

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

GRADUATE PROGRAM

COMPUTER SYSTEMS NETWORKING

MSc THESIS

An SDN QoE Monitoring Framework for VoIP and video
applications

Maria-Evgenia I. Xezonaki

Supervisor: Lazaros Merakos, Professor

ATHENS

OCTOBER 2017

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΔΙΚΤΥΩΣΗ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

SDN Σύστημα Παρακολούθησης QoE για VoIP και video
εφαρμογές

Μαρία-Ευγενία Ι. Ξεζωνάκη

Επιβλέπων: Λάζαρος Μεράκος, Καθηγητής

ΑΘΗΝΑ

ΟΚΤΩΒΡΙΟΣ 2017

ΜSc THESIS

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

S.N.: Μ1473

SUPERVISOR: Lazaros Merakos, Professor

ADVISORY COMMITTEE Lazaros Merakos, Professor
Stathes Hadjiefthymiades, Associate Professor

October 2017

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

SDN Σύστημα Παρακολούθησης QoE για VoIP και video εφαρμογές

Μαρία-Ευγενία Ι. Ξεζωνάκη

Α.Μ.: Μ1473

ΕΠΙΒΛΕΠΩΝ: Λάζαρος Μεράκος, Καθηγητής

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ Λάζαρος Μεράκος, Καθηγητής
 Στάθης Χατζηευθυμιάδης, Αναπληρωτής Καθηγητής

Οκτώβριος 2017

ABSTRACT

Lately, there has been a rapid rise of the mobile communications industry, since the use
of mobile devices is spreading at a fast pace and is expected to continue its penetration
into the daily routine of consumers. This fact, combined with the limitations of the
current communications networks’ structure, necessitates the development of new
networks with increased capabilities, so that users can be served with the best possible
quality of service and at the same time with the optimal network resources utilization. A
new networking approach is Software Defined Networking (SDN) which decouples the
control from the data plane, transforming the network elements to simple forwarding
devices and making decisions centrally. The quality of service perceived by the user, or
quality of experience (QoE), is considered to be a matter of great importance in
software defined networks.

This diploma thesis aims at presenting SDN technology, reviewing existing research in
the field of QoE on SDN networks and then developing an SDN application that
monitors and preserves the QoE for VoIP and video applications. More specifically, the
developed SDN QoE Monitoring Framework (SQMF) periodically monitors various
network parameters on the VoIP/video packets transmission path, based on which it
calculates the QoE. If it is found that the result is less than a predefined threshold, the
framework changes the transmission path, and thus the QoE recovers.

The structure of this diploma thesis is the following: Chapter 1 presents the current state
of communications networks and predictions for the future state, as well as the
challenges that current networks will not be able to cope with. Chapter 2 then describes
in detail the SDN technology in terms of architecture, main control-data plane
communication protocol, use cases, standardization, advantages and disadvantages.
Chapter 3 introduces the concept of QoE and lists well-known QoE estimation models
for various applications types, some of which were used in this thesis. Relevant existing
studies in the field of QoE on SDN networks as well as a comparative table can be
found in chapter 4. The following chapters concern the framework implemented in the
context of this diploma thesis: Chapter 5 describes in detail all the required tools and
instructions for the development of SQMF, while Chapter 6 presents examples where
the QoE in a network can face degradation. Finally, Chapter 7 analyzes in depth
SQMF's design principles, logic and code files, provides a demonstration of its
operation and evaluates it, whereas Chapter 8 briefly summarizes the conclusions and
of this thesis and future work points.

SUBJECT AREA: Communications Networks

KEYWORDS: Software Defined Networks, Quality of Experience, Video, VoIP,

Monitoring, SDN Controller, OpenDaylight, OpenFlow, Mininet

ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια έχει σημειωθεί ραγδαία άνοδος του κλάδου των κινητών
επικοινωνιών, αφού η χρήση των κινητών συσκευών εξαπλώνεται με ταχύτατους
ρυθμούς και αναμένεται να συνεχίσει τη διείσδυσή της στην καθημερινότητα των
καταναλωτών. Το γεγονός αυτό, σε συνδυασμό με τους περιορισμούς που θέτει η
τρέχουσα δομή των δικτύων επικοινωνιών, καθιστά αναγκαία την ανάπτυξη νέων
δικτύων με αυξημένες δυνατότητες, ώστε να είναι δυνατή η εξυπηρέτηση των χρηστών
με την καλύτερη δυνατή ποιότητα εμπειρίας και ταυτόχρονα τη βέλτιστη αξιοποίηση των
πόρων του δικτύου. Μία νέα δικτυακή προσέγγιση αποτελεί η δικτύωση βασισμένη στο
λογισμικό (Software Defined Networking - SDN), η οποία αφαιρεί τον έλεγχο από τις
συσκευές προώθησης του δικτύου, και οι αποφάσεις λαμβάνονται σε κεντρικό σημείο. Η
ποιότητα υπηρεσίας που αντιλαμβάνεται ο χρήστης, ή αλλιώς ποιότητα εμπειρίας,
κρίνεται ζήτημα υψηλής σημασίας στα δίκτυα SDN.

Η παρούσα διπλωματική εργασία έχει ως στόχο την παρουσίαση της τεχνολογίας SDN,
την επισκόπηση της υπάρχουσας έρευνας στο πεδίο της ποιότητας εμπειρίας σε SDN
δίκτυα και στη συνέχεια την ανάπτυξη μίας SDN εφαρμογής η οποία παρακολουθεί και
διατηρεί την ποιότητας εμπειρίας σε υψηλά επίπεδα για εφαρμογές VoIP και video. Πιο
συγκεκριμένα, η εφαρμογή SQMF (SDN QoE Monitoring Framework) παρακολουθεί
περιοδικά στο μονοπάτι μετάδοσης των πακέτων διάφορες παραμέτρους του δικτύου,
με βάση τις οποίες υπολογίζει την ποιότητα εμπειρίας. Εάν διαπιστωθεί ότι το
αποτέλεσμα είναι μικρότερο από ένα προσδιορισμένο κατώφλι, η εφαρμογή αλλάζει το
μονοπάτι μετάδοσης, και έτσι η ποιότητα εμπειρίας ανακάμπτει.

Η δομή της παρούσας διπλωματικής εργασίας είναι η εξής: Στο κεφάλαιο 1
παρουσιάζεται η σημερινή εικόνα των δικτύων επικοινωνιών και οι προβλέψεις για τη
μελλοντική εικόνα, καθώς και οι προκλήσεις στις οποίες τα σημερινά δίκτυα δε θα
μπορούν να αντεπεξέλθουν. Στη συνέχεια στο κεφάλαιο 2 περιγράφεται αναλυτικά η
τεχνολογία SDN ως προς την αρχιτεκτονική, το κύριο πρωτόκολλο που χρησιμοποιεί, τα
σενάρια χρήσης της, την προτυποποίηση, τα πλεονεκτήματα και τα μειονεκτήματά της.
Το κεφάλαιο 3 εισάγει την έννοια της ποιότητας εμπειρίας του χρήστη και παραθέτει
ευρέως γνωστά μοντέλα υπολογισμού της για διάφορους τύπους εφαρμογών, που
χρησιμοποιούνται στην παρούσα εργασία. Σχετικές υπάρχουσες μελέτες στο πεδίο της
ποιότητας εμπειρίας σε δίκτυα SDN αλλά και συγκριτικός πίνακας μπορούν να βρεθούν
στο κεφάλαιο 4. Τα επόμενα κεφάλαια αφορούν στην εφαρμογή SQMF που
υλοποιήθηκε στα πλαίσια της παρούσας διπλωματικής εργασίας: το κεφάλαιο 5
περιγράφει αναλυτικά όλα τα προαπαιτούμενα εργαλεία και οδηγίες για την ανάπτυξη
του SQMF, ενώ το κεφάλαιο 6 παρουσιάζει παραδείγματα όπου η ποιότητα εμπειρίας
ενός δικτύου μπορεί να υποστεί μείωση. Τέλος, το κεφάλαιο 7 αναλύει σε βάθος τις
σχεδιαστικές προδιαγραφές, τη λογική και τον κώδικα του SQMF και παρέχει επίδειξη
της λειτουργίας του και αξιολόγησή του, ενώ το κεφάλαιο 8 συνοψίζει επιγραμματικά τα
συμπεράσματα της παρούσας εργασίας και ανοιχτά θέματα για μελλοντική έρευνα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Δίκτυα Επικοινωνιών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Δικτύωση Βασισμένη στο Λογισμικό, Ποιότητα Εμπειρίας, Υπηρεσίες

βίντεο, Υπηρεσίες φωνής, Παρακολούθηση, SDN Controller,

OpenDaylight, OpenFlow, Mininet

This MSc Thesis is dedicated to my family.

AKNOWLEDGMENTS

This MSc Thesis constitutes the last step of my postgraduate studies in the Department
of Informatics and Telecommunications of National and Kapodistrian University of
Athens. Through this thesis I am given the opportunity to wholeheartedly thank my
supervisor, Prof. Lazaros Merakos, for the confidence he showed me in undertaking the
specific thesis subject, the chance he gave me to deal with such an interesting and
challenging field and the aid he provided to me regarding technical issues. This is the
second time he shows faith in my capabilities, after having also supervised me in my
undergraduate thesis, therefore I can only be grateful towards him.

Subsequently, heartfelt thanks go to the PhD Candidate Eirini Liotou for her continuous
guidance and ceaseless support during both the current thesis writing and the practical
part’s implementation. I cannot overlook the fact that she accepted to supervise me
from the very first moment I asked her to, always being really reassuring about my
progress and supportive when I was under pressure, thus making our cooperation very
pleasant and fruitful.

Moreover, a person whose knowledge and aid have been of significant importance to
the implementation of my thesis is George K. Petropoulos, whom I worked with for 7
months at Intracom Telecom. His help was crucial on my first contact with the
technology used in this thesis as well as at a critical point before its delivery. To this
end, I would like to mention his name and thank him for everything.

Finally, I cannot miss to thank my family and my friends for all the love, support and
patience they showed throughout my undergraduate and postgraduate studies, as well
as to all those who contributed in their own way to my effort’s successful completion.

CONTENTS

PREFACE ... 18

1. INTRODUCTION .. 19

1.1 CURRENT NETWORKING STATE AND LIMITATIONS .. 19

1.2 DEVICES GROWTH .. 20

1.3 DATA AND VIDEO GROWTH .. 21

1.4 FIFTH GENERATION (5G) WIRELESS NETWORKS EMERGENCE 24

1.4.1 5G systems requirements ... 25

1.5 THE NEW NETWORKING PARADIGM ... 27

2. SOFTWARE-DEFINED NETWORKING (SDN) ... 29

2.1 DEFINITION(S) OF SDN .. 29

2.2 SDN ARCHITECTURE ... 30

2.3 OPENFLOW PROTOCOL .. 36

2.3.1 The Flow Table.. 36

2.3.2 The lookup process ... 38

2.4 OPENDAYLIGHT CONTROLLER .. 40

2.5 NETCONF, RESTCONF AND YANG ... 42

2.6 HISTORY AND STANDARDIZATION OF SDN .. 44

2.7 USE CASES OF SDN .. 47

2.8 ADVANTAGES OF SDN .. 48

2.9 CHALLENGES OF SDN ... 50

3. QUALITY OF EXPERIENCE (QOE) .. 52

3.1 INTRODUCTION TO QoE .. 52

3.2 QoE MANAGEMENT.. 54

3.3 QoE MODELS .. 58

3.3.1 Voice ... 58

3.3.2 Video ... 61

3.3.3 YouTube .. 63

4. STATE OF THE ART IN QOE FOR SOFTWARE - DEFINED NETWORKS 65

4.1 RESEARCH WORKS ON QoE FOR SDN ... 65

4.2 SUMMARIZING TABLE .. 78

5. ENVIRONMENT SETUP .. 81

5.1 SYSTEM REQUIREMENTS ... 81

5.2 SDN CONTROLLER DEPLOYMENT ... 82

5.2.1 Karaf features .. 82

5.3 MININET DEPLOYMENT ... 84

5.3.1 Mininet default topology .. 86

5.3.2 Changing topology size and type .. 86

5.3.3 Custom topologies ... 87

5.3.4 Using a remote controller in Mininet .. 87

5.4 FIRST ODL PROJECT CREATION ... 89

5.5 USE OF AN IDE ... 90

5.6 VoIP TRAFFIC CREATION .. 96

5.7 VIDEO TRAFFIC CREATION ... 102

5.7.1 Video adjustment to required specifications .. 102

6. QOE DEGRADATION CASES EXAMPLES .. 105

6.1 EXPERIMENTS ON VoIP APPLICATIONS .. 106

6.1.1 Experiment No 1: Manual network limitations on VoIP 106

6.1.2 Experiment No 2: Multiple sources of traffic on VoIP 107

6.2 EXPERIMENTS ON VIDEO APPLICATIONS .. 109

6.2.1 Experiment No 1: Manual network limitations on video 109

6.2.2 Experiment No 2: Multiple sources of traffic on video 110

7. IMPLEMENTATION ANALYSIS .. 112

7.1 DESIGN PRINCIPLES AND WORKFLOW .. 112

7.2 IMPLEMENTATION STRUCTURE .. 114

7.3 DETAILED IMPLEMENTATION ANALYSIS ... 117

7.4 SQMF DEMONSTRATION ... 129

7.5 SQMF EVALUATION ... 135

7.5.1 SQMF on VoIP traffic .. 135

7.5.2 SQMF on video traffic .. 138

8. CONCLUSION AND FUTURE WORK ... 142

ABBREVIATIONS - ACRONYMS ... 143

ANNEX .. 147

REFERENCES .. 148

LIST OF FIGURES

Figure 2.1: The lookup process in OF [32] .. 39

Figure 6.1: VoIP quality decrease in relation to total network packet loss 107

Figure 6.2: VoIP quality decrease in relation to number of VoIP packets, in parallel with

iperf ... 108

Figure 6.3: Video quality decrease in relation to total network packet loss 110

Figure 6.4: Video quality instability for video streaming simultaneously with using iperf

 .. 111

Figure 7.1: QoE Monitoring workflow ... 112

Figure 7.2: SQMF classes correlation ... 129

Figure 7.4: Packet loss comparison between cases with and without SQMF in VoIP

traffic generation, when a link failure occurs .. 138

Figure 7.5: MOS comparison between cases with and without SQMF in VoIP traffic

generation, when a link failure occurs ... 138

Figure 7.6: Packet loss comparison between cases with and without SQMF in video

streaming, when a link failure occurs ... 141

Figure 7.7: Vq comparison between cases with and without SQMF in video streaming,

when a link failure occurs .. 141

LIST OF IMAGES

Image 1.1: Conventional networking [5] .. 19

Image 1.2: Cisco’s prediction for 24.3 exabytes of monthly mobile traffic until 2019 [10]

 .. 21

Image 1.3: The impact of the smart devices’ and connections’ increase on data traffic,

according to Cisco [10] .. 22

Image 1.4: Video use will constitute more than 69% of the data traffic until 2019 ,

according to Cisco [10] .. 22

Image 1.5: Cloud applications will account for 90% of mobile data traffic until 2019,

according to Cisco [10] .. 23

Image 1.6: An IoE schematic representation, according to Cisco [10] 24

Image 1.7: 5G systems use cases and the main corresponding challenges [18] 27

Image 1.8: The general shift in networking [5] ... 27

Image 1.9: Conventional networking VS Software-Defined networking [6] 28

Image 2.1: High-level SDN overview [25] .. 30

Image 2.2: Basic SDN components [27] .. 31

Image 2.3: Simplified view of SDN architecture [6] .. 31

Image 2.4: Simplified SDN architecture and interfaces [6] .. 32

Image 2.5: SDN architecture and its fundamental abstractions [6] 33

Image 2.6: SDN architecture with management function [27] .. 34

Image 2.7: SDN overview [27] ... 35

Image 2.8: The ODL Boron version architecture [37] .. 40

Image 3.1: QoE influence factors belonging to context, human user and the technical

system [61] .. 54

Image 3.2: Relationship between R factor and MOS [66] .. 60

Image 3.3: The IQX hypothesis [68] .. 64

Image 4.1: The OpenCache architecture [31] .. 65

Image 4.2: The QoS/QoE Mapping and Adjusting application overview [24] 66

Image 4.3: SDN-Based architecture for QoE optimization in HTTP-based video

streaming [70] .. 67

Image 4.4: The SDN-based vehicular network architecture [71].................................... 68

Image 4.5: The DASH-SDN architecture [72] .. 69

Image 4.6: The SDN-based scheme for HTTP video quality optimization [21] 70

Image 4.7: Topology of the experimental testbed of [19] ... 70

Image 4.8: SDN-enabled cloud video distribution system [73]....................................... 71

Image 4.9: Level-2 QoS flows rerouting in ARVS [29] ... 72

Image 4.10: Level-1 QoS flows rerouting in ARVS [29] ... 73

Image 4.11: Traffic-aware SDN-based topology for video streaming flows identification

[25] .. 74

Image 4.12: The architecture of joint routing and layer selecting system [74] 75

Image 4.13: The block diagram for the system proposed in [20] 76

Image 4.14: An overview of the TSDN model proposed in [75] 77

Image 4.15: OpenFlow-assisted QoE Fairness Framework [30] 78

Image 4.16: SDN architecture for QoE-driven service optimization and path assignment

[22] .. 78

Image 5.1: The result of mvn –v command after Apache Maven successful installation

 .. 82

Image 5.2: The ODL DLUX Login Page .. 83

Image 5.3: VirtualBox import window .. 84

Image 5.4: Mininet login console ... 85

Image 5.5: Example Python script for a custom topology creation [88] 87

Image 5.6: Mininet messages after starting a topology ... 88

Image 5.7: Mininet pingall result .. 88

Image 5.8: The created Mininet topology shown in ODL DLUX UI 89

Image 5.9: Import a project into IntelliJ .. 91

Image 5.10: Select the project to import .. 92

Image 5.11: Select to import a project from an external model, choosing Maven 92

Image 5.12: Click on button Environment settings and configure Maven’s home

directory ... 93

Image 5.13: Select Maven project to import and click Next ... 93

Image 5.14: Configure a new JDK ... 94

Image 5.15: Choose the JDK installation folder and click OK .. 94

Image 5.16: The JDK resources .. 95

Image 5.17: Enter a name for the project and click Finish ... 95

Image 5.18: D-ITG Architecture [92] .. 96

Image 5.19: First Mininet session for using D-ITG ... 99

Image 5.20: Second Mininet session for using D-ITG, with topology deployment 99

Image 5.21: Navigation in the bin folder of the D-ITG installation for both hosts 100

Image 5.22: The command starting the receiver host (h2) ... 100

Image 5.23: The commands for the creation of script describing the traffic

characteristics, in the sender host (h1)... 100

Image 5.24: The command starting the sender host (h1) ... 101

Image 5.25: The receiver host’s log file, with information about the received packets 101

Image 5.26: The sender host’s log file, with information about the sent packets 102

Image 5.27: The output of ffmpeg command ... 103

Image 5.28: The output of ffprobe command ... 104

Image 6.1: Topology with nine switches and two hosts, used for the current thesis 105

Image 7.1: Traffic forwarding according to QoE Monitoring ... 114

Image 7.2: SQMF implementation structure .. 114

Image 7.3: ODL modules, including sqmf .. 115

Image 7.4: The created RPCs ... 115

Image 7.5: Requested input for startMonitoringLinks RPC .. 116

Image 7.6: The controller message when the new topology is created 129

Image 7.7: The provided input for VoIP traffic ... 130

Image 7.8: The provided input for video traffic... 130

Image 7.9: Prompt for video selection, after input for video application type 131

Image 7.10: OF rules established in ingress switch for QoE monitoring 131

Image 7.11: OF rules established in core switches for QoE monitoring 132

Image 7.12: OF rules established in egress switch for QoE monitoring 132

Image 7.13: Part of the controller output after QoE monitoring has started 132

Image 7.14: The traffic received by the destination (h2) .. 133

Image 7.15: Traffic stops being delivered at the destination when link failure occurs and

no corrective actions are made .. 133

Image 7.16: The OF rules established in the ingress switch when low QoE is detected

 .. 134

Image 7.17: The OF rules established in the egress switch when low QoE is detected

 .. 134

Image 7.18: Instant pause and recovery of traffic flow in case of link failure, using SQMF

 .. 134

Image 7.19 : Controller output when low QoE is detected ... 135

Image 7.20: Calling stopMonitoringLinks RPC .. 135

Image 7.21: The controller message after calling stopMonitoringLinks 135

LIST OF TABLES

Table 2.1: Match fields of a flow table rule... 37

Table 2.2: Summarized overview of the history of programmable networks [6] 45

Table 3.1: R factors, quality ratings and the associated MOS [66] 61

Table 3.2: Conditions for deriving coefficient tables [67] ... 63

Table 3.3: Provisional coefficient table for the video quality estimation function [67] 63

Table 4.1: Comparison between state-of-the-art works on QoE for SDN networks 79

Table 6.1: Parameters used for experiment No 1 on VoIP traffic generation 106

Table 6.2: Delay, R and MOS according to the total network packet loss 106

Table 6.3: Delay, Packet Loss, R and MOS according to number of VoIP packets sent

simultaneously with iperf ... 108

Table 6.4: Parameters used for experiments on video streaming 109

Table 6.5: Vq according to the total network packet loss ... 109

Table 6.6: Packet loss and Vq during video streaming simultaneously with iperf 110

Table 7.1: Parameters used for SQMF evaluation on VoIP traffic 135

Table 7.2: Delay, R, packet loss and MOS during VoIP traffic generation with link failure,

without SQMF .. 136

Table 7.3: Delay, R, packet loss and MOS during VoIP traffic generation with link failure,

with SQMF ... 137

Table 7.4: Packet loss and Vq during video streaming with link failure, without SQMF

 .. 139

Table 7.5: Packet loss and Vq during video streaming with link failure, with SQMF 140

PREFACE

The current MSc Thesis was conducted in the Department of Informatics and
Telecommunications of National and Kapodistrian University of Athens, and more
specifically under the support of the Communication Networks Laboratory of
Telecommunications and Signal Processing sector. The thesis started being conducted
in March 2017 and ended in October of the same year. Professor Lazaros Merakos and
PhD Candidate Eirini Liotou – to whom I owe special thanks - were the supervisors of
this MSc Thesis.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 19

1. INTRODUCTION

For many years, the Information and Communication Technologies (ICTs) have been
representing highly profitable business areas with continuous developments of
technologies, devices and services in order to serve all types of users [1]. The
innovative and effective utilization of ICTs is becoming more and more important for the
world economy improvement [2], as the industries' and services' capability to compete
and evolve is increasingly depending on them [3]. Investments in ICTs can play a vital
role in the pathway to economic recovery, given the strong external factors which
positively affect the economy.

Undoubtedly, the communications and computer networking sector is one of the most
crucial elements in the global ICT strategy, underpinning many other industries. It is one
of the fastest growing and most dynamic sectors worldwide, allowing for the
interconnection between either individual persons or institutions, companies,
businesses, industries and in general every kind of functional departments worldwide
[2]. Lately, a drive for changing the conventional networking architecture and moving
towards new networking paradigms is beginning to show. This trend can be explained
by a number of factors related to the current state in computer systems networking, as
well as to the emerging needs of next generation networks.

1.1 CURRENT NETWORKING STATE AND LIMITATIONS

Despite the fact that computing has advanced rapidly over the past three decades, the
way that networking is performed has remained virtually unchanged [4]. The current
state of networking is characterized by the legacy technology which the majority of
networks are built on. In conventional networking (Image 1.1), the networking protocols
are distributed among the devices (i.e. routers, switches, firewalls and middle boxes)
[5]. The distributed control and transport network protocols running inside the routers
and switches are the key technologies that allow information, in the form of digital
packets, to travel around the world [6], [7]. The most traditional networking approach is
Internet Protocol (IP) networking and most of the public Internet still operates on hybrid
IP version 4 / version 6 (IPv4/v6) services like Network Address Translation (NAT) [8].

Image 1.1: Conventional networking [5]

Despite their widespread adoption, traditional IP networks have severe disadvantages
and impose limitations on creating new, innovative services. The root cause of these
limitations is the fact that the networks are built using devices (e.g. switches, routers)
which have become exceedingly complex as they implement an ever-increasing
number of distributed protocols and use closed and proprietary interfaces.

Historically, the “best” networks (those which are the most reliable, have the highest
availability, and offer the fastest performance, etc.) are those built with custom silicon
(Application-specific Integrated Circuits - ASICs) and purpose-built hardware. Due to

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 20

the fact that it takes a significant investment to build custom silicon and hardware,
rigorous processes are required to ensure that vendors get the most out of each update
or new iteration. This means that the ad hoc addition of features is virtually impossible,
limiting customers who want new or different functionality to address their requirements
to the vendor’s timeline [9].

Consequently, the main limitations that emerge from the current networking state are
the following:

 Optimization difficulty: It is hard for network operators to introduce new revenue
generating services and optimize their expensive infrastructures, i.e. data centers,
wide-area networks, and enterprise networks, as they continue having serious
known problems with security, robustness, manageability, mobility and evolvability
that have not been successfully addressed so far [4]. New networking features are
commonly introduced via expensive, specialized and hard-to-configure equipment
[5].

 Capital costs: Network capital costs have not been reducing fast enough and
operational costs have been growing, putting excessive pressures on network
operators. The transition from IPv4 to IPv6 started more than a decade ago and is
still largely incomplete, while in fact IPv6 represents merely a protocol update. Due
to the inertia of current IP networks, a new routing protocol can take 5 to 10 years
to be fully designed, evaluated and deployed. Likewise, a clean-state approach to
change the Internet architecture (e.g., replacing IP), is regarded as a daunting task
– simply not feasible in practice. Ultimately, this situation has inflated the capital
and operational expenses of running an IP network [4], [6].

 Customization difficulty: Even vendors and third parties are not able to provide
customized cost effective solutions to address their customers’ problems [4].

 Configuration complexity: To express the desired high-level network policies,
network operators need to configure each individual network device separately and
sometimes manually, using low-level and often vendor-specific commands, a
procedure which is error-prone [5]. In addition to the configuration complexity,
network environments have to endure the dynamics of faults and adapt to load
changes. Automatic reconfiguration and response mechanisms are virtually non-
existent in current IP networks. Enforcing the required policies in such a dynamic
environment is therefore highly challenging [6].

 Vertical integration: The control plane (which decides how to handle network
traffic) and the data plane (which forwards traffic according to the decisions made
by the control plane) are tightly coupled, therefore there is no common view of the
network [5]. They are bundled inside the networking devices, reducing flexibility and
hindering innovation and evolution of the networking infrastructure [6]. It is hard to
implement new features and protocols as this requires changing the control plane
of all devices which are part of the topology [5].

1.2 DEVICES GROWTH

Over the past years, there is a spectacular increase in the number of users who
subscribe to mobile broadband systems every year. The figures presented in Cisco's
latest report [10] show an exponential increase in the number of devices, which will
continue in the forthcoming years. Besides, more and more users are seeking faster
internet access, more advanced mobile phones, and generally direct communication
with other people and access to information [2]. Thus, they are increasingly employing
mobile personal devices such as smartphones, tablets, and notebooks to access the
internet. Every year, several new devices in different formats with sophisticated

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 21

capabilities and intelligence appear on the market. Stronger smartphones and laptops
are becoming more popular nowadays, due to their additional multimedia capabilities.
This fact has led to a significant increase in the production and distribution of wireless
mobile devices and related services. In addition, as mobile network capacity is
improving, the number of users with more than one device in their possession is
increasing as well.

The Wireless World Research Forum (WWRF) has predicted that seven trillion wireless
devices will serve seven billion users by the end of 2017. This means that the number
of connections to wireless communications networks will reach a thousand times the
world population [1], [2]. Almost half a billion (497 million) mobile devices and
connections were added in 2014, whereas mobile devices and connections expected to
grow globally to 11.5 billion by 2019 [10].

One of the most significant contributing factors behind the device revolution has been
the democratization of workforce-technology in recent years. While it has provided a lot
of value to people around the world, there is also a more pragmatic impact: the deluge
of new vendors and equipment on the market today means that there is very little
uniformity in terms of the way devices operate on a network. Since the majority of
networks today cater to a variety of devices from different vendors simultaneously, it
can be difficult for network management systems to keep up with each vendor’s specific
device requirements [8].

Therefore, the ICT sector is under pressure to accommodate these personal devices in
a fine-grained manner while protecting corporate data and intellectual property and
meeting compliance mandates [11].

1.3 DATA AND VIDEO GROWTH

Based on Cisco's annual reports, there is quantified evidence that there is a rapid
growth of data traffic over wireless networks and it will continue [2]. Already in 2014,
there was an increase in data traffic by 69% and it is expected to grow to 24.3 exabytes
per month by 2019. Mobile data traffic will follow a compound annual growth rate
(CAGR) of 57% from 2014 to 2019 [10], as shown in Image 1.2.

Image 1.2: Cisco’s prediction for 24.3 exabytes of monthly mobile traffic until 2019 [10]

Image 1.3 depicts the impact of the aforementioned increase in mobile devices and
connections in global data traffic. In particular, the global data traffic caused by new
smart devices is projected to increase from 88% to 97% by 2019 [10].

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 22

Image 1.3: The impact of the smart devices’ and connections’ increase on data traffic, according
to Cisco [10]

A remarkable fact is the traffic that this new type of devices with increased potential,
which are spreading at a rapid pace, can cause. Specifically, a single smartphone can
generate as much traffic as 37 basic phones, a tablet as much traffic as 94 key phones,
while a single laptop's traffic is equivalent to 119 phones'. Another factor of great
importance in increasing data traffic in the forthcoming years is the rapid increase in
video usage, given the higher bit rates compared to other types of applications. Video is
already considered as a necessary asset by many mobile users as it occupies much of
their everyday routine and habits, making it the most involved player in the global data
traffic. High-resolution video is expected to spread, while the percentage of content
watched via live streaming compared to downloaded content is expected to increase.
Mobile video will follow a CAGR of 66% between 2014 and 2019. More specifically, out
of a total of 24.3 exabytes per month in which data traffic is expected to arrive by 2019,
17.4 exabytes are expected to be due to video use, implying more than 69% of total
traffic [10], as depicted in Image 1.4.

Image 1.4: Video use will constitute more than 69% of the data traffic until 2019 , according to
Cisco [10]

Since many web video applications belong to the Cloud application class, Cloud traffic
follows a video-like curve, and therefore a further increase is expected in Cloud-based
mobile applications, which demonstrate unique latency and bandwidth features. Unlike

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 23

Cloud applications and services, mobile devices are subject to memory and speed
limitations, which are a brake on providing multimedia applications at a satisfactory
level. In fact, more complex applications (such as voice recognition, navigation) are
often downloaded to a Cloud Server in order to relieve the mobile devices from
processing and energy costs. Cloud applications and services (such as YouTube and
Spotify) allow mobile users to overcome memory capacity limitations and mobile
processing speeds. While this fact effectively ensures greater austerity in smartphone
or tablet operations, it also stresses the need for a reliable, low-latency and high-
bandwidth Internet connection. It should be noted that Cloud applications are estimated
to generate up to 90% of the world's mobile data traffic by 2019 [10], as depicted in
Image 1.5.

