

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

A new ontology and software for the automatic updating of
the platform "Nomothesia"

Stavros D. Giannakis

Supervisors: Manolis Koubarakis, Professor
Ilias Chalkidis, PhD Candidate

ATHENS

OCTOBER
2017

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μια νέα οντολογία και ένα λογισμικό για την αυτόματη
ενημέρωση της πλατφόρμας "Νομοθεσία

Σταύρος Δ. Γιαννάκης

Επιβλέποντες: Μανώλης Κουμπαράκης, Καθηγητής
Ηλίας Χαλκίδης, Υποψήφιος Διδάκτορας

ΑΘΗΝΑ

ΟΚΤΩΒΡΙΟΣ

2017

BSc THESIS

A new ontology and software for the automatic updating of the platform "Nomothesia"

Stavros D. Giannakis

S.N.: 1115201100010

SUPERVISOR: Manolis Koubarakis, Professor
Ilias Chalkidis, PhD Candidate

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μια νέα οντολογία και ένα λογισμικό για την αυτόματη ενημέρωση της πλατφόρμας
"Νομοθεσία

Σταύρος Δ. Γιαννάκης

Α.Μ.: 1115201100010

ΕΠΙΒΛΕΠΟΝΤΕΣ: Μανώλης Κουμπαράκης, Καθηγητής
Ηλίας Χαλκίδης, Υποψήφιος Διδάκτορας

ABSTRACT

This work is part of the Nomothesi@ Project (http://legislation.di.uoa.gr) running under
the hood of the Dep. of Informatics and Tel. at Kapodistrian University of Athens. The
aim of this project is to contribute to the transparency of legal knowledge and make
easier the public access. Nomothesi@ is a project designed to give access to Greek
legislation using semantic web technologies. This work contributes to the continuous
updating of the data library of Nomothesi@ platform, using tools that aid in its renewal
and structuring. Using the National Printing Office's website as a resource provider, we
can update our library with the latest daily issues, but also manage the legislative
archive on its own platform. Recovering Government Gazette issues from the National
Printing House is done by employing a Web crawler written in Python programming
language. Additionally, we propose a new extension ontology, which describes the
Government Gazette, its issues and the relation with the legal documents and we
demonstrate the querying capabilities.

SUBJECT AREA: Semantic Web, Software Engineering

KEYWORDS: Web crawling, Web development, E-Government, Job scheduling, Greek
Government Gazette, Legislative Knowledge Representation, Content Management
Systems

http://legislation.di.uoa.gr/

ΠΕΡΙΛΗΨΗ

Η εργασία αυτή αποτελεί μέρος του έργου Νομοθεσί@ (http://legislation.di.uoa.gr) που
λειτουργεί κάτω από την αιγίδα του Τμήματος Πληροφορικής και Τηλεπικοινωνιών του
Καποδιστριακού Πανεπιστημίου Αθηνών. Στόχος αυτής της εργασίας είναι να συμβάλει
στη διαφάνεια της νομικής γνώσης και να διευκολύνει την πρόσβαση του κοινού σε
αυτή. Το έργο Νομοθεσί@ έχει σχεδιαστεί για να παρέχει πρόσβαση στην ελληνική
νομοθεσία χρησιμοποιώντας τεχνολογίες σημασιολογικού ιστού. Η εργασία αυτή
συμβάλλει στη συνεχή ενημέρωση της βιβλιοθήκης δεδομένων της πλατφόρμας
Νομοθεσί@, χρησιμοποιώντας εργαλεία που βοηθούν στην ανανέωση και οργάνωση
της. Χρησιμοποιώντας τον ιστότοπο του Εθνικού Τυπογραφείου ως πάροχο πόρων,
μπορούμε να ενημερώνουμε καθημερινά τη βιβλιοθήκη μας με τα νέα τεύχη, αλλά
επίσης να διαχειριζόμαστε το νομοθετικό αρχείο στην δική του πλατφόρμα. Η ανάκτηση
των θεμάτων της Εφημερίδας Κυβερνήσεως από το Εθνικό Τυπογραφείο γίνεται με την
χρήση ενός ανιχνευτή ιστού γραμμένο σε γλώσσα προγραμματισμού Python. Επιπλέον,
προτείνουμε μια νέα οντολογία επέκτασης, η οποία περιγράφει την Εφημερίδα της
Κυβερνήσεως, τα θέματα της και τη σχέση με τα νομικά έγγραφα και επιδεικνύουμε τις
δυνατότητες διερεύνησης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Σημασιολογικός Ιστός, Μηχανική λογισμικού

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Προγράμματα Ανίχνευσης Web, Ανάπτυξη Ιστοσελίδων Διαδικτύου,
Προγραμματισμός Εργασιών, Κυβερνητική Εφημερίδα, HTML, Αναπαράσταση Γνώσης
Νομοθεσίας, Σύστηματα Ελέγχου Περιεχομένου

http://legislation.di.uoa.gr/

AKNOWLEDGMENTS

Firstly, I would like to acknowledge my supervisor Professor, Mr. Manolis Koubarakis.
His Artificial Intelligence course and his research about Semantic Web and Linked Data
assisted me in deciding to contribute to the Nomothesi@ project
(http://legislation.di.uoa.gr). Also, I would like to acknowledge MSc Student Ilias
Chalkidis, whose guidance throughout the process of this thesis was tremendous, giving
me ideas and advices and supervising me the whole time.

CONTENTS

1. INTRODUCTION .. 13

1.1 Objectives of the thesis .. 13

1.2 Organization of the thesis .. 14

2. RELATED WORK .. 15

2.1 Software Engineering Aspects .. 15

2.1.1 GoogleBot (Web Crawling) .. 15

2.1.2 WordPress (Content Management Systems) .. 16

2.1.3 jobscheduler (Job Scheduling) .. 17

2.2 Government Gazette Semantic Representation ... 17

2.2.1 European Legislation Identifier .. 17

2.2.2 Akoma Ntoso ... 17

2.3 Conclusion .. 18

3. BACKGROUND ... 19

3.1 Greek Government Gazette .. 19

3.1.1 Historical Introduction .. 19

3.1.2 Current Organization of the Greek Government Gazette 20

3.1.3 ET.gr, the Greek Government Gazette in the age of the World Wide Web .. 23

3.2 Web Retrieval and CMS .. 25

3.2.1 Web Crawling .. 25

3.2.2 CMS ... 26

3.3 The dynamics of RDF Data Models, OWL Ontologies and SPARQL -

Semantic Perspectives.. 28

3.3.1 The new Data Model with Resource Description Framework (RDF) 28

3.3.2 OWL Ontologies and SPARQL .. 29

3.3.3 Semantic perspectives and future Web ... 29

3.4 Semantic Representation of Government Gazette ... 30

3.5 Conclusion .. 30

4. GREEK GOVERNMENT GAZETTE LIBRARY ... 31

4.1 Greek Government Gazette Crawler .. 31

4.1.1 Crawler Technologies .. 31

4.1.2 Crawler Demonstration .. 36

4.2 Greek Government Gazette Crawler Scheduler ... 40

4.3 Greek Government Gazette Library CMS .. 40

4.3.1 Architecture ... 40

4.3.2 Greek Government Gazette Library Demonstration..................................... 44

4.4 Conclusion .. 48

5. GREEK GOVERNMENT GAZETTE ONTOLOGY ... 49

5.1 Ontology .. 49

5.2 Greek Government Gazette URI Pattern ... 50

5.3 Greek Government Gazette Dataset .. 51

5.4 Conclusion .. 51

6. CONCLUSION AND FUTURE WORK ... 52

6.1 Conclusion .. 52

6.2 Future Work ... 52

6.2.1 Expanding the Content Management System’s features 52

6.2.2 Expanding the Web Crawler’s features .. 52

APPENDIX .. 55

A: Web Application .. 55

REFERENCES .. 58

LIST OF TABLES

Table 3. 1: Issue Names and Subjects .. 22

Table 3. 2: Crawler Policies ... 26

Table 3. 3: Roles and responsibilities in Content Management 27

Table 5. 1: URI Issue IDs... 50

Table 6. 1: List of Abbreviations .. 54

Table 6. 2: Table of Translations ... 54

LIST OF FIGURES

Figure 3. 1: First ever Gazette release .. 20

Figure 3. 2: Contemporary Greek Government Gazette document (Issue B) 23

Figure 3. 3: ET.gr ... 24

Figure 3. 4: ET.gr search page .. 24

Figure 3. 5: Indexing process used by search engine crawlers. 26

Figure 3. 6: CMS Overview .. 27

Figure 4. 1: Daily Gazette release (Seed) webpage .. 32

Figure 4. 2: parse and dailyparse functions ... 34

Figure 4. 3: downloadfek visual representation ... 35

Figure 4. 4: parse Function's Response .. 36

Figure 4. 5: parse function's response elements ... 37

Figure 4. 6: result table .. 38

Figure 4. 7: prop Class (Issue) .. 38

Figure 4. 8: even/odd class (data) ... 39

Figure 4. 9: Scrapyd Web Interface ... 41

Figure 4. 10: Scrapyd Job Monitoring .. 42

Figure 4. 11: Search function ... 42

Figure 4. 12: URL patterns .. 44

Figure 4. 13: Homepage .. 45

Figure 4. 14: Crawling page ... 45

Figure 4. 15:Library page (directory view) ... 46

Figure 4. 16: Library page (document view) .. 46

Figure 4. 17: Search page ... 47

Figure 4. 18: Search results page .. 47

Figure 4. 19: Browser File Preview .. 48

Figure 5. 1:Greek Government Gazette Ontology ... 49

Figure 5. 2: Dataset RDF Example Graph ... 51

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 13

1. INTRODUCTION

People around the world have access to multiple sources of information. Specifically,
we live in an era of information explosion, with information being measured in exabytes
When it comes to the law, everyone seems to think that it should concern only lawyers
and judges, while it’s true purpose is to help and serve the public. Nomothesi@, being a
project that aims to fulfil the demand of the public to acquire knowledge of what a legal
document states [1], how it has been modified over the years, or even ask more
complex questions. To serve this purpose, the Nomothesi@ platform needs to have an
automatically updated Government Gazette library, fetched from the National Printing
House’s website daily. This way, every individual that needs to use legislation as a part
of their job, or even just to gather knowledge, is able to do so without great effort.

