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ABSTRACT 

Lately, there has been a rapid rise of the mobile communications industry, since the use 
of mobile devices is spreading at a fast pace and is expected to continue its penetration 
into the daily routine of consumers. This fact, combined with the limitations of the 
current communications networks’ structure, necessitates the development of new 
networks with increased capabilities, so that users can be served with the best possible 
quality of service and at the same time with the optimal network resources utilization. A 
new networking approach is Software Defined Networking (SDN) which decouples the 
control from the data plane, transforming the network elements to simple forwarding 
devices and making decisions centrally. The quality of service perceived by the user, or 
quality of experience (QoE), is considered to be a matter of great importance in 
software defined networks.  

This diploma thesis aims at presenting SDN technology, reviewing existing research in 
the field of QoE on SDN networks and then developing an SDN application that 
monitors and preserves the QoE for VoIP and video applications. More specifically, the 
developed SDN QoE Monitoring Framework (SQMF) periodically monitors various 
network parameters on the VoIP/video packets transmission path, based on which it 
calculates the QoE. If it is found that the result is less than a predefined threshold, the 
framework changes the transmission path, and thus the QoE recovers. 

The structure of this diploma thesis is the following: Chapter 1 presents the current state 
of communications networks and predictions for the future state, as well as the 
challenges that current networks will not be able to cope with. Chapter 2 then describes 
in detail the SDN technology in terms of architecture, main control-data plane 
communication protocol, use cases, standardization, advantages and disadvantages. 
Chapter 3 introduces the concept of QoE and lists well-known QoE estimation models 
for various applications types, some of which were used in this thesis. Relevant existing 
studies in the field of QoE on SDN networks as well as a comparative table can be 
found in chapter 4. The following chapters concern the framework implemented in the 
context of this diploma thesis: Chapter 5 describes in detail all the required tools and 
instructions for the development of SQMF, while Chapter 6 presents examples where 
the QoE in a network can face degradation. Finally, Chapter 7 analyzes in depth 
SQMF's design principles, logic and code files, provides a demonstration of its 
operation and evaluates it, whereas Chapter 8 briefly summarizes the conclusions and 
of this thesis and future work points. 

 

SUBJECT AREA: Communications Networks 

KEYWORDS: Software Defined Networks, Quality of Experience, Video, VoIP, 

Monitoring, SDN Controller, OpenDaylight, OpenFlow, Mininet 



ΠΕΡΙΛΗΨΗ 

 

Τα τελευταία χρόνια έχει σημειωθεί ραγδαία άνοδος του κλάδου των κινητών 
επικοινωνιών, αφού η χρήση των κινητών συσκευών εξαπλώνεται με ταχύτατους 
ρυθμούς και αναμένεται να συνεχίσει τη διείσδυσή της στην καθημερινότητα των 
καταναλωτών. Το γεγονός αυτό, σε συνδυασμό με τους περιορισμούς που θέτει η 
τρέχουσα δομή των δικτύων επικοινωνιών, καθιστά αναγκαία την ανάπτυξη νέων 
δικτύων με  αυξημένες δυνατότητες, ώστε να είναι δυνατή η εξυπηρέτηση των χρηστών 
με την καλύτερη δυνατή ποιότητα εμπειρίας και ταυτόχρονα τη βέλτιστη αξιοποίηση των 
πόρων του δικτύου. Μία νέα δικτυακή προσέγγιση αποτελεί η δικτύωση βασισμένη στο 
λογισμικό (Software Defined Networking - SDN), η οποία αφαιρεί τον έλεγχο από τις 
συσκευές προώθησης του δικτύου, και οι αποφάσεις λαμβάνονται σε κεντρικό σημείο. Η 
ποιότητα υπηρεσίας που αντιλαμβάνεται ο χρήστης, ή αλλιώς ποιότητα εμπειρίας, 
κρίνεται ζήτημα υψηλής  σημασίας στα δίκτυα SDN.  

Η παρούσα διπλωματική εργασία έχει ως στόχο την παρουσίαση της τεχνολογίας SDN, 
την επισκόπηση της υπάρχουσας έρευνας στο πεδίο της ποιότητας εμπειρίας σε SDN 
δίκτυα και στη συνέχεια την ανάπτυξη μίας SDN εφαρμογής η οποία παρακολουθεί και 
διατηρεί την ποιότητας εμπειρίας σε υψηλά επίπεδα για εφαρμογές VoIP και video. Πιο 
συγκεκριμένα, η εφαρμογή SQMF (SDN QoE Monitoring Framework) παρακολουθεί 
περιοδικά στο μονοπάτι μετάδοσης των πακέτων διάφορες παραμέτρους του δικτύου, 
με βάση τις οποίες υπολογίζει την ποιότητα εμπειρίας. Εάν διαπιστωθεί ότι το 
αποτέλεσμα είναι μικρότερο από ένα προσδιορισμένο κατώφλι, η εφαρμογή αλλάζει το 
μονοπάτι μετάδοσης, και έτσι η ποιότητα εμπειρίας ανακάμπτει. 

Η δομή της παρούσας διπλωματικής εργασίας είναι η εξής: Στο κεφάλαιο 1 
παρουσιάζεται η σημερινή εικόνα των δικτύων επικοινωνιών  και οι προβλέψεις για τη 
μελλοντική εικόνα, καθώς και οι προκλήσεις στις οποίες τα σημερινά δίκτυα δε θα 
μπορούν να αντεπεξέλθουν. Στη συνέχεια στο κεφάλαιο 2 περιγράφεται αναλυτικά η 
τεχνολογία SDN ως προς την αρχιτεκτονική, το κύριο πρωτόκολλο που χρησιμοποιεί, τα 
σενάρια χρήσης της, την προτυποποίηση, τα πλεονεκτήματα και τα μειονεκτήματά της. 
Το κεφάλαιο 3 εισάγει την έννοια της ποιότητας εμπειρίας του χρήστη και παραθέτει 
ευρέως γνωστά μοντέλα υπολογισμού της για διάφορους τύπους εφαρμογών, που 
χρησιμοποιούνται στην παρούσα εργασία. Σχετικές υπάρχουσες μελέτες στο πεδίο της 
ποιότητας εμπειρίας σε δίκτυα SDN αλλά και συγκριτικός πίνακας μπορούν να βρεθούν 
στο κεφάλαιο 4. Τα επόμενα κεφάλαια αφορούν στην εφαρμογή SQMF που 
υλοποιήθηκε στα πλαίσια της παρούσας διπλωματικής εργασίας: το κεφάλαιο 5 
περιγράφει αναλυτικά όλα τα προαπαιτούμενα εργαλεία και οδηγίες για την ανάπτυξη 
του SQMF, ενώ το κεφάλαιο 6 παρουσιάζει παραδείγματα όπου η ποιότητα εμπειρίας 
ενός δικτύου μπορεί να υποστεί μείωση. Τέλος, το κεφάλαιο 7 αναλύει σε βάθος τις 
σχεδιαστικές προδιαγραφές, τη λογική και τον κώδικα του SQMF και παρέχει επίδειξη 
της λειτουργίας του και αξιολόγησή του, ενώ το κεφάλαιο 8 συνοψίζει επιγραμματικά τα 
συμπεράσματα της παρούσας εργασίας και ανοιχτά θέματα για μελλοντική έρευνα. 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Δίκτυα Επικοινωνιών  

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Δικτύωση Βασισμένη στο Λογισμικό, Ποιότητα Εμπειρίας, Υπηρεσίες 

βίντεο, Υπηρεσίες φωνής, Παρακολούθηση, SDN Controller, 

OpenDaylight, OpenFlow, Mininet 
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1. INTRODUCTION 

For many years, the Information and Communication Technologies (ICTs) have been 
representing highly profitable business areas with continuous developments of 
technologies, devices and services in order to serve all types of users [1]. The 
innovative and effective utilization of ICTs is becoming more and more important for the 
world economy improvement [2], as the industries' and services' capability to compete 
and evolve is increasingly depending on them [3]. Investments in ICTs can play a vital 
role in the pathway to economic recovery, given the strong external factors which 
positively affect the economy.  

Undoubtedly, the communications and computer networking sector is one of the most 
crucial elements in the global ICT strategy, underpinning many other industries. It is one 
of the fastest growing and most dynamic sectors worldwide, allowing for the 
interconnection between either individual persons or institutions, companies, 
businesses, industries and in general every kind of functional departments worldwide 
[2]. Lately, a drive for changing the conventional networking architecture and moving 
towards new networking paradigms is beginning to show. This trend can be explained 
by a number of factors related to the current state in computer systems networking, as 
well as to the emerging needs of next generation networks. 

1.1 CURRENT NETWORKING STATE AND LIMITATIONS 

Despite the fact that computing has advanced rapidly over the past three decades, the 
way that networking is performed has remained virtually unchanged [4]. The current 
state of networking is characterized by the legacy technology which the majority of 
networks are built on. In conventional networking (Image 1.1), the networking protocols 
are distributed among the devices (i.e. routers, switches, firewalls and middle boxes) 
[5]. The distributed control and transport network protocols running inside the routers 
and switches are the key technologies that allow information, in the form of digital 
packets, to travel around the world [6], [7]. The most traditional networking approach is 
Internet Protocol (IP) networking and most of the public Internet still operates on hybrid 
IP version 4 / version 6 (IPv4/v6) services like Network Address Translation (NAT) [8].  

 

Image 1.1: Conventional networking [5] 

Despite their widespread adoption, traditional IP networks have severe disadvantages 
and impose limitations on creating new, innovative services. The root cause of these 
limitations is the fact that the networks are built using devices (e.g. switches, routers) 
which have become exceedingly complex as they implement an ever-increasing 
number of distributed protocols and use closed and proprietary interfaces.  

Historically, the “best” networks (those which are the most reliable, have the highest 
availability, and offer the fastest performance, etc.) are those built with custom silicon 
(Application-specific Integrated Circuits - ASICs) and purpose-built hardware. Due to 
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the fact that it takes a significant investment to build custom silicon and hardware, 
rigorous processes are required to ensure that vendors get the most out of each update 
or new iteration. This means that the ad hoc addition of features is virtually impossible, 
limiting customers who want new or different functionality to address their requirements 
to the vendor’s timeline [9]. 

Consequently, the main limitations that emerge from the current networking state are 
the following: 

 Optimization difficulty: It is hard for network operators to introduce new revenue 
generating services and optimize their expensive infrastructures, i.e. data centers, 
wide-area networks, and enterprise networks, as they continue having serious 
known problems with security, robustness, manageability, mobility and evolvability 
that have not been successfully addressed so far [4]. New networking features are 
commonly introduced via expensive, specialized and hard-to-configure equipment 
[5]. 

 Capital costs: Network capital costs have not been reducing fast enough and 
operational costs have been growing, putting excessive pressures on network 
operators. The transition from IPv4 to IPv6 started more than a decade ago and is 
still largely incomplete, while in fact IPv6 represents merely a protocol update. Due 
to the inertia of current IP networks, a new routing protocol can take 5 to 10 years 
to be fully designed, evaluated and deployed. Likewise, a clean-state approach to 
change the Internet architecture (e.g., replacing IP), is regarded as a daunting task 
– simply not feasible in practice. Ultimately, this situation has inflated the capital 
and operational expenses of running an IP network [4], [6]. 

 Customization difficulty: Even vendors and third parties are not able to provide 
customized cost effective solutions to address their customers’ problems [4]. 

 Configuration complexity: To express the desired high-level network policies, 
network operators need to configure each individual network device separately and 
sometimes manually, using low-level and often vendor-specific commands, a 
procedure which is error-prone [5]. In addition to the configuration complexity, 
network environments have to endure the dynamics of faults and adapt to load 
changes. Automatic reconfiguration and response mechanisms are virtually non-
existent in current IP networks. Enforcing the required policies in such a dynamic 
environment is therefore highly challenging [6].  

 Vertical integration: The control plane (which decides how to handle network 
traffic) and the data plane (which forwards traffic according to the decisions made 
by the control plane) are tightly coupled, therefore there is no common view of the 
network [5]. They are bundled inside the networking devices, reducing flexibility and 
hindering innovation and evolution of the networking infrastructure [6]. It is hard to 
implement new features and protocols as this requires changing the control plane 
of all devices which are part of the topology [5]. 

1.2 DEVICES GROWTH 

Over the past years, there is a spectacular increase in the number of users who 
subscribe to mobile broadband systems every year. The figures presented in Cisco's 
latest report [10] show an exponential increase in the number of devices, which will 
continue in the forthcoming years. Besides, more and more users are seeking faster 
internet access, more advanced mobile phones, and generally direct communication 
with other people and access to information [2]. Thus, they are increasingly employing 
mobile personal devices such as smartphones, tablets, and notebooks to access the 
internet. Every year, several new devices in different formats with sophisticated 
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capabilities and intelligence appear on the market. Stronger smartphones and laptops 
are becoming more popular nowadays, due to their additional multimedia capabilities. 
This fact has led to a significant increase in the production and distribution of wireless 
mobile devices and related services. In addition, as mobile network capacity is 
improving, the number of users with more than one device in their possession is 
increasing as well. 

The Wireless World Research Forum (WWRF) has predicted that seven trillion wireless 
devices will serve seven billion users by the end of 2017. This means that the number 
of connections to wireless communications networks will reach a thousand times the 
world population [1], [2]. Almost half a billion (497 million) mobile devices and 
connections were added in 2014, whereas mobile devices and connections expected to 
grow globally to 11.5 billion by 2019 [10].  

One of the most significant contributing factors behind the device revolution has been 
the democratization of workforce-technology in recent years. While it has provided a lot 
of value to people around the world, there is also a more pragmatic impact: the deluge 
of new vendors and equipment on the market today means that there is very little 
uniformity in terms of the way devices operate on a network. Since the majority of 
networks today cater to a variety of devices from different vendors simultaneously, it 
can be difficult for network management systems to keep up with each vendor’s specific 
device requirements [8]. 

Therefore, the ICT sector is under pressure to accommodate these personal devices in 
a fine-grained manner while protecting corporate data and intellectual property and 
meeting compliance mandates [11].  

1.3 DATA AND VIDEO GROWTH 

Based on Cisco's annual reports, there is quantified evidence that there is a rapid 
growth of data traffic over wireless networks and it will continue [2]. Already in 2014, 
there was an increase in data traffic by 69% and it is expected to grow to 24.3 exabytes 
per month by 2019. Mobile data traffic will follow a compound annual growth rate 
(CAGR) of 57% from 2014 to 2019 [10], as shown in Image 1.2. 

 

Image 1.2: Cisco’s prediction for 24.3 exabytes of monthly mobile traffic until 2019 [10] 

Image 1.3 depicts the impact of the aforementioned increase in mobile devices and 
connections in global data traffic. In particular, the global data traffic caused by new 
smart devices is projected to increase from 88% to 97% by 2019 [10]. 
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Image 1.3: The impact of the smart devices’ and connections’ increase on data traffic, according 
to Cisco [10] 

A remarkable fact is the traffic that this new type of devices with increased potential, 
which are spreading at a rapid pace, can cause. Specifically, a single smartphone can 
generate as much traffic as 37 basic phones, a tablet as much traffic as 94 key phones, 
while a single laptop's traffic is equivalent to 119 phones'. Another factor of great 
importance in increasing data traffic in the forthcoming years is the rapid increase in 
video usage, given the higher bit rates compared to other types of applications. Video is 
already considered as a necessary asset by many mobile users as it occupies much of 
their everyday routine and habits, making it the most involved player in the global data 
traffic. High-resolution video is expected to spread, while the percentage of content 
watched via live streaming compared to downloaded content is expected to increase. 
Mobile video will follow a CAGR of 66% between 2014 and 2019. More specifically, out 
of a total of 24.3 exabytes per month in which data traffic is expected to arrive by 2019, 
17.4 exabytes are expected to be due to video use, implying more than 69% of total 
traffic [10], as depicted in Image 1.4. 

 

Image 1.4: Video use will constitute more than 69% of the data traffic until 2019 , according to 
Cisco [10] 

Since many web video applications belong to the Cloud application class, Cloud traffic 
follows a video-like curve, and therefore a further increase is expected in Cloud-based 
mobile applications, which demonstrate unique latency and bandwidth features. Unlike 
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Cloud applications and services, mobile devices are subject to memory and speed 
limitations, which are a brake on providing multimedia applications at a satisfactory 
level. In fact, more complex applications (such as voice recognition, navigation) are 
often downloaded to a Cloud Server in order to relieve the mobile devices from 
processing and energy costs. Cloud applications and services (such as YouTube and 
Spotify) allow mobile users to overcome memory capacity limitations and mobile 
processing speeds. While this fact effectively ensures greater austerity in smartphone 
or tablet operations, it also stresses the need for a reliable, low-latency and high-
bandwidth Internet connection. It should be noted that Cloud applications are estimated 
to generate up to 90% of the world's mobile data traffic by 2019 [10], as depicted in 
Image 1.5. 

 

Image 1.5: Cloud applications will account for 90% of mobile data traffic until 2019, according to 
Cisco [10] 

Enterprises have enthusiastically embraced both public and private cloud services, 
resulting in unprecedented growth of these services. Furthermore, the planning for 
cloud services must be performed in an environment of increased security, compliance, 
and auditing requirements, along with business reorganizations, consolidations, and 
mergers that can change assumptions overnight. Providing self-service provisioning, 
whether in a private or public cloud, requires elastic scaling of computing, storage, and 
network resources, ideally from a common viewpoint and with a common suite of tools. 

Regarding the network traffic, another fact is that within the enterprise data centers, 
traffic patterns have changed significantly. In contrast to client-server applications 
where the bulk of the communication occurs between one client and one server, today's 
applications access different databases and servers. At the same time, users are 
changing network traffic patterns as they push for access to corporate content and 
applications from any type of device (including their own), connecting from anywhere, at 
any time. Finally, many enterprise data centers managers are contemplating a utility 
computing model, which might include a private cloud, public cloud, or some mix of 
both, resulting in additional traffic across the wide area network [8]. 

A last challenge occurs when handling today's big data or mega datasets, a procedure 
which requires massive parallel processing on thousands of servers, all of which need 
direct connections to each other. The rise of mega datasets is fueling a constant 
demand for additional network capacity in the data center. Operators of hyperscale data 
center networks face the daunting task of scaling the network to a previously 
unimaginable size and maintaining any-to-any connectivity, keeping their costs at a 
reasonable level at the same time [11]. 
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Summarizing, as the amount of data that users consume on a daily basis continues to 
increase, the means of processing data will need to evolve to meet this new demand. 
When the public Internet was taking its first steps, today’s ubiquity of broadband 
Internet could not have been predicted. Early iterations of today's networking protocols 
were well-suited to the archaic Internet of the 1990s, but in the context of the modern 
Internet – and even more so the Internet of the future – these protocols are obsolete [8]. 

1.4 FIFTH GENERATION (5G) WIRELESS NETWORKS EMERGENCE 

The success of communication networks is reflected in fast growing technological 
advances. In only two decades the first generation mobile networks (1G) have been 
replaced from the wireless fourth generation communication networks 4G-Long Term 
Evolution (4G -LTE) [12], which can support data rates up to 1 Gbps for low mobility 
and up to 100 Mb/s for high mobility. The LTE systems and their evolution, LTE-
Advanced (LTE-A) systems, have been developed and continue to evolve worldwide 
[2].  

It is worth noting that according to the annual reports published by Cisco, it seems that 
around 2019, 4G connectivity will surpass the use of 2G connections. This is expected 
to happen given the rapid spread of mobile applications and the expected growth of 
Internet connections through mobile devices on the one hand, and on the other hand 
the need for optimal bandwidth and other network resources management. Thus, the 
development and adoption of 4G systems worldwide is facilitated [10]. 

However, given the explosion of data traffic in wireless networks during the next years, 
several challenges emerge which 4G systems are unable to face. This fact creates the 
need for switching to a technology which will satisfy the ever increasing demand for 
higher data rates, enhanced network capacity, better spectral and energy performance 
and higher mobility. Of course, the new technology needs to also meet the 
requirements of the wired network’s parts, aiming for a fully integrated approach. The 
step which is expected to meet the above requirements is the fifth generation wireless 
communication networks technology, 5G. 

Another factor that leads to the need to develop the next generation 5G systems is the 
obvious signs of moving towards the Internet of Everything (IoE) and Internet of Things 
(IoT). IoE and IoT are networks of physical objects or "things" that integrate electronic 
components, software, sensors and connectivity units in order to achieve higher quality 
of service by exchanging data with the manufacturer, administrator and / or other 
connected devices (Image 1.6). Each object is uniquely identifiable through a built-in 
computing system and is capable of operating within the existing web infrastructure. 
The IoE allows end users to access any content in any device from anywhere [10]. 

 

Image 1.6: An IoE schematic representation, according to Cisco [10] 
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1.4.1 5G systems requirements 

The expected wireless data traffic explosion, as described earlier, combined with the 
transition to an “IοΤ world”, poses a set of requirements, which have to be met by the 
next generation broadband networks, in order to satisfy the increasingly emerging 
users’ needs. These requirements are mainly identified in the following fields [13], [14], 
[15]: 

 Capacity and transmission rates enhancement  

 Latency reduction 

 Energy saving 

 High reliability 

 Support for various types and large volumes of terminal devices 

 New spectrum management approaches 

 Ultra-high service availability and reliability  

The predicted increase in data traffic by 10.000 times raises the need for developing 
systems which will achieve higher transmission rates as well as higher spectral density 
levels. The below targets are set for the transmission rate metrics and constitute a 
challenge for the fifth generation networks [13], [14]:  

 The aggregate data rate, or in other words the total data volume which can be 
served by the network (bits/s/area), needs to be increased at least by 1000 times 
compared to the fourth generation networks.  

 The edge rate, or in other words the worst data rate that a user can reasonably 
expect to receive when in range of the network, is demanded to be increased at 
least by 100 times compared to the corresponding rate in the fourth generation 
networks, ranging from 100 Mbps to 1Gbps. This range depends on various 
factors, such as the network load and the cell size. However, in any case, goals are 
set for a high rate which will enable every user to at least receive services such as 
a high definition live-streaming video. 

 As for the peak rate, which is the best-case data rate that a user can hope to 
achieve under any conceivable network configuration, it is required to be in range 
of tens of Gbps. 

At the same time, a plethora of new and impressive applications is expected to be 
supported by the next generation networks, including unmanned vehicle control, remote 
medical monitoring and virtual reality applications. It can be easily understood that this 
applications class is particularly sensitive to delays, even compared to a high definition 
live-streaming video application. In order to make it possible to support the 
aforementioned applications, the aim is to reduce the roundtrip latency under 1ms and 
the jitter under 20μs. Such an aim requires that the control and signaling procedures, 
the time scheduling and allocation of resources, the establishment of new connections 
and several other functions must take place in the minimum possible time [13], [14]. 

The issue of energy saving constitutes a major issue of global concern, especially for 
the ICT sector. Reducing power consumption and increasing battery life have always 
been significant factors for mobile communications, which are becoming increasingly 
important as network infrastructure, devices and services are evolving. However, the 
expected increase in the transmission speed per connection as well as the exponential 
increase in the number of devices and base stations will inevitably lead to an increase 
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in energy consumption, which requires the development of technological solutions in 
order to maintain consumption at similar levels to those of the previous generation 
networks, or even better to achieve a reduction [16]. 

It is therefore expected that in the next years the energy requirements will skyrocket 
consumption numbers, raising the need for special care so that both providers (as the 
increase in energy consumption significantly increases the amount of operating costs) 
and users can benefit from lengthened battery life. More specifically, for next generation 
networks, a 10-year battery life is set as a goal to be achieved, partly through the 
development of battery technology, but also through the efficient management of data 
traffic and signaling [2], [13]. 

On the one hand, the growth of network devices per user (one user will own multiple 
smartphones, tablets, laptops, etc.) and, on the other hand, the growth of Machine-to-
Machine (M2M) communications and the expected transition to an “IoT world” imply the 
need for many different types of devices support and for efficient management of a 
large volume of simultaneous connections. As the number of connected devices is 
estimated to be billions, perhaps trillions in 2020 [17], network scalability becomes more 
and more important. An average macrocell is estimated to support up to 10,000 low 
bandwidth devices, alongside any high-end devices of mobile users. Therefore, there is 
a need for networks to be flexible in order to serve just as effectively a range of devices, 
from very simple ones that send sporadic data (such as sensor devices) , to devices 
sending large volumes of data (such as laptops) with a high frequency. Changes in the 
control plane and in the management of the network are considered necessary to 
support the above. 

Finally, next-generation systems need to be cost-effective, in order to benefit both the 
provider and the end user. New solutions have to be found in order to achieve reduced 
Capital Expenditure (CAPEX) and Operational Expenses (OPEX) and therefore 
profitability for the providers as well as a lower average revenue per user (ARPU).  

To sum up, as mobile communication networks are expected to become the focus of 
human-to-human, human-to-machine and machine-to-machine communication, they 
will have to compete with and overcome optical communications networks in terms of 
both Quality of Service (QoS), as well as reliability. Therefore, next generation networks 
should reach speeds of 10 Gbps and roundtrip delays not exceeding 1ms, while billions 
of simultaneous connections with devices of varying capabilities and requirements will 
be supported. Therefore, the network should be designed to be flexible, robust, reliable 
and energy-efficient [17]. 

Image 1.7 depicts the use cases and the corresponding challenges which the 5G 
systems are expected to deal with. 
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Image 1.7: 5G systems use cases and the main corresponding challenges [18] 

1.5 THE NEW NETWORKING PARADIGM 

Summarizing the points mentioned above, the explosion of mobile devices and content, 
server virtualization, and advent of cloud services are among the trends driving the 
networking industry to re-examine traditional network architectures. Many conventional 
networks are hierarchical, built with tiers of Ethernet switches arranged in a tree 
structure. This design made sense when client-server computing was dominant, but 
such a static architecture cannot deal with the dynamic computing and storage needs of 
today's computing environments, such as enterprise data centers, campuses, and 
carrier environments [11]. 

Taking into consideration the points mentioned above, it is evident that there is a need 
for a general shift in networking which has already started to take place and is depicted 
in Image 1.8.  

 

Image 1.8: The general shift in networking [5] 
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Software-defined networking (SDN) is an approach to computer networking meant to 
address the above challenges, deriving from the current network infrastructure's stability 
and avoiding the need for expensive uplifts or hardware investments [7], [11].  This is 
achieved by decoupling the system that makes decisions about where traffic is sent 
(known as control plane) from the underlying systems that forward traffic to the selected 
destination (known as the data plane). Image 1.9 shows the contrast between 
conventional networking and software-defined networking. SDN will be presented in 
detail in Chapter 2. 

 

Image 1.9: Conventional networking VS Software-Defined networking [6] 
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2. SOFTWARE-DEFINED NETWORKING (SDN) 

2.1 DEFINITION(S) OF SDN 

Briefly summarizing the key aspects of the current and future networking state as 
explained in the previous chapter, the majority of traditional networks are built with 
Ethernet switches, which are arranged in a tree structure. This design was adequate in 
the time that client-server computing was at the forefront. But currently things have 
changed and the concept of virtualization has entered at various layers of the 
computing industry, spanning from the application/service layer down to networking and 
function virtualization [19]. The 5G mobile communication networks will be expected to 
support connections with data rates that are 10 to 100 times higher than current mobile 
networks with up to 1000 times more data by volume in any geographical area and up 
to 100 times as many connected devices. However, in order to meet the demanding 
Key Performance Indicators (KPIs) set for 5G networks, researchers will need to 
overcome a number of significant challenges. A significant challenge will be managing 
the anticipated exponential growth in multimedia traffic whilst meeting the quality 
expectations of end users. In addition to the predicted massive increase in the number 
of devices attached to 5G networks, the 5G KPIs expect that Ultra High-Definition 
(UHD) video will be supported across a range of applications such as Internet Protocol 
Television (IPTV) and Video on Demand services (VoD) with each UHD stream 
potentially requiring up to 16 times as much bandwidth as current High-Definition (HD) 
streams. According to Cisco’s latest networking forecast, mobile video will account for 
about 75% of all mobile data traffic by 2019, representing a 13-fold increase since 2014 
[20]. 