Image 1.5: Cloud applications will account for 90% of mobile data traffic until 2019, according to
Cisco [10]

Enterprises have enthusiastically embraced both public and private cloud services,
resulting in unprecedented growth of these services. Furthermore, the planning for
cloud services must be performed in an environment of increased security, compliance,
and auditing requirements, along with business reorganizations, consolidations, and
mergers that can change assumptions overnight. Providing self-service provisioning,
whether in a private or public cloud, requires elastic scaling of computing, storage, and
network resources, ideally from a common viewpoint and with a common suite of tools.

Regarding the network traffic, another fact is that within the enterprise data centers,
traffic patterns have changed significantly. In contrast to client-server applications
where the bulk of the communication occurs between one client and one server, today's
applications access different databases and servers. At the same time, users are
changing network traffic patterns as they push for access to corporate content and
applications from any type of device (including their own), connecting from anywhere, at
any time. Finally, many enterprise data centers managers are contemplating a utility
computing model, which might include a private cloud, public cloud, or some mix of
both, resulting in additional traffic across the wide area network [8].

A last challenge occurs when handling today's big data or mega datasets, a procedure
which requires massive parallel processing on thousands of servers, all of which need
direct connections to each other. The rise of mega datasets is fueling a constant
demand for additional network capacity in the data center. Operators of hyperscale data
center networks face the daunting task of scaling the network to a previously
unimaginable size and maintaining any-to-any connectivity, keeping their costs at a
reasonable level at the same time [11].

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 24

Summarizing, as the amount of data that users consume on a daily basis continues to
increase, the means of processing data will need to evolve to meet this new demand.
When the public Internet was taking its first steps, today’s ubiquity of broadband
Internet could not have been predicted. Early iterations of today's networking protocols
were well-suited to the archaic Internet of the 1990s, but in the context of the modern
Internet – and even more so the Internet of the future – these protocols are obsolete [8].

1.4 FIFTH GENERATION (5G) WIRELESS NETWORKS EMERGENCE

The success of communication networks is reflected in fast growing technological
advances. In only two decades the first generation mobile networks (1G) have been
replaced from the wireless fourth generation communication networks 4G-Long Term
Evolution (4G -LTE) [12], which can support data rates up to 1 Gbps for low mobility
and up to 100 Mb/s for high mobility. The LTE systems and their evolution, LTE-
Advanced (LTE-A) systems, have been developed and continue to evolve worldwide
[2].

It is worth noting that according to the annual reports published by Cisco, it seems that
around 2019, 4G connectivity will surpass the use of 2G connections. This is expected
to happen given the rapid spread of mobile applications and the expected growth of
Internet connections through mobile devices on the one hand, and on the other hand
the need for optimal bandwidth and other network resources management. Thus, the
development and adoption of 4G systems worldwide is facilitated [10].

However, given the explosion of data traffic in wireless networks during the next years,
several challenges emerge which 4G systems are unable to face. This fact creates the
need for switching to a technology which will satisfy the ever increasing demand for
higher data rates, enhanced network capacity, better spectral and energy performance
and higher mobility. Of course, the new technology needs to also meet the
requirements of the wired network’s parts, aiming for a fully integrated approach. The
step which is expected to meet the above requirements is the fifth generation wireless
communication networks technology, 5G.

Another factor that leads to the need to develop the next generation 5G systems is the
obvious signs of moving towards the Internet of Everything (IoE) and Internet of Things
(IoT). IoE and IoT are networks of physical objects or "things" that integrate electronic
components, software, sensors and connectivity units in order to achieve higher quality
of service by exchanging data with the manufacturer, administrator and / or other
connected devices (Image 1.6). Each object is uniquely identifiable through a built-in
computing system and is capable of operating within the existing web infrastructure.
The IoE allows end users to access any content in any device from anywhere [10].

Image 1.6: An IoE schematic representation, according to Cisco [10]

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 25

1.4.1 5G systems requirements

The expected wireless data traffic explosion, as described earlier, combined with the
transition to an “IοΤ world”, poses a set of requirements, which have to be met by the
next generation broadband networks, in order to satisfy the increasingly emerging
users’ needs. These requirements are mainly identified in the following fields [13], [14],
[15]:

 Capacity and transmission rates enhancement

 Latency reduction

 Energy saving

 High reliability

 Support for various types and large volumes of terminal devices

 New spectrum management approaches

 Ultra-high service availability and reliability

The predicted increase in data traffic by 10.000 times raises the need for developing
systems which will achieve higher transmission rates as well as higher spectral density
levels. The below targets are set for the transmission rate metrics and constitute a
challenge for the fifth generation networks [13], [14]:

 The aggregate data rate, or in other words the total data volume which can be
served by the network (bits/s/area), needs to be increased at least by 1000 times
compared to the fourth generation networks.

 The edge rate, or in other words the worst data rate that a user can reasonably
expect to receive when in range of the network, is demanded to be increased at
least by 100 times compared to the corresponding rate in the fourth generation
networks, ranging from 100 Mbps to 1Gbps. This range depends on various
factors, such as the network load and the cell size. However, in any case, goals are
set for a high rate which will enable every user to at least receive services such as
a high definition live-streaming video.

 As for the peak rate, which is the best-case data rate that a user can hope to
achieve under any conceivable network configuration, it is required to be in range
of tens of Gbps.

At the same time, a plethora of new and impressive applications is expected to be
supported by the next generation networks, including unmanned vehicle control, remote
medical monitoring and virtual reality applications. It can be easily understood that this
applications class is particularly sensitive to delays, even compared to a high definition
live-streaming video application. In order to make it possible to support the
aforementioned applications, the aim is to reduce the roundtrip latency under 1ms and
the jitter under 20μs. Such an aim requires that the control and signaling procedures,
the time scheduling and allocation of resources, the establishment of new connections
and several other functions must take place in the minimum possible time [13], [14].

The issue of energy saving constitutes a major issue of global concern, especially for
the ICT sector. Reducing power consumption and increasing battery life have always
been significant factors for mobile communications, which are becoming increasingly
important as network infrastructure, devices and services are evolving. However, the
expected increase in the transmission speed per connection as well as the exponential
increase in the number of devices and base stations will inevitably lead to an increase

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 26

in energy consumption, which requires the development of technological solutions in
order to maintain consumption at similar levels to those of the previous generation
networks, or even better to achieve a reduction [16].

It is therefore expected that in the next years the energy requirements will skyrocket
consumption numbers, raising the need for special care so that both providers (as the
increase in energy consumption significantly increases the amount of operating costs)
and users can benefit from lengthened battery life. More specifically, for next generation
networks, a 10-year battery life is set as a goal to be achieved, partly through the
development of battery technology, but also through the efficient management of data
traffic and signaling [2], [13].

On the one hand, the growth of network devices per user (one user will own multiple
smartphones, tablets, laptops, etc.) and, on the other hand, the growth of Machine-to-
Machine (M2M) communications and the expected transition to an “IoT world” imply the
need for many different types of devices support and for efficient management of a
large volume of simultaneous connections. As the number of connected devices is
estimated to be billions, perhaps trillions in 2020 [17], network scalability becomes more
and more important. An average macrocell is estimated to support up to 10,000 low
bandwidth devices, alongside any high-end devices of mobile users. Therefore, there is
a need for networks to be flexible in order to serve just as effectively a range of devices,
from very simple ones that send sporadic data (such as sensor devices) , to devices
sending large volumes of data (such as laptops) with a high frequency. Changes in the
control plane and in the management of the network are considered necessary to
support the above.

Finally, next-generation systems need to be cost-effective, in order to benefit both the
provider and the end user. New solutions have to be found in order to achieve reduced
Capital Expenditure (CAPEX) and Operational Expenses (OPEX) and therefore
profitability for the providers as well as a lower average revenue per user (ARPU).

To sum up, as mobile communication networks are expected to become the focus of
human-to-human, human-to-machine and machine-to-machine communication, they
will have to compete with and overcome optical communications networks in terms of
both Quality of Service (QoS), as well as reliability. Therefore, next generation networks
should reach speeds of 10 Gbps and roundtrip delays not exceeding 1ms, while billions
of simultaneous connections with devices of varying capabilities and requirements will
be supported. Therefore, the network should be designed to be flexible, robust, reliable
and energy-efficient [17].

Image 1.7 depicts the use cases and the corresponding challenges which the 5G
systems are expected to deal with.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 27

Image 1.7: 5G systems use cases and the main corresponding challenges [18]

1.5 THE NEW NETWORKING PARADIGM

Summarizing the points mentioned above, the explosion of mobile devices and content,
server virtualization, and advent of cloud services are among the trends driving the
networking industry to re-examine traditional network architectures. Many conventional
networks are hierarchical, built with tiers of Ethernet switches arranged in a tree
structure. This design made sense when client-server computing was dominant, but
such a static architecture cannot deal with the dynamic computing and storage needs of
today's computing environments, such as enterprise data centers, campuses, and
carrier environments [11].

Taking into consideration the points mentioned above, it is evident that there is a need
for a general shift in networking which has already started to take place and is depicted
in Image 1.8.

Image 1.8: The general shift in networking [5]

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 28

Software-defined networking (SDN) is an approach to computer networking meant to
address the above challenges, deriving from the current network infrastructure's stability
and avoiding the need for expensive uplifts or hardware investments [7], [11]. This is
achieved by decoupling the system that makes decisions about where traffic is sent
(known as control plane) from the underlying systems that forward traffic to the selected
destination (known as the data plane). Image 1.9 shows the contrast between
conventional networking and software-defined networking. SDN will be presented in
detail in Chapter 2.

Image 1.9: Conventional networking VS Software-Defined networking [6]

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 29

2. SOFTWARE-DEFINED NETWORKING (SDN)

2.1 DEFINITION(S) OF SDN

Briefly summarizing the key aspects of the current and future networking state as
explained in the previous chapter, the majority of traditional networks are built with
Ethernet switches, which are arranged in a tree structure. This design was adequate in
the time that client-server computing was at the forefront. But currently things have
changed and the concept of virtualization has entered at various layers of the
computing industry, spanning from the application/service layer down to networking and
function virtualization [19]. The 5G mobile communication networks will be expected to
support connections with data rates that are 10 to 100 times higher than current mobile
networks with up to 1000 times more data by volume in any geographical area and up
to 100 times as many connected devices. However, in order to meet the demanding
Key Performance Indicators (KPIs) set for 5G networks, researchers will need to
overcome a number of significant challenges. A significant challenge will be managing
the anticipated exponential growth in multimedia traffic whilst meeting the quality
expectations of end users. In addition to the predicted massive increase in the number
of devices attached to 5G networks, the 5G KPIs expect that Ultra High-Definition
(UHD) video will be supported across a range of applications such as Internet Protocol
Television (IPTV) and Video on Demand services (VoD) with each UHD stream
potentially requiring up to 16 times as much bandwidth as current High-Definition (HD)
streams. According to Cisco’s latest networking forecast, mobile video will account for
about 75% of all mobile data traffic by 2019, representing a 13-fold increase since 2014
[20].

All the above mentioned factors prompt the ICT industry to revise their opinions about
current traditional network architectures. The technology which will serve the emerging
needs is called Software Defined Networking (SDN) [19].

As already mentioned, SDN is a relatively new approach to computer networking
introduced to face the challenges deriving from the complex network protocols and
functions and bloated network equipment. The idea of SDN originated at Stanford
University and then became widely recognized by academia and industry areas [21]
around 2009.

SDN is an emerging networking paradigm that gives hope to change the limitations of
current network infrastructures. First, it breaks the vertical integration by separating the
network’s control logic (the control plane, which used to be tied to a particular
infrastructure element, and thus be vendor and device specific [22]) from the underlying
routers and switches that forward the traffic (the data plane), using an open standard
protocol for the communication between them [23]. Second, with the separation of the
control and data planes, the function of control element no longer executes in the
switches but rather in an external server [24]. The network switches become simple
forwarding devices routing the traffic according to rules set to them by the control plane,
and the control logic is implemented in a logically centralized controller (or network
operating system) with a global view of the entire network as well as of all competing
traffic flows traversing the network [20], thus simplifying policy enforcement and network
(re)configuration and evolution [25]. Having simultaneous access to both views could
provide tremendous potential benefit when managing the transmission of bandwidth-
hungry, delay-intolerant multimedia flows over the 5G network [20]. The migration of
control provides an abstraction of the underlying network for the applications residing
on upper layers, enabling them to treat the network as a logical or virtual entity [21].

SDN’s key attributes include:

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 30

 separation of data and control planes

 a uniform vendor-agnostic interface between control and data planes

 a logically centralized control plane that offers a consistent, system-wide
programming interface to users and operators

 slicing and virtualization of the underlying network [4].

The Open Networking Foundation (ONF) is the group that is most associated with the
development and standardization of SDN. According to the ONF, “Software-Defined
Networking (SDN) is an emerging architecture that is dynamic, manageable, cost-
effective, and adaptable, making it ideal for the high-bandwidth, dynamic nature of
today's applications. This architecture decouples the network control and forwarding
functions enabling the network control to become directly programmable and the
underlying infrastructure to be abstracted for applications and network services. The
OpenFlow™ protocol is a foundational element for building SDN solutions” [26].

The networking industry has on many occasions shifted from the original view of SDN,
by referring to anything that involves software as being SDN. A much less ambiguous
definition of SDN can be given based on four pillars:

 The control and data planes are decoupled. Control functionality is removed from
network devices that will become simple (packet) forwarding elements.

 Forwarding decisions are flow-based, instead of destination-based. A flow is
broadly defined by a set of packet field values acting as a match (filter) criterion and
a set of actions (instructions). In the SDN context, a flow is a sequence of packets
between a source and a destination. All packets of a flow receive identical service
policies at the forwarding devices. The flow abstraction allows unifying the behavior
of different types of network devices, including routers, switches, firewalls, and
middle boxes. Flow programming enables unprecedented flexibility, limited only to
the capabilities of the implemented flow tables.

 Control logic is moved to an external entity, the so-called SDN controller or Network
Operating System (NOS). The NOS is a software platform that runs on commodity
server technology and provides the essential resources and abstractions to
facilitate the programming of forwarding devices based on a logically centralized,
abstract network view. Its purpose is therefore similar to that of a traditional
operating system.

 The network is programmable through software applications running on top of the
NOS that interacts with the underlying data plane devices. This is a fundamental
characteristic of SDN, considered as its main value proposition [6].

2.2 SDN ARCHITECTURE

In implementation, a high-level overview of the SDN architecture is illustrated in Image
2.1, and can be regarded as consisting of three layers: infrastructure layer, control layer
and application layer.

Image 2.1: High-level SDN overview [25]

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 31

Image 2.2 introduces the basic SDN components. The initial view of the three layers
(red text) is translated to data plane, control plane and application plane respectively
(black text) [27].

Image 2.2: Basic SDN components [27]

A simplified view of this architecture is shown in Image 2.3. It is important to emphasize
that a logically centralized programmatic model does not postulate a physically
centralized system. In fact, the need to guarantee adequate levels of performance,
scalability and reliability would preclude such a solution. Instead, production-level SDN
network designs resort to physically distributed control planes [6].

Image 2.3: Simplified view of SDN architecture [6]

The data plane comprises a set of one or more network elements, each of which
contains a set of traffic forwarding or traffic processing resources. Resources are
always abstractions of underlying physical capabilities or entities.

The control plane comprises a set of one or more SDN controllers, each of which has
exclusive control over a set of resources exposed by one or more network elements in
the data plane (its span of control). The minimum functionality of the SDN controller is
to faithfully execute the requests of the applications it supports, while isolating each
application from all others. To perform this function, an SDN controller may
communicate with peer SDN controllers, subordinate SDN controllers, or non-SDN
environments, as necessary. A common but non-essential function of an SDN controller
is to act as the control element in a feedback loop, responding to network events to
recover from failure, re-optimize resource allocations, or otherwise.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 32

The implementation of the SDN control plane can follow a centralized, hierarchical, or
decentralized design. Initial SDN control plane proposals focused on a centralized
solution, where a single control entity has a global view of the network. While this
simplifies the implementation of the control logic, it has scalability limitations as the size
and dynamics of the network increase. To overcome these limitations, several
approaches have been proposed in the literature that fall into two categories,
hierarchical and fully distributed approaches. In hierarchical solutions, distributed
controllers operate on a partitioned network view, while decisions that require network-
wide knowledge are taken by a logically centralized root controller. In distributed
approaches, controllers operate on their local view or they may exchange
synchronization messages to enhance their knowledge. Distributed solutions are more
suitable for supporting adaptive SDN applications [11].

A key issue when designing a distributed SDN control plane is to decide on the number
and placement of control entities. An important parameter to consider while doing so is
the propagation delay between the controllers and the network devices, especially in
the context of large networks. Other objectives that have been considered involve
control path reliability, fault tolerance, and application requirements [11].

The application plane comprises one or more applications, each of which has
exclusive control of a set of resources exposed by one or more SDN controllers. An
application may invoke or collaborate with other applications. An application may act as
an SDN controller in its own right [27].

In an SDN-enabled world, new open interfaces exist between the application plane, the
data plane and the control plane. These are illustrated in Image 2.4.

Image 2.4: Simplified SDN architecture and interfaces [6]

The separation of the control plane and the data plane can be realized by means of a
well-defined programming interface between the switches and the SDN controller [6].
The controller exercises direct control over the state in the data-plane elements via this
well-defined application programming interface (API). The interface that bridges the
data plane and the control plane is called the Southbound-API (SBI). It enables the
externalization of the control plane from the forwarding device to the logically-
centralized network control plane (controller). As a software entity, the controller can be
freely programmed and adapted to the network according to the operator’s
requirements.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 33

While the SBI is an important component of SDN, a significant additional value of SDN
lies within the Northbound-API (NBI) interface between the control plane and the
application plane, i.e. applications running on top of or interacting with the network
itself. This enables applications to be executed on top of the network as well as the
exchange of information about the application and network state. It makes the
controller programmable and responding to changes in the network [28]. SDN
architecture segregates control planes from forwarding devices. The segregated control
planes are combined in design and therefore regarded as a centralized controller which
has a global view of the entire network. Therefore, the controller presents a level of
abstraction of the underlying network. In other words the controller acts as middleware
that provides a higher level of abstraction to network developers [23]. Hence, flexible
reconfiguration of the network becomes possible by the introduction of a centralized
controller [25].

Image 2.5: SDN architecture and its fundamental abstractions [6]

Image 2.5 summarizes thoroughly the SDN architecture and its fundamental
abstractions. Keeping in mind the components described, Image 2.6: SDN architecture
with management function [27] adds the management function, which is often omitted
from simplified SDN representations. Although many traditional management functions
may be bypassed by the direct application-control plane interface (NBI), certain
management functions are still essential. In the data plane, management is at least
required for initially setting up the network elements, assigning the SDN-controlled parts
and configuring their SDN controller. In the control plane, management needs to
configure the policies defining the scope of control given to the SDN application and to
monitor the performance of the system. In the application plane, management typically
configures the contracts and service license agreements (SLAs). In all planes,
management configures the security associations that allow distributed functions to
safely intercommunicate [25].

Each application, SDN controller and network element has a functional interface to a
manager. The minimum functionality of the manager is to allocate resources from a

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 34

resource pool in the lower plane to a particular client entity in the higher plane, and to
establish reachability information that permits the lower and higher plane entities to
mutually communicate. Additional management functionality is not precluded, subject to
the constraint that the application, SDN controller, or network element (NE) have
exclusive control over any given resource [25].

Image 2.6 summarizes the SDN architecture including the management function. It
shows distinct application, controller and data planes, with controller plane interfaces
(CPIs) designated as reference points between the SDN controller and the application
plane (A-CPI) and between the SDN controller and the data plane (D-CPI). The
information exchanged across these interfaces should be modeled as an instance of a
protocol-neutral information model [27].

Image 2.6: SDN architecture with management function [27]

In other words, the infrastructure layer (data plane) comprises network elements, which
expose their capabilities toward the control layer (control plane) via interfaces
southbound from the controller. The SDN applications exist in the application layer
(application plane), and communicate their network requirements toward the control
plane via northbound interfaces (NBIs). In the middle, the SDN controller translates the
applications’ requirements and exerts low-level control over the network elements, while
providing relevant information up to the SDN applications. An SDN controller may
orchestrate competing application demands for limited network resources according to
policies. The concept of a data plane in the context of the SDN architecture includes
traffic forwarding and processing functions. A data plane may include the necessary
minimum subset of control and management functions [27].

In order to sum up the current subchapter, the following list which summarizes the
major SDN architectural components and interfaces is presented. Image 2.7 also
provides an illustrative summary.

 SDN Applications: SDN Applications are programs that explicitly, directly, and
programmatically communicate their network requirements and desired network
behavior to the SDN Controller via a NBI. In addition they may consume an
abstracted view of the network for their internal decision-making purposes. An SDN
Application consists of one SDN Application Logic and one or more NBI Drivers.
SDN Applications may themselves expose another layer of abstracted network
control, thus offering one or more higher-level NBIs through respective NBI agents.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 35

 SDN Controller: The SDN Controller is a logically centralized entity in charge of
translating the requirements from the SDN Application layer down to the SDN
Datapaths and providing the SDN Applications with an abstract view of the network
(which may include statistics and events). An SDN Controller consists of one or
more NBIs, the SDN Control Logic, and the SBI. Its definition as a logically
centralized entity neither prescribes nor precludes implementation details such as
the federation of multiple controllers, the hierarchical connection of controllers,
communication interfaces between controllers, nor virtualization or slicing of
network resources.

 SDN Datapath: The SDN Datapath is a logical network device that exposes
visibility and uncontested control over its advertised forwarding and data
processing capabilities. The logical representation may encompass all or a subset
of the physical substrate resources. An SDN Datapath comprises an SBI agent and
a set of one or more traffic forwarding engines and zero or more traffic processing
functions. These engines and functions may include simple forwarding between the
Datapath's external interfaces or internal traffic processing or termination functions.
One or more SDN Datapaths may be contained in a single (physical) network
element—an integrated physical combination of communications resources,
managed as a unit. An SDN Datapath may also be defined across multiple physical
network elements.

 SDN SBI: The interface defined between an SDN Controller and an SDN Datapath,
which provides at least programmatic control of all forwarding operations,
capabilities advertisement, statistics reporting and event notification. One value of
SDN lies in the expectation that the SBI is implemented in an open, vendor-neutral
and interoperable way.

 SDN NBIs: Interfaces between SDN Applications and SDN Controllers which
typically provide abstract network views and enable direct expression of network
behavior and requirements. This may occur at any level of abstraction (latitude) and
across different sets of functionality (longitude). One value of SDN lies in the
expectation that these interfaces are implemented in an open, vendor-neutral and
interoperable way [11].

Image 2.7: SDN overview [27]

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 36

2.3 OPENFLOW PROTOCOL

SDN is commonly associated with the OpenFlow (OF) protocol since its emergence in
2011, which is the first standardized communication protocol defined between the
control and the forwarding layers of the SDN architecture [11], [29]. Currently OF is the
prominent SDN protocol for the communication between the Layer 2 networking
devices (i.e. switches and routers, both physical and virtual) and the controller of the
network [30] in an open and vendor-agnostic manner [31]. OF enables the network
control plane to define cross-layer forwarding rules, which can be established and
handled by OpenFlow-enabled devices. Based on the SDN architecture, together with
the OF protocol, network devices are transformed to fully programmable forwarding
elements.

In 2008, the OF protocol was proposed and studied in many studies. Aided by ONF’s
promotion, OF has become the standard for realizing the Southbound API. OF switches
report statistics of flows to the controller with help from OF. Therefore, researchers and
developers can easily access the statistics in applications through the Northbound API.
These statistics are invaluable, since they reflect the traffic situation within the network
[25].

OF allows experimenters, researchers, protocol developers and network administrators
to exploit the true capabilities of a network in a quick, easily deployable and flexible
manner. With the centralized network perspective that OF provides through its
controller, an experimenter has an overarching view of the current status in the network.
In addition, they have the ability to introduce, at run-time, new functionality without
having to specifically modify any of the networking devices. Network administrators are
able to make decisions about how data flows should be routed between network
devices and switches along the optimized paths in networks.

OF's recent popularity is in part due to its open and vendor-agnostic nature. It provides
powerful tools and enables the implementation of a diverse range of functionality and
network behavior. With the characteristics of central management and flexibility
property in SDN architecture, OF can help service providers to achieve better QoS
performance by offering traffic differentiation [29], [30].

It is important to note that ONF is also working on open APIs between the SDN control
and applications layers. What these will provide are the means for the applications to
use network services and capabilities as needed, without knowing the network
specifics, such as network topology. Applications on the application layer can thus issue
requests, which are translated by the control layer to device specific configurations [22].

The controller collects information transmitted by the OF switch through the OF protocol
and instructs the OF switch how to forward packets. To work in an OF environment, any
device (i.e. switch/router) that wants to communicate with an SDN Controller must
support the OF protocol [9].

2.3.1 The Flow Table

Each OF switch has its own flow table for administrators to define the paths of the
packets. A flow table consists of flow entries or rules. Each rule contains the following
fields:

 Match fields: Fields to match against OpenFlow packets. These fields consist of
the ingress port and the packet headers and, optionally, some metadata specified
by a previous flow table.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 37

 Priority: Field to match the precedence of the flow entry. Higher values are higher
priorities.

 Counters: Fields which are increased by one when a packet is matched.

 Instructions: Fields for the modification of the action set or pipeline processing.

 Timeouts: The maximum timespan or idle time before a flow is expired by the
switch.

 Cookie: Opaque data value handled and selected by the controller. A cookie may
be used by the controller to filter flow statistics, flow modification and deletion.

The match fields and priority taken together, uniquely identify each flow table entry in a
flow table [32].

In Table 2.1, the match fields are presented. When an OF packet is received by an OF
switch, it is buffered and these fields are matched against the corresponding fields of
the packet. Each flow entry may contain one or more wildcarded fields. In this case, a
wildcarded field matches against all the possible values of that field.

Table 2.1: Match fields of a flow table rule

Ingress
port

MAC
src

MAC
dest

Ether
type

VLAN
id

VLAN
priority

IP
src

IP
dest

IP
proto

IP
ToS
bits

TCP/
UDP
src
port

TCP/
UDP
dst
port

Each OF switch is permitted to contain multiple flow tables. The main purpose is to
allow the administrators to decide whether to compare the packet to another flow table
or to deliver the packet to the controller and let the controller handle it when the packet
cannot be matched to any of the rules in one flow table [24].

Each flow entry contains a set of instructions that are executed when a packet matches
the entry. Such instructions result in an action set, which performs changes to the
incoming packet and/or pipeline processing. It should be noted that a switch must reject
a flow entry, if it is unable to execute the instructions associated with this flow entry.
The most important instruction types are:

 Apply-Actions action(s): This instruction may be used for the modification of the
packet between two tables or for the execution of multiple actions of the same type.
It applies the specific action(s) immediately to the packet, without changing the
Action Set. Such actions are described as an action list.

 Write-Actions action(s): Merges the specified action(s) into the current action set.

 Goto-Table [TABLE_ID]: Indicates the next table in the processing pipeline. The
next table-id must be greater than the current table-id.

The Apply-Actions instruction includes an action list. The actions of an action list are
executed in the order specified by the list and are applied immediately to the packet.
Each action is executed on the packet in sequence and that execution starts with the
first action in the list. Some possible actions are:

 Output: According to this action, a packet is forwarded to a specified OpenFlow
port. OpenFlow switches must support forwarding to physical ports, switch-defined
logical ports and the required reserved ports.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 38

 Set-Queue: It sets the queue id for an incoming packet. When the packet is
forwarded to a port using the output action, the queue id specifies which queue,
attached to this port, is used for scheduling and forwarding the packet. More
specifically, the forwarding behavior is determined by the configuration of the queue
and is used for the basic QoS support.

 Drop: This result can come from empty instruction sets or empty action buckets in
the processing pipeline, or after the execution of a Clear-Actions instruction. In
other words, there is no explicit action to represent drop, but packets whose action
sets have no output actions should be dropped.

 Group: Process the packet through the specified group.

 Push-Tag/Pop-Tag: Switches may support the ability to push and pop tags from
the packet. For instance, the ability to push/pop VLAN tags is suggested to be
supported.

 Set-Field: The Set-Field actions modify the values of respective header fields in the
packet. Such actions are identified by their field type.

 Change-TTL: Such actions result in the modification of the values of the IPv4 TTL,
IPv6 Hop Limit or MPLS TTL in the packet.

The output action in the action set is executed last. An output action is ignored only in
the case that both an output action and a group action are specified in an action set
because the group action takes precedence. The packet is dropped unless an output or
a group action (or both) was specified in an action set [32].

An example flow rule is the following:

where:

 cookie is a unique identifier of the flow

 n_packets (or n_bytes) is the number of packets (or number of bytes) matched by
this flow

 priority shows the order in which the specific flow rule will be examined

 in_port is the match field of the flow. In this case, packets coming from port 3 are
matched

 actions is the field containing the actions that will be performed. In this case, the
packet will be forwarded to output 2.

2.3.2 The lookup process

The counters associated with this particular flow entry must be increased and the
instruction set included in the selected flow entry must be applied. In case of multiple
matching flow entries with the same highest priority, the chosen flow entry is undefined.
This process is illustrated in Figure 2.1:

cookie=0x2b000000000000f6, duration=145.503s, table=0, n_packets=0,
n_bytes=0, priority=2, in_port=3, actions=output:2

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 39

Figure 2.1: The lookup process in OF [32]

The lookup process starts in the first table and ends either with a match in one of the
tables of the pipeline or with a miss (when no rule is found for that packet). A packet
matches a flow table entry if the values in the packet match fields, used for the lookup,
match those specified in the flow entry. Each packet is matched against the table and
only the highest priority entry that matches the packet must be selected. In case of a
successful match, the action(s) specified in the rule are executed. If there is no
matching rule in the flow tables, the packet is either dropped or an OpenFlow message
containing the packet header is sent to the controller for processing. The controller
calculates the action the network element should take with regard to the packet and
communicates it. Furthermore, the controller can specify a flow rule and send it to the
network element(s). This way, all following packets of the flow are treated the same way
by the network, and the controller does not need to be involved any longer. The
controller can also introduce new flow rules or modify existing ones without being
triggered by an incoming packet. For example, the controller may adhere to a pre-
programmed schedule or implement a network policy. This is where the flexibility of
SDN comes into play. Where traditional network devices would have to be reconfigured
by an administrator, SDN enables the automatic and seamless implementation of
changes in the forwarding behavior of the network. These changes can be triggered by
external entities via the northbound API [6], [33].

