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ABSTRACT 

This thesis focuses on machine learning techniques that can be used in support of 

cloud services. The motivation behind this work is the necessity of manipulation and 

processing data comprising multiple sensor measurements. These measurements 

were collected by sensors that were installed on the Reims tramway. The concepts of 

Big Data are studied, while different Data Mining methods and Machine Learning 

algorithms are presented. A review of Cloud Computing, Internet of Things and 

SiteWhere are also provided. Two different neural network structures, Multilayer 

Perceptrons and Long Short-Term Memory to process and forecast the data composed 

of various physical quantities of the Reims tramway are studied. The results produced 

indicate that Long Short-Term Memory is more suitable than Multilayer Perceptrons 

for this forecasting problem.  
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Chapter 1 Introduction 

 

Machine Learning and Cloud Computing are gaining increased popularity over that past 

few years. The reason behind this is the rapid increase of the volume of data and the 

necessity of their fast processing, in order to extract useful information.  

The goal of this master thesis is to investigate the application of machine learning 

techniques in support of cloud services. In this work, we focus our effort to improve 

the process and analysis of the data of a real railway system (the Reims tramway) by 

forecasting the train power consumption. We develop a machine learning technique 

based on Neural Networks to process the dataset composed of various physical 

quantities related with the Reims tramway, each one measured periodically every 

second during the period of a day. The measurements were collected by different sensors, 

which were installed on the train. Initially, we provide the required theoretical 

background and then we present some relevant experimental results. The theoretical 

background involves the introduction of the concept of Big Data, the presentation of 

different Data Mining methods and Machine Learning algorithms that can be used in 

data processing and a review on Cloud Computing, Internet of Things (IoT) and 

SiteWhere. 

In Chapter 2, the problem definition is presented and the terms of Cloud Computing 

and Internet of Things are introduced. In Chapter 3, we introduce the notions of Big 

Data, Data Mining and Machine Learning. In Chapter 4, we begin with the presentation 

of the architecture and capabilities of SiteWhere and we conclude with the 

visualization of the train data, using a Graphical User Interface (GUI), referred to as 

MongoDB Compass. The train dataset was stored in the MongoDB database, which is 

supported by the SiteWhere platform. Chapter 5 provides a brief overview of Neural 

Networks and the relevant basic algorithms. In Chapter 6 we introduce the concept of 

Time Series, implement two different types of Neural Networks, the Multilayer 

Perceptrons (MLP) and the Long Short-Term Memory (LSTM) on the train dataset and 

we present a set of relevant results.  
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Chapter 7, provides the summary of the thesis and the conclusions derived and 

presented in the previous chapters.  
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Chapter 2 Scenario Description 

 

The increasing advances in hardware technology, such as the development of 

miniaturized sensors, GPS-enabled devices and accelerometers result in greater 

access and availability of different kinds of sensor data. This produces the collection 

of enormous amounts of data, that can be mined for a variety of analytical insights. 

Hence, sensor data introduce a lot of challenges in terms of data collection, storage 

and processing. In order to provide ubiquitous and embedded sensing there is a 

requirement for data collection from different devices that are connected and 

accessible through the Internet. This paradigm is referred to as the Internet of Things 

(IoT). The IoT term is used to describe “a world – wide network of interconnected 

objects uniquely addressable, based on standard communication protocols” [1] [2], 

whose point of convergence is the Internet [3]. 

In this thesis, we describe and propose the SiteWhere, an IoT platform in order to 

collect, store and process data that consists of multiple sensor measurements from 

Reims tramway. The Reims tramway plan is depicted in Figure 1. SiteWhere provides the 

required functionalities for ingestion, storage, processing and integration of device 

data and deal with all above-mentioned challenges caused by sensor data. It also 

utilizes datastore technologies, like MongoDB, Apache HBase and InfluxDB to store 

data. In this thesis we store the data in the MongoDB database and retrieve, store 

locally and process them.  

An important problem related with the sensor processing is the multivariate time 

series modeling and forecasting. In this work, we focus our effort to improve the 

process and analysis of the train’s data, in part by forecasting the train power 

consumption. Accurate modeling and prediction of the Reims tramway data is 

therefore of great importance and is the motivation behind this thesis. 

In Chapter 6, an empirical comparison between MLP and LSTM neural networks is 

performed. We consider two different LSTM types and compare their performance 

with MLP for making a one step-ahead prediction.  
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Figure 1: Reims tramway plan. 

 

The dataset used, is part of a larger dataset, collected from sensors on the Reims 

tramway. This part of the dataset contains the following quantities: 

i. External Temperature (measurement spot 1) 

ii. External Temperature (measurement spot 2) 

iii. Longitude 

iv. Latitude 

v. Station 

vi. Velocity 

vii. CO2 Level (inside the coaches) 

viii. Total Power 
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2.1 Cloud Computing 

With the significant advances in processing and storage technologies and the success 

of the Internet the realization of the cloud computing has been enabled. This 

computing model, provides the essential computing services to support a wide variety 

of services available to organizations, businesses and the public. In the cloud 

computing model resources are provided as general utilities that can be leased and 

released by users in an on-demand basis [4].  

