently any

SDR (multi-protocol), MIMO (single-protocol) or combinations of these two systems (e.g.

multiple MIMO protocols).

Interconnection Network

To highlight the functionality, each processor Pi, 0 ≤ i ≤ 15, performs radix-2 butterfly

computations and has a memory of size 128 words divided into 2 banks (Bi,0, Bi,1). The

architecture is designed to let each processor access two data words in parallel by realizing

an in-place technique similar to [209] and complete each stage in 64, 32 or 16 cycles (128,

64 or 32-points FFT).

The interconnection network allows each processor Pi to access data from the mem-

ory bank Bx,1, of other four processors Px, where x is the bitwise XOR of i (= i3i2i1i0)

with 0001, 001i1, 01i2i2,1i3i3i3. For example, consider the 256-points FFT executed in

P2k, P2k+1, 0 ≤ k ≤ 7. Assuming that the processors are programmed (from the PE sched-

uler) to calculate 128-points FFT, the outcome of the 7th stage is 128 data with lower indices

(the elements with initial addresses d0, . . . ,d127) stored in the two memory banks of P2k with

each bank storing a block of 64 elements. Furthermore, the 128 data with higher indices

(d128, . . . ,d255) are stored in the banks of P2k+1 divided also into blocks of 64. The organi-

zation will have P2k storing d0, . . . ,d63 in B2k,0 and d64, . . . ,d127 in B2k,1, while P2k+1 will

store d128, . . . ,d191 in B2k+1,1 and d192, . . . ,d255 in B2k+1,0. This is accomplished by follow-
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ing the permutations on the FFT data during the first 7 stages. The interconnection network

allows P2k to complete the upper half of the 8th stage by accessing the elements in B2k,0 and

B2k+1,1, while P2k+1 completes the lower half of the 8th stage by accessing the elements in

B2k+1,0 and B2k,1.

Data Flow

The data flow is similar to that in [209]. The in-place technique of [209] is modified to pro-

duce a sorted FFT output by using as a key the indices of the elements (the initial address

of the elements). Initially all input elements are stored in banks Bi,0, Bi,1 so that the LSB of

each element’s index specifies its storing bank. In the presented organization, the comple-

tion of each butterfly computation is followed by a permutation performed at the butterfly’s

output. To describe this permutation we consider the elements xs, xr forming a transforma-

tion couple at stage (pass) j. The indices xs, xr differ only at the jth bit and the results will

be exchanging memory locations if the bit ( j+1) of the indices xs, xr is 1. Also, an input

permutation is performed: we will exchange xs, xr at the butterfly input if xs is stored in

Bi,1. Proof of the technique can be found in [209] and the data flow is depicted in Fig. 4.3.

Fig. 4.3 shows the input and output permutations: the dotted lines denote that a trans-

formation pair xs, xr is loaded and stored without exchanging positions. Heavy red and

blue lines denote the input and output permutations respectively. The figure also shows that

the output elements are sorted with indices 0, . . . ,N/2−1 stored in banks Bi,0 in increasing

order and indices N/2, . . . ,N−1 stored in Bi,1 in decreasing order.

4.3.2 Butterfly Processor Architecture

The radix-2 butterfly processor Pi has two inputs (IR, IS) and two outputs (OR, OS), connected

to the two dual-port memory banks Bi,0, Bi,1, the FFT control, the interconnection between

the processor and the banks, the data address generation circuit and the twiddle factors

address generation. Fig. 4.4 depicts the processor architecture.

Focusing on a 128-point processor as a reference case (the cases of 32- and 64-points are

similar), the FFT control includes a 6 bits up counter to handle 64 pairs of data, at each com-

putational stage and a down counter with 4 bits for the stages (passes). The interconnection
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involves two multiplexers connecting the banks to each processor input and two multiplex-

ers connecting the processor’s outputs to each bank. These two sets of multiplexers are

used to implement the input and output permutations of the proposed data flow. The radix-2

processor is organized to compute the FFT of 128 points by performing the Decimation-in-

Time (DIT) algorithm and produces the 128 results sorted. After the FFT completion (7th

stage) the elements with indices d0, . . . ,d63 will be in the addresses 0, . . . ,63 of Bi,0 and the

elements d64, . . . ,d127 will be in the addresses 63, . . . ,0 of Bi,1 respectively.

For the cases with more than seven computational stages (N > 128), each processor

Pi is used for the calculation of an 128-point sub-FFT. Each of the stages include FFT

computations in 64 pairs of data on each of the processors. For the first seven stages each

butterfly unit accesses the data from its “local” memory banks, while for the stages j > 6

the interconnection network is responsible to connect one of the processor’s input/output to

the appropriate “auxiliary” memory bank of another processor. Each of the butterfly units

performs the same operations, for the stages j > 6 on data stored in Bi,0, Bx,1 with x defined

by the interconnection.

Data Address Generation

The data address generation circuit shown in Figure 4.5, uses the two control counters to

generate the data addresses at each stage and the control signals of the 4 multiplexers. Dur-

ing the jth stage the circuit will address N/2 pairs belonging to N/2 j+1 FFT sub-blocks.

The circuit generates the addresses of the pairs by forming a word consisting of the 6 bits of

the up counter. The addresses for Bi,0 (”BANK 0” in the Fig. 4.5) are generated by replacing

the ( j− 1)th bit of the word format with a ”0”, while the addresses for Bi,1 (”BANK 1” in

the Fig. 4.5) are generated by inverting the j−1 least significant bits of the Bi,0 address.

The circuit uses the 6 most significant bits of an 7-bit Left Rotator which has reset value

“1111110b”, to mark the ( j−1)th bit of the up counter and a 6-bit AND-gate to construct the

address for the Bi,0. The calculation of the Bi,1 address from the address of the Bi,0 includes

a 6-bit Left Shifter (with reset value “0” and shift input value “1b”) which marks the j−1

least significant bits of the Bi,0 address and a 6-bit XOR-gate to invert the marked bits and

calculate the Bi,1 address.

The multiplexers at the butterfly outputs (OR, OS) realize the permutation and at each
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pass j, 0 ≤ j ≤ 6, are controlled by the jth bit of the up counter: if the jth bit is ”1” then

the multiplexers exchange the outputs of the butterfly (“swapout” signal of Fig. 4.5). The

multiplexers at the IR, IS inputs of the butterfly are controlled by the ( j− 1)th bit of the

up counter (“swapin” signal of Fig. 4.5). The multiplexers at the output of the address

generator (read addresses) are also controlled by the “swapin” signal.

For the FFT stages 7 ≤ j ′ ≤ 10 the calculation of the “swapin” and “swapout” signals

depends on the processor index because a specific butterfly unit Pi should read (write) data

from (to) the auxiliary memory bank Bx,1 of the processor Px, where x is defined by the in-

terconnection network. For these stages the module tPid of the address generator calculates

the “tpid” value from the Pi (“pid”) value and the stage number. Depending on the Pi value

the tPid module selects the correct 5 bits prefix (“pid” or “tpid”) for the 6 bits of the up

counter. The module tPid is shown in Fig. 4.6.

Twiddle address generation

The larger FFT supported by the proposed architecture needs 1024 twiddle factors. The

address generation circuits calculates the twiddle addresses (assuming that all the twiddles

are stored in a ROM) at each step of the FFT computation. Before executing the last stage

of a sub-FFT of size 2 j+1 on the two sub-FFTs of size 2 j, the two sub-FFTs have their

results sorted (Fig. 4.3) according to their indices. The results in the upper sub-FFT are

sorted such that the 2 j−1 lower indices are in increasing order in Bi,0 and the 2 j−1 higher

indices are in decreasing order in Bi,1. The lower sub-FFT are sorted such that the 2 j−1

lower indices are in decreasing order in Bi,1 and the 2 j−1 higher indices are in increasing

order in Bi,0. Therefore, we read the twiddles of the first 2 j−1 pairs by increasing a counter
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and the twiddles of the remaining 2 j−1 pairs by decreasing a counter.

This operation is simplified and accomplished as follows: At pass j we use the j + 1

least significant bits of the tPid module output to create a 10 bit word: these j+ 1 bits are

used as most significant bits (MSBs) followed by “0” (input V of the vInv module of Fig.

4.5). In case that the most significant bit (MSB) of the above word equal to “0” then the

vInv module will forward its input as a twiddle address. In case that the MSB of the word

equals to “1” then the vInv module will invert the remaining j MSBs (all the above j + 1

MSBs apart from the MSB) to create the twiddle address. Fig. 4.7 shows the vInv module

of the address generation circuit.

For the worse case FFT length we need 1024 twiddle factors stored in a ROM. We can

reduce the memory requirements by taking advantage of the twiddle factor symmetries. As

mention at Chapter 3 (eq. (3.12)) we can store only N/8 twiddle factors in ROM and calcu-

late the rest 3N/8 values. Based on (3.13) we can store only the values of sin 2πk
N and cos 2πk

N

for 0≤ k≤ N/8 in two smaller ROMs. From these stored values we can calculate the A and

B of (3.13). By using the symmetries of the twiddle factors we can reduce the memory

requirements from 2048 real values (cos and sin values) to only 512. In the proposed orga-

nization each of the processors Pi has a dedicated twiddle ROM and by this technique we

can reduce the ROM memory requirements by 24K words. An implementation comparison

of this ROM memory optimization scheme and the implications of the aforementioned cal-

culations (eq. (3.13)) in the fixed-point performance of the FFT processor, are presented in

Section 4.4.

4.3.3 Interconnection Network

The 2048-point FFT transform is the largest size supported by the proposed organization.

As mentioned above, the first 7 stages are completed by using only local memory addresses

at processor Pi. In the worst case there will be four more stages (stages 7 to 10) to be

computed and processor Pi will have to access the memories of at most 4 other processors.

To simplify the analysis and the implementation, we fix Pi’s upper input/output to always

connect to Bi,0. Hence, the problem is reduced to assign to each Pi’s lower input/output a set

of banks, drawn from the superset of Bx,1 for all x. Furthermore, the set always contains the

bank Bi,1 –which is used during the first 7 stages– and also contains four other banks, which
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Figure 4.8 Processor and Memory Banks Interconnection (256-point FFT)

are utilized by (at most) four remaining stages.

The set of banks is determined by the flowgraph of the FFT algorithm as this has been

mapped using the data flow of the in-place technique (Fig. 4.3). For the case of N =

256 points FFT it is straightforward to show from Fig. 4.3 that each processor P2k must

access data from the auxiliary memory bank of the ”neighboring” processor P2k+1 only

for the last stage (stage 7). Furthermore, each processor P2k+1 will access data from the

auxiliary memory bank of the processor P2k. Fig. 4.8 shows the processor and memory

interconnection for the case of 256-point FFT calculation.

For the first seven stages of the calculation (stages 0 to 6), each processor (P2k, P2k+1)

needs to access only each own memory banks (P2k accesses B2k,0 and B2k,1, while P2k+1

accesses B2k+1,0 and B2k+1,1). For the last stage of the 256-point FFT computation (stage

7), the processor P2k computes the first half of the transform, by accessing the B2k,0 and

B2k+1,1 memory banks, while the P2k+1 processor computes the second half of the transform

by using the B2k+1,0 and B2k,1 memory banks. Furthermore, according to the proposed data

flow, the FFT results at the end of the 7th stage can be retrieved by reading the B2k,0 and

B2k+1,0 memory banks with increasing order, and B2k,1 and B2k+1,1 memory banks with

decreasing order. No special addressing scheme is required by the proposed organization

for the output data.

Assuming the worst case size of N = 2048 points, the data are initially divided into

groups of 128 and assigned to processors in normal, increasing order (i.e. the first group

to P0, the second to P1 etc.). To come up with the set of banks we restrict the analysis to
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stages j after stage 6, and let j = 6+ j′, 1 ≤ j′ ≤ 4. We will use the binary representation

of the index of the ith processor Pi as: i = [i3i2i1i0]. It is straightforward to show that by

following the data flow of section 4.3.1, each processor Pi at the jth stage will access data

belonging to processor Pk: the index k (in binary k = [k3k2k1k0]) is obtained by using i in

the following two steps. First, we consider the effect of the output permutation which is a

bitwise exclusive-or (XOR) operation on the index i with a 4 bit number containing j′ ones

in the j′ LSBs and zeros otherwise. Second, data exchanges at the input occur at processors

whose index has the ( j′− 1)th bit set. For these processors, the index k is computed by

the first step calculation and corrected by performing another bitwise exclusive-or operation

with a number containing j′−1 ones in the j′−1 LSBs (and zeros otherwise). Therefore, k

is produced by super-imposing the two permutations (input and output) during stages j ≥ 8

(stage 7 does not require correction).

More specifically:

k = [k3k2k1k0]

= [i3i2i1i0]⊕ [0 . . .1 . . .1︸ ︷︷ ︸
j′

]⊕ [0 . . . i j′−1 . . . i j′−1︸ ︷︷ ︸
j′−1

]

= [i3i2i1i0]⊕ [ 0 . . .1 i j′−1 . . . i j′−1︸ ︷︷ ︸
j′−1

]

Figure 4.9 shows the Processor and Memory Interconnection for the processor P4, in the

case of a 2048-point FFT calculation. At the first seven stages the processor accesses only its

“local” memory banks B4,0 and B4,1. At the 7th computational stage, processor P4 accesses

the auxiliary memory bank of P5 the B5,1, as in the case of 256-point FFT processor. In the

following stages the P4 accesses the auxiliary memory banks of the P7, P0 and P11 processors

respectively.

Therefore, the interconnection network for each processor consists of a 5-to-1 multi-

plexer at the processor’s lower input Is and a 1-to-5 demultiplexer at its lower output Os.

The connections to each (de)multiplexer can be computed from the equation above. Note

that the depth of the address calculation circuit, by using the proposed technique is con-

stant, irrespective of the size N of the FFT transform, while it can be easily adapted to

support larger FFT sizes and more radix-2 butterfly processors. Figure 4.10 shows the com-
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plete Processor and Memory Interconnection Network for the proposed FFT architecture,

supporting up to 4 data streams and FFT sizes 128 ∼ 2048-points.

4.4 Fixed-point Error Analysis of the FFT

Digital signal processing applications require a finite register length to store intermediate

results and coefficients in binary format. The effects of the finite word-length constraint ap-

pear in several different ways in applied DSP applications [222], [225], [322],[221],[331].

In the process of sampling a band-limited analog signal, the finite word-length constraint

requires that the analog-to-digital conversion process produce only a finite number of possi-

ble values for each of the samples. The samples of the input must be quantized to fit a finite

register length and this effect can be treated as an additive noise signal [220], [365], [27].

The results of the performed calculations over a finite word-length input values will

naturally be numbers requiring additional bits for their representation. For example, a k-

bit data sample multiplied by a k-bit coefficient results in a product that is 2k-bits long.

In cases of recursive DSP algorithms (filters, FFT, etc.) we should quantize the results of

arithmetic operations, otherwise the number of bits will increase indefinitely. Similarly,

in an FFT implementation the precise representation of the results of each stage requires

k+ 2 bits more than that of the previous stage (assuming radix-2 butterfly and k-bit wide

coefficients), due to the complex multiplication and complex addition operations inside the

butterfly processor [220], [223], [182], [246].

In most of the FFT implementations for telecommunications all the calculations are per-

formed with fixed-point rather than floating-point arithmetics [224], [222], [110]. Further-

more, it is natural to consider a register as representing a fixed-point fraction. In this way

the product of two numbers remains a fraction and the limited register length can be main-

tained by truncating or rounding the least significant bits. These is no need for truncation or

rounding the result of the addition of fixed-point fractions, with this type of representation.

However, the magnitude of the resulting sum can exceed unity. This effect is commonly

referred to as overflow and can be handled by requiring that the input data be sufficiently

small so that the possibility of overflow is avoided. It is often useful to perform an approxi-

mate analysis by modeling the effect of truncation or rounding (quantizer) with an additive
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(a) Rounding: − 1
2 ·2

−b < Q(x)− x≤ 1
2 ·2

−b (b) Truncation: −2−b < Q(x)− x≤ 0

Figure 4.11 Nonlinear relationships representing rounding and truncation.

error signal, which will be referred to as roundoff noise.

The most common methods for the FFT error analysis of the Signal Quantization to

Noise Ratio (SQNR) and word-lengths are the statistical error analysis and the simulation-

based analysis. The first method is based on statistical modeling the error sources (roundoff

noise) and the results depend on the precision of the modeling [325], [220], [199], [222],

while the second method compares the simulation results of the fixed-point computations

with those obtained using the floating-point arithmetic [126], [237], [315].

4.4.1 Statistical Model for FFT Error Analysis

The analysis of the arithmetic roundoff of the FFT is based on a linear-noise model obtained

by inserting an additive noise source at each point in the computation algorithm where

roundoff occurs. To simplify the analysis we will emphasize on the Radix-2 Decimation in

Time (DIT) FFT algorithm (Section 3.1) and we will make a number of assumptions.

Let us consider the representation of a signed number x in two’s-complement with 1

sign bit and b1 fractional bits (|x| ≤ 1). The quantization of this number to b fractional bits

introduces an error based on the method of the quantization (truncation or rounding). We
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Figure 4.12 Radix-2 Decimation In Time Butterfly computation

can calculate these errors, assuming that 2−b1 ≪ 2−b [223]:

Truncation : −2−b < ET ≤ 0

Rounding : −1
2 ·2

−b < ER ≤ 1
2 ·2

−b
(4.1)

Figures 4.11a and 4.11b show the input-output relation for two’s-complement rounding and

truncation, respectively.

As mentioned in Section 3.1 the N-point FFT is computed in m = log2 N stages. The

output array of each stage contains N complex numbers which are formed from the input

array (output of the previous stage) by linear combinations of the elements, taken two at a

time. For the radix-2 DIT algorithm, the basic 2-point FFT computation (butterfly) is of the

form [222]:

Xi[s] = Xi−1[s]+W k
N ·Xi−1[r]

Xi[r] = Xi−1[s]−W k
N ·Xi−1[r]

(4.2)

where the subscripts i and (i−1) refer to the i-th and the (i−1)-th array, respectively, and

s and r denote the location of the numbers in each array1. Figure 4.12 shows a flow graph

representing the radix-2 DIT butterfly computation.

For the analysis of the roundoff noise effects we must associate an additive noise gener-

ator with each fixed-point multiplication. The butterfly of Fig. 4.12 must be replaced with

the one of Fig. 4.13. The notation Q[i,r] indicates the error resulting from quantization of

the multiplication result of the Xi−1[r] (r-th element of the (i−1)-th array) with the coeffi-

cient W k
N . The input of the FFT and the coefficient W k

N are in general complex numbers, so

1Note that i = 0 refers to the input array and i = m refers to the output array
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Figure 4.13 Linear-noise model for fixed-point roundoff noise in a Radix-2 Decimation In
Time Butterfly computation

the multiplication in the Fig. 4.13 is complex and consists of four real multiplications2. We

can assume the following properties for the errors of each of the real multiplications:

• The errors are uniformly distributed random variables over the range −(1/2) ·2−b to

(1/2) ·2−b, where the numbers are represented as (b+1)-bit signed fractions. There-

fore, each error source has variance 2−2b/12.

• The errors are uncorrelated with one another.

• All the errors are uncorrelated with the input data and, consequently, also with the

output.

Based on these properties we can evaluate the mean-square value for the roundoff noise of

the complex multiplication:

E
{
|Q [i,r] |2

}
= 4 · 2

−2b

12
=

1
3
·2−2b = σ

2
b (4.3)

From the flow graph of the decimation in time FFT in Fig. 4.14 we can observe that

the transmission function from any node to any other node to which it is connected, is

multiplication by a complex constant of unity magnitude (either unity or an integer power

of WN). Furthermore, each of the outputs of the N-point FFT is connected to (N-1) butterflies

[222]. It is easy to evaluate the mean-square value of the output noise in the i-th FFT output

2There are implementations of the complex multiplication with three real multiplications but the accuracy
of these implementations is less than that of the implementation with four real multiplications (see Section
4.4.2).
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Figure 4.14 Flow graph of decimation-in-time decomposition of an 8-point FFT.