Moreover, every flow table must support a table-miss flow entry to process table
misses. This flow entry defines how to handle packets that are not matched against
other flow entries in the flow table. As a result, such packets may be sent to the
controller, be dropped or be directed to a subsequent table. If such a table-miss entry
does not exist, by default, packets unmatched by flow entries are discarded [32].

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 40

2.4 OPENDAYLIGHT CONTROLLER

As already mentioned, SDN is an industry movement for building programmable
networks that are flexible and responsive to organizations' and users' needs.
OpenDaylight (ODL) is the largest open source SDN controller which is helping lead
this transition. By uniting the industry around a common SDN platform, the ODL
community is delivering interoperable, programmable networks to service providers,
enterprises, universities and a variety of organizations around the globe [34].

Announced in April 2013 and hosted by the Linux Foundation, ODL is open to anyone,
including end users and customers, and it provides a shared platform for those with
SDN goals to work together to find new solutions. Under the Linux Foundation, ODL
includes support for the OpenFlow protocol, but it is not limited to this and can also
support other open SDN standards. ODL Controller exposes open northbound APIs,
which are used by applications. These applications use the controller to collect
information about the network, run algorithms to conduct analytics, and then use the
ODL Controller to create new rules throughout the network.

The ODL Controller is implemented solely in software, and is kept within its own Java
Virtual Machine (JVM). This means that it can be deployed on hardware and operating
system platforms that support Java [35]. The first code from the ODL project was
released in 2014, including an open controller, a virtual overlay network, protocol
plugins and switch device enhancements [36].

The latest stable version of ODL, released in May 2016, is Boron. This version is the
one chosen to be used in the scope of the current diploma thesis. The Boron Controller,
similarly to the previous releases, consists of three key blocks:

 The controller platform

 Northbound applications and services

 Southbound plugins and protocols

Image 2.8 depicts the overall architecture setup and components of ODL Boron.

Image 2.8: The ODL Boron version architecture [37]

The controller platform is a modular layer and has a northbound and southbound
interface. The northbound interface provides controller services and a set of common

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 41

REST APIs that applications can leverage to manage networking infrastructure
configuration.

The southbound interface implements protocols to manage and control the underlying
networking infrastructure. The southbound level has multiple plugins that either
implement various networking protocols or directly communicate with hardware. OF and
NETCONF are the best known and most widely used configuration and management
protocols.

The controller platform communicates with the underlying network infrastructure using
southbound plugins and provides basic networking services via a set of managers, such
as Topology Manager and Switch Manager. Any custom application can use these
network services.

The Base Network Service Functions are provided by the following platform managers
and components and are the following:

 Topology Manager: Stores and handles information about the managed
networking devices. When the controller starts, the Topology Manager creates the
root node in the topology operational subtree. Then it listens for notifications and
updates this subtree with topology details, including all discovered switches and
their interconnections. Notifications from other components, such as the Switch
Manager or Device Manager, may also provide relevant topology information.

 Statistics Manager: Implements statistics collection, sending statistics requests to
all enabled nodes (managed switches) and storing responses in the statistics
operational subtree. The Statistics Manager also exposes northbound APIs to
return information on the following:

o Node Connectors (switch ports)

o Flows

o Meters

o Tables

o Group statistics

 Switch Manager: Provides network nodes (switches) and node connectors (switch
ports) details. As soon as the controller discovers network components, their
parameters are saved to the Switch Manager data tree. Northbound APIs can be
used to get information on the discovered nodes and port devices.

 Forwarding Rules Manager: Manages basic forwarding rules (such as OpenFlow
rules), resolves their conflicts, and validates them. The Forwarding Rules Manager
communicates with southbound plugins and loads OpenFlow rules into the
managed switches.

 Inventory Manager: Queries and updates information about switches and ports
managed by ODL, guaranteeing that the inventory database is accurate and up-to-
date.

 Host Tracker: Stores information about the end hosts (data layer address, switch
type, port type, network address), and provides APIs that retrieve end node
information. Host Tracker may work in a static or dynamic way. In case of dynamic
operation, the Host Tracker uses the Address Resolution Protocol (ARP) to track
the status of the database. In static mode, the Host Tracker database is populated
manually via northbound APIs.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 42

The central concept of the ODL controller is the Service Abstraction Layer (SAL), which
connects the protocol plugins and Service Network Function Modules. Because the
original API-Driven SAL (AD-SAL) approach proved ineffective, ODL and all dependent
projects are migrating to Model-Driven SAL (MD-SAL). The Model-Driven SAL provides
a common approach to plugin development, enabling unification between both
northbound and southbound APIs and the data structures used in various components
of the controller. In MD-SAL, all status-related data are stored in the form of a document
object model (DOM), known as a data stores.

The following two types of data stores are used in the ODL Controller:

 The operational data store, which controller modules use to store certain
temporary runtime information

 The configuration data store, used to store the current status of the controller. An
application or external end-user can post data, either through MD-SAL transaction
or RESTCONF, to this data store. The individual objects are stored in a parent-child
hierarchy and accessible through YANG instance identifiers. Once an instance
identifier is created, a read or write transaction can be performed to that location in
the data store [38].

MD-SAL uses YANG as the modeling language for describing all network services.
After one defines the necessary YANG models, a compiler outputs appropriate Java
interfaces, and the next step is to implement those auto-generated Java interfaces [37].

MD-SAL currently provides infrastructure services for:

 Data Store

 Remote Procedure Call (RPC) / Service routing

 Notification subscription and publish services [39].

2.5 NETCONF, RESTCONF AND YANG

The model-driven approach is being increasingly used in the networking domain to
describe the functionality of network devices, services, policies and network APIs. The
protocols of choice are Network Configuration Protocol (NETCONF) and
Representational State Transfer Configuration (RESTCONF) Protocol; the modeling
language of choice is Yet Another Next Generation (YANG) Language [39]. All three
are explained below in detail.

Since the beginning of the SDN discussion a few years back, proponents of OF have
been behind the movement to control all devices in the network. This has
unquestionably been the case within the confines of the data center. OF appears to
solve data center issues well, even its earliest versions. However, there are many
cases where, in order to provide an end-to-end Wide-area Network (WAN) service or
provide inter-data center connectivity, the use of OF is up to now insufficient. Even in
SDN, there still is persistent state on network devices and OF doesn't automatically
configure itself.

Extensions contained in newer OF versions address many early limitations, such as
transactional actions and dealing with multiple entities that can monitor and/or control
the same device. In all fairness, OF has made astonishing progress since its inception
in 2009, but the capabilities needed for WAN device configuration and control are
recent additions.

On the other hand, a protocol which has existed for some time is now appearing more
often, especially in discussions pertaining to network automation. The protocol is called

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 43

NETCONF and was established by the Internet Engineering Task Force (IETF) in 2006.
NETCONF was introduced to help automate configuration management and monitoring
for a large population of WAN devices (routers, switches and transport gear). Vendors
such as Cisco, Juniper, Ericsson and others have been early proponents of NETCONF,
thereby establishing momentum for the technology [40].

NETCONF provides the fundamental programming features for comfortable and robust
automation of network services [41]. It defines a simple mechanism through which a
network device can be managed, configuration data information can be retrieved, and
new configuration data can be uploaded and manipulated [42]. It also defines
configuration and operational conceptual data stores and a set of Create, Retrieve,
Update, Delete (CRUD) operations that can be used to access these data stores. It
uses an XML- based data encoding for the configuration and operational data, as well
as for its protocol messages [39].

Mechanisms are provided to install, update, and delete the configuration of network
devices, such as routers, switches, and firewalls [42]. The NETCONF protocol
operations are realized as RPCs [43].

In order to develop applications in the SDN controller, the following are required:

 A Domain-Specific Language (DSL) to describe internal and external system
behavior.

 Modeling tools for the controller aligned with the modeling tools for the devices.

 Code generation from models:

o Enforce standard API contracts

o Generate boilerplate code performing repetitive and error-prone tasks

o Produce functionality equivalent APIs for different language bindings

o Model-to-model adaptations for services and devices

o Consumption of aligned device models

The above requirements are satisfied with YANG [44].

YANG is a data modeling language for the definition of data sent over the NETCONF
protocol. YANG can be used to model both configuration data and state data of network
elements in a tree format, as well as define the format of event notifications emitted by
network elements and allow data modelers to define the signature of remote procedure
calls that can be invoked on network elements via the NETCONF protocol [45]. These
characteristics make it suitable for use as an Interface Description Language (IDL) in a
model-driven system [39]. It is a human readable and easy to learn representation, with
reusable types and groupings and extensibility through augmentation mechanisms. It is
a full, formal contract language with rich syntax and semantics to build applications on
[41]. The language, being protocol independent, can then be converted into any
encoding format, e.g. XML or JSON, that the network configuration protocol supports
[45]. In the SDN controller, YANG is being used as a general purpose modeling
language [46].

Finally, RESTCONF is a Representational State Transfer (REST)-like protocol that
provides a programmatic interface over HTTP for accessing data defined in YANG,
using the data stores defined in NETCONF. Configuration data and state data are
exposed as resources that can be retrieved with a GET request. Data is encoded in
either XML or JSON [39].

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 44

2.6 HISTORY AND STANDARDIZATION OF SDN

Albeit a fairly recent concept, SDN leverages on networking ideas with a longer history.
In particular, it builds on work made on programmable networks, such as active
networks, programmable Asynchronous Transfer Mode (ATM) networks as well as on
proposals for control and data plane separation.

In order to present a historical perspective, Table 2.2 summarizes different instances of
SDN-related work prior to SDN, splitting it into five categories. Along with the categories
defined, the second and third columns of the table mention past initiatives (pre-SDN,
i.e., before the OF-based initiatives that sprung into the SDN concept), and recent
developments that led to the definition of SDN. Data plane programmability has a long
history. Active networks represent one of the early attempts on building new network
architectures based on this concept. The main idea behind active networks is for each
node to have the capability to perform computations on, or modify the content of,
packets. To this end, active networks propose two distinct approaches: programmable
switches and capsules. The former does not imply changes in the existing packet or cell
format. It assumes that switching devices support the downloading of programs with
specific instructions on how to process packets. The second approach, on the other
hand, suggests that packets should be replaced by tiny programs, which are
encapsulated in transmission frames and executed at each node along their path.

Forwarding and Control Element Separation (ForCES) and OF represent recent
approaches for designing and deploying programmable data plane devices. In a
manner different from active networks, these new proposals rely essentially on
modifying forwarding devices to support flow tables, which can be dynamically
configured by remote entities through simple operations such as adding, removing or
updating flow rules, i.e., entries on the flow tables.

The earliest initiatives on separating data and control signaling date back to the
decades of 1980 and 1990. Initiatives such as ForCES and Path Computation Element
(PCE) proposed the separation of the control and data planes for improved
management in Ethernet and Multiprotocol Label Switching (MPLS) networks,
respectively.

More recently, initiatives such as OF and NOX proposed the decoupling of the control
and data planes for Ethernet networks. Interestingly, these recent solutions do not
require significant modifications on the forwarding devices, making them attractive not
only for the networking research community, but even more to the networking industry.

The concept of a network operating system was reborn with the introduction of OF-
based network operating systems, such as NOX, Onix and ONOS. Indeed, network
operating systems have been in existence for decades. One of the most widely known
and deployed is the Cisco IOS, which was originally conceived back in the early years
of the decade of 1990. Despite being more specialized network operating systems,
targeting network devices such as high-performance core routers, these NOSs abstract
the underlying hardware to the network operator, making it easier to control the network
infrastructure as well as simplifying the development and deployment of new protocols
and management applications.

The open signaling movement worked towards separating the control and data
signaling, by proposing open and programmable interfaces. Curiously, a rather similar
movement can be observed with the recent advent of OF and SDN, with the lead of the
ONF. This type of movement is crucial to promote open technologies into the market,
hopefully leading equipment manufacturers to support open standards and thus
fostering interoperability, competition, and innovation [6].

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 45

Table 2.2: Summarized overview of the history of programmable networks [6]

Standardization
Organization Working Group Focus Outcomes

ONF

Architecture &
Framework

SDN architecture, defining
architectural components and

interfaces
SDN Architecture

Northbound
Interfaces

Definition of standard NBIs for
SDN controllers

Testing and
Interoperability

Specification of OpenFlow
conformance test suites

Conformance
tests

Extensibility

Development of extensions to
OpenFlow protocol, producing
specifications of the OpenFlow

switch (OF-WIRE) protocol

OF-WIRE 1.4.0

Configuration &
Management

OAM (operation,
administration, and

management) capabilities
for OF protocol, producing

specifications of the OF
Configuration and

Management (OF-CONFIG)
protocol

OF-CONFIG 1.2,
OpenFlow

Notifications
Framework

Forwarding
Abstractions

Development of hardware
abstractions and simplification

of
behavioral descriptions

mapping

OpenFlow Table
Type Patterns

Optical Transport

Specification of SDN and
control capabilities for optical

trans-
port networks by means of

OpenFlow

Use cases
Requirements

Wireless & Mobile

Specification of SDN and
control capabilities for wireless

and
mobile networks by means of

OpenFlow

Migration

Methods to migrate from
conventional networks to

SDN-based networks based
on OpenFlow

Use cases

Market Education

Dissemination of ONF
initiatives in SDN and

OpenFlow by
releasing White Papers and

Solution Briefs

SDN White
Paper

IETF
Application-Layer

Traffic Optimization
(ALTO)

Provides applications with
network state information

Architectures for
the coexistence

of

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 46

SDN and ALTO

Forwarding and
Control Element

Separation
(ForCES)

Protocol specifications for the
communication between

control
and forwarding elements

Protocol
specification

Interface to the
Routing System

(I2RS)

Real-time or event driven
interaction with the routing

system in an IP routed
network

Architecture

Network
Configuration
(NETCONF)

Protocol specification for
transferring configuration data

to and from a device

NETCONF
protocol

Network
Virtualization

Overlays
(NVO3)

Overlay networks for
supporting multi-tenancy in the

context
of data center communications

(i.e., VM communication)

Control plane
requirements

Path Computation
Element (PCE)

Path computation for traffic
engineering and path selection

based on constrains

ABNO
framework, Cross

stratum path
computation

Source Packet
Routing in Net-

working (SPRING)

Specification of a forwarding
path at the source of traffic

OpenFlow
interworking

SDN controlled
use cases

Abstraction and
Control of Trans-

port Networks
(ACTN) BoF

Facilitate a centralized virtual
network operation

Virtual network
framework

IRTF

Software-Defined
Networking

Research Group
(SDNRG)

Prospection of SDN for the
evolution of Internet

SDN operator
perspective, SDN

Architecture
Service /
Transport
separation

ITU-T

SG 11

Signaling requirements using
SDN technologies in

broadband
access networks

Q. Supplement,
SDN

Q.SBAN

SG 13
Functional requirements and

architecture for SDN and
networks of the future

Recommendation
Y.3300

SG 15

Specification of a transport
network control plane

architecture
to support SDN control of

transport networks

SG 17
Architectural aspects of

security in SDN and security
services

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 47

using SDN

BBF

BBF Service
Innovation and

Market
Requirements

Requirements and impacts of
deploying SDN in broadband

networks
SD – 313

MEF The Third Network
Service orchestration in

network as a Service and NFV
environments

IEEE 802
Applicability of SDN to IEEE

802 infrastructure

OIF Carrier WG Transport SDN networks

Requirements for
SDN enabled

transport
networks

ODCA SDN/Infrastructure
Requirements for SDN in

cloud environments
Usage model

ETSI NFV ISG

Orchestration of network
functions, including the

combined
control of computing, storage

and networking resources

NFV Architecture

ATIS SDN Focus Group
Operational aspects of SDN

and NFV
Operation of

SDN

2.7 USE CASES OF SDN

As already mentioned, SDN has been paid a lot of attention to by researchers and
scientists over the past few years. It proves to be an adaptable, comparatively cost-
efficient and dynamic solution. The sophistication of SDN allows it to cater to the high
bandwidth needs of applications. Although it has been getting a lot of hype, any real
world use cases for it can rarely be figured out, even though there are plenty of them
[47]. SDN theory has dominated conversation in the networking industry, but also SDN
uses cases are beginning to emerge, showing how the technology can result in cost
efficiency and network flexibility in both enterprise and service provider environments
[48]. Below a few selected SDN use cases which depict how and why it can provide
flexibility and deal with some key network problems are presented [47].

 Video and collaboration applications: Video and collaboration applications have
become critical for the success of an organization. Most of these applications
typically are more efficient when they use multicast technology. IP multicast
technology is mature and available, but it is still difficult to deploy and troubleshoot.
It is not as widely deployed as IP unicast technology, and it has forced many
organizations to deploy video applications using other mechanisms based on IP
unicast forwarding. SDN is an ideal solution for these types of applications, as the
SDN controller knows the topology, sources and listeners, and can build an efficient
multicast topology and program the network on an on-demand basis [49].

The use of SDN in video applications allows better control over the network and
gives providers the ability to ensure that the QoS levels are maintained, without
having to expand capacity, since they are able to both provision and de-provision
the network space based solely on need [47], [48].

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 48

 Application Aware Routing: With personal applications such as Facebook and
YouTube competing with corporate applications, networks need to prioritize and
forward the traffic based on an application. SDN can provide a simple and
consistent way of identifying applications, and program the network to prioritize and
forward the traffic appropriately. In fact, any application can communicate with the
SDN controller to provide application specific-needs, and request the SDN
controller to program the flow appropriately [49].

 Data Center Optimization: Using SDN, networks can be optimized in order to
improve application performance by detecting and taking into account affinities and
orchestrating workloads with networking configuration (mice/elephant flows) [50].
SDN allows scaling of bandwidth between servers, without significant hardware
expenses [48].

 Converged storage: Converged storage is an architecture that consists of an
amalgam of computing resources and storage in a single unit. They can be used for
platform development for storage centric, server centric or even hybrid (storage-
server) workloads [47]. SDN can be used with the goal of virtualizing the network
and making it agile enough to keep up server and storage virtualization. Many
famous data services providing companies are beginning to use SDN while
creating programmable fabrics across storage and data center technologies. With
this approach, companies can offer software as a Service and data services [48].

 Routing and Service Convergence: The value of SDN for service providers with
dense and highly distributed networks lies specifically in the ability to provide them
more options on locating resources thereby conferring a competitive advantage
when delivering certain kinds of services. SDN may reduce the policy complexity by
enabling scalability in inter-domain and providing validation for the claims of
seamless evolution [51].

 Cloud-based Networks: The introduction and deployment of cloud-based services
have emerged as an important solution that offers enterprises a cost-effective
business model. However, many network functions have extreme characteristics
and performance requirements, which have created new challenges such as
servers and network virtualization, mobile clouds, and security. These need to be
addressed with intelligent network virtualization, high-speed packet processing, and
load-balancing. SDN can be seen as a new and complementary technology to
virtualization, which is poised to tackle the challenges of network-enabled cloud
and web-scale deployments [51].

 Wireless and Mobility Settings: Software Defined Wireless Networking (SDWN)
is an SDN technology for wireless that provides radio resource and mobility
management, routing, and multi homing. SDWN can provide a programmable
wireless data plane to allow modular and declarative programming interfaces
across the wireless stack. This allows programming the enterprise-specific
requirements (e.g., an airport, a restaurant, public library) in a wireless access point
(WAP) [51].

These were only some of the many possible applications of SDN, which is extended
beyond the aforementioned cases. It’s inevitable that even more will appear once the
technology receives more recognition and public approval [47], [52].

2.8 ADVANTAGES OF SDN

SDN has captured the industry’s attention because it brings significant benefits to the
entire network and cloud ecosystems [4]. It has potential use cases and benefits for

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 49

almost every part of the network in both Layer 2 and Layer 3 segments [53] and offers
considerable technological and financial advantages [7].

Adopting an SDN methodology has a myriad of benefits including flexibility, scalability,
redundancy, and performance. In a traditional network, there might be certain limited
hardware and software pieces. When a network requires additional resources, there will
be considerable cost in buying new hardware and licensing. With SDN, the network is
abstracted onto software, leaving more choice and flexibility in purchasing hardware. In
addition, a growing network can be more easily supported by SDN because a network
administrator or engineer can simply add more virtual switches or routers rather than
purchase costly equipment and licensing. A software-defined network is also portable,
which allows the flexibility in choosing and moving to cloud storage, public or private.
Abstracting the network onto a cloud could present many benefits as well: less
hardware to manage onsite, lower energy bills, and greater uptime [53].

Moreover, SDN benefits the network operators and owners across various domains of
use. For example, the data center operators use SDN for network virtualization to
support multi-tenancy across computing, storage, and networking in a unified way and
to integrate soft-appliances to reduce capital and operational expenses and be more
agile in meeting customer requirements. Service providers use SDN to create highly
cost-efficient wide-area networks with virtualization to interconnect their geographically
distributed data centers for a cloud infrastructure. SDN within and across data centers
enables network virtualization, customization, and optimization for their customers that
hasn’t been possible before. Service providers and their vendors see the benefits of
SDN in traffic engineering, service chaining, and other use cases for simplifying
management and control of the edge and core networks to help reduce operational
expenses and future capital expenses. Cellular operators view SDN as a way to build
CAPEX- and OPEX-efficient backhaul and packet core networks that can be more agile
in supporting mobile services.

SDN also benefits the large group of network equipment and third party vendors. It
allows them to innovate faster by creating software-based solutions to meet their
customers’ requirements in various domains of use. Equipment vendors have an
opportunity to sell a new class of products and solutions and network operators and
owners can grow their infrastructure rapidly and roll out new innovative capabilities and
services, giving vendors more opportunities for revenue growth.

One of SDN’s most important advantages is the potential for automation. By using
programmatic controls to automate functions within a network, SDN can significantly
increase speed and efficiency while reducing the risk of human error. The business can
focus on innovation, rather than operational tasks. Moreover, reducing the time needed
to manage the network and deploy new resources or applications can also greatly
increase an organization's agility and the speed with which new services can be
deployed [7].

To sum up the current chapter, the most important benefits of SDN, as stated by the
ONF, are:

 Direct programmability: The control plane is directly programmable because it is
decoupled from the data plane.

 Agility: Abstracting the control plane from the data plane lets administrators
dynamically adjust traffic flows to meet changing needs.

 Central (logically) management: The SDN controller maintains a global view of the
infrastructure network which appears to applications and policy engines as a single,
logical switch.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 50

 Programmable configuration: SDN lets network managers configure, manage,
secure, and optimize network resources very quickly via dynamic, automated SDN
programs, which they can write themselves, because the programs do not depend
on proprietary software.

 Open standards implementation and vendor neutrality: When implemented through
open standards, SDN simplifies network design and operation because instructions
are provided by SDN controllers instead of multiple, vendor-specific devices and
protocols [26].

2.9 CHALLENGES OF SDN

Although SDN is a favorable solution for IT and cloud providers and enterprises, SDN
faces some challenges which hinder its performance and implementation. The list of
SDN challenges contains scalability, performance, security, interoperability and
reliability issues. Enterprises and networking organizations must overcome several
obstacles to fully realize SDN's benefits [54], [55].

Following are presented some common challenges in software defined networks,
created by the paradigm shift of software-defined services from traditional hardware-
based networking:

 SDN Reliability/Fault Tolerance: In a traditional network when one network or
many network devices fail, network data flow is routed through another or nearby
nodes or devices to continue data flow continuity. Therefore, the existing networks
survive failures or bugs for any of the devices. However in the centralized controller
architecture of SDN, the controller is a single point of control and therefore a single
point of failure, as a single controller is in charge of all the networks. Thus, in case
of a bug or a failure in the central controller, the whole network collapses since
there is no alternate controller.

To address this issue the cloud organization needs to focus on how to efficiently
utilize main controller functions that can increase network reliability. The SDN
controller should have the ability to support multiple-path solutions or fast traffic
rerouting to active links if there is a path/link failure. If the main controller fails, the
newer architectures support an alternate controller which can handle traffic flow
[56].

 Scalability: In SDN, as already mentioned, the data and control planes are
decoupled. The decoupling process has its own drawbacks, such as the fact that
the SDN controller becomes the bottle neck in a situation where the network scales
the number of switches and number of nodes up [54]. In particular, large networks
with volumes of networking requests can overwhelm controllers. As networks grow,
the bottleneck tightens and network performance degrades.

Scalability may be improved with a decentralized control architecture or similar
solution, such as split or fully distributed control planes. But such solutions can
introduce new obstacles such as convergence and countless control instances to
configure and manage [55].

 Performance: The network’s performance is another important area to look into.
Performance is the greatest issue for all networks. Regardless of how robust,
secure, scalable, or interoperable a network is, it's unusable if it lacks performance.

The separate control and data plan architecture can introduce latency into SDN. In
large networks this can build to an unacceptable level of delay, degrading network
performance. Related, controller response time and throughput can contribute to
poor performance, with the combined effect causing scalability issues.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 51

The solution for many performance issues in large and growing networks is to push
more intelligence to the data plane or move to a distributed control plane
architecture of some type. While this can improve SDN performance, it is not very
close to the intent of SDN, as it replicates traditional networks built on fully
distributed intelligent devices. A balance has to be sought where virtualization is
maintained without degrading network performance or introducing potential single
points of failure [54], [55].

 Security: Because the control plane plays such a central function in an SDN
architecture, security strategies must focus on protecting the controller and
authenticating an application's access to the control plane. New services can
introduce security threats as programmers and network administrators may
unwittingly introduce at-risk code and extend the threat network wide through a
centralized or partially distributed controller. Related, SDN's virtual nature can
result in the creation of countless network segments, each with its own risk and
security requirements [55].

Security needs to be everywhere within a software-defined network. SDN security
needs to be built into the architecture, as well as delivered as a service to protect
the availability, integrity, and privacy of all connected resources and information
[57].

 Rapid on-demand growth accommodation: Unlike legacy infrastructure in the
SDN world we can have multiple overlay topologies running on top of the physical
network. Whenever a new service starts, it deploys the necessary virtual
infrastructure, and thus the number of monitored elements can grow rapidly with
increased demand – outstripping traditional capacity management.

The solution is to deploy performance monitoring within both physical and virtual
appliances. When extra performance management capacity is needed, spinning up
additional virtual appliances on demand enables performance monitoring to flex
with the demands of an SDN environment and still provide answers in seconds
[58].

 Interoperability: For new networks, implementing SDN is fairly straightforward - all
network devices are SDN-ready. Transitioning a legacy network to SDN is another
story as the legacy network is likely supporting active business and networking
systems. Enterprises and most networking environments have to transition to SDN,
requiring a period of interoperability with a hybrid legacy-SDN infrastructure. They
need guarantees that services running on existing networks will not be disrupted.

SDN and legacy network nodes can operate together, with help from an
appropriate protocol that supports SDN communications while providing backward
compatibility with existing IP and MPLS control plane technologies - reducing the
cost, risk, and disruption of services while transitioning to SDN [55].

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 52

3. QUALITY OF EXPERIENCE (QoE)

3.1 INTRODUCTION TO QoE

As already explained in Section 1.3, network applications such as online video
streaming have seen a huge growth in popularity during recent years and at the same
time, HD video traffic has already surpassed that of Standard Definition (SD). It is
expected that this trend will continue further in the forthcoming years. Undoubtedly, high
quality video streaming has already become an essential part of many consumers’ lives
and with the introduction of UHD content, providers will continue to push user
expectations in the availability of higher video quality and bitrates. Moreover, the rapid
evolution of mobile networks is driven by the growth of packet data applications such as
mobile video applications and mobile streaming services. Also, heterogeneous network
structures, severe channel impairments, and complex traffic patterns make mobile
scenarios much more unpredictable than their wired counterparts [59], [28], [60].

Therefore, the importance of taking care of user satisfaction with service provisioning
has been realized [60]. One can easily understand that the requirements for today's
network applications are diverse and network and content providers are thus immensely
interested in ensuring a high degree of satisfaction for their end-users. Understanding
and measuring quality of communication services and underlying networks from an
end-user perspective has attracted increased attention over the course of the last
decade [61].

Networks try to support the requirements based on Quality of Service (QoS)
parameters, such as throughput, latency and jitter. However, the performance of a
specific application cannot be determined by simply relying on QoS metrics. A growing
awareness of the scientific community that technology-centric QoS concept is not
powerful enough to cover every relevant performance aspect of a given application or
service has been witnessed [61]. Network level metrics traditionally used by network
administrators are not adequate to indicate how satisfied a user is with his video
streaming experience. In addition, research shows that there is not always a direct or
deterministic correlation of the impact of the network-level metrics to the users’
satisfaction. Thus, the evaluation of network applications should be based on user-
centric metrics that provide a better indication of the satisfaction of the end-users and
define the Quality of Experience (QoE) [59], [28].

The notion of QoE appeared around the beginning of the current century, mainly
promoted by industry [60]. QoE is a measure of the delight or annoyance of a
customer's experience towards a specific service, or in other words determines how
well that network is satisfying the end user's requirements. It results from the fulfillment
of his or her expectations with respect to the utility and / or enjoyment of the application
or service in the light of the user’s personality and current state. It focuses on the entire
service experience; it is a holistic concept with its roots in telecommunications. QoE is
an emerging multidisciplinary field based on social psychology, cognitive science,
economics, and engineering science, focused on understanding overall human quality
requirements. In short, QoE provides an assessment of human expectations, feelings,
perceptions, cognition and satisfaction with respect to a particular product, service or
application [61].

QoE has historically emerged from QoS, which attempts to objectively measure service
parameters. QoS measurement is most of the time not related to a customer, but to the
media or network itself. On the contrary, QoE takes into consideration the end-to-end
connection and applications that are currently running over that network connection and
how multimedia elements are satisfying or meeting the end user's requirements. It is a

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 53

purely subjective measure from the user’s perspective of the overall quality of the
service provided, by capturing people’s aesthetic and hedonic needs. The relationship
between a performance-based QoS parameter has a resulting effect on the end user's
QoE, since a high network performance is required to meet QoE objectives [61], [62].

The QoE of a service is considered as being good if the user is content with the service
as a whole. The degree of the latter is reflected in KPIs, addressing:

 Reliability aspects such as service availability, service accessibility, service access
time, and continuity of service

 Comfort aspects such as session quality, ease of use, and level of support [60].

The IT industry applies the QoE model to businesses and services. QoE aims at taking
into consideration every factor that contributes to a user's perceived quality of a system
or service. This includes system, human and contextual factors. The following so-called
"influence factors" have been identified and classified as described below and are
depicted in Image 3.1:

 Human Influence Factors, such as:

o Low-level processing (visual and auditory acuity, gender, age, mood, etc.)

o Higher-level processing (cognitive processes, socio-cultural and economic
background, expectations, needs and goals, other personality traits, etc.)

 System Influence Factors, which can be:

o Content-related

o Media-related (encoding, resolution, sample rate, etc.)

o Network-related (bandwidth, delay, jitter, etc.)

o Device-related (screen resolution, display size, etc.)