1.1 Objectives of the thesis

As it stands at the moment, Nomothesi@’s library is stagnant. There is a small amount
of Gazette issues populating it and the only process used to insert more issues is
manually, by downloading them ourselves, parsing them using the Greek Government
Gazette Parser in order to create the new RDF triples and then moving them into the
platform’s triplestore.

The main purpose of this thesis is to research and implement a web crawler, to retrieve
Government Gazette issues from the National Printing House’s website. This web
crawler, or spider, should be capable of fetching Gazette issues based on their release
date. With the construction of this spider, we will enhance the library’s capabilities of
being kept up to date.

Furthermore, the aforementioned web crawler should be activated automatically every
day, so human intervention is not required for the data set to be updated. This matter
calls for another script to be utilized, one that can execute the spider daily, at a specific
hour and download all the new issues released on the current date.

While the web crawler and the scheduler script will be executed locally at the host of
Nomothesi@’s server, the Library should be accessible at all times, from any place. To
accomplish this goal, we will develop a Content Management System (CMS) using a
Python Web Development framework, called Django1 that will provide us with the ability
to browse, retrieve and search for specific Government Gazette issues remotely,
without requiring our physical presence at the main terminal, where the server is hosted.
Since we will be able to scan the library, the web crawler will be integrated into our
CMS, to simplify the process of issue retrieval. In case we require the Gazette issues
before the scheduler runs and completes its task, we will be capable to fetch them via
the CMS.

1 See: https://www.djangoproject.com/

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 14

The last goal of our work is to formulate an ontology, describing in detail the
Government Gazette, as an extension to the current Nomothesi@ Ontology. Ergo, this
extension will populate our dataset and demonstrate the querying capabilities of the
new schema.

1.2 Organization of the thesis

The organization of the thesis is separated in five chapters. In Chapter 2 we present
some related work to our project, to show our basis. In Chapter 3 we discuss the
background of three different subjects; the subjects that this thesis is revolving around.
At first, we will have a glance into the history of the Greek Government Gazette and the
National Printing House of Greece, to help us understand the structure of the Gazette
issues’. After this topic, we will delve into the record of web crawling and CMS, as well
as the importance of task scheduling in Computer Science (CS). The third topic
concerns the dynamics of Semantic Web Technologies regarding Greek Legislation.

Furthermore, Chapter 4 furtherly elaborates on our implementation, providing an
overview and demonstration. It will help the reader navigate through the platform that
this thesis is based on. Moving on, Chapter 5 provides specific details on the Greek
Government Gazette’s ontology and Uniform Resource Identifiers (URIs), while also an
example of an RDF graph from our dataset. Lastly, we have included some conclusions
and information about future projects and works, dealing with a variety of possible
occasions.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 15

2. RELATED WORK

Since the project revolving around this thesis involves not only the process automatic
retrieval of the daily releases of the Government Gazette’s issues, but also managing
the library remotely, there have been plenty of research groups around the globe that
have been providing and developing frameworks and platforms for similar tasks. These
tasks are not confined in being used only on the object of legislation, since remote
Content Management Systems and web crawling are of general nature around the
internet. The usability of these applications has no borders. The user can select to crawl
any kind of data she chooses while pertaining the ability to create a Content
Management System for her own personal computer.

On the topic of legislation, many countries around the world have focused on the exact
same thing Nomothesi@ is, simplifying legislative documents and serving them to the
public to be queried and comfort the public by giving them the material they need
without much endeavor. The set of data in their current form (plain text downloaded
from the respective National Printing House of each country’s website) do not help us to
achieve our goals, so they must be transformed to be applicable to web standards. For
example, RDF is a great data model in our case.

We will give a case of each element of the thesis (Web crawling, CMS, Government
Gazette Representation) to be considered first and then we will move on to analyze our
own. These examples will assist and aid the reader of this thesis to understand better
the basic concepts of our work. Basic definitions will be given at the beginning of every
subsection, while a complete background screening will follow at Chapter 3.

2.1 Software Engineering Aspects

2.1.1 GoogleBot (Web Crawling)

A crawler is a program that visits Web sites and reads their pages and other information
in order to create entries for a search engine index. [2] The major search engines on the
Web all have such a program, which is also known as a "spider" or a "bot."

Google, being one of the major engines in existence, is utilizing a bot to run automated
tasks all over the Internet. The tasks are simple and usually repetitive This specific bot,
or as it is called – Googlebot [3], is used to discover new and updated pages to be
added to the Google index. This suggests that the software collects documents and
data from websites to build a searchable index. Googlebot’s crawl process is as follows:
a huge set of computers are employed to fetch billions of pages on the web. Then,
using an algorithmic process on a list of webpage URLs generated from previous
crawls, Googlebot detects links (HREF and SRC) residing on each of these websites
and adds them to the general list of pages to crawl. By doing that, the Google index is
updated; changes to current active websites are noted, dead links are removed and
new sites are appended. After plenty of experiments, there is increasing evidence that
Googlebot does not only catch HREF and SRC links but is able to execute JavaScript
code and dissect content generated by AJAX calls.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 16

Googlebot crawls every website once every few seconds on average. Having this in
mind, it has been reported that it sometimes overwhelms the server’s bandwidth,
resulting in temporary take downs. Google is providing some tools to assist website
owners by letting them throttle the crawling rate of their site. There are also ways to
restrict Googlebot from crawling websites, completely. This is achievable by the
webmaster. Adding a specific tag into the HTML code of the webpage or excluding
specific files and directories from crawling via the robots.txt file. The tag used for
exclusion is:

• <meta name="Googlebot" content="nofollow" />

Furthermore, if the website crawled is not properly linked, Googlebot may not be able to
discover it at its whole, resulting in pages not getting indexed. This can be resolved by
creating and submitting a sitemap. A sitemap is a file that contains the organization of a
site’s content: the list of all webpages. Using this, Google’s crawler will have an easier
job moving through it without missing any content.

When someone utilizes the Google Search with a query, the Search looks for matching
words and pages in the index, which is continuously updated by Googlebot. The search
outcome is defined by a number of factors, one of them being PageRank. PageRank is
the measure of importance of a page based on the incoming links from other pages. For
example, if Googlebot finds that a million pages link to a specific one, this page will
have a huge PageRank and get prioritized when displaying the search results. It is a
hard task to achieve because not all links are equal. There are practices and spam links
that negatively impact the quality of the search results.

2.1.2 WordPress (Content Management Systems)

Content Management Systems are programs that manage, organize, create and share
digital content, such as media and documents [4]. Typically, they are utilized for
managing Web or Enterprise content. One of the most widely known Web Content
Management Systems is WordPress. While it became popular as a blogging system
than a typical CMS, the huge number of plugins and modernization it received made it
more CMS-like. It is Open-source and based on PHP and MySQL. As of February 2017,
WordPress was used by more than 27.5% of the top 10 million websites. Many features
are included like a plugin architecture and a template system. To get WordPress to
operate you need to install it on a Web Server, provided by an internet hosting service.
There are multiple reasons why WordPress is the leading CMS in the world.

1. It is used by a large pool of people, which make the WordPress community

very helpful when in need of support. With the assistance of other users
and WordPress being Open Source, while it is feature rich and probably
offers everything a user might request out of the box, the 3rd party plugins
will handle any demand, relieving the user of any coding procedure.

2. Created in 2003, WordPress has matured over the years. It is stable and is

always in active development, with new versions being released
continuously.

3. One of the most important considerations into selecting WordPress to

manage your website content with, is safety and security. There has been a

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 17

number of hacks and security breaches targeted at websites using
WordPress but have been patched and solved, as developers have been
quick to react and stay on top of them.

2.1.3 jobscheduler (Job Scheduling)

Automation of jobs and tasks in modern day computer systems is of vital importance.
Not requiring the physical presence or attention of a computer user to complete an
action has be proven to be significantly decisive to the achievement of our goals [5]. A
collection of different job scheduling applications exists, with various options regarding
the kind of tasks they run and the amount of effort required into managing to understand
the way they work. An example of a job scheduling application is the homonym
jobscheduler2. It is an open source solution for workload automation, capable of
executing files and scripts to run various procedures automatically.

JobScheduler stores all of the information generated into a back-end database system.
Using priorities and timeslots, the application helps the user manage and organize the
order and time of job executions to his demand.

2.2 Government Gazette Semantic Representation

2.2.1 European Legislation Identifier

The European Legislation Identifier (ELI)3 4 model is an initiative to improve access to
European legislation and to the legislation of its Member States [6]. It is used to identify
legislation with a unique identifier which is understandable by humans and computers,
compatible with existing technological standards [7]. Also, it interprets legislation with a
set of machine-readable metadata elements in compliance with a recommended
ontology.

ELI offers a large number of benefits to everyone associated with legislation, as well as
citizens in general. Being used all across Europe, it provides easy access to anyone. It
reduces costs, promoting the linking and reuse of legal data, decreasing the burden of
public administrations.

2.2.2 Akoma Ntoso

Another example of a representation of legislative and judiciary documents in XML
format is Akoma Ntoso (Architecture for Knowledge-Oriented Management of African
Normative Texts using Open Standards and Ontologies) [8]. The goal is identical to
ELIs target. Organizing the legal materials in a way that can be read and understood by
computers, to be queried by users. This can be achieved by making the semantic

2 See: http://www.sos-berlin.com/jobscheduler

3 See: http://www.eli.fr/en/

4 See: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM:jl0068

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 18

components of legislative documents visible to software applications, so the Official
Journals and Government Gazette issues are not just plain undifferentiated text but
analyzed to the core of their structure and have useful information extracted from them.

2.3 Conclusion

With our project revolving around three basic subjects (Web Crawling, CMSs, Semantic
Representation of Government Gazette), the amount of related work in each sector is
extensive. Each work presented in each category is intended to help us understand
better the target and aim of our own. Googlebot helps us understand the way web
crawlers work and our thought process while developing our own. Workbench and
Jobscheduler show some basic features and ways to achieve great organization of files
and documents and to automate tasks and functions. Inspired by all these related
examples, we developed our own versions of a Spider, a CMS and a Scheduler. ELI
and Akoma Ntoso gave us a great understanding of Semantic Representation of
legislative documents, helping us generate our own ontology in Chapter 5.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 19

3. BACKGROUND

In this Chapter, we are going to examine the backdrop of the many different elements
that compose this thesis and give general information about them. Starting from the
history of the Greek Government Gazette and the responsibilities of the National
Printing House, moving on to discuss the great benefits that Web Crawling and CMS’
offer to Computer Science, as well as all the advantages in semantic data designs, their
dynamics and the future of Semantic Web.