F [k] and it is given by3:

E
{
|F [k] |2

}
= (N−1) ·σ2

b ≃ N ·σ2
b (4.4)

Eq. (4.4) shows that the mean-square value of the output noise is proportional to N.

In the implementation of an FFT algorithm with fixed-point arithmetic we must guaran-

tee no overflows [139] , [222], [315], [328], [322]. From (4.2) we can easily show that if

the magnitude of the FFT output is less than unity then no overflow will occur in the cal-

culations. This is equivalent with the magnitude of the input be less than 1
N (|x[n]| < 1

N for

0≤ n≤ N−1). In this case we can evaluate the average squared magnitude of the complex

output of the FFT [222]:

E
{
|X [k] |2

}
=

1
3N

(4.5)

From equations (4.4) and (4.5) we can evaluate the Signal Quantization to Noise Ratio

3The butterflies from first and second stages are not produce any roundoff errors due to the fact that the
multiplication factor is unity or j. For simplicity we assume that all butterflies produce roundoff errors and we
can consider the result as an upper bound on the roundoff noise.
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Figure 4.15 Decimation In Time Butterfly showing scaling multipliers and associated fixed-
point round-off noise.

(SQNR):

SQNR =
E
{
|F [k] |2

}
E {|X [k] |2}

= 3N2 ·σ2
b = N2 ·2−2b (4.6)

This implies that the SQNR of the output of the FFT increases as N2, or 1bit per stage.

From (4.2) we can also show that the maximum magnitude of the output of each stage

increases by no more than a factor of 2. We can prevent overflow by requiring that the

magnitude of the input of the FFT is less than unity (|x[n]| < 1 for 0 ≤ n ≤ N− 1) and by

applying an attenuation of 1
2 at the input of each stage. This alternative scaling scheme is

shown in Fig. 4.15, where two noise sources are now associated with each butterfly. As in

(4.3) we have:

E
{
|Q [i,r] |2

}
= σ

2
b =

1
3
·2−2b = E

{
|Q [i,s] |2

}
(4.7)

The attenuation that each noise source experiences through the FFT flow graph depends

on the stage in which is located. A noise source at the i-th stage of the FFT computa-

tion, will propagate to the output with multiplication by a complex constant with magnitude

(1/2)m−i−1, where N = 2m. We can evaluate the mean-square magnitude of the roundoff

noise at each output of the FFT:

E
{
|F [k] |2

}
= 4σ

2
b (1−0.5m) = 4σ

2
b

(
1− 1

N

)
(4.8)
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For large values of N and based on (4.7):

E
{
|F [k] |2

}
≃ 4σ

2
b =

4
3
·2−2b (4.9)

From equations (4.9) and (4.5) we can evaluate the SQNR for the alternative scaling scheme

on the FFT calculation:

SQNR =
E
{
|F [k] |2

}
E {|X [k] |2}

= 12N ·σ2
b = 4N ·2−2b (4.10)

This result is proportional to N rather than N2 of the (4.6) and it is corresponding to half a

bit per stage [325].

We should note that the dominant factor that causes the increase of the roundoff noise is

the scaling of the signal magnitude required by the overflow constraint. From the analysis it

is clear that the use of an 1
2 attenuation at each stage of the FFT calculation is more efficient

than an 1
N rescale of the input data in terms of SQNR performance.

4.4.2 Simulation-based Error Analysis

The simulation-based fixed-point error analysis is performed by comparing the output of a

floating-point model, of the system under consideration, with the output of the fixed-point

model of the same system, while the input data are the same for the two models. Figure 4.16

shows a block diagram of the simulation-based error analysis. The input data for the two

models are quantized to the input word-length of the fixed-point model and the two outputs

are compared by calculated the SQNR:

SQNR = 10log10

N−1∑
k=0

[
X f l (k)

]2
N−1∑
k=0

[
X f l (k)−X f p (k)

]2 (4.11)

where X f l (k) is the k-th output of the floating-point model, X f p (k) is the k-th output of

the fixed-point model and N is the total number of output samples4. Furthermore, we can

evaluate the fixed-point performance of a system by comparing the two outputs and calculate

4For more accurate results we must calculate SQNR for large number of output samples.
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Figure 4.16 Simulation-Based Fixed-Point Error Analysis block diagram

the Mean-Squared-Error (MSE):

MSE =
1
N
·

N−1∑
k=0

[
X f l (k)−X f p (k)

]2 (4.12)

In the following subsections we examine the simulation-based fixed-point error analysis

for the module which performs the complex multiplication, the Radix-2 DIT butterfly and

the proposed in-place FFT.

Complex Multiplication

We can perform multiplication of two complex numbers z1 = a+ jb and z2 = c+ jd with

the following formula:

q = z1 · z2 = (a+ jb) · (c+ jd) = (a · c−b ·d)+ j(a ·d +b · c) (4.13)

This calculation requires four real multiplications and three real additions. There is an

alternative computation [55] of the complex multiplication which requires only three real

multiplications and five real additions:

m1 = (a+b) · c
m2 = (d + c) ·b
m3 = (d− c) ·a
Re(q) = m1−m2

Im(q) = m1 +m3

(4.14)
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In the case of the FFT computation one of the two operands in all the complex mul-

tiplications is a pre-computed twiddle factor (W k
N). We can pre-compute and store all the

intermediate results of (4.14) involving the real and imaginary parts of the twiddle factors to

further reduce the number of real additions to three, in the calculation of q = (a+ jb) ·W k
N :

m1 = (a+b) ·Re
(
W k

N
)

m2 = f ·b
m3 = g ·a
Re(q) = m1−m2

Im(q) = m1 +m3

f = Im
(
W k

N
)
+Re

(
W k

N
)

g = Im
(
W k

N
)
−Re

(
W k

N
)

(4.15)

where the values of Re
(
W k

N
)
, f and g can be pre-computed and stored in ROMs.

Comparing (4.13) and (4.15) we can see that the first implementation (complex multi-

plier form1) requires one real multiplier more, while the second implementation (complex

multiplier form2), requires one real adder more and 50% more memory for storage of the

twiddle factors. Furthermore, the two implementation of the complex multiplication have

different fixed-point performance. To avoid overflow in the first implementation (4.13) we

must scale the outputs of the real multipliers before the adders, while in the second imple-

mentation (4.15) we must scale the input of the complex multiplier (a and b), before any

computation.

Figures 4.17 and 4.18 show the fixed-point performance of the two implementations

in terms of SQNR and MSE, for several fixed-point modes (truncation (T) or rounding

(R)) and several bit-widths (same for the two operants)5. Each of the plots contains the

first implementation (CM form1) and two modes of the second implementation, one with

truncation (CM form2 (T)) and one with rounding (CM form2 (R)) after the first real adder

(a+b).

The first implementation of the complex multiplier (based on (4.13)) has better fixed-

5For the fixed-point simulations we use a uniform random distribution for the first operant and the twiddle
factors of an 2048-point FFT for the second operant. The use of normal random distribution for the first
operant has produce similar results. The SQNR and MSE values shown are the average of 10 iterations of 1M
complex multiplication each.
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Figure 4.17 Complex Multiplier Implementations Fixed-Point Performance in SQNR for
several bit-widths. In the form2 of the complex multiplier we can use either truncation (T)
or rounding (R) after the first real adder. (a) Truncation (T) after real multipliers and real
adders. (b) Rounding (R) after real multipliers and truncation (T) after real adders. (c)
Truncation (T) after real multipliers and rounding (R) after real adders. (d) Rounding (R)
after real multipliers and real adders.
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Figure 4.18 Complex Multiplier Implementations Fixed-Point Performance in MSE for sev-
eral bit-widths. In the form2 of the complex multiplier we can use either truncation (T)
or rounding (R) after the first real adder. (a) Truncation (T) after real multipliers and real
adders. (b) Rounding (R) after real multipliers and truncation (T) after real adders. (c) Trun-
cation (T) after real multipliers and rounding (R) after real adders. (d) Rounding (R) after
real multipliers and real adders.
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point performance for all bit-widths and all fixed-point modes. Fig. 4.17(c) shows that the

second implementation (based on (4.15)) needs about one bit more for the same fixed-point

performance (SQNR), in the specific fixed-point mode. Furthermore, we can see that for

both implementations while the rounding at the output of the real multipliers performs about

4dB better than the truncation, the rounding at the output of the real adders has negligible

performance increase compared to truncation. Finally, we can see from figures 4.17 and

4.18 that for the second implementation of the complex multiplier, the truncation (T) after

the first real addition has similar fixed-point performance with rounding (R).

In the case of an FFT implementation it is crucial to minimize the datapath6 bit-width

for a required fixed-point performance. A wider datapath will result in wider memories for

storing the intermediate results (output of each stage) and wider computational units in the

butterfly module. We can increase the fixed-point performance of the FFT, for a specific

datapath bit-width by increasing the bit-width of the twiddle factors. This will increase only

the ROM in which the twiddle factors are stored and the complex multiplier unit inside the

butterfly module.

Figures 4.19 and 4.20 show the SQNR and MSE performance of a complex multiplier

with a fixed bit-width (10 bits for the real/imaginary part) for the first operant, which rep-

resents the datapath and a variable bit-width (from 8 bits to 19 bits for the real/imaginary

part) for the second operant, which represents the twiddle factors. We can see from the plot

in 4.19(a) that we can increase the fixed-point performance of the complex multiplier up to

7dB if the second operant is 3 bits wider than the first operant. Furthermore, we can see that

the truncation at the output of the real multiplications has a small impact, in the fixed-point

performance of the complex multiplier, compared to the rounding. When the two operants

have fixed bit-widths (figure 4.17) the rounding at the output of the real multiplications per-

forms about 4dB better than the transaction, while in the case of variable bit-width for the

second operant (figure 4.19) the rounding performs only 1 or 2 dB better, when the bit-width

of the second operant is 3 bits wider. Finally, we can see that if the bit-width of the sec-

ond operant is more than 3 bits wider, than the bit-width of the first operant, there isn’t any

fixed-point performance boost at the output of the complex multiplier.

The technique of using wider bit-width for the second operant, of the complex multi-

6datapath is the path of data from one stage of the FFT to the next (Input/Output of the butterfly module).
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Figure 4.19 Complex Multiplier Implementations Fixed-Point Performance in SQNR: First
operant (datapath) has a fixed bit-width of 10 bits while the second operant (twiddle factors)
has a bit-width in the range 8-19 bits. The fixed-point modes are the same as in fig. 4.17.
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Figure 4.20 Complex Multiplier Implementations Fixed-Point Performance in MSE: First
operant (datapath) has a fixed bit-width of 10 bits while the second operant (twiddle factors)
has a bit-width in the range 8-19 bits. The fixed-point modes are the same as in fig. 4.18.
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Figure 4.21 Radix-2 Decimation in Time butterfly unit.

plier, will increase the twiddle ROM requirements. We can use an optimization (based on

equations (3.13)) to reduce the twiddle factors storage. Based on this optimization we can

store only the first N/8 of the twiddles (for up to N-point FFT calculation) and calculate the

rest of the factors at run-time. This modification will reduce the twiddle ROM for about 65-

75% but it needs additional computations such as addition/subtraction of the twiddle factors

and multiplication with a constant value. The fixed-point performance degradation of the

FFT due to these computations is negligible but the extra calculations for the twiddle factors

are in the critical path of the Radix-2 DIT butterfly unit.

Radix-2 DIT Butterfly Unit

Figure 4.21 shows a Radix-2 Decimation-in-Time butterfly unit. The upper output of the

butterfly unit (Xi [s]) is the result of a complex addition between the complex multiplier result

with the upper input of the butterfly (Xi−1 [s]), while the other output of the butterfly (Xi [r])

is the result of a complex subtraction between the complex multiplier result, with the upper

input of the butterfly unit (Xi−1 [s]). Assuming that the real and imaginary parts of the two

inputs of the butterfly are in the range of [−1,1), same as the inputs of the FFT processor,

then to avoid overflows, at the butterfly calculations, we should scale the data by a factor of

(1/2) [325], [139]. Figure 4.21 shows the right shift operations, for both butterfly inputs.

As mention before one scale operation is needed inside the complex multiplier module, to

avoid overflows at the addition/subtraction operation. The other shift operation is performed

on the upper input of the butterfly unit, before the final add/subtract computation.

As with the complex multiplier, the scale operation can be performed with either trunca-
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Figure 4.22 SQNR performance for the butterfly unit for several fixed-point modes: (a) The
four CM form1 fixed-point modes, same bit-width for the BF inputs and twiddle factors and
truncation on the BF outputs. (b) The four CM form1 fixed-point modes, same bit-width for
the BF inputs and twiddle factors and rounding on the BF outputs. (c) The four CM form1
fixed-point modes, different bit-width for the BF inputs and twiddle factors and truncation
on the BF outputs. (d) The four CM form1 fixed-point modes,different bit-width for the BF
inputs and twiddle factors and rounding on the BF outputs.
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tion or rounding of the results. Figures 4.22 and 4.23 show the SQNR and MSE performance

of the Radix-2 DIT butterfly for several fixed-point modes. Only the complex multiplier of

form1 is used in the comparisons. Figures 4.22(a), 4.22(b), 4.23(a) and 4.23(b) show the

SQNR and MSE performance of the butterfly when same bit-width is used for the input

data and twiddle factors, for the four fixed-point modes of the complex multiplier and with

truncation (a) or rounding (b) after the complex addition/subtraction of the butterfly calcu-

lations.

As expected the fixed-point mode with rounding after the real multiplications and after

the real addition/subtraction (CM mode R/R in the figures) has better SQNR performance,

when truncation is used for the butterfly outputs. In the case of rounding at the outputs of

the butterfly, the fixed-point mode, of the complex multiplier, with rounding at the output of

the real multipliers and truncation after the real addition/subtraction (CM mode R/T in the

figures), has slightly better performance than the R/R mode.

Figures 4.22(c), 4.22(d), 4.23(c) and 4.23(d) show the SQNR and MSE performance

of the butterfly when the bit-width of the twiddle factors is 3 bits wider than that of the

input/output data. The four fixed-point modes of the complex multiplier has very limited

performance improvement. The use of the truncation at the butterfly outputs results in loss

of performance, compared to the use of the same bit-widths for the twiddle factors and the

butterfly input/output data, for the case of R/R and R/T modes on complex multiplier.

The use of rounding operation, at the butterfly outputs, and different bit-widths for the

twiddle factors and input/output data results in fixed-point performance boost. In the zoom

box of figure 4.22(d) is shown a fixed-point performance of about 71-72dB for the butterfly,

with input/output bit-widths of 14-bits and twiddle factors with 17-bits bit-width. The four

fixed-point modes of the complex multiplier, has similar performance. In conclusion, the

use of a 3-bit wider bit-width for the twiddle factors and rounding operation at the butter-

fly outputs, results in better fixed-point performance even with the use of truncation only

complex multiplier (T/T mode in the figures).

In terms of hardware resources requirements the use of only truncation operations on

the complex multiplier, while using wider bit-widths for the twiddle factors, reduces the

number of adders with wide bit-widths (used for rounding). The rounding operations at the

butterfly outputs is performed on smaller bit-widths and the resulting implementations has
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Figure 4.23 MSE performance for the butterfly unit for several fixed-point modes: (a) The
four CM form1 fixed-point modes, same bit-width for the BF inputs and twiddle factors and
truncation on the BF outputs. (b) The four CM form1 fixed-point modes, same bit-width for
the BF inputs and twiddle factors and rounding on the BF outputs. (c) The four CM form1
fixed-point modes, different bit-width for the BF inputs and twiddle factors and truncation
on the BF outputs. (d) The four CM form1 fixed-point modes,different bit-width for the BF
inputs and twiddle factors and rounding on the BF outputs.
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reduced hardware resources requirements. On the other hand, the wider bit-width of the

twiddle factors results in increased storage requirements for the FFT processor hardware

implementation.

FFT processor

The above analysis on the fixed-point performance of the complex multiplier and radix-2

butterfly units, for different rounding modes and bit-widths, reveals that for the implemen-

tation of the FFT processor, the most efficient selection, in terms of SQNR performance

and hardware resources, is the form1 complex multiplier with truncation operations, the

rounding at the outputs of the butterfly and the increased bit-width of the twiddle factors in

comparison to that of the FFT data-path.

Table 4.1 128∼ 2048 points FFT processor SQNR performance (dB) for different data-path
and twiddle factors bit-widths

datapath twiddles FFT FFT FFT FFT FFT
bit-wdith bit-width 128p 256p 512p 1024p 2048p

13 13 42.5775 39.9996 36.9824 33.8471 30.7593
13 14 45.8398 43.2858 40.3140 37.1574 34.0693
13 15 48.9832 46.6538 43.8144 40.7944 37.7589
13 16 50.5040 48.3334 45.5925 42.6597 39.6824
13 17 51.1391 49.0417 46.3329 43.4228 40.4636
13 18 51.3625 49.2860 46.6095 43.6857 40.7309
13 19 51.4714 49.3681 46.7014 43.7755 40.8161
14 14 48.6847 46.0533 43.0249 39.8688 36.7778
14 15 52.1162 49.4743 46.4207 43.2462 40.1373
14 16 55.2642 52.8551 49.9435 46.8934 43.8280
14 17 56.8167 54.5183 51.7500 48.7577 45.7504
14 18 57.3994 55.2196 52.4645 49.5050 56.5227
14 19 57.6093 55.4438 52.7028 49.7574 46.7859
15 15 54.9246 52.2179 49.1290 45.9465 42.8324
15 16 58.2780 55.5664 52.4893 49.3029 46.1709
15 17 61.4974 59.0050 56.0674 52.9593 49.8970
15 18 63.0534 60.6924 57.8768 54.8321 51.8157
15 19 63.6621 61.3727 58.5652 55.5779 52.5912

Table 4.1 and Figure 4.24 show the SQNR performance of the proposed FFT processor

for sizes from 128 to 2048 complex points, with different bit-widths for the data-path and
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Figure 4.24 FFT processor SQNR performance for different data-path and twiddle bit-
widths.

the twiddle factors. These results is based on a radix-2 butterfly with rounding operations

at the outputs and the form1 complex multiplier with truncation operations. Furthermore,

the SQNR simulations produce OFDM data for the input of the FFT processor, based on the

64-QAM modulation of the WiMAX (IEEE 802.16e) protocol7. The specific dense mod-

ulation is selected due to the fact that it is the most sensitive to noise, and the majority of

the wireless protocols require an SQNR performance of about 38-40 dB, for the successful

transmission of 64-QAM signals. These requirements are for the full transmitter process-

ing path, which is not implemented in the SQNR simulations, but if we assume an ideal

baseband processing path, then the SQNR performance of the fixed-point IFFT/FFT pro-

cessor for all the supported FFT sizes should not be less than 40 dB, to meet the system

requirements.

7The FFT frame is based on the OFDM structure of the WiMAX, in terms of null, pilots and data sub-
carrier indices.
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From table 4.1 we can see that several configurations provide the required SQNR perfor-

mance for the FFT processor. The three configurations, which result in SQNR performance

above 40 dB for all the FFT sizes, with the minimum bit-width values for data-path and

twiddle factors, are marked. The first configuration has the minimum data-path bit-width,

among the three, but the wider bit-width for the FFT coefficients, which, most probably,

result in increased hardware costs due to the high ROM memory requirements and wider

complex multiplier units. The third marked configuration, in table 4.1 has the maximum

data-path bit-width value and the same width for the twiddle factors, which is inefficient,

in terms of SQNR performance, as mentioned in the previous subsections. Subsection 4.5

presents an analysis of the hardware costs for each of these three configurations.