 Context Influence Factors, which can be related to:

o Physical context (location and space)

o Temporal context (time of day, frequency of use, etc.)

o Social context (inter-personal relations during experience)

o Economic context

o Task context (multitasking, interruptions, task type)

o Technical and information context (relationship between systems)

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 54

Image 3.1: QoE influence factors belonging to context, human user and the technical system [61]

Studies in the field of QoE have typically focused on system factors, primarily due to its
origin in the QoS and network engineering domains. Through the use of dedicated test
laboratories, the context is often sought to be kept constant. However, studies
investigating context and human factors have become more popular. Research has
shown that human factors account for observed variations in multimedia quality ratings,
including socio-cultural and economic background as well as user expectations [61].

Key environmental factors impact QoE assessment. These include:

 Hardware, such as wired or cordless devices

 Application criticality, for example, texting versus audio/video

 Working environment, for example, fixed or mobile [63].

Therefore, a major challenge for future networks is to dynamically adapt to QoE
demands of the applications in the network. This is especially true for networks with
limited resources, like today’s access networks [28].

3.2 QoE MANAGEMENT

As an important measure of the end-to-end performance at the service level from the
user's perspective, QoE is an important metric for the design of systems and
engineering processes. So, when designing systems, the expected output, i.e. the
expected QoE, is often taken into account also as a system output metric and
optimization goal [64]. The central question for QoE research and engineering is how to
operationalize the concept in terms of performing reliable, valid, and objective
measurements. This challenge is framed by the overarching question of quantifying and
measuring quality. Since inclusion of the human end-user’s perspective is the defining
aspect of QoE, conducting measurements merely on a technical level (e.g. by just
assessing conventional end-to-end QoS integrity parameters) is not sufficient. In
particular, QoE also accounts for user requirements, expectations and contextual
factors like task and location.

Thus, quality assessment schemes are needed that act as translator between a set of
technical (QoS) and non-technical (subjective and contextual) key influence factors and
user perception, or ultimately, user experience. These can be categorized into
subjective and objective quality assessment methods, depending on whether human
subjects are involved in the assessment process or not.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 55

Subjective Quality Assessment Methods are based on gathering information from
human assessors who are exposed to different test conditions or stimuli during the
process. In general, a panel of assessors is subjected to various quality levels,
something which leads to some form of explicit or implicit response. In most cases,
quantitative methods derived from neighboring disciplines such as psychophysics and
psychometrics are used to obtain information regarding assessors’ judgment in the form
of ratings that describe their perception of the respective quality experienced. In
addition, qualitative methods such as focus groups or interviews are used, particularly
in order to find out which influence factors or features contribute to QoE and how.
Subjective tests are typically conducted in a controlled laboratory setting and require
careful planning in terms of which variables and influence factors need to be controlled,
measured and monitored [61].

The typical result of a subjective test campaign is the individual assessor’s ratings
which are typically aggregated into so-called mean opinion scores (MOS). The MOS
expresses the average quality judgment of a panel given a certain test condition
regarding the overall quality experienced or along a certain quality dimension (e.g.
picture quality). It is typically based on an ordinal five-point scale:

 Bad

 Poor

 Fair

 Good

 Excellent

MOS is a widely used measure for assessing the quality of media signals; it is a limited
form of QoE measurement, relating to a specific media type, in a controlled
environment and without explicitly taking into account user expectations. The MOS as
an indicator of experienced quality has been used for audio and speech
communication, as well as for the assessment of quality of Internet video, television and
other multimedia signals, and web browsing. Due to inherent limitations in measuring
QoE in a single scalar value, the usefulness of the MOS is often debated [64].

Objective Quality Assessment Methods are another approach being investigated
with the purpose to automatically predict QoE at high accuracy on behalf of algorithmic
processing of input parameters.

Objective quality assessment approaches can be categorized on behalf of the following
criteria:

 Targeted service: Service type, e.g. IPTV, Voice-over-IP (VoIP) telephony, video
conferencing, mobile TV, web browsing.

 Model type: Utilization of a reference signal, i.e. Full Reference (FR), Reduced
Reference (RR), No Reference (NR).

 Application: Codec testing, network planning, verification of QoS classes,
monitoring, etc.

 Model input: Parametric description of the processing path (i.e. protocol
information or planning values), additional payload information from bitstream,
reconstructed signal, combinations of parameters and signal, etc.

 Model output: Overall quality or specific quality aspects in terms of MOS or
another index.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 56

 Modeling approach: Psychophysical (i.e. explicit modeling of the human
perceptual system) vs. empirical approaches (based on extracting characteristic
system features by conducting experiments).

However, objective metrics are only useful if their measurements closely correlate with
subjective quality. Therefore, an integral part of the design process is the derivation of
quality models that map quantifiable influence factors to predicted MOS values. To this
end, the data obtained from subjective quality experiments are required to find model
functions that provide an optimum fit with human quality perception [61].

Briefly comparing the two afore mentioned approaches, subjective quality evaluation
requires a lot of human resources, establishing it as a time-consuming process.
Objective evaluation methods, on the other hand, can provide such results faster, but
require large amount of machine resources and sophisticated apparatus configurations.
Despite obvious speed and economy advantages, the caveat with objective metrics is
that they are only an approximation of a limited number of aspects of human quality
perception. Therefore, they can provide inaccurate or inconclusive results, particularly
when applied to new conditions they were not initially trained or designed for. Objective
metrics therefore need to be developed carefully, their application scope needs to be
clearly defined and continuously validated against data from subjective experiments.
For these reasons, much further research is required until QoE can be, if at all,
accurately measured using objective metrics only [61]. Thus, objective evaluation
methods are based and make use of multiple metrics [64].

The QoE monitoring and measurement process encompasses the acquisition of data
related to the network environment and conditions, terminal capabilities, user, context,
and application/service specific information and its quantification. The parameters can
be gathered via probes at different points in the communication system, at different
moments, as well as by various methods. A diversity of QoE monitoring and
measurement points, moments, and methods together with the selection of the key QoE
influence factors (IFs) for a given service additionally increases the complexity of this
process.

In order to be able to manage and optimize QoE, knowledge regarding the root cause
of unsatisfactory QoE levels or QoE degradations is necessary. A layered approach
relates network-level KPIs with user-level application specific Key Quality Indicators
(KQIs), for example, service availability, usability, reliability, etc., which then provide
input for a QoE estimation model. Additional input to a QoE estimation model may then
be provided by user-, context-, and device-related IFs. Knowledge regarding this
mapping between KPIs and KQIs will provide valuable input regarding the analysis of
the root causes of QoE degradation. Hence, monitoring probes inserted at different
points along the service delivery chain to collect data regarding relevant KPIs are
necessary.

While monitoring at the client side provides the best insight into the service quality that
users actually perceive, a challenge lies in providing QoE information feedback to the
network, service/application, content, or cloud provider to adapt, control, and optimize
the QoE. This client side monitoring point poses the issues of users’ privacy, trust, and
integrity, since users may cheat in order to receive better performance. Consequently,
collecting data from within the network without conducting client side monitoring (in an
either objective or subjective manner), and vice versa, will not generally provide
sufficient insight into QoE. Hence, accurate monitoring of QoE needs to employ both
monitoring from within the network and at the client side [65].

The QoE monitoring and measurement process is complex due to the diversity of
factors affecting QoE, data acquisition points, and timings, as well as methods of

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 57

collecting data, and the lack of consensus regarding these issues. The main challenge
in this process is to determine what, where, when and how to collect data.

Firstly, one needs to determine which data to acquire, which is specified by the QoE
metrics selection which depends on the service type and context. The decision
regarding data that should be acquired considering the wide spectrum of QoE IFs is
challenging, but it is the prerequisite for any QoE monitoring and measurement
approach. Secondly, choosing a location where to collect data is another critical issue in
the QoE assessment process, that is, determine the location of monitoring probes. As
previously mentioned, data can be collected within the network, at the client side, or
both (depending also on whether measurements are conducted for QoE modeling
purposes or for QoE control purposes). The QoE monitoring and measurement within
the network may include data collection at different points such as the base stations
within the various access networks, the gateways or routers within the core network, or
the servers in the service/application, content, or cloud domains. Additionally, the
acquired parameters may be derived from application level, network level, or a
combination thereof. Each acquisition location addresses the specific challenges
discussed previously. Furthermore, if performing in-service QoE management (e.g.,
QoE-driven dynamic (re)allocation of network resources), collected data generally
needs to be communicated to an entity performing QoE optimization decisions. Hence,
the passing of data to a control entity needs to be addressed. Thirdly, one should
determine when to collect data (before / after the service is developed of after the
service is delivered). Additionally, how often data should be monitored and measured
needs to be considered. Finally, how to perform the data acquisition is determined by
the where and when clauses. The QoE monitoring process implies computational
operations, hence computational complexity and battery life of mobile devices need to
be considered [65].

It may be concluded that different actors involved in the service provisioning chain will
monitor and measure QoE in different ways, focusing on those parameters over which a
given actor has control (e.g. a network provider will monitor how QoS-related
performance parameters will impact QoE, a device manufacturer will monitor device-
related performance issues, while application developers will be interested in how the
service design or usability will affect QoE).

Having chosen the proper QoE metrics, monitoring and measurements approach, it is
important to provide mechanisms utilizing this information for improving service
performance, network planning, optimization of network resources, specification of
SLAs among operators, and so forth.

Following QoE modeling, monitoring, and measurements, the ultimate goal of QoE
management is to control QoE via QoE optimization and control mechanisms. Such
mechanisms yield optimized service delivery with (potentially) continuous and dynamic
delivery control in order to maximize the end-user’s satisfaction and optimally utilize
limited system resources. From an operator point of view, the goal would be to maintain
satisfied end users (in terms of their achieved QoE) in order to limit customer churn,
while efficiently allocating available wireless network resources. QoE optimization as
such may be considered a very challenging task due to a number of issues
characteristic for converged all-IP wireless environments, including limited bandwidth
and its variability, the growth of mobile data, the heterogeneity of mobile devices and
services, the diversity of usage contexts, and challenging users’ requirements and
expectations, as well as the strive to achieve cost efficiency.

In light of the above, several QoE-centric network management solutions have been
proposed, which aim to improve the QoE delivered to the end-users. In this perspective,

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 58

network resources and multimedia services are managed in order to guarantee specific
QoE levels instead of classical QoS parameters, which are unable to reflect the actual
delivered QoE. A pure QoE-centric management is challenged by the nature of the
Internet itself, as the Internet was not originally designed to support today's complex
and high demanding multimedia services. As an example, network nodes can become
QoE-aware by estimating the status of the multimedia service as perceived by the end-
users. This information can then be used to improve the delivery of the multimedia
service over the network and proactively improve the users' QoE. This gives the service
provider and network operator the capability to minimize the storage and network
resources by allocating only the resources that are sufficient to maintain a specific level
of user satisfaction [64].

3.3 QoE MODELS

As already mentioned, a prerequisite to successful QoE management is QoE modeling,
which aims to model the relationship between different measurable QoE IFs and
quantifiable QoE dimensions (or features) for a given service scenario. Such models
serve the purpose of making QoE estimations, given a set of conditions, corresponding
as closely as possible to the QoE as perceived by end users. Based on a given QoE
model specifying a weighted combination of QoE dimensions and a further mapping to
IFs, a QoE management approach will then aim to specify KQIs and their relation with
measureable parameters, along with quality thresholds, for the purpose of fulfilling a set
optimization goal (e.g., maximizing QoE to maximize profit, maximizing number
of  “satisfied” customers). An important issue to note is that different actors involved in
the service provisioning chain will use a QoE model in different ways, focusing on those
parameters over which a given actor has control (e.g., a network provider will consider
how QoS-related performance parameters will impact QoE, while a content or service
provider will be interested in how the service design or usability will impact QoE) [65]. In
this subsection, some well-known QoE models for voice, video and YouTube are
presented.

3.3.1 Voice

Lately, there has been shown an increasing interest in supporting voice applications
over both the public Internet and private intra-nets, i.e., VoIP. An important aspect of
VoIP is the development of a performance monitoring model to track the quality of the
voice transmission [66]. The QoE model used in the scope of the current diploma thesis
is the International Telecommunications Unit – Telecommunications Standardization
Sector (ITU-T) G.107 model for VoIP (or E-model).

The ITU-T's E-Model is a network planning tool used in the design of hybrid circuit-
switched and packet-switched networks for carrying high quality voice applications. The
tool estimates the relative impairments to voice quality when comparing different
network equipment and network designs. The tool provides the means to estimate the
MOS rating of voice quality over these planned network environments [66].

The G.107 E-model constitutes a formula that can be used for the computation of voice
transmission quality. A basic result of the E-Model is the calculation of the Transmission
Rating factor (R factor), which is a simple measure of voice quality ranging from a best
case of 100 to a worst case of 0. The R-factor is defined in terms of several parameters
associated with a voice channel across a mixed Switched Circuit Network (SCN) and a
Packet Switched Network (PSN). The parameters included in the computation of the R-
factor are fairly extensive covering such factors as echo, background noise, signal loss,
codec impairments, and others [66]. R is given from the following relationship:

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 59

 (I)

where:

 Ro represents the basic signal-to-noise ratio

 Is expresses the signal-to-noise impairments associated with typical SCN paths

 Id represents the impairments caused by the mouth-to-ear delay of the path

 Ie-eff represents equipment impairments caused by the losses within the low bit-rate
gateway codecs

 The Advantage or Expectation Factor A allows for compensation of impairment
factors when the user benefits from other types of access to the user.

An interesting aspect of the E-Model is that these terms, i.e., Is, Id, and Ie-eff are additive
and further, that the delay and packet loss contributions are isolated into Id and Ie-eff,
respectively. This does not imply that delay and packet loss are un- correlated in the
underlying transport media, but only that their contributions to the estimated
impairments are separable.

The Expectation Factor covers those intangible quantities that are difficult (or
impossible) to quantify. This term accounts for lowered customer expectations of
quality because of, e.g., a cell phone user's tendency to tolerate lower quality in
exchange for the convenience afforded by mobility, or in exchange for a lower price.
For the most part it is difficult to estimate the Expectation Factor. For this reason, the
Expectation Factor is dropped from the computation of R.

Also, the signal-to-noise impairment factor Is is a function of several parameters, none
of which are a function of the underlying packet transport. However, the ITU-T Rec.
G.107 recommends a set of default values for these parameters for planning purposes.
Because this is not the focus of our discussion, and is dependent upon the method to
access the VolP network, the default recommendations are used for all but a few
parameters, i.e. all except for the delay and packet loss parameters. For example, it is
sufficient to assume that echo cancellers are present and working properly (no echo)
[66].

Overall, the E-model in its standard format can be used for network planning purposes
only. The extended version may be simplified under specific assumptions to enable its
use for quality monitoring purposes. The most significant assumptions are:

 The codec used is G.729a

 Packet loss is up to 16% and random

 The Advantage factor A is neglected.

Therefore, the R factor is simplified to:

In the case of the baseline scenario where no network or equipment impairments exist,
the R factor is given by:

Id is expressed as:

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 60

where:

and d is the average packet transmission delay. Also, the packet loss rate p relates to
the parameter Ie-eff as follows:

By substituting these values to expression (I) above, a simplified expression for R
occurs:

where delay d is expressed in milliseconds and packet loss p as a decimal number.

Although the R factor can be used as an assessment value, it is recommended that it is
used to derive the corresponding MOS values, which are comparable with results
provided by subjective methods. The R-factor relates to the MOS through the following
expression:

The relationship between the R factor and MOS is graphically presented in Image 3.2
[66].

Image 3.2: Relationship between R factor and MOS [66]

Typically, the values of the R factor are categorized as shown in Table 3.1. Connections
with R factors of less than 60 are expected to provide a poor quality of service to users
[66].

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 61

Table 3.1: R factors, quality ratings and the associated MOS [66]

R Factor Quality of Voice Rating MOS

90 < R < 100 Best 4.34 – 4.5

80 < R < 90 High 4.03 – 4.34

70 < R < 80 Medium 3.60 – 4.03

60 < R < 70 Low 3.10 – 3.60

50 < R < 60 Poor 2.58 – 3.10

3.3.2 Video

The E-model, and specifically version ITU-T G.1070, can also applied to video
applications. This version constitutes a computational model for video-telephony
applications over IP networks, which is useful as a QoE/QoS planning tool for
assessing the combined effects of variations in several video and speech parameters
that affect QoE [67].

Hence, this model is a framework for estimating the QoE of video-telephony
applications in order to will guarantee the end-users’ satisfaction. The model contains
on three basic pillars: the video-alone quality estimation, the speech-alone quality
estimation and the multimedia quality integration, and formulae are provided for each
one of them. The video quality estimation function, ranging from 5 (best) to 1 (worst),
is the following:

where:

 Icoding represents the video quality affected by the coding distortion and is described
by the formula:

 Itransmission represents the video quality affected by the transmission process and is
described by the formula:

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 62

and:

 Frv is the video frame rate (frames/sec). It can be extracted from the video
specifications

 Brv is the video bit rate (bits/sec). It can be computed using the formula:

 where N is a frame sliding window, so that each output value depends on the N
 preceding frames.

 Pplv is the video packet loss rate. It can be computed using the formula:

These three parameters are necessary to be known, and all the rest can be estimated
as in relation to them as follows:

The coefficients v1 – v12 can be derived using a standard methodology provided in [67],
as long as codec type, video format, key frame interval and video display size are
known. Their default values for specific sets of configurations (shown in Table 3.2) may
be found in Table 3.3 [67]. The required configurations include:

 The codec type, which is the way that a video was encoded.

 The video format, which is the video resolution or the number of distinct pixels in
each dimension that can be displayed.

 The key frame interval, which is one of the frames in a video that provide the best
summary of the video content and can be thought of as a reference point of the
video.

 The video display size, which is an assumption regarding the size of the screen
where the video is being watched.

The current thesis implementation covers these five default cases.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 63

Table 3.2: Conditions for deriving coefficient tables [67]

Factors #1 #2 #3 #4 #5

Codec type MPEG-4 MPEG-4 MPEG-2 MPEG-4 ITU-T H.264

Video format QVGA QQVGA VGA VGA VGA

Key frame
interval (s)

1 1 1 1 1

Video display
size (inch)

4.2 2.1 9.2 9.2 9.2

Table 3.3: Provisional coefficient table for the video quality estimation function [67]

Coefficients #1 #2 #3 #4 #5

v1 1.431 7.160 4.78 1.182 5.517

v2 0.02228 0.02215 0.0122 0.0111 0.0129

v3 3.759 3.461 2.614 4.286 3.459

v4 184.1 111.9 51.68 607.86 178.53

v5 1.161 2.091 1.063 1.184 1.02

v6 1.446 1.382 0.898 2.738 1.15

v7 0.0003881 0.0005881 0.0006923 –0.000998 0.000355

v8 2.116 0.8401 0.7846 0.896 0.114

v9 467.4 113.9 85.15 187.24 513.77

v10 2.736 6.047 1.32 5.212 0.736

v11 15.28 46.87 539.48 254.11 –6.451

v12 4.170 10.87 356.6 268.24 13.684

3.3.3 YouTube

The E-model described in Section 3.3.2 handles real-time, hence lossy, video delivery.
A different type of video content delivery that of streaming pre-encoded video, such as
YouTube. The difference lies in the fact that YouTube uses Transmission Control
Protocol (TCP)-based connections, and therefore does not suffer from packet losses.
The key factors that affect the YouTube video delivery quality are:

 Number of stalling events, N

 Duration of stalling events, L

 Total video duration, T (so that it is compared to the total stalling events duration)

 Initial delay (video start-up delay)

The QoE model for YouTube follows the so-called IQX hypothesis, which describes a
QoS-to-QoE mapping. The use of such a QoE-QoS relationship is straightforward; by
inserting measured QoS values into the corresponding exponential formula, their impact
on QoE can be assessed immediately. Typically, the QoE parameter and user

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 64

perception decrease when the QoS parameter increases [67]. The IQX hypothesis
curve between the QoE and the QoS disturbance consists of three clearly
distinguishable regions, as shown in Image 3.3.

Image 3.3: The IQX hypothesis [68]

 Area 1: constant optimal QoE. For a vanishing QoS disturbance (i.e., in case of a
transparent network), the user considers the QoE equivalent to that of the
reference. A slight growth of the QoS disturbance may not affect the QoE at all. For
instance, small delays and delay variations may be eliminated by a jitter buffer,
without the user noticing the additional delay.

 Area 2: sinking QoE. When the QoS disturbance exceeds a certain threshold, the
former quasi-optimal QoE level cannot be maintained anymore. As the QoS
disturbance grows, the QoE and thus the user satisfaction sinks. In case of a high
QoE, a certain additional QoS disturbance might have a considerable impact on the
QoE, while for low QoE, the particular additional QoS disturbance might not be that
critical anymore.

 Area 3: unacceptable QoE. As soon as the QoS disturbance reaches another
threshold, the outcome of the transmission might become unacceptably bad in
quality, or the service might stop working because of technical constraints such as
timeouts. A user might give up using the service at that point; this is illustrated by
the dashed line.

The mapping function for YouTube QoE has the following form [68]:

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 65

4. STATE OF THE ART IN QoE FOR SOFTWARE - DEFINED
NETWORKS

As already explained, the SDN paradigm is an emerging and very promising
architecture, considered to be suitable for the high-bandwitdh, dynamic nature of
today's applications [1]. Therefore, many industrial and academic parties have focused
their research activities on the concept of SDN. In particular, the QoE aspect of SDN
has gained more and more attention over the past few years. This has resulted in the
publication of several research papers, studies and solution proposals trying to provide
approaches for user QoE enhancement aided by SDN, the most important of which are
presented below [31]. Next follows a table summarizing the contributions of each
research work and comparing the approaches against several parameters.

4.1 RESEARCH WORKS ON QoE FOR SDN

A very innovative paper which comes up with a solution proposal for VoD efficient
distribution is [31]. The paper is motivated by the fact that the users' requests for video
content are currently handled individually and each request is served by an
independent unicast flow, which leads to multiple duplicate flows transferring the same
video content and thus increasing the overhead for the network. The solution introduced
is OpenCache, which is an in-network caching service whose architecture follows the
principles of SDN and is shown in Image 4.1. The OpenCache Controller is the main
entity of this architecture, as it orchestrates the content caching and distribution
functionalities. The network also contains OF switches, which are connected to the
users in order to transfer the requested content to them, as well as to OpenCache
nodes, where the content is stored. The OF controller is dynamically instructed to set
the necessary flows in the switches, the key-value store holds the requests for content
to be cached and finally the VoD server is the primary source for the video assets. The
proposed solution has been deployed in the GOFF European testbed and the results
were extracted using the Scootplayer evaluation tool, showing that OpenCache
improves network utilization, reduces the distribution load in the network and minimizes
the distance between the VoD server and the users, thus leading to enhancements in
the QoE in terms of throughput, bit rate, as well as start-up and buffering times.

Image 4.1: The OpenCache architecture [31]

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 66

The authors of [24] also focus their attention on QoE and implement a QoS/QoE
mapping and adjusting application, which can be used by an ISP to monitor users' QoE
after having watched some video content and adjusting it, if necessary. The system's
general overview is shown in Image 4.2. A Network Architecture Application (NAApp) is
designed in order to obtain information from the OpenFlow switches (e.g. network
architecture, QoE threshold etc.) and store it to a database as well as monitoring the
switches topology, in case a change happens. Subsequently a QoE Measure Interface
(QoEMI) collects users’ parameters generated during the video watching process as
well as the score given by users after having watched the video, and delivers them to a
QoE Application (QoEApp). The QoEApp is the application's core component, as it is
responsible for performing the algorithm which will show if an adjustment is needed,
and also for applying it, in such case. The adjustments are performed by calculating all
possible paths to the users and transmitting the traffic via multiple paths. The
application was implemented using OpenvSwitch and RYU controller and the results
showed that when used by the ISP in a given case of multiple users simultaneously
watching the same video, it improved the QoE of those users who were receiving a low
score.

Image 4.2: The QoS/QoE Mapping and Adjusting application overview [24]

Subsequently, [69] examines the benefits that SDN and Network Functions
Virtualization (NFV) can bring both to network operators and to users, studying a use
case of a video application request from a user and its provision to his home network. It
is explained that for each application there exists a service chain, which is a number of
services necessary for its operation in compliance with the user's request. For instance,
in the case of home networks, the service chain contains cache storage, bandwidth
optimizer, type of service and traffic prioritizer, which need to be supported. The use
case of the video application is divided into three sub use cases, and more specifically
into video streaming request, HD video request and video conference. For the first sub
case some packet losses can be accepted and the video is thus offered with best effort

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 67

quality. The second case requires high QoS and bandwidth, therefore some more
network functions, such as cache storage and bandwidth accelerator, need to be
implemented. In the sub case of video conference, priority must be given to voice in
comparison to video and congestion problems when several attendees are participating
should be overcome. As a result, this case also requires some additional network
functions, such as traffic prioritizer and load balancer. In all cases, many network
function elements can be virtualized, becoming Virtual Network Functions (VNFs), and
be placed centrally instead of each individual user terminal, something which can lead
to reduced OPEX for the operators as well as reduced cost for the end users, as the
authors conclude.

Another very interesting proposal of a bandwidth management solution aiming to
optimize the QoE of multiple video streaming sessions is presented in [70]. The
motivation for this paper is the rapid increase of video traffic over the past year which
consequently introduces an increased need for bandwidth on the existing network
infrastructures. The authors focus on jointly optimizing bandwidth allocation and video
rate selection and to this end they propose an SDN-based architecture shown in Image
4.3. The architecture contains a Video QoE Optimization Application (VOQA), which
obtains information through interacting with the SDN Controller, and subsequently
extracts and publishes statistics useful for the network operators. It also has the ability
to adjust the network bandwidth allocation and coordinate the video rate selections
among the different HyperText Transfer Protocol (HTTP) Adaptive Streaming (HAS)
streams. The multi-client bandwidth allocation problem and its restrictions are modeled
mathematically and offer flexibility in supporting variations of quality-based bandwidth
allocation. The system's evaluation using Cisco routers showed that the proposed
solution can provide same levels of QoE to 75% more users compared to the
conventional bandwidth allocation and video rate selection.

Image 4.3: SDN-Based architecture for QoE optimization in HTTP-based video streaming [70]

Next presented is paper [71], focusing on the very interesting case of vehicular
networks, motivated by the fact that the high mobility and the limited transmission range
of Road-Side Units (RSUs) lead to interference due to dynamic topological changes. It
is necessary to divide the network resources fairly among the vehicles in the network, in
order to minimize interference and satisfy as many as possible vehicles' requirements in
QoE. In this direction the authors propose a software-defined flow and power
management model to be implemented in the controller. The RSUs are modeled using
a queuing theoretical approach and an SDN- and IEEE 802.11p-based architecture for

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 68

vehicular networks is introduced (Image 4.4), where the data plane contains the RSUs
and the vehicles connected to them and the control plane manages the topology and
consists of the Flow Management and the Power Management components. The Flow
Management model classifies the vehicles to satisfied and unsatisfied, depending on
whether each vehicle's QoE is kept above a threshold or QoE degradations are caused
by new coming vehicles. Once the unsatisfied vehicles have been detected, the Power
Management model adjusts their transmission power so that they connect to a new
RSU with optimal signal level. The coordination of the vehicles' signal levels is
performed by the controller through a reorganization of the OF flow tables so that the
match fields contain a redefined version of Flow Label. The proposed model and
architecture are evaluated in MATLAB environment using Exponential, Gaussian and
Linear model for the estimation of unsatisfied vehicles' optimal signal levels by the
controller. The evaluation shows that the Exponential model is the most suitable option,
serving an average of 8% more unsatisfied vehicles.

Image 4.4: The SDN-based vehicular network architecture [71]

Research work [72] constitutes an effort towards the direction of HTTP adaptive video
streaming. In particular the authors introduce a dynamic SDN-based traffic shaping
technique, namely DASH-SDN, which utilizes the long idle periods of an HTTP video
player in order to temporarily allocate the unused bandwidth to other active players, and
therefore increase the throughput and enhance the video service and the QoE. The
SDN-based DASH-SDN architecture proposed is shown in Image 4.5 and is divided into
two parts, the wireless infrastructure and the mobile devices.

 The first part is responsible for several key functions, such as network monitoring,
flow inspection and bandwidth management.

 The second part consists of the flow manager, which handles the measurements
about each received chunk and actually implements the traffic shaping, as well as
of the mobile controller, which communicates with the SDN controller and controls
the flow manager.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 69

 The SDN controller is responsible for computing fair shaping rates and sending
them to the mobile controllers, which in turn impose these limits through the TCP
flow control. In other words, the actual traffic shaping is implemented on the mobile
devices through TCP flow control, and more specifically through the modification of
two fields in the TCP ACK packet according to the value received by the mobile
controller.

The authors conducted relative experiments using android devices and considering
different scenarios, and the results extracted showed for all cases that the proposed
technique achieved up to 40% reduction in the quality fluctuation, up to 13% increase in
the bandwidth utilization and up to 15% decrease in the Wi-Fi power consumption,
compared to the static technique.

Image 4.5: The DASH-SDN architecture [72]

Due to the several defects such as scalability, intelligence and underlying abstract
problems that current Content Delivery Network (CDN) architectures face with large-
scale video services, the authors of [21] propose an HTTP video content delivery
scheme deployed on an SDN network for improving the quality of HTTP video and the
user QoE. The scheme's architecture (Image 4.6) consists of a number of user
terminals, which can connect to the Internet through programmable storage routers,
which are routers with storage capabilities, controlled by an SDN controller. The role of
the programmable storage routers is to periodically request and receive video content
from the video source server and forward users' requests to the SDN controller. The
controller in turn specifies the closest programmable storage router to the user and
instructs it to detect whether the requested content exists in its storage. If it does, it is
directed to the user, otherwise the user request will be forwarded to a nearby
programmable storage router. This approach appears to be advantageous over
requesting content from the video source server or a CDN edge server, as the distance
and process of video transmission are significantly shortened. In order to prove their
claims, the authors conducted five sets of experiments for HTTP video service
simulation in both SDN environment and current network environment, including CDN.
The results show that the round-trip delay is significantly reduced with the proposed
SDN scheme and the video quality and user QoE are improved, even in poor network
conditions.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 70

Image 4.6: The SDN-based scheme for HTTP video quality optimization [21]

Work [19] focuses its attention on the two complementary technologies SDN and NFV,
which it explains very thoroughly in the introductory sections. The network functions
which are virtualized using NFV are called VNFs. The authors use these two
technologies to introduce a proof-of-concept SDN/NFV-enabled experimental network
domain implementation in order to provide an agile video transcoding process for
maintaining the QoE level of a media service. The experimental topology is depicted in
Image 4.7 and contains two OpenFlow switches, an OpenDaylight Controller and an
Openstack cloud platform to support a NFV Installation Point of Presence (NFVI-PoP),
which is able to instantiate VNFs. The video service steering is performed through the
following procedure: When an end user requests a unicast media service whose traffic
exceeds the available bandwidth, the controller instantiates at the NFVI-PoP a VNF-
based transcoder, which is implemented based on FFMPEG, and defines the
appropriate SDN rules for the traffic steering. As a next step, the delivered media
stream is transcoded in real time at a lower rate, so as to fit in the available bandwidth,
and is subsequently transmitted, causing the reinstatement of the QoE level which had
faced degradation.