3.1 Greek Government Gazette

The National Printing House is a public service under the supervision of the Ministry of
Administrative Reform and Electronic Government. It is housed in Athens and its main
responsibility is the publishing of the Government Gazette [9]. By doing so, either
electronically via its official website5, either via the distribution of printed Gazette Issues,
it provides the citizens with the ability to access the documents published in it.
Furthermore, the National Printing House covers all the printing needs of the public
services and also the printing of studies of scientists, scientific or research centers or
institutes or other bodies of particular interest to the public and relating to political, social
and administrative matters.

In this thesis we mention the Government Gazette a good deal of times, and it is
because of the importance of these documents and the significant impact they have on
our lives. The Greek Government Gazette, the document released by the National
Printing House as mentioned above, is the only official instrument in the Constitution of
Greece to publish the legal acts of the institutions of the Hellenic Republic, as well as
the legal entities of public and private law, through which they become active.

3.1.1 Historical Introduction

Before the birth of the Government Gazette, there were some other documents that
fulfilled the same purpose and had the same character as it and frequently devoted all
their content to the official decisions of the state. Some examples are “The Friend of the
State” (1824-1825), the “General Gazette of Greece” (1825-1832). The first ever Greek
Government Gazette issue to be published was in 28 February 1833. It was released by
King Otto’s Regency. The Government Gazette of the Kingdom of Greece as it was
called, was printed in Nafplio until 5 November 1834 and after 21 of December 1834
continued its issuance in Athens, by the National Printing House until today. During
Otto’s Regency, the Gazette of the Greek Kingdom was bilingual, in Greek and in
German.

5 See: www.et.gr

http://www.et.gr/

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 20

Figure 3. 1: First ever Gazette release

3.1.2 Current Organization of the Greek Government Gazette

Keeping the character of its ancestors intact, the Gazette publishes laws and legal acts.
It is published in twelve issues or categories and their numeration begins at 1 at the
beginning of each year. Each document has it is own issue/year/number combination
and can be identified using that. Out of the twelve different issues, we will go into more
details for the first four, with them being the most general and affecting the majority of
citizens. The issues are numbered One, Two, Three and Four but are represented in
Greek numbering, resulting in Issue one being Issue A, two being Β, three being Γ and
four being Δ. We will also present nominally the remaining 8 Gazette issues and review
their content with a few words. Until 2006, there have been three issues that have been
removed and their content has been placed into issues Β and Γ.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 21

The contents that each issue reviews are the following, as listed in the official website of
the National Printing House:

3.1.2.1 Issue A:

a) the Constitution and the laws adopted and ratified in accordance therewith, as
well as the international conventions or agreements of the Country with other
States or organizations and the communications relating to such contracts or
agreements,

b) the Rules of Procedure of the House of Representatives, as well as the acts of
the Parliament or its President, which are published in accordance with the
provisions of its Rules of Procedure,

c) the President's Protocol of Inauguration, the Presidential Appointments of the
President, the Acts of Legislative Content issued pursuant to Article 44 (1) of the
Constitution and the decrees for the announcement of referendums pursuant to
Article 44 (2) of the Constitution,

d) Presidential decrees with normative content and presidential decrees issued in
accordance with Articles 37, 38, 40, 41 and 43 (1) of the Constitution,

e) the acts of the Council of Ministers, the publication of which is provided for in the
applicable legislation.

3.1.2.2 Issue B:

a) decrees approving the establishment of charities and modifying their
organizations,

b) the regulations of the Prime Minister, Ministers, Deputy Ministers, as well as
regulatory decisions of other Bodies of the Administration, provided that the
existing legislation does not provide for public disclosure by another means and
not otherwise provided for in this law,

c) the Bank of Greece Governor's Operations and the decisions of the Banking and
Credit Committee of the Bank of Greece, which have a regulatory content,

d) ship registration decisions,
e) in summary, decrees and other acts relating to investment in development laws,

conventions relating to development laws, decisions on the commencement of
productive operation of investments and other acts referred to in development
laws,

f) decisions approving the establishment of offices of foreign companies in Greece,
g) the acceptance of donations by the Greek State,
h) any other published act, the registration of which is not foreseen in another Issue.

3.1.2.3 Issue C (Γ):

a) in summary, individual decrees and acts of appointment, transfer, demotion,
acceptance of resignation and dismissal of public servants, civilian or military
officials,

b) in summary, acts appointing and accepting the resignation or termination of
lawyers, notaries and chartered accountants,

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 22

c) in summary, acts of appointment and other changes of the Holy Clergy and of the
staff of ecclesiastical organizations whose publication is required under the
applicable legislation,

d) the announcement of positions of Teaching Researchers of Higher Education
Institutions, the examination of candidates for attorneys and notaries,

e) the notices referred to in Article 3 (9) of Law 3429/2005 for the selection of
directors of public enterprises and organizations,

f) the decisions of the disciplinary councils, which are required by law to be
published in the "Government Gazette"

g) in summary, the Presidential Decrees of Grace or the Removal of Consequences
of Condemnation, as well as Presidential Delegations of Flag or Decree.

3.1.2.4 Issue D (Δ):

a) operations to declare extensible land as well as acts for the total or partial
revocation of such operations,

b) acts of concession of public property,
c) acts for the definition of shoreline, beach and old shoreline and operations for

defining lakes and rivers, laying down river and streamlines, industrial zones,
national parks, public forests and forest areas in general,

d) acts relating to wildlife hideouts,
e) operations relating to the management of sewage,
f) any other act in relation to those referred to in the previous cases.

3.1.2.5 Remaining Issues

While the four major issues mentioned before cover a wide area of subjects, the
remaining 8 issues examine more specific topics. Their issue names are initials in
Greek, explaining the content they encompass. They are distinguished in the following
way (Table 3.1)

Table 3. 1: Issue Names and Subjects

Issue Name Subject

A.Α.Π. Forced expropriations and town planning
issues

Α.ΕΙ.Δ Supreme Special Court

Α.Σ.Ε.Π. Statement of the Supreme Personnel
Selection Board

ΠΡΑ.Δ.Ι.Τ. Registration of transactions and data from
other public and private sector entities

Δ.Δ.Σ. Public Procurement notices

Ο.Π.Κ. Finance of Political Parties and Political
Parties Coalition

Υ.Ο.Δ.Δ. Special Employees and Administration
Bodies of Public and Wider Public-Sector

Bodies

ΑΕ - ΕΠΕ / ΓΕΜΗ Société Anonymes - Limited Liability
Companies and General Commercial

Registry

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 23

Figure 3. 2: Contemporary Greek Government Gazette document (Issue B)

3.1.3 ET.gr, the Greek Government Gazette in the age of the World Wide Web

As the years passed and the age of computers was upon us, the need for a digital
release of the Government Gazette’s documents was imperative. Hence, in 1997 the
National Printing House’s website, www.et.gr came online. The documents were
published online as well and by 2010 their release became free and open to the public.

ET.gr offers a great amount of services. Besides the historical information of the
National Printing House and the statistics regarding the Government Gazette, it also
includes a Daily Release section. In this specific section you can browse the Gazette
releases by their publish date, sorted by issues. Furthermore, a more advanced search
function is included that allows the user to search by issue, Gazette ID or even specific
keywords. While these functionalities are useful and advantageous, there are many
concerns revolving around them. Specially, many older documents, released in 1980s
and before, while existing in the database, they are in a scanned image form. Therefore,
no search function can be practiced on them. Moreover, the search function operated
on newer releases is totally built on the Gazettes and not the legislation, which would be
the case of real benefit to the public.

http://www.et.gr/

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 24

Figure 3. 3: ET.gr

Figure 3. 4: ET.gr search page

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 25

3.2 Web Retrieval and CMS

After our overview of the Greek Government Gazette’s structure and content
information, we will now proceed to the more technical and Computer Science related
part of this thesis. We will analyze the way Web Crawlers work as well as the level of
organization we can achieve via Content Management Systems.

3.2.1 Web Crawling

As we explained during our Googlebot Example in Chapter 2.1.1, crawling the web is an
essential part for feeding search engines with web-pages, enabling the engines to index
the web-pages and making them searchable. They have been the leading approach to
indexing since the very early days of search engines, dating back to 1995 and the birth
of the AltaVista web crawler. As the number of webpages increases dramatically day by
day, crawlers have had a hard job on making a complete index of all the webpages that
existed back in the day. Googlebot, Bingbot and other modern and up to date web
crawlers helped search engines to improve vastly.

After the year 2000, where programming and coding became easier to do at home with
the introduction of easy to access and purchase personal computers and the addition of
amateur-friendly programming languages like Python, web crawlers benefited users in a
more direct manner; they were coded, and still are, to visit multiple websites and gather
information and documents with a press of a button. [11] [12]

The way web crawlers, or as they are called, “spiders” work, is the following. Given a list
of hyperlinks, known as “seed”, they begin their journey following all the other hyperlinks
they come across, or they look for specific information based on HTML and CSS
elements. For example, a crawler can be setup to look for picture files (JPG/PNG) or
portable document files (PDF) that exist in a webpage. Of course, this is the method
crawlers are also used by search engines for indexing. Crawling websites and
discovering all the links that reside in the website, following them and indexing
keywords and material to become searchable by the public. This function is repeated
every few minutes to ensure the best results and avoid dead links. [11] [12]

With a first glance, web crawlers are pretty straight forward; visit websites and gather
the material needed. Looking deeper into the subject, despite the coding issues that
may occur to anyone, crawlers should follow specific policies that determine the
behavior of the script. The policies are the following:

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 26

Figure 3. 5: Indexing process used by search engine crawlers.