Table 4.1 shows that for each FFT stage the SQNR performance is decreased by ∼3dB,

which is about 1
2 bit [325], if we consider that the 256-points FFT computation has one more

stage than the 128-points FFT, etc. Furthermore, the use of 3-bits wider bit-width for the

twiddle factors, in comparison with that of the data-path, results in an SQNR performance

boost of about 7∼8 dB, for all FFT sizes and all data-path bit-widths, shown in the table 4.1,

as mentioned in the previous subsections. The SQNR performance boost, for configurations

with more than 3-bits wider twiddles bit-width, is negligible (about 0.5dB). Finally, the

configurations with 1-bit wider data-path and same “relative” twiddle factor bit-width (e.g.

13/13 with 14/14 and 15/15 or 13/16 with 14/17 and 15/18) have an SQNR performance

boot of ∼6 dB.

Twiddle ROM optimization

As mentioned in Chapter 3 we can exploit the symmetry and periodicity of the FFT coef-

ficients to reduce the ROM memory requirements of the FFT implementation. By using

equation (3.11) a total amount of N/4 complex values can be stored in a ROM and a simple

selection circuit with two adders can be used to produce all the N/2 twiddle factors. Further

ROM memory requirements reduction can be achieved with the use of equation (3.12). A

total number of N/4+1 real values can be stored in ROMs, while a more complex selection

circuit can compute all the N/2 coefficients.

To minimize the computational latency of the FFT processor, the proposed architecture

processes two complex FFT inputs per clock cycle, which results in a fully asynchronous
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radix-2 butterfly. The address generation circuit (Section 4.3.2, Fig.4.5) computes the twid-

dle factor ROM address in parallel with the read addresses of the next FFT inputs and the

write addresses for the current FFT outputs. The twiddle factor value should be available,

at the radix-2 butterfly input, at the next cycle, in parallel with the two FFT inputs.

The synchronous ROM memory design8 has a delay of one clock cycle, from the mo-

ment the read address is available at the address port until the specified data are available

at the data port. For a full twiddle ROM implementations (1024 complex coefficient val-

ues in the ROM), the synchronous ROM design will not affect the critical path of the FFT

processor, due to the fact that the needed coefficient value will be available from ROM at

the next clock cycle, without any extra calculation. In cases of twiddle ROM optimization

techniques, all the additional computations for the evaluation of the specific twiddle factor,

from the output of the smaller ROMs, will increase the critical path of the radix-2 butterfly,

and the FFT processor.

4.5 Implementation Results and Comparison

In this section we compare the proposed FFT architecture with a solution including four

SDF radix-2 [298] FFT architectures, which also support variable symbol length (128 ∼
2048 complex points FFT), in terms of hardware resource utilization. The implementation

of the 4xSDF architecture can also support SDR (multi-protocol), MIMO (single-protocol)

or combinations of these two systems (e.g. multiple MIMO protocols), as the proposed

architecture. The comparisons include FPGA and ASIC implementations, with an FFT

fixed-point performance of ∼40dB, with full twiddle ROM memory architecture, to mini-

mize the effect of increased critical path due to extra twiddle computations. Synthesis trails

(FPGA and ASIC) reveal that the most efficient configuration for the data-path and coeffi-

cient factors bit-widths, for an SQNR performance of 40dB, is the 14/15 scheme, in terms

of hardware resources. For the FPGA implementations comparison, an average throughput

of 24 MS/s per MIMO stream is considered (a total of 96MS/s), resulting on a clock fre-

quency of 24MHz for the 4xSDF architecture and 34MHz for the proposed architecture, as

8In ASIC implementations large ROM memories are implemented with memory cells to minimize the
occupied area. These ROM memory cells are synchronous (one clock cycle latency).
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discussed in Section 4.3.1.

Each of the SDF FFT processor has 11 radix-2 stages to support the 2048-point FFT

computation, while the radix-2 DIT butterfly of the first stage has only trivial multiplica-

tions and no complex multiplier unit is required. A total number of 40 complex multipliers

are included in the 4xSDF architecture, while only 16 is required from the proposed archi-

tecture. Based on the analysis of Section 4.4.2 each of the complex multiplier units require

four real multiplication modules. A fair FPGA implementation comparison will require all

the real multiplication module to be implemented in the DSP blocks, to minimize the ef-

fects of uneven increased critical paths. A total number of 160 DSP blocks are required

for the 4xSDF architecture, in comparison with the 64 DSP blocks for the proposed FFT

implementation.

Table 4.2 FPGA implementation comparison

Proposed 4xSDF Gains
Architecture Architecture ( % )

XC4VFX140-11
(LUTs) 15569 23856 34.74
(Slices) 9248 14333 35.48

(DSP48E) 64 160 60.00

XC5VLX110T-2
(LUTs) 11401 14791 22.92
(Slices) 2644 5303 50.14

(DSP48E) 64 160 60.00

XC6VLX240T-2
(LUTs) 9441 12465 24.26
(Slices) 2849 4483 36.45

(DSP48E) 64 160 60.00

Table 4.2 shows the number of FPGA LUTs, Slices and DSP48E blocks occupied by

the two MIMO FFT implementations, and the gains for the proposed architecture, for three

different FPGA device families (Virtex-4, Virtex-5 and Virtex-6). All the FPGA devices

include more than 160 DSP40E blocks, required by the 4xSDF architecture, for a fair com-

parison. The gains of the proposed architecture are more than 25% and 35% for the occupied

LUTs and FPGA slices, respectively. Furthermore, due to limited requirements for DSP48E

blocks the proposed architecture can be implemented in smaller/cheaper FPGA devices.

A reduction on the total number of complex multipliers, of the 4xSDF architecture, will

require the use of more complex radix butterflies, such as radix-22 [95] and radix-23 [97].

The SDF architecture, with these butterfly structures, has reduced number of multiplication
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modules, but more complex memory structures and increased complexity control units are

required. Furthermore, for a variable length FFT processor with high-radix butterfly struc-

tures, there is the requirement for additional lower-radix butterflies, for the computation of

all the FFT lengths.

In the ASIC implementation flow the synthesis tool performs several optimization itera-

tions for both targeting frequency and for minimizing the occupied area. If the critical path

of the design is relaxed, in the targeting frequency constraint, then more aggressive area

optimization can be performed, otherwise less area can be saved. In the case of very strict

clock constraints, in which the targeting frequency can not be achieved easily, aggressive

speed optimizations should be performed by the synthesis tool, which can increase the area,

due to register duplication, buffer insertion, etc.

Table 4.3 ASIC implementation comparison

Target Freq. Throughput Proposed Arch. 4xSDF Arch. Gain
(MHz) (MS/s) (KGates) (KGates) ( % )

25MHz 100 127.77 236.72 46.02
50MHz 200 127.78 236.75 46.03

100MHz 400 127.77 237.25 46.14
200MHz 800 127.77 237.34 46.17
250MHz 1000 127.76 237.61 46.23
333MHz 1333 127.77 237.24 46.14
400MHz 1600 127.81 236.58 45.97
500MHz 2000 128.82 241.50 46.66
667MHz 2667 143.13 266.49 46.29

Table 4.3 shows the comparison of the proposed architecture and the 4xSDF implemen-

tation in terms of gate-count, for several target clock frequencies and total throughput. The

proposed FFT processor has a gain of ∼46% in total KGates, in comparison to the solution

with four distinct radix-2 SDF FFT processors, for all throughput configurations. The mem-

ory requirements (not included in the KGates numbers) for the proposed FFT processor is

N words (7Kbytes), while the 4xSDF architecture requires 4N words (28Kbytes). For a

continuous flow operation the 4xSDF architecture requires 4N additional memory for the

bit-reversing, while the proposed architecture requires a total of 12N memory as mentioned

in Section 4.3.1. Furthermore, the radix-2 SDF architecture includes small memories for
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several computational stages, which can not implemented with memory cells with low-area

and low-power performance. The proposed architecture includes several same size memory

banks, which can be implemented as memory cells to save area and power consumption.

Compared to the 4x4 MR-MDC architecture of [133], which supports only 64 and 128-

points FFT, the proposed architecture has almost double KGates and supports FFT com-

putations up to 2048-points. As discussed in Section 4.4, more FFT computational stages

require wider data-path and twiddle bit-widths, for the same fixed-point performance. Fur-

thermore, the architecture of [133] requires extra memory structures to re-arrange the output

data streams. The mixed-radix (radix-2/radix-4) MDC architecture of [349] has reduced but-

terfly and complex multiplication units, while having increased memory requirements for

the re-arrange of the input data streams. The specific implementation can not be used in

multi-protocol SDR systems, due to the restriction of the same FFT length for all the data

streams, while the memory requirements for the re-arrange of the output data streams are

not included in the comparisons. The complex mixed-radix scheme reduces the scalability

of the architecture, to more complex MIMO-OFDM systems, with more data streams.

The butterfly and complex multiplier sharing scheme of [108], results in increased com-

plexity memory structures for the re-arranging of the input data streams, with reduced scal-

ability to more complex MIMO/SDR systems. The high-radix butterflies and the increased

complexity of the control circuit have a negative impact in the total area and power con-

sumption of the implementation. The 4x4 MIMO radix-4 MDC architecture of [352], has

an efficient memory scheduling scheme to reduce the storage requirements for the input data

streams shuffling, while the output sorting unit includes several large FIFOs and switching

boxes to perform the data un-shuffling. The output data streams re-arranging is not including

in the implementation, while the restriction of the same FFT size for all streams, reduce the

usability of the architecture to multi-protocol SDR systems. The use of the MDC structure

limits the scalability of the FFT processor to more complex MIMO systems.

The proposed radix-2 memory-based FFT architecture, for multi-protocol and/or MIMO-

OFDM SDR systems, utilizes a reduced complexity address generation unit for the imple-
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mentation of the in-place technique, to reduce the FFT processor latency and memory re-

quirements. Furthermore, a simple interconnection network allows the 16 butterfly proces-

sors to communicate with data storage units, and perform parallel FFT computations of up

to four variable length FFT symbols, ranging from 128 to 2048 complex points. The low-

complexity FFT control and the butterfly scheduler unit reduce the processing latency by

efficiently utilize the radix-2 processors, based on the FFT size of each of the data streams.

The reduced number of butterfly units and memory requirements of the proposed FFT

architecture, is a key element for an efficient implementation of an SDR MIMO-OFDM

system, in small FPGA devices. Furthermore, a gain of 46% in gate-count for the proposed

architecture, in comparison with a solution with four distinct radix-2 SDF FFT processors

can be achieved in ASIC implementations. The increased scalability of the proposed FFT

processor and the ability to process different FFT sizes for each of the input data streams, is

a unique characteristic, which make the propose architecture easily adaptable to any multi-

protocol and/or multi-stream SDR OFDM system implementation.





Chapter 5

MIMO Detection

Wireless communication systems have a continuous growth in data-rates, performance, mo-

bility and reliability. The increased bandwidth allocation and the high spectral efficiency

of modulation and coding schemes help for this growth, but the key technology for the last

decades is the use of Multiple-Input Multiple-Output (MIMO) systems. Wireless systems

with 2,4 or 8 antennas are currently used for local area networks (802.11n/ac) or for cellular

systems such as 3GPP-LTE and LTE-Advanced. Multiple antennas can bring diversity in

order to enable more robust communication under tough link conditions, but more often

they are used in order to increase the number of data streams within a given band, thanks to

Space Division Multiplexing (MIMO-SDM).

The use of space-division multiplexing results in a multi-path processing scheme in the

transmitter, in which multiple data streams are transmitted in parallel on the different anten-

nas. The detection of such signals have much more challenges. In a MIMO-SDM system

with multiple transmit and receive antennas, the MIMO detector recovers the multiple trans-

mitted data streams. Its task is to retrieve the symbol vector that was sent by the transmitter

based on the received vector. The transmitted symbol vector consists of multiple complex

symbols, each being one of the O possible points of a O-QAM constellation. In most of the

cases, some inter-stream interference will be present and it may lead to strong degradations.

This is especially the case when some streams are strongly attenuated by the channel or

when multiple streams are not separable due to quasi-singular channel matrix.
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5.1 Introduction

In MIMO systems with MT transmit and MR receive antennas, the MIMO detection problem

can be summarized as the estimation of the transmitted symbols of size MT ×1, based on the

received vectors of size MR×1, with the assumption that the transmitted vectors have integer

entries drawn from a finite alphabet O (O-QAM constellation) of size |O|. This problem is

also known as MIMO Demodulation, MIMO decoding, sequence estimation, closest point

estimation, lattice decoding, or integer least-square (ILS) problem.

The optimal solution, for the MIMO detection problem, is the maximum likelihood

(ML) block detector, which is based on exhaustive search and has exponentially complexity

O(|O|MT ), in term of the block size MT (problem dimension). Reduced complexity, sub-

optimal decoders have been proposed by several researchers over the years. These can be

classified into linear and nonlinear receivers. Linear receivers include zero-forcing (ZF)

[280],[313] and minimum mean-square error (MMSE) detectors [31], [124], while non lin-

ear receivers include decision feedback (DF) [238], [160], [323], nulling-canceling (NC)

[52], [75], [261], and variants relying on successive interference cancellation [159],[309].

These suboptimal detector schemes exhibits, in general, fixed complexity that is a polyno-

mial function of the problem dimension, but may lead to considerable error performance

degradation relative to ML decoding.

In the last years, researchers proposed realistic ML and near-ML detection algorithms,

based on the idea of sphere decoding (SD). Exact ML or near-ML error performance can be

achieved, with reasonably low memory requirements, for certain MT , alphabet sizes |M|, and

signal-to-noise ration (SNR) values, while the average decoding complexity is a polynomial

function of MT (MR ≥MT ) [115], [311], [73]. Alternatively to sphere decoding algorithms

(SDA), with only approximate ML performance but guaranteed complexity O(MT
4) for

all SNR values is offered by the class of lattice reduction algorithms (LRA) [354], [332],

[341], [340], [77]. Another approximate ML performance detection scheme is the prob-

abilistic data association algorithm (PDA), which also has polynomial complexity [185],

[235], [234], [149], [120]. Finally, semidefinite programming (SDP) algorithms have also

been proposed for close to ML performance at complexity roughly O(MT
3.5) [291], [187],

[281], [292], [329], [203]. The sphere decoding algorithm (SDA) is the only one capable

of returning the exact ML solution in general MIMO settings and appears to be more flex-
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ible in terms of striking desirable error-complexity trade-offs, when it comes to near-ML

performance.

5.2 MIMO System Model

In a MIMO-SDM system with MT transmit and MR receive antennas, the transmitted symbol

vector s consists of MT complex symbols, each being one of the |O| possible points, when

using O-QAM constellation. The received signal y is a vector of length MR ≥MT :

y = Hs+n (5.1)

where H is the MR×MT channel matrix and n is the noise vector of length MR. Vector n

is typically modeled as additive white Gaussian noise (AWGN) with zero mean and known

variance σ2
n I (where I is the identity matrix), hence denoted as n∼N

(
0,σ2

n I
)
. In wireless

applications, H is random with entries drawn from a known distribution (e.g. Gaussian) and

in typical cases, it adheres to a block fading model, according to which every realization

of H remains invariant for a number of same consecutively transmitted vectors s. Training

symbols are used to estimate the channel over the blocks that it remains constant, which

results in the assumption the H is known (estimated).

The traditional linear detectors, hard-output zero-force (ZF) and minimum mean-square

estimation (MMSE), they are based on the following equations:

ŝZF = H−1y =
(
HHH

)−1 HHy (5.2)

ŝMMSE =
(
HHH+σ

2
n I
)−1 HHy (5.3)

where (...)H denotes the conjugate (or Hermitian) transpose, and pseudo-inverse of H is

H−1 =
(
HHH

)−1 HH . The MMSE detector may be improved by an additional scaling step,

based on (5.4) and (5.5). This scaling makes sure that the detected constellation is scaled

back to the initial constellation and provides a small performance improvement. S is the



110 MIMO Detection

scaling matrix, out of which only the diagonal elements Sii are needed:

S =
(
HHH+σ

2
n I
)−1 HHH (5.4)

ŝi,Scaled =
ŝi,MMSE

Sii
(5.5)

At the other extreme, in terms of performance and complexity, the maximum likelihood

(ML) detection considers all possible transmitted sets of symbols and computing a metric

for each of them, at the output of the channel, and it can determine the most likely value

for each of the transmitted symbols. The gap in error performance between a linear and

the maximum likelihood detection comes from the fact that the ML detector exploits the

full diversity of the channel, while linear detectors are limited to a diversity one (in case

MT = MR). The maximum likelihood detector is designed to solve the following equation:

ŝ = arg min
s∈OMT

∥y−Hs∥2 (5.6)

where OMT is the set containing all possible vector signals s of length MT . Viewing y

as a point in the MR-dimensional space, the (5.6) suggests searching exhaustively over all

possible |O|MT candidate vectors s and selecting the one for which Hs (points of a lattice)

lies closest to (has smallest Euclidean distance from) y. This exponential complexity is

prohibitive in most practical real-time scenarios where |O| can typically range from 2 to 64

and MT from 2 to 8. Sphere decoding algorithms can provide an ML or near-ML solution

with polynomial complexity for a number of constellation sizes, SNR ranges and block sizes

encountered in MIMO decoding applications.

5.3 Sphere Decoder Algorithm

As its name indicates, the sphere decoding algorithm solves (5.6) by searching exhaustively

but efficiently all symbol candidates Hs (points of an MR-dimensional lattice) within a hy-

persphere of radius r, centered at the received symbol y [73], [311]. The selection of the

value of the hypersphere radius r and the efficient search over all the symbol candidates Hs
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inside the hypersphere, can reduce the exponential computational complexity (worst-case)

of the ML detection, to polynomial (averaged over noise and lattice size) [28], [66], [93],

[94], [115]. The two key questions for the sphere decoding algorithm is how can we choose

the radius r of the hyper sphere and how we can determine which lattice points are inside

the hypersphere.

A basic observation is that, although it is difficult to determine the lattice points inside

a general m-dimensional sphere, it is trivial to do so in the one-dimensional case of m = 1.

This is because the one-dimensional sphere reduces to the endpoints of an interval, and the

desired lattice points will be the integer values that lie in this interval. We can use this obser-

vation to go from dimension k to dimension k+1. If we have determined all k-dimensional

lattice points that lie in a sphere of radius r, then for any such k-dimensional point, the set of

admissible values of the (k+ 1)-th dimensional coordinate that lie in the higher (k+ 1) di-

mensional sphere of the same radius r forms an interval. This means that we can determine

all lattice points in a hypersphere of dimension m and radius r by successively determining

all lattice points in hyperspheres of lower dimensions (1,2,...,m) and the same radius r. An

algorithm for the determination of the lattice points in an m-dimensional hypersphere, based

on the above observation, essentially constructs a tree where the brances in the k-th level of

the tree, correspond to the lattice points inside the hypersphere of radius r and dimension

k. Moreover, the complexity of such an algorithm will depend on the size of three, or more

precisely on the number of lattice points visited by the algorithm in different dimensions.

The lattice point Hs lies inside a hypersphere of radius r centered at y if and only if:

r2 ≥ d (s) = ∥y−Hs∥2 (5.7)

The QR decomposition [12] of the MR×MT matrix H is

H = QR (5.8)

where Q is an MR×MT matrix with orthonormal columns (QHQ = IMT ) and R is an MT ×
MT upper triangular matrix. It can be shown [65] that

d (s) = c+∥ŷ−Rs∥2 with ŷ = QHy = RŝZF (5.9)
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Figure 5.1 Search tree structure for a 4x4 BPSK MIMO system

where ŝZF is the zero-force solution from (5.2). The constant c is independent of the vector

symbol s and can be ignored (set c = 0). The QR factorization of the matrix H can be

efficiently calculated with the use of several algorithms and techniques [111], [107], [186],

[184], [229], [210].