Image 4.7: Topology of the experimental testbed of [19]

The authors of [73] examine the tradeoff between user experience and resources cost
and make an introduction of an SDN-enabled cloud video distribution architecture
(Image 4.8) aiming at enhancing user QoE and diminishing the operators' cost. To this
direction, they also propose a joint resource allocation and traffic management
mechanism for Video Service Providers (VSPs) which provides a solution to determine

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 71

the optimal resource (i.e. bandwidth) allocation combined with the optimal strategy for
request dispatching and response routing.

The proposed architecture contains multiple geographically distributed cloud
datacenters being connected with each other over an SDN-enabled network through
OF switches. Each datacenter is used to serve a number of users, also spread over
multiple regions. The network's centralized control logic is gathered in a control center,
consisting of an SDN controller and a cloud management server.

The whole system is mathematically modeled using graph theory and the joint
optimization problem is formulated as maximizing the total utility of serving all the
requests minus the bandwidth cost, introducing a number of constraints. The system's
advantage is that unlike the conventional cloud distribution systems, it does not solely
dispatch a user's request to the closest datacenter, but also takes into account the
underlying network conditions instead.

The proposed model's evaluation was conducted through an experiment with 10 SDN
router nodes, 10 geographical regions, 4 datacenters, up to 3-hop path selection
between datacenters and user regions (i.e. 42 paths) and 500 video contents. It is
proved that compared to the shortest path strategy, all the users' requests were
satisfied and that lower link congestion, higher end-to-end capacity, higher traffic
support and lower total cost are achieved by using multiple network paths.

Image 4.8: SDN-enabled cloud video distribution system [73]

A very well-presented and documented work is [29], which proposes an adaptive
routing approach for video streaming with QoS support using SDN networks, called
ARVS. The authors study the case of high-quality videos being encoded with Scalable
Video Coding (SVC), containing one or more subset bit streams such as MPEG4 SVC,
which encodes a video into a base layer and one or more enhancement layers. The
base layer packets are considered as level-1 QoS flows and should be transmitted
without any packet loss or minimized delay variation, whereas the enhancement layer
packets are regarded as level-2 QoS flows or best-effort flows and are more tolerant to
packet loss. The authors employ SDN technology with the OF protocol to the end of
achieving better QoS performance by offering traffic differentiation. Specifically, based

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 72

on these two layer types and their needs, they propose the transfer of either the base
layer packets or the enhancement layer packets to other paths, when necessary, in
order to improve the user QoS in video streaming applications.

The problem is modeled using graph theory and the goal is to minimize the path cost of
a routing path subject to a given constraint (i.e. maximum delay variation). For the
problem's solution computation, the Lagrange Relaxation based Aggregated Cost
(LARAC) algorithm is employed and an adaptive routing approach is introduced. In
SDN networks, the controller calculates the shortest path between two nodes based on
path cost and both the level-1 and the level-2 video's QoS flows are streamed through
this path. However, according to this proposal, if the shortest path does not satisfy the
given constraint, a level-1 or a level-2 QoS flow will be rerouted on the second path (i.e.
the feasible path) specified by LARAC after its condition is examined. In particular, if
there is not enough available bandwidth for the level-1 QoS flow in the feasible path, a
level-2 QoS flow will be rerouted to the feasible path (Image 4.9), otherwise a level-1
QoS flow will be rerouted (Image 4.10), leading to guaranteed level-1 QoS performance
and congestion mitigation.

The proposed approach is simulated in Mininet, using 30 nodes connected to a remote
Floodlight SDN controller, and proves that it achieves up to 77.3% improvement of base
layer packets loss rate when the load level of the shortest path is raised to 0.7, as well
as it increases the coverage at least 51.4% under various network loads both for the
shortest and for the feasible paths.

Image 4.9: Level-2 QoS flows rerouting in ARVS [29]

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 73

Image 4.10: Level-1 QoS flows rerouting in ARVS [29]

Paper [25] presents a complete and very interesting approach which takes into account
the network traffic and uses SDN techniques in order to promptly and correctly identify
video streaming flows without inspecting the packets. Existing filtering techniques have
several drawbacks, as Stateful Packet Inspection (SPI) only examines the packet's
header and therefore is not in a position to detect packets which do not include their
type in their header (e.g. some HTTP traffic sent from the server), and Deep Packet
Inspection (DPI) leads to long inspection delay, high energy consumption and
significant processor overhead, while at the same time being complex and thus hard to
manage and maintain.

The authors propose an inspection-free, traffic-aware, SDN-based approach which
identifies video streaming flows by analyzing the statistics of flows in SDN and
benefiting from the fixed duration ON-OFF cycles that video data generate. Specifically,
SDN statistics are requested in every statistics retrieval time (SRT) and the amount of
data transmitted within SRT ratio (Rdt) is computed for each flow, analyzed
subsequently for video streaming pattern exhibition. This is achieved by utilizing
confidence level (CL), threshold for CL (THcl) and decay rate (DR) as follows: If Rdt
shows a pulse, the flow is considered to exhibit video streaming pattern and CL is
increased, otherwise it is decreased, and the flow is flagged as video streaming flow
only if eventually CL is larger than its threshold THcl, whereas in different case it is
flagged as non-video streaming flow.

The proposed technique was implemented in an experimental scenario (Image 4.11)
where a user has access to the Internet by a TP-Link WR1043ND SDN switch which is
running OF 1.3 and is connected to Floodlight SDN Controller, according to which it
handles the traffic flows. The user is watching a randomly selected video on YouTube,
downloading a large file which exceeds 100MB and browsing Facebook simultaneously,
using Safari 8.0 browser and HTML5 for video playback. The implementation results,
which are affected both from SRT and DR, show that the proposed approach achieves
75% lower latency or 138% higher success rate compared to DPI and the large file is
100% flagged as non-video streaming flow.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 74

Image 4.11: Traffic-aware SDN-based topology for video streaming flows identification [25]

The in-network bit rate adaption infeasibility problem for video transmission in traditional
TCP/IP networks is addressed by [74], which proposes a joint algorithm to decide the
number of video layers to be transmitted as well as determine each layer's transmission
path at the same time in order to enhance the video quality each user receives, and
thus the user QoE. The traffic in each link is divided into SVC traffic, which consists of
all scalable-video traffics and is transmitted as QoS traffic with no packet loss, and non-
SVC traffic, which contains the rest of the traffic and is transmitted as best-effort traffic.
The joint decision problem is formulated as Markov Decision Process (MDP), taking into
consideration the non-SVC traffic as well, and solved with the employment of Q-
Learning algorithm.

The system's architecture is shown in Image 4.12. There have been designed five
modules in the controller: the N-Shortest Paths Calculation Module, which calculates
the N shortest paths between a source and a destination node, the Network State
Observation Module, which observes the network's state, the Decision Module, which
jointly determines the optimal number of video layers to be transmitted as well as their
routing paths, the Flow Table Module, which establishes flow tables for switches and
the Layers Information Module, which establishes a communication between the SVC
Content Server and the SDN controller. The system's goal is to achieve a good tradeoff
between the visual quality of the transmitted SVC video and the packet loss of non-SDN
traffic, and thus improve the user QoE.

The proposed system is implemented in Mininet using Open vSwitches and POX
controller. The results are compared to other benchmark approaches and it is shown
that the approach achieves lower loss rate of non-SVC flows caused by SVC flows
(2.442% opposed to 2.941% and 4.069% of the benchmark approaches), higher reward
value (0.74164 opposed to 0.70589 and 0.59308) and lower Peak Signal-to-Noise Ratio
(PSNR) than one of the benchmark approaches (39.939dB opposed to 40.511 dB - the

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 75

other approach achieves lower PSNR 39.550 dB), achieving an enhancement for the
user QoE.

Image 4.12: The architecture of joint routing and layer selecting system [74]

Another paper which examines multimedia transmission, such as UHD video, especially
focusing its attention on the next generation 5G networks is [20]. A holistic QoE- and
context-aware SDN control plane approach is proposed, employing the H.265 video
standard for scalable video encoding and taking into consideration not solely QoS
metrics and contextual information extracted from multimedia flows, but also important
QoE metrics such as content type. The authors focus on low-latency multimedia traffic,
such as real-time video delivery, video surveillance and teleconferencing, and adopt
version 2 of H.265 standard which makes a layered video solution feasible. The
proposed system's architecture is depicted as a block diagram in Image 4.13 and
contains two new network entities, the Video Quality Assurance Manager (VQAM) and
the SDN Video Quality Orchestration (SDN-VQO).

The VQAM collects flow and network paths statistics and topology discover data, and
also derives the video content type from the compressed H.256 stream and combines it
with QoS metrics such as bandwidth, delay and packet loss, which all aid in estimating
the QoE utility of each path. After the QoE utility estimation, the VQAM selects the two
best paths between source and destination and chooses the best path as the primary
and the second as the fallback path. In case congestion is detected, the VQAM re-
estimates the two paths' utilities and either performs an action in order to ensure that
the congestion is alleviated (e.g. makes the secondary path primary, switches
enhancement layers to secondary path etc.) or reports the issue to the SDN-VQO if it is
unable to solve it.

The SDN-VQO, which is collocated with the VQAM, has a global view of the entire SDN
domain and monitors the QoE utility levels across all multimedia streams in the

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 76

network, being thus able to construct a global QoE utility map. Its role is to intervene in
congestion situations in order to alleviate them and ensure that the QoE utility is fairly
distributed across the network.

Image 4.13: The block diagram for the system proposed in [20]

The emerging field of big data is also involved and combined with the SDN field, and
[75] examines this case with regard to QoS provisioning. This paper applies big data
technologies to SDN and its purpose is to extend tensor, a mathematic model (type of
high-dimension matrix) with wide use in big data applications, in order to introduce a
new tensor-based SDN (TSDN) model for efficient QoS provisioning in SDN networks.
The proposed TSDN model is depicted in Image 4.14 and consists of the data plane,
the control plane and the application plane, as SDN architecture suggests.

A forwarding tensor model is introduced in the data plane to formalize the packet
routing function of the network and to aid in constructing a global controlling tensor
model. This is achieved through the combination of all the valuable core forwarding
information and the employment of the incremental tensor decomposition approach to
generate the core tensor. By using this method, the network devices can update the
core forwarding tensor and submit the updates to the control plane for combination. The
forwarding functions of the network devices are formalized as forwarding tensor
models.

A controlling tensor model is also proposed in the control plane in order to globally
compute routing paths and recommend the optimal routing paths for data scheduling in
SDN. Finally, a transition tensor model is introduced and located in the application layer
in order to predict network traffic and group the traffic flows according to QoS
requirements of high-level applications.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 77

Image 4.14: An overview of the TSDN model proposed in [75]

[30] is another research work that concentrates on QoE optimization in adaptive video
streaming cases and further pays great attention to ensuring QoE fairness. Therefore, it
proposes an OpenFlow-assisted QoE Fairness Framework (QFF) which employs
MPEG-DASH standard and aims to fairly maximize the QoE for all video streaming
devices in a multimedia network, taking into account the various device and network
requirements, as well as two algorithms (namely, Promote and Boost) for enforcing
different optimization policies. QFF allocates network resources dynamically to each
device by monitoring each DASH video application's status. An overview of QFF is
presented in Image 4.15, from where it occurs that the main entity in its core is an
OpenFlow Module (OM) which runs on the OpenFlow controller and consists of three
parts:

 Input, which is the network and clients' status, provided to OM by the Network
Inspector and the Media Presentation Description (MPD) Parser,

 Intelligence, incarnated by the Utility Functions and the Optimization Function
which interact dynamically with the OM to ensure QoE fairness optimization,

 Output, constituted by the Flow Tables Manager and the DASH Plugin which
ensure that the OM's decisions are appropriately propagated to the network.

The proposed framework was evaluated in a home networking scenario simulation,
where users are connected to a home gateway and access video content on the
Internet through an OpenFlow switch, using three different DASH-enabled devices (i.e.
an HD TV, a tablet and a smartphone). The results comparing Promote with DASH-JS
(unmodified DASH client) and EqualBW (equal allocation of available bandwidth among
active users) showed that the proposed approach achieves user QoE fairness and
improved network stability.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 78

Image 4.15: OpenFlow-assisted QoE Fairness Framework [30]

One can read in [22] that an SDN-based architecture is proposed that can be used to
jointly optimize the multimedia flows’ path assignment and the service utility measured
as QoE, exploiting a global network view. This is achieved with the help of two entities:
the QoS Matching and Optimization Function (QMOF), which resides in the SDN
application layer, and the Path Assignment Function (PAF), which is located at the SDN
control layer. QMOF calculates the optimal (and alternative sub-optimal) service
configurations. PAF then uses OF to impose the network paths that will meet the
resource requirements of each service. The requirements may concern flow operating
parameters (e.g., frame rate, codec), resource requirements (e.g., bit rate), etc. The
proposed architecture is shown in Image 4.16.

Image 4.16: SDN architecture for QoE-driven service optimization and path assignment [22]

4.2 SUMMARIZING TABLE

Having presented in Section 4.1 several significant research works that constitute the
state-of-the-art in SDN networks and specifically in the QoE field, presented here is the
summarizing table Table 4.1 which compares all the previously mentioned works
against various parameters. Such a table is of great importance as it constitutes a
valuable aggregated report containing a large number of papers and aids in obtaining a

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 79

thorough view of already proposed solutions. Therefore, it can be used as a future
reference.

Table 4.1: Comparison between state-of-the-art works on QoE for SDN networks

Paper
Number

QoE
Management

Use Case

Prototype
or

Abstract

QoE Monitored
Factors

QoE
Management

Approach
Employed

Single or
Multiple
Clients

Scenario
Considered

[31]
Video on
Demand

Prototype

Startup time,
bitrate

changes,
average bitrate,

minimum
required bitrate

during
playback

Content
caching

Both
scenarios

[24]
Video

streaming
Prototype

Bandwidth
utilization in
relation to

users number

Multiple paths
routing

Multiple clients

[69]

Video
applications in

home
networks

Abstract N/A

Dynamic
bandwidth
allocation,
adaptive

resources
management

N/A

[70]
Video

streaming
Prototype

PSNR and
Stream Video
Quality (SVQ)
in relation to

users number

Dynamic
bandwidth
allocation

Multiple clients

[71]
Vehicular
networks

Prototype
Percentage of
flows satisfied

Dynamic flow
and power

management
and resource

allocation

Multiple clients

[72]
HTTP

adaptive video
streaming

Prototype
Number of

bitrate
oscillations

Dynamic
bandwidth and

throughput
allocation

Multiple clients

[21] HTTP video Prototype

Initial buffering
time,

Rebuffering
frequency,

Mean
rebuffering

Content
caching

Single client

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 80

duration

[19]
Video

streaming
Prototype

System load,
HDD utilization,
memory usage

Adaptive
transcoding

Single client

[73]
Video

streaming
Prototype

Average delay,
traffic routing

ratio, link
utilization

Multiple paths
routing,
adaptive
resource
allocation

Multiple clients

[29]
Video

streaming
Abstract

Packet loss
rate

Multiple paths
routing,

Adaptive flow
rerouting

N/A

[25]
Video

streaming
Abstract

Time for
recognizing
video data

Traffic
identification

Single client

[74]
Video

streaming
Prototype

Packet loss
rate, PSNR,
reward value

Dynamic
adjustment of

the video
layers for

transmission,
Dynamic

routing path
selection

Single client

[20]
Video

streaming
Abstract N/A

Multiple paths
routing

N/A

[75]
Multimedia

transmission
Prototype

Traffic
congestion,
incremental
updating,

recovery of
damaged

routing path

Dynamic
optimal routing

path
computation

N/A

[30]
Video

streaming
Prototype

Video stream
bitrate

Dynamic
network

resources
allocation

Single client

[30]
Video

streaming
Prototype

Video bit rate,
Network
utilization

Dynamic
network

resources
allocation

Multiple clients

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 81

5. ENVIRONMENT SETUP

This chapter presents in detail all the necessary steps one must follow in order to be
fully capable of developing applications for SDN environments. These steps were
followed to develop the SDN framework of the current thesis. There are certain system
requirements which must be satisfied, in addition to the SDN Controller and Mininet (the
network simulator) deployment. As a last step, an Integrated Development Environment
(IDE) is needed for the Controller programming and consequently, for the applications
development.

5.1 SYSTEM REQUIREMENTS

 Operating System (OS): OpenDaylight Controller, used for this thesis, runs in a
JVM. Being a Java application, it can potentially be run from any operating system
and hardware as long as it supports Java. However, for best results a recent Linux
distribution is recommended [76]. The simulation in the scope of the current thesis
uses the Ubuntu 14.04 OS.

 Java: Due to the fact that OpenDaylight is a project written primarily in Java
project, a Java 8-compliant JDK is required for project development with
OpenDaylight [77]. In order to get Java 8 JDK, which was used in the current
thesis, one should execute the following steps:

 First of all, the following commands must be executed from a terminal, in
order to install Java 8 JDK on the system:

 Then, the JAVA_HOME variable must be set. This can be done by adding
the following line at the end of the file etc/environment:

where JAVA_HOME is the path to the JDK.

 Finally, by executing the command echo $JAVA_HOME, one should be able
to see the path of the variable JAVA_HOME.

 Maven: OpenDaylight primarily uses Apache Maven as a build tool. Consequently,
one needs to have Maven version 3.3.1 or later installed on his system [77], [78].
For the simulation's needs, Maven 3.3.9 was downloaded as follows:

 The Binary tar.gz archive file, under the name apache-maven-3.3.9-
bin.tar.gz, was downloaded from the Maven Installation Page
(https://maven.apache.org/download.cgi).

 After ensuring that the JAVA_HOME environment variable was truly set and
pointed to the JDK installation, the distribution archive was extracted using
the command tar xzvf apache-maven-3.3.9-bin.tar.gz.

 Finally, the bin directory of the created directory, named apache-maven-
3.3.9, was added to the PATH environment variable, in the first line of the file
etc/environment.

sudo add-apt-repository ppa:openjdk-r/ppa
sudo apt-get update
sudo apt-get install openjdk-8-jdk

JAVA_HOME=”/usr/lib/jvm/java-8-openjdk-amd64”

https://maven.apache.org/download.cgi

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 82

The success of the installation was confirmed typing the command mvn -v in
a new shell. The result should look similar to Image 5.1 [79].

Image 5.1: The result of mvn –v command after Apache Maven successful installation

5.2 SDN CONTROLLER DEPLOYMENT

Before starting developing any ODL projects, one can familiarize with the ODL
Controller by installing and configuring it, independently as a separate application. It
can be used as a remote SDN controller, but it will not have any extra functionality
created by the user. Only the default features can be installed and used. This can be
achieved by executing the following steps:

 Visit the OpenDaylight downloads page (https://www.opendaylight.org/technical-
community/getting-started-for-developers/downloads-and-documentation) and
download the OpenDaylight Controller. More specifically, the version used in the
current thesis is Boron SR1.

 Once the file is downloaded, unzip the zipped file in any directory and open a
terminal in this directory.

 Navigate to the bin directory and execute the karaf file (./bin/karaf), in order to start
the ODL controller.

 In order to shutdown OpenDaylight, one can type shutdown -f or logout [79].

5.2.1 Karaf features

The OpenDaylight controller is deployed on the concept of Apache Karaf. Apache Karaf
is a runtime environment which provides a lightweight container onto which various
components and applications can be deployed. It can be thought of as an environment
providing an "ecosystem" for an application, as it actually provides a way to provision
applications and modules, and supports this using the concept of Karaf Features.
OpenDaylight on Apache Karaf is an effort to deploy key OpenDaylight projects onto
the Apache Karaf container environment [80], [81], [82].

Apache Karaf features describe applications. A feature defines different resources to
resolve and describes an application as:

 a name

 a version

 an optional description (eventually with a long description)

 a set of bundles

 optionally a set configurations or configuration files

 optionally, a set of dependency features

When one installs a feature, Apache Karaf installs all resources described in the
feature. It means that it will automatically resolve and install all bundles, configurations,

https://www.opendaylight.org/technical-community/getting-started-for-developers/downloads-and-documentation
https://www.opendaylight.org/technical-community/getting-started-for-developers/downloads-and-documentation

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 83

and dependency features described in the feature [81], [82]. Therefore, the next step
after installing the ODL controller is to install all the necessary features. In the case of
the present thesis, a number of features was installed using the command:

in the karaf console. One of the most important features is odl-dlux-all, which provides a
Web based user interface for OpenDaylight. The UI can be found in this link:

http://localhost:8181/index.html

giving the result shown in Image 5.2.

Image 5.2: The ODL DLUX Login Page

OpenDaylight’s default credentials are admin for both the username and password. It is
important to note that the DLUX UI is only available when the controller is running, or in
other words when karaf is executed. Otherwise, the webpage will not load.

Having installed the odl-dlux-all feature, the features odl-dlux-core, odl-dlux-node and
odl-dlux-yangui have also been implicitly installed and can be found in the pane at the
left of DLUX's page.

 Topology tab is provided by the odl-dlux-core feature and shows the graphical
representation of the network topology (if there is one connected to the controller)
on the right pane. Switches are represented by blue boxes, available hosts by black
boxes, the way switches and hosts are connected by lines. By hovering on hosts,
links, or switches one can view source and destination ports.

 Nodes tab is provided by the odl-dlux-node feature and displays a table that lists all
the nodes, node connectors and the statistics at the right pane. Again, this is only
possible if there is a topology connected to the controller. One can perform the
following actions:

 Enter a node ID in the Search Nodes tab to search by node connectors.

 Click on the Node Connector number to view details such as port ID, port
name, number of ports per switch or MAC Address.

 Click Flows in the Statistics column to view Flow Table Statistics for the
particular node like table ID, packet match or active flows.

 Click Node Connectors to view Node Connector Statistics for the particular
node ID.

install:feature [FEATURE_NAME]

http://localhost:8181/index.html

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 84

 Yang UI tab is provided by the odl-dlux-yangui feature. It is an ODL DLUXbased
application designed to simplify and facilitate application development and testing.

 The Yang UI module enables the interaction with the YANG-based MD-SAL
datastore [83].

 It also generates and renders a simple UI based on YANG models loaded
into ODL [84].

5.3 MININET DEPLOYMENT

In order to deploy SDN applications for various network topologies, one must use a
network simulation tool. The tool chosen for the present thesis is Mininet. The easiest
and most foolproof way of installing Mininet is to use a Virtual Machine (VM) installation,
according to the following description:

 Download the Mininet VM image from the Mininet Releases Downloads link,
https://github.com/mininet/mininet/wiki/Mininet-VM-Images.The current thesis uses
version 2.2.1 of Mininet.

 Download and install a virtualization system. The recommended system from the
official Mininet webpage is VirtualBox due to the fact that it is a free tool and works
on most operating systems. Other suggested systems are Qemu, VMware
Workstation, VMware Fusion and KVM.

 Once the VM image file has been downloaded, right click on the .ovf file and select
Open With Oracle VM VirtualBox. This will open a window which is shown in Image
5.3.

Image 5.3: VirtualBox import window

After clicking on Import, the image file will be imported into VirtualBox.

 Select Settings Network, and add an additional host-only network adapter that
can be used in order to log in to the VM image. In order to select one by name,
create a new host-only adapter by clicking File Preferences Network Host-
Only Networks Add.

 Start the VM. This will launch the network simulator into a Mininet VM console,
prompting the user for login credentials. The console is displayed in Image 5.4.

https://github.com/mininet/mininet/wiki/Mininet-VM-Images

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 85

Image 5.4: Mininet login console

The credentials are mininet for both username and password. It would be useful to
note that the user cannot paste commands in the Mininet console, therefore a proposed
solution is to run the command:

in a terminal, and connect to Mininet directly from his environment. In order to find the
Mininet VM’s IP, the command sudo dhclient eth1 followed by the command ifconfig
could be used. [85], [86], [88].

Mininet contains an Open vSwitch (OVS) version, which is used to instantiate the SDN
switches. In the context of the current thesis, version 2.4.0 of OVS was used. The
default OVS version in Mininet can be found to be 2.0.2 by typing the command sudo
ovs-vsctl show, therefore the following commands were used to switch version [87]:

 sudo -s

 apt-get remove openvswitch-common openvswitch-datapath-dkms openvswitch
controller openvswitch-pki openvswitch-switch

 cd /root

 wget http://openvswitch.org/releases/openvswitch-2.4.0.tar.gz

 tar zxvf openvswitch-2.4.0.tar.gz

 cd openvswitch-2.4.0/

ssh mininet@[MININET_VM_IP]

http://openvswitch.org/releases/openvswitch-2.4.0.tar.gz

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 86

 ./configure --prefix=/usr --with-linux=/lib/modules/`uname -r`/build

 make

 make install

 make modules_install

 rmmod openvswitch

 depmod -a

 /etc/init.d/openvswitch-controller stop

 update-rc.d openvswitch-controller disable

 /etc/init.d/openvswitch-switch start

5.3.1 Mininet default topology

After the user has finished the installation of both ODL Controller and Mininet, the
topology creation in Mininet and connection to ODL is possible.

The default topology can be started if the user types in Mininet console the following
command:

The default topology is the minimal topology, which includes one OpenFlow kernel
switch connected to two hosts, plus the OpenFlow reference controller.

 The nodes can be displayed with the command nodes

 The links can be displayed with the command net

 The command dump shows information about all the topology nodes

 The Mininet Command Line Interface (CLI) built-in command pingall tests the
connectivity between all nodes in pairs.

 In order to exit the topology created, the command exit is used

 When the command sudo mn –c is typed in the Mininet VM console, it is
automatically cleaned up [88].

5.3.2 Changing topology size and type

As already mentioned in 5.3.1, Mininet’s default topology consists of a single switch
connected to two hosts. One has the ability to change this to a different topology,
adding the argument --topo, and specifying the parameters for the topology’s creation.
For example, the parameter “single”, as used in the following command:

indicates a topology with SWITCH_NUMBER switches and a single host, whereas
using the parameter linear instead:

indicates a linear topology with SWITCH_NUMBER switches, where each switch has
one host and all switches connect in a line [88].

sudo mn

sudo mn --topo single,[SWITCH_NUMBER]

sudo mn --topo linear,[SWITCH_NUMBER]

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 87

5.3.3 Custom topologies

Custom topologies can be easily defined using a Python API and passing it as an
argument for the topology’s creation. An example which connects two switches directly,
with a single host off each switch, is presented in Image 5.5. The Python script can be
given as parameter to Mininet using the following command [88]:

Image 5.5: Example Python script for a custom topology creation [88]

5.3.4 Using a remote controller in Mininet

The current section is primarily useful for a user who runs a controller running outside of
the VM, such as on the VM host, or a different physical PC. In the case of the present
thesis, the ODL controller has been deployed in the VM host, outside of the VM. The
host IP has to be provided as an argument so that Mininet is connected to the remote
controller. In order to run a custom topology connected to the ODL remote controller,
the following command should be used:

sudo mn --custom [PATH_TO_PYTHON_SCRIPT] --topo mytopo

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 88

For example, let’s consider the following scenario:

For instance, using the python script shown in Image 5.5 and assuming that it has been
saved in the /home/mininet/ folder of the Mininet VM under the name custom_topo.py,
the command to create this custom topology would be:

Therefore, by typing the command:

in Mininet’s console, the output is shown in Image 5.6. The nodes connectivity can be
tested using the command pingall, which gives the results presented in Image 5.7.
Finally, one can see the topology inserted in the DLUX Topology tab, as depicted in
Image 5.8.

Image 5.6: Mininet messages after starting a topology

Image 5.7: Mininet pingall result

sudo mn --custom [PATH_TO_PYTHON_SCRIPT] --topo mytopo --
controller=remote,ip=[CONTROLLER_IP]

sudo mn –custom custom_topo.py --topo mytopo --
controller=remote,ip=[CONTROLLER_IP]

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 89

Image 5.8: The created Mininet topology shown in ODL DLUX UI

5.4 FIRST ODL PROJECT CREATION

Just downloading the ODL controller package as shown in 5.2 is not enough in order to
create an ODL application. The download will help the user install the ODL controller
and use it remotely, but he will not be able to include it in an ODL application. The first
step one needs to perform in order to create his first ODL project is to update his Maven
“settings.xml” file by using the following commands [89]:

Then, a project can be created using Maven and an archetype called opendaylight-
startup-archetype by typing:

where one needs to enter the proper <Archetype-Version> and <Snapshot-Type> that
depend on the ODL release he will work on. For the current thesis and version Boron

cp –n ~/.m2/settings.xml{,.orig};

Wget –q –O –
https://raw.githubusercontent.com/opendaylight/odlparent/master/settings.xml >

~/.m2/settings.xml

mvn archetype:generate -DarchetypeGroupId=org.opendaylight.controller -
DarchetypeArtifactId=opendaylight-startup-archetype \

-DarchetypeRepository=http://nexus.opendaylight.org/content/repositories/<Snapshot-
Type>/ \

-DarchetypeCatalog=remote -DarchetypeVersion=<Archetype-Version>

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 90

SR1 the Snapshot-Type=opendaylight.release and Archetype-Version=1.2.1-Boron-
SR1 will be used.

Afterwards, the user will be expected to respond to prompts, in the current thesis case
completed as follows:

 Define value for property 'groupId':: org.opendaylight.sqmf

 Define value for property 'artifactId':: sqmf

 Define value for property 'package': org.opendaylight. sqmf:

 Define value for property 'classPrefix':

 Define value for property 'copyright'::

After completing the above mentioned steps, the archetype will have created a top
level directory named ${artifactId}, for example, sqmf/. When entering the sqmf/
directory, one can see the following contents:

 api/

 features/

 impl/

 karaf/

 it/

 pom.xml

and build the project using the command mvn clean install -DskipTests. Once the
project has been built, an OpenDaylight distribution will have been created, which can
be tested with the following steps:

During the build process a module called sqmf was built, which can now be verified on
the console by checking out the log: log:display | grep sqfm. A log entry which includes
the entry “SqmfProvider Session Initiated” will appear. To shutdown OpenDaylight,
the command shutdown –f has to be used.

In order to understand where the log entry came from, one can navigate to the entry
point in the impl submodule, and specifically in the init method of the class found in
impl/src/main/java/org/opendaylight/odlproject/impl/SqmfProvider.java:

In order to create a new RPC or any storage structure, one should edit
api/src/main/yang/sqmf.yang file [90].