Table 3. 2: Crawler Policies

Policy Description

Selection Policy Which pages are downloaded

Re-visit Policy When to inspect for content changes

Politeness Policy How to avoid overloading webpages

Parallelization policy How to coordinate distributed crawlers

As the need for information and data by companies and individuals rises, many web
crawling products have surfaced over the last few years. They are called “Visual web
crawlers”, and will crawl pages and structure data into tables, based on the user’s
demands. The difference between the classic, programmatic crawlers and their visual
counterpart is that Visual Crawlers require no programming ability to be used. Inputting
the data you desire, will return a list of results but without any effort. Of course, these
services come with a price, since a paid subscription is required to use them, in contrast
with the open source programmatic crawlers that can be coded at any time, without any
cost.

3.2.2 CMS

Modern day Computer Systems have large directories crowded with data of any form,
from text files such as electronic documents to multimedia files like video or audio files.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 27

This huge amount of information needs to be managed for the system user not to be
lost and overwhelmed by it. Content Management (CM), is a set of processes and
technologies that supports the collection, managing, and publishing of information in
any form or medium. CM is a collaborative process, often consisting of the following
roles and responsibilities:

Table 3. 3: Roles and responsibilities in Content Management

Role Responsibility

Creator Content Creation

Editor Content Tuning

Publisher Content Release

Administrator Managing permissions

Viewer Read/View Content

Figure 3. 6: CMS Overview

A Content Management System (CMS) is a computer system or application that allows
everything we noted above about Content Management, as well as site maintenance
from a webpage. They are also known as Web Content Management Systems
(WCMS). [4] We have to note that not all CMS are WCMS, but the most popular and
widely used, are. So, when we talk about CMS, we will be referring to WCMS as well.
CMSs were created to develop and present information about content stored on a web
server, on a website. From simple preview of files to more complex functions, CMS can
be modified accordingly to the user’s and website’s needs. CMS can offer control
access to data based on the user’s role. For example, being member of a specific user
group could prevent you from editing or even viewing some files that members of other
groups can modify and retrieve.

CMS consist of two major components:
a) A content management application (CMA) is the front-end user interface

that allows a user, even with limited expertise, to add, modify, and remove
content from a website without the intervention of a webmaster.

b) A content delivery application (CDA) compiles that information and updates
the website.

In most CMS scenarios, especially in already existing ones, files are stored into
databases, usually SQL. Sometimes, if the project associated with the CMS is minor or
insignificant, the files can be served from local directories, without even being saved
into a database.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 28

3.3 The dynamics of RDF Data Models, OWL Ontologies and SPARQL - Semantic

Perspectives

World Wide Web has been designed in order to offer information understood by human
beings. It consists by billions of documents, mainly HTML pages, interlinked via “lousy”
hyperlinks. Current architecture offers very limited opportunities for querying and
retrieving information tasks by machines. Semantic Web provides a state of the art
framework that allows data to be shared and reused across application, enterprise, and
community boundaries with great respect in machine automated processing. This
framework has three crucial elements: the RDF data model, the OWL ontology and
SPARQL, the query language for RDF data sets. [18]

3.3.1 The new Data Model with Resource Description Framework (RDF)

A data model is defined as “the data items of a certain part of the perceived reality
(business domain) relevant for a specific application or a specific user in a structured
way. This model includes the data relationships” [10]. Several data models have been
implemented for management of changes in legislative document systems. But how our
data model enables us to observe the versions or the metadata of a legal document and
solve the issues mentioned in previous Sections. The Resource Description Framework
(RDF) is a framework for representing information in the web. The core structure of the
abstract syntax is a set of triples, each consisting of a subject, a predicate and an
object. A set of such triples is called an RDF graph. An RDF graph can be visualized as
a node and directed-arc diagram, in which each triple is represented as a node-arc-
node link. RDF data comply on RDF Schema, a semantic extension which mainly
support classification and describe the interactions between resources. Conceptualizing
legislation in a machine-readable format, RDF obviously seems to be a perfect fit. But
before we can start talking about our new RDF data model, let us see why our old XML
schema does not suits the purposes of our goals from now on and in the future. While
the first problems addressed with semantic information like, the need to distinguish
between information content and presentation in a legal document, have been dealt with
XML (XML tags used to express the “semantics” of various pieces of information),
different legal documents may represent in different ways semantically related pieces of
information.

That brings to the surface a new problem that XML schemas and data models could not
solve. So, such different XML documents might not share such common semantics.
RDF in the contrary, is a data model that can express the “meaning” of such a piece of
information in a shared way. With dropping the XML technology from our data model,
we immediately dropped problems like querying the same semantics represented in
different XML trees or the need of converting of all possible representations of a fact
into one statement. RDF gives us a standard way of writing statements. Finally, we end
up with a unifying model not only to itself but open to other data models as well,
immediate expandable by adding simple statements without re-designing the whole
model and fast in terms of querying and mining information. So in this project unlike the
old version of Nomothesi@ we are trying a new approach. Instead of using RDF to store
metadata for Greek Legislation, we are also using it to shape the whole model for two
main reasons. First of all, to query them and infer the appropriate knowledge needed for
advanced services. Secondly to publish our data sets and link those to third-party data
sets across web.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 29

3.3.2 OWL Ontologies and SPARQL

Web Ontology Language (OWL) designed to represent rich and complex knowledge
about things, groups of things, and relations between things. OWL is a computational
logic-based language such that knowledge expressed in OWL can be exploited by
computer programs, e.g., to verify the consistency of that knowledge or to infer implicit
knowledge explicit. Legislation is all about consistency and implicit knowledge, semantic
information spelled in words, ruined in text documents. OWL documents, known as
ontologies, can be published in the World Wide Web and may refer to or be referred
from other OWL ontologies. The data described by an ontology in the OWL is
interpreted as a set of “individuals” and a set of “property assertions” which relate these
individuals to each other. An ontology consists of a set of axioms which place
constraints on sets of individuals (called “classes”) and the types of relationships
permitted between them. These axioms provide semantics by allowing systems to infer
additional information based on the data explicitly provided. We are certain to believe
that we have established a strong and efficient data model given all the advantage
above using RDF, RDFS and OWL. Now that we have added semantics to our RDF
data, we must consider how is it published and queried. SPARQL is an RDF query
language, that is, an SQL-like semantic query language for databases, able to retrieve
and manipulate data stored in Resource Description Framework format. SPARQL can
be used to express queries across diverse data sources, whether the data is stored
natively as RDF or viewed as RDF via middle-ware. SPARQL contains capabilities for
querying required and optional graph patterns along with their conjunctions and
disjunctions, it also supports extensible value testing and constraining queries by source
RDF graph. For the very first time in Greek Legislation and worldwide, our project
innovates with the idea of serving a SPARQL Endpoint in a RESTful manner. Users can
now take advantage of legal documents not only by reading them, but also querying all
the semantic information. This forms a new path in the way legislation is being served
and represented by any organization or official institution and we hope that many other
will follow our way until we have unified government archives of all types. At this point
we would like to present some technical information regarding the semantic information
available from our Endpoint. The main query operations in this system are:

a) Obtaining the legislative document valid at a given date or a time space.
b) Historical evolution of a legislative document.
c) Full text search in the text of the legislative document.
d) Laws repealed by a law.
e) Obtaining all kinds of Metadata (the model allows new Metadata to be easily

included).
f) Description queries on the RDF graph.

3.3.3 Semantic perspectives and future Web

The Semantic Web is a vision for the future of the web in which information is given
explicit meaning, making it easier for machines to automatically process and integrate
information available on the web. As Sir Tim Berners-Lee puts it:

“The concept of machine-understandable documents does not imply artificial
intelligence which allows machines to comprehend human mumbling. It only indicates a
machine’s ability to solve a well-defined problem by performing well-defined operation
on existing well-defined data.”

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 30

We have to be then, as more efficient as it gets when we are about to represent
complex documents on the web, and especially more careful when we talk about
legislation. The legal systems are usually developed in several databases and formats
that require integration. RDF offers the possibility of building a simple semantic data
model with several advantages over traditional data models for legal systems. So, RDF
helps to merge data from multiple sources and does it in such a way that data about the
same things gets collated. This merge comes with the benefit of enabling cross-data
source querying using SPARQL as we saw earlier, allowing content or relationships
between content from several datasets to be discovered. Properties and values can be
described with a shared schema or ontology, taking advantage of RDF in legal systems.
But most importantly, this new era of modeling legislation semantically helps us develop
a Restful API to serve different versions of a legislative document in different formats at
the same URI, to give developers full and open access to the data, which concentrates
the vision of this project.

3.4 Semantic Representation of Government Gazette

Regarding the Semantic Representation of Government Gazette documents, a complex
model does not exist. Taking into consideration the two standards we introduced
beforehand, ELI and Akoma Ntoso, we cannot represent Gazette information using their
vocabulary and classes. Specifically, ELI, offers two properties (relations) to help
illustrate Government Gazette details.

1. The Object Property “published_in”, that connects a Legal Resource format
with an Official Gazette (Government Gazette) format.

2. The Data Property “published_in”, that associates a Legal Resource format
with a string.

On the other hand, Akoma Ntoso’s take on Government Gazette representation is even
more limited. To be exact, Akoma Ntoso’s vocabulary only offers one class that assists
us, the “OfficialGazette” class.

3.5 Conclusion

In this Chapter we introduced the reader of this thesis to all the basic knowledge
required to understand our work and our goals. Explaining the history and structure of
the Greek Government Gazette provides assistance into the understanding of the
Semantic Representation. We also explained how crawling and spiders function,
clarifying some key components of a spider’s architecture, which will make the
explanation of our own very straightforward. Last but not least, deconstructing a Content
Management System like we did above will help us finding out which features we need
for our own CMS.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 31

4. GREEK GOVERNMENT GAZETTE LIBRARY

After a long introduction and some background information, now that we understand the
concept of extracting documents and data via web crawling and managing our content
through a Content Management System, we can proceed to explaining our project.
Throughout this Chapter we will analyze and illustrate the main modules constituting our
crawler and CMS while demonstrating the basic features.

4.1 Greek Government Gazette Crawler

The need of keeping Nomothesi@’s library up to date with the daily releases of Greek
Government Gazette’s issues required us to develop a program that can communicate
with the National Printing House’s website and retrieve old and new Gazette
documents, adding them to the library. Web crawling is a very practical and
straightforward way of achieving this goal. While using a Visual Web Crawler with a paid
subscription would have been the easy way, developing and modifying the crawler to
our needs and standards was a top priority, so we could retrieve exactly the type of data
we wish, without any payment.