We can build a tree in which the leaves at the bottom correspond to all possible vector

symbols s and each level of the tree corresponds to a single transmit antenna, starting with

antenna i = MT below the root node and ending with antenna i = 1 at the leaf nodes. Each

of the nodes, except the leaves, has |O| children, assuming an O-QAM constellation, and all

nodes can be reached from root node by following the branches, which connect the nodes.

Figure 5.1 shows the tree structure for the case of a 4x4 BPSK MIMO system. Each parent

node has two children nodes, due to BPSK constellation, and starting from the root node we

can reach all possible vector symbols s.

In this tree structure, each node is a scalar symbol candidate si. Therefore, any path

from the root node to a node on level i corresponds to a partial candidate symbol vector

si = [si,si+1, ...,sMT ]
T with s1 = s. The root node of the tree structure corresponds to an

empty vector. Based on the above, we can recursively compute the (squared) distance d(s)

in (5.9) in a row-by-row fashion: Starting from the root node at level i = MT +1 and setting

D(sMT+1) = 0, the partial (squared) Euclidean distances (PEDs) D(si) can be evaluated:

D(si) = D(si+1)+∆(si) (5.10)
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where i = MT ,MT −1, ...,1 and ∆(si) can be obtained as

∆(si) =

∣∣∣∣∣∣ŷi−
MT∑
j=i

Ri, js j

∣∣∣∣∣∣
2

. (5.11)

Finally, d (s) is the PED of the corresponding leaf: d (s) = D(s1).

Since the distance increments ∆(si) are nonnegative, it follows that whenever the PED

of a node violates the (partial) sphere constraint (SC) given by

D(si)< r2 (5.12)

the PEDs of all its children will also violate the SC. Consequently, the sub-tree with root

node this node can be pruned and the number of possible vector symbols (leaves of the tree)

to be checked, can be reduced.

By the formulation of the MIMO detection problem as an optimization problem based

on a weighted tree, various tree traversal approaches can be considered. The main two are

the depth-first and breadth-first tree traversals. A common algorithmic complexity measure

for a sphere decoding algorithm is the number of tree nodes, which the algorithm needs to

examine their PEDs. These nodes are commonly named as vising nodes. The PED compu-

tations are the major calculations performed in the sphere decoding process and the number

of these computations is generally a valid measure to compare different SD algorithms.

Nevertheless, while this is the common case, specific SD algorithms may have low com-

plexity, while vising more tree nodes. The initial value of the sphere constraint r2 and the

possibility of changing (updating) this value through the tree-traversal process can reduce

the computational complexity of the sphere decoder, due to the tree pruning. Finally, the

efficient “visiting” of the nodes, in a specific (enumerated) order, can further reduce the

complexity, if we can safely eliminate nodes (or sub-trees) without checking their PEDs

(without “visiting”).
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5.3.1 Tree Traversal Strategies

The worst-case computational complexity of the tree search problem for the MIMO detec-

tion is O
(
|O|MT

)
, when an O-QAM constellation is used with MT transmit antennas. This

complexity is already a problem for a real-time 4x4 MIMO system with 16-QAM constel-

lation and becomes more serious with higher modulation orders or more antennas. Various

sphere decoding algorithms have been proposed in the literature in order to reduce both

the average and the worst-case complexity, of the MIMO detection. Depending on the al-

gorithm, a high complexity reduction is traded against a certain error performance (BER,

FER, etc) reduction. The majority of these approaches are based on three optimization

schemes: Depth-First, Breadth-First and Best-First tree traversals. The breadth-first algo-

rithms mostly target a constant detection complexity and throughput, while the best-first

and the depth-first approaches have variable complexity and throughput, based mainly on

the channel condition.

Depth-First Sphere Decoding

Depth-first search approaches descend directly to a leaf by selecting the most promising

branch on each level. The search continues on a tree level with further less promising

branches until no branch fulfills the sphere constraint any more. In this case, the search

returns to the next higher tree level and continues as long as the sphere constraint is ful-

filled. This approach can be interpreted as descending into a local minima of ∆(si) first and

continuing with worse ∆(si) on a tree level i, until the global minimum is found. In general

this approach has variable runtime and throughput.

The depth-first traversal strategy imposes control and data flow dependencies which

typically lead to sequential algorithm implementations. In cases of good channel conditions

this scheme has low complexity and high efficiency, while the implementation needs to have

sufficient and deterministic performance under worse channel conditions. Many algorithms,

based on the depth-first tree traversal strategy, provide various approaches to impose con-

straints on the tree search for the worst-case scenarios. These constraints may have impact

on the error performance of the sphere decoding, by providing a near-ML solution, while

keeping the high throughput of the MIMO detection.

Schnorr and Euchner in [259] propose an optimization of the tree pruning, by defining a
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search order for the child nodes on level i by the ascending metrics ∆(si) of the candidates

si. The Schnorr-Euchner (SE) enumeration scheme has the additional complexity of finding

and sorting the metrics ∆(si) of all child nodes but also have the advantage of converging

faster to the solution in the average-case scenarios, by fast pruning of the tree. Further-

more, an update of the sphere constraint r2, each time a leaf node with d (s) = D(s1)< r2 is

reached, is proposed in [259]. Therefore, the radius of the hypersphere is shrinking, while

the algorithm is running, and significantly reduces the search complexity without sacrific-

ing the ML optimality. The error performance and search complexity of the SD algorithm

is independent from the selection of the initial sphere constraint, only if this constraint in-

cludes the ML solution. It is common to use infinite initial sphere constraint to ensure the

ML solution. Several implementations are based on the Schnorr and Euchner enumeration

scheme for reduced complexity maximum-likelihood MIMO detection on wireless systems

[65], [29], [311], [271], [82].

Breadth-First Sphere Decoding

Breadth-first traversal strategy processes the tree level by level starting at the root and fin-

ishing at the leaves, instead of descending directly to a leaf as in the depth-first approach,

targeting a fixed runtime and throughput. At each tree level, a certain subset of available

branches are kept while others are discarded and no steps are made back towards the root

node. The breadth-first algorithms need to take special care not to lose branches contain-

ing leaves close to the ML solution, otherwise a significant error performance degradation

can be the cost for the advantage of fixed runtime and throughput. However, breadth-first

algorithms are much better suited for parallelization than depth-first algorithms since the

processing of a single tree layer includes several branches but much less dependencies. This

is a significant advantage over depth-first searches particularly for low SNRs, but the com-

plexity of breadth-first algorithms is not reduced or adapted at higher SNRs.

The most prominent breadth-first SD algorithm is the K-best sphere detection algorithm

which initially proposed in [312]. These algorithms keep the best (most promising) K par-

tial candidate symbol vectors si, based on their PEDs, on every tree level i. Most of the

K-best SD implementations have very low values of K, with low complexity for the re-

quired list-maintenance units, and close to ML error performance [327], [88], [44], [263].
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Nevertheless, while K-best algorithms have low and constant algorithmic complexity, their

error performance, most likely, depends on the channel conditions.

Another group of SD algorithms, which use the breadth-first traversal strategy, is the

Fixed-complexity Sphere Decoders (FSD) initially proposed in [15] and [17], which are very

similar to the K-best approach. The main difference of the FSD algorithms, compared to

K-best, is the expansion strategy on each of the tree levels. In the K-best algorithms, for an

O-QAM constellation and MT transmit antennas, for each level i a (partial1) sorting of all the

|O|(MT−i+1) PEDs is required for the selection of the K best partial vectors si, while the FSD

strategy limits this process to the expansion of only ni best children si for every parent node

si+1. Therefore, FSD has individual expansion degrees for every antenna and selects a sub-

tree of ∑
MT
i=1 ni symbol vector candidates. Furthermore, a pre-processing step is required for

the FSD algorithms very similar to a sorted QR decomposition calculation [15]. The error

performance of the FSD is near-ML on average, while targeting a more regular control and

data flow structure than the K-best leading to a reduced fixed complexity. Finally, trade-offs

exists between the complexity and the performance of the FSD algorithms by manipulate

the ni parameters [16], [114], [113]. Very similar to the FSD approach is another breadth-

first SD algorithm, the Selective Spanning with Fast Enumeration (SSFE) algorithm [156],

[157], [218]. The SSFE employs also the fixed expansion technique with the difference of

keeping (storing) the non-selected children nodes, while using a very efficient simplified

enumeration scheme, based on geometrical heuristics approximations.

Best-First Sphere Decoding

A different approach in the tree traversal strategy is used by the best-first algorithms. This

scheme establishes a list of partial candidate vectors which may be located in different sub-

trees and on different tree levels and it was initially proposed in [207]. In each step, the

search is continued with the partial vector with the lowest metric. The “tree-hopping” elim-

inates the disadvantage of the breadth-first algorithms to miss the ML solution. However,

there is the risk not to reach any leaf while hopping across higher tree levels. Several mod-

ifications have been proposed to eliminate the disadvantages of the best-first tree traversal

1The majority of the K-best algorithms evaluate at most K · |O| PEDs, for each tree level, from which they
select the K best partial vector symbols si
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scheme [39], [167], [268], with the depth-first like method to be the most efficient [167],

[268]. The Modified Best-First with Fast Descend (MBF-FD) sphere decoder [167], which

is a depth-first method modification on the best-first scheme, has a very efficient implemen-

tation supporting up to 8×8 MIMO systems.

5.4 Sphere Decoding with Soft Information

As mentioned before for a MIMO system with MT transmit and MR ≥MT receive antennas

the transmitted coded bit-stream is mapped to a MT -dimensional symbol vector s ∈ OMT ,

where O is the set of complex-valued scalar constellation points (e.g. O-QAM constella-

tion). Each symbol vector s is associated with a bit-level label vector x, with entries x j,b,

where the indices j and b refer to the b-th bit in the label of the constellation point given by

the j-th entry of s = [s1 s2 ... sMT ]
T . Soft information can be used by the channel decoder

to increase the error-rate performance of the system. This will require a Soft-Output MIMO

detection, which produce soft information in the form of Log-Likelihood Ratios (LLRs -

L(·)) for all bits in the label x. For computational complexity reduction, it is common to

employ the max-log approximation for the LLRs computation on the MIMO detection unit

[105]. Based on (5.1) and assuming statistically independent and identically distributed bits,

the LLR value of a bit x j,b (of the bit-level label vector x) is:

L
(
x j,b
)
= min

s∈X (−1)
j,b

∥y−Hs∥2− min
s∈X (+1)

j,b

∥y−Hs∥2 (5.13)

where X (−1)
j,b and X (+1)

j,b are the sets of symbol vectors s that have the b-th bit in the label of

the j-th scalar symbol equal to -1 and +1, respectively. For each bit, one of the two minimum

in (5.13) is given by the metric λ ML = ∥y−HsML∥2 associated with the ML solution of the

MIMO detection problem of (5.6).

The other minimum in (5.13) can be written as:

λ
ML
j,b = min

s∈X

(
xML

j,b

)
j,b

∥y−Hs∥2 (5.14)
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where the counter-hypothesis xML
j,b denotes the binary complement of the b-th bit in the label

of j-th entry of the sML. Based on (5.6) and (5.14) the max-log LLRs can be written as:

L
(
x j,b
)
=

λ ML−λ ML
j,b , xML

j,b =−1

λ ML
j,b −λ ML , xML

j,b =+1
(5.15)

From (5.15) we can conclude that an efficient maximum a-posteriori (MAP) MIMO detector

should efficiently calculate sML, λ ML and λ ML
j,b for j = 1,2, ...,MT and b = 1,2, ...,Q, where

Q = log2 |O|.

After the QR decomposition of the channel matrix H we can transform the problem to

a tree-search problem and use the sphere decoding algorithm for efficient calculation of the

LLRs, according to the following equations:

λ
ML = min

s∈OMT
∥ŷ−Rs∥2 (5.16)

λ
ML
j,b = min

s∈X

(
xML

j,b

)
j,b

∥ŷ−Rs∥2 (5.17)

We can use (5.10) and (5.11) to calculate the partial Euclidean distances (PEDs) of a partial

symbol vector si. Each path of the tree from the root node to a leaf corresponds to a symbol

vector s ∈ OMT . The solution of (5.16) and (5.17) corresponds to the leaf associated with

the smallest metric in OMT and X

(
xML

j,b

)
j,b respectively.

The computation of the LLRs in (5.15) requires determining the metrics λ ML
j,b , which

for given j, b is accomplished by traversing only those parts of the tree that have leaves in

X

(
xML

j,b

)
j,b . This calculation has to be performed for every bit and results in an order of mag-

nitude increased computational complexity, compared to the hard-output sphere decoding.

Considering the fact that by forcing the SD algorithm into specific subtrees, when com-

puting the minimum of (5.17), leads to significantly less efficient tree pruning behavior,

which results in an overall complexity increase of two orders of magnitude, compared to the

hard-output sphere decoding case.
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Tree Traversal Strategies for Soft-Output Sphere Decoding

In the case of depth-first tree traversal algorithms the Repeated Tree Search (RTS) and the

Single Tree Search (STS) sphere decoding algorithms are support LLR computations. The

main idea of the RTS algorithm [319] is to start by solving (5.16), by using the Schnorr-

Euchner Sphere Decoding (SESD) algorithm (hard-output SD) and to then rerun the SESD

to solve (5.17) for each bit in the symbol vector (QMT times). A pre-pruned tree is used,

when rerunning the SESD to determine the λ ML
j,b in (5.17), and the decoder is forced to

exclude all nodes from the search, for which x j,b = xML
j,b . The radius update technique is

used for all the SESD runs. The initial SESD run, which solves (5.16), have an initial

infinite sphere constraint, while the next QMT SESD runs, required to solve (5.17), have

the initial sphere constraint equal to the minimum value of ∥ŷ−Rs∥ over all s ∈ X

(
xML

j,b

)
j,b ,

found during the previous tree traversals, for complexity reduction without compromising

the max-log optimality. The multiple hard-output SD runs of the RTS algorithm results in a

large number of redundant computations, while the efficiency of the pruning behavior, when

computing the λ ML
j,b , is very low. An increased pruning efficiency of the RTS algorithm

is proposed in [193], by changing the detection order in each run, but the multiple QR

decomposition steps increase the overall complexity of the decoder. A different expansion

scheme is used in [270] to increase the efficiency for the counter-hypothesis SESD runs

(solving (5.17)). Furthermore, a predefined and fixed complexity scheme is proposed, by

using early termination of the decoder, to reduce the complexity and run-time of the LLR

computation, by compromising the max-log optimality.

A more efficient tree traversal is used by the Simple Tree Search (STS) algorithm [116],

[287], in which the search for the ML solution and all counter-hypothesis is performed

concurrently. The update rules and the pruning criterion are based on a list containing the

metric λ ML, the corresponding label xML and the metrics λ ML
j,b . The main idea is to ensure

that every node in the tree is visited at most once, by searching the subtree, originating from

a given node, only if the result can lead to an update of at least one of the metrics in the list,

either λ ML or one of the λ ML
j,b . The list administration is based on two distinguished cases,

when the decoder reaches a leaf. In the first case, when a new ML hypothesis is found, for

each bit in the ML hypothesis that is changed in the process of the update, the metric of the

former ML hypothesis becomes the metric of the new counter-hypothesis, followed by an
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update of the ML hypothesis. This ensures that at all times λ ML
j,b is the metric associated

with a valid counter-hypothesis to the current ML hypothesis. For the second case, when

d(x) ≥ λ ML, only the counter-hypothesis have to be checked. For all j and b such that

x j,b = xML
j,b and d(x) < λ ML

j,b the decoder updates λ ML
j,b ← d(x). The pruning criterion is

compiled from two conditions to ensure that a given node and the entire subtree originating

from that node are explored only if this could lead to an update of either λ ML or of at

least one of the λ ML
j,b metrics. The STS algorithm outperforms the RTS strategy in terms of

average complexity by a factor of 4 to 8 [287].

In the case of breadth-first tree traversal strategies there are extensions of the K-best

algorithms to support LLR computations. The soft-output K-best sphere decoders require

significantly larger values for K, than the hard-output variants, to ensure that all the counter-

hypothesis metrics are included in the candidates list [44], [88]. For the cases that one or

more counter-hypothesis metrics are not in the list, the LLR computation is performed based

on the difference between the best and the worst metrics among the candidates list. These al-

gorithms have fixed complexity and runtime, while their reduced error performance is close

to optimal detection, on average. Furthermore, extensions on the fixed-complexity sphere

decoders (FSD) have been proposed, for the soft-output LLR generation [18], [148], [338],

[202]. These extensions are based on a similar idea than that for the K-best algorithm, to

increase the size of the candidates list. Finally, several techniques and algorithms have been

proposed to solve the problem of missing counter-hypothesis metrics in the candidates list

in the breadth-first soft-output SD algorithms. The Smart Ordering and Candidate Adding

(SOCA) technique [201], expands additional tree nodes considering always to include all the

counter-hypothesis metrics for the current partial ML hypothesis. The Parallel Candidate

Adding (PCA) scheme [336] is very similar to SOCA with different estimation of the partial

ML hypothesis, for more regular implementation with reduced decoding latency.

Soft-Input Soft-Output Sphere Decoding

As mentions in Chapter 2 the Soft-Input Soft-Output (SISO) detection constitutes the ba-

sis for iterative decoding in OFDM and MIMO-OFDM systems, which, in general, achieves

significantly better error-rate performance than decoding based on hard-output or soft-output

detection algorithms. This performance gain comes at the cost of a significant and often pro-
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hibitive in terms of practical implementation (mainly for MIMO-OFDM systems), increase

in computational complexity.

The basic principle of the iterative detection and decoding, in a MIMO-OFDM system,

is that the MIMO detector incorporate soft reliability information provided by the chan-

nel decoder, and the channel decoder incorporate soft information provided by the MIMO

detector. These soft information exchanges between the MIMO detector and the channel de-

coder is performed in an iterative fashion until desired performance is achieved. The MIMO

detector takes channel observations y and a priori knowledge LA
1 of the inner coded bits and

computes new “extrinsic” information LE
1 for each of the MT Q coded bits per vector symbol

y (assuming MT transmit antennas and 2Q-QAM constellation). The LE
1 is deinterleaved

(if needed) to become the a priori input LA
2 of the SISO channel decoder which calculates

extrinsic information LE
2 of the coded bits. Finally, the LE

2 is interleaved (if needed) and fed

back as a priori knowledge LA
1 to the MIMO detector for the completion of one “iteration”

[105].

Maximizing the a posteriori probability (MAP or APP) for a given bit minimizes the

probability of error for that bit. The a posteriori probability is usually expressed as a log-

likelihood ratio value (L-value), as mentioned above. Based on (5.1) the intrinsic LLRs of

a SISO MIMO detector should be calculated according to [105]:

L j,b = log

(
P
[
x j,b =+1|y,H

]
P
[
x j,b =−1|y,H

]) (5.18)

for all bits j = 1, ...,MT , b = 1, ...,Q in the label x. An equivalent formulation is (Bayes’s

theorem):

L j,b = log

 ∑
s∈X (+1)

j,b

p(y|s,H)P[s]

− log

 ∑
s∈X (−1)

j,b

p(y|s,H)P[s]

 (5.19)

where X (+1)
j,b and X (−1)

j,b are the sets of symbol vectors that have the bit corresponding to the

indices j and b equal to +1 and −1, respectively. The prior P [s] is delivered by the channel
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decoder in the form of a priori LLRs:

LA
j,b = log

(
P [x j,b =+1]
P [x j,b =−1]

)
(5.20)

Based on the intrinsic LLRs in (5.19), the SISO MIMO detector calculates the extrinsic

LLRs:

LE
j,b = L j,b−LA

j,b, ∀ j,b (5.21)

that are forwarded to the channel decoder.