5.5 USE OF AN IDE

As mentioned before, the ODL Controller is actually a Java project. Therefore, anyone
wishing to create applications for the controller needs to install a Java IDE, where the

cd karaf/target/assebly/bin

./karaf

 public void init() {

 LOG.info("SqmfProvider Session Initiated");

 }

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 91

code will be developed and tested. This thesis makes use of the IntelliJ IDE, provided
by JetBrains. Other well-known Java IDEs include Eclipse and Netbeans.

The SDN application of the current thesis started with the initial creation of a Maven
project as described in 5.4, which was then imported into IntelliJ, following the
procedure described below:

 Select to import a project into IntelliJ (Image 5.9).

 Select the project to import (Image 5.10).

 Select to import the project from an external model, specifying Maven as the
external model (Image 5.11).

 Click on the button Environment settings and configure Maven’s home directory,
choosing its location (Image 5.12).

 Select the Maven project to import and click Next (Image 5.13).

 Click the green cross in order to configure a new JDK (Image 5.14).

 Select the JDK installation folder and click OK (Image 5.15).

 Click OK after noticing which the JDK resources are (Image 5.16).

 Enter a name for the project and click Finish (Image 5.17).

Image 5.9: Import a project into IntelliJ

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 92

Image 5.10: Select the project to import

Image 5.11: Select to import a project from an external model, choosing Maven

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 93

Image 5.12: Click on button Environment settings and configure Maven’s home directory

Image 5.13: Select Maven project to import and click Next

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 94

Image 5.14: Configure a new JDK

Image 5.15: Choose the JDK installation folder and click OK

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 95

Image 5.16: The JDK resources

Image 5.17: Enter a name for the project and click Finish

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 96

5.6 VoIP TRAFFIC CREATION

One of the cases which the framework implemented in the current thesis addresses is
the VoIP applications. In order to generate VoIP traffic in the network, the Distributed
Internet Traffic Generator (D-ITG) was used in the scope of the current thesis. D-ITG is
a platform capable to produce IPv4 and IPv6 traffic at packet level accurately, at
network, transport, and application layer [91] by replicating the workload of current
Internet applications. At the same time, D-ITG is also a network measurement tool able
to measure the most common performance metrics (e.g. throughput, delay, jitter, packet
loss) at packet level. It can generate traffic following stochastic models for packet size
(PS) and inter departure time (IDT) that mimic application-level protocol behavior. By
specifying the distributions of IDT and PS random variables, it is possible to choose
different renewal processes for packet generation: by using characterization and
modeling results from literature, D-ITG is able to replicate statistical properties of traffic
of different well-known applications (e.g. Telnet, VoIP - G.711, G.723, G.729, Voice
Activity Detection, Compressed RTP - DNS, network games) [92].

As reported in Image 5.18, the architecture of D-ITG comprises different components.

Image 5.18: D-ITG Architecture [92]

The core features of D-ITG are provided by ITGSend and ITGRecv. ITGSend is the
component responsible for generating traffic toward ITGRecv. Exploiting a
multithreaded design, ITGSend can send multiple parallel traffic flows toward multiple
ITGRecv instances, and ITGRecv can receive multiple parallel traffic flows from multiple
ITGSend instances. A signaling channel is created between each couple of ITGSend
and ITGRecv components to control the generation of all the traffic flows between them.

ITGSend and ITGRecv can optionally produce log files containing detailed information
about every sent and received packet. Such logs can be saved locally or sent - through
the network - to the ITGLog component (useful to collect all the measures at a single
point or in the case of hosts with limited storage capabilities e.g. sensors, embedded
devices, smartphones, etc.). The ITGDec component is in charge of analyzing the log
files in order to extract performance metrics related to the traffic flows.

The experiments (even large-scale ones) can be controlled from a single vantage point:
the ITGRecv components act as daemons and can be completely configured and
controlled by the ITGSend components that want to send traffic to them. Also, the

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 97

ITGSend components can act as daemons and can be remotely controlled through the
D-ITG API. The ITGManager component represents an example of how to use the D-
ITG API to remotely control ITGSend. This way, the user can completely control a
large-scale distributed experiment from a single vantage point.

 ITGSend: The ITGSend component is responsible for generating traffic flows and
can work in three different modes:

o Single-flow - read the configuration of the single traffic flow to generate
toward a single ITGRecv instance from the command line.

o Multi-flow - read the configuration of multiple traffic flows to generate
toward one or more ITGRecv instances from a script file. The script is
made of a line for each traffic flow, which includes a set of command-line
options as in the single-flow mode.

o Daemon - run as a daemon listening on a UDP socket for instructions
and can be remotely controlled using the D-ITG API.

Every traffic flow generated is described by two stochastic processes relating to
PS and IDT, through which well defined traffic profiles can be generated,
emulating application protocols such as VoIP, DNS, etc. PS and IDT series can
also be loaded from a file for each flow. ITGSend can log information about every
sent or received packet, when running in One Way or Round Trip mode
respectively. In the first case, timestamps (and other information) of sent packets
are stored, while in the second case, timestamps (and other information) of sent
and received packets are stored. For each flow the source IP address can be
specified, which is useful for multi-homed hosts.

 ITGRecv: The ITGRecv component is responsible for receiving multiple parallel
traffic flows generated by one or more ITGSend instances. It normally runs as a
multi-threaded daemon listening on a TCP socket for incoming traffic reception
requests. Each time a request is received from the network, a new thread is
created, which performs all the operations related to the new request (e.g. receiving
the packets of the flow). The port numbers on which ITGRecv will receive each flow
and any logging activity required on the receiver side can be remotely controlled by
ITGSend. A specific signaling protocol, the Tunnel Setup Protocol (TSP), allows
ITGRecv and ITGSend to properly setup and manage the traffic generation
process.

 ITGLog: The ITGLog component is responsible for receiving and storing log
information possibly sent by ITGSend and ITGRecv. It runs as a multi-threaded
daemon listening on a TCP socket for incoming log requests. Log information is
received over TCP or UDP protocols on port numbers dynamically allocated in the
range 9003-10003.

 ITGDec: The ITGDec component is responsible for decoding and analyzing the log
files stored during the experiments conducted by using D-ITG. ITGDec parses the
log files generated by ITGSend and ITGRecv and calculates the average values of
bitrate, delay and jitter either on the whole duration of the experiment or on
variable-sized time intervals. ITGDec analyzes the log files produced by ITGSend,
ITGRecv, and ITGLog in order to produce results about each flow and about the
whole set of flows [92].

 One can install the D-ITG tool inside the Mininet VM using the following steps:

 Login into Mininet VM.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 98

 sudo apt-get install unzip

 sudo apt-get install g++

 wget http://traffic.comics.unina.it/software/ITG/codice/D-ITG-2.8.1-r1023-src.zip

 unzip D-ITG-2.8.1-r1023-src.zip

 cd D-ITG-2.8.1-r1023/src

 make

In order to be familiarized with this platform, below are presented, as an example of D-
ITG use, the steps followed to generate VoIP traffic in a simple case of a topology with
two hosts, after the successful installation of D-ITG. The traffic was decided to be sent
from h1 (sender) to h2 (receiver).

 First, a Mininet session was opened and the commands cd ~/pox and ./pox.py
forwarding.l2_learning were given for the controller setup, as shown in Image 5.19.

 Then, a second Mininet session was opened and the command sudo mn --
controller=remote,ip=127.0.0.1,port=6633 was given, as Image 5.20 illustrates.

 As a next step, a console for each of the two hosts was opened separately using
the command xterm h1 h2.

 After both hosts’ consoles opened, the command cd D-ITG-2.8.1-r1023/bin was
used for both h1 and h2, as shown in Image 5.21.

 The command ./ITGRecv -l receiver_file was executed in the receiver’s console,
where –l flag enables logging to the specified file and specifically it generates a log
file containing timing, ordering and size information about every received packet
(Image 5.22).

 A script was created in the sender with the following commands, containing the
necessary information about the generation of the VoIP traffic, as depicted in
Image 5.23.

where:

o –a option sets the destination address of the flow’s packets

o –rp option sets the destination port of the flow’s packets

o VoIP option emulates VoIP traffic

o –x option is a VoIP sub-option indicating the audio codec

o –h option is a VoIP sub-option indicating the audio transfer protocol

o –VAD option is a VoIP sub-option indicating that voice activity detection is
enabled.

 Finally, the command ./ITGSend -l sender_file was executed in the sender’s
console, where –l flag enables logging to the specified file and specifically it
generates a log file containing timing, ordering and size information about every
sent packet (Image 5.24).

cat > script <<END

-a 10.0.0.2 –rp 10001 VoIP –x G.711.2 –h RTP –VAD

END

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki 99

After having completed the VoIP traffic generation from h1 to h2, the results which
occurred and were stored in the log files were decoded. The receiver’s results are
presented in Image 5.25 and the sender’s in Image 5.26 [92], [93].

Image 5.19: First Mininet session for using D-ITG

Image 5.20: Second Mininet session for using D-ITG, with topology deployment

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 100

Image 5.21: Navigation in the bin folder of the D-ITG installation for both hosts

Image 5.22: The command starting the receiver host (h2)

Image 5.23: The commands for the creation of script describing the traffic characteristics, in the
sender host (h1)

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 101

Image 5.24: The command starting the sender host (h1)

Image 5.25: The receiver host’s log file, with information about the received packets

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 102

Image 5.26: The sender host’s log file, with information about the sent packets

5.7 VIDEO TRAFFIC CREATION

Apart from the VoIP applications, the framework implemented in the current thesis also
addresses the case of video applications. Therefore, it was necessary to generate video
traffic in the network and this can be achieved with the following steps:

 A media player must be installed inside Mininet, so that the video file can be
played. The current thesis uses VLC media player, which can be installed using the
command sudo apt-get update followed by sudo apt-get install vlc.

 The sender host must be equipped with a video file to stream. A sample mp4 video
file was transferred from the host machine to the Mininet VM using the command
scp [FILENAME] mininet@[MININET_VM_IP]:[DESTINATION_PATH]. This way
the sender host is also granted access to the video file and therefore can stream it
to the receiver host.

 By opening a terminal for the sender host using the command xterm
[HOST_NAME], the sender host can stream the video file using the command vlc-
wrapper [VIDEO_FILENAME] --sout '#rtp{dst=[RECEIVER_HOST_IP],port=1234}'.

5.7.1 Video adjustment to required specifications

As already mentioned in 3.3.2, the video QoE estimation formula contains 12
coefficients which are derived from the video characteristics. The current thesis covers

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 103

the five cases given in Table 3.2 and their respective coefficients in Table 3.3.
Therefore, in order to create video traffic the video file to be streamed must be adjusted
to the required configurations. Example steps are described below to adjust a video to
the requirements of case #5 of Table 3.2.

 It would be useful to install ffmpeg as it easily shows a video’s specifications, using
the following commands on Ubuntu 14.04 [94]:

o sudo apt-get remove --purge ffmpeg

o sudo apt-add-repository ppa:mc3man/trusty-media

o sudo apt-get update

o sudo apt-get install ffmpeg

 A Youtube video must be selected for download.

 By clicking Share Copy, the video’s link is copied to the clipboard and it can be
pasted to an online video downloader so that the video is downloaded. The tool
used for the current thesis can be found in
https://www.onlinevideoconverter.com/video-converter.

 In order to adjust the video codec and the video format, an online converter can
be used. The tool used for the current thesis can be found in https://video.online-
convert.com/convert-to-mp4. Once the video to be processed has been uploaded,
the desired codec and format are specified. For the current thesis h264 codec and
VGA format (640x480) were selected.

 In order to verify that the video has obtained the desired codec and format, the
command ffmpeg –i [VIDEO_PATH] –hide_banner can be used, which will give an
output like the one depicted in Image 5.27.

Image 5.27: The output of ffmpeg command

 In order to adjust the video key frame interval to 1, the command ffmpeg –i
[VIDEO_PATH] –qscale 0 –g 1 [OUTPUT_VIDEO_PATH] can be used [95].

 In order to verify that the video has obtained the desired key frame interval, the
command ffprobe -show_frames [VIDEO_PATH] | grep key_frame can be used,
which will give an output like the one depicted in Image 5.28.

https://www.onlinevideoconverter.com/video-converter
https://video.online-convert.com/convert-to-mp4
https://video.online-convert.com/convert-to-mp4

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 104

Image 5.28: The output of ffprobe command

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 105

6. QoE DEGRADATION CASES EXAMPLES

In this chapter, various cases where QoE degradation can happen during multimedia
applications streaming are presented by conducting experiments on a custom network
topology and computing the QoE. The QoE degradation is observed due to limitations
imposed by network conditions, as well as network instabilities such as link failures. The
experiments aim to illustrate the plethora of the cases where the QoE in a network
suffers from degradation due to network conditions, as well as point out the necessity
for a QoE monitoring framework.

The first step was to create a custom network topology using Mininet, following the
instructions of 5.3.3 and an initial ODL SDN controller as indicated in 5.4, making the
connection between them as shown in 5.3.4. Subsequently, different network conditions
were applied and both VoIP and video traffic was generated inside the network
from h1 to h2, using the D-ITG tool as shown in 5.6 or streaming a video file as shown
in 5.7, respectively.

 For the experiments on VoIP applications, traffic was created using D-ITG as
shown in 5.6. The G.107 E-model was used for the QoE evaluation. Each produced
flow used the G.729.2 codec of VoIP, as required for the evaluation of the QoE
using the ITU G.107 E-model. Also, due to the VoIP traffic type, D-ITG only allowed
50 packets per second to be sent (packet rate). The necessary delays and packet
losses for the E-model were obtained from the D-ITG receiver’s log file, which
presented statistics at the end of the experiment, as described in 5.6.

 For the experiments on video applications, traffic was created by streaming a video
as shown in 5.7. The G.1070 E-model was used for the QoE evaluation. For these
experiments the necessary packet losses for the ITU G.1070 E-model could not be
obtained from a tool such as D-ITG, therefore they were computed using the video
QoE monitoring functions created in the context of the current thesis, which will be
described later in Chapter 7. The whole implementation’s functionality was of
course not used at this point. Only the parts computing the packet losses were
used.

The packet losses and delays which occurred in each experiment due to the network
conditions were used to compute the QoE values and construct relative graphical
representations.

The created topology for the experiments is depicted in Image 6.1. It consists of 9
switches, s1 to s9, connected linearly between them, as well as two hosts, h1 and h2,
connected to s1 and s8 respectively.

Image 6.1: Topology with nine switches and two hosts, used for the current thesis

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 106

6.1 EXPERIMENTS ON VoIP APPLICATIONS

6.1.1 Experiment No 1: Manual network limitations on VoIP

The first experiment studies the impact of network limitations, such as packet losses in
the links, on the QoE of a VoIP application. These limitations were set manually to the
links. The parameters used for the current experiment are shown in Table 6.1. VoIP
flows were generated in the network, each of which contained 10000 packets, used the
G.729.2 model of VoIP and had a packet rate of 50 packets per second.

Table 6.1: Parameters used for experiment N
o
 1 on VoIP traffic generation

After the topology creation and in each execution of the experiment, selected links were
manually assigned a packet loss value in order to emulate the actual losses that a
network may suffer from. Table 6.2 shows the R and MOS values computed per total
network packet loss case and occurring delay.

Table 6.2: Delay, R and MOS according to the total network packet loss

Total Network
Packet Loss (%)

Delay (sec) R MOS

1 0.000184 79.38317681 4.000472662

2.17 0.000173 75.34029544 3.836412202

3.17 0.000174 72.18156709 3.697577086

3.85 0.000173 70.16784241 3.604861916

5.01 0.000172 66.95060989 3.45092752

5.98 0.000062 64.44839811 3.327040486

7.05 0.000168 61.85336357 3.195478775

8.36 0.000168 58.89239631 3.04246389

9.26 0.000171 56.97808346 2.942379419

9.96 0.000170 55.55011288 2.867340439

The above presented data are summarized in Figure 6.1, where MOS decrease - and
therefore QoE degradation - are depicted as a graphical representation. It can easily be
observed that the higher the level of total packet loss in the network during the packet
transmission period, the lower the MOS values, causing poor QoE to the VoIP
participants.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 107

Figure 6.1: VoIP quality decrease in relation to total network packet loss

6.1.2 Experiment No 2: Multiple sources of traffic on VoIP

The second experiment expands the first one, involving also other sources of traffic in
the network – apart from the created VoIP traffic – that can overload the network and
cause packet losses. This means that instead of manually inserting packet losses in
various links, other sources of traffic were used for additional traffic generation and
therefore packet losses were caused naturally. The parameters used for the second
experiment are presented in Table 6.1, only this time the number of packets per flow
varies. The additional traffic was generated using iperf, which is a tool to produce traffic
in the network, while the topology shown in Image 6.1 was used again.

More specifically, in each execution of the experiment iperf was constantly running on
the background, generating TCP packets, as different numbers of VoIP packets were
generated in parallel. h2 was set to be an iperf server, using the command iperf –s –p
[PORT_NUMBER] in a h2 terminal while h1 was set to be an iperf client generating TCP
traffic, using the command iperf –c [SERVER_ADDRESS] –p [PORT_NUMBER] –t
[TIME] in a h1 terminal. As port number, 5566 was used and the server address was
h2’s address, 10.0.0.2. After the traffic generation with iperf, the VoIP traffic was also
generated with the way presented in 5.6.

Table 6.3 shows the computed delay, packet loss and corresponding R and MOS
values according to the number of VoIP packets sent in each execution of the
experiment.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 108

Table 6.3: Delay, Packet Loss, R and MOS according to number of VoIP packets sent
simultaneously with iperf

Number of
VoIP packets

sent
Delay (sec)

Packet Loss
(%)

R MOS

500 0.025556 0.2 81.79455091 4.089990139

800 0.026327 0.25 81.5804475 4.082314506

1000 0.025828 0.3 81.39777591 4.075722697

3000 0.026229 0.33 81.27181639 4.07115445

5000 0.027902 0.36 81.11566625 4.065465425

8000 0.027803 0.38 81.04089661 4.062731257

10000 0.027847 0.4 80.96284347 4.059870077

The presented data are graphically summarized in Figure 6.2, where it can easily be
observed that as the number of VoIP packets sent simultaneously with the random TCP
packets generated by iperf increases, the MOS factor gets lower, and therefore the
QoE suffers from progressive degradation. It is noted that the total QoE degradation for
this experiment is not larger than 0.4%. This is expected, as the experiment is not large-
scale and intends to just sufficiently depict the impact of multiple sources of traffic on
QoE. Therefore, the total network traffic load is not extreme and consequently the QoE
does not face a dramatic degradation.

Figure 6.2: VoIP quality decrease in relation to number of VoIP packets, in parallel with iperf

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 109

6.2 EXPERIMENTS ON VIDEO APPLICATIONS

6.2.1 Experiment No 1: Manual network limitations on video

This experiment is the same as 6.1.1, but now conducted with video traffic. It studies
the impact of network limitations, such as packet losses, on the QoE of a video
application. These limitations were set manually to the links. The video parameters
used for the current experiment are shown in Table 6.4. The created topology for the
experiments is depicted in Image 6.1.

Table 6.4: Parameters used for experiments on video streaming

After the topology creation and in each execution of the experiment, selected links were
manually assigned a packet loss value in order to emulate the actual losses that a
network may suffer from. Then, the video started being streamed as shown in 5.7.
Table 6.5 shows the Vq value computed per total packet loss case.

Table 6.5: Vq according to the total network packet loss

Total Network Packet Loss (%) Vq

1.0265242 4.410821547

2.3940452 4.348032088

2.8251303 4.328479531

3.8654728 4.281762134

5.3094906 4.218002119

6.0782496 4.184564713

6.946294 4.147226316

8.2307905 4.092776194

9.1012839 4.056412297

9.9193799 4.022627062

The above presented data are summarized in Figure 6.3, where Vq decrease - and
therefore QoE degradation - are depicted as a graphical representation. It can easily be
observed that the higher the level of total packet loss in the network during the packet
transmission period, the lower the MOS values.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 110

Figure 6.3: Video quality decrease in relation to total network packet loss

6.2.2 Experiment No 2: Multiple sources of traffic on video

This experiment is the same as 6.1.2, but now conducted with video traffic. It involves
other sources of traffic in the network as well – apart from the created video traffic – that
can overload the network and cause packet losses. Therefore, additional TCP traffic
was generated using iperf as a video session with duration of 115 seconds was being
streamed in parallel, while the topology shown in Image 6.1 was used again. The
parameters used for the second experiment are presented in Table 6.4.

Table 6.6 shows the computed packet loss and corresponding Vq value during the
video streaming period. Results are reported every 5 seconds.

Table 6.6: Packet loss and Vq during video streaming simultaneously with iperf

Time (sec) Packet Loss (%) Vq

5 0.03235294117647059 4.309764233651093

10 0 4.4584992730265105

15 0.009302325581395349 4.415062278263543

20 0 4.4584992730265105

25 0.006385696040868455 4.4286223779326495

30 0.18448023426061494 3.691725039366696

35 0.01217391304347826 4.401763984787847

40 0.22203098106712565 3.557837641420684

45 0 4.4584992730265105

50 0.213768115942029 3.5867155645146807

55 0 4.4584992730265105

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 111

60 0.22790697674418606 3.5374979600768506

65 0.025500910746812388 4.340721435447504

70 0.10323886639676114 4.005862534614934

75 0.04468412942989214 4.254773299818181

80 0.11788617886178862 3.946633464423855

85 0.053763440860215055 4.214868984433865

90 0.04251386321626617 4.264384915690982

95 0.13070539419087138 3.8957551058669897

100 0.05411255411255411 4.213344409404942

105 0.07098765432098765 4.140506653668701

110 0.15007215007215008 3.820551352876892

115 0.009259259259259259 4.41526211314836

The presented data are graphically summarized in Figure 6.4, where it can be observed
that the simultaneous TCP packet generation by iperf affects the video quality of the
streamed video, making it extremely instable with continuous fluctuations.

Figure 6.4: Video quality instability for video streaming simultaneously with using iperf

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 112

7. IMPLEMENTATION ANALYSIS

Chapter 6 presented cases where the QoE of a VoIP or video application can face
degradation due to network conditions, e.g. packet losses due to a link failure or traffic
load. This chapter presents the SDN QoE Monitoring Framework (SQMF), an SDN
framework implemented in order to overcome such situations and preserve the QoE in
VoIP and video applications. This is achieved by using an SDN Controller and
implementing extra functionality on top of it in order to change the traffic’s transmission
path to an alternative one, when QoE falls below a specified threshold.

The SDN Controller used for the current thesis is version Boron SR1 of ODL. The
project was created following the instructions of 5.4 and extended the SDN Controller
functionality by implementing an extra SDN module, named sqmf. The topology used
for validation and experiments is the one depicted in Image 6.1.

7.1 DESIGN PRINCIPLES AND WORKFLOW

The approach used in order to ensure that the QoE remains in satisfactory levels is the
periodical link monitoring and QoE estimation based on their statistics. In particular, the
application computes the shortest path between the source and destination hosts,
which will be the main transmission path, as well as the second shortest path (if exists)
which will assist as a failover path. Then, rules are inserted to forward the traffic to the
main path. Afterwards, the QoE monitoring process starts; the SDN controller
periodically collects statistics from the switches (different statistics for each application
type) and uses them to compute the QoE level. If the estimated value is lower than a
specified threshold, then appropriate rules are inserted to redirect traffic to the failover
path. The workflow described above for QoE Monitoring is graphically illustrated in
Figure 7.1.

Figure 7.1: QoE Monitoring workflow

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 113

The collected statistics according to the streamed application type are:

 For VoIP applications, the delay and packet loss are necessary, in order to be
able to use the G.107 E-model (3.3.1).

o Each time the SDN controller needs to measure the delay, it creates a
packet with a specific source MAC address – 00:00:00:00:00:09 in
particular – and sends it on behalf of each switch of the path (except for
the egress switch) to the output interface, so that the next switch of the
path receives it. Each switch (except for the ingress switch, as it has no
previous switch to receive a packet from) is configured with an appropriate
flow rule to forward to the Controller any packet with the specific MAC
address. The difference between the time that a switch receives a packet
and the time that the previous switch had sent the packet is the delay of a
particular link. The addition of all the path links’ delays results in the path
delay.

Each switch is configured with a rule of the following format:

o In order to compute the packet loss rate, and given that VoIP traffic
generates UDP packets, the SDN controller periodically monitors the
number of UDP packets sent from the sender (h1) and the number of UDP
packets received by the receiver (h2) and computes their difference
divided by the number of sent packets.

To achieve packet loss monitoring, the ingress and the egress switches
are configured appropriately so as to forward to the Controller – apart
from the predefined output interface to the next node - any UDP packet
they receive (the ingress receives UDP packets from the sender host and
the egress from the previous path node). In its turn, the Controller counts
the path’s total incoming and outgoing UDP packets and is able to
determine the packet loss. The ingress and the egress switch are
configured with rules of the following format:

For example, the appropriate rules for s1 and s8 of Image 6.1 are:

 For video applications, the bit rate, frame rate and packet loss are necessary, in
order to use the G.1070 E-model (3.3.2).

o In order to compute the bit rate, the command ffmpeg –i [VIDEO_PATH] –
hide_banner is executed through the Java code and the output is parsed
until the bit rate value is accessed.

o In order to compute the frame rate, the command –i [VIDEO_PATH] –
hide_banner is executed through the Java code and the output is parsed
until the frame rate value is accessed.

o The packet loss is computed in the same way as for VoIP applications.

priority=1000,dl_src=00:00:00:00:00:09 actions=CONTROLLER:65535

s1: priority=1000,udp,in_port=1 actions=CONTROLLER:65535,output:3

s8: priority=1000,udp,in_port=3 actions=CONTROLLER:65535,output:2

priority=1000,udp,in_port=x actions=CONTROLLER:65535,output:y

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 114

The final traffic forwarding scheme based on QoE monitoring is shown in Image 7.1,
using the topology of Image 6.1 which was used for the current thesis.

Image 7.1: Traffic forwarding according to QoE Monitoring

7.2 IMPLEMENTATION STRUCTURE

The SQMF framework was implemented following the instructions presented in Chapter
5. The project developed in IntelliJ IDEA is organized in Maven modules with the
structure shown in Image 7.2:

Image 7.2: SQMF implementation structure

where:

 api is the created API for the user to the SDN Controller. It contains the YANG files
which specify the ODL modules that the project will create – in the case of the
current thesis, sqmf

 features contains the SDN controller features to be used and the SDN features
created by the project

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 115

 impl is the core implementation component, which contains all the developed code
for SQMF

 karaf is the container provided by the Maven archetype used to create the SDN
application, which is necessary so that the ODL modules can run.

When the ODL controller is launched by using the command
./karaf/target/assembly/bin/karaf, all its modules – including sqmf, the one created in the
context of the current thesis – are available at the YANG UI tab of the ODL DLUX, as
shown in Image 7.3.

Image 7.3: ODL modules, including sqmf

By selecting sqmf operations, the user has access to the application’s created RPCs,
which are the core implementation methods and constitute the framework’s
implemented functionalities. Two RPCs were created, as depicted in Image 7.4.

Image 7.4: The created RPCs

 startMonitoringLinks: The RPC which starts the process of the periodic link
monitoring in the network. More specifically, this process indicates that the links of
the path between the source and the destination are monitored periodically and the

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 116

QoE is computed based on their delay and packet loss. In case the QoE is lower
than a predefined threshold, the controller performs corrective actions. The
requested input fields are shown in Image 7.5 and must be filled as following:

o srcNode is the name of the switch connected to the sender host. The
implementation in the current thesis uses the topology depicted in Image
6.1: Topology with nine switches and two hosts, used for the current
thesis, therefore the srcNode openflow:1, as the sender host is h1.

o dstNode is the name of the switch connected to the receiver host. In the
topology used for the current thesis the receiver host is h2 so the dstNode
is openflow:8.

o QoEThreshold is the minimum accepted value for the QoE. If QoE gets
lower than QoEThreshold, corrective actions are performed.

o ApplicationType is a dropdown menu where the type of the application
which will be used (VoIP or video) must be filled.

Image 7.5: Requested input for startMonitoringLinks RPC

 stopMonitoringLinks: The RPC which stops the periodical monitoring of links, so
that the execution is terminated gracefully without throwing an exception for forcing
the periodic task to stop. No input is required for this RPC.

Some important notes on the application’s behavior are the following:

 In order to select an RCP, a network topology must have been created in Mininet
first. Otherwise, the implemented function will not take place.

 All the input fields are required to be filled in. The case where a field is left empty is
handled successfully by the application, but the implemented function will not take
place.

 Fields srcNode and dstNode need to be given values that exist as nodes and are
connected to hosts. Otherwise, the implemented function will not take place and
undefined behavior will be invoked.

 In case startMonitoringLinks is selected and the created traffic type does not match
the specified ApplicationType, the QoE will be computed based on the formula for
other application type. This happens because there is no way to determine if the
generated traffic type matches the specified ApplicationType, as both VoIP and
video traffic generate UDP packets.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 117

7.3 DETAILED IMPLEMENTATION ANALYSIS

The source code of SQMF is located in two of the project’s Maven modules; the YANG
file creating the generated SDN module for the current thesis can be found in api and
the Java code can be found in impl. Moreover, each module contains a pom.xml file,
where all the dependencies to other modules are declared. The code files are now
described per module in more detail. Only the most significant parts of code are shown
in this chapter, whereas the whole code can be found in the URL provided in the Annex.

1. api

 pom.xml: Contains the dependencies for api module, which are some default SDN
Controller features.