All the above mentioned factors prompt the ICT industry to revise their opinions about 
current traditional network architectures. The technology which will serve the emerging 
needs is called Software Defined Networking (SDN) [19]. 

As already mentioned, SDN is a relatively new approach to computer networking 
introduced to face the challenges deriving from the complex network protocols and 
functions and bloated network equipment. The idea of SDN originated at Stanford 
University and then became widely recognized by academia and industry areas [21] 
around 2009.  

SDN is an emerging networking paradigm that gives hope to change the limitations of 
current network infrastructures. First, it breaks the vertical integration by separating the 
network’s control logic (the control plane, which used to be tied to a particular 
infrastructure element, and thus be vendor and device specific [22]) from the underlying 
routers and switches that forward the traffic (the data plane), using an open standard 
protocol for the communication between them [23]. Second, with the separation of the 
control and data planes, the function of control element no longer executes in the 
switches but rather in an external server [24]. The network switches become simple 
forwarding devices routing the traffic according to rules set to them by the control plane, 
and the control logic is implemented in a logically centralized controller (or network 
operating system) with a global view of the entire network as well as of all competing 
traffic flows traversing the network [20], thus simplifying policy enforcement and network 
(re)configuration and evolution [25]. Having simultaneous access to both views could 
provide tremendous potential benefit when managing the transmission of bandwidth-
hungry, delay-intolerant multimedia flows over the 5G network [20]. The migration of 
control provides an abstraction of the underlying network for the applications residing 
on upper layers, enabling them to treat the network as a logical or virtual entity [21].  

SDN’s key attributes include: 
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 separation of data and control planes 

 a uniform vendor-agnostic interface between control and data planes 

 a logically centralized control plane that offers a consistent, system-wide 
programming interface to users and operators 

 slicing and virtualization of the underlying network [4].  

The Open Networking Foundation (ONF) is the group that is most associated with the 
development and standardization of SDN.  According to the ONF, “Software-Defined 
Networking (SDN) is an emerging architecture that is dynamic, manageable, cost-
effective, and adaptable, making it ideal for the high-bandwidth, dynamic nature of 
today's applications. This architecture decouples the network control and forwarding 
functions enabling the network control to become directly programmable and the 
underlying infrastructure to be abstracted for applications and network services. The 
OpenFlow™ protocol is a foundational element for building SDN solutions” [26].  

The networking industry has on many occasions shifted from the original view of SDN, 
by referring to anything that involves software as being SDN. A much less ambiguous 
definition of SDN can be given based on four pillars: 

 The control and data planes are decoupled. Control functionality is removed from 
network devices that will become simple (packet) forwarding elements. 

 Forwarding decisions are flow-based, instead of destination-based. A flow is 
broadly defined by a set of packet field values acting as a match (filter) criterion and 
a set of actions (instructions). In the SDN context, a flow is a sequence of packets 
between a source and a destination. All packets of a flow receive identical service 
policies at the forwarding devices. The flow abstraction allows unifying the behavior 
of different types of network devices, including routers, switches, firewalls, and 
middle boxes. Flow programming enables unprecedented flexibility, limited only to 
the capabilities of the implemented flow tables. 

 Control logic is moved to an external entity, the so-called SDN controller or Network 
Operating  System (NOS). The NOS is a software platform that runs on commodity 
server technology and provides the essential resources and abstractions to 
facilitate the programming of forwarding devices based on a logically centralized, 
abstract network view. Its purpose is therefore similar to that of a traditional 
operating system. 

 The network is programmable through software applications running on top of the 
NOS that interacts with the underlying data plane devices. This is a fundamental 
characteristic of SDN, considered as its main value proposition [6]. 

2.2 SDN ARCHITECTURE 

In implementation, a high-level overview of the SDN architecture is illustrated in Image 
2.1, and can be regarded as consisting of three layers: infrastructure layer, control layer 
and application layer. 

 

Image 2.1: High-level SDN overview [25] 
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Image 2.2 introduces the basic SDN components. The initial view of the three layers 
(red text) is translated to data plane, control plane and application plane respectively 
(black text) [27]. 

 

Image 2.2: Basic SDN components [27] 

A simplified view of this architecture is shown in Image 2.3. It is important to emphasize 
that a logically centralized programmatic model does not postulate a physically 
centralized system. In fact, the need to guarantee adequate levels of performance, 
scalability and reliability would preclude such a solution. Instead, production-level SDN 
network designs resort to physically distributed control planes [6]. 

 

Image 2.3: Simplified view of SDN architecture [6] 

The data plane comprises a set of one or more network elements, each of which 
contains a set of traffic forwarding or traffic processing resources. Resources are 
always abstractions of underlying physical capabilities or entities. 

The control plane comprises a set of one or more SDN controllers, each of which has 
exclusive control over a set of resources exposed by one or more network elements in 
the data plane (its span of control). The minimum functionality of the SDN controller is 
to faithfully execute the requests of the applications it supports, while isolating each 
application from all others. To perform this function, an SDN controller may 
communicate with peer SDN controllers, subordinate SDN controllers, or non-SDN 
environments, as necessary. A common but non-essential function of an SDN controller 
is to act as the control element in a feedback loop, responding to network events to 
recover from failure, re-optimize resource allocations, or otherwise. 
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The implementation of the SDN control plane can follow a centralized, hierarchical, or 
decentralized design. Initial SDN control plane proposals focused on a centralized 
solution, where a single control entity has a global view of the network. While this 
simplifies the implementation of the control logic, it has scalability limitations as the size 
and dynamics of the network increase. To overcome these limitations, several 
approaches have been proposed in the literature that fall into two categories, 
hierarchical and fully distributed approaches. In hierarchical solutions, distributed 
controllers operate on a partitioned network view, while decisions that require network-
wide knowledge are taken by a logically centralized root controller. In distributed 
approaches, controllers operate on their local view or they may exchange 
synchronization messages to enhance their knowledge. Distributed solutions are more 
suitable for supporting adaptive SDN applications [11]. 

A key issue when designing a distributed SDN control plane is to decide on the number 
and placement of control entities. An important parameter to consider while doing so is 
the propagation delay between the controllers and the network devices, especially in 
the context of large networks. Other objectives that have been considered involve 
control path reliability, fault tolerance, and application requirements [11]. 

The application plane comprises one or more applications, each of which has 
exclusive control of a set of resources exposed by one or more SDN controllers. An 
application may invoke or collaborate with other applications. An application may act as 
an SDN controller in its own right [27]. 

In an SDN-enabled world, new open interfaces exist between the application plane, the 
data plane and the control plane. These are illustrated in Image 2.4.  

 

Image 2.4: Simplified SDN architecture and interfaces [6] 

The separation of the control plane and the data plane can be realized by means of a 
well-defined programming interface between the switches and the SDN controller [6]. 
The controller exercises direct control over the state in the data-plane elements via this 
well-defined application programming interface (API). The interface that bridges the 
data plane and the control plane is called the Southbound-API (SBI). It enables the 
externalization of the control plane from the forwarding device to the logically-
centralized network control plane (controller). As a software entity, the controller can be 
freely programmed and adapted to the network according to the operator’s 
requirements.  
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While the SBI is an important component of SDN, a significant additional value of SDN 
lies within the Northbound-API (NBI) interface between the control plane and the 
application plane, i.e. applications running on top of or interacting with the network 
itself. This enables applications to be executed on top of the network as well as the 
exchange of information about the application and network state.  It makes the 
controller programmable and responding to changes in the network [28]. SDN 
architecture segregates control planes from forwarding devices. The segregated control 
planes are combined in design and therefore regarded as a centralized controller which 
has a global view of the entire network. Therefore, the controller presents a level of 
abstraction of the underlying network. In other words the controller acts as middleware 
that provides a higher level of abstraction to network developers [23].  Hence, flexible 
reconfiguration of the network becomes possible by the introduction of a centralized 
controller [25]. 

 

Image 2.5: SDN architecture and its fundamental abstractions [6] 

Image 2.5 summarizes thoroughly the SDN architecture and its fundamental 
abstractions. Keeping in mind the components described, Image 2.6: SDN architecture 
with management function [27] adds the management function, which is often omitted 
from simplified SDN representations. Although many traditional management functions 
may be bypassed by the direct application-control plane interface (NBI), certain 
management functions are still essential. In the data plane, management is at least 
required for initially setting up the network elements, assigning the SDN-controlled parts 
and configuring their SDN controller. In the control plane, management needs to 
configure the policies defining the scope of control given to the SDN application and to 
monitor the performance of the system. In the application plane, management typically 
configures the contracts and service license agreements (SLAs). In all planes, 
management configures the security associations that allow distributed functions to 
safely intercommunicate [25]. 

Each application, SDN controller and network element has a functional interface to a 
manager. The minimum functionality of the manager is to allocate resources from a 
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resource pool in the lower plane to a particular client entity in the higher plane, and to 
establish reachability information that permits the lower and higher plane entities to 
mutually communicate. Additional management functionality is not precluded, subject to 
the constraint that the application, SDN controller, or network element (NE) have 
exclusive control over any given resource [25].  

Image 2.6 summarizes the SDN architecture including the management function. It 
shows distinct application, controller and data planes, with controller plane interfaces 
(CPIs) designated as reference points between the SDN controller and the application 
plane (A-CPI) and between the SDN controller and the data plane (D-CPI). The 
information exchanged across these interfaces should be modeled as an instance of a 
protocol-neutral information model [27]. 

 

Image 2.6: SDN architecture with management function [27] 

In other words, the infrastructure layer (data plane) comprises network elements, which 
expose their capabilities toward the control layer (control plane) via interfaces 
southbound from the controller. The SDN applications exist in the application layer 
(application plane), and communicate their network requirements toward the control 
plane via northbound interfaces (NBIs). In the middle, the SDN controller translates the 
applications’ requirements and exerts low-level control over the network elements, while 
providing relevant information up to the SDN applications. An SDN controller may 
orchestrate competing application demands for limited network resources according to 
policies. The concept of a data plane in the context of the SDN architecture includes 
traffic forwarding and processing functions. A data plane may include the necessary 
minimum subset of control and management functions [27]. 

In order to sum up the current subchapter, the following list which summarizes the 
major SDN architectural components and interfaces is presented. Image 2.7 also 
provides an illustrative summary. 

 SDN Applications: SDN Applications are programs that explicitly, directly, and 
programmatically communicate their network requirements and desired network 
behavior to the SDN Controller via a NBI. In addition they may consume an 
abstracted view of the network for their internal decision-making purposes. An SDN 
Application consists of one SDN Application Logic and one or more NBI Drivers. 
SDN Applications may themselves expose another layer of abstracted network 
control, thus offering one or more higher-level NBIs through respective NBI agents. 
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 SDN Controller: The SDN Controller is a logically centralized entity in charge of 
translating the requirements from the SDN Application layer down to the SDN 
Datapaths and providing the SDN Applications with an abstract view of the network 
(which may include statistics and events). An SDN Controller consists of one or 
more NBIs, the SDN Control Logic, and the SBI. Its definition as a logically 
centralized entity neither prescribes nor precludes implementation details such as 
the federation of multiple controllers, the hierarchical connection of controllers, 
communication interfaces between controllers, nor virtualization or slicing of 
network resources. 

 SDN Datapath: The SDN Datapath is a logical network device that exposes 
visibility and uncontested control over its advertised forwarding and data 
processing capabilities. The logical representation may encompass all or a subset 
of the physical substrate resources. An SDN Datapath comprises an SBI agent and 
a set of one or more traffic forwarding engines and zero or more traffic processing 
functions. These engines and functions may include simple forwarding between the 
Datapath's external interfaces or internal traffic processing or termination functions. 
One or more SDN Datapaths may be contained in a single (physical) network 
element—an integrated physical combination of communications resources, 
managed as a unit. An SDN Datapath may also be defined across multiple physical 
network elements. 

 SDN SBI: The interface defined between an SDN Controller and an SDN Datapath, 
which provides at least programmatic control of all forwarding operations, 
capabilities advertisement, statistics reporting and event notification. One value of 
SDN lies in the expectation that the SBI is implemented in an open, vendor-neutral 
and interoperable way. 

 SDN NBIs: Interfaces between SDN Applications and SDN Controllers which 
typically provide abstract network views and enable direct expression of network 
behavior and requirements. This may occur at any level of abstraction (latitude) and 
across different sets of functionality (longitude). One value of SDN lies in the 
expectation that these interfaces are implemented in an open, vendor-neutral and 
interoperable way [11]. 

 

Image 2.7: SDN overview [27] 
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2.3 OPENFLOW PROTOCOL 

SDN is commonly associated with the OpenFlow (OF) protocol since its emergence in 
2011, which is the first standardized communication protocol defined between the 
control and the forwarding layers of the SDN architecture [11], [29]. Currently OF is the 
prominent SDN protocol for the communication between the Layer 2 networking 
devices (i.e. switches and routers, both physical and virtual) and the controller of the 
network [30] in an open and vendor-agnostic manner [31]. OF enables the network 
control plane to define cross-layer forwarding rules, which can be established and 
handled by OpenFlow-enabled devices. Based on the SDN architecture, together with 
the OF protocol, network devices are transformed to fully programmable forwarding 
elements. 

In 2008, the OF protocol was proposed and studied in many studies. Aided by ONF’s 
promotion, OF has become the standard for realizing the Southbound API. OF switches 
report statistics of flows to the controller with help from OF. Therefore, researchers and 
developers can easily access the statistics in applications through the Northbound API. 
These statistics are invaluable, since they reflect the traffic situation within the network 
[25].  

OF allows experimenters, researchers, protocol developers and network administrators 
to exploit the true capabilities of a network in a quick, easily deployable and flexible 
manner. With the centralized network perspective that OF provides through its 
controller, an experimenter has an overarching view of the current status in the network. 
In addition, they have the ability to introduce, at run-time, new functionality without 
having to specifically modify any of the networking devices. Network administrators are 
able to make decisions about how data flows should be routed between network 
devices and switches along the optimized paths in networks. 

OF's recent popularity is in part due to its open and vendor-agnostic nature. It provides 
powerful tools and enables the implementation of a diverse range of functionality and 
network behavior. With the characteristics of central management and flexibility 
property in SDN architecture, OF can help service providers to achieve better QoS 
performance by offering traffic differentiation [29], [30]. 

It is important to note that ONF is also working on open APIs between the SDN control 
and applications layers. What these will provide are the means for the applications to 
use network services and capabilities as needed, without knowing the network 
specifics, such as network topology. Applications on the application layer can thus issue 
requests, which are translated by the control layer to device specific configurations [22].  

The controller collects information transmitted by the OF switch through the OF protocol 
and instructs the OF switch how to forward packets. To work in an OF environment, any 
device (i.e. switch/router) that wants to communicate with an SDN Controller must 
support the OF protocol [9].   

2.3.1 The Flow Table 

Each OF switch has its own flow table for administrators to define the paths of the 
packets. A flow table consists of flow entries or rules. Each rule contains the following 
fields: 

 Match fields: Fields to match against OpenFlow packets. These fields consist of 
the ingress port and the packet headers and, optionally, some metadata specified 
by a previous flow table. 
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 Priority: Field to match the precedence of the flow entry. Higher values are higher 
priorities. 

 Counters: Fields which are increased by one when a packet is matched. 

 Instructions: Fields for the modification of the action set or pipeline processing. 

 Timeouts: The maximum timespan or idle time before a flow is expired by the 
switch. 

 Cookie: Opaque data value handled and selected by the controller. A cookie may 
be used by the controller to filter flow statistics, flow modification and deletion. 

The match fields and priority taken together, uniquely identify each flow table entry in a 
flow table [32].  

In Table 2.1, the match fields are presented. When an OF packet is received by an OF 
switch, it is buffered and these fields are matched against the corresponding fields of 
the packet. Each flow entry may contain one or more wildcarded fields. In this case, a 
wildcarded field matches against all the possible values of that field. 

Table 2.1: Match fields of a flow table rule 

Ingress 
port 

MAC 
src 

MAC 
dest 

Ether 
type 

VLAN 
id 

VLAN 
priority 

IP 
src 

IP 
dest 

IP 
proto 

IP 
ToS 
bits 

TCP/ 
UDP 
src 
port 

TCP/ 
UDP 
dst 
port 

 

Each OF switch is permitted to contain multiple flow tables. The main purpose is to 
allow the administrators to decide whether to compare the packet to another flow table 
or to deliver the packet to the controller and let the controller handle it when the packet 
cannot be matched to any of the rules in one flow table [24]. 

Each flow entry contains a set of instructions that are executed when a packet matches 
the entry. Such instructions result in an action set, which performs changes to the 
incoming packet and/or pipeline processing. It should be noted that a switch must reject 
a flow entry, if it is unable to execute the instructions associated with this flow entry. 
The most important instruction types are: 

 Apply-Actions action(s): This instruction may be used for the modification of the 
packet between two tables or for the execution of multiple actions of the same type. 
It applies the specific action(s) immediately to the packet, without changing the 
Action Set. Such actions are described as an action list. 

 Write-Actions action(s): Merges the specified action(s) into the current action set. 

 Goto-Table [TABLE_ID]: Indicates the next table in the processing pipeline. The 
next table-id must be greater than the current table-id.  

The Apply-Actions instruction includes an action list. The actions of an action list are 
executed in the order specified by the list and are applied immediately to the packet. 
Each action is executed on the packet in sequence and that execution starts with the 
first action in the list. Some possible actions are: 

 Output: According to this action, a packet is forwarded to a specified OpenFlow 
port. OpenFlow switches must support forwarding to physical ports, switch-defined 
logical ports and the required reserved ports. 
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 Set-Queue: It sets the queue id for an incoming packet. When the packet is 
forwarded to a port using the output action, the queue id specifies which queue, 
attached to this port, is used for scheduling and forwarding the packet. More 
specifically, the forwarding behavior is determined by the configuration of the queue 
and is used for the basic QoS support. 

 Drop: This result can come from empty instruction sets or empty action buckets in 
the processing pipeline, or after the execution of a Clear-Actions instruction. In 
other words, there is no explicit action to represent drop, but packets whose action 
sets have no output actions should be dropped. 

 Group: Process the packet through the specified group. 

 Push-Tag/Pop-Tag: Switches may support the ability to push and pop tags from 
the packet. For instance, the ability to push/pop VLAN tags is suggested to be 
supported. 

 Set-Field: The Set-Field actions modify the values of respective header fields in the 
packet. Such actions are identified by their field type. 

 Change-TTL: Such actions result in the modification of the values of the IPv4 TTL, 
IPv6 Hop Limit or MPLS TTL in the packet. 

The output action in the action set is executed last. An output action is ignored only in 
the case that both an output action and a group action are specified in an action set 
because the group action takes precedence. The packet is dropped unless an output or 
a group action (or both) was specified in an action set [32]. 

An example flow rule is the following: 

 

 

where: 

 cookie is a unique identifier of the flow 

 n_packets (or n_bytes) is the number of packets (or number of bytes) matched by 
this flow 

 priority shows the order in which the specific flow rule will be examined 

 in_port is the match field of the flow. In this case, packets coming from port 3 are 
matched 

 actions is the field containing the actions that will be performed. In this case, the 
packet will be forwarded to output 2. 

2.3.2 The lookup process 

The counters associated with this particular flow entry must be increased and the 
instruction set included in the selected flow entry must be applied. In case of multiple 
matching flow entries with the same highest priority, the chosen flow entry is undefined. 
This process is illustrated in Figure 2.1: 

cookie=0x2b000000000000f6, duration=145.503s, table=0, n_packets=0, 
n_bytes=0, priority=2, in_port=3, actions=output:2 
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Figure 2.1: The lookup process in OF [32] 

The lookup process starts in the first table and ends either with a match in one of the 
tables of the pipeline or with a miss (when no rule is found for that packet). A packet 
matches a flow table entry if the values in the packet match fields, used for the lookup, 
match those specified in the flow entry. Each packet is matched against the table and 
only the highest priority entry that matches the packet must be selected. In case of a 
successful match, the action(s) specified in the rule are executed. If there is no 
matching rule in the flow tables, the packet is either dropped or an OpenFlow message 
containing the packet header is sent to the controller for processing. The controller 
calculates the action the network element should take with regard to the packet and 
communicates it. Furthermore, the controller can specify a flow rule and send it to the 
network element(s). This way, all following packets of the flow are treated the same way 
by the network, and the controller does not need to be involved any longer. The 
controller can also introduce new flow rules or modify existing ones without being 
triggered by an incoming packet. For example, the controller may adhere to a pre-
programmed schedule or implement a network policy. This is where the flexibility of 
SDN comes into play. Where traditional network devices would have to be reconfigured 
by an administrator, SDN enables the automatic and seamless implementation of 
changes in the forwarding behavior of the network. These changes can be triggered by 
external entities via the northbound API [6], [33]. 

Moreover, every flow table must support a table-miss flow entry to process table 
misses. This flow entry defines how to handle packets that are not matched against 
other flow entries in the flow table. As a result, such packets may be sent to the 
controller, be dropped or be directed to a subsequent table. If such a table-miss entry 
does not exist, by default, packets unmatched by flow entries are discarded [32]. 
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2.4 OPENDAYLIGHT CONTROLLER 

As already mentioned, SDN is an industry movement for building programmable 
networks that are flexible and responsive to organizations' and users' needs. 
OpenDaylight (ODL) is the largest open source SDN controller which is helping lead 
this transition. By uniting the industry around a common SDN platform, the ODL 
community is delivering interoperable, programmable networks to service providers, 
enterprises, universities and a variety of organizations around the globe [34]. 

Announced in April 2013 and hosted by the Linux Foundation, ODL is open to anyone, 
including end users and customers, and it provides a shared platform for those with 
SDN goals to work together to find new solutions. Under the Linux Foundation, ODL 
includes support for the OpenFlow protocol, but it is not limited to this and can also 
support other open SDN standards. ODL Controller exposes open northbound APIs, 
which are used by applications. These applications use the controller to collect 
information about the network, run algorithms to conduct analytics, and then use the 
ODL Controller to create new rules throughout the network. 

The ODL Controller is implemented solely in software, and is kept within its own Java 
Virtual Machine (JVM). This means that it can be deployed on hardware and operating 
system platforms that support Java [35]. The first code from the ODL project was 
released in 2014, including an open controller, a virtual overlay network, protocol 
plugins and switch device enhancements [36]. 

The latest stable version of ODL, released in May 2016, is Boron. This version is the 
one chosen to be used in the scope of the current diploma thesis. The Boron Controller, 
similarly to the previous releases, consists of three key blocks: 

 The controller platform 

 Northbound applications and services 

 Southbound plugins and protocols 

Image 2.8 depicts the overall architecture setup and components of ODL Boron. 

 

Image 2.8: The ODL Boron version architecture [37] 

The controller platform is a modular layer and has a northbound and southbound 
interface. The northbound interface provides controller services and a set of common 
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REST APIs that applications can leverage to manage networking infrastructure 
configuration.   

The southbound interface implements protocols to manage and control the underlying 
networking infrastructure. The southbound level has multiple plugins that either 
implement various networking protocols or directly communicate with hardware. OF and 
NETCONF are the best known and most widely used configuration and management 
protocols.   

The controller platform communicates with the underlying network infrastructure using 
southbound plugins and provides basic networking services via a set of managers, such 
as Topology Manager and Switch Manager. Any custom application can use these 
network services. 

The Base Network Service Functions are provided by the following platform managers 
and components and are the following: 

 Topology Manager: Stores and handles information about the managed 
networking devices. When the controller starts, the Topology Manager creates the 
root node in the topology operational subtree. Then it listens for notifications and 
updates this subtree with topology details, including all discovered switches and 
their interconnections. Notifications from other components, such as the Switch 
Manager or Device Manager, may also provide relevant topology information. 

 Statistics Manager: Implements statistics collection, sending statistics requests to 
all enabled nodes (managed switches) and storing responses in the statistics 
operational subtree. The Statistics Manager also exposes northbound APIs to 
return information on the following: 

o Node Connectors (switch ports) 

o Flows 

o Meters 

o Tables 

o Group statistics 

 Switch Manager: Provides network nodes (switches) and node connectors (switch 
ports) details. As soon as the controller discovers network components, their 
parameters are saved to the Switch Manager data tree. Northbound APIs can be 
used to get information on the discovered nodes and port devices. 

 Forwarding Rules Manager: Manages basic forwarding rules (such as OpenFlow 
rules), resolves their conflicts, and validates them. The Forwarding Rules Manager 
communicates with southbound plugins and loads OpenFlow rules into the 
managed switches. 

 Inventory Manager: Queries and updates information about switches and ports 
managed by ODL, guaranteeing that the inventory database is accurate and up-to-
date. 

 Host Tracker: Stores information about the end hosts (data layer address, switch 
type, port type, network address), and provides APIs that retrieve end node 
information. Host Tracker may work in a static or dynamic way. In case of dynamic 
operation, the Host Tracker uses the Address Resolution Protocol (ARP) to track 
the status of the database. In static mode, the Host Tracker database is populated 
manually via northbound APIs. 
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The central concept of the ODL controller is the Service Abstraction Layer (SAL), which 
connects the protocol plugins and Service Network Function Modules. Because the 
original API-Driven SAL (AD-SAL) approach proved ineffective, ODL and all dependent 
projects are migrating to Model-Driven SAL (MD-SAL). The Model-Driven SAL provides 
a common approach to plugin development, enabling unification between both 
northbound and southbound APIs and the data structures used in various components 
of the controller. In MD-SAL, all status-related data are stored in the form of a document 
object model (DOM), known as a data stores. 

The following two types of data stores are used in the ODL Controller: 

 The operational data store, which controller modules use to store certain 
temporary runtime information 

 The configuration data store, used to store the current status of the controller. An 
application or external end-user can post data, either through MD-SAL transaction 
or RESTCONF, to this data store. The individual objects are stored in a parent-child 
hierarchy and accessible through YANG instance identifiers. Once an instance 
identifier is created, a read or write transaction can be performed to that location in 
the data store [38]. 

MD-SAL uses YANG as the modeling language for describing all network services. 
After one defines the necessary YANG models, a compiler outputs appropriate Java 
interfaces, and the next step is to implement those auto-generated Java interfaces [37]. 

MD-SAL currently provides infrastructure services for: 

 Data Store 

 Remote Procedure Call (RPC) / Service routing 

 Notification subscription and publish services [39]. 

2.5 NETCONF, RESTCONF AND YANG 

The model-driven approach is being increasingly used in the networking domain to 
describe the functionality of network devices, services, policies and network APIs. The 
protocols of choice are Network Configuration Protocol (NETCONF) and 
Representational State Transfer Configuration (RESTCONF) Protocol; the modeling 
language of choice is Yet Another Next Generation (YANG) Language [39]. All three 
are explained below in detail. 

Since the beginning of the SDN discussion a few years back, proponents of OF have 
been behind the movement to control all devices in the network. This has 
unquestionably been the case within the confines of the data center. OF appears to 
solve data center issues well, even its earliest versions. However, there are many 
cases where, in order to provide an end-to-end Wide-area Network (WAN) service or 
provide inter-data center connectivity, the use of OF is up to now insufficient. Even in 
SDN, there still is persistent state on network devices and OF doesn't automatically 
configure itself.  

Extensions contained in newer OF versions address many early limitations, such as 
transactional actions and dealing with multiple entities that can monitor and/or control 
the same device. In all fairness, OF has made astonishing progress since its inception 
in 2009, but the capabilities needed for WAN device configuration and control are 
recent additions. 