One definition of cloud computing provided by the National Institute of Standard and 

Technologies (NIST): 

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 

access to shared pool of configurable computing resources (e.g., networks, servers, 

applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction [5].” 

In the context of cloud computing the elements of the network representing the 

rendered services are invisible to the end users, as if it is obscured by a cloud [6]. This 

concept is depicted in Figure 2. 
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Figure 2: Cloud computing metaphor [6]. 

 

The cloud model is composed of five cloud computing characteristics, three different 

service models and four types of clouds [5]. 

Cloud Computing Characteristics 

1. On demand self-service. A consumer can allocate or deallocate computing 

resources automatically, in an on-demand fashion without requiring human 

interaction. This automated resource management attains high performance 

and agility.  

 

2. Broad network access. Computing capabilities are accessible through the 

Internet. Hence cloud services are available to be used by any device with 

Internet connectivity (e.g. mobile phones, tablets, and laptops). 
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3. Resource pooling. The provider’s computing resources are pooled, thus they 

can be dynamically assigned and reassigned to multiple resource consumers 

according to demand. Each costumer can specify the location of the provided 

resources only at a higher level of abstraction (e.g. country, state, or 

datacenter) while he is not able to know the exact location.  

 

4. Rapid elasticity. Computing capabilities are elastically provisioned and 

released in order to scale rapidly in accordance to the level of demands. 

 

5. Measured services. Cloud computing employ a pay-per-use model, so 

computer systems ought to use a metering capability at some level of 

abstraction vary from service to service. As a result, resource usage can be 

monitored, controlled and reported providing transparency for both the 

provider and resource consumer. 

 

Service Models 

1. Software as a Service (SaaS). The consumer is capable to use the provider’s 

applications. These applications are accessible from various client devices and 

are running on a cloud infrastructure.  

 

2. Platform as a Service (PaaS). The resources provided to the consumer include 

operating system support and software development frameworks. Therefore, 

the consumer is able to deploy onto the cloud infrastructure consumer-

created or acquired applications created using programming languages, 

libraries, services and tools. 

 

3. Infrastructure as a Service. IaaS provide various computing resources (e.g. 

processing, storage, and networks) where arbitrary software can be deployed 

and run by the consumer. 
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Types of clouds 

1. Private cloud. Private clouds are offered for exclusive use by a single 

organization. They may be built and managed by the organization or other 

external providers. It may exist on or off premises of cloud provider. 

 

2. Community cloud. Community clouds are designed for exclusive use by a 

specific community of organizations that have shared concerns. It may be built 

and managed by one or more organizations in the community or by external 

providers. It may exist on or off premises of cloud provider. 

 

3. Public cloud. A public cloud can be used by the general public and it may be 

built and managed by a business, academic, or government organization, a 

third party or combination of them. It exists on the premises of the cloud 

provider. 

 

4. Hybrid cloud. Hybrid cloud is a combination of two or more cloud 

infrastructures (e.g. private, community, or public). In a hybrid cloud the 

entities preserve their uniqueness.  

 

 

Figure 3: The architecture of cloud computing environment can be divided into 4 layers that are 

illustrated in above figure [4]. 
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2.2 Internet of Things 

The IoT term is used to describe “a world – wide network of interconnected objects 

uniquely addressable, based on standard communication protocols” [1] [2], whose 

point of convergence is the Internet [3]. These objects are able to identify, measure 

and modify the physical environment acting as sensors and actuators.  

  aspects that are related to the Internet of Things are the Radio Frequency 

Identification (RFID), the sensor networks, the addressing and the middleware. 

RFID systems are attached to objects to provide the automatic identification of them 

and allow them to be assigned to unique digital identities, to be integrated into a 

network and to be associated with digital information and services [3]. RFID systems 

composed of two parts, the transponders, also known as RFID tags, and the readers. 

The RFID tags are small microchips that comprise a memory to store electronically 

information and an antenna. They can be active, passive or battery-assisted passive. 

The active tags have battery, so they periodically transmit ID signals. In contrast, 

passive tags have no battery, so they use only radio energy transmitted by the reader. 

Finally, if tags are battery-assisted passive, they transmit ID signals when a RFID reader 

appears. The RFID readers usually trigger the tag transmission by generating an 

appropriate signal, querying for possible presence of tags and for the reception of 

their unique IDs [1].  

Sensor networks along with RFID systems contribute to gain more information about 

the status of things, since they are capable to take measurements and get information 

about the location, movement and temperature. Sensor networks can be composed 

of a large amount of sensing nodes that can communicate to each other in a wireless 

network. Wireless sensor networks (WSNs) may provide useful data and are used in 

several application scenarios. However, WSNs and generally sensor networks have to 

tackle many communication and resources problems, such as short communication 

range, security, privacy, power considerations, storage, processing capabilities and 

bandwidth availability.  
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Addressing refers to the ability to uniquely identify the interconnected objects. This 

issue is very crucial for the success of IoT since this allows to uniquely address a huge 

number of devices and control them through the Internet [3]. 