 <?xml version="1.0" encoding="UTF-8"?>

<projectxsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://maven.apache.org/POM/4.0.0">

<parent>
 <groupId>org.opendaylight.mdsal</groupId>
 <artifactId>binding-parent</artifactId>
 <version>0.9.1-Boron-SR1</version>
 <relativePath/>
</parent>
<modelVersion>4.0.0</modelVersion>
<groupId>sqmf</groupId>
<artifactId>sqmf-api</artifactId>

<version>1.0.0-SNAPSHOT</version>
<packaging>bundle</packaging>
<properties>
 <ietf-inet-types.version>2010.09.24.8.1-Beryllium-SR1</ietf-inet-types.version>
 <ietf-yang-types.version>2010.09.24.8.1-Beryllium-SR1</ietf-yangtypes.version>
 <yang-ext.version>2013.09.07.8.1-Beryllium-SR1</yang-ext.version>
 <controller-model.version>1.3.1-Beryllium-SR1</controller-model.version>
</properties>
<dependencies>
 <dependency>
 <groupId>org.opendaylight.controller.model</groupId>
 <artifactId>model-inventory</artifactId>
 <version>${controller-model.version}</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.mdsal.model</groupId>
 <artifactId>ietf-yang-types</artifactId>
 <version>${ietf-yang-types.version}</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.mdsal.model</groupId>
 <artifactId>ietf-inet-types</artifactId>
 <version>${ietf-inet-types.version}</version>
 </dependency>

file:///C:/Users/user/Downloads/sqmf/sqmf/api/pom.xml

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 118

 <dependency>
 <groupId>org.opendaylight.mdsal.model</groupId>
 <artifactId>yang-ext</artifactId>
 <version>${yang-ext.version}</version>
 </dependency>
</dependencies>
</project>

2. api/src/main/yang

 sqmf.yang: The YANG file which generates the thesis’s SDN module, named sqmf.
The module contains two RPCs defined in the YANG file: startMonitoringLinks and
stopMonitoringLinks. For each RPC, the required input is specified. Each input field
required is denoted as leaf and a name and type must be specified for it.

module sqmf {
 yang-version 1;
 namespace
 "urn:opendaylight:params:xml:ns:yang:sqmf";
 prefix "sqmf";
 revision "2014-12-10" {
 description "Initial revision of sqmf model";
 }
 typedef ApplicationType {
 type enumeration {
 enum "VoIP";
 enum "Video";
 }
 }
 rpc startMonitoringLinks{
 input{
 leaf srcNode {
 type string;
 }
 leaf dstNode {
 type string;
 }
 leaf QoEThreshold {
 type string;
 }
 leaf application {
 type ApplicationType;
 }
 }
 }
 rpc stopMonitoringLinks{

 }
}

When the project is compiled, the YANG file generates one Java class per defined
RPC and defined entity (e.g. typedef), which are used by the Java code in order to

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 119

implement the RPCs' desired functionalities. For each RPC, Java classes
corresponding to its input and output are generated. Also a service class is
generated, which contains the prototypes of all the defined RPCs and enables their
implementation. These classes can be found in the path
api/target/classes/org/opendaylight/yang/gen/v1/urn/opendaylight/params/xml/ns/ya
ng/sqmf/rev141210 and are:

o ApplicationType: An enumeration containing the VoIP and video
application types. It is used in the Java code to specify the user’s
selection.

o SqmfService: A class gathering all the implemented RPCs together. It is
used in the Java code to implement the body of the created RPCs.

public interface SqmfService extends RpcService {

 Future<RpcResult<Void>> startFailover(StartFailoverInput var1);

 Future<RpcResult<Void>> stopMonitoringLinks();

 Future<RpcResult<Void>>startMonitoringLinks(StartMonitoringLinksInput var1);

}

o StartMonitoringLinksInput: A class representing the required input for
startMonitoringLinks, It is used in the Java code to get the user’s input for
the RPC.

public interface StartMonitoringLinksInput extends DataObject,
Augmentable<StartMonitoringLinksInput> {

 QName QNAME = QName.create("urn:opendaylight:params:xml:ns:yang:sqmf",
 "2014-12-10", "input").intern();

 String getSrcNode();

 String getDstNode();

 String getQoEThreshold();

 ApplicationType getApplication();

}

3. impl

 pom.xml: Contains the dependencies for impl module, which are some default SDN
Controller features and the api module.

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://maven.apache.org/POM/4.0.0">
<parent>
 <groupId>org.opendaylight.controller</groupId>
 <artifactId>config-parent</artifactId>
 <version>0.5.1-Boron-SR1</version>
 <relativePath/>

file:///C:/Users/user/Downloads/sqmf/sqmf/impl/pom.xml

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 120

</parent>
<modelVersion>4.0.0</modelVersion>
<groupId>sqmf</groupId>
<artifactId>sqmf-impl</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>bundle</packaging>
<properties>
 <openflow.plugin.version>0.3.1-Boron-SR1</openflow.plugin.version>
 <l2switch.version>0.4.1-Boron-SR1</l2switch.version>
 <jung2.version>2.0.1</jung2.version>
 <mdsal.version>1.4.1-Boron-SR1</mdsal.version>
</properties>
<dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>sqmf-api</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.openflowplugin.model</groupId>
 <artifactId>model-flow-service</artifactId>
 <version>${openflow.plugin.version}</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.controller.model</groupId>
 <artifactId>model-topology</artifactId>
 <version>${mdsal.version}</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.openflowplugin</groupId>
 <artifactId>openflowplugin-api</artifactId>
 <version>${openflow.plugin.version}</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.l2switch.addresstracker</groupId>
 <artifactId>addresstracker-impl</artifactId>
 <version>${l2switch.version}</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.controller.thirdparty</groupId>
 <artifactId>net.sf.jung2</artifactId>
 <version>${jung2.version}</version>
 </dependency>
 <dependency>
 <groupId>org.jgrapht</groupId>
 <artifactId>jgrapht-core</artifactId>
 <version>1.0.1</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.controller</groupId>
 <artifactId>liblldp</artifactId>
 <version>0.12.0-SNAPSHOT</version>

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 121

 </dependency>
 <dependency>
 <groupId>org.opendaylight.openflowplugin.applications</groupId>
 <artifactId>topology-lldp-discovery</artifactId>
 <version>0.4.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.controller</groupId>
 <artifactId>liblldp</artifactId>
 <version>0.11.1-Boron-SR1</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.openflowplugin.applications</groupId>
 <artifactId>topology-lldp-discovery</artifactId>
 <version>0.3.1-Boron-SR1</version>
 </dependency>
 <dependency>
 <groupId>sqmf</groupId>
 <artifactId>sqmf-api</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
</project>

4. impl/src/main/java/sqmf/impl

 DomainLink.java: The class modeling a link of the graph using jgrapht library
(added as Maven dependency in impl’s pom.xml). It contains an ODL link as well its
ODL id (e.g. openflow:1:1).

 DomainNode.java: The class modeling a node of the graph using jgrapht library. It
contains the node's id inside the graph (e.g. 1), the node's ODL ID (e.g. openflow:1)
and the graph's id which the node belongs to.

 ExecuteShellCommand.java: The class which executes a shell command through
the Java code. This is used with video application type to run commands the
ffmpeg –i VIDEO_PATH –hide_banner and ffprobe -show_frames [VIDEO_PATH] |
grep key_frame in order to parse their outputs and extract the video frame rate,
format, bit rate, codec and key frame interval respectively.

 GraphOperations.java: The class which handles the network topology and
translates it into a Java graph. It contains methods to add links and nodes to the
graph, as well as to remove links. Nodes, once added, are not removed from the
graph; only their links can be removed, meaning that the node is actually not used
in the graph.

 LatencyMonitor.java: The class which measures the latency of a link. For each link,
the core method of the class sends a packet from the source node so that the
destination can receive it, and forward it to the controller where the interval can be
measured. The method then waits until a global variable, latency, is updated with
the computed interval, and then returns it. The core method is:

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 122

public Long MeasureNextLink(Link link, String srcMac, String nextNodeConnector)
{

 MonitorLinksTask.packetReceivedFromController = false;

 latency = -1L;

 String nodeConnectorId = link.getSource().getSourceTp().getValue();

 String nodeId = link.getSource().getSourceNode().getValue();

 packetSender.sendPacket(0, nodeConnectorId, nodeId, srcMac,
 nextNodeConnector);

 while (latency == -1) {

 }

 return latency;

}

 LLDPUtils.java: The utility class dealing with LLDP packets. It creates the payload
for the packet which is created and sent by PacketSender.java (explained later) for
delay monitoring. The code for this class was not created in the context of the
current thesis, but instead was found on the URL
https://github.com/opendaylight/openflowplugin/blob/master/applications/lldp-
speaker/src/main/java/org/opendaylight/openflowplugin/applications/lldpspeaker/LL
DPUtil.java.

 MonitorLinksTask.java: The core class of the QoE monitoring functionality, which is
used periodically. It measures the delay and packet loss for VoIP or frame rate, bit
rate and packet loss for video and computes the QoE for the application. Its core
function is presented:

public void run() {

 double pathMOS = -1;

 // if application streamed is VoIP
 if (SqmfImplementation.applicationType.equals(VoIP.getName())){
 Long delay = monitorDelay(SqmfImplementation.mainGraphWalk);
 double packetLoss = monitorPacketLoss();
 System.out.println("Total delay is " + delay + " ms");
 System.out.println("Total loss is " + packetLoss + "%");
 pathMOS = VoIP.estimateQoE(delay, packetLoss);
 }
 // if application streamed is Video
 else if (SqmfImplementation.applicationType.equals(Video.getName())){
 double packetLoss = monitorPacketLoss();
 int bitsReceivedCount = findBits();
 //float frameRate = computeVideoFPS(videoAbsolutePath);
 float frameRate = videoFPS;
 float N = computeN(frameRate);
 float BR = computeVideoBitRate(videoAbsolutePath);

 float bitRate;

https://intracom-telecom.webex.com/intracom-telecom/j.php?MTID=mfe6b8c098cb0d33dea44bb5706529409
https://intracom-telecom.webex.com/intracom-telecom/j.php?MTID=mfe6b8c098cb0d33dea44bb5706529409
https://intracom-telecom.webex.com/intracom-telecom/j.php?MTID=mfe6b8c098cb0d33dea44bb5706529409

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 123

 if (bitsReceivedCount == 0){
 BR = 0;
 }
 if (frameRate != -1){
 pathMOS = Video.estimateQoE(frameRate, BR, packetLoss, videoCase);
 }

 System.out.println("FPS is " + frameRate);
 System.out.println("BR is " + BR);
 System.out.println("PLR is " + packetLoss);

 }

 System.out.println("MOS is " + pathMOS);
 if (linkFailure || ((pathMOS >= 0) && (pathMOS <
 SqmfImplementation.QoEThreshold))) {
 System.out.println("MOS is lower than the threshold.");
 if (!isFailover && PacketProcessing.videoHasStarted) {
 if (!SqmfImplementation.fastFailover) {
 SqmfImplementation.changePath();
 }
 }
 else{
 System.out.println("Cannot change path although QoE low.");
 }
 }
 System.out.println("---");
 }

It is important to note that the highlighted line is the key to the framework’s
mechanism; if commented, the path will not change even if low QoE is detected
and the framework will implement a monitoring function, without taking corrective
actions.

 NetworkGraph.java: The class modeling the network topology. It contains an
instance of the network graph, as well as methods to update this instance with
nodes and links additions or removals.

 PacketParsingUtils.java: The class containing the functions to parse an incoming
packet to the SDN Controller. The code for this class was not created in the context
of the current thesis, but instead was found on the URL
https://github.com/sdnhub/SDNHub_Opendaylight_Tutorial/blob/master/commons/u
tils/src/main/java/org/sdnhub/odl/tutorial/utils/PacketParsingUtils.java.

 PacketProcessing.java: The class which listens for packets received by the
controller and examines them.

o If the packet received is a UDP packet received from the ingress node or
the egress node, it is counted to the packets sent from the source or
received from the destination respectively, so that packet loss is
computed.

o If the packet received is a UDP packet having the value 00:00:00:00:00:09
as its source MAC address, it is understood that it was sent to the

https://github.com/sdnhub/SDNHub_Opendaylight_Tutorial/blob/master/commons/utils/src/main/java/org/sdnhub/odl/tutorial/utils/PacketParsingUtils.java
https://github.com/sdnhub/SDNHub_Opendaylight_Tutorial/blob/master/commons/utils/src/main/java/org/sdnhub/odl/tutorial/utils/PacketParsingUtils.java

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 124

controller by a switch which received the packet from its previous switch,
therefore delay is measured.

 PacketSender.java: The class creating a packet with a specific MAC address -
00:00:00:00:00:09 in particular - and sending it to the output interface of a node,
which leads to the next node of the path. The method sending the packet is:

public boolean sendPacket(String outputNodeConnector, String nodeId, String
srcMac, String nextNodeConnector) {

 MacAddress srcMacAddress = new MacAddress(srcMac);
 String nodeConnectorId = outputNodeConnector.split(":")[2];

 NodeRef ref = createNodeRef(nodeId);
 NodeConnectorId ncId = new NodeConnectorId(outputNodeConnector);
 NodeConnectorKey nodeConnectorKey = new NodeConnectorKey(ncId);
 NodeConnectorRef nEgressConfRef = new
 NodeConnectorRef(createNodeConnRef(nodeId, nodeConnectorKey));

 byte[] lldpFrame = LLDPUtils.buildLldpFrame(new NodeId(nodeId),
 new NodeConnectorId(outputNodeConnector), srcMacAddress,
 Long.parseLong(nodeConnectorId));

 ActionBuilder actionBuilder = new ActionBuilder();
 ArrayList<Action> actions = new ArrayList<>();

 Action outputNodeConnectorAction = actionBuilder
 .setOrder(0).setAction(new OutputActionCaseBuilder()
 .setOutputAction(new OutputActionBuilder()
 .setOutputNodeConnector(new Uri(nodeConnectorId))
 .build())
 .build())
 .build();
 actions.add(outputNodeConnectorAction);

 TransmitPacketInput packet = new TransmitPacketInputBuilder()
 .setEgress(nEgressConfRef)
 .setNode(ref)
 .setPayload(lldpFrame)
 .setAction(actions)
 .build();
 sentTimes.put(nextNodeConnector, System.currentTimeMillis());

 Future<RpcResult<Void>> future =
 packetProcessingService.transmitPacket(packet);
 try {
 if (future.get().isSuccessful()) {
 return true;
 } else {
 return false;
 }
 } catch (Exception e) {
 e.printStackTrace();

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 125

 return false;
 }
}

 SqmfImplementation.java: The core class of SQMF, implementing its functionality.
This class is based on the RPCs generated by the YANG module of api and
implements their bodies. The RPC which implements the QoE monitoring gets the
user input and checks its validity, configures the paths and starts the monitoring
task. The code is:

@Override
public Future<RpcResult<Void>> startMonitoringLinks(StartMonitoringLinksInput
input) {

 if (input != null){
 if (input.getSrcNode() != null && input.getDstNode() != null &&
 input.getQoEThreshold() != null && input.getApplication() != null){
 srcNode = input.getSrcNode();
 dstNode = input.getDstNode();
 try {
 Float QoE = Float.parseFloat(input.getQoEThreshold());
 QoEThreshold = QoE.doubleValue();
 }
 catch (NumberFormatException e){
 LOG.info("Wrong number format for QoE threshold, try again.");
 return
 Futures.immediateFuture(RpcResultBuilder.<Void>success().build());
 }
 applicationType = input.getApplication().getName();
 }
 }
 else{
 LOG.info("A field of the input is empty, try again.");
 return Futures.immediateFuture(RpcResultBuilder.<Void>success().build());
 }

 // if the application type is video, launch a file chooser to select a video file to
 be streamed
 if (applicationType.equals(Video.getName())){
 FileDialog dialog = new FileDialog((Frame)null, "Select File to Open");
 dialog.setMode(FileDialog.LOAD);
 dialog.setVisible(true);
 videoAbsolutePath = dialog.getDirectory() + dialog.getFile();
 videoCase = findVideoCase(videoAbsolutePath);
 if (videoCase == 0){
 LOG.info("Video required specifications not met, choose another video.");
 return
 Futures.immediateFuture(RpcResultBuilder.<Void>success().build());
 }
 }

 //first, add rules to ingress and egress nodes to forward their packets to

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 126

 controller
 if (NetworkGraph.getInstance().getGraphNodes() != null &&
 NetworkGraph.getInstance().getGraphLinks() != null) {
 Hashtable<String, DomainNode> domainNodes =
 NetworkGraph.getInstance().getDomainNodes();
 DomainNode sourceNode = domainNodes.get(srcNode);
 DomainNode destNode = domainNodes.get(dstNode);

 //check if the given switches are edge switches, therefore connected to
 hosts
 if (!checkIfEdgeSwitches(sourceNode, destNode)){
 LOG.info("Not edge switches given, returning...");
 return
 Futures.immediateFuture(RpcResultBuilder.<Void>success().build());
 }

 List<GraphPath<Integer, DomainLink>> possiblePaths =
 createPaths(NetworkGraph.getInstance(), sourceNode.getNodeID(),
 destNode.getNodeID());
 if (possiblePaths.size() > 1) {
 GraphPath<Integer, DomainLink> mainPath = possiblePaths.get(0);
 GraphPath<Integer, DomainLink> failoverPath = possiblePaths.get(1);

 //determine main and failover path
 mainGraphWalk = mainPath;
 failoverGraphWalk = failoverPath;
 findPorts(mainGraphWalk, sourceNode, destNode);

 //register packet processing listener
 PacketProcessing packetProcessingListener = new
 PacketProcessing(srcNode, dstNode, srcMacForDelayMeasuring);
 if (notificationService != null) {
 notificationService.
 registerNotificationListener(packetProcessingListener);
 }
 SwitchConfigurator switchConfigurator = new SwitchConfigurator(db);
 //configure ingress and egress switches to send their packets to controller
 (for packet loss monitoring)
 switchConfigurator.configureIngressAndEgressForMonitoring(srcNode,
 dstNode, inputPorts, outputPorts);
 /* then, add rules to all nodes of both main and failover path to forward
 packets with specific MAC to controller (for delay monitoring) */
 switchConfigurator.
 configureNodesForDelayMonitoring(mainGraphWalk.getEdgeList(),
 srcMacForDelayMeasuring);
 switchConfigurator.
 configureNodesForDelayMonitoring(failoverGraphWalk.getEdgeList(),
 srcMacForDelayMeasuring);
 switchConfigurator.
 configureNodesForUDPTrafficForwarding(mainGraphWalk.getEdgeList(),
 inputPorts, outputPorts);
 }

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 127

 }
 else{
 return Futures.immediateFuture(RpcResultBuilder.<Void>success().build());
 }

 //finally, start monitoring links
 timer = new Timer();
 monitorLinksTask = new MonitorLinksTask(db, rpcProviderRegistry,
 srcMacForDelayMeasuring, videoAbsolutePath,
 Video.getVideoFPS(videoAbsolutePath), videoCase);
 timer.schedule(monitorLinksTask, 0, 5000);

 return Futures.immediateFuture(RpcResultBuilder.<Void>success().build());
}

The RPC which stops the monitoring of links is:

@Override
public Future<RpcResult<Void>> stopMonitoringLinks() {
 System.out.println("Stopping the monitoring of links.");
 if (monitorLinksTask != null) {
 monitorLinksTask.cancel();
 }
 if (timer != null) {
 timer.cancel();
 timer.purge();
 }
 return Futures.immediateFuture(RpcResultBuilder.<Void>success().build());
}

 SqmfProvider.java: The class which initiates the created SDN module sqmf. It
initializes services which will provide access to the SDN Controller’s MDSAL and to
notifications and starts the core class SqmfImplementation.java

 SwitchConfigurator.java: The class which contains all the necessary methods for
any switch configuration. Its methods insert the desired OF rules in the appropriate
switches.

 TopologyListener.java: The class which detects for topology changes in the
network and updates the graph respectively. Each time a link change happens, it
keeps a list with all the links which changed their status and asks for either addition
to or removal from the network graph.

 Video.java: The class modeling the video application type. It contains methods for
QoE estimation as well as for video characteristics detection, such as frame rate
and codec. One of the most significant methods is the one estimating the QoE of a
video application, using the G.1070 E-model formula:

public static double estimateQoE(float frameRate, float bitRate, double packetLoss,
int videoCase) {

 assignCoordinatesValues(videoCase);
 double OFr = v1 + v2*bitRate;

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 128

 double IOfr = v3 - v3/(1 + (Math.pow(bitRate, v5)/v4));
 double DFrv = v6 + v7*bitRate;
 double DPplV = v10 + v11*Math.exp(-frameRate/v8) + v12*Math.exp(
 bitRate/v9);
 double numeratorIcoding = -Math.pow((Math.log(frameRate)-Math.log(OFr)), 2);
 double denominatorIcoding = 2*Math.pow(DFrv, 2);
 double Icoding = IOfr*Math.exp(numeratorIcoding/denominatorIcoding);
 double Itransmission = Math.exp(-(packetLoss/DPplV));
 double MOS = 1 + Icoding*Itransmission;
 return MOS;
}

Other important methods in the video modeling class are the ones obtaining the
video codec, frame rate, key frame interval and format by running a shell command
through Java and parsing its output. Finally, the last method of the class is the one
assigning values to the 12 coefficients needed for the video quality computation, as
shown in 3.3.2. The five cases presented in Table 3.2 are supported.

 VoIP.java: The class modeling the VoIP application type. The most significant
method is the one estimating the QoE of a VoIP application, using the G.107 E-
model:

public static double estimateQoE(Long delay, double packetLoss)
{
 int h;
 if (delay - 177.3 > 0){
 h = 1;
 }
 else {
 h = 0;
 }
 double R = 94.2 - 0.024*delay - 0.11*h*(delay-177.3) - 11 -
 40*Math.log(1+10*packetLoss);
 double MOS;
 if (R < 0){
 MOS = 0;
 }
 else{
 MOS = 1 + 0.035*R + R*(R-60)*(100-R)/1000000;
 }
 return MOS;
}

An overall correlation between the created classes is shown in Figure 7.2.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 129

Figure 7.2: SQMF classes correlation

7.4 SQMF DEMONSTRATION

In order to give a more vivid description of the implemented framework, this subchapter
presents a use case of SQMF: a VoIP or video streaming case where a link failure
occurs and corrective actions are made so that the QoE is preserved at high levels. The
provided input, the established OF rules at the beginning of the QoE monitoring, the
monitoring messages, the established OF rules when the link failure occurs and
Wireshark captures will be presented.

To simulate the use case, the first step is to launch the SDN controller, create the
network topology shown in Image 6.1 and connect it to the controller. It is important to
note that the command pingall must be typed in the Mininet console in order for the
framework to operate, as it makes the hosts and their links to the topology visible to the
controller. The controller’s message when notified about the added links is shown in
Image 7.6.

Image 7.6: The controller message when the new topology is created

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 130

After this, the user browses to the DLUX page, selects sqmf operations
startMonitoringLinks and provides the necessary input. Image 7.7 depicts the provided
input in case of VoIP traffic, whereas Image 7.8 shows the video traffic case’s input,
while the prompt for video selection is shown in Image 7.9.

Image 7.7: The provided input for VoIP traffic

Image 7.8: The provided input for video traffic

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 131

Image 7.9: Prompt for video selection, after input for video application type

By clicking Send, the RPC begins its functionality by computing the transmission paths;
the main path will be s1 s9 s8, as it is the shortest, and the backup path will be
s1 s2 s3 s4 s5 s6 s7 s8. Then the RPC installs the appropriate OF
rules in the switches:

 For the path’s ingress switch s1, the inserted rule is depicted in Image 7.10 with
priority 1000, so that it is matched first. The rule is used both for the path
establishment and for packet loss monitoring; it matches UDP traffic as well as the
input port, and if the packet is coming from the sender host, it is forwarded both to
the controller, so that packet loss is measured, and to the next node of the path.
The other rules are inserted by default from the OF switch.

Image 7.10: OF rules established in ingress switch for QoE monitoring

 In the core switches, i.e. only s9 in the case of the topology used for this thesis, the
inserted rules are depicted in Image 7.11 with priority 1000. The first rule with
priority 1000 is used for delay measurement; if a packet with 00:00:00:00:00:09 as
source MAC address is received, it is assumed that it was sent from the previous
node (s1 in this case) and is forwarded to the controller. The second rule with

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 132

priority 1000 is used for the path establishment; if a UDP packet is received from
the input port, it is forwarded to the next node. The other rules are inserted by
default from the OF switch.

Image 7.11: OF rules established in core switches for QoE monitoring

 In the egress switch s8 the inserted rules are depicted in Image 7.12 with priority
1000. The first rule with priority 1000 is used both for the path establishment and for
packet loss monitoring; it matches UDP traffic as well as the input port, and if the
packet is coming from the previous node, it is forwarded both to the controller, so
that packet loss is measured, and to the destination host. The second rule with
priority 1000 is used for delay measurement; if a packet with 00:00:00:00:00:09 as
source MAC address is received, it is assumed that it was sent from the previous
node (s9 in this case) and is forwarded to the controller for delay monitoring. The
other rules are inserted by default from the OF switch.

Image 7.12: OF rules established in egress switch for QoE monitoring

 The core switches of the failover path are also configured for delay monitoring, just
as the core switches of the main path. The OF rules for s2 – s7 are identical to the
first rule shown in Image 7.11.

After the OF rules establishment, a periodic task is started and part of the output in the
controller console is depicted in Image 7.13. The pattern is repeated every 5 seconds.

Image 7.13: Part of the controller output after QoE monitoring has started

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 133

The next step is to create VoIP or video traffic between h1 and h2. The OF rules inserted
in the nodes ensure that the traffic reaches h2, as depicted in the following Wireshark
capture (Image 7.14):

Image 7.14: The traffic received by the destination (h2)

Let’s now assume that the link between s9 and s8 faces a failure. In this case, without
SQMF, the destination would stop receiving traffic as shown in Image 7.15:

Image 7.15: Traffic stops being delivered at the destination when link failure occurs and no
corrective actions are made

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 134

However, using the SQMF functionality, the controller inserts new OF rules in the
switches when low QoE is detected. More specifically:

 The ingress switch is configured to now output the incoming UDP packets to the
backup path (instead of the main path) and the controller, as depicted in Image
7.16 with the first rule. The output port has changed to 1, compared to output 3 of
the first rule of Image 7.10.

Image 7.16: The OF rules established in the ingress switch when low QoE is detected

 The egress switch is configured to now detect packets coming from the backup
path instead of the main path, as depicted in Image 7.17 with the first rule. The
in_port has changed to 1, compared to in_port 3 of the first rule of Image 7.12.

Image 7.17: The OF rules established in the egress switch when low QoE is detected

As a result, the traffic only stops instantly for a very short time and then is redirected to
the backup path. The instant traffic flow pause and recovery is depicted in Image 7.18
and the relevant controller message in Image 7.19.

Image 7.18: Instant pause and recovery of traffic flow in case of link failure, using SQMF

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 135

Image 7.19 : Controller output when low QoE is detected

Finally, to stop the monitoring process, the user browses to the DLUX page and selects
sqmf operations stopMonitoringLinks (Image 7.20).

Image 7.20: Calling stopMonitoringLinks RPC

By clicking on Send, the SDN controller outputs a relevant message, as Image 7.21
shows.

Image 7.21: The controller message after calling stopMonitoringLinks

7.5 SQMF EVALUATION

The current subchapter conducts a proof-of-concept evaluation of SQMF through
graphical representations that compare the network’s behavior with and without the
SQMF functionality, i.e. comparing the default forwarding with the QoE-based
forwarding. The results were extracted from the use cases described in Section 7.4.
The evaluation was carried out on the topology depicted in Image 6.1.

7.5.1 SQMF on VoIP traffic

In order to evaluate the SQMF functionality for VoIP applications, VoIP traffic was
generated from h1 to h2 for 105 seconds. The parameters used for the current
experiment are shown in Table 7.1.

Table 7.1: Parameters used for SQMF evaluation on VoIP traffic

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 136

As a first case, the results of which are presented in Table 7.2, the QoE monitoring –
based forwarding functionality did not take place and therefore the packets kept being
forwarded to the main path as initially configured, even when a link failure occurred.
This caused total packet loss after the link failure.

Table 7.2: Delay, R, packet loss and MOS during VoIP traffic generation with link failure, without
SQMF

Time (s) Delay (s) Packet Loss

(%)

R MOS

5 0.004 0 83.104 4.135726358

10 0.022 0 82.672 4.120869894

15 0.003 0 83.128 4.136544906

20 0.003 0 83.128 4.136544906

25 0.001 87.0445344 -7.727395912

7.727395912

1

30 0.001 100 -12.73981091 1

35 0.001 100 -12.73981091 1

40 0.002 100 -12.76381091 1

45 0.001 100 -12.73981091 1

50 0.001 100 -12.73981091 1

55 0.001 100 -12.73981091 1

60 0.001 100 -12.73981091 1

65 0.0014 100 -13.05181091 1

70 0.0015 100 -13.07581091 1

75 0.001 100 -12.73981091 1

80 0.002 100 -12.76381091 1

85 0.002 100 -12.76381091 1

90 0.005 100 -12.83581091 1

95 0.001 100 -12.73981091 1

100 0.001 100 -12.73981091 1

105 0.001 100 -12.73981091 1

Then, the same experiment was carried out using the SQMF functionality. In this case,
the controller efficiently changed the transmission path when the link failure occurred,
as it detected QoE levels below the predefined threshold, by configuring the packets to
be forwarded to the failover path, so the overall packet losses were much lower. The
results of the second case are presented in Table 7.3.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 137

Table 7.3: Delay, R, packet loss and MOS during VoIP traffic generation with link failure, with
SQMF

Time (s) Delay (s) Packet Loss (%) R MOS

5 0.006 0 83.056 4.135726358

10 0.008 0 83.008 4.120869894

15 0.003 0 83.128 4.136544906

20 0.005 0 83.08 4.136544906

25 0.002 83.805668 -6.393607512 1

30 0.009 1.2244898 78.36348452 3.960670612

35 0.02 0 82.72 4.12253203

40 0.008 0 83.008 4.132444968

45 0.013 0 82.888 4.128327083

50 0.012 0 82.912 4.129152092

55 0.005 0 83.08 4.134907089

60 0.022 0 82.672 4.120869894

65 0.01 0 82.96 4.130799964

70 0.018 0 82.768 4.124191323

75 0.017 0 82.972 4.125019902

80 0.013 0 82.888 4.128327083

85 0.016 0 82.816 4.125847767

90 0.011 0 82.936 4.129976386

95 0.017 0 82.972 4.125019902

100 0.01 0 82.96 4.130799964

105 0.01 0 82.96 4.130799964

By illustrating the results of the two cases, with and without QoE monitoring, in the
same graphical representation, it is obvious that QoE monitoring-based forwarding
performs much better than the default forwarding to a configured main path. Figure 7.3
shows that QoE monitoring-based forwarding achieves much lower packet losses when
a link failure occurs, managing to recover immediately after a small period of packet
loss detection, in contrast to the default case where all the packets are lost after the link
failure.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 138

Figure 7.3: Packet loss comparison between cases with and without SQMF in VoIP traffic
generation, when a link failure occurs

Therefore, the QoE Monitoring-based forwarding preserves the total QoE and keeps it
at high levels even after the link failure, whereas in the default case the QoE faces a
permanent degradation after the failure, as depicted in Figure 7.4.

Figure 7.4: MOS comparison between cases with and without SQMF in VoIP traffic generation,
when a link failure occurs

7.5.2 SQMF on video traffic

In order to evaluate the QoE monitoring functionality for video applications, video
traffic was streamed from h1 to h2 for 105 seconds. The video used is the same as
the one used for Chapter’s 6 experiments, therefore the video parameters are depicted
in Table 6.4.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 139

As a first case, the results of which are presented in Table 7.4, the SQMF functionality
did not take place and therefore the packets kept being forwarded to the main path as
initially configured, even when a link failure occurred. This caused total packet loss after
the link failure.