On the other hand, a protocol which has existed for some time is now appearing more 
often, especially in discussions pertaining to network automation. The protocol is called 
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NETCONF and was established by the Internet Engineering Task Force (IETF) in 2006. 
NETCONF was introduced to help automate configuration management and monitoring 
for a large population of WAN devices (routers, switches and transport gear). Vendors 
such as Cisco, Juniper, Ericsson and others have been early proponents of NETCONF, 
thereby establishing momentum for the technology [40]. 

NETCONF provides the fundamental programming features for comfortable and robust 
automation of network services [41]. It defines a simple mechanism through which a 
network device can be managed, configuration data information can be retrieved, and 
new configuration data can be uploaded and manipulated [42]. It also defines 
configuration and operational conceptual data stores and a set of Create, Retrieve, 
Update, Delete (CRUD) operations that can be used to access these data stores. It 
uses an XML- based data encoding for the configuration and operational data, as well 
as for its protocol messages [39]. 

Mechanisms are provided to install, update, and delete the configuration of network 
devices, such as routers, switches, and firewalls [42]. The NETCONF protocol 
operations are realized as RPCs [43]. 

In order to develop applications in the SDN controller, the following are required: 

 A Domain-Specific Language (DSL) to describe internal and external system 
behavior. 

 Modeling tools for the controller aligned with the modeling tools for the devices. 

 Code generation from models: 

o Enforce standard API contracts 

o Generate boilerplate code performing repetitive and error-prone tasks 

o  Produce functionality equivalent APIs for different language bindings 

o Model-to-model adaptations for services and devices 

o Consumption of aligned device models 

The above requirements are satisfied with YANG [44]. 

YANG is a data modeling language for the definition of data sent over the NETCONF 
protocol. YANG can be used to model both configuration data and state data of network 
elements in a tree format, as well as define the format of event notifications emitted by 
network elements and allow data modelers to define the signature of remote procedure 
calls that can be invoked on network elements via the NETCONF protocol [45]. These 
characteristics make it suitable for use as an Interface Description Language (IDL) in a 
model-driven system [39]. It is a human readable and easy to learn representation, with 
reusable types and groupings and extensibility through augmentation mechanisms. It is 
a full, formal contract language with rich syntax and semantics to build applications on 
[41]. The language, being protocol independent, can then be converted into any 
encoding format, e.g. XML or JSON, that the network configuration protocol supports 
[45]. In the SDN controller, YANG is being used as a general purpose modeling 
language [46]. 

Finally, RESTCONF is a Representational State Transfer (REST)-like protocol that 
provides a programmatic interface over HTTP for accessing data defined in YANG, 
using the data stores defined in NETCONF. Configuration data and state data are 
exposed as resources that can be retrieved with a GET request. Data is encoded in 
either XML or JSON [39]. 



An SDN QoE Monitoring Framework for VoIP and video applications 

Maria-Evgenia I. Xezonaki   44 

2.6 HISTORY AND STANDARDIZATION OF SDN 

Albeit a fairly recent concept, SDN leverages on networking ideas with a longer history. 
In particular, it builds on work made on programmable networks, such as active 
networks, programmable Asynchronous Transfer Mode (ATM) networks as well as on 
proposals for control and data plane separation. 

In order to present a historical perspective, Table 2.2 summarizes different instances of 
SDN-related work prior to SDN, splitting it into five categories. Along with the categories 
defined, the second and third columns of the table mention past initiatives (pre-SDN, 
i.e., before the OF-based initiatives that sprung into the SDN concept), and recent 
developments that led to the definition of SDN. Data plane programmability has a long 
history. Active networks represent one of the early attempts on building new network 
architectures based on this concept. The main idea behind active networks is for each 
node to have the capability to perform computations on, or modify the content of, 
packets. To this end, active networks propose two distinct approaches: programmable 
switches and capsules. The former does not imply changes in the existing packet or cell 
format. It assumes that switching devices support the downloading of programs with 
specific instructions on how to process packets. The second approach, on the other 
hand, suggests that packets should be replaced by tiny programs, which are 
encapsulated in transmission frames and executed at each node along their path. 

Forwarding and Control Element Separation (ForCES) and OF represent recent 
approaches for designing and deploying programmable data plane devices. In a 
manner different from active networks, these new proposals rely essentially on 
modifying forwarding devices to support flow tables, which can be dynamically 
configured by remote entities through simple operations such as adding, removing or 
updating flow rules, i.e., entries on the flow tables. 

The earliest initiatives on separating data and control signaling date back to the 
decades of 1980 and 1990. Initiatives such as ForCES and Path Computation Element 
(PCE) proposed the separation of the control and data planes for improved 
management in Ethernet and Multiprotocol Label Switching (MPLS) networks, 
respectively. 

More recently, initiatives such as OF and NOX proposed the decoupling of the control 
and data planes for Ethernet networks. Interestingly, these recent solutions do not 
require significant modifications on the forwarding devices, making them attractive not 
only for the networking research community, but even more to the networking industry.  

The concept of a network operating system was reborn with the introduction of OF-
based network operating systems, such as NOX, Onix and ONOS. Indeed, network 
operating systems have been in existence for decades. One of the most widely known 
and deployed is the Cisco IOS, which was originally conceived back in the early years 
of the decade of 1990. Despite being more specialized network operating systems, 
targeting network devices such as high-performance core routers, these NOSs abstract 
the underlying hardware to the network operator, making it easier to control the network 
infrastructure as well as simplifying the development and deployment of new protocols 
and management applications. 

The open signaling movement worked towards separating the control and data 
signaling, by proposing open and programmable interfaces. Curiously, a rather similar 
movement can be observed with the recent advent of OF and SDN, with the lead of the 
ONF. This type of movement is crucial to promote open technologies into the market, 
hopefully leading equipment manufacturers to support open standards and thus 
fostering interoperability, competition, and innovation [6]. 
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Table 2.2: Summarized overview of the history of programmable networks [6] 

Standardization 
Organization Working Group Focus Outcomes 

ONF 

Architecture & 
Framework 

SDN architecture, defining 
architectural components and 

interfaces 
SDN Architecture 

Northbound 
Interfaces 

Definition of standard NBIs for 
SDN controllers 

 

Testing and 
Interoperability 

Specification of OpenFlow 
conformance test suites 

Conformance 
tests 

Extensibility 

Development of extensions to 
OpenFlow protocol, producing 
specifications of the OpenFlow 

switch (OF-WIRE) protocol 

OF-WIRE 1.4.0 

Configuration & 
Management 

OAM (operation, 
administration, and 

management) capabilities 
for OF protocol, producing 

specifications of the OF 
Configuration and 

Management (OF-CONFIG) 
protocol 

OF-CONFIG 1.2, 
OpenFlow 

Notifications 
Framework 

Forwarding 
Abstractions 

Development of hardware 
abstractions and simplification 

of 
behavioral descriptions 

mapping 

OpenFlow Table 
Type Patterns 

Optical Transport 

Specification of SDN and 
control capabilities for optical 

trans- 
port networks by means of 

OpenFlow 

Use cases 
Requirements 

Wireless & Mobile 

Specification of SDN and 
control capabilities for wireless 

and 
mobile networks by means of 

OpenFlow 

 

Migration 

Methods to migrate from 
conventional networks to 

SDN-based networks based 
on OpenFlow 

Use cases 

Market Education 

Dissemination of ONF 
initiatives in SDN and 

OpenFlow by 
releasing White Papers and 

Solution Briefs 

SDN White 
Paper 

IETF 
Application-Layer 

Traffic Optimization 
(ALTO) 

Provides applications with 
network state information 

Architectures for 
the coexistence 

of 
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SDN and ALTO 

Forwarding and 
Control Element 

Separation 
(ForCES) 

Protocol specifications for the 
communication between 

control 
and forwarding elements 

Protocol 
specification 

Interface to the 
Routing System 

(I2RS) 

Real-time or event driven 
interaction with the routing 

system in an IP routed 
network 

Architecture 

Network 
Configuration 
(NETCONF) 

Protocol specification for 
transferring configuration data 

to and from a device 

NETCONF 
protocol 

Network 
Virtualization 

Overlays 
(NVO3) 

Overlay networks for 
supporting multi-tenancy in the 

context 
of data center communications 

(i.e., VM communication) 

Control plane 
requirements 

Path Computation 
Element (PCE) 

Path computation for traffic 
engineering and path selection 

based on constrains 

ABNO 
framework, Cross 

stratum path 
computation 

Source Packet 
Routing in Net- 

working (SPRING) 

Specification of a forwarding 
path at the source of traffic 

OpenFlow 
interworking 

SDN controlled 
use cases 

Abstraction and 
Control of Trans- 

port Networks 
(ACTN) BoF 

Facilitate a centralized virtual 
network operation 

Virtual network 
framework 

IRTF 

Software-Defined 
Networking 

Research Group 
(SDNRG) 

Prospection of SDN for the 
evolution of Internet 

SDN operator 
perspective, SDN 

Architecture 
Service / 
Transport 
separation 

 

ITU-T 

SG 11 

Signaling requirements using 
SDN technologies in 

broadband 
access networks 

Q. Supplement, 
SDN 

Q.SBAN 

SG 13 
Functional requirements and 

architecture for SDN and 
networks of the future 

Recommendation 
Y.3300 

SG 15 

Specification of a transport 
network control plane 

architecture 
to support SDN control of 

transport networks 

 

SG 17 
Architectural aspects of 

security in SDN and security 
services 

 



An SDN QoE Monitoring Framework for VoIP and video applications 

Maria-Evgenia I. Xezonaki   47 

using SDN 

BBF 

BBF Service 
Innovation and 

Market 
Requirements 

Requirements and impacts of 
deploying SDN in broadband 

networks 
SD – 313 

MEF The Third Network 
Service orchestration in 

network as a Service and NFV 
environments 

 

IEEE 802 
Applicability of SDN to IEEE 

802 infrastructure 
 

OIF Carrier WG Transport SDN networks 

Requirements for 
SDN enabled 

transport 
networks 

ODCA SDN/Infrastructure 
Requirements for SDN in 

cloud environments 
Usage model 

ETSI NFV ISG 

Orchestration of network 
functions, including the 

combined 
control of computing, storage 

and networking resources 

NFV Architecture 

ATIS SDN Focus Group 
Operational aspects of SDN 

and NFV 
Operation of 

SDN 

 

2.7 USE CASES OF SDN 

As already mentioned, SDN has been paid a lot of attention to by researchers and 
scientists over the past few years. It proves to be an adaptable, comparatively cost-
efficient and dynamic solution. The sophistication of SDN allows it to cater to the high 
bandwidth needs of applications. Although it has been getting a lot of hype, any real 
world use cases for it can rarely be figured out, even though there are plenty of them 
[47]. SDN theory has dominated conversation in the networking industry, but also SDN 
uses cases are beginning to emerge, showing how the technology can result in cost 
efficiency and network flexibility in both enterprise and service provider environments 
[48]. Below a few selected SDN use cases which depict how and why it can provide 
flexibility and deal with some key network problems are presented [47]. 

 Video and collaboration applications: Video and collaboration applications have 
become critical for the success of an organization. Most of these applications 
typically are more efficient when they use multicast technology. IP multicast 
technology is mature and available, but it is still difficult to deploy and troubleshoot. 
It is not as widely deployed as IP unicast technology, and it has forced many 
organizations to deploy video applications using other mechanisms based on IP 
unicast forwarding. SDN is an ideal solution for these types of applications, as the 
SDN controller knows the topology, sources and listeners, and can build an efficient 
multicast topology and program the network on an on-demand basis [49]. 

The use of SDN in video applications allows better control over the network and 
gives providers the ability to ensure that the QoS levels are maintained, without 
having to expand capacity, since they are able to both provision and de-provision 
the network space based solely on need [47], [48]. 
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 Application Aware Routing: With personal applications such as Facebook and 
YouTube competing with corporate applications, networks need to prioritize and 
forward the traffic based on an application. SDN can provide a simple and 
consistent way of identifying applications, and program the network to prioritize and 
forward the traffic appropriately. In fact, any application can communicate with the 
SDN controller to provide application specific-needs, and request the SDN 
controller to program the flow appropriately [49]. 

 Data Center Optimization: Using SDN, networks can be optimized in order to 
improve application performance by detecting and taking into account affinities and 
orchestrating workloads with networking configuration (mice/elephant flows) [50]. 
SDN allows scaling of bandwidth between servers, without significant hardware 
expenses [48]. 

 Converged storage: Converged storage is an architecture that consists of an 
amalgam of computing resources and storage in a single unit. They can be used for 
platform development for storage centric, server centric or even hybrid (storage-
server) workloads [47]. SDN can be used with the goal of virtualizing the network 
and making it agile enough to keep up server and storage virtualization. Many 
famous data services providing companies are beginning to use SDN while 
creating programmable fabrics across storage and data center technologies. With 
this approach, companies can offer software as a Service and data services [48]. 

 Routing and Service Convergence: The value of SDN for service providers with 
dense and highly distributed networks lies specifically in the ability to provide them 
more options on locating resources thereby conferring a competitive advantage 
when delivering certain kinds of services. SDN may reduce the policy complexity by 
enabling scalability in inter-domain and providing validation for the claims of 
seamless evolution [51]. 

 Cloud-based Networks: The introduction and deployment of cloud-based services 
have emerged as an important solution that offers enterprises a cost-effective 
business model. However, many network functions have extreme characteristics 
and performance requirements, which have created new challenges such as 
servers and network virtualization, mobile clouds, and security. These need to be 
addressed with intelligent network virtualization, high-speed packet processing, and 
load-balancing. SDN can be seen as a new and complementary technology to 
virtualization, which is poised to tackle the challenges of network-enabled cloud 
and web-scale deployments [51]. 

 Wireless and Mobility Settings: Software Defined Wireless Networking (SDWN) 
is an SDN technology for wireless that provides radio resource and mobility 
management, routing, and multi homing. SDWN can provide a programmable 
wireless data plane to allow modular and declarative programming interfaces 
across the wireless stack. This allows programming the enterprise-specific 
requirements (e.g., an airport, a restaurant, public library) in a wireless access point 
(WAP) [51]. 

These were only some of the many possible applications of SDN, which is extended 
beyond the aforementioned cases. It’s inevitable that even more will appear once the 
technology receives more recognition and public approval [47], [52]. 

2.8 ADVANTAGES OF SDN 

SDN has captured the industry’s attention because it brings significant benefits to the 
entire network and cloud ecosystems [4]. It has potential use cases and benefits for 
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almost every part of the network in both Layer 2 and Layer 3 segments [53] and offers 
considerable technological and financial advantages [7].  

Adopting an SDN methodology has a myriad of benefits including flexibility, scalability, 
redundancy, and performance. In a traditional network, there might be certain limited 
hardware and software pieces. When a network requires additional resources, there will 
be considerable cost in buying new hardware and licensing. With SDN, the network is 
abstracted onto software, leaving more choice and flexibility in purchasing hardware. In 
addition, a growing network can be more easily supported by SDN because a network 
administrator or engineer can simply add more virtual switches or routers rather than 
purchase costly equipment and licensing. A software-defined network is also portable, 
which allows the flexibility in choosing and moving to cloud storage, public or private. 
Abstracting the network onto a cloud could present many benefits as well: less 
hardware to manage onsite, lower energy bills, and greater uptime [53]. 

Moreover, SDN benefits the network operators and owners across various domains of 
use. For example, the data center operators use SDN for network virtualization to 
support multi-tenancy across computing, storage, and networking in a unified way and 
to integrate soft-appliances to reduce capital and operational expenses and be more 
agile in meeting customer requirements. Service providers use SDN to create highly 
cost-efficient wide-area networks with virtualization to interconnect their geographically 
distributed data centers for a cloud infrastructure. SDN within and across data centers 
enables network virtualization, customization, and optimization for their customers that 
hasn’t been possible before. Service providers and their vendors see the benefits of 
SDN in traffic engineering, service chaining, and other use cases for simplifying 
management and control of the edge and core networks to help reduce operational 
expenses and future capital expenses. Cellular operators view SDN as a way to build 
CAPEX- and OPEX-efficient backhaul and packet core networks that can be more agile 
in supporting mobile services. 

SDN also benefits the large group of network equipment and third party vendors. It 
allows them to innovate faster by creating software-based solutions to meet their 
customers’ requirements in various domains of use. Equipment vendors have an 
opportunity to sell a new class of products and solutions and network operators and 
owners can grow their infrastructure rapidly and roll out new innovative capabilities and 
services, giving vendors more opportunities for revenue growth. 

One of SDN’s most important advantages is the potential for automation. By using 
programmatic controls to automate functions within a network, SDN can significantly 
increase speed and efficiency while reducing the risk of human error. The business can 
focus on innovation, rather than operational tasks. Moreover, reducing the time needed 
to manage the network and deploy new resources or applications can also greatly 
increase an organization's agility and the speed with which new services can be 
deployed [7]. 

To sum up the current chapter, the most important benefits of SDN, as stated by the 
ONF, are: 

 Direct programmability: The control plane is directly programmable because it is 
decoupled from the data plane. 

 Agility: Abstracting the control plane from the data plane lets administrators 
dynamically adjust traffic flows to meet changing needs. 

 Central (logically) management: The SDN controller maintains a global view of the 
infrastructure network which appears to applications and policy engines as a single, 
logical switch. 
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 Programmable configuration: SDN lets network managers configure, manage, 
secure, and optimize network resources very quickly via dynamic, automated SDN 
programs, which they can write themselves, because the programs do not depend 
on proprietary software. 

 Open standards implementation and vendor neutrality: When implemented through 
open standards, SDN simplifies network design and operation because instructions 
are provided by SDN controllers instead of multiple, vendor-specific devices and 
protocols [26]. 

2.9 CHALLENGES OF SDN 

Although SDN is a favorable solution for IT and cloud providers and enterprises, SDN 
faces some challenges which hinder its performance and implementation. The list of 
SDN challenges contains scalability, performance, security, interoperability and 
reliability issues. Enterprises and networking organizations must overcome several 
obstacles to fully realize SDN's benefits [54], [55]. 

Following are presented some common challenges in software defined networks, 
created by the paradigm shift of software-defined services from traditional hardware-
based networking: 

 SDN Reliability/Fault Tolerance: In a traditional network when one network or 
many network devices fail, network data flow is routed through another or nearby 
nodes or devices to continue data flow continuity. Therefore, the existing networks 
survive failures or bugs for any of the devices. However in the centralized controller 
architecture of SDN, the controller is a single point of control and therefore a single 
point of failure, as a single controller is in charge of all the networks. Thus, in case 
of a bug or a failure in the central controller, the whole network collapses since 
there is no alternate controller.  

To address this issue the cloud organization needs to focus on how to efficiently 
utilize main controller functions that can increase network reliability. The SDN 
controller should have the ability to support multiple-path solutions or fast traffic 
rerouting to active links if there is a path/link failure. If the main controller fails, the 
newer architectures support an alternate controller which can handle traffic flow 
[56]. 

 Scalability: In SDN, as already mentioned, the data and control planes are 
decoupled. The decoupling process has its own drawbacks, such as the fact that 
the SDN controller becomes the bottle neck in a situation where the network scales 
the number of switches and number of nodes up [54]. In particular, large networks 
with volumes of networking requests can overwhelm controllers. As networks grow, 
the bottleneck tightens and network performance degrades. 

Scalability may be improved with a decentralized control architecture or similar 
solution, such as split or fully distributed control planes. But such solutions can 
introduce new obstacles such as convergence and countless control instances to 
configure and manage [55]. 

 Performance: The network’s performance is another important area to look into. 
Performance is the greatest issue for all networks. Regardless of how robust, 
secure, scalable, or interoperable a network is, it's unusable if it lacks performance. 

The separate control and data plan architecture can introduce latency into SDN. In 
large networks this can build to an unacceptable level of delay, degrading network 
performance. Related, controller response time and throughput can contribute to 
poor performance, with the combined effect causing scalability issues. 
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The solution for many performance issues in large and growing networks is to push 
more intelligence to the data plane or move to a distributed control plane 
architecture of some type. While this can improve SDN performance, it is not very 
close to the intent of SDN, as it replicates traditional networks built on fully 
distributed intelligent devices. A balance has to be sought where virtualization is 
maintained without degrading network performance or introducing potential single 
points of failure [54], [55]. 

 Security: Because the control plane plays such a central function in an SDN 
architecture, security strategies must focus on protecting the controller and 
authenticating an application's access to the control plane. New services can 
introduce security threats as programmers and network administrators may 
unwittingly introduce at-risk code and extend the threat network wide through a 
centralized or partially distributed controller. Related, SDN's virtual nature can 
result in the creation of countless network segments, each with its own risk and 
security requirements [55]. 

Security needs to be everywhere within a software-defined network. SDN security 
needs to be built into the architecture, as well as delivered as a service to protect 
the availability, integrity, and privacy of all connected resources and information 
[57]. 

 Rapid on-demand growth accommodation: Unlike legacy infrastructure in the 
SDN world we can have multiple overlay topologies running on top of the physical 
network. Whenever a new service starts, it deploys the necessary virtual 
infrastructure, and thus the number of monitored elements can grow rapidly with 
increased demand – outstripping traditional capacity management. 

The solution is to deploy performance monitoring within both physical and virtual 
appliances. When extra performance management capacity is needed, spinning up 
additional virtual appliances on demand enables performance monitoring to flex 
with the demands of an SDN environment and still provide answers in seconds 
[58].  

 Interoperability: For new networks, implementing SDN is fairly straightforward - all 
network devices are SDN-ready. Transitioning a legacy network to SDN is another 
story as the legacy network is likely supporting active business and networking 
systems. Enterprises and most networking environments have to transition to SDN, 
requiring a period of interoperability with a hybrid legacy-SDN infrastructure. They 
need guarantees that services running on existing networks will not be disrupted. 

SDN and legacy network nodes can operate together, with help from an 
appropriate protocol that supports SDN communications while providing backward 
compatibility with existing IP and MPLS control plane technologies - reducing the 
cost, risk, and disruption of services while transitioning to SDN [55]. 
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3. QUALITY OF EXPERIENCE (QoE) 

3.1 INTRODUCTION TO QoE 

As already explained in Section 1.3, network applications such as online video 
streaming have seen a huge growth in popularity during recent years and at the same 
time, HD video traffic has already surpassed that of Standard Definition (SD). It is 
expected that this trend will continue further in the forthcoming years. Undoubtedly, high 
quality video streaming has already become an essential part of many consumers’ lives 
and with the introduction of UHD content, providers will continue to push user 
expectations in the availability of higher video quality and bitrates. Moreover, the rapid 
evolution of mobile networks is driven by the growth of packet data applications such as 
mobile video applications and mobile streaming services. Also, heterogeneous network 
structures, severe channel impairments, and complex traffic patterns make mobile 
scenarios much more unpredictable than their wired counterparts [59], [28], [60]. 

Therefore, the importance of taking care of user satisfaction with service provisioning 
has been realized [60]. One can easily understand that the requirements for today's 
network applications are diverse and network and content providers are thus immensely 
interested in ensuring a high degree of satisfaction for their end-users. Understanding 
and measuring quality of communication services and underlying networks from an 
end-user perspective has attracted increased attention over the course of the last 
decade [61]. 

Networks try to support the requirements based on Quality of Service (QoS) 
parameters, such as throughput, latency and jitter. However, the performance of a 
specific application cannot be determined by simply relying on QoS metrics. A growing 
awareness of the scientific community that technology-centric QoS concept is not 
powerful enough to cover every relevant performance aspect of a given application or 
service has been witnessed [61]. Network level metrics traditionally used by network 
administrators are not adequate to indicate how satisfied a user is with his video 
streaming experience. In addition, research shows that there is not always a direct or 
deterministic correlation of the impact of the network-level metrics to the users’ 
satisfaction. Thus, the evaluation of network applications should be based on user-
centric metrics that provide a better indication of the satisfaction of the end-users and 
define the Quality of Experience (QoE) [59], [28]. 

The notion of QoE appeared around the beginning of the current century, mainly 
promoted by industry [60]. QoE is a measure of the delight or annoyance of a 
customer's experience towards a specific service, or in other words determines how 
well that network is satisfying the end user's requirements. It results from the fulfillment 
of his or her expectations with respect to the utility and / or enjoyment of the application 
or service in the light of the user’s personality and current state. It focuses on the entire 
service experience; it is a holistic concept with its roots in telecommunications. QoE is 
an emerging multidisciplinary field based on social psychology, cognitive science, 
economics, and engineering science, focused on understanding overall human quality 
requirements. In short, QoE provides an assessment of human expectations, feelings, 
perceptions, cognition and satisfaction with respect to a particular product, service or 
application [61]. 

QoE has historically emerged from QoS, which attempts to objectively measure service 
parameters. QoS measurement is most of the time not related to a customer, but to the 
media or network itself. On the contrary, QoE takes into consideration the end-to-end 
connection and applications that are currently running over that network connection and 
how multimedia elements are satisfying or meeting the end user's requirements. It is a 
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purely subjective measure from the user’s perspective of the overall quality of the 
service provided, by capturing people’s aesthetic and hedonic needs. The relationship 
between a performance-based QoS parameter has a resulting effect on the end user's 
QoE, since a high network performance is required to meet QoE objectives [61], [62]. 

The QoE of a service is considered as being good if the user is content with the service 
as a whole. The degree of the latter is reflected in KPIs, addressing: 

 Reliability aspects such as service availability, service accessibility, service access 
time, and continuity of service 

 Comfort aspects such as session quality, ease of use, and level of support [60]. 

The IT industry applies the QoE model to businesses and services. QoE aims at taking 
into consideration every factor that contributes to a user's perceived quality of a system 
or service. This includes system, human and contextual factors. The following so-called 
"influence factors" have been identified and classified as described below and are 
depicted in Image 3.1: 

 Human Influence Factors, such as: 

o Low-level processing (visual and auditory acuity, gender, age, mood, etc.) 

o Higher-level processing (cognitive processes, socio-cultural and economic 
background, expectations, needs and goals, other personality traits, etc.) 

 System Influence Factors, which can be: 

o Content-related 

o Media-related (encoding, resolution, sample rate, etc.) 

o Network-related (bandwidth, delay, jitter, etc.) 

o Device-related (screen resolution, display size, etc.) 

 Context Influence Factors, which can be related to: 

o Physical context (location and space) 

o Temporal context (time of day, frequency of use, etc.) 

o Social context (inter-personal relations during experience) 

o Economic context 

o Task context (multitasking, interruptions, task type) 

o Technical and information context (relationship between systems) 
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Image 3.1: QoE influence factors belonging to context, human user and the technical system [61] 

Studies in the field of QoE have typically focused on system factors, primarily due to its 
origin in the QoS and network engineering domains. Through the use of dedicated test 
laboratories, the context is often sought to be kept constant. However, studies 
investigating context and human factors have become more popular. Research has 
shown that human factors account for observed variations in multimedia quality ratings, 
including socio-cultural and economic background as well as user expectations [61]. 

Key environmental factors impact QoE assessment. These include: 

 Hardware, such as wired or cordless devices 

 Application criticality, for example, texting versus audio/video 

 Working environment, for example, fixed or mobile [63]. 

Therefore, a major challenge for future networks is to dynamically adapt to QoE 
demands of the applications in the network. This is especially true for networks with 
limited resources, like today’s access networks [28].  

3.2 QoE MANAGEMENT  

As an important measure of the end-to-end performance at the service level from the 
user's perspective, QoE is an important metric for the design of systems and 
engineering processes. So, when designing systems, the expected output, i.e. the 
expected QoE, is often taken into account also as a system output metric and 
optimization goal [64]. The central question for QoE research and engineering is how to 
operationalize the concept in terms of performing reliable, valid, and objective 
measurements. This challenge is framed by the overarching question of quantifying and 
measuring quality. Since inclusion of the human end-user’s perspective is the defining 
aspect of QoE, conducting measurements merely on a technical level (e.g. by just 
assessing conventional end-to-end QoS integrity parameters) is not sufficient. In 
particular, QoE also accounts for user requirements, expectations and contextual 
factors like task and location.  