4.1.1 Crawler Technologies

Before starting our developing process, there were a number of considerations
regarding the structure of the crawler. Firstly, deciding the programming language was a
key factor, considering we would also be in need of a web crawling framework already
existent in that language. The main two candidates were Java and Python, because
after a brief research we discovered that the more suitable web crawling frameworks for
our project were developed in these two particular languages. We picked Python due to
its more simplistic command structure and because we thought it would be easier and
more “painless” to work with a simple language for a project that we are not familiar
with, that being web crawling. Having our programming language selected, the next
step called for the selection of a web crawling framework. We considered Beautiful
Soup6, which may not be exactly a framework but a parsing library, which also does a
pretty good job of fetching contents from URL and allows you to parse certain parts of
them without any hassle. It only fetches the contents of the URL that you give and then
stops. It does not crawl unless you manually put it inside an infinite loop with certain
criteria. While Beautiful Soup would give us the tools to implement the script that we
desire, we continued searching for a framework until we discovered Scrapy7. Scrapy
[13] [14] is an application framework for crawling web sites and extracting structured
data. It is very simple to use and build, test and debug your spiders taking advantage of
its command line shell, as well as its great documentation and huge community. With
that being said, deciding to work with Scrapy was an easy choice to make. To explain
the algorithm that our spider works, we have to explain the way Scrapy spiders function
in general.

6 See: https://www.crummy.com/software/BeautifulSoup/bs4/doc/

7 See: https://scrapy.org/

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 32

In the first place, creating a project with Scrapy [14] also generates a default spider that
does not perform a specific function until you modify it. The configuration file of the
spider is pretty big and anything can be adjusted to fit the requirements of the project.
Like every web crawler, Scrapy spiders need an allowed domain, to stop crawling if you
reach out of bounds and a “seed” website. The domain in our case, is the webpage of
the National Printing House 8. Going further from there, we needed specify the starting,
seeding sub link of our main domain, since the daily releases of new Government
Gazette issues appear on a specific link, so to save bandwidth, limit the execution time
and get better results we used a direct link to the page that lists the new daily releases
as a seed webpage for our spider9 . After setting the seed website, we proceed with the
actual development of our spider.

Figure 4. 1: Daily Gazette release (Seed) webpage

As shown in Figure 4.1, the seed webpage has a simple layout and is composed by the
following parts:

a) A date input box
b) A submit button to retrieve the Gazette documents published on the

requested date
c) A text area that mentions the total number of documents released on the

specific date
d) A table that contains the list of documents, sorted by issue and ID number,

a preview button, as well as a download link.

8 See: http://www.et.gr

9 See: http://www.et.gr/idocs-nph/search/dailyFekForm.html

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 33

Our spider takes advantage of these 4 parts and extracts the desired files and
information.

The Greek Government Gazette web crawler consists of four different functions. We will
dissect them and explain the way they work with each other. We present a table with a
brief overview of the function’s purpose, before we analyze them.

Function Name Function Overview

parse Parses the date (or dates) the crawler will
run for

dailyparse Get the list of links and filenames to be
downloaded

downloadfek Downloads the documents

closed Closes all the open files that were being
used by the spider

Table 4. 1: Crawler Functions Overview

4.1.1.1 parse() function:

When generating a Scrapy spider, the parse() function is automatically created and
filled with a Python “pass” statement. The pass statement is a null operation; nothing
happens when it executes. By default, this is the function that gets called first for
execution by Scrapy when running the web crawler. Our custom parse function creates
a directory (if it does not already exist) for our soon to be Gazette documents to be
saved into. In addition, it also generates a custom Log file that gets updated with
information throughout the crawling process. The information residing into the log file
includes execution time, number of files downloaded, number of files already existing,
as well as the date and duration of the crawling process. Moving forward, the crawler
can be used in three ways, depending on the arguments given at the time of the
execution. It can either execute for the current date, a specific date given, or a range of
dates. Also, likewise given when executing the spider, the user can select whether he
would like to retrieve all the Gazette files released, or just the Α/Β/Γ/Δ issues. By
default, when the necessary argument is not specified, the spider downloads only the
Α/Β/Γ/Δ issues. The parse method also analyzes the date (or dates) that we want to
crawl. If the user does not input a date, or inputs one date, parse calls a POST method,
inputting at the date box of the seed website the specified date. The same procedure
occurs when the user requests a range of dates, but the POST method is called in loop,
for every date in between the starting and ending date given. Then, the response page
returned by the POST request is passed to the dailyparse method to continue the series
of steps towards the retrieval of the requested files. Note that in case of multiple dates,
Scrapy does not crawl the pages in order. It is an asynchronous framework. It uses non-
blocking IO, so it doesn't wait for a request to finish before starting the next one.

4.1.1.2 dailyparse() function:

The dailyparse function’s main objective is, after getting a response page from the
previous parse() function, to gather the Gazette document names, as well as the
download links for each one of them. This is where the actual crawling procedure
begins; parse just used a POST method to fetch us the correct webpage to crawl from.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 34

The crawling strategy is no different than the method used by all crawlers. Using CSS
and xPath10 selectors, and inspecting the HTML elements of the webpage, we are
examining to find a pattern and retrieve the correct URLs, that link us to the download
pages of the documents. As shown in Figure 4.1 and mentioned above, the released
Gazette documents are sorted by issue. When the user requests all the documents,
regardless of their issue, our job is limited and we just fetch all the list of results returned
by the web server. If the user requests only the Α/Β/Γ/Δ types, we have to make sure
that we only retrieve the links of these files.

After we find our way around the webpage, using the CSS selectors we can extract the
links from the HREF elements, as well as the name of each document and save them
into a Scrapy Item11, which are basically simple containers used to collect scraped data.
They provide a dictionary-like API with a convenient syntax for declaring their available
fields. Also, they can easily be passed into another Scrapy method. With that in mind,
our Scrapy item consists of two fields: Name and URL. After our items are complete,
filled with the documents we want to retrieve, we call the next function, downloadfek,
passing the Scrapy Items. Shown below (Figure 4.2) is a visual representation of the
combination of parse and dailyparse functions. The item is then passed to downloadfek
to take care of the download process as stated above.

Figure 4. 2: parse and dailyparse functions

10 See: https://www.w3schools.com/xml/xpath_syntax.asp

 11 See: https://docs.scrapy.org/en/latest/topics/items.html

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 35

4.1.1.3 downloadfek() function:

Being fed the hyperlinks of the target documents, the downloadfek function implements
the actual downloading of the files. Utilizing Python’s native urllib module12 , which helps
the process of fetching data across the World Wide Web, we are able to visit the links
passed by dailyparse and retrieve the files we requested. Also, to organize and store
the files according to their properties, downloadfek parses the name of the Gazette
document, creating a subfolder for the issue of the document (if not existent) and inside
that, another directory for the year of the document’s release. This way the library is
organized by issue/year/filename. Downloadfek also handles exceptions, like timeouts
and unreachable host, requesting the files as many times as needed, until they are
finally retrieved and stored into our library.

There is a particular and special occasion, that some Government Gazette documents
are re-released with modifications and changes. In this case, the National Printing
House’s website replaces the old, outdated document with the new one, so there is no
need to delete old files, since the site itself takes care of our documents to always be
the newly released ones.

Figure 4. 3: downloadfek visual representation

12 See: https://docs.python.org/2/library/urllib.html

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 36

4.1.1.4 closed() function:

When the downloading finishes and the crawler must terminate its session, by default,
even when not implemented, Scrapy calls the closed function. This function terminates
all the ongoing Scrapy processes and when modified, can execute some final
commands to wrap up the crawling process. In our case, closed updates the log file with
the time that the execution finished, as well as the numbers of files downloaded or
already existed. When closed functions execution ends, the crawler exits as well.

4.1.2 Crawler Demonstration

After analyzing the functionality of the web crawler, we would like to present an example
of its usage. We chose to execute the crawler for a specific date and for all the filetypes.
Executing for a range of dates would be just a repetition of the same process.

Calling the spider with the arguments “date1=23.03.2010” and “FEKtype=default” to
download all the issues released, the parse function uses a POST method input data
into the date submission HTML element, to redirect us from the starting, seeding
webpage that shows the current date’s releases to the date we requested, in the
present example, 23.03.2010. (Figure 4.4 and Figure 4.5)

Figure 4. 4: parse Function's Response

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 37

Figure 4. 5: parse function's response elements

Τhe next step is to gather the links and filenames of the documents requested. As we
can see in Figure 4.6 below, the results are grouped in an HTML div element with the id
of “result_table”. Our crawler, using CSS selectors will isolate the table, and look into it
for the elements that will guide us to the data we need.

In the result_table div element, the rows of the table are divided into 3 classes:
a) Class “prop”, which holds the issue name (Figure 4.7)
b) Class “even” and class “odd” which hold the data we need to extract.

(Figure 4.8)

Since the crawler was executed with the “default” type issues to be downloaded, the
function will check the name of the issue before moving on with the extraction of the
download link and name of the document. In our scenario, we are looking only for
Α/Β/Γ/Δ issues. If the issue name is valid for our case, we proceed with the extraction of
the data. In our case, only the first 16 documents should get downloaded, since they are
of the issues Β/Γ/Δ. The selectors extract the data from the “odd” and “even tr” HTML
elements and save them into a Scrapy item to pass them for downloading by the next
function called, the downloadfek function.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 38

Figure 4. 6: result table

Figure 4. 7: prop Class (Issue)

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 39

Figure 4. 8: even/odd class (data)

The files are being downloaded by the urllib.urlretrieve Python function by visiting the
links that we crawled in the previous step. Then, when the script terminates its
execution, we simply navigate to the directory created by the parse function to see if our
files were correctly downloaded. We can also check the log file created by the web
crawler. For this demonstration, the log file generated is the following:

Execution started: 20:19:39
Script executed for: 23.03.2010 and the default types.
>> 23.03.2010: 16 FEK files.
Total files: 16
Total files downloaded: 16
Total files already existed: 0
Execution ended: 20:20:26

Which means that our script was executed correctly, since the total number of files of
issues Α/Β/Γ/Δ were 16, as stated previously.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 40

4.2 Greek Government Gazette Crawler Scheduler

After achieving the retrieval of the Government Gazette documents successfully, the
issue left unsolved was the daily execution of the web crawler. While it could be done
just with the press of a button, the process would require the physical presence of a
system administrator in the main server’s computer, or remotely via SSH. Wanting to
simplify the task, we started thinking about scheduling the job to execute automatically
every day at a specific time. Since we wanted something universal, to run on all
operating systems (OS), we developed the script using Python. We could have
conveniently used the native Windows Task Scheduler13 or cron by Linux14 depending
on the operating system we are working, but creating a program that is executable
regardless of the OS was a sounder approach.