By using the max-log approximation and QR decomposition, as in the previous subsec-

tion, we can conclude that a SISO MIMO detector computes the intrinsic max-log LLRs

according to

LD
j,b = min

s∈X (−1)
j,b

[
1

σ2
n
∥ŷ−Rs∥2− logP[s]

]
− min

s∈X (+1)
j,b

[
1

σ2
n
∥ŷ−Rs∥2− logP[s]

]
(5.22)

followed by the computation of the extrinsic max-log LLRs:

LE
j,b = LD

j,b−LA
j,b, ∀ j,b (5.23)

For each bit, one of the two minima in (5.22) corresponds to

λ
MAP =

1
σ2

n
∥ŷ−RsMAP∥2− logP

[
sMAP

]
(5.24)

associated with the MAP solution of the MIMO detection problem:

sMAP = arg min
s∈OMT

[
1

σ2
n
∥ŷ−Rs∥2− logP [s]

]
(5.25)

The other minimum in (5.22) can be written as

λ
MAP
j,b = min

s∈XMAP
j,b

[
1

σ2
n
∥ŷ−Rs∥2− logP [s]

]
(5.26)

where XMAP
j,b = X

xMAP
j,b

j,b and xMAP
j,b denotes the (bit-wise) counter-hypothesis to the MAP hy-

pothesis. From (5.24) and (5.26) the intrinsic LLRs can be written in compact form as:
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LD
j,b =

λ MAP−λ MAP
j,b , xMAP

j,b =−1

λ MAP
j,b −λ MAP , xMAP

j,b =+1
(5.27)

Therefore, an efficient max-log-optimal SISO MIMO detection is reduced to efficiently

identifying sMAP, λ MAP and λ MAP
j,b , ∀ j,b.

A SISO sphere decoding algorithm is more complex that the soft-output variant, due to

the input soft information from the channel decoder (a priori LLRs). An approximation of

the max-log solution in the SISO MIMO detection problem, have been proposed in [105],

called List Sphere Decoder (LSD). It is based on a depth-first search creating and maintain-

ing a fixed-length list of candidate leaf nodes that are used as approximation for the sets

X (+1)
j,b and X (−1)

j,b . A vectorized version of the LSD algorithm have been proposed in [197],

with some degree of parallelization for reduced decoding latency. For short list lengths the

LSD algorithm has sufficient performance degradation and still variable complexity. An

extension of LSD called tuple search has been proposed in order to overcome these issues

[198],[265], [2].

An extension of the Single Tree Search (STS) algorithm towards an efficient max-log

optimal SISO MIMO detection have been proposed in [286], [285],[25],[333]. To over-

come the limitations of the SISO LSD algorithm, authors propose modifications in the list

administration and tree pruning criterion to support the a priori LLRs. Furthermore, sev-

eral complexity reduction schemes are introduced to reduce the increased computational

requirements of the SISO MIMO detector.

An efficient complexity optimization for depth-first SISO SD algorithms is proposed in

[216] and [166], which supports exact MAP performance. The introduction of a Pruning

Metric, which is the value that it will be compared to the sphere constraint, for the tree

pruning and an efficient handling of this metric, can result in increased number of “visit-

ing nodes” but with decreased overall computational complexity. The proposed algorithm

can be used with efficient enumeration schemes (Chapter 6) in a SISO depth-first search

sphere detector, resulting in reduced computational requirements for the nodes enumeration

procedure, performed in each visiting node.

Finally, some modification on breadth-first search SD algorithms have been proposed

to support SISO [47], [14], [57]. These modifications are mainly on the FSD algorithm
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and are based on changes in the administration of the list of candidates to reduce the risk

of missing counter-hypothesis metrics. The increased parallelization supported by FSD

algorithms results in reduced decoding latency for the SISO MIMO detector, with significant

performance degradation.

5.5 Complexity Reduction Schemes for Sphere Decoding

As previously mentioned the use of Schnorr-Euchner (SE) enumeration scheme and the

radius reduction technique can result in reduced complexity SD algorithms, without com-

promising the exact ML or MAP error performance. Efficient algorithms which perform

the SE enumeration without the need of Full Enumeration and Sort (FES) will be presented

in Chapter 6. Several algorithms and techniques have been proposed to reduce the com-

putational complexity of the sphere decoding algorithms, either resulting in a performance

degradation or not.

Sorting and Regularization

A common approach to reduce the complexity in the sphere decoding without compromis-

ing the performance, is to adapt the detection order of the spatial streams. More efficient

pruning of the search tree is obtained if sorting is performed such that “strongest streams”,

in terms of effective SNR, correspond to levels closer to the root node. For the calculation of

a sorted QR decomposition of matrix H, the most common approach is to perform QR de-

composition on matrix HP, where P is a suitably chosen MT ×MT permutation matrix. The

permutation matrix P is chosen such that the main diagonal entries of R in HP = QR are

sorted in ascending order. The exact solution of this problem has a very high complexity, and

several heuristic algorithms have been proposed to reduce the computational requirements

of the sorted-QR decomposition pre-processing and the overall sphere decoding complexity

[342], [183], [137], [144].

Poorly conditioned channel realizations H lead to high search complexity due to the low

effective SNR on one or more spatial streams. An efficient approach to counter this problem

is to operate on a regularized channel matrix by computing the sorted QR decomposition of
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 H

αIMT

P = QR (5.28)

where α is a suitably chosen regularization parameter. The regularization of the channel ma-

trix results in performance degradation due to the fact that approximations of the max-log

LLRs should be used and an additional post-processing step is required after the detec-

tion, for the reordering of the LLRs due to the permutation induced by matrix P. Efficient

selection of the regularization parameter α for specific channel condition can reduce the

performance degradation of the sphere detection with the cost of extra complexity. Several

sphere decoding algorithms use this complexity reduction approach with a small perfor-

mance degradation [339], [343], [318], [287], [286].

Run-time Constraints

As mentioned above, the computational complexity and the decoding throughput of an exact

ML or MAP performance, sphere decoding algorithm is variable, which constitutes a prob-

lem in many practical application scenarios. Depending on the realization of the random

channel matrix as well as on the noise realization, computational requirements of the sphere

decoding algorithm can correspond to these of an exhaustive search over the entire set of

symbols, in a worst-case scenario. In order to meet the practically important requirement

of a fixed average throughput, the algorithm run-time should be constrained. This leads to

a constraint of the maximum detection effort or equivalently to an early termination of the

sphere decoding algorithm. Clearly, such a constraint will affect, in most of the cases, the

error performance of the detector.

The most common early termination criterion is the total number of visiting nodes, in the

process of the tree traversal. This run-time constraint can be applied in all sphere decoding

algorithms for complexity reduction and increased detection throughput [267], [155]. A

more efficient approach is to use a variable constraint on the total visiting nodes, based on

channel conditions and targeting decoding latency. The estimated channel noise (SNR) can

be transformed to a minimum Euclidean distance, in terms of sphere decoding, in which the

detection will be terminated (early). The selection of the minimum distance is a trade-off

between the detection latency/throughput and the error-rate performance [32], [87].
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While SD algorithms are based on symbol-by-symbol detection, the maximum visiting

nodes termination criterion can be applied to a block of symbols, based on the decoding

block of the channel decoder. This block-based constraint technique schedules a specific

maximum value (maximum visiting nodes), for the current symbol detection, based on the

previous assigned constraints (for previous symbols), the targeting block-based detection

latency and maybe the channel conditions for the current symbol. Furthermore, in the case

of SISO MIMO detection this scheduling algorithm can provide variable constraints for

the multiple decoding iterations. This approach is more efficient, in terms of error-rate

performance and still can guarantee fixed block detection throughput [30], [99].

Another early termination criterion, which is used in complexity reduction schemes for

sphere detection algorithms, is the stopping radius. In this approach, the current ML or

MAP metric is compared with a specific minimum value for triggering the early termination

of the decoding process. The stopping radius can be variable in a symbol or block or packet

basis, and its value is crucial for the decoder error-rate performance and throughput. An

efficient selection, in terms of decoding error performance, is the value of the packing radius

[74] of the lattice, for a specific sphere decoder configuration (number of antennas and

constellation) [255], [254], [256].

In case of SISO MIMO systems, a run-time constraint can be applied for the early ter-

mination of the iterative decoding process. The most simple approach, in terms of complex-

ity, is the Sign Comparison Approach (SCA), in which the signs of the current calculated

LLRs are compared with these of the previous decoding iteration [337], [266], [211]. An-

other technique for early termination of the iterative process is the Cross Entropy Approach

(CEA), which has increased computational complexity, compared to SCA, but better error

performance [89]. A more efficient technique, in terms of complexity and performance, is

the Performance Driven Approach (PDA), in which the termination of the iterative process

is triggered when the evaluated bit-error rate (BER) stops significantly to improve, over the

iterations [145], [154], [283]. An extension to the PDA technique is proposed in [213], in

which the iterative process is stopped when a target BER is achieved.
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LLR Clipping

In cases of soft-information SD algorithms, the dynamic range of LLRs is typically not

bounded. However, practical systems need to constrain the magnitude of the LLR values

(by a maximum value Lmax) to enable fixed-point implementation. This LLR clipping will

lead to a performance degradation, however it can be implemented into the SD tree traversal

algorithm leading to a reduction in the search complexity. The LLR clipping technique can

be used in the sphere decoder for a more aggressive tree pruning in the tree traversal process.

The LLR value for a specific bit x j,b is proportional to the difference in (squared) distance

between the ML point and the corresponding counter-ML point of that bit. Therefore,

∣∣LLR
(
x j,b
)∣∣= dML

j,b −dML
j,b ≤ Lmax ⇒ dML

j,b ≤ dML
j,b +Lmax (5.29)

Equation (5.29) effectively means that clipping the LLR values to Lmax is equivalent to

limiting the search space of the counter-hypothesis points to a sphere of squared radius

dML
j,b +Lmax, around the received point ŷ [192].

This technique results in significant reduction of the vising nodes and therefore increased

decoding throughput in the cost of reduced error performance. The LLR clipping can be

applied in the majority of the soft information SD algorithms and the selection of the max-

imum LLR value (Lmax) is a trade-off between detection complexity and error-rate perfor-

mance [208], [355], [286], [287]. Efficient approaches select the LLR clipping parameter

on a symbol/block/packet basis, considering the channel conditions and targeting detection

latency [200]. Furthermore, there are also adaptive radius scaling techniques, which dynam-

ically adapt the radius for the counter-hypothesis search space, considering also the current

ML metric [192].

An efficient LLR clipping technique for SISO MIMO systems is proposed in [213]. A

target bit-error rate (BER) is used as a performance metric to reduce the complexity of the

SISO iterative decoding process, with a per-bit selective soft information update method.

This technique allows complexity reduction at early iterations of the decoding process, by

avoiding the unnecessary processing that would further increase the reliability of those bits

that reach the target BER performance. Several LLR clipping methods are proposed in [213]

which together with the soft information update technique, adjust on-the-fly, the complexity
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of the receiver to the target BER requirements of the system.

Other Schemes

One of the most computational demanding procedures in the SD algorithms is the enu-

meration process during the tree traversal. As mentioned before, the most efficient way to

visit the tree nodes is by ascending order of their PEDs (Schnorr-Euchner (SE) enumera-

tion). There are several algorithms and techniques which reduce the high complexity of the

Full Enumeration and Sort (FES) for an efficient SE enumeration and which will discuss

in the following chapter. Nevertheless, several complexity reduction schemes for the SD

algorithms applied to the enumeration process of the tree traversal.

The Euclidean distance calculations of the enumeration process are complex, in terms

of efficient implementation, and can be approximated with more simple computations. This

will result in more efficient SD implementation, in terms of area and power, with an error-

rate performance penalty [29]. Several SE enumeration algorithms take advantage of the

geometrical properties of the constellation map to reduce the complexity of the enumeration,

without compromising the ML or MAP performance [29], [99]. On the other hand, there

are enumeration techniques that approximate the SE with low complexity implementations,

resulting in error performance loss, on the average case [196],[326],[167].

Another approach for complexity reduction on the sphere decoding algorithms is the

early pruning technique. Based on the reduction of the search space of the SD algorithm,

these techniques are evaluate and prune the relative less reliable tree nodes before the Eu-

clidean distance calculation process. The early pruning algorithms result in a reduced num-

ber of total visiting nodes and therefore increased decoding throughput, with a small (on

average) error-rate performance penalty. There are several algorithms for the evaluation of

the less reliable tree nodes, which are applied in the initial steps of the tree search or at

run-time in the concept of an extra sphere constraint. Finally, the determination of the early

pruned nodes is mainly statistical [271], [85], [177].



Chapter 6

Enumeration Schemes on Sphere

Decoding

In all the SD algorithms, one of the most demanding processes, in terms of computations, is

the node ordering or node enumeration. An efficient visiting order of the tree nodes results

in reduced decoding complexity due to more aggressive tree pruning. According to Schnorr

and Euchner Enumeration (SEE) scheme [259] an efficient way to expand the child nodes

is by ascending order of their partial Euclidean distances (PEDs) from the root node. A

straight-forward implementation of the SEE requires the calculation and sort of the PEDs

of all child nodes, which for the majority of the constellations, have increased complexity

due to the large number of child nodes. A parallel structure for all PEDs computations will

result to increased chip area, while the sort circuit for large number of values increases the

critical path. Therefore, the Full Enumeration and Sort (FES) scheme is not efficient for the

majority of the MIMO systems.

More efficient schemes should be considered for the SE enumeration, which narrows

the SD tree traversal and therefore results in reduced complexity in terms of chip area,

power consumption and decoding throughput. An approximation of the Schnorr-Euchner

enumeration will have decreased complexity but it will increase the total number of visiting

nodes and eventually the total decoding latency, for an exact ML or MAP performance. An

efficient enumeration scheme, which consider the geometrical properties of the constellation

points, and expand the tree nodes based on the SE enumeration will result in less visiting

nodes and reduced decoding complexity without compromising the error-rate performance.



130 Enumeration Schemes on Sphere Decoding

6.1 Introduction

As mentioned before, in MIMO systems with MT transmit and MR receive antennas, the

symbols st (t = 1, ...,MT ) from a constellation O of size |O| are transmitted concurrently. In

particular, the coded bits are grouped into blocks Bt with the bipolar kth bit ck ∈ {+1,−1}
residing in B⌈k/log2|O|⌉. Then, each block is mapped onto the symbols st . The received

MR×1 vector y is y = Hs + n, where H is the MR×MT channel matrix that can be QR de-

composed as H=QR where Q is a unitary MR×MT matrix, R an MT ×MT upper triangular

matrix with elements Ri, j, and n is the additive white Gaussian noise vector with samples

of variance 2σ2
n . Maximum a-posteriori (MAP) receivers express the soft information as

log-likelihood ratios (LLRs). Using the max-log approximation and assuming statistically

independent and identically distributed bits, the LLR value of ck is [318],[281]

L(ck) = min
s∈O−1

k

{d(s)}− min
s∈O+1

k

{d(s)} (6.1)

with

d(s) =
1

2σ2
n

MT∑
i=1

∣∣∣∣∣∣y′i−
MT∑
j=i

Ri, js j

∣∣∣∣∣∣
2

(6.2)

Additionally, y′ = QHy =
[
y′1,y

′
2, ...,y

′
MT

]T and Ow
k are the sub-sets of O having their kth

bit equal to w, for w =+1,−1. Equation (6.1) shows that the max-log LLR calculation can

be reformulated into two minimization problems (i.e., hard output SDs) over the different

symbol subsets (i.e., Ow
k ), per decoded bit. Each minimization problem has its tree root

at level i = MT + 1 and leaves at i = 1. The d(s) values are calculated recursively: the

partial distance (PD) of the si node can be calculated as D(si) = D(si+1)+∆(si) with si =

[si,si+1, ...,sMT ]
T being the partial symbol vectors, D(sMT+1) = 0 and

∆(si) =
1

2σ2
n

∣∣∣∣∣∣y′i−
MT∑
j=i

Ri, js j

∣∣∣∣∣∣
2

. (6.3)

Applying depth-first tree traversal with SE enumeration and radius reduction [29],[287],

with the initial radius assumed infinite, whenever a leaf is reached with its D(s1) less than

the squared radius r2, the radius is updated to D(s1). Upon meeting a node, if the condition
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D(si)≥ r2 holds, then this node, the node’s children and the node’s siblings not visited yet

will be pruned. To define the search order (i.e., the child of node si+1, to be visited next)

SE enumeration [259] is typically employed, according to which the nodes are visited in

ascending order of their PDs, or equivalently of their ∆(si) values. An important advantage

of the SE enumeration is that leaves that are more likely to lead to the ML solution are

found early, which expedites the pruning of the tree, resulting in reduced decoding com-

plexity. However, the overall SD complexity may not improve due to the increased ordering

complexity. An example is the soft-output SD with high-order, non-constant amplitude

constellations (e.g. 16-QAM), where the SE enumeration is inefficiently realized by fully

enumerate and sort (FES) all children PDs, even when few nodes are finally visited due to

tree pruning.

To perform SE enumeration for high order constellations without calculating and sort-

ing the PDs of all children nodes (i.e., without FES), state-of-the-art approaches [99],[29]

split the given QAM constellation into sub-constellations in such a way that for each sub-

constellation ordering can be achieved by using simple geometrical properties (i.e., in a “zig-

zag” order), which also leads to the straightforward and low-complexity choice of the best

candidates in each subset. In particular, the QAM constellation is divided into several phase-

shift-keying constellations (PSK-wise splitting) or several pulse-amplitude-modulation con-

stellations (PAM-wise splitting) and the search order is calculated by exhaustive search over

these constellation subsets. Hence, the enumeration computational complexity and the crit-

ical path of the corresponding implementations, is improved with respect to FES. While

such approaches result in a reduced number of redundant calculations and a reduced sorting

order, still unnecessary PD calculations are performed.

Approximate SE ordering methods [196], [326], [167], [330], [351] can provide per-

formance very close to the optimal for specific scenarios with significant gains in terms of

complexity. These methods use mainly a partial predefined ordering or a simplified metric,

in comparison with the Euclidean distance, for the ordering of the child nodes, resulting in

low complexity implementations with reduced critical path. On the other hand, the approx-

imated SE enumeration can lead to inefficient tree pruning and increased number of total

visiting nodes during MIMO detection, while resulting in error-rate performance losses. An

appropriate modification of the pruning metric should be considered, for such solutions, to
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be able to guarantee the exact max-log MAP performance for any operational environment

and performance metric (e.g., bit-error-rate, packet-error-rate, etc).

The hardware implementation of a SD algorithm should maximize the resource utiliza-

tion and avoid redundant computations. In the case of a depth-first tree traversal strategy,

this can be achieved when the decoder visits a new node in each cycle and when no node is

ever visited twice. In [29] an efficient hardware architecture is proposed for the depth-first

SD algorithm, the One-Node-Per-Cycle (ONPC) architecture. The main two modules of

this architecture is the Metric Computation Unit (MCU), which is responsible for the for-

ward recursion of the tree traversal and the Metric Enumeration Unit (MEU), responsible

for the backward recursion. The enumeration process of the SD algorithm is implemented

in the MEU module and the ONPC architecture requires a new enumerated node at each

clock cycle. An asynchronous implementation of the enumeration process inside the MEU,

should be consider for an efficient hardware implementation of the SD algorithm. There-

fore, the complexity of the enumeration scheme used in a SD implementation is critical for

the decoder throughput, latency and power consumption.