Thus, quality assessment schemes are needed that act as translator between a set of 
technical (QoS) and non-technical (subjective and contextual) key influence factors and 
user perception, or ultimately, user experience. These can be categorized into 
subjective and objective quality assessment methods, depending on whether human 
subjects are involved in the assessment process or not. 
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Subjective Quality Assessment Methods are based on gathering information from 
human assessors who are exposed to different test conditions or stimuli during the 
process. In general, a panel of assessors is subjected to various quality levels, 
something which leads to some form of explicit or implicit response. In most cases, 
quantitative methods derived from neighboring disciplines such as psychophysics and 
psychometrics are used to obtain information regarding assessors’ judgment in the form 
of ratings that describe their perception of the respective quality experienced. In 
addition, qualitative methods such as focus groups or interviews are used, particularly 
in order to find out which influence factors or features contribute to QoE and how. 
Subjective tests are typically conducted in a controlled laboratory setting and require 
careful planning in terms of which variables and influence factors need to be controlled, 
measured and monitored [61]. 

The typical result of a subjective test campaign is the individual assessor’s ratings 
which are typically aggregated into so-called mean opinion scores (MOS). The MOS 
expresses the average quality judgment of a panel given a certain test condition 
regarding the overall quality experienced or along a certain quality dimension (e.g. 
picture quality). It is typically based on an ordinal five-point scale:  

 Bad 

 Poor 

 Fair 

 Good 

 Excellent 

MOS is a widely used measure for assessing the quality of media signals; it is a limited 
form of QoE measurement, relating to a specific media type, in a controlled 
environment and without explicitly taking into account user expectations. The MOS as 
an indicator of experienced quality has been used for audio and speech 
communication, as well as for the assessment of quality of Internet video, television and 
other multimedia signals, and web browsing. Due to inherent limitations in measuring 
QoE in a single scalar value, the usefulness of the MOS is often debated [64]. 

Objective Quality Assessment Methods are another approach being investigated 
with the purpose to automatically predict QoE at high accuracy on behalf of algorithmic 
processing of input parameters.  

Objective quality assessment approaches can be categorized on behalf of the following 
criteria: 

 Targeted service: Service type, e.g. IPTV, Voice-over-IP (VoIP) telephony, video 
conferencing, mobile TV, web browsing. 

 Model type: Utilization of a reference signal, i.e. Full Reference (FR), Reduced 
Reference (RR), No Reference (NR). 

 Application: Codec testing, network planning, verification of QoS classes, 
monitoring, etc. 

 Model input: Parametric description of the processing path (i.e. protocol 
information or planning values), additional payload information from bitstream, 
reconstructed signal, combinations of parameters and signal, etc. 

 Model output: Overall quality or specific quality aspects in terms of MOS or 
another index. 
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 Modeling approach: Psychophysical (i.e. explicit modeling of the human 
perceptual system) vs. empirical approaches (based on extracting characteristic 
system features by conducting experiments). 

However, objective metrics are only useful if their measurements closely correlate with 
subjective quality. Therefore, an integral part of the design process is the derivation of 
quality models that map quantifiable influence factors to predicted MOS values. To this 
end, the data obtained from subjective quality experiments are required to find model 
functions that provide an optimum fit with human quality perception [61]. 

Briefly comparing the two afore mentioned approaches, subjective quality evaluation 
requires a lot of human resources, establishing it as a time-consuming process. 
Objective evaluation methods, on the other hand, can provide such results faster, but 
require large amount of machine resources and sophisticated apparatus configurations. 
Despite obvious speed and economy advantages, the caveat with objective metrics is 
that they are only an approximation of a limited number of aspects of human quality 
perception. Therefore, they can provide inaccurate or inconclusive results, particularly 
when applied to new conditions they were not initially trained or designed for. Objective 
metrics therefore need to be developed carefully, their application scope needs to be 
clearly defined and continuously validated against data from subjective experiments. 
For these reasons, much further research is required until QoE can be, if at all, 
accurately measured using objective metrics only [61]. Thus, objective evaluation 
methods are based and make use of multiple metrics [64]. 

The QoE monitoring and measurement process encompasses the acquisition of data 
related to the network environment and conditions, terminal capabilities, user, context, 
and application/service specific information and its quantification. The parameters can 
be gathered via probes at different points in the communication system, at different 
moments, as well as by various methods. A diversity of QoE monitoring and 
measurement points, moments, and methods together with the selection of the key QoE 
influence factors (IFs) for a given service additionally increases the complexity of this 
process. 

In order to be able to manage and optimize QoE, knowledge regarding the root cause 
of unsatisfactory QoE levels or QoE degradations is necessary. A layered approach 
relates network-level KPIs with user-level application specific Key Quality Indicators 
(KQIs), for example, service availability, usability, reliability, etc., which then provide 
input for a QoE estimation model. Additional input to a QoE estimation model may then 
be provided by user-, context-, and device-related IFs. Knowledge regarding this 
mapping between KPIs and KQIs will provide valuable input regarding the analysis of 
the root causes of QoE degradation. Hence, monitoring probes inserted at different 
points along the service delivery chain to collect data regarding relevant KPIs are 
necessary. 

While monitoring at the client side provides the best insight into the service quality that 
users actually perceive, a challenge lies in providing QoE information feedback to the 
network, service/application, content, or cloud provider to adapt, control, and optimize 
the QoE. This client side monitoring point poses the issues of users’ privacy, trust, and 
integrity, since users may cheat in order to receive better performance. Consequently, 
collecting data from within the network without conducting client side monitoring (in an 
either objective or subjective manner), and vice versa, will not generally provide 
sufficient insight into QoE. Hence, accurate monitoring of QoE needs to employ both 
monitoring from within the network and at the client side [65]. 

The QoE monitoring and measurement process is complex due to the diversity of 
factors affecting QoE, data acquisition points, and timings, as well as methods of 
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collecting data, and the lack of consensus regarding these issues. The main challenge 
in this process is to determine what, where, when and how to collect data. 

Firstly, one needs to determine which data to acquire, which is specified by the QoE 
metrics selection which depends on the service type and context. The decision 
regarding data that should be acquired considering the wide spectrum of QoE IFs is 
challenging, but it is the prerequisite for any QoE monitoring and measurement 
approach. Secondly, choosing a location where to collect data is another critical issue in 
the QoE assessment process, that is, determine the location of monitoring probes. As 
previously mentioned, data can be collected within the network, at the client side, or 
both (depending also on whether measurements are conducted for QoE modeling 
purposes or for QoE control purposes). The QoE monitoring and measurement within 
the network may include data collection at different points such as the base stations 
within the various access networks, the gateways or routers within the core network, or 
the servers in the service/application, content, or cloud domains. Additionally, the 
acquired parameters may be derived from application level, network level, or a 
combination thereof. Each acquisition location addresses the specific challenges 
discussed previously. Furthermore, if performing in-service QoE management (e.g., 
QoE-driven dynamic (re)allocation of network resources), collected data generally 
needs to be communicated to an entity performing QoE optimization decisions. Hence, 
the passing of data to a control entity needs to be addressed. Thirdly, one should 
determine when to collect data (before / after the service is developed of after the 
service is delivered). Additionally, how often data should be monitored and measured 
needs to be considered. Finally, how to perform the data acquisition is determined by 
the where and when clauses. The QoE monitoring process implies computational 
operations, hence computational complexity and battery life of mobile devices need to 
be considered [65]. 

It may be concluded that different actors involved in the service provisioning chain will 
monitor and measure QoE in different ways, focusing on those parameters over which a 
given actor has control (e.g. a network provider will monitor how QoS-related 
performance parameters will impact QoE, a device manufacturer will monitor device-
related performance issues, while application developers will be interested in how the 
service design or usability will affect QoE). 

Having chosen the proper QoE metrics, monitoring and measurements approach, it is 
important to provide mechanisms utilizing this information for improving service 
performance, network planning, optimization of network resources, specification of 
SLAs among operators, and so forth.  

Following QoE modeling, monitoring, and measurements, the ultimate goal of QoE 
management is to control QoE via QoE optimization and control mechanisms. Such 
mechanisms yield optimized service delivery with (potentially) continuous and dynamic 
delivery control in order to maximize the end-user’s satisfaction and optimally utilize 
limited system resources. From an operator point of view, the goal would be to maintain 
satisfied end users (in terms of their achieved QoE) in order to limit customer churn, 
while efficiently allocating available wireless network resources. QoE optimization as 
such may be considered a very challenging task due to a number of issues 
characteristic for converged all-IP wireless environments, including limited bandwidth 
and its variability, the growth of mobile data, the heterogeneity of mobile devices and 
services, the diversity of usage contexts, and challenging users’ requirements and 
expectations, as well as the strive to achieve cost efficiency. 

In light of the above, several QoE-centric network management solutions have been 
proposed, which aim to improve the QoE delivered to the end-users. In this perspective, 
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network resources and multimedia services are managed in order to guarantee specific 
QoE levels instead of classical QoS parameters, which are unable to reflect the actual 
delivered QoE. A pure QoE-centric management is challenged by the nature of the 
Internet itself, as the Internet was not originally designed to support today's complex 
and high demanding multimedia services. As an example, network nodes can become 
QoE-aware by estimating the status of the multimedia service as perceived by the end-
users. This information can then be used to improve the delivery of the multimedia 
service over the network and proactively improve the users' QoE. This gives the service 
provider and network operator the capability to minimize the storage and network 
resources by allocating only the resources that are sufficient to maintain a specific level 
of user satisfaction [64]. 

3.3 QoE MODELS 

As already mentioned, a prerequisite to successful QoE management is QoE modeling, 
which aims to model the relationship between different measurable QoE IFs and 
quantifiable QoE dimensions (or features) for a given service scenario. Such models 
serve the purpose of making QoE estimations, given a set of conditions, corresponding 
as closely as possible to the QoE as perceived by end users. Based on a given QoE 
model specifying a weighted combination of QoE dimensions and a further mapping to 
IFs, a QoE management approach will then aim to specify KQIs and their relation with 
measureable parameters, along with quality thresholds, for the purpose of fulfilling a set 
optimization goal (e.g., maximizing QoE to maximize profit, maximizing number 
of  “satisfied” customers). An important issue to note is that different actors involved in 
the service provisioning chain will use a QoE model in different ways, focusing on those 
parameters over which a given actor has control (e.g., a network provider will consider 
how QoS-related performance parameters will impact QoE, while a content or service 
provider will be interested in how the service design or usability will impact QoE) [65]. In 
this subsection, some well-known QoE models for voice, video and YouTube are 
presented. 

3.3.1  Voice 

Lately, there has been shown an increasing interest in supporting voice applications 
over both the public Internet and private intra-nets, i.e., VoIP. An important aspect of 
VoIP is the development of a performance monitoring model to track the quality of the 
voice transmission [66]. The QoE model used in the scope of the current diploma thesis 
is the International Telecommunications Unit – Telecommunications Standardization 
Sector (ITU-T) G.107 model for VoIP (or E-model).  

The ITU-T's E-Model is a network planning tool used in the design of hybrid circuit-
switched and packet-switched networks for carrying high quality voice applications. The 
tool estimates the relative impairments to voice quality when comparing different 
network equipment and network designs. The tool provides the means to estimate the 
MOS rating of voice quality over these planned network environments [66].  

The G.107 E-model constitutes a formula that can be used for the computation of voice 
transmission quality. A basic result of the E-Model is the calculation of the Transmission 
Rating factor (R factor), which is a simple measure of voice quality ranging from a best 
case of 100 to a worst case of 0. The R-factor is defined in terms of several parameters 
associated with a voice channel across a mixed Switched Circuit Network (SCN) and a 
Packet Switched Network (PSN). The parameters included in the computation of the R-
factor are fairly extensive covering such factors as echo, background noise, signal loss, 
codec impairments, and others [66]. R is given from the following relationship: 
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  (I) 

where: 

 Ro represents the basic signal-to-noise ratio  

 Is  expresses the signal-to-noise impairments associated with typical SCN paths 

 Id represents the impairments caused by the mouth-to-ear delay of the path 

 Ie-eff represents equipment impairments caused by the losses within the low bit-rate 
gateway codecs 

 The Advantage or Expectation Factor A allows for compensation of impairment 
factors when the user benefits from other types of access to the user. 

An interesting aspect of the E-Model is that these terms, i.e., Is, Id, and Ie-eff are additive 
and further, that the delay and packet loss contributions are isolated into Id and Ie-eff, 
respectively. This does not imply that delay and packet loss are un- correlated in the 
underlying transport media, but only that their contributions to the estimated 
impairments are separable. 

The Expectation Factor covers those intangible quantities that are difficult (or 
impossible) to quantify. This term accounts for lowered customer expectations of 
quality because of, e.g., a cell phone user's tendency to tolerate lower quality in 
exchange for the convenience afforded by mobility, or in exchange for a lower price. 
For the most part it is difficult to estimate the Expectation Factor. For this reason, the 
Expectation Factor is dropped from the computation of R. 

Also, the signal-to-noise impairment factor Is is a function of several parameters, none 
of which are a function of the underlying packet transport. However, the ITU-T Rec. 
G.107 recommends a set of default values for these parameters for planning purposes. 
Because this is not the focus of our discussion, and is dependent upon the method to 
access the VolP network, the default recommendations are used for all but a few 
parameters, i.e. all except for the delay and packet loss parameters. For example, it is 
sufficient to assume that echo cancellers are present and working properly (no echo) 
[66]. 

Overall, the E-model in its standard format can be used for network planning purposes 
only. The extended version may be simplified under specific assumptions to enable its 
use for quality monitoring purposes. The most significant assumptions are: 

 The codec used is G.729a  

 Packet loss is up to 16% and random 

 The Advantage factor A is neglected. 

Therefore, the R factor is simplified to: 

 

In the case of the baseline scenario where no network or equipment impairments exist, 
the R factor is given by: 

  

Id is expressed as: 
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where:  

 

and d is the average packet transmission delay. Also, the packet loss rate p relates to 
the parameter Ie-eff as follows: 

 

By substituting these values to expression (I) above, a simplified expression for R 
occurs:  

 

where delay d is expressed in milliseconds and packet loss p as a decimal number. 

Although the R factor can be used as an assessment value, it is recommended that it is 
used to derive the corresponding MOS values, which are comparable with results 
provided by subjective methods. The R-factor relates to the MOS through the following 
expression: 

 

The relationship between the R factor and MOS is graphically presented in Image 3.2 
[66].  

 

Image 3.2: Relationship between R factor and MOS [66] 

Typically, the values of the R factor are categorized as shown in Table 3.1. Connections 
with R factors of less than 60 are expected to provide a poor quality of service to users 
[66]. 
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Table 3.1: R factors, quality ratings and the associated MOS [66] 

R Factor Quality of Voice Rating MOS 

90 < R < 100 Best 4.34 – 4.5 

80 < R < 90 High 4.03 – 4.34 

70 < R < 80 Medium 3.60 – 4.03 

60 < R < 70 Low 3.10 – 3.60 

50 < R < 60 Poor 2.58 – 3.10 

3.3.2  Video 

The E-model, and specifically version ITU-T G.1070, can also applied to video 
applications. This version constitutes a computational model for video-telephony 
applications over IP networks, which is useful as a QoE/QoS planning tool for 
assessing the combined effects of variations in several video and speech parameters 
that affect QoE [67].  

Hence, this model is a framework for estimating the QoE of video-telephony 
applications in order to will guarantee the end-users’ satisfaction. The model contains 
on three basic pillars: the video-alone quality estimation, the speech-alone quality 
estimation and the multimedia quality integration, and formulae are provided for each 
one of them. The video quality estimation function, ranging from 5 (best) to 1 (worst), 
is the following: 

  

where: 

 Icoding represents the video quality affected by the coding distortion and is described 
by the formula: 

 

 Itransmission represents the video quality affected by the transmission process and is 
described by the formula: 
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and: 

 Frv is the video frame rate (frames/sec). It can be extracted from the video 
specifications 

 Brv is the video bit rate (bits/sec). It can be computed using the formula: 

 

     where N is a frame sliding window, so that each output value depends on the N 
     preceding frames. 

 Pplv is the video packet loss rate. It can be computed using the formula: 

 

These three parameters are necessary to be known, and all the rest can be estimated 
as in relation to them as follows: 

    

    

    

    

The coefficients v1 – v12 can be derived using a standard methodology provided in [67], 
as long as codec type, video format, key frame interval and video display size are 
known. Their default values for specific sets of configurations (shown in Table 3.2) may 
be found in Table 3.3 [67]. The required configurations include: 

 The codec type, which is the way that a video was encoded. 

 The video format, which is the video resolution or the number of distinct pixels in 
each dimension that can be displayed. 

 The key frame interval, which is one of the frames in a video that provide the best 
summary of the video content and can be thought of as a reference point of the 
video. 

 The video display size, which is an assumption regarding the size of the screen 
where the video is being watched. 

The current thesis implementation covers these five default cases. 
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Table 3.2: Conditions for deriving coefficient tables [67] 

Factors #1 #2 #3 #4 #5 

Codec type MPEG-4 MPEG-4 MPEG-2 MPEG-4 ITU-T H.264 

Video format QVGA QQVGA VGA VGA VGA 

Key frame 
interval (s) 

1 1 1 1 1 

Video display 
size (inch) 

4.2 2.1 9.2 9.2 9.2 

 

Table 3.3: Provisional coefficient table for the video quality estimation function [67] 

Coefficients #1 #2 #3 #4 #5 

v1 1.431 7.160 4.78 1.182 5.517 

v2 0.02228 0.02215 0.0122 0.0111 0.0129 

v3 3.759 3.461 2.614 4.286 3.459 

v4 184.1 111.9 51.68 607.86 178.53 

v5 1.161 2.091 1.063 1.184 1.02 

v6 1.446 1.382 0.898 2.738 1.15 

v7 0.0003881 0.0005881 0.0006923 –0.000998 0.000355 

v8 2.116 0.8401 0.7846 0.896 0.114 

v9 467.4 113.9 85.15 187.24 513.77 

v10 2.736 6.047 1.32 5.212 0.736 

v11 15.28 46.87 539.48 254.11 –6.451 

v12 4.170 10.87 356.6 268.24 13.684 

3.3.3  YouTube 

The E-model described in Section 3.3.2 handles real-time, hence lossy, video delivery. 
A different type of video content delivery that of streaming pre-encoded video, such as 
YouTube. The difference lies in the fact that YouTube uses Transmission Control 
Protocol (TCP)-based connections, and therefore does not suffer from packet losses. 
The key factors that affect the YouTube video delivery quality are: 

 Number of stalling events, N 

 Duration of stalling events,  L 

 Total video duration, T (so that it is compared to the total stalling events duration) 

 Initial delay (video start-up delay) 

The QoE model for YouTube follows the so-called IQX hypothesis, which describes a 
QoS-to-QoE mapping. The use of such a QoE-QoS relationship is straightforward; by 
inserting measured QoS values into the corresponding exponential formula, their impact 
on QoE can be assessed immediately. Typically, the QoE parameter and user 
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perception decrease when the QoS parameter increases [67]. The IQX hypothesis 
curve between the QoE and the QoS disturbance consists of three clearly 
distinguishable regions, as shown in Image 3.3.  

 

Image 3.3: The IQX hypothesis [68] 

 Area 1: constant optimal QoE. For a vanishing QoS disturbance (i.e., in case of a 
transparent network), the user considers the QoE equivalent to that of the 
reference. A slight growth of the QoS disturbance may not affect the QoE at all. For 
instance, small delays and delay variations may be eliminated by a jitter buffer, 
without the user noticing the additional delay.  

 Area 2: sinking QoE. When the QoS disturbance exceeds a certain threshold, the 
former quasi-optimal QoE level cannot be maintained anymore. As the QoS 
disturbance grows, the QoE and thus the user satisfaction sinks. In case of a high 
QoE, a certain additional QoS disturbance might have a considerable impact on the 
QoE, while for low QoE, the particular additional QoS disturbance might not be that 
critical anymore. 

 Area 3: unacceptable QoE. As soon as the QoS disturbance reaches another 
threshold, the outcome of the transmission might become unacceptably bad in 
quality, or the service might stop working because of technical constraints such as 
timeouts. A user might give up using the service at that point; this is illustrated by 
the dashed line.  

The mapping function for YouTube QoE has the following form [68]: 
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4. STATE OF THE ART IN QoE FOR SOFTWARE - DEFINED 
NETWORKS 

As already explained, the SDN paradigm is an emerging and very promising 
architecture, considered to be suitable for the high-bandwitdh, dynamic nature of 
today's applications [1]. Therefore, many industrial and academic parties have focused 
their research activities on the concept of SDN. In particular, the QoE aspect of SDN 
has gained more and more attention over the past few years. This has resulted in the 
publication of several research papers, studies and solution proposals trying to provide 
approaches for user QoE enhancement aided by SDN, the most important of which are 
presented below [31]. Next follows a table summarizing the contributions of each 
research work and comparing the approaches against several parameters. 

4.1 RESEARCH WORKS ON QoE FOR SDN 

A very innovative paper which comes up with a solution proposal for VoD efficient 
distribution is [31]. The paper is motivated by the fact that the users' requests for video 
content are currently handled individually and each request is served by an 
independent unicast flow, which leads to multiple duplicate flows transferring the same 
video content and thus increasing the overhead for the network. The solution introduced 
is OpenCache, which is an in-network caching service whose architecture follows the 
principles of SDN and is shown in Image 4.1. The OpenCache Controller is the main 
entity of this architecture, as it orchestrates the content caching and distribution 
functionalities. The network also contains OF switches, which are connected to the 
users in order to transfer the requested content to them, as well as to OpenCache 
nodes, where the content is stored. The OF controller is dynamically instructed to set 
the necessary flows in the switches, the key-value store holds the requests for content 
to be cached and finally the VoD server is the primary source for the video assets. The 
proposed solution has been deployed in the GOFF European testbed and the results 
were extracted using the Scootplayer evaluation tool, showing that OpenCache 
improves network utilization, reduces the distribution load in the network and minimizes 
the distance between the VoD server and the users, thus leading to enhancements in 
the QoE in terms of throughput, bit rate, as well as start-up and buffering times. 

 

Image 4.1: The OpenCache architecture [31] 
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The authors of [24] also focus their attention on QoE and implement a QoS/QoE 
mapping and adjusting application, which can be used by an ISP to monitor users' QoE 
after having watched some video content and adjusting it, if necessary. The system's 
general overview is shown in Image 4.2. A Network Architecture Application (NAApp) is 
designed in order to obtain information from the OpenFlow switches (e.g. network 
architecture, QoE threshold etc.) and store it to a database as well as monitoring the 
switches topology, in case a change happens. Subsequently a QoE Measure Interface 
(QoEMI) collects users’ parameters generated during the video watching process as 
well as the score given by users after having watched the video, and delivers them to a 
QoE Application (QoEApp). The QoEApp is the application's core component, as it is 
responsible for performing the algorithm which will show if an adjustment is needed, 
and also for applying it, in such case. The adjustments are performed by calculating all 
possible paths to the users and transmitting the traffic via multiple paths. The 
application was implemented using OpenvSwitch and RYU controller and the results 
showed that when used by the ISP in a given case of multiple users simultaneously 
watching the same video, it improved the QoE of those users who were receiving a low 
score. 

 

Image 4.2: The QoS/QoE Mapping and Adjusting application overview [24] 

Subsequently, [69] examines the benefits that SDN and Network Functions 
Virtualization (NFV) can bring both to network operators and to users, studying a use 
case of a video application request from a user and its provision to his home network. It 
is explained that for each application there exists a service chain, which is a number of 
services necessary for its operation in compliance with the user's request. For instance, 
in the case of home networks, the service chain contains cache storage, bandwidth 
optimizer, type of service and traffic prioritizer, which need to be supported. The use 
case of the video application is divided into three sub use cases, and more specifically 
into video streaming request, HD video request and video conference. For the first sub 
case some packet losses can be accepted and the video is thus offered with best effort 
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quality. The second case requires high QoS and bandwidth, therefore some more 
network functions, such as cache storage and bandwidth accelerator, need to be 
implemented. In the sub case of video conference, priority must be given to voice in 
comparison to video and congestion problems when several attendees are participating 
should be overcome. As a result, this case also requires some additional network 
functions, such as traffic prioritizer and load balancer. In all cases, many network 
function elements can be virtualized, becoming Virtual Network Functions (VNFs), and 
be placed centrally instead of each individual user terminal, something which can lead 
to reduced OPEX for the operators as well as reduced cost for the end users, as the 
authors conclude. 

Another very interesting proposal of a bandwidth management solution aiming to 
optimize the QoE of multiple video streaming sessions is presented in [70]. The 
motivation for this paper is the rapid increase of video traffic over the past year which 
consequently introduces an increased need for bandwidth on the existing network 
infrastructures. The authors focus on jointly optimizing bandwidth allocation and video 
rate selection and to this end they propose an SDN-based architecture shown in Image 
4.3. The architecture contains a Video QoE Optimization Application (VOQA), which 
obtains information through interacting with the SDN Controller, and subsequently 
extracts and publishes statistics useful for the network operators. It also has the ability 
to adjust the network bandwidth allocation and coordinate the video rate selections 
among the different HyperText Transfer Protocol (HTTP) Adaptive Streaming (HAS) 
streams. The multi-client bandwidth allocation problem and its restrictions are modeled 
mathematically and offer flexibility in supporting variations of quality-based bandwidth 
allocation. The system's evaluation using Cisco routers showed that the proposed 
solution can provide same levels of QoE to 75% more users compared to the 
conventional bandwidth allocation and video rate selection. 

 

Image 4.3: SDN-Based architecture for QoE optimization in HTTP-based video streaming [70] 

Next presented is paper [71], focusing on the very interesting case of vehicular 
networks, motivated by the fact that the high mobility and the limited transmission range 
of Road-Side Units (RSUs) lead to interference due to dynamic topological changes. It 
is necessary to divide the network resources fairly among the vehicles in the network, in 
order to minimize interference and satisfy as many as possible vehicles' requirements in 
QoE. In this direction the authors propose a software-defined flow and power 
management model to be implemented in the controller. The RSUs are modeled using 
a queuing theoretical approach and an SDN- and IEEE 802.11p-based architecture for 
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vehicular networks is introduced (Image 4.4), where the data plane contains the RSUs 
and the vehicles connected to them and the control plane manages the topology and 
consists of the Flow Management and the Power Management components.  The Flow 
Management model classifies the vehicles to satisfied and unsatisfied, depending on 
whether each vehicle's QoE is kept above a threshold or QoE degradations are caused 
by new coming vehicles. Once the unsatisfied vehicles have been detected, the Power 
Management model adjusts their transmission power so that they connect to a new 
RSU with optimal signal level. The coordination of the vehicles' signal levels is 
performed by the controller through a reorganization of the OF flow tables so that the 
match fields contain a redefined version of Flow Label. The proposed model and 
architecture are evaluated in MATLAB environment using Exponential, Gaussian and 
Linear model for the estimation of unsatisfied vehicles' optimal signal levels by the 
controller. The evaluation shows that the Exponential model is the most suitable option, 
serving an average of 8% more unsatisfied vehicles. 

 

Image 4.4: The SDN-based vehicular network architecture [71] 

Research work [72] constitutes an effort towards the direction of HTTP adaptive video 
streaming. In particular the authors introduce a dynamic SDN-based traffic shaping 
technique, namely DASH-SDN, which utilizes the long idle periods of an HTTP video 
player in order to temporarily allocate the unused bandwidth to other active players, and 
therefore increase the throughput and enhance the video service and the QoE. The 
SDN-based DASH-SDN architecture proposed is shown in Image 4.5 and is divided into 
two parts, the wireless infrastructure and the mobile devices.  