Table 7.4: Packet loss and Vq during video streaming with link failure, without SQMF

Time (s) Packet Loss (%) Vq

5 0 4.458499273

10 0 4.458499273

15 0 4.458499273

20 0 4.458499273

25 89.1222806 2.03038674

30 100 1

35 100 1

40 100 1

45 100 1

50 100 1

55 100 1

60 100 1

65 100 1

70 100 1

75 100 1

80 100 1

85 100 1

90 100 1

95 100 1

100 100 1

105 100 1

Then, the same experiment was carried out using the SQMF functionality. In this case,
the controller monitored periodically the QoE and when the QoE was detected to be
lower than the threshold, due to the link failure, it efficiently changed the transmission
path by configuring the packets to be forwarded to the backup path, so the packet
losses were much lower and of smaller duration. The results of the second case are
presented in Table 7.5.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 140

Table 7.5: Packet loss and Vq during video streaming with link failure, with SQMF

Time (s) Packet Loss (%) Vq

5 0 4.458499273

10 0 4.458499273

15 0 4.458499273

20 0 4.458499273

25 85.5957768 2.080959055

30 6.4275037 4.169280356

35 0 4.458499273

40 0 4.458499273

45 0 4.458499273

50 0 4.458499273

55 0 4.458499273

60 0 4.458499273

65 0 4.458499273

70 0 4.458499273

75 0.6728343 4.427026544

80 0 4.458499273

85 0 4.458499273

90 0 4.458499273

95 0 4.458499273

100 0 4.458499273

105 0 4.458499273

By illustrating the results of the two cases, with and without QoE monitoring, in the
same graphical representation, it is obvious that QoE monitoring-based forwarding
performs much better for video applications than the default forwarding to a configured
main path. Figure 7.5 shows that QoE monitoring-based forwarding achieves much
lower packet losses when a link failure occurs, managing to recover immediately after a
small period of packet loss detection, in contrast to the default case where all the
packets are lost after the link failure.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 141

Figure 7.5: Packet loss comparison between cases with and without SQMF in video streaming,
when a link failure occurs

Therefore, the QoE monitoring-based forwarding preserves the total QoE and keeps it
at high levels even after the link failure, whereas in the default case the QoE faces a
permanent degradation after the failure, as depicted in Figure 7.6.

Figure 7.6: Vq comparison between cases with and without SQMF in video streaming, when a link
failure occurs

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 142

8. CONCLUSION AND FUTURE WORK

This MSc thesis presents the current networking state which is characterized by the
explosion of mobile devices and content, server virtualization, and advent of cloud
services. Also, it emphasizes that the design of conventional networks is hierarchical,
leading to a static architecture which cannot deal with the dynamic computing and
storage needs of today's computing environments. The current networks’ limitations
raise the need for an alternative approach to effectively face these challenges.

This alternative approach is SDN, which decouples the control from the data plane and
transforms the network elements to simple forwarding devices, routing the traffic
according to rules set to them by the control plane. SDN has been described in terms of
architecture, controller, dominant protocol, use cases, advantages and disadvantages.

As in any technology, a very important factor in the evaluation of SDN is the user's
satisfaction from the service offered to him, or the QoE, as the appropriate term is.
Quality assessment schemes act as translator between a set of technical (QoS) and
non-technical (subjective and contextual) key influence factors and user perception, or
ultimately, user experience. These can be categorized into subjective and objective
quality assessment methods, depending on whether human subjects are involved in the
assessment process or not.

To this end, this thesis has developed an SDN framework for monitoring the QoE of
VoIP and video applications in real-time that manages to preserve QoE at acceptable
levels, despite sudden network problems, such as link failures. This is achieved by
periodically monitoring the necessary QoE-related parameters from the network,
evaluating the QoE in real time and changing the transmission path in the case that low
QoE is detected, as specified by a threshold. This mechanism ensures that the packets
will always be transmitted through a path which preserves an acceptable QoE level.

The implemented framework has been presented and evaluated, resulting in much
lower packet losses than the default forwarding, and therefore to much higher QoE.
This thesis’ contribution goes far beyond an abstract framework introduction, as it
provides a practical implementation of real-time QoE monitoring in SDNs by using real
QoE estimation models. It also describes in detail the implementation steps, which can
be replicated by any researcher.

Some interesting issues that have been identified as future work points are the
following:

 The extension of SQMF to provide more than one backup paths, in case that the
QoE is detected again low in the (first) backup path

 The experimentation with different kinds of network problems, not related to link
failure (e.g. heavy congestion)

 The dynamic coefficients computation for the video QoE estimation model, so that
the application can additionally deal with more challenging video types.

 The integration of different QoE models into SQMF, related to other application
types such as TCP-based video streaming, web browsing and IPTV.

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 143

ABBREVIATIONS - ACRONYMS

1G First Generation

2G Second Generation

4G Fourth Generation

5G Fifth Generation

ABR Adaptive Bit Rate

A-CPI Application-Control plane Interface

API Application Programming Interface

ARP Address Resolution Protocol

ARPU Average Revenue Per User

ASIC Application-specific Integrated Circuit

ATM Asynchronous Transfer Mode

BYOD Bring Your Own Device

CAGR Compound Annual Growth Rate

CAPEX Capital Expenditure

CDN Content Delivery Network

CLI Command Line Interface

CRUD Create, Retrieve, Update, Delete

D-CPI Data-Control plane Interface

D-ITG Distributed Internet Traffic Generator

DOM Document Object Model

DPI Deep Packet Inspection

DR Decay Rate

DSL Domain-Specific Language

ForCES Forwarding and Control Element Separation

FR Full Reference

HAS HTTP Adaptive Streaming

HD High Definition

HTTP HyperText Transfer Protocol

ICT Information and Communication Technology

IDE Integrated Development Environment

IDL Interface Description Language

IETF Internet Engineering Task Force

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 144

IF Influence Factor

IoE Internet of Everything

IoT Internet of Things

IP Internet Protocol

IPTV Internet Protocol Television

IPv4 / v6 Internet Protocol version 4 / version 6

ITU-T
International Telecommunications Unit – Telecommunications
Standardization Sector

JVM Java Virtual Machine

KPI Key Performance Indicator

KQI Key Quality Indicator

LARAC Lagrange Relaxation-based Aggregation Cost

LTE Long Term Evolution

LTE-A Long Term Evolution - Advanced

M2M Machine - to - Machine

MDP Markov Description Process

MD-SAL Model-Driven Service Abstraction Layer

MOS Mean Opinion Score

MPD Media Presentation Description

MPLS Multiprotocol Label Switching

NAT Network Address Translation

NBI Northbound Interface

NE Network Element

NETCONF Network Configuration

NFV Network Functions Virtualization

NFVI-PoP NFV Installation - Point of Presence

NOS Network Operating System

NR No Reference

OF OpenFlow

ODL OpenDaylight

OM OpenFlow Module

ONF Open Networking Foundation

OPEX Operational Expenditure

OS Operating System

OTT Over the Top

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 145

OVS Open vSwitch

PAF Path Assignment Function

PCE Path Computation Element

QFF QoE Fairness Framework

QMOF QoS Matching and Optimization Function

QoE Quality of Experience

QoS Quality of Service

REST Representational State Transfer

RESTCONF Representational State Transfer Configuration

RPC Remote Procedure Call

RR Reduced Reference

RSU Road-Side Unit

SAL Service Abstraction Layer

SBI Southbound Interface

SD Standard Definition

SDN Software Defined Networking / Software Defined Network

SDWN
Software Defined Wireless Networking / Software Defined
Wireless Network

SPI Stateful Packet Inspection

SQMF SDN QoE Monitoring Framework

SVC Scalable Video Coding

SLA Service License Agreement

SRT Statistics Retrieval Time

TCP Transmission Control Protocol

TSP Tunnel Setup Protocol

UHD Ultra High Definition

VLAN Virtual Local Area Network

VM Virtual Machine

VNF Virtual Network Function

VoD Video on Demand

VoIP Voice over IP

VQA Video Quality Application

VQAM Video Quality Assurance Manager

VQO Video Quality Orchestrator

VSP Video Service Provider

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 146

WAN Wide Area Network

WAP Wireless Access Point

WWRF Wireless World Research Forum

YANG Yet Another Next Generation

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 147

ANNEX

The SQMF implementation, as well as instructions to download and execute it, are
available in a public Github repository at the following URL:

https://github.com/marievixezonaki/SQMF

https://github.com/marievixezonaki/SQMF

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 148

REFERENCES

[1] L. Sørensen, K. Skouby, “Visions and research directions for the Wireless World”, July 2009, pp. 5-9.
[2] C. Wang et al., “Cellular Architecture and Key Technologies for 5G Wireless Communication

Networks”, IEEE Communications Magazine, February 2014
[3] European Commission, Communication from the Commission to the European Parliament, the

council, the European Social and Economic committee and the committee of the regions, “Exploiting
the employment potential of ICTs”, April 2012, p.3.

[4] “SDN: Transforming Networking to Accelerate Business Agility”,
http://opennetsummit.org/archives/mar14/site/why-sdn.html, March 2014. [Accessed 04/05/2017]

[5] B. Sotirov, “Why Software Defined Networking (SDN)?”, https://www.slideshare.net/lz1dsb/why-sdn,
2015.

[6] D. Kreutz et al., “Software-Defined Networking: A Comprehensive Survey”, Proceedings of the IEEE ,
Volume 103, Issue 1, January 2015.

[7] D. Athow, “Determining the need for Software Defined Networking”,
http://www.techradar.com/news/networking/determining-the-need-for-software-defined-networking-
1253463, June 2014. [Accessed 04/04/2017]

[8] J. du Toit, “The current state of networking: pitfalls of modern network systems”,
https://www.irisns.com/the-current-state-of-networking-pitfalls-of-modern-network-systems, October
2015. [Accessed 04/05/2017]

[9] “Why SDN or NFV Now?”, https://www.sdxcentral.com/sdn/definitions/why-sdn-software-defined-
networking-or-nfv-network-functions-virtualization-now [Accessed 04/05/2017]

[10] CISCO, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014-2019”,
February 2015.

[11] “Software Defined Networking”, https://en.wikipedia.org/wiki/Software-defined_networking, 2017.
[Accessed 04/05/2017]

[12] J. Porras et al., “User 2020 –A WWRF Vision”, September 2014, p. 4.
[13] J. Andrews et al., “What Will 5G Be?”, IEEE JSAC SPECIAL ISSUE ON 5G WIRELESS

COMMUNICATION SYSTEMS, May 2014.
[14] Nokia Solutions and Networks, “White Paper: 5G use cases and requirements”, July 2014.
[15] W. Tong, Z.Peiying “White Paper: 5G: A Technology Vision”, Huawei, 2013.
[16] C. I et al., “Toward Green and Soft: A 5G Perspective”, IEEE Communications Magazine, Volume 52

, Issue 2, February 2014.
[17] G. Wunder et al., “5GNOW: Non-Orthogonal, Asynchronous Waveforms for Future Mobile

Applications”, IEEE Communications Magazine, Volume 52, Issue 2, February 2014.
[18] Ericsson Review, “5G Radio Access”, The communications technology journal since 1924, June

2014.
[19] H. Koumaras et al., “Enabling Agile Video Transcoding over SDN/NFV-enabled Networks”,

International Conference on Telecommunications and Multimedia (TEMU), July 2016.
[20] O. Awobuluyi et al., “Video Quality in 5G Networks: Context-Aware QoE Management in the SDN

Control Plane”, IEEE International Conference on Computer and Information Technology; Ubiquitous
Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing, October 2015.

[21] H. Liu et al., “Software Defined Networking for HTTP Video Quality Optimization”, 15
th
 IEEE

International Conference on Communication Technology (ICCT), November 2013.
[22] A. Kassler et al., “Towards QoE-driven multimedia service negotiation and path optimization with

software defined networking”, 20
th
 International Conference on Software, Telecommunications and

Computer Networks (SoftCOM), 2012.
[23] S. Ramakrishnan and X. Zhu, “An SDN Based Approach To Measuring And Optimizing ABR Video

Quality Of Experience”, Cisco Systems, 2014.
[24] W. Hsu et al., “The Implementation of a QoS/QoE Mapping and Adjusting Application in software-

defined networks”, 2
nd

 International Conference on Intelligent Green Building and Smart Grid
(IGBSG), 2016.

[25] C. Hue et al., “Traffic-aware Networking for Video Streaming Service Using SDN”, IEEE 34
th

International Performance Computing and Communications Conference (IPCCC), December 2015.
[26] Open Networking Foundation (ONF), “Software-Defined Networking (SDN) Definition”,

https://www.opennetworking.org/sdn-resources/sdn-definition, 2017. [Accessed 04/04/2017]
[27] Open Networking Foundation (ONF), “SDN Architecture”,

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-
reports/TR_SDN_ARCH_1.0_06062014.pdf , Issue 1.0. [Accessed 22/05/2017]

[28] M. Jarschel et al., “SDN-based Application-Aware Networking on the Example of YouTube Video
Streaming”, 2

nd
 European Workshop on Software Defined Networks (EWSDN), September 2013.

http://opennetsummit.org/archives/mar14/site/why-sdn.html
https://www.slideshare.net/lz1dsb/why-sdn
http://www.techradar.com/news/networking/determining-the-need-for-software-defined-networking-1253463
http://www.techradar.com/news/networking/determining-the-need-for-software-defined-networking-1253463
https://www.irisns.com/the-current-state-of-networking-pitfalls-of-modern-network-systems
https://www.sdxcentral.com/sdn/definitions/why-sdn-software-defined-networking-or-nfv-network-functions-virtualization-now
https://www.sdxcentral.com/sdn/definitions/why-sdn-software-defined-networking-or-nfv-network-functions-virtualization-now
https://en.wikipedia.org/wiki/Software-defined_networking
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 149

[29] T. Yu et al., “Adaptive Routing for Video Streaming with QoS Support over SDN Networks”,
International Conference on Information Networking (ICOIN), January 2015.

[30] P. Georgopoulos et al., "Towards Network-wide QoE Fairness Using OpenFlow-assisted Adaptive
Video Streaming", ACM SIGCOMM Workshop on Future Human-Centric Multimedia Networking,
August 2013.

[31] P. Georgopoulos et al., “Using Software Defined Networking to enhance the delivery of Video-on-
Demand”, Computer Communications by Elsevier, September 2015.

[32] Σ. Γ. Μαστοράκης, “Μέθοδοι εξουσιοδότησης για δέσμευση πόρων σε Ευφυή – Προγραμματιζόμενα -
Δίκτυα (Software-Defined-Networks)”, May 2014.

[33] T. Zinner et al., “Dynamic application-aware resource management using Software-Defined
Networking: Implementation prospects and challenges”, IEEE Network Operations and Management
Symposium (NOMS), May 2014.

[34] “OpenDaylight: Open Source SDN Platform”, https://www.opendaylight.org. [Accessed 21/06/2017]
[35] “What is an OpenDaylight Controller? AKA: OpenDaylight Platform”,

https://www.sdxcentral.com/sdn/definitions/sdn-controllers/opendaylight-controller. [Accessed
21/06/2017]

[36] “OpenDaylight Project”, https://en.wikipedia.org/wiki/OpenDaylight_Project. [Accessed 21/06/2017]
[37] L. Efremova, “What’s in OpenDaylight?”, https://www.mirantis.com/blog/whats-opendaylight, April

2015. [Accessed 21/06/2017]
[38] “OpenDaylight Application Developer’s Tutorial”, http://sdnhub.org/tutorials/opendaylight/, 2014.

[Accessed 07/07/2017]
[39] “OpenDaylight Controller: MD-SAL: MD-SAL Document Review: Architecture”,

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:MD-
SAL_Document_Review:Architecture. [Accessed 21/06/2017]

[40] G. Hunt, “The Quest for Dominance: OpenFlow or NETCONF for Networks Outside the
Data Center?”, https://networkmatter.com/2015/02/06/the-quest-for-dominance-openflow-or-netconf-
for-networks-outside-the-data-center, February 2015. [Accessed 21/06/2017]

[41] S. Wallin, “Tutorial: Netconf and YANG”, May 2013.
[42] “What is NETCONF”, http://sdntutorials.com/what-is-netconf. [Accessed 21/06/2017]
[43] “NETCONF Overview”, http://www.brocade.com/content/html/en/user-guide/SDN-Controller-2.1.0-

User-Guide/GUID-9E240EBE-223E-4E48-823B-70455037C908.html. [Accessed 21/06/2017]
[44] Cloudenablers Inc., “OpenDaylight and YANG”,

https://www.slideshare.net/Cloudenablers/opendaylight-and-yang/4, April 2016. [Accessed
21/06/2017]

[45] “YANG”, https://en.wikipedia.org/wiki/YANG. [Accessed 21/06/2017]
[46] T. Olvecky, “OpenDaylight, Netconf, Restconf & YANG”, http://sdntutorials.com/opendaylight-netconf-

restconf-and-yang. [Accessed 21/06/2017]
[47] M. Saleem, “SOFTWARE DEFINED NETWORK: USE CASES FROM THE REAL WORLD”,

http://www.routerfreak.com/software-defined-network-use-cases-from-the-real-world, July 2016.
[Accessed 07/06/2017]

[48] M. McNickle, “Five SDN use cases: From video to service orchestration”,
http://searchsdn.techtarget.com/news/2240187268/Five-SDN-use-cases-From-video-to-service-
orchestration, July 2013. [Accessed 07/06/2017]

[49] S. Katukam, “Six Campus Networks SDN Use Cases That You Need to Know About”,
https://www.sdxcentral.com/articles/contributed/sdn-use-cases-campus-networks/2013/07/, July
2013. [Accessed 07/06/2017]

[50] “SDN & NFV Use Cases Defined”, https://www.sdxcentral.com/sdn-nfv-use-cases. [Accessed
07/06/2017]

[51] A. Hakiri et al., “Software-defined Networking: Challenges and Research Opportunities for Future
Internet”, 2014.

[52] S. Perrin, “Defining Use Cases & Business Cases for SDN”, http://www.lightreading.com/carrier-
sdn/sdn-architectures/defining-use-cases-and-business-cases-for-sdn/a/d-id/716315, June 2015.
[Accessed 07/06/2017]

[53] J. Cottrell, “What Is SDN? Why Is It Important?”, https://www.mirazon.com/sdn-important, March
2014. [Accessed 04/05/2017]

[54] V. Shamugam et al., “Software Defined Networking challenges and future direction: A case study of
implementing SDN features on OpenStack private cloud”, March 2016.

[55] A. Shapochka, “4 Challenges Lying in the Wait of SDN”, http://www.nojitter.com/post/240169834/4-
challenges-lying-in-the-wait-of-sdn, April 2015. [Accessed 08/06/2017]

[56] V. Shamugam et al., “Software Defined Networking challenges and future direction: A case study of
implementing SDN features on OpenStack private cloud”,
http://iopscience.iop.org/article/10.1088/1757-899X/121/1/012003/pdf, 10

th
 Curtin University of

Technology Science and Engineering International Conference (CUTSE), November 2015.

https://www.opendaylight.org/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/opendaylight-controller
https://en.wikipedia.org/wiki/OpenDaylight_Project
https://www.mirantis.com/blog/whats-opendaylight
http://sdnhub.org/tutorials/opendaylight/
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:MD-SAL_Document_Review:Architecture
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:MD-SAL_Document_Review:Architecture
https://networkmatter.com/2015/02/06/the-quest-for-dominance-openflow-or-netconf-for-networks-outside-the-data-center
https://networkmatter.com/2015/02/06/the-quest-for-dominance-openflow-or-netconf-for-networks-outside-the-data-center
http://sdntutorials.com/what-is-netconf
http://www.brocade.com/content/html/en/user-guide/SDN-Controller-2.1.0-User-Guide/GUID-9E240EBE-223E-4E48-823B-70455037C908.html
http://www.brocade.com/content/html/en/user-guide/SDN-Controller-2.1.0-User-Guide/GUID-9E240EBE-223E-4E48-823B-70455037C908.html
https://www.slideshare.net/Cloudenablers/opendaylight-and-yang/4
https://en.wikipedia.org/wiki/YANG
http://sdntutorials.com/opendaylight-netconf-restconf-and-yang
http://sdntutorials.com/opendaylight-netconf-restconf-and-yang
http://www.routerfreak.com/software-defined-network-use-cases-from-the-real-world
http://searchsdn.techtarget.com/news/2240187268/Five-SDN-use-cases-From-video-to-service-orchestration
http://searchsdn.techtarget.com/news/2240187268/Five-SDN-use-cases-From-video-to-service-orchestration
https://www.sdxcentral.com/articles/contributed/sdn-use-cases-campus-networks/2013/07/
https://www.sdxcentral.com/sdn-nfv-use-cases
http://www.lightreading.com/carrier-sdn/sdn-architectures/defining-use-cases-and-business-cases-for-sdn/a/d-id/716315
http://www.lightreading.com/carrier-sdn/sdn-architectures/defining-use-cases-and-business-cases-for-sdn/a/d-id/716315
https://www.mirazon.com/sdn-important
http://www.nojitter.com/post/240169834/4-challenges-lying-in-the-wait-of-sdn
http://www.nojitter.com/post/240169834/4-challenges-lying-in-the-wait-of-sdn
http://iopscience.iop.org/article/10.1088/1757-899X/121/1/012003/pdf

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 150

[57] “SDN Security Challenges in SDN Environments”,
https://www.sdxcentral.com/security/definitions/security-challenges-sdn-software-defined-networks.
[Accessed 08/06/2017]

[58] V. Bakalov, “Opportunities and Challenges with SDN”,
http://www.networkworld.com/article/2973610/software-defined-networking/opportunities-and-
challenges-with-sdn.html, August 2015. [Accessed 08/06/2017]

[59] A. Farshad et al., “Leveraging SDN to Provide an In-network QoE Measurement Framework”, IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), May 2015.

[60] M. Fiedler et al., “QoE-based Cross-Layer Design of Mobile Video Systems: Challenges and
Concepts”, 2009 IEEE-RIVF International Conference on Computing and Communication
Technologies, July 2009.

[61] R. Schatz et al., “From Packets to People: Quality of Experience as a New Measurement Challenge”,
Lecture Notes in Computer Science, Springer, pp 219-263.

[62] V. Beal, “QoE”, http://www.webopedia.com/TERM/Q/QoE.html. [Accessed 22/06/2017]
[63] “Quality of Experience (QoE)”, https://www.techopedia.com/definition/25802/quality-of-experience-

qoe. [Accessed 22/06/2017]
[64] “Quality of experience”, https://en.wikipedia.org/wiki/Quality_of_experience. [Accessed 22/06/2017]
[65] S. Barakovic and L. Skorin-Kapov, “Survey and Challenges of QoE Management Issues in Wireless

Networks”, https://www.hindawi.com/journals/jcnc/2013/165146, Journal of Computer Networks and
Communications
Volume 2013, 2013.

[66] R. G. Cole and J. H. Rosenbluth, “Voice over IP Performance Monitoring”, ACM SIGCOMM
Computer Communication Review, Volume 31, Issue 2, pp. 9 – 24, April 2001.

[67] INTERNATIONAL TELECOMMUNICATIONS UNION, TELECOMMUNICATIONS
STANDARDIZATION SECTOR, “Opinion model for video-telephony applications”,
https://www.itu.int/rec/T-REC-G.1070, July 2012.

[68] M. Fiedler et al., “A generic quantitative relationship between Quality of Experience and Quality of
Service”, IEEE Network, Volume: 24, Issue: 2, March-April 2010

[69] G. Agapiou, I. Papafili, S. Agapiou, “The role of SDN and NFv for dynamic bandwidth allocation and
QoE adaptation of video applications in home networks”, Euro Med Telco Conference (EMTC),
November 2014.

[70] S. Ramakrishnan et al., "SDN Based QoE Optimization for HTTP-Based Adaptive Video Streaming”,
IEEE International Symposium on Multimedia (ISM), December 2015.

[71] E. Bozkaya and B. Canberk, “QoE-based Flow Management in Software Defined Vehicular
Networks”, IEEE Globecom Workshops (GC Wkshps), December 2015.

[72] I. Mustafa and T. Nadeem, “Dynamic Traffic Shaping Technique for HTTP Adaptive Video Streaming
using Software Defined Networks”, IEEE International Conference on Sensing, Communication and
Networking (SECON), June 2015.

[73] Z. Zhang et al., “Joint Resource Allocation and Traffic Management for Cloud Video Distribution over
Software-Defined Networks”, 8th IEEE International Conference on Communication Software and
Networks (ICCSN), June 2016.

[74] Y. Yue et al., “Joint Routing and Layer Selecting for Scalable Video Transmission in SDN”, IEEE
Globecom Workshops (GC Wkshps), December 2015.

[75] L. Kuang et al., “A Tensor-Based Big Data Model for QoS Improvement in Software Defined
Networks”, IEEE Network, Volume: 30, Issue: 1, January-February 2016.

[76] “OpenDaylight User Guide”, https://www.opendaylight.org/sites/opendaylight/files/bk-user-guide.pdf ,
2016, p.2.

[77] “Release Notes”, http://docs.opendaylight.org/en/stable-boron/getting-started-
guide/release_notes.html , 2016. [Accessed 20/3/2017].

[78] “Getting started: Development Environment Setup”,
https://wiki.opendaylight.org/view/GettingStarted:Development_Environment_Setup [Accessed
20/3/2017].

[79] “Installing Apache Maven”, https://maven.apache.org/install.html, March 2017. [Accessed 20/3/2017]
[80] “CrossProject: Helium Release Vehicle Brainstorming: Pure Karaf”,

https://wiki.opendaylight.org/view/CrossProject:Helium_Release_Vehicle_Brainstorming:Pure_Karaf
[Accessed 20/3/2017]

[81] “KAR”, https://karaf.apache.org/manual/latest/kar , April 2016. [Accessed 20/3/2017]
[82] “Provisioning”, https://karaf.apache.org/manual/latest/provisioning , April 2016. [Accessed 20/3/2017]
[83] “Using the OpenDaylight User Interface (DLUX)”, http://docs.opendaylight.org/en/stable-boron/user-

guide/using-the-opendaylight-user-interface-(dlux).html , 2016. [Accessed 20/3/2017]
[84] “YANG User Interface (YANGUI) in OpenDaylight”,

http://events.linuxfoundation.org/sites/events/files/slides/YANGUI-metz-malachovsky-sebin-ODL-
Summit-final-July29.pdf , p. 1-10.

https://www.sdxcentral.com/security/definitions/security-challenges-sdn-software-defined-networks
http://www.networkworld.com/article/2973610/software-defined-networking/opportunities-and-challenges-with-sdn.html
http://www.networkworld.com/article/2973610/software-defined-networking/opportunities-and-challenges-with-sdn.html
http://www.webopedia.com/TERM/Q/QoE.html
https://www.techopedia.com/definition/25802/quality-of-experience-qoe
https://www.techopedia.com/definition/25802/quality-of-experience-qoe
https://en.wikipedia.org/wiki/Quality_of_experience
https://www.hindawi.com/journals/jcnc/2013/165146
https://www.itu.int/rec/T-REC-G.1070
https://www.opendaylight.org/sites/opendaylight/files/bk-user-guide.pdf
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/release_notes.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/release_notes.html
https://wiki.opendaylight.org/view/GettingStarted:Development_Environment_Setup
https://maven.apache.org/install.html
https://wiki.opendaylight.org/view/CrossProject:Helium_Release_Vehicle_Brainstorming:Pure_Karaf
https://karaf.apache.org/manual/latest/kar
https://karaf.apache.org/manual/latest/provisioning
http://docs.opendaylight.org/en/stable-boron/user-guide/using-the-opendaylight-user-interface-(dlux).html
http://docs.opendaylight.org/en/stable-boron/user-guide/using-the-opendaylight-user-interface-(dlux).html
http://events.linuxfoundation.org/sites/events/files/slides/YANGUI-metz-malachovsky-sebin-ODL-Summit-final-July29.pdf
http://events.linuxfoundation.org/sites/events/files/slides/YANGUI-metz-malachovsky-sebin-ODL-Summit-final-July29.pdf

An SDN QoE Monitoring Framework for VoIP and video applications

Maria-Evgenia I. Xezonaki

 151

[85] “Download/Get Started with Mininet”, http://mininet.org/download/ , 2017. [Accessed 20/3/2017]
[86] “Mininet VM Setup Notes”, http://mininet.org/vm-setup-notes/ , 2017. [Accessed 20/3/2017]
[87] “Installing new version of Open vSwitch”, https://github.com/mininet/mininet/wiki/Installing-new-

version-of-Open-vSwitch, February 2015. [Accessed 19/09/2017]
[88] “Mininet Walkthrough”, http://mininet.org/walkthrough/, 2017. [Accessed 20/3/2017]
[89] “Getting Started: Development Environment Setup”,

https://wiki.opendaylight.org/view/GettingStarted:Development_Environment_Setup#Edit_your_.7E.2
F.m2.2Fsettings.xml. [Accessed 10/07/2017]

[90] “OpenDaylight Controller: MD-SAL: Startup Project Archetype”,
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Startup_Project_Archetype.
[Accessed 10/07/2017]

[91] A. Botta, A. Dainotti, A. Pescapè, “A tool for the generation of realistic network workload for emerging
networking scenarios”, Computer Networks (Elsevier), 2012, Volume 56, Issue 15, pp 3531-3547.

[92] A.Botta, W. Donato, A. Dainotti, S. Avallone, A. Pescapé, “D-ITG 2.8.1 Manual”,
http://traffic.comics.unina.it/software/ITG/manual/index.html, October 2013. [Accessed 29/06/2017]

[93] A. Iqbal, “Using D-ITG Traffic Generator in Mininet”, http://sdnopenflow.blogspot.gr/2015/05/using-of-
d-itg-traffic-generator-in.html, May 2015. [Accessed 29/06/2017]

[94] “ffmpeg: command not found”, https://askubuntu.com/questions/699502/ffmpeg-command-not-found,
November 2015. [Accessed 02/10/2017]

[95] “x264 FFmpeg Options Guide”, https://sites.google.com/site/linuxencoding/x264-ffmpeg-mapping.
[Accessed 02/10/2017]

http://mininet.org/download/
http://mininet.org/vm-setup-notes/
https://github.com/mininet/mininet/wiki/Installing-new-version-of-Open-vSwitch
https://github.com/mininet/mininet/wiki/Installing-new-version-of-Open-vSwitch
http://mininet.org/walkthrough/
https://wiki.opendaylight.org/view/GettingStarted:Development_Environment_Setup#Edit_your_.7E.2F.m2.2Fsettings.xml
https://wiki.opendaylight.org/view/GettingStarted:Development_Environment_Setup#Edit_your_.7E.2F.m2.2Fsettings.xml
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Startup_Project_Archetype
http://traffic.comics.unina.it/software/ITG/manual/index.html
http://sdnopenflow.blogspot.gr/2015/05/using-of-d-itg-traffic-generator-in.html
http://sdnopenflow.blogspot.gr/2015/05/using-of-d-itg-traffic-generator-in.html
https://askubuntu.com/questions/699502/ffmpeg-command-not-found
https://sites.google.com/site/linuxencoding/x264-ffmpeg-mapping