6.2 PAM-wise Enumeration Scheme

As mentioned above, the PAM-wise enumeration scheme divides the constellation points in

subsets based on the row or column they belong [99]. The closest constellation point to a

received point ri can be identified with low complexity computations (boundaries checks -

slicer). Fig. 6.1 shows a 16-QAM constellation map and the resulting PAM subsets. The

closest point to the received point ri is the constellation point A0. With a column-wise parti-

tioning of the constellation map the point A0 is assigned to the first subset (subset A) along

with the points A1, A2 and A3. The first best candidate of each subset is the constellation

point that belongs to the same row as the point A0, as illustrated in the Fig. 6.1 with red

circles (B0, C0 and D0).

To identify the first preferred child (among A0, B0, C0 and D0), a computation of the

four PD metrics ∆(si) should be performed. The constellation point with the smaller PD

metric (A0 in Fig. 6.1) is then selected as the preferred child node, only if its PD metric

D(si) = D(si+1)+∆(si) is smaller than the sphere constraint r2. The next best candidate
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Figure 6.1 PAM-wise enumeration scheme.

of the subset A is determined by applying the zig-zag order as shown in the figure (point

A1). The direction of the zig-zag ordering (for all subsets) is determined by the position of

the received point ri in comparison to the line which passes from constellation points which

are in the same row as the closest constellation point (A0, B0, C0 and D0), as illustrated

in the Fig. 6.1. This can be also calculated by low complexity boundaries checks. The

next preferred constellation point is determined by the smaller PD metric (D(si)) among

the points A1, B0, C0 and D0 of the constellation, only if this metric not exceeds the sphere

constraint (r2). The next best candidate of the subset with the preferred constellation point,

is determined with the zig-zag ordering, with the same direction.

The PAM-wise enumeration technique requires reduced number of PD calculations com-

pare to FES. At the initialization step of the method four PD calculations are performed, one

for each candidate, assuming a 16-QAM constellation map. For each of the steps following

the initialization, the technique performs three operations: i) a PD computation, if this is

needed, to identify the next best candidate, ii) select the minimum among four PD metrics

one from each subset and iii) test it against the sphere constraint to determine if the selected

constellation point has to be pruned. Thus, the method requires at least four PD computa-

tions and a selection circuit for the identification of the smaller PD metric, regardless the

sphere constraint r2.
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Implementation

As mentioned above, in the case of 16-QAM constellations, the specific enumeration tech-

nique divides the constellation map in four subsets. Fig. 6.2 shows the top level architecture

of the PAM-wise enumeration implementation. The received symbol ri allows us to deter-

mine the closest constellation point (CP) and the zig-zag order direction (dir), by applying

low complexity computations. The component computing the candidates for each subset

requires one memory bank (ROM) for storing the indices of the constellation point’s row.

We have implemented the PAM-wise technique by letting the four points of each subset to

belong to a distinct column, as shown in Fig. 6.1. Therefore, we can reduce the total number

of ROMs, to only one memory for all subsets because according to the above mapping, each

of the subsets uses the same indices to identify the constellation point’s row and the same

zig-zag order direction. Hence, for any of the four subsets, the indices of the constellation

point’s row will be read in the same sequence determined by the zig-zag order direction.

The top-level architecture also includes four 16-QAM ROMs, one for each subset. Each

of the QAM ROMs includes the IQ values of the constellation points sorted based on their

constellation index, which is used as the ROM address. Furthermore, a selection circuit

decides the next best candidate, for each of the subsets. This module is actually a set of

four (4) independent multiplexer circuits. These circuits are controlled by the output of a

4-bit decoder, the input of which is the 2-bit selection signal of the PD-compare unit, which

indicates the subset with the selected constellation point, among the four candidates. The

output of the 4-bit decoder module will trigger the selection of the new candidate point,

based on the zig-zag direction, only for this subset, while the candidate points of the other

subsets will remain the same.

The four PD-calculation units compute the PD metrics for each of the candidate points.

The PD-compare unit selects the point with the smallest PD metric and forwards this metric

∆(si) to the sphere constraint check unit. The selected point becomes the preferred child

only if its PD metric D(si) is smaller than the sphere constraint r2. The sphere constraint

check component requires an adder for the calculation of the PD metric D(si) and a com-

parator to decide whether the specific point must be pruned or expanded. If the PD metric

D(si) is larger than the sphere constraint r2 then the enumeration process stops, because all

the next selected points will have PD metrics larger than r2.
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Figure 6.2 PAM-wise Enumeration Technique Architecture.

In the initialization of the PAM-wise enumeration process four PD metrics should be

computed, while in normal operation only the PD metric of the next candidate is evaluated.

The PD-compare unit in every step of the process, selects the smaller of four PD values,

while the sphere constraint check module is evaluate and compare the metric D(si) with the

value of r2. Due to the complex multiplication units inside the PD calculation modules, the

significant portion of the power is consumed for the computation of the PD metrics. For

small sphere constraints, only one or two child nodes can be visited, while the initialization

process of the PAM-wise enumeration scheme, evaluates four PD metrics. This results in

high power consumption for specific cases, compared to an enumeration scheme with only

one PD calculation in the initialization process.
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6.3 PSK-wise Enumeration Scheme

In the case of PSK constellations, the points form a complex circle in the IQ space. An

efficient enumeration scheme, for these constellations, is the zig-zag technique after the

identification of the closest constellation point, to a received symbol ri, and the zig-zag

direction. In the QAM constellations we can split the points in multiple concentric circles

(subsets) and perform PSK-wise enumeration, after the identification of best candidate point

and zig-zag direction for each of the subsets [105], [169], [29].

In [105], complex trigonometric functions are used, and the identification of the closest

point, to a received symbol ri, and the zig-zag direction (dir) is calculated based on the

angle of the received symbol ri and the angles of the constellation points. The proposed

method in [169] is similar, with the used of predefined radius tables and sliced versions of

the PSK-wise subsets, based on the received symbol, to reduce the computation complexity.

Authors in [29] propose an efficient technique for the identification of the closest point and

the calculation of the zig-zag direction for the PSK-wise enumeration scheme in PSK or

QAM constellations. This technique is based on multiple simple boundary checks to avoid

the costly trigonometric calculations of [105].

Figure 6.3 shows the three subsets of a 16-QAM constellation map. Each subset have

different number of points, in comparison with the PAM enumeration, in which all subsets

have the same number of constellation points. Following the same notation, as in the case

of PAM enumeration technique, the constellation points in the Fig. 6.3 are labeled based on

the subset they belong (A, B or C). The closest constellation point to a received point ri is

identified with low complexity boundary checks, same as in the case of PAM enumeration

scheme. In Fig. 6.3, A0 is the closest point to ri. The candidates for the other two subsets

are selected based on the position of the ri in comparison with the line x = y, where x is the

real component of the points and y is the imaginary, as illustrated in the figure [29]. The

points B0 and C0 are the candidate constellation points from subsets B and C, as shown in

the figure with red circles.

On the other hand, the zig-zag direction is not common among the constellation subsets

as in the case of PAM-wise enumeration scheme. For each subset a different calculation is

performed for the identification of the zig-zag direction. As shown in Fig. 6.3, the compu-

tation of the zig-zag direction of the subsets A and C is based on the comparison between
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the real and imaginary components of the ri, while the calculation of the direction for the

subset B has additional shift operations. Furthermore, Fig. 6.3 shows the zig-zag directions

for the three subsets.
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Figure 6.3 PSK-wise enumeration scheme.

As in the case of PAM-wise enumeration technique, the PD metrics of the three subset

candidates (A0, B0 and C0) are calculated and the constellation point with the minimum

PD metric ∆(si) is the preferred child, only if the sphere constraint is not compromised

(D(si)=D(si+1)+∆(si)< r2). Based on the zig-zag direction of the specific subset the next

candidate constellation point (A1) is selected and its PD metric is calculated and compared

with the other two (B0 and C0).

In comparison to the PAM-wise enumeration scheme, the PSK-wise technique requires

one subset less, for the case of 16-QAM constellation, while in the case of 64-QAM con-

stellations, PSK-wise has one subset more than the PAM-wise scheme. Furthermore, more

complex calculations are performed in the PSK-wise enumeration technique for the iden-

tification of the closest constellation point and zig-zag direction and for the case of larger

QAM constellations (e.g. 64-QAM) the increased computational complexity is significant.
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The possibility of different zig-zag direction per subset results in complex control structures,

which for larger constellation may result to an increased overhead in the critical path, of the

enumeration process.

Implementation

The implementation of the PSK-wise enumeration scheme for the case of 16-QAM constel-

lations is based on three subsets. Figure 6.4 shows the top-level architecture of the PSK-wise

enumeration module.
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Figure 6.4 PSK-wise enumeration scheme.

The received symbol ri is forwarded in the first module for the identification of the clos-

est constellation point (CP) and zig-zag direction (dir), for each of the three subsets. The

low complexity boundary checks involve also shift operations, for the case of 16-QAM re-
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sulting in increased complexity compared to the PAM-wise enumeration architecture. Each

of the subsets include different number of total constellation points and zig-zag direction,

which result in limited optimizations regarding the subset Look-up Tables (ROMs). The

calculated zig-zag direction will affect the reading sequence of the ROMs, during the enu-

meration process.

As for the PAM-wise enumeration technique, the top-level architecture of the PSK-wise

enumeration scheme includes three 16-QAM ROMs, one for each of the subsets. Further-

more, a similar selection circuit is used for the evaluation of the next best candidate, for each

of the subsets. The PD metrics of the three candidate points is evaluated with the PD calcu-

lation units and the PD compare unit is responsible to find the smaller PD metric. It includes

one comparator unit less than the corresponding unit of the PAM-wise architecture, due to

reduced number of subsets, while the critical path of the module is the same. The metric

D(si) is calculated and compared with the sphere constraint (r2), for the selected candidate

point, to determine if this child node should be expanded or pruned. If the metric D(si) for

a specific node is larger than the sphere constraint the enumeration process is stopped, since

all the next selected points will have PD metrics larger than r2.

The initialization process of the PSK-wise enumeration scheme includes three PD com-

putations, in comparison to four of the PAM-wise enumeration. The critical path of the

PSK-wise architecture is similar to that of the PAM-wise, with the exception of the bound-

ary checks module for the evaluation of the zig-zag directions, for the subsets. Nevertheless,

the increased power consumption for specific cases, with small sphere constraints, is simi-

lar to the PAM-wise architecture due to unnecessary PD computations in the initialization

process of the technique.

6.4 Other Enumeration Schemes

Several enumeration schemes have been proposed in the literature, to overcome the high

complexity of the PAM-wise and PSK-wise enumeration techniques. Most of these ap-

proaches use predefined visiting order, based on geometrical characteristics of the constel-

lation map, to approximate the SE enumeration. This approximations result in increased

number of visiting nodes and losses in the decoding performance, while the reduced enu-
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meration complexity results in power savings for the tree traversal process.

Search Sequence Determination

An efficient approximate SE enumeration is proposed in [196], which is based on bisec-

tor lines on the constellation lattice. The Search Sequence Determination (SSD) technique

uses simple boundary checks for the determination of the closest constellation point (CP),

to a received symbol ri. These boundary checks form a square area around the CP and fur-

ther bisector lines, in this square area, can be used for the sequence determination of the

constellation points.

r
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Figure 6.5 Search Sequence Determination (SSD) enumeration scheme.

Based on the quadrant around the CP, in which the received symbol is lying, a specific

bisector line can be used to enumerate the first two nodes based on the SE enumeration. This

line form two triangular areas in the specific quadrant and by identifying in which triangular

the ri is lying, the enumeration of the first two nodes can be determined, as shown in Fig.

6.5 (blue line). Simple comparisons of the real and imaginary parts of the ri can be used

for the enumeration of the first two constellation points. Based on bisector lines spanned

by the nodes, the enumeration of the first seven constellation points can be performed (Fig.

6.5) with simple calculations, including additions, shifts and comparisons. The sequence
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determination for the rest of the constellation points results in more complex computations,

including multiplications and several comparisons, due to the increased number of possible

nodes.

An approximation technique is used in [196] to avoid the high complexity of the SSD

enumeration for high-order nodes (above seventh node). Predefined sequences stored in

LUTs are used, based on the reference location of the received symbol ri, compared to

the closest constellation point (CP). The memory requirements and the enumeration accu-

racy are relative to the total number and the reference location of the predefined sequences.

The implementation in [196] uses the triangle’s centers as sample reference point for the

proposed predefined SSD enumeration technique. The LUT-based approximation of the

sequence determination results in enumeration errors (compared to SE enumeration) for all

nodes after the third preferred constellation point. These errors could increase the total num-

ber of visiting nodes and reduce the decoding throughput, while resulting in performance

degradations.

The implementation of the SDD enumeration scheme includes simple calculations for

the first enumerated nodes, while high-complexity computations are required for the enu-

meration of the rest of the constellation points. The proposed predefined sequence deter-

mination approach, avoids the complex calculations while introducing additional errors in

the enumeration process. Trade-offs between the number and size of the LUTs and the

enumeration accuracy should be considered for the proposed approximate SE enumeration

technique.

LUT-based Enumeration

An approximate SE enumeration technique with low-complexity implementation is pre-

sented in [330] and [351]. The constellation map is divided in sub-regions and for each

sub-region a pre-calculated visiting order is stored in a Look-Up Table (LUT). Each mem-

ory address of the LUT includes the enumerated constellation points in ascending order of

their partial distances, from the centers of each sub-region. By exploiting the constellation

symmetries a reduction of the total memory requirements is feasible. An increased number

of constellation sub-regions results in more accurate node enumeration and reduced number

of visiting nodes, with the cost of increased complexity due to multiple ROMs and more
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complex control.

A more efficient LUT-based enumeration scheme is the Tabular Enumeration, presented

in [167]. After the identification of the closest constellation point (CP), the region around

the CP is divided into eight triangular sub-regions. For each sub-region, the most likely

visiting order of all other constellation points is computed in advance and stored in LUTs.

Direct implementation of the tabular enumeration technique requires eight tables for each

constellation point, each with 2Q−1 entries, assuming a 2Q-QAM constellation. Based on

the symmetry of the eight sub-regions and the shift invariance property of the partial distance

calculation, a reduction of the memory requirements is feasible. A simplified version, of the

generic tabular enumeration, is presented in [167], for efficient node ordering with best-first

tree traversal SD algorithms. The tabular enumeration scheme is a low-complexity node

ordering implementation with the disadvantage of increased total number of visiting nodes

and performance degradation, due to the approximate SE enumeration.

Approximate l∞-norm SE enumeration

An efficient implementation of an approximate SE enumeration scheme is proposed in

[326]. The specific technique is based on simplified approximate distance calculations,

without the need for predefined visiting order stored in LUTs and therefore, scales well

to higher-order constellations. The low-complexity l∞-norm is used for the nodes enumer-

ation, where l∞(x) = ∥x∥∞ = max(|Re(x)|, |Im(x)|), Re(x) and Im(x) denote the real and

imaginary part of the entries of x, respectively.

The identification of the closest constellation point (CP) is based on a slicer, while the

region around the CP is divided in eight sub-regions. Simple geometric rules are used to

define the sub-region containing the received symbol ri, while the constellation points are

enumerated according to their l∞-norm. The points with the same l∞-norm form an one-

dimensional subset, as shown in the Fig. 6.6, while all nodes within the same subset are

processed before the algorithm selects the next subset. The selection of the constellation

points contained in the same subset is based on the zig-zag ordering, around the closest

constellation point.

While the l∞-norm is used only for the enumeration of the nodes and not for the distance

calculations, the proposed method is an approximate SE enumeration resulting in increased
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Figure 6.6 Approximate l∞-norm enumeration scheme: Constellation points subsets based
on their l∞-norm distance.

number of visiting nodes and error performance degradation. The implementation com-

plexity of this enumeration process is low, compared to other approximate SE enumeration

schemes, especially for large constellations (constellations including and beyond 64-QAM).

2D Zig-Zag Complex Enumeration

An exact SE enumeration scheme is proposed in [264],[262], [191], for the case of K-best

breadth-firth SD algorithm, with complex QAM constellations. Based on the observation

that in a PAM constellation the zig-zag visiting order of the nodes is an exact SE enumera-

tion, the proposed method uses this visiting order on both vertical and horizontal directions,

in parallel.

After the identification of the closest constellation point, with a simple slider, the pro-

posed technique visits the nodes by performing zig-zag ordering on both directions. The

partial Euclidean distances (PEDs) for the visiting nodes are calculated and stored in a pri-

ority queue. The node with the smaller PED in the priority queue is the next visiting node

for the tree traversal. As shown in the Fig. 6.7 the first enumeration step, after the CP iden-

tification (node a), visits the nodes b and c, by performing horizontal and vertical zig-zag

enumeration. The PEDs for the two nodes are evaluated and stored in the priority queue L.

The second enumeration step (Fig.6.7b) selects the node b as the next visiting node for the
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tree traversal and performs only vertical zig-zag enumeration (node d), from the selected

node b. The horizontal zig-zag enumeration from an already visited node which belong

to the same column as a previously selected node, is bypassed by the technique to avoid

visiting a node (evaluate and store the PED into L) more than once [264], [262].
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Figure 6.7 2D Zig-Zag Complex Enumeration scheme: enumeration steps for the first three
constellation points. Priority queue is shown at the bottom of each enumeration step.

The third enumeration step at Fig.6.7c, selects the node with the smaller PED in the

priority queue L (node c) and performs horizontal and vertical zig-zag enumeration (nodes

e and f ). At the last enumeration step, shown at Fig.6.7d, the algorithm selects the node e

as the node with the smaller PED in the priority queue L, and performs only vertical zig-zag

enumeration (node g) as a previously selected node (node c) belongs to the same column as

the current selected node.

As shown in [262] the 2D zig-zag complex enumeration technique performs SE enu-
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meration by selecting the nodes in ascending order of their PEDs from a received symbol ri.

Furthermore, the constraint of bypassing the horizontal zig-zag enumeration from a selected

node, when a previously selected node belongs to the same column, ensures that each node

will be visited only once, by the enumeration method. The maximum length of the priority

queue is
√
|Q| for a 2Q-QAM constellation map [262]. A similar enumeration method is

used in [217] for the case of depth-first SD algorithm, with the addition of a geometrical

tree pruning technique to increase the decoding efficiency.

The specific enumeration process can be efficiently scaled to dense and very dense con-

stellations [81] due to the fact that requires a maximum of two PD computations in parallel,

independently of the constellation size. On the other hand, the required constraint for by-

passing the horizontal zig-zag enumeration results in high control complexity, while the

priority queue of size
√
|Q| increase the critical path of the 2D zig-zag complex enumera-

tion implementation architecture, resulting in decreased decoding throughput.

6.5 Advanced Enumeration Scheme

This section presents a novel low-complexity enumeration scheme, which is based on a

predefined approximate visiting order, which can guarranty the ML or max-log MAP per-

formance of the MIMO decoder [214]. Instead of the exact SE enumeration a predefined

visiting order is used by the method, to reduce the computational complexity. While the

SE enumeration visits the symbols in ascending order of their ∆(si), the proposed method

uses a lower limit of the ∆(si), which can be pre-calculated by exploiting geometrical char-

acteristics of the QAM constellation. Based on the aforementioned node ordering and by

modifying the pruning metric, the proposed enumeration scheme can guaranty the ML or

max-log MAP performance with the cost of increased number of visiting nodes. However,

we can relax the requirement for guaranteed optimality with negligible performance loss, as

will discuss later in detail.
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Node Visiting Order

Instead of sorting ∆(si) from (6.3), we can use:

∆(si)
2σ2

n

|Ri,i|2
= |ri− si|2 = δ

2(si) (6.4)

with

ri =

y′i−
MT∑

j=i+1
Ri, js j

Ri,i
(6.5)

Based on (6.4) the SE enumeration process visits the tree nodes by ascending order of their

δ 2 (si). The proposed enumeration scheme uses a tight lower limit of the δ 2 (si) which is

the δ 2
min (si), which can be pre-calculated based on geometrical characteristics of the con-

stellation map.