 The first part is responsible for several key functions, such as network monitoring, 
flow inspection and bandwidth management.  

 The second part consists of the flow manager, which handles the measurements 
about each received chunk and actually implements the traffic shaping, as well as 
of the mobile controller, which communicates with the SDN controller and controls 
the flow manager.  
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 The SDN controller is responsible for computing fair shaping rates and sending 
them to the mobile controllers, which in turn impose these limits through the TCP 
flow control. In other words, the actual traffic shaping is implemented on the mobile 
devices through TCP flow control, and more specifically through the modification of 
two fields in the TCP ACK packet according to the value received by the mobile 
controller.  

The authors conducted relative experiments using android devices and considering 
different scenarios, and the results extracted showed for all cases that the proposed 
technique achieved up to 40% reduction in the quality fluctuation, up to 13% increase in 
the bandwidth utilization and up to 15% decrease in the Wi-Fi power consumption, 
compared to the static technique. 

 

Image 4.5: The DASH-SDN architecture [72] 

Due to the several defects such as scalability, intelligence and underlying abstract 
problems that current Content Delivery Network (CDN) architectures face with large-
scale video services, the authors of [21] propose an HTTP video content delivery 
scheme deployed on an SDN network for improving the quality of HTTP video and the 
user QoE. The scheme's architecture (Image 4.6) consists of a number of user 
terminals, which can connect to the Internet through programmable storage routers, 
which are routers with storage capabilities, controlled by an SDN controller. The role of 
the programmable storage routers is to periodically request and receive video content 
from the video source server and forward users' requests to the SDN controller. The 
controller in turn specifies the closest programmable storage router to the user and 
instructs it to detect whether the requested content exists in its storage. If it does, it is 
directed to the user, otherwise the user request will be forwarded to a nearby 
programmable storage router. This approach appears to be advantageous over 
requesting content from the video source server or a CDN edge server, as the distance 
and process of video transmission are significantly shortened. In order to prove their 
claims, the authors conducted five sets of experiments for HTTP video service 
simulation in both SDN environment and current network environment, including CDN. 
The results show that the round-trip delay is significantly reduced with the proposed 
SDN scheme and the video quality and user QoE are improved, even in poor network 
conditions. 
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Image 4.6: The SDN-based scheme for HTTP video quality optimization [21] 

Work [19] focuses its attention on the two complementary technologies SDN and NFV, 
which it explains very thoroughly in the introductory sections. The network functions 
which are virtualized using NFV are called VNFs. The authors use these two 
technologies to introduce a proof-of-concept SDN/NFV-enabled experimental network 
domain implementation in order to provide an agile video transcoding process for 
maintaining the QoE level of a media service. The experimental topology is depicted in  
Image 4.7 and contains two OpenFlow switches, an OpenDaylight Controller and an 
Openstack cloud platform to support a NFV Installation Point of Presence (NFVI-PoP), 
which is able to instantiate VNFs. The video service steering is performed through the 
following procedure: When an end user requests a unicast media service whose traffic 
exceeds the available bandwidth, the controller instantiates at the NFVI-PoP a VNF-
based transcoder, which is implemented based on FFMPEG, and defines the 
appropriate SDN rules for the traffic steering. As a next step, the delivered media 
stream is transcoded in real time at a lower rate, so as to fit in the available bandwidth, 
and is subsequently transmitted, causing the reinstatement of the QoE level which had 
faced degradation.   

 

Image 4.7: Topology of the experimental testbed of [19] 

The authors of [73] examine the tradeoff between user experience and resources cost 
and make an introduction of an SDN-enabled cloud video distribution architecture 
(Image 4.8) aiming at enhancing user QoE and diminishing the operators' cost. To this 
direction, they also propose a joint resource allocation and traffic management 
mechanism for Video Service Providers (VSPs) which provides a solution to determine 
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the optimal resource (i.e. bandwidth) allocation combined with the optimal strategy for 
request dispatching and response routing.  

The proposed architecture contains multiple geographically distributed cloud 
datacenters being connected with each other over an SDN-enabled network through 
OF switches. Each datacenter is used to serve a number of users, also spread over 
multiple regions. The network's centralized control logic is gathered in a control center, 
consisting of an SDN controller and a cloud management server.  

The whole system is mathematically modeled using graph theory and the joint 
optimization problem is formulated as maximizing the total utility of serving all the 
requests minus the bandwidth cost, introducing a number of constraints. The system's 
advantage is that unlike the conventional cloud distribution systems, it does not solely 
dispatch a user's request to the closest datacenter, but also takes into account the 
underlying network conditions instead.  

The proposed model's evaluation was conducted through an experiment with 10 SDN 
router nodes, 10 geographical regions, 4 datacenters, up to 3-hop path selection 
between datacenters and user regions (i.e. 42 paths) and 500 video contents. It is 
proved that compared to the shortest path strategy, all the users' requests were 
satisfied and that lower link congestion, higher end-to-end capacity, higher traffic 
support and lower total cost are achieved by using multiple network paths. 

 

Image 4.8: SDN-enabled cloud video distribution system [73] 

A very well-presented and documented work is [29], which proposes an adaptive 
routing approach for video streaming with QoS support using SDN networks, called 
ARVS. The authors study the case of high-quality videos being encoded with Scalable 
Video Coding (SVC), containing one or more subset bit streams such as MPEG4 SVC, 
which encodes a video into a base layer and one or more enhancement layers. The 
base layer packets are considered as level-1 QoS flows and should be transmitted 
without any packet loss or minimized delay variation, whereas the enhancement layer 
packets are regarded as level-2 QoS flows or best-effort flows and are more tolerant to 
packet loss. The authors employ SDN technology with the OF protocol to the end of 
achieving better QoS performance by offering traffic differentiation. Specifically, based 
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on these two layer types and their needs, they propose the transfer of either the base 
layer packets or the enhancement layer packets to other paths, when necessary, in 
order to improve the user QoS in video streaming applications.  

The problem is modeled using graph theory and the goal is to minimize the path cost of 
a routing path subject to a given constraint (i.e. maximum delay variation). For the 
problem's solution computation, the Lagrange Relaxation based Aggregated Cost 
(LARAC) algorithm is employed and an adaptive routing approach is introduced. In 
SDN networks, the controller calculates the shortest path between two nodes based on 
path cost and both the level-1 and the level-2 video's QoS flows are streamed through 
this path. However, according to this proposal, if the shortest path does not satisfy the 
given constraint, a level-1 or a level-2 QoS flow will be rerouted on the second path (i.e. 
the feasible path) specified by LARAC after its condition is examined. In particular, if 
there is not enough available bandwidth for the level-1 QoS flow in the feasible path, a 
level-2 QoS flow will be rerouted to the feasible path (Image 4.9), otherwise a level-1 
QoS flow will be rerouted (Image 4.10), leading to guaranteed level-1 QoS performance 
and congestion mitigation. 

The proposed approach is simulated in Mininet, using 30 nodes connected to a remote 
Floodlight SDN controller, and proves that it achieves up to 77.3% improvement of base 
layer packets loss rate when the load level of the shortest path is raised to 0.7, as well 
as it increases the coverage at least 51.4% under various network loads both for the 
shortest and for the feasible paths. 

 

Image 4.9: Level-2 QoS flows rerouting in ARVS [29] 
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Image 4.10: Level-1 QoS flows rerouting in ARVS [29] 

Paper [25] presents a complete and very interesting approach which takes into account 
the network traffic and uses SDN techniques in order to promptly and correctly identify 
video streaming flows without inspecting the packets. Existing filtering techniques have 
several drawbacks, as Stateful Packet Inspection (SPI) only examines the packet's 
header and therefore is not in a position to detect packets which do not include their 
type in their header (e.g. some HTTP traffic sent from the server), and Deep Packet 
Inspection (DPI) leads to long inspection delay, high energy consumption and 
significant processor overhead, while at the same time being complex and thus hard to 
manage and maintain.  

The authors propose an inspection-free, traffic-aware, SDN-based approach which 
identifies video streaming flows by analyzing the statistics of flows in SDN and 
benefiting from the fixed duration ON-OFF cycles that video data generate. Specifically, 
SDN statistics are requested in every statistics retrieval time (SRT) and the amount of 
data transmitted within SRT ratio (Rdt) is computed for each flow, analyzed 
subsequently for video streaming pattern exhibition. This is achieved by utilizing 
confidence level (CL), threshold for CL (THcl) and decay rate (DR) as follows: If Rdt 
shows a pulse, the flow is considered to exhibit video streaming pattern and CL is 
increased, otherwise it is decreased, and the flow is flagged as video streaming flow 
only if eventually CL is larger than its threshold THcl, whereas in different case it is 
flagged as non-video streaming flow. 

The proposed technique was implemented in an experimental scenario (Image 4.11) 
where a user has access to the Internet by a TP-Link WR1043ND SDN switch which is 
running OF 1.3 and is connected to Floodlight SDN Controller, according to which it 
handles the traffic flows. The user is watching a randomly selected video on YouTube, 
downloading a large file which exceeds 100MB and browsing Facebook simultaneously, 
using Safari 8.0 browser and HTML5 for video playback. The implementation results, 
which are affected both from SRT and DR, show that the proposed approach achieves 
75% lower latency or 138% higher success rate compared to DPI and the large file is 
100% flagged as non-video streaming flow.  
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Image 4.11: Traffic-aware SDN-based topology for video streaming flows identification [25] 

The in-network bit rate adaption infeasibility problem for video transmission in traditional 
TCP/IP networks is addressed by [74], which proposes a joint algorithm to decide the 
number of video layers to be transmitted as well as determine each layer's transmission 
path at the same time in order to enhance the video quality each user receives, and 
thus the user QoE. The traffic in each link is divided into SVC traffic, which consists of 
all scalable-video traffics and is transmitted as QoS traffic with no packet loss, and non-
SVC traffic, which contains the rest of the traffic and is transmitted as best-effort traffic. 
The joint decision problem is formulated as Markov Decision Process (MDP), taking into 
consideration the non-SVC traffic as well, and solved with the employment of Q-
Learning algorithm.  

The system's architecture is shown in Image 4.12. There have been designed five 
modules in the controller: the N-Shortest Paths Calculation Module, which calculates 
the N shortest paths between a source and a destination node, the Network State 
Observation Module, which observes the network's state, the Decision Module, which 
jointly determines the optimal number of video layers to be transmitted as well as their 
routing paths, the Flow Table Module, which establishes flow tables for switches and 
the Layers Information Module, which establishes a communication between the SVC 
Content Server and the SDN controller. The system's goal is to achieve a good tradeoff 
between the visual quality of the transmitted SVC video and the packet loss of non-SDN 
traffic, and thus improve the user QoE. 

The proposed system is implemented in Mininet using Open vSwitches and POX 
controller. The results are compared to other benchmark approaches and it is shown 
that the approach achieves lower loss rate of non-SVC flows caused by SVC flows 
(2.442% opposed to 2.941% and 4.069% of the benchmark approaches), higher reward 
value (0.74164 opposed to 0.70589 and 0.59308) and lower Peak Signal-to-Noise Ratio 
(PSNR) than one of the benchmark approaches (39.939dB opposed to 40.511 dB - the 
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other approach achieves lower PSNR 39.550 dB), achieving an enhancement for the 
user QoE. 

 

Image 4.12: The architecture of joint routing and layer selecting system [74] 

Another paper which examines multimedia transmission, such as UHD video, especially 
focusing its attention on the next generation 5G networks is [20]. A holistic QoE- and 
context-aware SDN control plane approach is proposed, employing the H.265 video 
standard for scalable video encoding and taking into consideration not solely QoS 
metrics and contextual information extracted from multimedia flows, but also important 
QoE metrics such as content type. The authors focus on low-latency multimedia traffic, 
such as real-time video delivery, video surveillance and teleconferencing, and adopt 
version 2 of H.265 standard which makes a layered video solution feasible. The 
proposed system's architecture is depicted as a block diagram in Image 4.13 and 
contains two new network entities, the Video Quality Assurance Manager (VQAM) and 
the SDN Video Quality Orchestration (SDN-VQO). 

The VQAM collects flow and network paths statistics and topology discover data, and 
also derives the video content type from the compressed H.256 stream and combines it 
with QoS metrics such as bandwidth, delay and packet loss, which all aid in estimating 
the QoE utility of each path. After the QoE utility estimation, the VQAM selects the two 
best paths between source and destination and chooses the best path as the primary 
and the second as the fallback path. In case congestion is detected, the VQAM re-
estimates the two paths' utilities and either performs an action in order to ensure that 
the congestion is alleviated (e.g. makes the secondary path primary, switches 
enhancement layers to secondary path etc.) or reports the issue to the SDN-VQO if it is 
unable to solve it. 

The SDN-VQO, which is collocated with the VQAM, has a global view of the entire SDN 
domain and monitors the QoE utility levels across all multimedia streams in the 
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network, being thus able to construct a global QoE utility map. Its role is to intervene in 
congestion situations in order to alleviate them and ensure that the QoE utility is fairly 
distributed across the network.  

 

Image 4.13: The block diagram for the system proposed in [20] 

The emerging field of big data is also involved and combined with the SDN field, and 
[75] examines this case with regard to QoS provisioning. This paper applies big data 
technologies to SDN and its purpose is to extend tensor, a mathematic model (type of 
high-dimension matrix) with wide use in big data applications, in order to introduce a 
new tensor-based SDN (TSDN) model for efficient QoS provisioning in SDN networks. 
The proposed TSDN model is depicted in Image 4.14 and consists of the data plane, 
the control plane and the application plane, as SDN architecture suggests.  

A forwarding tensor model is introduced in the data plane to formalize the packet 
routing function of the network and to aid in constructing a global controlling tensor 
model. This is achieved through the combination of all the valuable core forwarding 
information and the employment of the incremental tensor decomposition approach to 
generate the core tensor. By using this method, the network devices can update the 
core forwarding tensor and submit the updates to the control plane for combination. The 
forwarding functions of the network devices are formalized as forwarding tensor 
models.  

A controlling tensor model is also proposed in the control plane in order to globally 
compute routing paths and recommend the optimal routing paths for data scheduling in 
SDN. Finally, a transition tensor model is introduced and located in the application layer 
in order to predict network traffic and group the traffic flows according to QoS 
requirements of high-level applications. 
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Image 4.14: An overview of the TSDN model proposed in [75] 

[30] is another research work that concentrates on QoE optimization in adaptive video 
streaming cases and further pays great attention to ensuring QoE fairness. Therefore, it 
proposes an OpenFlow-assisted QoE Fairness Framework (QFF) which employs 
MPEG-DASH standard and aims to fairly maximize the QoE for all video streaming 
devices in a multimedia network, taking into account the various device and network 
requirements, as well as two algorithms (namely, Promote and Boost) for enforcing 
different optimization policies. QFF allocates network resources dynamically to each 
device by monitoring each DASH video application's status. An overview of QFF is 
presented in Image 4.15, from where it occurs that the main entity in its core is an 
OpenFlow Module (OM) which runs on the OpenFlow controller and consists of three 
parts: 

 Input, which is the network and clients' status, provided to OM by the Network 
Inspector and the Media Presentation Description (MPD) Parser, 

 Intelligence, incarnated by the Utility Functions and the Optimization Function 
which interact dynamically with the OM to ensure QoE fairness optimization, 

 Output, constituted by the Flow Tables Manager and the DASH Plugin which 
ensure that the OM's decisions are appropriately propagated to the network.  

The proposed framework was evaluated in a home networking scenario simulation, 
where users are connected to a home gateway and access video content on the 
Internet through an OpenFlow switch, using three different DASH-enabled devices (i.e. 
an HD TV, a tablet and a smartphone). The results comparing Promote with DASH-JS 
(unmodified DASH client) and EqualBW (equal allocation of available bandwidth among 
active users) showed that the proposed approach achieves user QoE fairness and 
improved network stability. 
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Image 4.15: OpenFlow-assisted QoE Fairness Framework [30] 

One can read in [22] that an SDN-based architecture is proposed that can be used to 
jointly optimize the multimedia flows’ path assignment and the service utility measured 
as QoE, exploiting a global network view. This is achieved with the help of two entities: 
the QoS Matching and Optimization Function (QMOF), which resides in the SDN 
application layer, and the Path Assignment Function (PAF), which is located at the SDN 
control layer. QMOF calculates the optimal (and alternative sub-optimal) service 
configurations. PAF then uses OF to impose the network paths that will meet the 
resource requirements of each service. The requirements may concern flow operating 
parameters (e.g., frame rate, codec), resource requirements (e.g., bit rate), etc. The 
proposed architecture is shown in Image 4.16. 

 

Image 4.16: SDN architecture for QoE-driven service optimization and path assignment [22] 

4.2 SUMMARIZING TABLE 

Having presented in Section 4.1 several significant research works that constitute the 
state-of-the-art in SDN networks and specifically in the QoE field, presented here is the 
summarizing table Table 4.1 which compares all the previously mentioned works 
against various parameters. Such a table is of great importance as it constitutes a 
valuable aggregated report containing a large number of papers and aids in obtaining a 
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thorough view of already proposed solutions. Therefore, it can be used as a future 
reference. 

Table 4.1: Comparison between state-of-the-art works on QoE for SDN networks 

Paper 
Number 

QoE 
Management 

Use Case 

Prototype 
or 

Abstract 

QoE Monitored 
Factors 

QoE 
Management 

Approach 
Employed 

Single or 
Multiple 
Clients 

Scenario 
Considered 

[31] 
Video on 
Demand 

Prototype 

Startup time, 
bitrate 

changes, 
average bitrate, 

minimum 
required bitrate 

during 
playback 

Content 
caching 

Both 
scenarios 

[24] 
Video 

streaming 
Prototype 

Bandwidth 
utilization in 
relation to 

users number 

Multiple paths 
routing 

Multiple clients 

[69] 

Video 
applications in 

home 
networks 

Abstract N/A 

Dynamic 
bandwidth 
allocation, 
adaptive 

resources 
management 

N/A 

[70] 
Video 

streaming 
Prototype 

PSNR and 
Stream Video 
Quality (SVQ) 
in relation to 

users number 

Dynamic 
bandwidth 
allocation 

Multiple clients 

[71] 
Vehicular 
networks 

Prototype 
Percentage of 
flows satisfied 

Dynamic flow 
and power 

management 
and resource 

allocation 

Multiple clients 

[72] 
HTTP 

adaptive video 
streaming 

Prototype 
Number of 

bitrate 
oscillations 

Dynamic 
bandwidth and 

throughput 
allocation 

Multiple clients 

[21] HTTP video Prototype 

Initial buffering 
time, 

Rebuffering 
frequency, 

Mean 
rebuffering 

Content 
caching 

Single client 
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duration 

[19] 
Video 

streaming 
Prototype 

System load, 
HDD utilization, 
memory usage 

Adaptive 
transcoding 

Single client 

[73] 
Video 

streaming 
Prototype 

Average delay, 
traffic routing 

ratio, link 
utilization 

Multiple paths 
routing, 
adaptive 
resource 
allocation 

Multiple clients 

[29] 
Video 

streaming 
Abstract 

Packet loss 
rate 

Multiple paths 
routing, 

Adaptive flow 
rerouting 

N/A 

[25] 
Video 

streaming 
Abstract 

Time for 
recognizing 
video data 

Traffic 
identification 

Single client 

[74] 
Video 

streaming 
Prototype 

Packet loss 
rate, PSNR, 
reward value 

Dynamic 
adjustment of 

the video 
layers for 

transmission, 
Dynamic 

routing path 
selection 

Single client 

[20] 
Video 

streaming 
Abstract N/A 

Multiple paths 
routing 

N/A 

[75] 
Multimedia 

transmission 
Prototype 

Traffic 
congestion, 
incremental 
updating,  

recovery of 
damaged 

routing path 

Dynamic  
optimal routing 

path 
computation 

N/A 

[30] 
Video 

streaming 
Prototype 

Video stream 
bitrate 

Dynamic 
network 

resources 
allocation 

Single client 

[30] 
Video 

streaming 
Prototype 

Video bit rate, 
Network 
utilization 

Dynamic 
network 

resources 
allocation 

Multiple clients 
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5. ENVIRONMENT SETUP 

This chapter presents in detail all the necessary steps one must follow in order to be 
fully capable of developing applications for SDN environments. These steps were 
followed to develop the SDN framework of the current thesis. There are certain system 
requirements which must be satisfied, in addition to the SDN Controller and Mininet (the 
network simulator) deployment. As a last step, an Integrated Development Environment 
(IDE) is needed for the Controller programming and consequently, for the applications 
development. 

5.1 SYSTEM REQUIREMENTS 

 Operating System (OS): OpenDaylight Controller, used for this thesis, runs in a 
JVM. Being a Java application, it can potentially be run from any operating system 
and hardware as long as it supports Java. However, for best results a recent Linux 
distribution is recommended [76]. The simulation in the scope of the current thesis 
uses the Ubuntu 14.04 OS. 

 Java: Due to the fact that OpenDaylight is a project written primarily in Java 
project, a Java 8-compliant JDK is required for project development with 
OpenDaylight [77]. In order to get Java 8 JDK, which was used in the current 
thesis, one should execute the following steps: 

 First of all, the following commands must be executed from a terminal, in 
order to install Java 8 JDK on the system: 

 
 
 

 
 

 Then, the JAVA_HOME variable must be set. This can be done by adding 
the following line at the end of the file etc/environment: 

 
 
 

where JAVA_HOME is the path to the JDK.  

 Finally, by executing the command echo $JAVA_HOME, one should be able 
to see the path of the variable JAVA_HOME. 

 Maven:  OpenDaylight primarily uses Apache Maven as a build tool. Consequently, 
one needs to have Maven version 3.3.1 or later installed on his system [77], [78]. 
For the simulation's needs, Maven 3.3.9 was downloaded as follows: 

 The Binary tar.gz archive file, under the name apache-maven-3.3.9-
bin.tar.gz, was downloaded from the Maven Installation Page 
(https://maven.apache.org/download.cgi). 

 After ensuring that the JAVA_HOME environment variable was truly set and 
pointed to the JDK installation, the distribution archive was extracted using 
the command tar xzvf apache-maven-3.3.9-bin.tar.gz. 

 Finally, the bin directory of the created directory, named apache-maven-
3.3.9, was added to the PATH environment variable, in the first line of the file 
etc/environment. 

sudo add-apt-repository ppa:openjdk-r/ppa 
sudo apt-get update         
sudo apt-get install openjdk-8-jdk 

 

JAVA_HOME=”/usr/lib/jvm/java-8-openjdk-amd64” 

https://maven.apache.org/download.cgi
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The success of the installation was confirmed typing the command mvn -v in 
a new shell. The result should look similar to Image 5.1 [79]. 

 

Image 5.1: The result of mvn –v command after Apache Maven successful installation 

5.2 SDN CONTROLLER DEPLOYMENT 

Before starting developing any ODL projects, one can familiarize with the ODL 
Controller by installing and configuring it, independently as a separate application. It 
can be used as a remote SDN controller, but it will not have any extra functionality 
created by the user. Only the default features can be installed and used. This can be 
achieved by executing the following steps: 

 Visit the OpenDaylight downloads page (https://www.opendaylight.org/technical-
community/getting-started-for-developers/downloads-and-documentation) and 
download the OpenDaylight Controller. More specifically, the version used in the 
current thesis is Boron SR1. 

 Once the file is downloaded, unzip the zipped file in any directory and open a 
terminal in this directory. 

 Navigate to the bin directory and execute the karaf file (./bin/karaf), in order to start 
the ODL controller.  

 In order to shutdown OpenDaylight, one can type shutdown -f or logout [79].  

5.2.1  Karaf features 

The OpenDaylight controller is deployed on the concept of Apache Karaf. Apache Karaf 
is a runtime environment which provides a lightweight container onto which various 
components and applications can be deployed. It can be thought of as an environment 
providing an "ecosystem" for an application, as it actually provides a way to provision 
applications and modules, and supports this using the concept of Karaf Features. 
OpenDaylight on Apache Karaf is an effort to deploy key OpenDaylight projects onto 
the Apache Karaf container environment [80], [81], [82]. 

Apache Karaf features describe applications. A feature defines different resources to 
resolve and describes an application as:  

 a name 

 a version     

 an optional description (eventually with a long description) 

 a set of bundles 

 optionally a set configurations or configuration files 

 optionally, a set of dependency features 

When one installs a feature, Apache Karaf installs all resources described in the 
feature. It means that it will automatically resolve and install all bundles, configurations, 

https://www.opendaylight.org/technical-community/getting-started-for-developers/downloads-and-documentation
https://www.opendaylight.org/technical-community/getting-started-for-developers/downloads-and-documentation
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and dependency features described in the feature [81], [82]. Therefore, the next step 
after installing the ODL controller is to install all the necessary features. In the case of 
the present thesis, a number of features was installed using the command:  
 
 

in the karaf console. One of the most important features is odl-dlux-all, which provides a 
Web based user interface for OpenDaylight. The UI can be found in this link: 

http://localhost:8181/index.html 

giving the result shown in  Image 5.2.  

 

Image 5.2: The ODL DLUX Login Page 

OpenDaylight’s default credentials are admin for both the username and password. It is 
important to note that the DLUX UI is only available when the controller is running, or in 
other words when karaf is executed. Otherwise, the webpage will not load.  

Having installed the odl-dlux-all feature, the features odl-dlux-core, odl-dlux-node and 
odl-dlux-yangui have also been implicitly installed and can be found in the pane at the 
left of DLUX's page.  

 Topology tab is provided by the odl-dlux-core feature and shows the graphical 
representation of the network topology (if there is one connected to the controller) 
on the right pane. Switches are represented by blue boxes, available hosts by black 
boxes, the way switches and hosts are connected by lines. By hovering on hosts, 
links, or switches one can view source and destination ports. 

 Nodes tab is provided by the odl-dlux-node feature and displays a table that lists all 
the nodes, node connectors and the statistics at the right pane. Again, this is only 
possible if there is a topology connected to the controller. One can perform the 
following actions: 

 Enter a node ID in the Search Nodes tab to search by node connectors. 

 Click on the Node Connector number to view details such as port ID, port 
name, number of ports per switch or MAC Address. 

 Click Flows in the Statistics column to view Flow Table Statistics for the 
particular node like table ID, packet match or active flows. 

 Click Node Connectors to view Node Connector Statistics for the particular 
node ID. 

install:feature [FEATURE_NAME] 

 

http://localhost:8181/index.html
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 Yang UI tab is provided by the odl-dlux-yangui feature. It is an ODL DLUXbased 
application designed to simplify and facilitate application development and testing.  

 The Yang UI module enables the interaction with the YANG-based MD-SAL 
datastore [83]. 

 It also generates and renders a simple UI based on YANG models loaded 
into ODL [84].   

5.3 MININET DEPLOYMENT 

In order to deploy SDN applications for various network topologies, one must use a 
network simulation tool. The tool chosen for the present thesis is Mininet. The easiest 
and most foolproof way of installing Mininet is to use a Virtual Machine (VM) installation, 
according to the following description: 

 Download the Mininet VM image from the Mininet Releases Downloads link, 
https://github.com/mininet/mininet/wiki/Mininet-VM-Images.The current thesis uses 
version 2.2.1 of Mininet. 

 Download and install a virtualization system. The recommended system from the 
official Mininet webpage is VirtualBox due to the fact that it is a free tool and works 
on most operating systems. Other suggested systems are Qemu, VMware 
Workstation, VMware Fusion and KVM. 

 Once the VM image file has been downloaded, right click on the .ovf file and select 
Open With Oracle VM VirtualBox. This will open a window which is shown in Image 
5.3.  

 

Image 5.3: VirtualBox import window 

After clicking on Import, the image file will be imported into VirtualBox. 