Having all the above in mind, we researched and discovered an existing Python
module, named “schedule”. An in-process scheduler for periodic jobs that uses the
builder pattern for configuration. Schedule lets you run Python functions (or any other
callable) periodically at pre-determined intervals using a simple, human-friendly syntax.
Being very simple and uncomplicated to use, we simply select the particular command
that executes the script we want, in our case, the Greek Government Gazette web
crawler, at a specific time every day and our task is complete.

4.3 Greek Government Gazette Library CMS

Having our Gazette library updated and well organized, we are in need of a tool to
manage and view our stored files, as well as perform some specific actions like
downloading them remotely to another computer, or searching for a specific Gazette
document. For the creation of this tool, we considered constructing a simple web CMS
which will help us accomplish the actions we previously stated. We also thought of the
fact that implementing the web crawler into the CMS would benefit us in the interest of
executing and updating the library with past files that might be missing, or even with
new files that have not been yet downloaded by our automatic scheduled crawling
procedure analyzed in Chapter 3.2.

4.3.1 Architecture

The fact that our crawler was programmed using Python led us to select Python again
for the development of our website/CMS. Choosing a web development framework was
easy, since Django, being the most popular, was our first thought and choice. After
creating the HTML files needed and modifying them using CSS and Bootstrap, we went
on to generate our Django Project. Django works with the concept of “apps” [16] [17]. A
Django App is a Web Application that does a particular job. So, in our case, the apps we
created were the “Crawl” app and the “Manage” app.

13 See: https://technet.microsoft.com/en-us/library/cc721931(v=ws.11).aspx

14 See: https://www.ibm.com/developerworks/library/l-job-scheduling/index.html

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 41

The “Crawler” app is the ensemble of all the required functions and methods which help
us use our web crawler through our website. Specifically, we created three different
forms, with three different submit buttons, for each distinct use case of our spider
(Current date / Specific date / Range of dates). Having dropdown menus for the date
selection and the issues of Government Gazette we want to add into our library, we
used a POST method to parse the data inputted from these forms and use them as
arguments for our spider call. An issue presented itself in this situation. While parsing
the forms and retrieving the arguments was a simple operation, the execution process
of our spider through Django was complicated, as the Scrapy module could not be
called through Django. To overcome this situation, we used a third-party application
called Scrapyd. Scrapyd [15] is an application for deploying and running Scrapy spiders.
It enables you to deploy (upload) your projects and control their spiders using a JSON
API. It listens to requests for spiders to run and spawns a process for each one,
executing the spider with the arguments given. Using Scrapyd, we were able to deploy
our spider to our local host and start the scrapyd service as a daemon, waiting for
requests via its JSON API. Wherever we submit crawl request through our website, a
POST method calls a cURL command15 to add our spider to the execution list of
scrapyd, which starts the crawling process. Then, it redirects us to a confirmation page,
that presents us with a hyperlink to scrapyd’s minimal web interface, where we can
monitor the pending/running/finished processes as well as accessing the default Scrapy
log files, not to be confused with the ones we are producing through our crawler. Our
files are stored into the library directory that our crawler creates, which is located into
the Django project’s root directory.

Figure 4. 9: Scrapyd Web Interface

15 See: https://en.wikipedia.org/wiki/CURL

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 42

Figure 4. 10: Scrapyd Job Monitoring

The “Manager” app includes the methods that assemble the browsing of the library
functionality, as well as the search service provided by our project. Our file browser is
fairly simple. Using Django’s ListView class based functions, we list into our template
the directories subsiding into our library’s root folder. Organized as they are by the web
crawler, the root folder includes the directories of each different issue, as well as the
folder which contains the log files we generate during the crawling procedure. Clicking a
folder takes us a level deeper, showing us the release year of the issues and then, after
selecting a year, listed into our template is the list of Gazette documents that exist into
our file system. Since the number of files is immense, we take advantage of Django’s
pagination feature and show 20 results on each page, to make the browsing session
more pleasant and smoother. Clicking the name of a document will request it from our
library and present it into the browser, while clicking the download button on the right of
the name will retrieve the selected document and save it. Except from the Gazette
documents, our template can also render the list of Log files, following the exact same
steps. Moving on, we also mentioned of a search function. The user can input a wide
variety of different criteria like issue, release day, release month, release year, Gazette
ID or a combination of any of those, and using Python’s glob module, we can look
through our library to scan if a document (or documents) with the requested attributes
exist and then list it into a template. Figure 3.11 shows the search functions core. The
criteria given by the user are passed via a POST method and parsed by our search
function, before assembling the file name to look for and performing the search function.

Figure 4. 11: Search function

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 43

For all of these operations to work harmoniously together, we need to set our URL
patterns. Like all websites, ours too, has a number of different pages which serve
different purposes, like the search and crawl pages we mentioned before. The URL
patterns are regular expressions that Django uses to redirect to a specific webpage.
The URL patterns of our basic pages (homepage, search, crawl) are pretty simple.

Eg: Search page URL: domain/search/

When we move on to the documents, we need some more complex regexes. The paths
to the files in our directory are identical to our URL. For example, if we want to retrieve a
Gazette document with issue name A and year or release 2010, the directory in our
library would be Library/A/2010/. Similarly, when visiting the URL:
domain/manager/A/2010/ will show us a list of all the issue A documents released in
2010. We can take this thought another step further.

Eg:If the requested file is ΦΕΚ A 151 - 12.10.2017.pdf, then the direct link would
be: domain/manager/A/2017/ΦΕΚ A 151 - 12.10.2017.pdf.

So, to sum up, our pattern for directly viewing a Gazette issue, without browsing or
searching is: domain/manager /{issue}/{year}/{filename}.pdf

On the other hand, visiting a link that does not exist as a directory in our library, for
example, if no issues A were released in 2017 and we tried to access domain/A/2017, it
would show us a blank page. Visiting though a page that does not match our regular
expression raises a 404 exception. The regular expression used is:

r'^(?i)manager/(?P<typ>(A|B|Α|Β|Γ|Δ))\/(?P<year>[0-9]{4})\/(?P<fnam>[\w\.-

]+?\.pdf)$

This allows the following: Either A/Β/Γ/Δ types, followed by a 4digit number, followed by
a string ending in .pdf. The 4-digit number resembles the year and the string followed by
“.pdf”, the filename. The regular expressions for the sub-categories, are the same as the
one above, subtracting the part that is not required. To be specific:

• Regular expression of issue subdirectory:

r'^(?i)manager/(?P<typ>(Α|Β|A|B|Γ|Δ))/$'

• Regular expression of issue/year subdirectory:

r'^(?i)manager/(?P<typ>(A|B|Α|Β|Γ|Δ))\/(?P<year>[0-9]{4})/$'

Last but not least, we also need a URL pattern to download the files. Simply adding “dl-
“before the filename into our URL will save the file, instead of opening it into the
browser.

Eg: If we wanted to directly download ΦΕΚ A 151 - 12.10.2017.pdf, the URL would

be: domain/manager /A/2017/dl-ΦΕΚ A 151 - 12.10.2017.pdf.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 44

A complete look on our URL patterns is shown below, in Figure 3.12.

Figure 4. 12: URL patterns

Django Projects can be connected with ease to a database, the most popular being
MySQL or MongoDB [17]. Our website does not require the documents to be inserted
into a database since it lists the local files of our server. On the contrary, we are using
Django’s integrated database, SQLite3 backend, to store the users that will be
accessing our website and implementing an account authentication system. The users
will be added by the system administrator into the database, therefore there is no
registration page needed. Every feature of our website, except the ones that offer
information like the homepage or the about page, require the user to be signed on and
authorized account to make use of them. To carry out this detail, we are taking
advantage of Django’s authentication system, using a «login_required» decorator that
redirects to the login page, if a user navigates to a webpage that is not authorized to
access without being logged on an account.

4.3.2 Greek Government Gazette Library Demonstration

After starting the developmental server that Django offers, to debug and execute our
project in our localhost, without deploying it into an actual server, we navigate to the
homepage of our project, which is localhost:8000. This demonstration is consisted by 3
parts: Crawling, Library browser and the search function.

For all these functions to work as we talked about previously, we need to log into an
authorized account, by clicking the “Log in” button on the top right of our navigation bar,
by following the link localhost:8000/login/ or by clicking the button in the center of our
homepage. After doing so, we can access all the features of our website. Our
demonstration begins with the usage of our integrated crawler.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 45

Figure 4. 13: Homepage

Clicking the “Crawl” button on the navigation bar redirects us to localhost:8000/crawler,
which brings us to the crawling interface. We open one of the three panels which
represent the three crawling options. For the sake of this demonstration, we will select
the bottom panel, and input the dates 6/4/2003 and 9/5/2004, as well as the Gazette
Issues A/Β/Γ/Δ to be downloaded. After filling the form, we can submit it using the
“Download” button. This will cause cURL command to be called and schedule a crawl
for the range of inputted dates via Scrapyd. The downloading of the files has begun and
we can see the progress of the retrieval via Scrapyd’s web interface (Figure 4.9)

Figure 4. 14: Crawling page

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 46

Navigating to the Library tab takes us to the Gazette document and log file browser. We
are using a small sample of our library so the results shown in the demonstrative figures
do not include the total files. The Library tab shows us the list of folders that exist into
our library’s directory. Clicking any of the folders takes us a level deeper. The path that
we currently occupy is shown above the folders/files.

Figure 4. 15:Library page (directory view)

After clicking on the Issue name folder, and then the year of release, we are shown the
list of documents that subside in our system. We can either click them to view them on
our browser or click the download button to retrieve them into our computer.