Low-complexity calculations can be used to identify the closest constellation point s(0)

to a received symbol ri, by a typical QAM detector (i.e., “slicer”). The rectangular area with

centre the symbol s(0) and sides equal to L, which is the distance of the constellation points,

will contain the received symbol ri, as shown in Figure 6.8 with the shadowed rectangle

(ABCD). The circle with centre the symbol s(0) and radius L/
√

2 will also contain the

received symbol, as it contains the aforementioned rectangle. All the constellation points

can be grouped in concentric circles of radii ak, with k denoting the index of the group circle.

Thus, the distance between the received symbol ri and any point in the group with radius k,

cannot be less than δk = ak−L/
√

2.

A tighter bound can be calculated based on additional geometrical characteristics of the

constellation map. Simple sign comparisons of the real and imaginary part of the s(0) and

ri can be used to identify the quadrant Q, in which the received symbol ri lies (1st quadrant

in the Fig. 6.8). All the constellation points of the k-th group or circle, which lie in the

opposite quadrant Q̄ (3rd quadrant in the figure), will have distances from ri which cannot

be smaller than ak. Therefore, for each symbol si of the k-th group holds:

δ (si) = |ri− si| ≥ δmin (si) =

 ak−L
/√

2 ;si /∈ Q̄

ak ;si ∈ Q̄
(6.6)
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Figure 6.8 Example showing the geometrical characteristics of the constellation which are
exploited by the proposed enumeration approach

The boundary case of a received symbol lying outside the constellation map, it is also cov-

ered by (6.6), since the distance to all symbols of the k-th circle cannot be less than the

distance provided by (6.6). We can enumerate the nodes based on the ascending order of

their δmin (si), or equivalently of their ∆min (si).

Tree Pruning

Enumeration schemes which use a predefined visiting order have been proposed in the liter-

ature [196], [330], [351], [167]. These approaches can not guarantee ML or max-log MAP

performance due to the approximations of the predefined ordering. The proposed enumera-

tion scheme avoids compromising the ML or max-log MAP performance by modifying the
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pruning metric accordingly. Since δ 2
min (si)≤ δ 2 (si) we have:

Dmin (si) = D(si+1)+δ
2
min (si)

|Ri,i|2

2σ2
n
≤ D(si) (6.7)

and if Dmin(si)≥ r2, or equivalently if

δ
2
min (si)≥

r2−D(si+1)

|Ri,i|2
2σ

2
n = r̃2 (6.8)

it will also hold that D(si)≥ r2. As mentioned above we will visit the nodes in ascending

order of their δ 2
min (si) and thus we can safely prune this node, all its non-visited siblings

(horizontal pruning) and children nodes (vertical pruning), without compromising the ML

or max-log MAP performance of the sphere decoder, with the extra cost of additional visiting

nodes, compared to the SE enumeration scheme. Furthermore, if D(si)≥ r2 (and δ 2
min (si)<

r̃2) then the propose approach will prune all the children nodes but not the siblings (only

vertical pruning is performed). Finally if both δ 2
min (si) < r̃2 and D(si)< r2, no pruning

takes place.

The ML or max-log MAP performance of the decoding process is guaranteed due to

the modification of the pruning metric, with the additional cost of increased visiting nodes,

in comparison to the SE enumeration process. An “approximate” version of the proposed

scheme is also considered, in which the horizontal and vertical pruning is performed based

only on the partial Euclidean distances of the predefined visiting order. This “approximate”

version avoids the increased number of visiting nodes, during the detection process, with a

negligible performance loss, as we will see in the next subsections.

Implementation

The block level architecture of the proposed enumeration scheme, for both the “exact” and

“approximate” versions, is depicted in Fig. 6.9. First, the find s(0) and Q unit calculates the

closest constellation point s(0) and the quadrant Q containing the received symbol ri, with

low-complexity boundary checks. The predefined visiting order of the nodes is stored in

the visiting-order memory ROM in the vo_calc module, which is responsible to provide the

next visiting node based on s(0), Q and the value of the enumeration-counter. The control

unit counts the number of enumerated points, for a specific tree level, for the calculation of
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the next visiting node and the metric δ 2
min (si).

Figure 6.9 Proposed Enumeration Technique Architecture.

The vo_calc unit computes the enumerated constellation point indices. It uses the

visiting-order memory to compute the visiting order of the symbols. Each line of the

visiting-order memory contains the constellation points indices in visiting order. The ad-

dress of visiting-order memory is the concatenation of the index of the closest point (s(0))

and the quadrant Q, of the received symbol ri. The vo_calc uses a left-shift unit and a tree

of 4-bit OR-gates to compute one point index at each clock cycle, assuming an One-Node-

per-Cycle SD architecture.

The dist_calc module provides the predefined values of the metric δ 2
min (si), for the mod-

ified pruning metric computations. The pre-calculated values are stored in the distance

memory ROM in ascending order. In the case of 16-QAM constellation there are 18 val-

ues of δ 2
min (si), while the memory requirements for the distance memory depend on the

accuracy of the adopted bit representation. Since δ 2
min (si) is a lower limit of δ 2 (si), a re-

duced bit representation δ̂ 2
min (si) can be used to reduce the memory overhead as long as
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δ̂ 2
min (si) ≤ δ 2

min (si), without compromising the decoding performance. The correct metric

value, for a specific constellation point, is selected based on a Look-Up table (LUT), the

find distance memory ROM. The address of the find distance memory is constructed by the

concatenation of the index of s(0), the quadrant Q and the value of the enumerated-counter.

The expanding_logic unit computes the partial Euclidean distance (PED) metric ∆(si)

for the specific constellation point and by adding the value of D(si+1) compares the result-

ing partial distance with the sphere constraint (r2) to perform vertical pruning. The prun-

ing_logic module computes r̃2, based on the values of r2, 2σ2
n

|Ri,i|2
and D(si+1), and compares

it with the δ 2
min (si) metric, of the enumerated constellation point, to perform horizontal and

vertical pruning. In the proposed “approximate" version the pruning_logic and the dist_calc

modules are not required. The horizontal and vertical pruning is performed by the expand-

ing_logic.

The critical path delay1 of the proposed “exact” and “approximate” implementations is

shown in the Fig.6.9 with bold lines and includes: (a) the find s(0) and Q module, (b) the

vo_calc unit, reading from (c) the QAM ROM, performing (d) the PD-calculation, (e) the

addition D(si) = ∆(si)+D(si+1) and (f) the comparison of the value of D(si) with the r2

value.

6.6 Algorithmic Performance Evaluation

This section presents a performance evaluation of the proposed enumeration technique,

through several simulations. We consider a 4× 4 MIMO-OFDM system, which is op-

erating over a spatially and temporally uncorrelated Rayleigh flat-fading channel and the

information bits are mapped onto a 16-QAM (Gray coding) constellation. Furthermore, a

systematic (5/7)8 convolutional code with rate 1/2 is used with a code block of 2304 infor-

mation bits, while the log-MAP BCJR algorithm is used for channel decoding. Finally, the

Single Tree Search (STS) approach of [287] is used to avoid multiple hard sphere decoding

processes per bit, after modifications to support the proposed pruning metric instead of the

exact calculated PD value.

As mentioned before we consider two versions of the proposed enumeration scheme.

1Critical path is the path with the maximum delay in the entire circuit.
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Figure 6.10 BER performance of the different enumeration schemes.

The “exact” version which uses the predefined ordering and the modified pruning met-

ric and it can guarantee the max-log MAP performance of the detection process, and the

“approximate” version which employs only the proposed visiting order while performing

traditional pruning, with negligible performance loss. The evaluation of the novel enumer-

ation technique is based on the comparison against the Full Enumeration and Sort (FES)

and against the PAM-wise enumeration scheme, which groups the QAM points in PAM

sub-constellations [99],[196], and performs SE enumeration (Section 6.2).

Figure 6.10 depicts the Bit-Error Rate (BER) performance of the four enumeration tech-

niques. The “exact” version of the proposed enumeration has optimal decoding perfor-

mance, like FES and PAM-wise technique. The “approximate” version of the proposed

enumeration, while not optimal has a BER performance practically indistinguishable. This

is because by using the Single Tree Search SD algorithm [287] at least one of the two mini-

mization problems of (6.1) (the one with the smaller Euclidean distance) is always correctly

calculated.

Furthermore, the use of a predefined visiting order based on a tight approximation of
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Figure 6.11 Average PD calculations for the different enumeration schemes.

the SE enumeration, provides a solution for the other minimization problem, very close

to the actual one. Hence, the calculated LLR values, based on the “approximate” version

of the enumeration, are accurate enough not to compromise the BER performance of the

detection process. On the other hand, this near-optimal performance cannot be guaranteed

for all soft-output sphere decoder implementations or soft-input soft-output SD approaches

by using the techniques proposed in [216] and [166]. In contrast, the “exact” version of

the proposed enumeration scheme can guarantee the optimal decoding for all operational

scenarios and channel conditions.

The average required partial distance (PD) calculations and total number of visiting

nodes of the proposed approaches are shown in figures 6.11 and 6.12, in comparison to

those of the FES and PAM-wise enumeration techniques. In the simulations we assume

that both pruning comparisons (i.e., δ 2
min (si) with r̃2 and D(si) with r2) are performed con-

currently to minimize the critical path delay of the implementation (as shown in fig. 6.9),

resulting to an equal number of PD calculations and visiting nodes. The less tight pruning

metric of the proposed scheme results in increased number of visiting nodes (about 51%)

but the reduced computational complexity per visited node leads to about 30% less PD cal-
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Figure 6.12 Average visited nodes for the different enumeration schemes.

culations compared to the PAM-wise enumeration technique, which performs more than one

PD computation per node. The calculations of the r̃2 values during the detection process,

have negligible computational complexity (i.e. for 13 dB SNR an average of 24 calculation

per SD is performed). We can reduce further the required PD calculations by performing the

pruning comparisons serially, with the additional cost of increased critical path delay for the

implementation. In this case the related gain will be 40% less PD calculations2. The “ap-

proximate” version of the proposed enumeration provide about 56% reduction in the total

number of PD calculations, during the decoding process, with an additional 5% reduction

in the number of visited nodes.

The implementation gains from the proposed scheme depend on the selected architecture

of the sphere decoder. For architectures performing one PD calculation per clock cycle,

the reduced number of PD computations leads to increased throughput of the detection

process. In sphere decoder architecture similar to the “One-Node-Per-Cycle” of [287], the

short critical path delay and the reduced PD calculations result in area and power/energy

gains. We will discussed the second case in section 6.7.

2In simulations not shown here.
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6.7 Implementation Comparison

This section presents comparisons for both the “exact” and “approximate” versions of the

proposed enumeration scheme and the PAM-wise technique with respect to the hardware

resources, performance and power consumption, for both FPGA and ASIC implementa-

tions. The PAM-wise implementation is similar to the PSK-wise approach [29], with one

more PD calculation unit (for the case of 16-QAM) but low-complexity control circuit. The

sorter critical path of the PAM-wise implementation, compared to that of the PSK-wise tech-

nique, results in more efficient implementation in terms of performance and it is beneficial

in terms of a reference implementation, for benchmarking purposes.

The PAM-wise technique divides the 16-QAM constellation map into four PAM subsets

(e.g. columns) and as mentioned in section 6.2, to minimize resources, a single ROM stores

all these four subsets. Four PD-calculation units compute the PD metrics (∆(si)), and a tree

of three comparators calculates the best candidate and performs the required comparison

with r2 that decides for node pruning, as shown in Fig.6.2. Hence, the PAM-wise critical

path includes the find CP and dir module, the unit responsible to find the best candidate

points for each subset, the PD-calculation module, the best candidate choice among the

four, by the comparator tree of depth two, the addition ∆(si)+D(si+1) and the comparison

with r2. The PAM-wise critical path is longer due to its tree of comparators compared to

that of the proposed, which replaces the PAM-wise comparators tree with the vo_calc unit.

Performance and Hardware Resources

Tables 6.1 and 6.2 and Figures 6.13 and 6.14 show the FPGA resources utilization and the

maximum operation frequency (performance) for both the “exact" and “approximate" pro-

posed implementations, in comparison to the PAM-wise on different Xilinx FPGAs. The

results are the final results after the Place and Route process. Three different FPGA models

are used for each of the three Xilinx FPGA families (Virtex-6, Virtex-5 and Virtex-4), to

ensure more accurate results and to avoid specific device optimizations. For a fair com-

parison, in terms of occupied hardware resources (FPGA slices) and maximum operational

frequency, all implementations use the same fixed-point representations for the input/output

data and for the intermediate results. Furthermore, the three implementations are mapped
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without any FPGA optimizations, like the use of block RAMs and DSP blocks, and with

normal effort for all processes (Synthesis, Map, Place & Route).

Table 6.1 FPGA Implementation Comparison (Resources utilization)

PAM-wise Proposed Proposed
“Exact” “Approximate”

Slices Slices Gain Slices Gain
XC6VLX240T-1 906 411 54.64% 285 68.54%
XC6VSX315T-1 911 429 52.91% 275 69.81%
XC6VHX250T-1 917 414 54.85% 284 69.03%
XC5VLX220T-1 777 365 53.03% 231 70.27%
XC5VSX240T-1 775 359 53.67% 253 67.46%
XC5VHX240T-1 772 378 51.04% 241 68.78%
XC4VLX200-10 1335 911 31.76% 553 58.58%
XC4VSX55-10 1348 936 30.56% 539 60.02%

XC4VFX140-10 1341 907 32.36% 561 58.17%

The hardware resources gains for the “exact” version of the proposed technique are

on average 54.1%, 52.6% and 31.6% for the tree FPGA families, while the average gains

for the “approximate” version are 69.1%, 68.8% and 58.9% respectively. The maximum

operational frequency is improved in the “exact” version by 26.1%, 22.6% and 18.2% and

in the “approximate” version by 25.6%, 22.3% and 17.8% in comparison with the PAM-

wise implementation, for the tree FPGA families. While the “exact” and “approximate”

version of the proposed implementation have the same critical path, as mentioned before,

the small difference in the performance gains is due to the differentiations during placement

and routing processes. Furthermore, the reduced gains in Virtex-4 FPGA devices are mainly

related to the smaller slices in these FPGA devices and the lack of the merging optimizations

of the distributed RAMs, ROMs and FPGA LUTs, which introduced in the Virtex-5 devices.

Both the proposed architectures have more ROMs, compared to the PAM-wise enumeration

technique, which are implemented as distributed FPGA LUTs and have a negative impact

in both the hardware resources utilization and operational frequency gains.

The reduced hardware resources utilization of the proposed architectures, in comparison

to the PAM-wise implementation, is mainly due to the reduced number of PD calculation

units. The proposed enumeration algorithm needs only one PD computation module, while

the PAM-wise enumeration scheme uses four units, one for each of the subsets. The partial
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mate” versions of the proposed implementations

Euclidean distance computation includes square multipliers which have a high hardware re-

source impact, in comparison with the other modules used in the three implementations. A

more efficient, in terms of the total PD computation units requirements, is the PSK-wise enu-

meration scheme, which splits the 16-QAM constellation into three subset, in comparison
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Table 6.2 FPGA Implementation Comparison (Performance)

PAM-wise Proposed Proposed
“Exact” “Approximate”

Freq Freq Gain Freq Gain
(MHz) (MHz) (MHz)

XC6VLX240T-1 44.84 61.35 26.91% 60.98 26.46%
XC6VSX315T-1 44.84 60.24 25.56% 59.88 25.11%
XC6VHX250T-1 45.24 60.98 25.79% 60.61 25.34%
XC5VLX220T-1 40.65 52.08 21.95% 51.55 21.14%
XC5VSX240T-1 39.53 51.55 23.32% 51.28 22.93%
XC5VHX240T-1 39.22 50.51 22.35% 50.76 22.75%
XC4VLX200-10 28.57 34.60 17.43% 34.36 16.86%
XC4VSX55-10 27.70 34.36 19.39% 34.13 18.84%

XC4VFX140-10 28.41 34.60 17.90% 34.48 17.61%

to the four of the PAM-wise method, therefore it needs only three PD calculation modules,

as mentioned in section 6.3. From Table 6.1 and Figure 6.13 we can see that the proposed

approaches are more efficient, in terms of hardware resources utilization, even from the

PSK-wise technique, without including the increased complexity of the control unit for the

PSK-wise implementation.

Moreover, the proposed architectures prevail over the comparator based PAM-wise and

PSK-wise implementations, in terms of critical path delay. The proposed approach is based

on a predetermined visiting order, which requires only the sphere constraint comparator

(D(si)≥ r2), in the critical path. The comparators tree of the PAM-wise and PSK-wise enu-

meration techniques increase the critical path delay of their implementations, in comparison

to a simple candidate selection, from a LUT/ROM in the proposed architectures. As men-

tioned in section 6.3 the PSK-wise implementation has similar critical path delay with the

PAM-wise architecture, with the additional complexity of the control unit.

Table 6.3 and Figure 6.15 show the comparison of the two proposed architectures and

the PAM-wise technique, for the case of ASIC implementations, in terms of area and perfor-

mance. The total area3 is the post-synthesis results by using the Synopsys Design Compiler

3Both FPGA and ASIC implementation results include registers in the I/O ports of the design to ensure
that the critical path delay measurements are accurate. The hardware resources utilization and the area results
are evenly increased for all architectures due to the fact that all implementations have the same I/O ports.
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and the TSMC 45nm standard-cell library in the typical corner4.

Table 6.3 ASIC Implementation Comparison (Area & Performance)

Target PAM-wise Proposed Proposed
Frequency “Exact” “Approximate”

(MHz) Area (um2) Area (um2) Gain Area (um2) Gain
100 7587.67 4819.95 36.48% 3146.80 58.53%
200 7587.49 4818.90 36.49% 3148.03 58.51%
250 7994.98 4818.90 39.73% 3146.62 60.64%
333 8635.84 4859.47 43.73% 3183.49 63.14%
400 8867.63 4867.58 45.11% 3287.21 62.93%
500 9590.34 5061.09 47.23% 3497.66 63.53%
556 9975.07 5211.39 47.76% 3575.45 64.16%
625 11079.86 5417.07 51.11% 3753.44 66.12%
667 12721.44 5603.70 55.95% 3884.50 69.46%
690 14046.38 5649.21 59.78% 4071.31 71.02%
714 − 5730.53 − 4214.90 −
769 − 6079.63 − 4849.94 −
833 − 7118.62 − 6049.29 −
862 − 7877.85 − 6783.24 −

As mentioned in Section 4.5, in the ASIC implementation flow the synthesis tool per-

forms several optimization iterations for both targeting frequency and minimum occupied

area. If the critical path of the design is relaxed, in the targeting frequency constraint, then

more aggressive area optimization can be performed, otherwise less area can be saved. In

the case of very strict clock constraints, in which the targeting frequency can not be achieved

easily, aggressive speed optimizations should be performed by the synthesis tool, which can

increase the area, due to register duplication, buffer insertion, etc.