 Select Settings  Network, and add an additional host-only network adapter that 
can be used in order to log in to the VM image. In order to select one by name, 
create a new  host-only adapter by clicking File  Preferences  Network  Host-
Only Networks  Add. 

 Start the VM. This will launch the network simulator into a Mininet VM console, 
prompting the user for login credentials. The console is displayed in Image 5.4. 

https://github.com/mininet/mininet/wiki/Mininet-VM-Images
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Image 5.4: Mininet login console 

The credentials are mininet for both username and password. It would be useful to 
note that the user cannot paste commands in the Mininet console, therefore a proposed 
solution is to run the command: 

 

 

in a terminal, and connect to Mininet directly from his environment. In order to find the 
Mininet VM’s IP, the command sudo dhclient eth1 followed by the command ifconfig 
could be used. [85], [86], [88]. 

Mininet contains an Open vSwitch (OVS) version, which is used to instantiate the SDN 
switches. In the context of the current thesis, version 2.4.0 of OVS was used. The 
default OVS version in Mininet can be found to be 2.0.2 by typing the command sudo 
ovs-vsctl show, therefore the following commands were used to switch version [87]: 

 sudo -s  

 apt-get remove openvswitch-common openvswitch-datapath-dkms openvswitch 
controller openvswitch-pki openvswitch-switch  

 cd /root 

 wget http://openvswitch.org/releases/openvswitch-2.4.0.tar.gz 

 tar zxvf openvswitch-2.4.0.tar.gz  

 cd openvswitch-2.4.0/ 

ssh mininet@[MININET_VM_IP] 

 

http://openvswitch.org/releases/openvswitch-2.4.0.tar.gz
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 ./configure --prefix=/usr --with-linux=/lib/modules/`uname -r`/build  

 make 

 make install 

 make modules_install  

 rmmod openvswitch 

 depmod -a  

 /etc/init.d/openvswitch-controller stop 

 update-rc.d openvswitch-controller disable 

 /etc/init.d/openvswitch-switch start 

5.3.1  Mininet default topology 

After the user has finished the installation of both ODL Controller and Mininet, the 
topology creation in Mininet and connection to ODL is possible.  

The default topology can be started if the user types in Mininet console the following 
command: 

 

The default topology is the minimal topology, which includes one OpenFlow kernel 
switch connected to two hosts, plus the OpenFlow reference controller.  

 The nodes can be displayed with the command nodes  

 The links can be displayed with the command net 

 The command dump shows information about all the topology nodes 

 The Mininet Command Line Interface (CLI) built-in command pingall tests the 
connectivity between all nodes in pairs. 

 In order to exit the topology created, the command exit is used 

 When the command sudo mn –c is typed in the Mininet VM console, it is 
automatically cleaned up [88]. 

5.3.2  Changing topology size and type 

As already mentioned in 5.3.1, Mininet’s default topology consists of a single switch 
connected to two hosts. One has the ability to change this to a different topology, 
adding the argument --topo, and specifying the parameters for the topology’s creation. 
For example, the parameter “single”, as used in the following command: 

 

indicates a topology with SWITCH_NUMBER switches and a single host, whereas 
using the parameter linear instead: 

 

indicates a linear topology with SWITCH_NUMBER switches, where each switch has 
one host and all switches connect in a line [88]. 

sudo mn 

 

sudo mn --topo single,[SWITCH_NUMBER] 

 

sudo mn --topo linear,[SWITCH_NUMBER] 
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5.3.3  Custom topologies 

Custom topologies can be easily defined using a Python API and passing it as an 
argument for the topology’s creation. An example which connects two switches directly, 
with a single host off each switch, is presented in Image 5.5. The Python script can be 
given as parameter to Mininet using the following command [88]: 

 

 

 

 

Image 5.5: Example Python script for a custom topology creation [88] 

5.3.4  Using a remote controller in Mininet  

The current section is primarily useful for a user who runs a controller running outside of 
the VM, such as on the VM host, or a different physical PC. In the case of the present 
thesis, the ODL controller has been deployed in the VM host, outside of the VM. The 
host IP has to be provided as an argument so that Mininet is connected to the remote 
controller. In order to run a custom topology connected to the ODL remote controller, 
the following command should be used: 

 

sudo mn --custom [PATH_TO_PYTHON_SCRIPT] --topo mytopo 
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For example, let’s consider the following scenario: 

 

For instance, using the python script shown in Image 5.5 and assuming that it has been 
saved in the /home/mininet/ folder of the Mininet VM under the name custom_topo.py, 
the command to create this custom topology would be: 

Therefore, by typing the command: 

 

 

in Mininet’s console, the output is shown in Image 5.6. The nodes connectivity can be 
tested using the command pingall, which gives the results presented in Image 5.7. 
Finally, one can see the topology inserted in the DLUX Topology tab, as depicted in 
Image 5.8. 

 

Image 5.6: Mininet messages after starting a topology 

 

Image 5.7: Mininet pingall result 

sudo mn --custom [PATH_TO_PYTHON_SCRIPT] --topo mytopo --
controller=remote,ip=[CONTROLLER_IP] 

 

sudo mn –custom custom_topo.py --topo mytopo --
controller=remote,ip=[CONTROLLER_IP] 

 



An SDN QoE Monitoring Framework for VoIP and video applications 

Maria-Evgenia I. Xezonaki   89 

 

Image 5.8: The created Mininet topology shown in ODL DLUX UI 

5.4 FIRST ODL PROJECT CREATION 

Just downloading the ODL controller package as shown in 5.2 is not enough in order to 
create an ODL application. The download will help the user install the ODL controller 
and use it remotely, but he will not be able to include it in an ODL application. The first 
step one needs to perform in order to create his first ODL project is to update his Maven 
“settings.xml” file by using the following commands [89]:  

 

 

 

 

Then, a project can be created using Maven and an archetype called opendaylight-
startup-archetype by typing: 

 

 

 

 

where one needs to enter the proper <Archetype-Version> and <Snapshot-Type> that 
depend on the ODL release he will work on. For the current thesis and version Boron 

cp –n ~/.m2/settings.xml{,.orig}; 

Wget –q –O –
https://raw.githubusercontent.com/opendaylight/odlparent/master/settings.xml > 

~/.m2/settings.xml 

mvn archetype:generate -DarchetypeGroupId=org.opendaylight.controller -
DarchetypeArtifactId=opendaylight-startup-archetype \ 

-DarchetypeRepository=http://nexus.opendaylight.org/content/repositories/<Snapshot-
Type>/ \ 

-DarchetypeCatalog=remote -DarchetypeVersion=<Archetype-Version> 
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SR1 the Snapshot-Type=opendaylight.release and Archetype-Version=1.2.1-Boron-
SR1 will be used. 

Afterwards, the user will be expected to respond to prompts, in the current thesis case 
completed as follows:  

 Define value for property 'groupId':: org.opendaylight.sqmf  

 Define value for property 'artifactId':: sqmf  

 Define value for property 'package':  org.opendaylight. sqmf:  

 Define value for property 'classPrefix':   

 Define value for property 'copyright'::  

After completing the above mentioned steps, the archetype will have created a top 
level directory named ${artifactId}, for example, sqmf/. When entering the sqmf/ 
directory, one can see the following contents: 

 api/ 

 features/ 

 impl/ 

 karaf/ 

 it/ 

 pom.xml 

and build the project using the command mvn clean install -DskipTests. Once the 
project has been built, an OpenDaylight distribution will have been created, which can 
be tested with the following steps:  

  

 

 

During the build process a module called sqmf  was built, which can now be verified on 
the console by checking out the log: log:display | grep sqfm. A log entry which includes 
the entry “SqmfProvider Session Initiated” will appear. To shutdown OpenDaylight, 
the command shutdown –f has to be used. 

In order to understand where the log entry came from, one can navigate to the entry 
point in the impl submodule, and specifically in the init method of the class found in 
impl/src/main/java/org/opendaylight/odlproject/impl/SqmfProvider.java: 

 

 

 

 

In order to create a new RPC or any storage structure, one should edit 
api/src/main/yang/sqmf.yang file [90]. 

5.5 USE OF AN IDE 

As mentioned before, the ODL Controller is actually a Java project. Therefore, anyone 
wishing to create applications for the controller needs to install a Java IDE, where the 

cd karaf/target/assebly/bin 

./karaf 

    public void init() { 

        LOG.info("SqmfProvider Session Initiated"); 

    } 
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code will be developed and tested. This thesis makes use of the IntelliJ IDE, provided 
by JetBrains. Other well-known Java IDEs include Eclipse and Netbeans. 

The SDN application of the current thesis started with the initial creation of a Maven 
project as described in 5.4, which was then imported into IntelliJ, following the 
procedure described below: 

 Select to import a project into IntelliJ (Image 5.9). 

 Select the project to import (Image 5.10). 

 Select to import the project from an external model, specifying Maven as the 
external model (Image 5.11). 

 Click on the button Environment settings and configure Maven’s home directory, 
choosing its location (Image 5.12). 

 Select the Maven project to import and click Next (Image 5.13). 

 Click the green cross in order to configure a new JDK (Image 5.14). 

 Select the JDK installation folder and click OK (Image 5.15). 

 Click OK after noticing which the JDK resources are (Image 5.16). 

 Enter a name for the project and click Finish ( Image 5.17). 

 

Image 5.9: Import a project into IntelliJ 
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Image 5.10: Select the project to import 

 

Image 5.11: Select to import a project from an external model, choosing Maven 
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Image 5.12: Click on button Environment settings and configure Maven’s home directory 

 

Image 5.13: Select Maven project to import and click Next 
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Image 5.14: Configure a new JDK 

 

Image 5.15: Choose the JDK installation folder and click OK 



An SDN QoE Monitoring Framework for VoIP and video applications 

Maria-Evgenia I. Xezonaki   95 

 

Image 5.16: The JDK resources 

 

Image 5.17: Enter a name for the project and click Finish 
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5.6 VoIP TRAFFIC CREATION  

One of the cases which the framework implemented in the current thesis addresses is 
the VoIP applications. In order to generate VoIP traffic in the network, the Distributed 
Internet Traffic Generator (D-ITG) was used in the scope of the current thesis. D-ITG is 
a platform capable to produce IPv4 and IPv6 traffic at packet level accurately, at 
network, transport, and application layer [91] by replicating the workload of current 
Internet applications. At the same time, D-ITG is also a network measurement tool able 
to measure the most common performance metrics (e.g. throughput, delay, jitter, packet 
loss) at packet level. It can generate traffic following stochastic models for packet size 
(PS) and inter departure time (IDT) that mimic application-level protocol behavior. By 
specifying the distributions of IDT and PS random variables, it is possible to choose 
different renewal processes for packet generation: by using characterization and 
modeling results from literature, D-ITG is able to replicate statistical properties of traffic 
of different well-known applications (e.g. Telnet, VoIP - G.711, G.723, G.729, Voice 
Activity Detection, Compressed RTP - DNS, network games) [92]. 

As reported in Image 5.18, the architecture of D-ITG comprises different components. 

 

Image 5.18: D-ITG Architecture [92] 

The core features of D-ITG are provided by ITGSend and ITGRecv. ITGSend is the 
component responsible for generating traffic toward ITGRecv. Exploiting a 
multithreaded design, ITGSend can send multiple parallel traffic flows toward multiple 
ITGRecv instances, and ITGRecv can receive multiple parallel traffic flows from multiple 
ITGSend instances. A signaling channel is created between each couple of ITGSend 
and ITGRecv components to control the generation of all the traffic flows between them. 

ITGSend and ITGRecv can optionally produce log files containing detailed information 
about every sent and received packet. Such logs can be saved locally or sent - through 
the network - to the ITGLog component (useful to collect all the measures at a single 
point or in the case of hosts with limited storage capabilities e.g. sensors, embedded 
devices, smartphones, etc.). The ITGDec component is in charge of analyzing the log 
files in order to extract performance metrics related to the traffic flows. 

The experiments (even large-scale ones) can be controlled from a single vantage point: 
the ITGRecv components act as daemons and can be completely configured and 
controlled by the ITGSend components that want to send traffic to them. Also, the 
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ITGSend components can act as daemons and can be remotely controlled through the 
D-ITG API. The ITGManager component represents an example of how to use the D-
ITG API to remotely control ITGSend. This way, the user can completely control a 
large-scale distributed experiment from a single vantage point. 

 ITGSend: The ITGSend component is responsible for generating traffic flows and 
can work in three different modes: 

o Single-flow - read the configuration of the single traffic flow to generate 
toward a single ITGRecv instance from the command line. 

o Multi-flow - read the configuration of multiple traffic flows to generate 
toward one or more ITGRecv instances from a script file. The script is 
made of a line for each traffic flow, which includes a set of command-line 
options as in the single-flow mode. 

o  Daemon - run as a daemon listening on a UDP socket for instructions 
and can be remotely controlled using the D-ITG API. 

Every traffic flow generated is described by two stochastic processes relating to 
PS and IDT, through which well defined traffic profiles can be generated, 
emulating application protocols such as VoIP, DNS, etc. PS and IDT series can 
also be loaded from a file for each flow. ITGSend can log information about every 
sent or received packet, when running in One Way or Round Trip mode 
respectively. In the first case, timestamps (and other information) of sent packets 
are stored, while in the second case, timestamps (and other information) of sent 
and received packets are stored. For each flow the source IP address can be 
specified, which is useful for multi-homed hosts. 

 ITGRecv: The ITGRecv component is responsible for receiving multiple parallel 
traffic flows generated by one or more ITGSend instances. It normally runs as a 
multi-threaded daemon listening on a TCP socket for incoming traffic reception 
requests. Each time a request is received from the network, a new thread is 
created, which performs all the operations related to the new request (e.g. receiving 
the packets of the flow). The port numbers on which ITGRecv will receive each flow 
and any logging activity required on the receiver side can be remotely controlled by 
ITGSend. A specific signaling protocol, the Tunnel Setup Protocol (TSP), allows 
ITGRecv and ITGSend to properly setup and manage the traffic generation 
process. 

 ITGLog: The ITGLog component is responsible for receiving and storing log 
information possibly sent by ITGSend and ITGRecv. It runs as a multi-threaded 
daemon listening on a TCP socket for incoming log requests. Log information is 
received over TCP or UDP protocols on port numbers dynamically allocated in the 
range 9003-10003. 

 ITGDec: The ITGDec component is responsible for decoding and analyzing the log 
files stored during the experiments conducted by using D-ITG. ITGDec parses the 
log files generated by ITGSend and ITGRecv and calculates the average values of 
bitrate, delay and jitter either on the whole duration of the experiment or on 
variable-sized time intervals. ITGDec analyzes the log files produced by ITGSend, 
ITGRecv, and ITGLog in order to produce results about each flow and about the 
whole set of flows [92]. 

 One can install the D-ITG tool inside the Mininet VM using the following steps: 

 Login into Mininet VM. 
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 sudo apt-get install unzip 

 sudo apt-get install g++ 

 wget http://traffic.comics.unina.it/software/ITG/codice/D-ITG-2.8.1-r1023-src.zip 

 unzip  D-ITG-2.8.1-r1023-src.zip 

 cd  D-ITG-2.8.1-r1023/src 

 make 

In order to be familiarized with this platform, below are presented, as an example of D-
ITG use, the steps followed to generate VoIP traffic in a simple case of a topology with 
two hosts, after the successful installation of D-ITG. The traffic was decided to be sent 
from h1 (sender) to h2 (receiver). 

 First, a Mininet session was opened and the commands cd  ~/pox and  ./pox.py 
forwarding.l2_learning were given for the controller setup, as shown in Image 5.19. 

 Then, a second Mininet session was opened and the command sudo mn --
controller=remote,ip=127.0.0.1,port=6633 was given, as Image 5.20 illustrates. 

 As a next step, a console for each of the two hosts was opened separately using 
the command xterm h1 h2. 

 After both hosts’ consoles opened, the command cd D-ITG-2.8.1-r1023/bin was 
used for both h1 and h2, as shown in Image 5.21. 

 The command ./ITGRecv -l receiver_file was executed in the receiver’s console, 
where –l flag enables logging to the specified file and specifically it generates a log 
file containing timing, ordering and size information about every received packet 
(Image 5.22). 

 A script was created in the sender with the following commands, containing the 
necessary information about the generation of the VoIP traffic, as depicted in 
Image 5.23. 

 

   

 

 

where: 

o –a option sets the destination address of the flow’s packets 

o –rp option sets the destination port of the flow’s packets 

o VoIP option emulates VoIP traffic 

o –x option is a VoIP sub-option indicating the audio codec 

o –h option is a VoIP sub-option indicating the audio transfer protocol 

o –VAD option is a VoIP sub-option indicating that voice activity detection is 
enabled. 

 Finally, the command ./ITGSend -l sender_file was executed in the sender’s 
console, where –l flag enables logging to the specified file and specifically it 
generates a log file containing timing, ordering and size information about every 
sent packet (Image 5.24). 

cat > script <<END 

-a 10.0.0.2 –rp 10001 VoIP –x G.711.2 –h RTP –VAD 

END 
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After having completed the VoIP traffic generation from h1 to h2, the results which 
occurred and were stored in the log files were decoded. The receiver’s results are 
presented in Image 5.25 and the sender’s in Image 5.26 [92], [93]. 

 

Image 5.19: First Mininet session for using D-ITG 

 

Image 5.20: Second Mininet session for using D-ITG, with topology deployment 
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Image 5.21: Navigation in the bin folder of the D-ITG installation for both hosts 

 

Image 5.22: The command starting the receiver host (h2) 

 

Image 5.23: The commands for the creation of script describing the traffic characteristics, in the 
sender host (h1) 
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Image 5.24: The command starting the sender host (h1) 

 

Image 5.25: The receiver host’s log file, with information about the received packets 
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Image 5.26: The sender host’s log file, with information about the sent packets 

5.7 VIDEO TRAFFIC CREATION 

Apart from the VoIP applications, the framework implemented in the current thesis also 
addresses the case of video applications. Therefore, it was necessary to generate video 
traffic in the network and this can be achieved with the following steps: 

 A media player must be installed inside Mininet, so that the video file can be 
played. The current thesis uses VLC media player, which can be installed using the 
command sudo apt-get update followed by sudo apt-get install vlc. 

 The sender host must be equipped with a video file to stream. A sample mp4 video 
file was transferred from the host machine to the Mininet VM using the command 
scp [FILENAME] mininet@[MININET_VM_IP]:[DESTINATION_PATH]. This way 
the sender host is also granted access to the video file and therefore can stream it 
to the receiver host. 

 By opening a terminal for the sender host using the command xterm 
[HOST_NAME], the sender host can stream the video file using the command vlc-
wrapper [VIDEO_FILENAME] --sout '#rtp{dst=[RECEIVER_HOST_IP],port=1234}'. 

5.7.1  Video adjustment to required specifications 

As already mentioned in 3.3.2, the video QoE estimation formula contains 12 
coefficients which are derived from the video characteristics. The current thesis covers 
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the five cases given in Table 3.2 and their respective coefficients in Table 3.3. 
Therefore, in order to create video traffic the video file to be streamed must be adjusted 
to the required configurations. Example steps are described below to adjust a video to 
the requirements of case #5 of Table 3.2. 

 It would be useful to install ffmpeg as it easily shows a video’s specifications, using 
the following commands on Ubuntu 14.04 [94]: 

o sudo apt-get remove --purge ffmpeg 

o sudo apt-add-repository ppa:mc3man/trusty-media 

o sudo apt-get update 

o sudo apt-get install ffmpeg 

 A Youtube video must be selected for download. 

 By clicking Share  Copy, the video’s link is copied to the clipboard and it can be 
pasted to an online video downloader so that the video is downloaded. The tool 
used for the current thesis can be found in 
https://www.onlinevideoconverter.com/video-converter.  

 In order to adjust the video codec and the video format, an online converter can 
be used. The tool used for the current thesis can be found in https://video.online-
convert.com/convert-to-mp4. Once the video to be processed has been uploaded, 
the desired codec and format are specified. For the current thesis h264 codec and 
VGA format (640x480) were selected. 

 In order to verify that the video has obtained the desired codec and format, the 
command ffmpeg –i [VIDEO_PATH] –hide_banner can be used, which will give an 
output like the one depicted in Image 5.27. 

 

Image 5.27: The output of ffmpeg command 

 In order to adjust the video key frame interval to 1, the command ffmpeg –i 
[VIDEO_PATH] –qscale 0 –g 1 [OUTPUT_VIDEO_PATH] can be used [95]. 

 In order to verify that the video has obtained the desired key frame interval, the 
command ffprobe -show_frames [VIDEO_PATH] | grep key_frame can be used, 
which will give an output like the one depicted in Image 5.28. 

https://www.onlinevideoconverter.com/video-converter
https://video.online-convert.com/convert-to-mp4
https://video.online-convert.com/convert-to-mp4
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Image 5.28: The output of ffprobe command 
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6. QoE DEGRADATION CASES EXAMPLES 

In this chapter, various cases where QoE degradation can happen during multimedia 
applications streaming are presented by conducting experiments on a custom network 
topology and computing the QoE. The QoE degradation is observed due to limitations 
imposed by network conditions, as well as network instabilities such as link failures. The 
experiments aim to illustrate the plethora of the cases where the QoE in a network 
suffers from degradation due to network conditions, as well as point out the necessity 
for a QoE monitoring framework. 

The first step was to create a custom network topology using Mininet, following the 
instructions of 5.3.3 and an initial ODL SDN controller as indicated in 5.4, making the 
connection between them as shown in 5.3.4. Subsequently, different network conditions 
were applied and both VoIP and video traffic was generated inside the network 
from h1 to h2, using the D-ITG tool as shown in 5.6 or streaming a video file as shown 
in 5.7, respectively.  

 For the experiments on VoIP applications, traffic was created using D-ITG as 
shown in 5.6. The G.107 E-model was used for the QoE evaluation. Each produced 
flow used the G.729.2 codec of VoIP, as required for the evaluation of the QoE 
using the ITU G.107 E-model. Also, due to the VoIP traffic type, D-ITG only allowed 
50 packets per second to be sent (packet rate). The necessary delays and packet 
losses for the E-model were obtained from the D-ITG receiver’s log file, which 
presented statistics at the end of the experiment, as described in 5.6. 

 For the experiments on video applications, traffic was created by streaming a video 
as shown in 5.7. The G.1070 E-model was used for the QoE evaluation. For these 
experiments the necessary packet losses for the ITU G.1070 E-model could not be 
obtained from a tool such as D-ITG, therefore they were computed using the video 
QoE monitoring functions created in the context of the current thesis, which will be 
described later in Chapter 7. The whole implementation’s functionality was of 
course not used at this point. Only the parts computing the packet losses were 
used. 

The packet losses and delays which occurred in each experiment due to the network 
conditions were used to compute the QoE values and construct relative graphical 
representations. 

The created topology for the experiments is depicted in Image 6.1. It consists of 9 
switches, s1 to s9, connected linearly between them, as well as two hosts, h1 and h2, 
connected to s1 and s8 respectively. 

 

Image 6.1: Topology with nine switches and two hosts, used for the current thesis 
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6.1 EXPERIMENTS ON VoIP APPLICATIONS 

6.1.1  Experiment No 1: Manual network limitations on VoIP 

The first experiment studies the impact of network limitations, such as packet losses in 
the links, on the QoE of a VoIP application. These limitations were set manually to the 
links. The parameters used for the current experiment are shown in Table 6.1. VoIP 
flows were generated in the network, each of which contained 10000 packets, used the 
G.729.2 model of VoIP and had a packet rate of 50 packets per second. 

Table 6.1: Parameters used for experiment N
o
 1 on VoIP traffic generation 

 

After the topology creation and in each execution of the experiment, selected links were 
manually assigned a packet loss value in order to emulate the actual losses that a 
network may suffer from. Table 6.2 shows the R and MOS values computed per total 
network packet loss case and occurring delay. 

Table 6.2: Delay, R and MOS according to the total network packet loss 

Total Network 
Packet Loss (%) 

Delay (sec) R MOS 

1 0.000184 79.38317681 4.000472662 

2.17 0.000173 75.34029544 3.836412202 

3.17 0.000174 72.18156709 3.697577086 

3.85 0.000173 70.16784241 3.604861916 

5.01 0.000172 66.95060989 3.45092752 

5.98 0.000062 64.44839811 3.327040486 

7.05 0.000168 61.85336357 3.195478775 

8.36 0.000168 58.89239631 3.04246389 

9.26 0.000171 56.97808346 2.942379419 

9.96 0.000170 55.55011288 2.867340439 

 

The above presented data are summarized in Figure 6.1, where MOS decrease - and 
therefore QoE degradation - are depicted as a graphical representation. It can easily be 
observed that the higher the level of total packet loss in the network during the packet 
transmission period, the lower the MOS values, causing poor QoE to the VoIP 
participants.  
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Figure 6.1: VoIP quality decrease in relation to total network packet loss 

6.1.2  Experiment No 2: Multiple sources of traffic on VoIP 

The second experiment expands the first one, involving also other sources of traffic in 
the network – apart from the created VoIP traffic – that can overload the network and 
cause packet losses. This means that instead of manually inserting packet losses in 
various links, other sources of traffic were used for additional traffic generation and 
therefore packet losses were caused naturally. The parameters used for the second 
experiment are presented in Table 6.1, only this time the number of packets per flow 
varies. The additional traffic was generated using iperf, which is a tool to produce traffic 
in the network, while the topology shown in Image 6.1 was used again. 

More specifically, in each execution of the experiment iperf was constantly running on 
the background, generating TCP packets, as different numbers of VoIP packets were 
generated in parallel. h2 was set to be an iperf server, using the command iperf –s –p 
[PORT_NUMBER] in a h2 terminal while h1 was set to be an iperf client generating TCP 
traffic, using the command iperf –c [SERVER_ADDRESS] –p [PORT_NUMBER] –t 
[TIME] in a h1 terminal. As port number, 5566 was used and the server address was 
h2’s address, 10.0.0.2. After the traffic generation with iperf, the VoIP traffic was also 
generated with the way presented in 5.6.  

Table 6.3 shows the computed delay, packet loss and corresponding R and MOS 
values according to the number of VoIP packets sent in each execution of the 
experiment.  
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Table 6.3: Delay, Packet Loss, R and MOS according to number of VoIP packets sent 
simultaneously with iperf 

Number of 
VoIP packets 

sent 
Delay (sec) 

Packet Loss 
(%) 

R MOS 

500 0.025556 0.2 81.79455091 4.089990139 

800 0.026327 0.25 81.5804475 4.082314506 

1000 0.025828 0.3 81.39777591 4.075722697 

3000 0.026229 0.33 81.27181639 4.07115445 

5000 0.027902 0.36 81.11566625 4.065465425 

8000 0.027803 0.38 81.04089661 4.062731257 

10000 0.027847 0.4 80.96284347 4.059870077 

 

The presented data are graphically summarized in Figure 6.2, where it can easily be 
observed that as the number of VoIP packets sent simultaneously with the random TCP 
packets generated by iperf increases, the MOS factor gets lower, and therefore the 
QoE suffers from progressive degradation. It is noted that the total QoE degradation for 
this experiment is not larger than 0.4%. This is expected, as the experiment is not large-
scale and intends to just sufficiently depict the impact of multiple sources of traffic on 
QoE. Therefore, the total network traffic load is not extreme and consequently the QoE 
does not face a dramatic degradation. 

 

Figure 6.2: VoIP quality decrease in relation to number of VoIP packets, in parallel with iperf 
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6.2 EXPERIMENTS ON VIDEO APPLICATIONS 

6.2.1  Experiment No 1: Manual network limitations on video 

This experiment is the same as 6.1.1, but now conducted with video traffic. It studies 
the impact of network limitations, such as packet losses, on the QoE of a video 
application. These limitations were set manually to the links. The video parameters 
used for the current experiment are shown in Table 6.4. The created topology for the 
experiments is depicted in Image 6.1. 