Figure 4. 16: Library page (document view)

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 47

Last but not least, we will demonstrate the search function. Visiting the search page
shows us a form so we can fill our criteria and look for the documents we need in our
library. We will perform a search to find documents with the following specifications:
Issue Γ, release month: September, release year: 2001 as shown in Figure 4.17 bellow.

Figure 4. 17: Search page

The blank, non-specified criteria are like variables, they can be anything. Searching for
the above specifications returns the results showed in Figure 4.18:

Figure 4. 18: Search results page

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 48

To conclude our demonstration, we select to preview the first file returned from our
search function, with filename ΦΕΚ Γ 221 – 03.09.2001.pdf. Clicking it redirects us to
localhost:8000/manager/Γ/2001/ ΦΕΚ Γ 221 – 03.09.2001.pdf and we can see the file,
as presented in Figure 4.19:

Figure 4. 19: Browser File Preview

4.4 Conclusion

In Chapter 4 we went into specifics regarding the technologies used for the
development of our web crawler, scheduler and CMS. We explained why we picked
these frameworks and tools and we demonstrated how our CMS and Crawler function,
giving in depth figures and examples of every function that they are capable of
executing. This way the reader can follow our thought process and figure out how
everything operates, alone as a unit and all together as a whole.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 49

5. GREEK GOVERNMENT GAZETTE ONTOLOGY

As we mentioned in the background section of this thesis, specifically Chapter 3.4, the
Semantic representation of the Government Gazette via ELI and Akoma Ntoso is
limited. To provide more depth to the illustration of the Gazette, we propose an
extended ontology to assist us in displaying some basic attributes and characteristics of
Gazette documents.

5.1 Ontology

As we mentioned, the lackluster representation of Gazette information by the big
Legislative Semantic Standards creates the need for an updated Greek Government
Gazette Ontology. Using classes and properties from ELI, Akoma Ntoso, the Core
Public Organization Vocabulary and the Simple Knowledge Organization System data
model and combining them helped us generate the Ontology presented in Figure 5.1.
We will proceed to explain and analyze the Ontology.

Our aim is to present the Gazette’s information. Expanding from Akoma Ntoso, we get
an abstract “OfficialGazette” class. This class has subclasses for each of the Gazette
issue, Issue A, B, C, etc. According to ELI, there has to be a direct property connecting
the Gazette and the Format it gets published in. So, with the existent ELI properties, the
only way to express the legal content of a Gazette is through a very complex
relationship between entities. That a LegalResource is realized by a LegalExpression,
which is embodied in a Format type, in which the document is published into the
Gazette. The solution we propose, shown in the Figure below, is a new property, the
nomothesia:published_in property. This relation connects the Gazette directly to the
LegalResource, showing us what kind of legal information is published into it.

Figure 5. 1:Greek Government Gazette Ontology

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 50

Furthermore, via ELI, we can add other information to OfficialGazette via data
properties, for instance title, local id and date of publication.

It is also visible that the OfficialGazette entity is a collection of LegalResources., via the
Simple Knowledge Organization System data model. Moreover, the OfficialGazette is
getting published by the National Printing House, which, according to the Core Public
Organization Vocabulary, is a PublicOrganization.

5.2 Greek Government Gazette URI Pattern

Uniform Resource Identifiers (URIs) are strings of characters used to identify a name or
resource on the internet, like documents, images, downloadable files. Every Greek
Government Gazette document has its own, exclusive, unique URI pattern. URIs need
to be highly guessable so we propose a schema of dedicated HTTP URIs. The URI
pattern proposed is based on the Gazette ontology presented beforehand. The pattern
is:

http://legislation.di.uoa.gr/eli/gazette/{Issue_ID}/{Year}/{Serial_Number}

Any field between curly brackets needs to take specific value. Issue ID should be
replaced with the issue of the Government Gazette document we want to retrieve. We
are using the encoding presented in Table 5.1 below. Year is actually the year of
publication (e.g., 2012) and Serial_Number is the number of the specific Gazette
document. So, for example if we want to address the document 54 of 2012, with the
Issue ID of A, the corresponding URI is:

http://legislation.di.uoa.gr/eli/gazette/A/2012/54/

Table 5. 1: URI Issue IDs

Issue Name Issue ID

A, B, C, D A, B, C, D

A.Α.Π AAP

Α.ΕI.Δ AEID

Α.Σ.Ε.Π. ASEP

ΠΡΑ.Δ.I.Τ. PRADIT

Δ.Δ.Σ DDS

Ο.Π.K. OPK

Υ.Ο.Δ.Δ. YODD

ΑΕ - ΕΠΕ / ΓΕΜΗ AEEPE

Another example using a more complex type of Gazette issue would be the document
100, published in 2010, with the Issue ID of ΠΡΑ.Δ.Ι.Τ. The analogous URI is:

http://legislation.di.uoa.gr/eli/gazette/PRADIT/2010/100/

http://legislation.di.uoa.gr/eli/gazette/%7bIssue_ID%7d/%7bYear%7d/%7bSerial_Number%7d
http://legislation.di.uoa.gr/eli/gazette/A/2012/54/
http://legislation.di.uoa.gr/eli/gazette/PRADIT/2010/100/

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 51

5.3 Greek Government Gazette Dataset

Using the ontology we explained above, we developed a script using Python that
generates a dataset based on the titles of the crawled Gazette documents. It creates
RDF triples going through the whole Nomothesi@ library. Given that as of 01
September 2017 the Greek Government Gazette documents published after 01 January
2000 are 84,238, the dataset consists of 421,190 RDF triples, inside a text file. We are
only taking into account the Issues A/B/C/D. Shown below in Figure 5.2 is a graphic
example of our dataset.

Figure 5. 2: Dataset RDF Example Graph

5.4 Conclusion

Using ELI, Akoma Ntoso and other data sets and vocabularies we are able to create an
ontology to display the Government Gazette information with RDF triplets. We proposed
a new property that helps us achieve simple expression regarding the legal content of a
Gazette and explained how all the new and old properties and classes coexist
harmoniously into our new ontology. We also introduced a script that produces a
dataset based on the titles of our Gazette documents.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 52

6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this work, we discussed the importance of job scheduling and content management
as well as the benefits that occur from web crawling. Updating Nomothesi@’s file library
daily and automatically with the new Government Gazette publishes via our Spider and
Job Scheduler assisted the main project in having the latest document to parse and
serve for queries to the users, without human intervention. Also, managing the
documents via our web application can help the system administrators perform various
actions on the library remotely, which can help while parsing or when looking for a
specific, unparsed Gazette document in PDF form. While these technologies are useful
to our project, they can also relate to multiple other fields of science and other computer
science projects, where automation and content management can be impactful. Also,
we hope that our new, updated Ontology of the Greek Government Gazette will assist
developers that manage legal data with their activities.

Despite the research presented in this work and the fact that we have demonstrated the
effectiveness of such a platform for Content Management and Web Crawling, we
believe that it could be further developed in a number of ways, that are being described
below.

6.2 Future Work

6.2.1 Expanding the Content Management System’s features

Our developed Content Management System web application, as it stands, offers
simple features. Features that include file browsing and downloading and an advanced
search, based on filename. Having new ways to manage the Government Gazette’s
documents is included in future plans. For example, moving all the files into a database
that migrates automatically after every download, is a feature to be implemented.
Moreover, a function that deletes specific files is an element that we want to look into
developing for our system. Lastly, regarding our Content Management System, albeit
our search function is working as it should, another one could be developed that, in this
case, searches keywords inside the files and not just file names. For this feature to
work, we have to make use of a tool that transforms PDF files into plain text ones,
removing photographs and graphs, so we can search correctly. Though, as much as
this sounds simple, it can be troubling for older Gazette documents that are scanned
photographs and do not have a text area like the modern ones.

6.2.2 Expanding the Web Crawler’s features

As shown in Figure 4.1, our spider functions based on the webpage that shows the
Daily Releases of Government Gazette documents. It helps us keep track of the new
releases and gather them quickly and efficiently. While this webpage is suitable for our
work, it only shows documents published after 01.01.2000. All the files before this date
are not reachable via the daily release page, but do exist on the server. We can retrieve
those files via the ET.gr’s search page, shown in Figure 3.4. To achieve this, we need to

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 53

expand the features of our spider to work on this webpage too if a requested crawl
includes a date that is before the specified date above. Also, for documents published
after 1990, the website offers a text version of the file besides the PDF version.
Implementing a feature that lets the user select which version of the file he wants is in
our plans, since it would also benefit the keyword search we mentioned in our plans for
the Content Management System application in Chapter 6.1.1.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 54

Table 6. 1: List of Abbreviations

API Application Programming Interface

CS Computer Science

CM Content Management

CMS Content Management System

ELI European Legislative Identifier

EU European Union

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

OS Operating System

OWL Web Ontology Language

PDF Portable Document Format

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

URI Universal Resource Identifier

XML Extensible Markup Language

Table 6. 2: Table of Translations

Content Management Systems Συστήματα Διαχείρισης Περιεχομένου

E-Government Ηλεκτρονική Διακυβέρνηση

Greek Government Gazette Φύλλο Εφημερίδας Ελληνικής

Κυβερνήσεως

Job Scheduling Χρονοπρογραμματισμός Εργασιών

Open Data Ανοιχτά Δεδομένα

Semantic Web Σημασιολογικός Ιστός

Web Crawling Ανίχνευση Ιστού

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 55

APPENDIX

A: Web Application

Software Dependencies

Python: 3.6
Django: 1.11.0
Scrapy: 1.4
Scrapyd: 1.2.0
Scrapyd-client: 1.1.0
Schedule: 0.4.3

Installation

1. Python (https://www.python.org/):

To install the Python programming language in a Windows environment you have to
download the installer from the official website (https://www.python.org/downloads/).
After that, following the instructions you can install Python and use the Windows
Command Prompt (or Powershell) to use the Python Shell or to run Python code (.py
files) which we need for this project.

2. Django (https://www.djangoproject.com/):

To install Django Web Framework, you can follow the specific directions given at the
official website (https://www.djangoproject.com/download/) or just use the "pip install
Django==1.11.6" (which is the latest version at this point). After the installation
completes, you can use all the Django related Libraries.