The proposed architectures have more relaxed critical path, in comparison with the

PAM-wise implementation, resulting in increased maximum frequency and increased area

gains for more strict clock constraints. For targeting frequencies of 100 to 200 MHz, all

architectures have relaxed critical paths with the proposed “exact” implementation having

36.49% area gain and proposed “approximate” having 58.53% gain, over the PAM-wise

implementation. As targeting frequency of the ASIC synthesis is increasing, the proposed

architectures, have a small area overhead, while the PAM-wise implementation increases the

4The typical corner for the TSMC 45nm std-cell library is 0.9V and 25◦C.
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Figure 6.15 ASIC implementation comparison for PAE-wise, “exact” and “approximate”
versions of the proposed implementations

occupied area with high rate, as illustrated in Fig. 6.15. For target frequencies of 556 MHz

the area gains for the proposed “exact” and “approximate” implementations are increased to

47.76% and 64.16% respectively. The maximum frequency for the PAM-wise architecture

is 690MHz and the area gains, at this clock constraint, of the proposed architectures are

59.78% and 71.02%. Finally, the maximum clock frequency for the proposed architecture

is 862MHz, which is 25% higher than that of the PAM-wise implementation.

Power Consumption

Figure 6.16 show the total and the leakage power consumption of the PAM-wise and the

proposed ASIC implementations, for different target clock frequencies. These power con-

sumption results are reported by the Synopsys Design Compiler tool after a successful syn-

thesis. The total power of a design implementation is the sum of the “static” or “leakage”

power and the “dynamic” or “switching” power. The leakage power is the power consumed

when the design have zero switching activity, while the dynamic power is the consumed

power of the design having non-zero switching activity.
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Figure 6.16 ASIC implementation total and leakage power consumption comparison for
PAE-wise, “exact” and “approximate” versions of the proposed implementations

The synthesis tool calculates the leakage power consumption of the implementation,

which depends on the total number and different types of the standard cells used for the

specific design and the characteristics of each type of the cells. For the dynamic power con-

sumption the tool is not aware of the circuit switching activity over the enumeration process,

which depends on a number of parameters such as the sphere constraint, the channel condi-

tions, etc. Without the use of several simulations of the designs with different parameters,

it is very difficult to calculate the switching activity for the implementations. The synthesis

tool can estimate the dynamic power consumed for a design by using a statistical model

with a range of probabilities for each of the cells switching activity. In most of the cases,

this estimation can be considered as the upper bound of the dynamic power consumption of

the implementation.

No power optimization techniques are used, either for dynamic or leakage power reduc-

tion, in the three implementations, such as fine-grain clock-gating, specific power optimized

cells selection etc. The proposed “exact” and “approximate” implementations consumes
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Table 6.4 ASIC Implementation Power Consumption Comparison (Total Power)

Target PAM-wise Proposed Proposed
Frequency “Exact” “Approximate”

(MHz) Total (uW ) Total (uW ) Gain Total (uW ) Gain
100 373.30 250.70 32.84% 175.20 53.07%
200 576.80 397.80 31.03% 284.60 50.66%
250 736.10 471.30 35.97% 339.20 53.92%
333 1013.20 605.40 40.25% 441.00 56.47%
400 1216.70 722.00 40.66% 533.20 56.18%
500 1681.70 925.40 44.97% 714.20 57.53%
556 1891.80 1058.80 44.03% 793.30 58.07%
625 2247.90 1209.00 46.22% 910.20 59.51%
667 2687.60 1319.80 50.89% 984.40 63.37%
690 3059.60 1362.40 55.47% 1055.90 65.49%
714 − 1436.30 − 1109.50 −
769 − 1577.90 − 1278.40 −
833 − 1889.10 − 1624.90 −
862 − 2087.50 − 1812.30 −

less total power than the PAM-wise architecture, as illustrated in Fig. 6.16 and table 6.4.

The low-complexity implementations of the proposed architectures result in more efficient

area optimizations from the synthesis tool and the use of more power efficient cells, due to

relaxed critical paths. In the case of target clock frequencies of 100 to 200 MHz, for which

all the implementations are relaxed, the proposed “exact” architecture has 32.84% power

savings, while the “approximate” implementation has 53.07%. Both the proposed archi-

tectures increase the power consumption gains as the clock frequency constraint gets more

strict, due to low-complexity implementation and relaxed critical paths. At the maximum

clock frequency for the PAM-wise architecture the power savings are 55.45% and 65.49%

for the “exact” and “approximate” versions, of the proposed technique. Furthermore, the

proposed architectures, at the maximum clock frequency of 862 MHz, consumes about the

same power as the PAM-wise implementation at a clock frequency of 556 MHz.

Table 6.5 shows the Leakage Power for the three implementations, in several target clock

frequencies. The leakage power consumption is also shown in the Fig. 6.16 with solid lines.

The increased leakage power consumption of the PAM-wise architecture, is a result of the

increased number of cells used by the synthesizer, to implement a high complexity design,
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Table 6.5 ASIC Implementation Power Consumption Comparison (Leakage Power)

Target PAM-wise Proposed Proposed
Frequency “Exact” “Approximate”

(MHz) Total (uW ) Total (uW ) Gain Total (uW ) Gain
100 170.00 103.21 39.29% 65.77 61.31%
200 170.09 103.08 39.40% 65.56 61.46%
250 192.78 103.00 46.57% 65.78 65.88%
333 220.35 107.57 51.18% 70.03 68.22%
400 232.22 111.68 51.91% 76.59 67.02%
500 264.79 123.87 53.22% 85.90 67.56%
556 272.81 128.63 53.22% 85.90 67.56%
625 296.54 132.23 55.41% 90.86 69.36%
667 344.03 139.29 59.51% 94.75 72.46%
690 395.04 140.66 64.39% 102.07 74.16%
714 − 145.03 − 106.21 −
769 − 152.34 − 123.45 −
833 − 184.95 − 164.39 −
862 − 206.58 − 181.56 −

in comparison to the proposed enumeration technique. The gains on the leakage power

consumption, of the proposed architectures are 39.29% and 61.31%, for the “exact” and

“approximate” versions, for targeting clock frequencies on the range of 100 to 200 MHz, in

which all the implementations are relaxed. The increasing leakage power consumption of

the PAM-wise design, when the clock constraint gets more strict, is a result of the increased

area and the use of more low-delay cells (which have more leakage power), to minimize the

delay in the critical path. The leakage power consumption of the proposed architectures,

is increasing with a very small rate, compared to the PAM-wise design, which is another

evidence of a relaxed critical path and low-complexity implementation. Finally, the gains for

the proposed designs, at the maximum clock frequency, for the PAM-wise implementation

(690MHz), is 64.39% and 74.16%, respectively.

While the statistical modeling and estimation of the switching activity results, in most

of the cases, to an upper bound of the actual dynamic power consumption, a simulation-

based measurement of the switching activity or the power consumption, can reveal power

dependencies on the system parameters, such as the sphere constraint (r2), in our case.
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By using the FPGA power analysis flow we measure the power consumption of the three

architectures5 in a Xilinx Virtex-6 device (XC6VLX240T-1), for different values of the

sphere constraint.

As mentioned in the section 6.6 the “exact” version of the proposed enumeration scheme

visits on average 51% more nodes, than the PAM-wise technique, due the less tight pruning

metric. A more fair and accurate power consumption comparison requires that all the ar-

chitectures should have the same average throughput (execution time) for the same sphere

constraint value. Therefore, the proposed “exact” implementation operates at a frequency

51% higher than that of the PAM-wise architecture, while the proposed “approximate” de-

sign, which visits 5% fewer nodes than the PAM-wise enumeration, operates at a frequency

which is reduced accordingly.
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Figure 6.17 Power Consumption of PAM-wise and proposed (“exact” and “approximate”)
implementations.

Fig. 6.17 shows the power consumption of the three architectures, for several values of

r2. The proposed “exact” implementation, even though operates at a higher clock frequency
5While the FPGA implementations have registers in the I/O ports, the power measurements include only

the designs activity and not the I/O registers power consumption.
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(by 51%), has an average power consumption of 34% less than the PAM-wise implemen-

tation. Especially for small values of r2 the improvement can be more than 57%. The

“approximate” version of the proposed scheme has average power consumption 50% less

than that of the PAM-wise enumeration and can reach an improvement of 68% for small

sphere constraint values. The power savings of the proposed architectures are mainly due to

the reduced number of PD calculations, for the same value of r2, compared to the PAM-wise

scheme, while the total number of comparison are reduced significantly. Furthermore, the

low-complexity implementation and the shorter critical paths, of the proposed architectures

have an additional impact in the reduction of the power consumption.

Fig. 6.17 also shows that the PAM-wise implementation has increased power consump-

tion for smaller r2, while the proposed implementation has almost constant power con-

sumption. The four parallel PD metric computations of the PAM-wise’s initialization step

produce more switching activity and lead to increased power consumption. In normal op-

eration the switching activity of the PAM-wise is due mainly to the comparator tree, the r2

check and at most one of the PD calculation units. Therefore, for small r2 the PAM-wise

with more initializing steps has increased power consumption. Comparing the above perfor-

mance to that of the proposed architectures we notice that there is no significantly difference

in switching activity during the initialization and the normal operation.

The proposed implementation, based on predetermined visiting order needs at most one

PD calculation per visiting node. Furthermore, the proposed technique performs less PD

calculations regardless the value of the sphere constraint but the significant reduction is ob-

served in the range of small values of r2. For very large values of the sphere constraint

the PD calculations performed by both schemes under comparison are the same. For small

values of r2 the proposed implementation shows reduced PD calculations (compared to the

PAM-wise), greater than 55%, and reduced power consumption, as illustrated in Fig. 6.17.

We should note that in practice, and especially with radius update, the sphere constraint be-

comes very small after calculating the first candidate solution, and therefore, the proposed

scheme provides significant gains, over the PAM-wise enumeration. Finally, the difference

between the power consumption of the “exact” and “approximate” versions of the proposed

scheme, is due to the missing pruning_logic and dist_calc units from the proposed “approx-

imate” implementation.
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The proposed enumeration scheme reduces the complexity of the hard and soft-output

sphere decoding algorithms, used to decode spatially multiplexed signals in MIMO-OFDM

systems. As shown, in the previous sections the proposed approach is able to provide sub-

stantial complexity/implementation gains when high-order, non-constant envelop constel-

lations (e.g 16-QAM) are transmitted, while it not compromises the ML or max-log MAP

performance of the detection process. While the “exact” version of the proposed technique,

increases the number of visiting nodes, during the tree-traversal, the reduced critical path

of the implementation improves the requirements of hardware resources and power con-

sumption, even with higher clock frequencies, in which the proposed architecture provides

the same throughput compared to state-of-the-art approaches able to guarantee the optimal

performance. Furthermore, reduced hardware resources are used for the implementation of

the proposed technique, due to the predefined visiting order and the need for at most one

PD computation per visiting node.





Chapter 7

Conclusions and Further Directions

The major challenge facing future wireless communication systems is to provide high data-

rate and reliable wireless access to mobile users with increased quality-of-service (QoS)

and efficient frequency spectrum utilization. Multiple-Input Multiple-Output (MIMO) wire-

less technology in combination with Orthogonal Frequency Division Multiplexing (OFDM)

signals meets these demands by offering increased spectral efficiency, high data-rates and

improved link reliability. On the other hand, these improvements come at the cost of signif-

icant increase in complexity of signal processing algorithms in both transmitter and receiver

systems. The computational complexity of MIMO-OFDM receivers also increases dramat-

ically with respect to the number of transmit/receive antennas as well as the modulation

scheme used for transmission.

Furthermore, as the domain of mobile wireless communications becomes increasingly

populated with differing communication protocols, the importance of mobile software de-

fined radio (SDR) terminals grows. The high data-rates and multiple operational modes

of new wireless protocols, in combination with the use of MIMO technologies, render an

implementation on the limited processing resources of a flexible and scalable architecture

extremely challenging. Moreover, the tight power consumption constraint, necessary to

ensure long operation times from battery, does not relax this challenge either.
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7.1 Conclusion

In the first part of this dissertation an efficient and fully scalable Macro-pipeline FFT archi-

tecture for concurrent multi-symbol processing on SDR/MIMO OFDM systems, has been

presented. This reconfigurable memory-based FFT architecture is able to perform the FFT

computations of multiple data streams with variable FFT lengths independently and can

be tailored to match system requirements for the majority of multi-protocol (SDR) and/or

MIMO OFDM systems. For single-protocol systems, the proposed architecture can be used

for all the FFT calculation requirements of multiple data streams (MIMO mode), while

supporting variable bandwidth configurations.

State of the art pipeline FFT architectures for multiple data streams are exploit the idle

clock cycles of the butterfly processors for the computations of the additional data streams.

High- and mixed-radix architectures are commonly used to support increased number of

streams, while complex control and memory structures results in increased complexity and

power consumption for the FFT processor. The limited scalability and the lack of support

multiple streams with different FFT length each, makes these architectures unattractive for

multi-protocol SDR systems, while the sequential output of the processed FFT frames, re-

quires additional memory structures for the case of MIMO-OFDM systems.

Advanced memory-based FFT architectures have been used for multi-stream OFDM

systems, combined with high- or mixed-radix butterfly processors and conflict-free address-

ing schemes. The majority of the state of the art memory-based architectures are based on a

high-throughput FFT processor, which can be used for multiple data stream processing with

a time scheduling scheme. The use of high- or mixed-radix processors increases the criti-

cal path of the butterfly unit and additional pipeline stages are required, while the complex

addressing schemes or the cache structures used results in increased processing latency and

memory requirements due to the non-normal order of the output data. These architectures

support multiple data streams with different FFT lengths, but the limited scalability and the

increased complexity for the support of continuous-flow operation, makes their implemen-

tation difficult for the majority of SDR/MIMO systems.

The proposed architecture contains multiple radix-2 butterfly processors which execute

FFT calculations in parallel with each processor accessing data from two memory banks

at each processing stage. The butterfly units can be configured at run-time to compute
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smaller FFTs, by accessing their local memory banks, while a simple interconnection net-

work allows each radix-2 processor to load (store) data from (to) the memory banks of other

processors. The processing latency of the FFT processor can be optimized based on the con-

figuration, the combination of the FFT lengths of the input data streams (SDR mode) and

the run-time selection of the “local” FFT size for the radix-2 processors. A novel conflict-

free in-place addressing scheme is used to minimize the processing latency for each radix-2

butterfly unit and to simplify the interconnection network between the processors and the

memory banks. Furthermore, the proposed addressing scheme produces normal-order FFT

outputs resulting in reduced memory requirements for a continuous-flow SDR/MIMO FFT

architecture, in which the multiple FFT output frames can be accessed in parallel.

The FFT architecture, presented in Chapter 4, can be used in several SDR/MIMO-

OFDM systems with different configurations in terms of number of data streams, FFT

lengths and scheduling schemes. The novel conflict-free addressing scheme results in re-

duced complexity interconnection network and normal-order FFT output, while the run-time

scheduling scheme reduces the processing latency by efficient utilize the butterfly proces-

sors, based on the FFT length of each of the data streams. The low implementation cost and

the use of regular size memory structures is a key factor for reduced power consumption on

large SDR/MIMO-OFDM systems, while the parallel normal-order FFT output results in

low memory requirements for continuous-flow FFT processors.

An advanced LUT-based enumeration technique for sphere decoding algorithms, which

is based on a predefined approximate visiting order and can guarantee the ML or max-log

MAP performance of the MIMO detector, has been presented in the second part of this

thesis. By exploiting geometrical characteristics of the constellation map, a pre-calculated

visiting order can be defined and with appropriate tuning of the pruning metric the optimal

solution can be guaranteed. While the proposed approach increases the number of visiting

nodes, due to relaxed pruning metric, the low computational requirements for each node

results in reduced total complexity and relaxed critical path for the sphere decoder.

Advanced enumeration schemes, which can guarantee the optimal solution, avoid the

exhaustive search over all the constellation points, by splitting the QAM in several subsets.

For each of the subsets a constellation point is selected, based on geometrical character-
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istics, and the search for the next best candidate is limited to these selected constellation

points. These approaches require several Euclidean distance calculation units and compari-

son modules, based on the total number of subsets, which increase the implementation cost

and the power consumption of the MIMO detector. Other enumeration schemes perform a

two dimensional search over the constellation points, while computing and store Euclidean

distances, by using at most two distance calculation unit, independently of the QAM size.

These techniques requires complex priority queues with several comparison modules result-

ing in increased implementation cost and power consumption.

Several enumeration schemes have been proposed in the literature, which reduce the

computational complexity by using pre-determined approximate visiting order or by intro-

ducing approximations on the distance calculation process. These techniques can reduce the

implementation cost and power consumption of the sphere decoder while introducing errors

in the detection process resulting in performance degradation. While this performance loss

can be negligible for specific scenarios, these approaches are unable to guarantee the opti-

mal detection and hence increased error-rate performance, for all operational scenarios and

channel conditions.

The proposed enumeration technique, while is based on a predefined visiting order can

guarantee the optimal detection in all channel conditions, due to the tuning pruning metric.

A single distance calculation unit is used in the enumeration process resulting in reduced

implementation cost and very low power consumption, compared to other optimal enumera-

tion schemes. It can be used for hard- and soft- output sphere decoders while small changes

are required for the case of soft-input soft-output detection schemes. The “exact” and “ap-

proximate” versions of the proposed enumeration algorithm provide substantial complex-

ity/implementation gains with high-order, non-constant envelop constellations, while hav-

ing more relaxed critical path, which is a key factor for high-throughput sphere decoder

implementations.

The increased number of visiting nodes, due to the more relaxed pruning metric, can be

compensated with the low computational complexity for each node and hence reduced total

complexity for the detection process. Furthermore, the relaxed critical path results in more

efficient implementations with low power consumption, even in the cases of higher clock

frequencies and increased detection throughput. Finally, the proposed “exact” architecture
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results in very low power consumption, in comparison to state of the art optimal enumeration

techniques, for the case of small sphere constraints, which is the common scenario in sphere

decoder implementations using the radius update mechanism.

7.2 Future Work

The proposed FFT architecture for SDR/MIMO systems, supporting multiple data streams

with variable symbol lengths, can be optimized further for the case of continuous-flow op-

eration. The conflict-free addressing scheme produces normal-order output which is not

similar to the bit-reversal input data ordering, resulting in low memory utilization of the I/O

buffers. A tuned conflict-free addressing scheme can produce output data ordering similar

to the input data, resulting in a single I/O buffer architecture with reduced memory require-

ments for the continuous-flow operation. Furthermore, a hybrid DIT/DIF scheme can be

used with a similar conflict-free addressing technique to eliminate the use of multiple I/O

buffers.

A mixed radix-22/2 could be used in combination with new conflict-free addressing

techniques to further reduce the processing latency for large FFT sizes. The new butterfly

unit will require a more complex interconnection network and a more efficient scheduling

scheme, based on the system configuration and run-time parameters. The efficiency of the

new conflict-free addressing scheme is a key factor for a reduced interconnection network

and simplified control structures. Furthermore, low-power techniques can be used to further

reduce the power consumption of the FFT processor for specific operational scenarios and

system configurations.

The enumeration scheme, proposed in Chapter 6, has low implementation cost, due to

single distance calculation unit, but it requires LUTs which are proportional to the constel-

lation map. This can be a problem for very dense constellations which will have increased

memory requirements. We can reduce the size of the LUTs by exploiting the constellation

points symmetries and some geometrical characteristics of the QAM. For a specific con-

stellation map, the points included to a subset, based on their Euclidean distance can be

found by exploiting geometrical characteristics. We can translate the problem and use only

the constellation points of the first quadrature to reduce the memory requirements for the
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LUTs.

Compared to other optimal enumeration techniques, the proposed method reduce signif-

icantly the power consumption, specifically for small sphere constraints, which is the com-

mon case for sphere decoders which use the radius update algorithm. We can further reduce

the power consumption by applying power optimization techniques, such as clock-gating, in

the implementation of the proposed method. Furthermore, low-complexity optimal MIMO

detectors, based on the soft-output or soft-input soft-output (SISO) sphere decoding algo-

rithms could be consider. Applying the proposed power efficient enumeration scheme to a

SISO sphere decoder can be beneficial in the research for reduced complexity and power

consumption iterative receiver architectures.
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