Table 6.4: Parameters used for experiments on video streaming 

 

After the topology creation and in each execution of the experiment, selected links were 
manually assigned a packet loss value in order to emulate the actual losses that a 
network may suffer from. Then, the video started being streamed as shown in 5.7. 
Table 6.5 shows the Vq value computed per total packet loss case. 

Table 6.5: Vq according to the total network packet loss 

Total Network Packet Loss (%) Vq 

1.0265242 4.410821547 

2.3940452 4.348032088 

2.8251303 4.328479531 

3.8654728 4.281762134 

5.3094906 4.218002119 

6.0782496 4.184564713 

6.946294 4.147226316 

8.2307905 4.092776194 

9.1012839 4.056412297 

9.9193799 4.022627062 

 

The above presented data are summarized in Figure 6.3, where Vq decrease - and 
therefore QoE degradation - are depicted as a graphical representation. It can easily be 
observed that the higher the level of total packet loss in the network during the packet 
transmission period, the lower the MOS values.  
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Figure 6.3: Video quality decrease in relation to total network packet loss 

6.2.2  Experiment No 2: Multiple sources of traffic on video 

This experiment is the same as 6.1.2, but now conducted with video traffic. It involves 
other sources of traffic in the network as well – apart from the created video traffic – that 
can overload the network and cause packet losses. Therefore, additional TCP traffic 
was generated using iperf as a video session with duration of 115 seconds was being 
streamed in parallel, while the topology shown in Image 6.1 was used again. The 
parameters used for the second experiment are presented in Table 6.4. 

Table 6.6 shows the computed packet loss and corresponding Vq value during the 
video streaming period. Results are reported every 5 seconds.  

Table 6.6: Packet loss and Vq during video streaming simultaneously with iperf 

Time (sec) Packet Loss (%) Vq 

5 0.03235294117647059 4.309764233651093 

10 0 4.4584992730265105 

15 0.009302325581395349 4.415062278263543 

20 0 4.4584992730265105 

25 0.006385696040868455 4.4286223779326495 

30 0.18448023426061494 3.691725039366696 

35 0.01217391304347826 4.401763984787847 

40 0.22203098106712565 3.557837641420684 

45 0 4.4584992730265105 

50 0.213768115942029 3.5867155645146807 

55 0 4.4584992730265105 
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60 0.22790697674418606 3.5374979600768506 

65 0.025500910746812388 4.340721435447504 

70 0.10323886639676114 4.005862534614934 

75 0.04468412942989214 4.254773299818181 

80 0.11788617886178862 3.946633464423855 

85 0.053763440860215055 4.214868984433865 

90 0.04251386321626617 4.264384915690982 

95 0.13070539419087138 3.8957551058669897 

100 0.05411255411255411 4.213344409404942 

105 0.07098765432098765 4.140506653668701 

110 0.15007215007215008 3.820551352876892 

115 0.009259259259259259 4.41526211314836 

 

The presented data are graphically summarized in Figure 6.4, where it can be observed 
that the simultaneous TCP packet generation by iperf affects the video quality of the 
streamed video, making it extremely instable with continuous fluctuations. 

 

Figure 6.4: Video quality instability for video streaming simultaneously with using iperf 
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7. IMPLEMENTATION ANALYSIS 

Chapter 6 presented cases where the QoE of a VoIP or video application can face 
degradation due to network conditions, e.g. packet losses due to a link failure or traffic 
load. This chapter presents the SDN QoE Monitoring Framework (SQMF), an SDN 
framework implemented in order to overcome such situations and preserve the QoE in 
VoIP and video applications. This is achieved by using an SDN Controller and 
implementing extra functionality on top of it in order to change the traffic’s transmission 
path to an alternative one, when QoE falls below a specified threshold.  

The SDN Controller used for the current thesis is version Boron SR1 of ODL. The 
project was created following the instructions of 5.4 and extended the SDN Controller 
functionality by implementing an extra SDN module, named sqmf. The topology used 
for validation and experiments is the one depicted in Image 6.1. 

7.1  DESIGN PRINCIPLES AND WORKFLOW 

The approach used in order to ensure that the QoE remains in satisfactory levels is the 
periodical link monitoring and QoE estimation based on their statistics. In particular, the 
application computes the shortest path between the source and destination hosts, 
which will be the main transmission path, as well as the second shortest path (if exists) 
which will assist as a failover path. Then, rules are inserted to forward the traffic to the 
main path. Afterwards, the QoE monitoring process starts; the SDN controller 
periodically collects statistics from the switches (different statistics for each application 
type) and uses them to compute the QoE level. If the estimated value is lower than a 
specified threshold, then appropriate rules are inserted to redirect traffic to the failover 
path. The workflow described above for QoE Monitoring is graphically illustrated in 
Figure 7.1.  

 

Figure 7.1: QoE Monitoring workflow 
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The collected statistics according to the streamed application type are: 

 For VoIP applications, the delay and packet loss are necessary, in order to be 
able to use the G.107 E-model (3.3.1). 

o Each time the SDN controller needs to measure the delay, it creates a 
packet with a specific source MAC address – 00:00:00:00:00:09 in 
particular – and sends it on behalf of each switch of the path (except for 
the egress switch) to the output interface, so that the next switch of the 
path receives it. Each switch (except for the ingress switch, as it has no 
previous switch to receive a packet from) is configured with an appropriate 
flow rule to forward to the Controller any packet with the specific MAC 
address. The difference between the time that a switch receives a packet 
and the time that the previous switch had sent the packet is the delay of a 
particular link. The addition of all the path links’ delays results in the path 
delay. 

Each switch is configured with a rule of the following format: 

 

 

o In order to compute the packet loss rate, and given that VoIP traffic 
generates UDP packets, the SDN controller periodically monitors the 
number of UDP packets sent from the sender (h1) and the number of UDP 
packets received by the receiver (h2) and computes their difference 
divided by the number of sent packets.  

To achieve packet loss monitoring, the ingress and the egress switches 
are configured appropriately so as to forward to the Controller – apart 
from the predefined output interface to the next node - any UDP packet 
they receive (the ingress receives UDP packets from the sender host and 
the egress from the previous path node). In its turn, the Controller counts 
the path’s total incoming and outgoing UDP packets and is able to 
determine the packet loss. The ingress and the egress switch are 
configured with rules of the following format: 

 

 

For example, the appropriate rules for s1 and s8 of Image 6.1 are: 

 

 

 

 For video applications, the bit rate, frame rate and packet loss are necessary, in 
order to use the G.1070 E-model (3.3.2). 

o In order to compute the bit rate, the command ffmpeg –i [VIDEO_PATH] –
hide_banner is executed through the Java code and the output is parsed 
until the bit rate value is accessed. 

o In order to compute the frame rate, the command –i [VIDEO_PATH] –
hide_banner is executed through the Java code and the output is parsed 
until the frame rate value is accessed. 

o The packet loss is computed in the same way as for VoIP applications.  

priority=1000,dl_src=00:00:00:00:00:09 actions=CONTROLLER:65535 

 

s1: priority=1000,udp,in_port=1 actions=CONTROLLER:65535,output:3 

s8: priority=1000,udp,in_port=3 actions=CONTROLLER:65535,output:2 

 

priority=1000,udp,in_port=x actions=CONTROLLER:65535,output:y 
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The final traffic forwarding scheme based on QoE monitoring is shown in Image 7.1, 
using the topology of Image 6.1 which was used for the current thesis. 

 

Image 7.1: Traffic forwarding according to QoE Monitoring 

7.2 IMPLEMENTATION STRUCTURE 

The SQMF framework was implemented following the instructions presented in Chapter 
5. The project developed in IntelliJ IDEA is organized in Maven modules with the 
structure shown in Image 7.2: 

 

Image 7.2: SQMF implementation structure 

where: 

 api is the created API for the user to the SDN Controller. It contains the YANG files 
which specify the ODL modules that the project will create – in the case of the 
current thesis, sqmf 

 features contains the SDN controller features to be used and the SDN features 
created by the project 
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 impl is the core implementation component, which contains all the developed code 
for SQMF 

 karaf is the container provided by the Maven archetype used to create the SDN 
application, which is necessary so that the ODL modules can run. 

When the ODL controller is launched by using the command 
./karaf/target/assembly/bin/karaf, all its modules – including sqmf, the one created in the 
context of the current thesis – are available at the YANG UI tab of the ODL DLUX, as 
shown in Image 7.3. 

 

Image 7.3: ODL modules, including sqmf 

By selecting sqmf  operations, the user has access to the application’s created RPCs, 
which are the core implementation methods and constitute the framework’s 
implemented functionalities. Two RPCs were created, as depicted in Image 7.4. 

 

Image 7.4: The created RPCs 

 startMonitoringLinks: The RPC which starts the process of the periodic link 
monitoring in the network. More specifically, this process indicates that the links of 
the path between the source and the destination are monitored periodically and the 
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QoE is computed based on their delay and packet loss. In case the QoE is lower 
than a predefined threshold, the controller performs corrective actions. The 
requested input fields are shown in Image 7.5 and must be filled as following: 

o srcNode is the name of the switch connected to the sender host. The 
implementation in the current thesis uses the topology depicted in Image 
6.1: Topology with nine switches and two hosts, used for the current 
thesis, therefore the srcNode openflow:1, as the sender host is h1. 

o dstNode is the name of the switch connected to the receiver host. In the 
topology used for the current thesis the receiver host is h2 so the dstNode 
is openflow:8. 

o QoEThreshold is the minimum accepted value for the QoE. If QoE gets 
lower than QoEThreshold, corrective actions are performed. 

o ApplicationType is a dropdown menu where the type of the application 
which will be used (VoIP or video) must be filled. 

 

Image 7.5: Requested input for startMonitoringLinks RPC 

 stopMonitoringLinks: The RPC which stops the periodical monitoring of links, so 
that the execution is terminated gracefully without throwing an exception for forcing 
the periodic task to stop. No input is required for this RPC. 

Some important notes on the application’s behavior are the following: 

 In order to select an RCP, a network topology must have been created in Mininet 
first. Otherwise, the implemented function will not take place. 

 All the input fields are required to be filled in. The case where a field is left empty is 
handled successfully by the application, but the implemented function will not take 
place.  

 Fields srcNode and dstNode need to be given values that exist as nodes and are 
connected to hosts. Otherwise, the implemented function will not take place and 
undefined behavior will be invoked.  

 In case startMonitoringLinks is selected and the created traffic type does not match 
the specified ApplicationType, the QoE will be computed based on the formula for 
other application type. This happens because there is no way to determine if the 
generated traffic type matches the specified ApplicationType, as both VoIP and 
video traffic generate UDP packets. 
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7.3 DETAILED IMPLEMENTATION ANALYSIS 

The source code of SQMF is located in two of the project’s Maven modules; the YANG 
file creating the generated SDN module for the current thesis can be found in api and 
the Java code can be found in impl. Moreover, each module contains a pom.xml file, 
where all the dependencies to other modules are declared. The code files are now 
described per module in more detail. Only the most significant parts of code are shown 
in this chapter, whereas the whole code can be found in the URL provided in the Annex. 

1. api 

 pom.xml: Contains the dependencies for api module, which are some default SDN 
Controller features. 

            <?xml version="1.0" encoding="UTF-8"?> 

<projectxsi:schemaLocation="http://maven.apache.org/POM/4.0.0 
http://maven.apache.org/xsd/maven-4.0.0.xsd" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns="http://maven.apache.org/POM/4.0.0"> 

<parent> 
    <groupId>org.opendaylight.mdsal</groupId> 
    <artifactId>binding-parent</artifactId> 
    <version>0.9.1-Boron-SR1</version> 
    <relativePath/> 
</parent> 
<modelVersion>4.0.0</modelVersion> 
<groupId>sqmf</groupId> 
<artifactId>sqmf-api</artifactId> 

<version>1.0.0-SNAPSHOT</version> 
<packaging>bundle</packaging> 
<properties> 
    <ietf-inet-types.version>2010.09.24.8.1-Beryllium-SR1</ietf-inet-types.version> 
    <ietf-yang-types.version>2010.09.24.8.1-Beryllium-SR1</ietf-yangtypes.version> 
    <yang-ext.version>2013.09.07.8.1-Beryllium-SR1</yang-ext.version> 
    <controller-model.version>1.3.1-Beryllium-SR1</controller-model.version> 
</properties> 
<dependencies> 
    <dependency> 
        <groupId>org.opendaylight.controller.model</groupId> 
        <artifactId>model-inventory</artifactId> 
        <version>${controller-model.version}</version> 
    </dependency> 
    <dependency> 
        <groupId>org.opendaylight.mdsal.model</groupId> 
        <artifactId>ietf-yang-types</artifactId> 
        <version>${ietf-yang-types.version}</version> 
    </dependency> 
    <dependency> 
        <groupId>org.opendaylight.mdsal.model</groupId> 
        <artifactId>ietf-inet-types</artifactId> 
        <version>${ietf-inet-types.version}</version> 
    </dependency> 

file:///C:/Users/user/Downloads/sqmf/sqmf/api/pom.xml
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    <dependency> 
        <groupId>org.opendaylight.mdsal.model</groupId> 
        <artifactId>yang-ext</artifactId> 
        <version>${yang-ext.version}</version> 
    </dependency> 
</dependencies> 
</project> 

 

2. api/src/main/yang 

 sqmf.yang: The YANG file which generates the thesis’s SDN module, named sqmf. 
The module contains two RPCs defined in the YANG file: startMonitoringLinks and 
stopMonitoringLinks. For each RPC, the required input is specified. Each input field 
required is denoted as leaf and a name and type must be specified for it. 

module sqmf { 
    yang-version 1; 
    namespace 
    "urn:opendaylight:params:xml:ns:yang:sqmf"; 
    prefix "sqmf"; 
    revision "2014-12-10" { 
        description "Initial revision of sqmf model"; 
    } 
    typedef ApplicationType { 
        type enumeration { 
            enum "VoIP"; 
            enum "Video"; 
        } 
    } 
    rpc startMonitoringLinks{ 
        input{ 
            leaf srcNode { 
                type string; 
            } 
            leaf dstNode { 
                type string; 
            } 
            leaf QoEThreshold { 
                type string; 
            } 
            leaf application { 
                type ApplicationType; 
            } 
        } 
    } 
    rpc stopMonitoringLinks{ 
 
    } 
} 

 

When the project is compiled, the YANG file generates one Java class per defined 
RPC and defined entity (e.g. typedef), which are used by the Java code in order to 
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implement the RPCs' desired functionalities. For each RPC, Java classes 
corresponding to its input and output are generated. Also a service class is 
generated, which contains the prototypes of all the defined RPCs and enables their 
implementation. These classes can be found in the path 
api/target/classes/org/opendaylight/yang/gen/v1/urn/opendaylight/params/xml/ns/ya
ng/sqmf/rev141210 and are: 

o ApplicationType: An enumeration containing the VoIP and video 
application types. It is used in the Java code to specify the user’s 
selection. 

o SqmfService: A class gathering all the implemented RPCs together. It is 
used in the Java code to implement the body of the created RPCs. 

public interface SqmfService extends RpcService { 

      Future<RpcResult<Void>> startFailover(StartFailoverInput var1); 

      Future<RpcResult<Void>> stopMonitoringLinks(); 

      Future<RpcResult<Void>>startMonitoringLinks(StartMonitoringLinksInput var1); 

} 

 

o StartMonitoringLinksInput: A class representing the required input for 
startMonitoringLinks, It is used in the Java code to get the user’s input for 
the RPC. 

public interface StartMonitoringLinksInput extends DataObject, 
Augmentable<StartMonitoringLinksInput> { 

      QName QNAME = QName.create("urn:opendaylight:params:xml:ns:yang:sqmf", 
      "2014-12-10", "input").intern(); 

      String getSrcNode(); 

      String getDstNode(); 

      String getQoEThreshold(); 

      ApplicationType getApplication(); 

} 

 

3. impl 

 pom.xml: Contains the dependencies for impl module, which are some default SDN 
Controller features and the api module. 

<?xml version="1.0" encoding="UTF-8"?> 
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 
http://maven.apache.org/xsd/maven-4.0.0.xsd" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns="http://maven.apache.org/POM/4.0.0"> 
<parent> 
    <groupId>org.opendaylight.controller</groupId> 
    <artifactId>config-parent</artifactId> 
    <version>0.5.1-Boron-SR1</version> 
    <relativePath/> 

file:///C:/Users/user/Downloads/sqmf/sqmf/impl/pom.xml
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</parent> 
<modelVersion>4.0.0</modelVersion> 
<groupId>sqmf</groupId> 
<artifactId>sqmf-impl</artifactId> 
<version>1.0.0-SNAPSHOT</version> 
<packaging>bundle</packaging> 
<properties> 
    <openflow.plugin.version>0.3.1-Boron-SR1</openflow.plugin.version> 
    <l2switch.version>0.4.1-Boron-SR1</l2switch.version> 
    <jung2.version>2.0.1</jung2.version> 
    <mdsal.version>1.4.1-Boron-SR1</mdsal.version> 
</properties> 
<dependencies> 
    <dependency> 
        <groupId>${project.groupId}</groupId> 
        <artifactId>sqmf-api</artifactId> 
        <version>${project.version}</version> 
    </dependency> 
    <dependency> 
        <groupId>org.opendaylight.openflowplugin.model</groupId> 
        <artifactId>model-flow-service</artifactId> 
        <version>${openflow.plugin.version}</version> 
    </dependency> 
    <dependency> 
        <groupId>org.opendaylight.controller.model</groupId> 
        <artifactId>model-topology</artifactId> 
        <version>${mdsal.version}</version> 
    </dependency> 
    <dependency> 
        <groupId>org.opendaylight.openflowplugin</groupId> 
        <artifactId>openflowplugin-api</artifactId> 
        <version>${openflow.plugin.version}</version> 
    </dependency> 
    <dependency> 
        <groupId>org.opendaylight.l2switch.addresstracker</groupId> 
        <artifactId>addresstracker-impl</artifactId> 
        <version>${l2switch.version}</version> 
    </dependency> 
    <dependency> 
        <groupId>org.opendaylight.controller.thirdparty</groupId> 
        <artifactId>net.sf.jung2</artifactId> 
        <version>${jung2.version}</version> 
    </dependency> 
    <dependency> 
        <groupId>org.jgrapht</groupId> 
        <artifactId>jgrapht-core</artifactId> 
        <version>1.0.1</version> 
    </dependency> 
    <dependency> 
        <groupId>org.opendaylight.controller</groupId> 
        <artifactId>liblldp</artifactId> 
        <version>0.12.0-SNAPSHOT</version> 
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    </dependency> 
    <dependency> 
        <groupId>org.opendaylight.openflowplugin.applications</groupId> 
        <artifactId>topology-lldp-discovery</artifactId> 
        <version>0.4.0-SNAPSHOT</version> 
    </dependency> 
    <dependency> 
        <groupId>org.opendaylight.controller</groupId> 
        <artifactId>liblldp</artifactId> 
        <version>0.11.1-Boron-SR1</version> 
    </dependency> 
    <dependency> 
        <groupId>org.opendaylight.openflowplugin.applications</groupId> 
        <artifactId>topology-lldp-discovery</artifactId> 
         <version>0.3.1-Boron-SR1</version> 
    </dependency> 
    <dependency> 
        <groupId>sqmf</groupId> 
        <artifactId>sqmf-api</artifactId> 
        <version>1.0.0-SNAPSHOT</version> 
    </dependency> 
    </dependencies> 
</project> 

 

4. impl/src/main/java/sqmf/impl 

 DomainLink.java: The class modeling a link of the graph using jgrapht library 
(added as Maven dependency in impl’s pom.xml). It contains an ODL link as well its 
ODL id (e.g. openflow:1:1). 

 DomainNode.java: The class modeling a node of the graph using jgrapht library. It 
contains the node's id inside the graph (e.g. 1), the node's ODL ID (e.g. openflow:1) 
and the graph's id which the node belongs to. 

 ExecuteShellCommand.java: The class which executes a shell command through 
the Java code. This is used with video application type to run commands the 
ffmpeg –i VIDEO_PATH –hide_banner and ffprobe -show_frames [VIDEO_PATH] | 
grep key_frame  in order to parse their outputs and extract the video frame rate, 
format, bit rate, codec and key frame interval respectively.  

 GraphOperations.java: The class which handles the network topology and 
translates it into a Java graph. It contains methods to add links and nodes to the 
graph, as well as to remove links. Nodes, once added, are not removed from the 
graph; only their links can be removed, meaning that the node is actually not used 
in the graph. 

 LatencyMonitor.java: The class which measures the latency of a link. For each link, 
the core method of the class sends a packet from the source node so that the 
destination can receive it, and forward it to the controller where the interval can be 
measured. The method then waits until a global variable, latency, is updated with 
the computed interval, and then returns it. The core method is: 
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public Long MeasureNextLink(Link link, String srcMac, String nextNodeConnector) 
{ 

        MonitorLinksTask.packetReceivedFromController = false; 

        latency = -1L; 

        String nodeConnectorId = link.getSource().getSourceTp().getValue(); 

        String nodeId = link.getSource().getSourceNode().getValue(); 

        packetSender.sendPacket(0, nodeConnectorId, nodeId, srcMac, 
        nextNodeConnector); 

        while (latency == -1) { 

        } 

        return latency; 

} 

 

 LLDPUtils.java: The utility class dealing with LLDP packets. It creates the payload 
for the packet which is created and sent by  PacketSender.java (explained later) for 
delay monitoring. The code for this class was not created in the context of the 
current thesis, but instead was found on the URL 
https://github.com/opendaylight/openflowplugin/blob/master/applications/lldp-
speaker/src/main/java/org/opendaylight/openflowplugin/applications/lldpspeaker/LL
DPUtil.java. 

 MonitorLinksTask.java: The core class of the QoE monitoring functionality, which is 
used periodically. It measures the delay and packet loss for VoIP or frame rate, bit 
rate and packet loss for video and computes the QoE for the application. Its core 
function is presented: 

public void run() { 
 
        double pathMOS = -1; 
 
        // if application streamed is VoIP 
        if (SqmfImplementation.applicationType.equals(VoIP.getName())){ 
            Long delay = monitorDelay(SqmfImplementation.mainGraphWalk); 
            double packetLoss = monitorPacketLoss(); 
            System.out.println("Total delay is " + delay + " ms"); 
            System.out.println("Total loss is " + packetLoss + "%"); 
            pathMOS = VoIP.estimateQoE(delay, packetLoss); 
        } 
        // if application streamed is Video 
        else if (SqmfImplementation.applicationType.equals(Video.getName())){ 
            double packetLoss = monitorPacketLoss(); 
            int bitsReceivedCount = findBits(); 
            //float frameRate = computeVideoFPS(videoAbsolutePath); 
            float frameRate = videoFPS; 
            float N = computeN(frameRate); 
            float BR = computeVideoBitRate(videoAbsolutePath); 
 
            float bitRate; 

https://intracom-telecom.webex.com/intracom-telecom/j.php?MTID=mfe6b8c098cb0d33dea44bb5706529409
https://intracom-telecom.webex.com/intracom-telecom/j.php?MTID=mfe6b8c098cb0d33dea44bb5706529409
https://intracom-telecom.webex.com/intracom-telecom/j.php?MTID=mfe6b8c098cb0d33dea44bb5706529409
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            if (bitsReceivedCount == 0){ 
                BR = 0; 
            } 
            if (frameRate != -1){ 
                pathMOS = Video.estimateQoE(frameRate, BR, packetLoss, videoCase); 
            } 
 
            System.out.println("FPS is " + frameRate); 
            System.out.println("BR is " + BR); 
            System.out.println("PLR is " + packetLoss); 
 
        } 
 
        System.out.println("MOS is " + pathMOS); 
        if ( linkFailure || ((pathMOS >= 0) && (pathMOS < 
        SqmfImplementation.QoEThreshold)) ) { 
            System.out.println("MOS is lower than the threshold."); 
            if (!isFailover && PacketProcessing.videoHasStarted) { 
                if (!SqmfImplementation.fastFailover) { 
                    SqmfImplementation.changePath(); 
                } 
            } 
            else{ 
                System.out.println("Cannot change path although QoE low."); 
            } 
        } 
        System.out.println("-------------------------------------------------------------------------"); 
 } 

 

It is important to note that the highlighted line is the key to the framework’s 
mechanism; if commented, the path will not change even if low QoE is detected 
and the framework will implement a monitoring function, without taking corrective 
actions.  

 NetworkGraph.java: The class modeling the network topology. It contains an 
instance of the network graph, as well as methods to update this instance with 
nodes and links additions or removals. 

 PacketParsingUtils.java: The class containing the functions to parse an incoming 
packet to the SDN Controller. The code for this class was not created in the context 
of the current thesis, but instead was found on the URL 
https://github.com/sdnhub/SDNHub_Opendaylight_Tutorial/blob/master/commons/u
tils/src/main/java/org/sdnhub/odl/tutorial/utils/PacketParsingUtils.java. 

 PacketProcessing.java: The class which listens for packets received by the 
controller and examines them.  

o If the packet received is a UDP packet received from the ingress node or 
the egress node, it is counted to the packets sent from the source or 
received from the destination respectively, so that packet loss is 
computed.  

o If the packet received is a UDP packet having the value 00:00:00:00:00:09 
as its source MAC address, it is understood that it was sent to the 

https://github.com/sdnhub/SDNHub_Opendaylight_Tutorial/blob/master/commons/utils/src/main/java/org/sdnhub/odl/tutorial/utils/PacketParsingUtils.java
https://github.com/sdnhub/SDNHub_Opendaylight_Tutorial/blob/master/commons/utils/src/main/java/org/sdnhub/odl/tutorial/utils/PacketParsingUtils.java
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controller by a switch which received the packet from its previous switch, 
therefore delay is measured. 