3. Scrapy (https://scrapy.org):

To install the Scrapy Web Crawling framework you can follow the directions given at the
official documentation (https://doc.scrapy.org/en/latest/intro/install.html). You can of
course use the simple "pip install Scrapy" and you are good to go. As stated in the
Official installation guide, Scrapy is written in pure Python so depends on some other
key Python packages like lxml, w3lib, twisted, parsel, cryptography and pyOpenSSL.
Scrapy and its dependencies are installed by the pip command given abode.
If by any chance there is a problem related to these dependencies, please refer to the
respective installation guides.
lxml: http://lxml.de/installation.html
cryptography: https://cryptography.io/en/latest/installation/
The minimal versions which Scrapy is tested against are:
Twisted 14.0
lxml 3.4
pyOpenSSL 0.14

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 56

4. Scrapyd (https://github.com/scrapy/scrapyd):

Scrapyd is an application for deploying and running Scrapy spiders. It enables you to
deploy (upload) your projects and control their spiders using a JSON API.
To install Scrapyd, you can follow the instructions given at
http://scrapyd.readthedocs.io/en/stable/install.html, or, once again, use "pip install
scrapyd".

5. Scrapyd-client (https://github.com/scrapy/scrapyd-client):

Scrapyd-client is a client for Scrapyd. It provides the general scrapyd-client and the
scrapyd-deploy utility which allows you to deploy your project to a Scrapyd server.
To install, use pip install git+https://github.com/scrapy/scrapyd-client to get the latest
version.

6. Schedule (https://github.com/dbader/schedule):

Schedule is a simple to use API to schedule jobs. Has no external dependencies. To
install, use "pip install schedule".

Directories / File Information

I. The main directory is the Django Project directory. Everything in here except some
folders and files is related to the website we built.

II. The FEKdownloader directory is the Scrapy Project, the Crawler. In there, the
"FEK Library" directory is where the FEK files are crawled into and then shown in
the website.

III. the Schedulescrape.py file is the Scheduler. It schedules crawls for specific hours
of the day, or days of the week. (Functionality bellow)

IV. the ontology.py file is taking every FEK file title and creating triplets in a text file
when executed.

Everything else is Django related.

I. the templates directory contains the .html files of our website.
II. the static directory contains the .css files and some other static files served into

our website.
III. the crawl and manager directories are related to the "crawl" and "manager" apps

of our website
IV. the FEKsite directory has some configuration files for our website.

Project Function and Setup

To run the project, after installing all the needed packages and having the right
dependencies you have to follow the next steps.

a) You need to have Scrapyd running in the background, for all the incoming crawl
requests to be fulfilled. So, after downloading the files and unzipping them to a

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 57

folder, you need to open a terminal and change directory to
"../FEKSite/FEKdownloader". This is the directory of the crawler. Here, run the
command "scrapyd". By doing that, you have a Scrapyd instance running and
you can visit http://localhost:6800 to see the deployed spiders, logs and
running/pending scheduled crawls.

b) Minimize the terminal and open another one at the same directory

(../FEKSite/FEKdownloader). Now, we need to deploy the spider to the Scrapyd
instance. We can do that just by using the "scrapyd-deploy" command. After
doing so, we will see a message like this:

==
Packing version 1507839617
Deploying to project "FEKdownloader" in http://localhost:6800/addversion.json
Server response (200):
{"node_name": "DESKTOP-XXXXXXXX", "status": "ok", "project": "FEKdownloader",
"version": "1507839617", "spiders": 1}
==

This means that the spider was deployed successfully. You can also check the
http://localhost:6800, under "Available projects" for our project to be there.
You can use the same terminal to schedule a job to see if everything is working
correctly by using "curl http://localhost:6800/schedule.json -d
project=FEKdownloader -d spider=downloadFEK"
If you need to delete the project from the Scrapyd instance, you can use the "curl
http://localhost:6800/delproject.json -d project=FEKdownloader" command.

c) Now that Scrapyd is up and running with the crawler deployed, it is time to fire
up our website. We can do so by navigating to ../FEKSite and opening up a
terminal there. Then, we use the "python manage.py runserver" command of
Django to run the developmental server on our localhost and our website is fully
functioning at http://localhost:8000. From there we can login using the following
account: username: admin // password: password123 and start using the website
services. By going into the "Crawler" tab, we can send crawl requests to the
Scrapyd instance running in the background and download our files using the
web interface.By going into the "Manager" tab, we can browse our downloaded
files. The files displayed are from the "../FEKSite/FEKdownoader/FEK Library"
directory.

This concludes the Setup and usage process of the website.

d) (Optional) If we want to Schedule jobs(crawls) for a specific time every day or a
specific day every week, we can modify the Schedulescrape.py file
accordingly.The file includes some commented code lines that show the way the
scheduler works. The default schedule plan is for the crawler to run every day at
14:30. So, having a Scrapyd instance running the way we talked about in step a)
and a deployed spider into the instance (step b), simply execute "python
Schedulerscrape.py" and it will work until stopped by a kill signal from keyboard.

A new ontology and software for the automatic updating of the platform "Nomothesia"

S. Giannakis 58

REFERENCES

[1] Ilias Chalkidis. Nomothesi@: Greek Legislation Platform. Technical report, National
 and Kapodistrian University of Athens, 2014.

[2] Pau Valles Fradera. "Personalizing web search and crawling from clickstream data", 2009.
http://upcommons.upc.edu/bitstream/handle/2099.1/6258/Pau%20Valles.pdf?sequence=1

[3] "GoogleBot", https://support.google.com/webmasters/answer/182072?hl=en
[4] Joao Leonardo Vicente do Carmo. "Web Content Management Systems: Experiences and

Evaluations with the WebComfort Framework", University Of Lisbon, 2007. http://isg.inesc-
id.pt/alb/static/students/msc-thesis/2007-jleon-MScThesis.pdf

[5] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. "Operating Systems: Three Easy
Pieces", 2014, Chapter 7 “Scheduling: Introduction” http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-
sched.pdf

[6] ELI Task Force, Publications Office (European Commission). "ELI implementation methodology:
Good practices and guidelines", 2016. https://publications.europa.eu/en/publication-detail/-
/publication/a8367080-bdad-11e5-bfdd-01aa75ed71a1/language-en

[7] ELI Task Force, Publications Office (European Commission).” ELI: A technical implementation
guide”, 2015. https://publications.europa.eu/documents/2050822/2138819/ELI+-
+A+Technical+Implementation+Guide.pdf/

[8] Monica Palmiran, Roger Sperberg, Grant Vergottini, Fabio Vitali. "Akoma Ntoso Version 1.0. Part
1: XML Vocabulary", 2017. http://docs.oasis-open.org/legaldocml/akn-core/v1.0/cs01/part1-
vocabulary/akn-core-v1.0-cs01-part1-vocabulary.pdf

[9] Official Greek Government Gazette, http://www.hellenicparliament.gr/en/Vouli-ton-Ellinon/I-
Bibliothiki/Koinovouleftiki-Syllogi/Efimeris-Tis-Kyverniseos-FEK/

[10] J. Eder, I. Rozman, and T. Welzer. Advances in Databases and Information Systems: Third East
European Conference, ADBIS’99, Maribor, Slovenia, September 13-16, 1999, Proceedings.
Advances in Databases and Information Systems: Third East European Conference, ADBIS’99,
Maribor, Slovenia, September 13-16, 1999 Proceedings. Springer, 1999.
https://static.aminer.org/pdf/PDF/000/026/087/evaluation_of_ data_modeling.pdf.

[11] Yugandhara Patil, Sonal Patil. "Review of Web Crawlers with Specification and Working", 2016.
http://www.ijarcce.com/upload/2016/january-16/IJARCCE%2052.pdf

[12] Carlos Castillo. "Effective Web Crawling", University of Chile, 2004.
http://chato.cl/papers/crawling_thesis/effective_web_crawling.pdf

[13] Dimitrios Kouzis-Loukas. "Learning Scrapy", 2016.
[14] "Scrapy Documentation", 2017, http://scrapy.readthedocs.io/en/stable/intro/overview.html
[15] "Scrapyd Documentation" http://scrapyd.readthedocs.io/en/stable/install.html
[16] Adrian Holovaty, Jacob Kaplan-Moss. "The Definitive Guide to Django: Web Development Done

Right", 2009
[17] Jeff Forcier, Paul Bissex, Wesley J Chun. "Python Web Development with Django" 1st edition,

2008
[18] W3C. Semantic Web. https://www.w3.org/standards/semanticweb/

http://upcommons.upc.edu/bitstream/handle/2099.1/6258/Pau%20Valles.pdf?sequence=1
https://support.google.com/webmasters/answer/182072?hl=en
http://isg.inesc-id.pt/alb/static/students/msc-thesis/2007-jleon-MScThesis.pdf
http://isg.inesc-id.pt/alb/static/students/msc-thesis/2007-jleon-MScThesis.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched.pdf
https://publications.europa.eu/en/publication-detail/-/publication/a8367080-bdad-11e5-bfdd-01aa75ed71a1/language-en
https://publications.europa.eu/en/publication-detail/-/publication/a8367080-bdad-11e5-bfdd-01aa75ed71a1/language-en
http://docs.oasis-open.org/legaldocml/akn-core/v1.0/cs01/part1-vocabulary/akn-core-v1.0-cs01-part1-vocabulary.pdf
http://docs.oasis-open.org/legaldocml/akn-core/v1.0/cs01/part1-vocabulary/akn-core-v1.0-cs01-part1-vocabulary.pdf
http://www.hellenicparliament.gr/en/Vouli-ton-Ellinon/I-Bibliothiki/Koinovouleftiki-Syllogi/Efimeris-Tis-Kyverniseos-FEK/
http://www.hellenicparliament.gr/en/Vouli-ton-Ellinon/I-Bibliothiki/Koinovouleftiki-Syllogi/Efimeris-Tis-Kyverniseos-FEK/
https://static.aminer.org/pdf/PDF/000/026/087/evaluation_of_%20data_modeling.pdf
http://www.ijarcce.com/upload/2016/january-16/IJARCCE%2052.pdf
http://chato.cl/papers/crawling_thesis/effective_web_crawling.pdf
http://scrapy.readthedocs.io/en/stable/intro/overview.html
http://scrapyd.readthedocs.io/en/stable/install.html
https://www.w3.org/standards/semanticweb/