 PacketSender.java: The class creating a packet with a specific MAC address -
00:00:00:00:00:09 in particular - and sending it to the output interface of a node, 
which leads to the next node of the path. The method sending the packet is: 

public boolean sendPacket(String outputNodeConnector, String nodeId, String 
srcMac, String nextNodeConnector) { 
 
        MacAddress srcMacAddress = new MacAddress(srcMac); 
        String nodeConnectorId = outputNodeConnector.split(":")[2]; 
 
        NodeRef ref = createNodeRef(nodeId); 
        NodeConnectorId ncId = new NodeConnectorId(outputNodeConnector); 
        NodeConnectorKey nodeConnectorKey = new NodeConnectorKey(ncId); 
        NodeConnectorRef nEgressConfRef = new 
        NodeConnectorRef(createNodeConnRef(nodeId, nodeConnectorKey)); 
 
        byte[] lldpFrame = LLDPUtils.buildLldpFrame(new NodeId(nodeId), 
                new NodeConnectorId(outputNodeConnector), srcMacAddress, 
                Long.parseLong(nodeConnectorId)); 
 
        ActionBuilder actionBuilder = new ActionBuilder(); 
        ArrayList<Action> actions = new ArrayList<>(); 
 
        Action outputNodeConnectorAction = actionBuilder 
                .setOrder(0).setAction(new OutputActionCaseBuilder() 
                        .setOutputAction(new OutputActionBuilder() 
                                .setOutputNodeConnector(new Uri(nodeConnectorId)) 
                                .build()) 
                        .build()) 
                .build(); 
        actions.add(outputNodeConnectorAction); 
 
        TransmitPacketInput packet = new TransmitPacketInputBuilder() 
                .setEgress(nEgressConfRef) 
                .setNode(ref) 
                .setPayload(lldpFrame) 
                .setAction(actions) 
                .build(); 
        sentTimes.put(nextNodeConnector, System.currentTimeMillis()); 
 
        Future<RpcResult<Void>> future = 
        packetProcessingService.transmitPacket(packet); 
        try { 
            if (future.get().isSuccessful()) { 
                return true; 
            } else { 
                return false; 
            } 
        } catch (Exception e) { 
            e.printStackTrace(); 
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            return false; 
        } 
} 

 

 SqmfImplementation.java: The core class of  SQMF, implementing its functionality. 
This class is based on the RPCs generated by the YANG module of api and 
implements their bodies. The RPC which implements the QoE monitoring gets the 
user input and checks its validity, configures the paths and starts the monitoring 
task. The code is: 

@Override 
public Future<RpcResult<Void>> startMonitoringLinks(StartMonitoringLinksInput 
input) { 
 
        if (input != null){ 
            if (input.getSrcNode() != null && input.getDstNode() != null && 
            input.getQoEThreshold() != null && input.getApplication() != null){ 
                srcNode = input.getSrcNode(); 
                dstNode = input.getDstNode(); 
                try { 
                    Float QoE = Float.parseFloat(input.getQoEThreshold()); 
                    QoEThreshold = QoE.doubleValue(); 
                } 
                catch (NumberFormatException e){ 
                    LOG.info("Wrong number format for QoE threshold, try again."); 
                    return 
                    Futures.immediateFuture(RpcResultBuilder.<Void>success().build()); 
                } 
                applicationType = input.getApplication().getName(); 
            } 
        } 
        else{ 
            LOG.info("A field of the input is empty, try again."); 
            return Futures.immediateFuture(RpcResultBuilder.<Void>success().build()); 
        } 
 
        // if the application type is video, launch a file chooser to select a video file to 
        be streamed 
        if (applicationType.equals(Video.getName())){ 
            FileDialog dialog = new FileDialog((Frame)null, "Select File to Open"); 
            dialog.setMode(FileDialog.LOAD); 
            dialog.setVisible(true); 
            videoAbsolutePath = dialog.getDirectory() + dialog.getFile(); 
            videoCase = findVideoCase(videoAbsolutePath); 
            if (videoCase == 0){ 
                LOG.info("Video required specifications not met, choose another video."); 
                return 
                Futures.immediateFuture(RpcResultBuilder.<Void>success().build()); 
            } 
        } 
 
        //first, add rules to ingress and egress nodes to forward their packets to 
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        controller 
        if (NetworkGraph.getInstance().getGraphNodes() != null && 
        NetworkGraph.getInstance().getGraphLinks() != null) { 
            Hashtable<String, DomainNode> domainNodes = 
            NetworkGraph.getInstance().getDomainNodes(); 
            DomainNode sourceNode = domainNodes.get(srcNode); 
            DomainNode destNode = domainNodes.get(dstNode); 
 
            //check if the given switches are edge switches, therefore connected to 
            hosts 
            if (!checkIfEdgeSwitches(sourceNode, destNode)){ 
                LOG.info("Not edge switches given, returning..."); 
                return 
                Futures.immediateFuture(RpcResultBuilder.<Void>success().build()); 
            } 
 
            List<GraphPath<Integer, DomainLink>> possiblePaths = 
            createPaths(NetworkGraph.getInstance(), sourceNode.getNodeID(), 
            destNode.getNodeID()); 
            if (possiblePaths.size() > 1) { 
                GraphPath<Integer, DomainLink> mainPath = possiblePaths.get(0); 
                GraphPath<Integer, DomainLink> failoverPath = possiblePaths.get(1); 
 
                //determine main and failover path 
                mainGraphWalk = mainPath; 
                failoverGraphWalk = failoverPath; 
                findPorts(mainGraphWalk, sourceNode, destNode); 
 
                //register packet processing listener 
                PacketProcessing packetProcessingListener = new 
                PacketProcessing(srcNode, dstNode, srcMacForDelayMeasuring); 
                if (notificationService != null) { 
                   notificationService.  
                   registerNotificationListener(packetProcessingListener); 
                } 
                SwitchConfigurator switchConfigurator = new SwitchConfigurator(db); 
                //configure ingress and egress switches to send their packets to controller 
               (for packet loss monitoring) 
                switchConfigurator.configureIngressAndEgressForMonitoring(srcNode, 
                dstNode, inputPorts, outputPorts); 
                /* then, add rules to all nodes of both main and failover path to forward 
                   packets with specific MAC to controller (for delay monitoring) */ 
                switchConfigurator. 
                configureNodesForDelayMonitoring(mainGraphWalk.getEdgeList(), 
                srcMacForDelayMeasuring); 
                switchConfigurator. 
                configureNodesForDelayMonitoring(failoverGraphWalk.getEdgeList(), 
                srcMacForDelayMeasuring); 
                switchConfigurator. 
                configureNodesForUDPTrafficForwarding(mainGraphWalk.getEdgeList(), 
                inputPorts, outputPorts); 
            } 
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        } 
        else{ 
            return Futures.immediateFuture(RpcResultBuilder.<Void>success().build()); 
        } 
 
        //finally, start monitoring links 
        timer = new Timer(); 
        monitorLinksTask = new MonitorLinksTask(db, rpcProviderRegistry, 
        srcMacForDelayMeasuring, videoAbsolutePath, 
         Video.getVideoFPS(videoAbsolutePath), videoCase); 
        timer.schedule(monitorLinksTask, 0, 5000); 
 
        return Futures.immediateFuture(RpcResultBuilder.<Void>success().build()); 
} 

 

The RPC which stops the monitoring of links is:  

@Override 
public Future<RpcResult<Void>> stopMonitoringLinks() { 
        System.out.println("Stopping the monitoring of links."); 
        if (monitorLinksTask != null) { 
            monitorLinksTask.cancel(); 
        } 
        if (timer != null) { 
            timer.cancel(); 
            timer.purge(); 
        } 
        return Futures.immediateFuture(RpcResultBuilder.<Void>success().build()); 
} 

 

 SqmfProvider.java: The class which initiates the created SDN module sqmf. It 
initializes services which will provide access to the SDN Controller’s MDSAL and to 
notifications and starts the core class SqmfImplementation.java 

 SwitchConfigurator.java: The class which contains all the necessary methods for 
any switch configuration. Its methods insert the desired OF rules in the appropriate 
switches. 

 TopologyListener.java: The class which detects for topology changes in the 
network and updates the graph respectively. Each time a link change happens, it 
keeps a list with all the links which changed their status and asks for either addition 
to or removal from the network graph. 

 Video.java: The class modeling the video application type. It contains methods for 
QoE estimation as well as for video characteristics detection, such as frame rate 
and codec. One of the most significant methods is the one estimating the QoE of a 
video application, using the G.1070 E-model formula: 

public static double estimateQoE(float frameRate, float bitRate, double packetLoss, 
int videoCase) { 
 
        assignCoordinatesValues(videoCase); 
        double OFr = v1 + v2*bitRate; 
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        double IOfr = v3 - v3/(1 + (Math.pow(bitRate, v5)/v4)); 
        double DFrv = v6 + v7*bitRate; 
        double DPplV = v10 + v11*Math.exp(-frameRate/v8) + v12*Math.exp( 
        bitRate/v9); 
        double numeratorIcoding = -Math.pow((Math.log(frameRate)-Math.log(OFr)), 2); 
        double denominatorIcoding = 2*Math.pow(DFrv, 2); 
        double Icoding = IOfr*Math.exp(numeratorIcoding/denominatorIcoding); 
        double Itransmission = Math.exp(-(packetLoss/DPplV)); 
        double MOS = 1 + Icoding*Itransmission; 
        return MOS; 
} 

 

Other important methods in the video modeling class are the ones obtaining the 
video codec, frame rate, key frame interval and format by running a shell command 
through Java and parsing its output. Finally, the last method of the class is the one 
assigning values to the 12 coefficients needed for the video quality computation, as 
shown in 3.3.2. The five cases presented in Table 3.2 are supported. 

 VoIP.java: The class modeling the VoIP application type. The most significant 
method is the one estimating the QoE of a VoIP application, using the G.107 E-
model: 

public static double estimateQoE(Long delay, double packetLoss) 
{ 
        int h; 
        if (delay - 177.3 > 0){ 
            h = 1; 
        } 
        else { 
            h = 0; 
        } 
        double R = 94.2 - 0.024*delay - 0.11*h*(delay-177.3) - 11 - 
        40*Math.log(1+10*packetLoss); 
        double MOS; 
        if (R < 0){ 
            MOS = 0; 
        } 
        else{ 
            MOS = 1 + 0.035*R + R*(R-60)*(100-R)/1000000; 
        } 
        return MOS; 
} 

 

An overall correlation between the created classes is shown in Figure 7.2. 
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Figure 7.2: SQMF classes correlation 

7.4 SQMF DEMONSTRATION 

In order to give a more vivid description of the implemented framework, this subchapter 
presents a use case of SQMF: a VoIP or video streaming case where a link failure 
occurs and corrective actions are made so that the QoE is preserved at high levels. The 
provided input, the established OF rules at the beginning of the QoE monitoring, the 
monitoring messages, the established OF rules when the link failure occurs and 
Wireshark captures will be presented. 

To simulate the use case, the first step is to launch the SDN controller, create the 
network topology shown in Image 6.1 and connect it to the controller. It is important to 
note that the command pingall must be typed in the Mininet console in order for the 
framework to operate, as it makes the hosts and their links to the topology visible to the 
controller. The controller’s message when notified about the added links is shown in 
Image 7.6. 

 

Image 7.6: The controller message when the new topology is created 
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After this, the user browses to the DLUX page, selects sqmf  operations  
startMonitoringLinks and provides the necessary input. Image 7.7 depicts the provided 
input in case of VoIP traffic, whereas Image 7.8 shows the video traffic case’s input, 
while the prompt for video selection is shown in Image 7.9. 

 

Image 7.7: The provided input for VoIP traffic 

 

Image 7.8: The provided input for video traffic 
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Image 7.9: Prompt for video selection, after input for video application type 

By clicking Send, the RPC begins its functionality by computing the transmission paths; 
the main path will be s1  s9  s8, as it is the shortest, and the backup path will be 
s1  s2  s3  s4  s5  s6  s7  s8. Then the RPC installs the appropriate OF 
rules in the switches: 

 For the path’s ingress switch s1, the inserted rule is depicted in Image 7.10 with 
priority 1000, so that it is matched first. The rule is used both for the path 
establishment and for packet loss monitoring; it matches UDP traffic as well as the 
input port, and if the packet is coming from the sender host, it is forwarded both to 
the controller, so that packet loss is measured, and to the next node of the path. 
The other rules are inserted by default from the OF switch. 

 

Image 7.10: OF rules established in ingress switch for QoE monitoring 

 In the core switches, i.e. only s9 in the case of the topology used for this thesis, the 
inserted rules are depicted in Image 7.11 with priority 1000. The first rule with 
priority 1000 is used for delay measurement; if a packet with 00:00:00:00:00:09 as 
source MAC address is received, it is assumed that it was sent from the previous 
node (s1 in this case) and is forwarded to the controller. The second rule with 



An SDN QoE Monitoring Framework for VoIP and video applications 

Maria-Evgenia I. Xezonaki  

 132 

priority 1000 is used for the path establishment; if a UDP packet is received from 
the input port, it is forwarded to the next node. The other rules are inserted by 
default from the OF switch. 

 

Image 7.11: OF rules established in core switches for QoE monitoring 

 In the egress switch s8 the inserted rules are depicted in Image 7.12 with priority 
1000. The first rule with priority 1000 is used both for the path establishment and for 
packet loss monitoring; it matches UDP traffic as well as the input port, and if the 
packet is coming from the previous node, it is forwarded both to the controller, so 
that packet loss is measured, and to the destination host. The second rule with 
priority 1000 is used for delay measurement; if a packet with 00:00:00:00:00:09 as 
source MAC address is received, it is assumed that it was sent from the previous 
node (s9 in this case) and is forwarded to the controller for delay monitoring. The 
other rules are inserted by default from the OF switch. 

 

Image 7.12: OF rules established in egress switch for QoE monitoring 

 The core switches of the failover path are also configured for delay monitoring, just 
as the core switches of the main path. The OF rules for s2 – s7 are identical to the 
first rule shown in Image 7.11. 

After the OF rules establishment, a periodic task is started and part of the output in the 
controller console is depicted in Image 7.13. The pattern is repeated every 5 seconds. 

 

Image 7.13: Part of the controller output after QoE monitoring has started 
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The next step is to create VoIP or video traffic between h1 and h2. The OF rules inserted 
in the nodes ensure that the traffic reaches h2, as depicted in the following Wireshark 
capture (Image 7.14): 

 

Image 7.14: The traffic received by the destination (h2) 

Let’s now assume that the link between s9 and s8 faces a failure. In this case, without 
SQMF, the destination would stop receiving traffic as shown in Image 7.15: 

 

Image 7.15: Traffic stops being delivered at the destination when link failure occurs and no 
corrective actions are made 
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However, using the SQMF functionality, the controller inserts new OF rules in the 
switches when low QoE is detected. More specifically: 

 The ingress switch is configured to now output the incoming UDP packets to the 
backup path (instead of the main path) and the controller, as depicted in Image 
7.16 with the first rule. The output port has changed to 1, compared to output 3 of 
the first rule of Image 7.10. 

 

Image 7.16: The OF rules established in the ingress switch when low QoE is detected 

 The egress switch is configured to now detect packets coming from the backup 
path instead of the main path, as depicted in Image 7.17 with the first rule. The 
in_port has changed to 1, compared to in_port 3 of the first rule of Image 7.12. 

 

Image 7.17: The OF rules established in the egress switch when low QoE is detected 

As a result, the traffic only stops instantly for a very short time and then is redirected to 
the backup path. The instant traffic flow pause and recovery is depicted in Image 7.18 
and the relevant controller message in Image 7.19. 

 

Image 7.18: Instant pause and recovery of traffic flow in case of link failure, using SQMF 
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Image 7.19 : Controller output when low QoE is detected 

Finally, to stop the monitoring process, the user browses to the DLUX page and selects 
sqmf  operations  stopMonitoringLinks (Image 7.20). 

 

Image 7.20: Calling stopMonitoringLinks RPC 

By clicking on Send, the SDN controller outputs a relevant message, as Image 7.21 
shows. 

 

Image 7.21: The controller message after calling stopMonitoringLinks  

7.5 SQMF EVALUATION 

The current subchapter conducts a proof-of-concept evaluation of SQMF through 
graphical representations that compare the network’s behavior with and without the 
SQMF functionality, i.e. comparing the default forwarding with the QoE-based 
forwarding. The results were extracted from the use cases described in Section 7.4. 
The evaluation was carried out on the topology depicted in Image 6.1.  

7.5.1  SQMF on VoIP traffic 

In order to evaluate the SQMF functionality for VoIP applications, VoIP traffic was 
generated from h1 to h2 for 105 seconds. The parameters used for the current 
experiment are shown in Table 7.1. 

Table 7.1: Parameters used for SQMF evaluation on VoIP traffic 
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As a first case, the results of which are presented in Table 7.2, the QoE monitoring – 
based forwarding functionality did not take place and therefore the packets kept being 
forwarded to the main path as initially configured, even when a link failure occurred. 
This caused total packet loss after the link failure.  

Table 7.2: Delay, R, packet loss and MOS during VoIP traffic generation with link failure, without 
SQMF 

Time (s) Delay (s) Packet Loss 

(%) 

R MOS 

5 0.004 0 83.104 4.135726358 

10 0.022 0 82.672 4.120869894 

15 0.003 0 83.128 4.136544906 

20 0.003 0 83.128 4.136544906 

25 0.001 87.0445344 -7.727395912 

7.727395912 

1 

30 0.001 100 -12.73981091 1 

35 0.001 100 -12.73981091 1 

40 0.002 100 -12.76381091 1 

45 0.001 100 -12.73981091 1 

50 0.001 100 -12.73981091 1 

55 0.001 100 -12.73981091 1 

60 0.001 100 -12.73981091 1 

65 0.0014 100 -13.05181091 1 

70 0.0015 100 -13.07581091 1 

75 0.001 100 -12.73981091 1 

80 0.002 100 -12.76381091 1 

85 0.002 100 -12.76381091 1 

90 0.005 100 -12.83581091 1 

95 0.001 100 -12.73981091 1 

100 0.001 100 -12.73981091 1 

105 0.001 100 -12.73981091 1 

 

Then, the same experiment was carried out using the SQMF functionality. In this case, 
the controller efficiently changed the transmission path when the link failure occurred, 
as it detected QoE levels below the predefined threshold, by configuring the packets to 
be forwarded to the failover path, so the overall packet losses were much lower. The 
results of the second case are presented in Table 7.3. 
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Table 7.3: Delay, R, packet loss and MOS during VoIP traffic generation with link failure, with 
SQMF 

Time (s) Delay (s) Packet Loss (%) R MOS 

5 0.006 0 83.056 4.135726358 

10 0.008 0 83.008 4.120869894 

15 0.003 0 83.128 4.136544906 

20 0.005 0 83.08 4.136544906 

25 0.002 83.805668 -6.393607512 1 

30 0.009 1.2244898 78.36348452 3.960670612 

35 0.02 0 82.72 4.12253203 

40 0.008 0 83.008 4.132444968 

45 0.013 0 82.888 4.128327083 

50 0.012 0 82.912 4.129152092 

55 0.005 0 83.08 4.134907089 

60 0.022 0 82.672 4.120869894 

65 0.01 0 82.96 4.130799964 

70 0.018 0 82.768 4.124191323 

75 0.017 0 82.972 4.125019902 

80 0.013 0 82.888 4.128327083 

85 0.016 0 82.816 4.125847767 

90 0.011 0 82.936 4.129976386 

95 0.017 0 82.972 4.125019902 

100 0.01 0 82.96 4.130799964 

105 0.01 0 82.96 4.130799964 

 

By illustrating the results of the two cases, with and without QoE monitoring, in the 
same graphical representation, it is obvious that QoE monitoring-based forwarding 
performs much better than the default forwarding to a configured main path. Figure 7.3 
shows that QoE monitoring-based forwarding achieves much lower packet losses when 
a link failure occurs, managing to recover immediately after a small period of packet 
loss detection, in contrast to the default case where all the packets are lost after the link 
failure.  
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Figure 7.3: Packet loss comparison between cases with and without SQMF in VoIP traffic 
generation, when a link failure occurs 

Therefore, the QoE Monitoring-based forwarding preserves the total QoE and keeps it 
at high levels even after the link failure, whereas in the default case the QoE faces a 
permanent degradation after the failure, as depicted in Figure 7.4. 

 

Figure 7.4: MOS comparison between cases with and without SQMF in VoIP traffic generation, 
when a link failure occurs 

7.5.2  SQMF on video traffic 

In order to evaluate the QoE monitoring functionality for video applications, video 
traffic was streamed from h1 to h2 for 105 seconds. The video used is the same as 
the one used for Chapter’s 6 experiments, therefore the video parameters are depicted 
in Table 6.4. 
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As a first case, the results of which are presented in Table 7.4, the SQMF functionality 
did not take place and therefore the packets kept being forwarded to the main path as 
initially configured, even when a link failure occurred. This caused total packet loss after 
the link failure.  

Table 7.4: Packet loss and Vq during video streaming with link failure, without SQMF 

Time (s) Packet Loss (%) Vq 

5 0 4.458499273 

10 0 4.458499273 

15 0 4.458499273 

20 0 4.458499273 

25 89.1222806 2.03038674 

30 100 1 

35 100 1 

40 100 1 

45 100 1 

50 100 1 

55 100 1 

60 100 1 

65 100 1 

70 100 1 

75 100 1 

80 100 1 

85 100 1 

90 100 1 

95 100 1 

100 100 1 

105 100 1 

 

Then, the same experiment was carried out using the SQMF functionality. In this case, 
the controller monitored periodically the QoE and when the QoE was detected to be 
lower than the threshold, due to the link failure, it efficiently changed the transmission 
path by configuring the packets to be forwarded to the backup path, so the packet 
losses were much lower and of smaller duration. The results of the second case are 
presented in Table 7.5. 
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Table 7.5: Packet loss and Vq during video streaming with link failure, with SQMF 

Time (s) Packet Loss (%) Vq 

5 0 4.458499273 

10 0 4.458499273 

15 0 4.458499273 

20 0 4.458499273 

25 85.5957768 2.080959055 

30 6.4275037 4.169280356 

35 0 4.458499273 

40 0 4.458499273 

45 0 4.458499273 

50 0 4.458499273 

55 0 4.458499273 

60 0 4.458499273 

65 0 4.458499273 

70 0 4.458499273 

75 0.6728343 4.427026544 

80 0 4.458499273 

85 0 4.458499273 

90 0 4.458499273 

95 0 4.458499273 

100 0 4.458499273 

105 0 4.458499273 

 

By illustrating the results of the two cases, with and without QoE monitoring, in the 
same graphical representation, it is obvious that QoE monitoring-based forwarding 
performs much better for video applications than the default forwarding to a configured 
main path. Figure 7.5 shows that QoE monitoring-based forwarding achieves much 
lower packet losses when a link failure occurs, managing to recover immediately after a 
small period of packet loss detection, in contrast to the default case where all the 
packets are lost after the link failure.  
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Figure 7.5: Packet loss comparison between cases with and without SQMF in video streaming, 
when a link failure occurs 

Therefore, the QoE monitoring-based forwarding preserves the total QoE and keeps it 
at high levels even after the link failure, whereas in the default case the QoE faces a 
permanent degradation after the failure, as depicted in Figure 7.6. 

 

Figure 7.6: Vq comparison between cases with and without SQMF in video streaming, when a link 
failure occurs 
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8. CONCLUSION AND FUTURE WORK 

This MSc thesis presents the current networking state which is characterized by the 
explosion of mobile devices and content, server virtualization, and advent of cloud 
services. Also, it emphasizes that the design of conventional networks is hierarchical, 
leading to a static architecture which cannot deal with the dynamic computing and 
storage needs of today's computing environments. The current networks’ limitations 
raise the need for an alternative approach to effectively face these challenges. 

This alternative approach is SDN, which decouples the control from the data plane and 
transforms the network elements to simple forwarding devices, routing the traffic 
according to rules set to them by the control plane. SDN has been described in terms of 
architecture, controller, dominant protocol, use cases, advantages and disadvantages.  

As in any technology, a very important factor in the evaluation of SDN is the user's 
satisfaction from the service offered to him, or the QoE, as the appropriate term is. 
Quality assessment schemes act as translator between a set of technical (QoS) and 
non-technical (subjective and contextual) key influence factors and user perception, or 
ultimately, user experience. These can be categorized into subjective and objective 
quality assessment methods, depending on whether human subjects are involved in the 
assessment process or not. 

To this end, this thesis has developed an SDN framework for monitoring the QoE of 
VoIP and video applications in real-time that manages to preserve QoE at acceptable 
levels, despite sudden network problems, such as link failures. This is achieved by 
periodically monitoring the necessary QoE-related parameters from the network, 
evaluating the QoE in real time and changing the transmission path in the case that low 
QoE is detected, as specified by a threshold. This mechanism ensures that the packets 
will always be transmitted through a path which preserves an acceptable QoE level. 

The implemented framework has been presented and evaluated, resulting in much 
lower packet losses than the default forwarding, and therefore to much higher QoE. 
This thesis’ contribution goes far beyond an abstract framework introduction, as it 
provides a practical implementation of real-time QoE monitoring in SDNs by using real 
QoE estimation models. It also describes in detail the implementation steps, which can 
be replicated by any researcher.  

Some interesting issues that have been identified as future work points are the 
following: 

 The extension of SQMF to provide more than one backup paths, in case that the 
QoE is detected again low in the (first) backup path 

 The experimentation with different kinds of network problems, not related to link 
failure (e.g. heavy congestion) 

 The dynamic coefficients computation for the video QoE estimation model, so that 
the application can additionally deal with more challenging video types. 

 The integration of different QoE models into SQMF, related to other application 
types such as TCP-based video streaming, web browsing and IPTV. 
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ABBREVIATIONS - ACRONYMS 

1G First Generation 

2G Second Generation 

4G Fourth Generation 

5G Fifth Generation 

ABR Adaptive Bit Rate 

A-CPI Application-Control plane Interface 

API Application Programming Interface 

ARP Address Resolution Protocol 

ARPU Average Revenue Per User 

ASIC Application-specific Integrated Circuit 

ATM Asynchronous Transfer Mode 

BYOD Bring Your Own Device 

CAGR Compound Annual Growth Rate 

CAPEX Capital Expenditure 

CDN Content Delivery Network 

CLI Command Line Interface 

CRUD Create, Retrieve, Update, Delete 

D-CPI Data-Control plane Interface 

D-ITG Distributed Internet Traffic Generator 

DOM Document Object Model 

DPI Deep Packet Inspection 

DR Decay Rate 

DSL Domain-Specific Language 

ForCES Forwarding and Control Element Separation 

FR Full Reference 

HAS HTTP Adaptive Streaming 

HD High Definition 

HTTP HyperText Transfer Protocol 

ICT Information and Communication Technology 

IDE Integrated Development Environment 

IDL Interface Description Language 

IETF Internet Engineering Task Force 
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IF Influence Factor 

IoE Internet of Everything 

IoT Internet of Things 

IP Internet Protocol 

IPTV Internet Protocol Television 

IPv4 / v6 Internet Protocol version 4 / version 6 

ITU-T 
International Telecommunications Unit – Telecommunications 
Standardization Sector 

JVM Java Virtual Machine 

KPI Key Performance Indicator 

KQI Key Quality Indicator 

LARAC Lagrange Relaxation-based Aggregation Cost 

LTE Long Term Evolution 

LTE-A Long Term Evolution - Advanced 

M2M Machine - to - Machine 

MDP Markov Description Process 

MD-SAL Model-Driven Service Abstraction Layer 

MOS Mean Opinion Score 

MPD Media Presentation Description 

MPLS Multiprotocol Label Switching 

NAT Network Address Translation 

NBI Northbound Interface 

NE Network Element 

NETCONF Network Configuration  

NFV Network Functions Virtualization 

NFVI-PoP NFV Installation - Point of Presence 

NOS Network Operating System 

NR No Reference 

OF OpenFlow 

ODL OpenDaylight 

OM OpenFlow Module 

ONF Open Networking Foundation 

OPEX Operational Expenditure 

OS Operating System 

OTT Over the Top 
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OVS Open vSwitch 

PAF Path Assignment Function 

PCE Path Computation Element 

QFF QoE Fairness Framework 

QMOF QoS Matching and Optimization Function 

QoE Quality of Experience 

QoS Quality of Service 

REST Representational State Transfer 

RESTCONF Representational State Transfer Configuration 

RPC Remote Procedure Call 

RR Reduced Reference 

RSU Road-Side Unit 

SAL Service Abstraction Layer 

SBI Southbound Interface 

SD Standard Definition 

SDN  Software Defined Networking / Software Defined Network 

SDWN 
Software Defined Wireless Networking /  Software Defined 
Wireless Network 

SPI Stateful Packet Inspection 

SQMF SDN QoE Monitoring Framework 

SVC Scalable Video Coding 

SLA Service License Agreement 

SRT Statistics Retrieval Time 

TCP Transmission Control Protocol 

TSP Tunnel Setup Protocol 

UHD Ultra High Definition 

VLAN Virtual Local Area Network 

VM Virtual Machine 

VNF Virtual Network Function 

VoD Video on Demand 

VoIP Voice over IP 

VQA Video Quality Application 

VQAM Video Quality Assurance Manager 

VQO Video Quality Orchestrator 

VSP Video Service Provider 
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WAN Wide Area Network 

WAP Wireless Access Point 

WWRF Wireless World Research Forum 

YANG Yet Another Next Generation 
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ANNEX 

The SQMF implementation, as well as instructions to download and execute it, are 
available in a public Github repository at the following URL:  
 

https://github.com/marievixezonaki/SQMF   
 

https://github.com/marievixezonaki/SQMF
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