Middleware is a software layer between the object and the application layer 

composed of three subs–layers, known as object abstraction, service management 

and service composition layer. These sub—layers are utilized in order to face the 

heterogeneity of the participating objects, their limited storage and limited processing 

capabilities and the large amount of applications that are included in the application 

layer. In addition, middleware has to deal with security issues and provide 

functionalities that manage the privacy and security of all the exchanged data. These 

functions could be included in an additional layer or distributed through the stack 

between the object abstraction and service composition layer. The last solution is used 

more often. An IoT paradigm and the SOA-based architecture for the IoT middleware 

are depicted in the Figure 4. 

 

Figure 4: IoT paradigm and the SOA-based architecture for the IoT middleware [1]. 
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Chapter 3 Theoretical Background: Big Data, 
Data Mining, Machine Learning 

 

The goal of this chapter is to provide the basic definitions, properties and tools which 

are related with the concept of Big Data, Data Mining and Machine Learning. These 

terms are often used interchangeably, so it is decided to discuss these in the same 

chapter. Hadoop and all the components included in the Hadoop ecosystem are 

significant tools correlated with Big Data. The essence of data mining and machine 

learning are introduced and various data mining methods and machine learning 

algorithms are summarized. Data mining is the process of learning patterns and 

identifying predictive models from large-scale datasets. It usually uses machine 

learning algorithms in order to extract valuable information from the data. 

 

3.1 Big Data 

A widely used definition of Big Data is derived from Gartner. In 2012, Gartner defined 

the exploding amount of data as follows: 

“Big data is high volume, velocity, and/or variety information assets, that require 

new forms of processing to enable enhanced decision making, inside discovery and 

process optimization [7].” 

According to the above definition one understands that volume, velocity and variety 

are three basic characteristics of the big data. The terms volume, velocity and variety 

referred to the huge amount of data, the speed that data are stored, managed and 

manipulated at the right time and the variety of data sources, types and structures 

respectively.  
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3.1.1 Big Data Analytics 

Big data analysis is the data mining field that aims to manage fast vast amounts of 

data. In this section, we summarize different types of data analytics. 

Big data analytics are separated into two types, basic analytics and advanced analytics.  

Basic analytics are used to investigate the data and it may include visualizations or 

simple statistics. Some significant operations of basic analytics involve: the division of 

data into smaller sets of data that ease the examination of them, the track of large 

volumes of data in real time, and the anomaly detection, for example an event with 

actual observation different from expected.  

On the contrary, advanced analytics provide some algorithms and a lot of data mining 

techniques, such as innovative statistical models, neural networks and other machine 

learning methods for more complicated analysis. Some examples of advanced 

analytics include: predictive models composed of algorithms and techniques used on 

large volume of data to predict future outcomes, text analytics and other statistical 

and data mining methods and algorithms, like forecasting, classification, clustering 

and optimization. Nowadays, advanced analytics are becoming increasingly famous, 

because they achieve substantial power increase and enable new algorithm 

development that makes the manipulation of big data easier and more efficient. 

 

3.1.2 Data Mining Methods 

As mentioned in the previous paragraph, advanced analytics utilize various data 

mining techniques. Data mining is a computing process that includes basic algorithms 

and methods that enable gaining knowledge from big data. In fact, it is a part of a 

wider knowledge investigation process, which comprises preprocessing and 

postprocessing tasks. Some examples of preprocessing tasks are data extraction, data 

cleaning, data fusion, data reduction and feature construction, while some examples 

of postprocessing tasks are pattern and model explanation, data visualization and 

online updating. Data mining is an interdisciplinary subfield that merges concepts 

from database systems, statistics, machine learning and pattern recognition [8]. 



21 
 

Some basic data mining postprocessing methods are presented below.  

 

Classification 

The goal of the classification process is to assign an unknown item to one of some 

predefined classes. This is achieved by defining a function f  based on a training set 

that comprises many items and their corresponding class. The function defined by the 

training set is called classifier. After the classifier is trained, it is possible to predict the 

class of any unknown item. As far as machine learning goes, perspective classification 

is a supervised learning.  

Regression 

Contrary to classification process, in regression analysis the output variable takes 

values in an interval in the real axis. Hence, given a training set, the task is to estimate 

a function f, whose graph fits the data. After this function is estimated, an unknown 

input point can be assigned to a specific output value [9]. 

Clustering 

Clustering is the problem of partitioning data into groups so that each group contains 

similar objects. The more similar the objects within a group are to each other and 

more dissimilar from the objects in other groups, the better the clustering is. In terms 

of machine learning, the exploration of clusters is an unsupervised learning because 

cluster analysis needs to capture the hidden structure from unlabeled data in order to 

group them. 

Forecasting  

Forecasting is a process of making predictions of future values of a variable based on 

past and present observations. The term prediction is similar to forecasting. The main 

difference between them is that forecasting is used for the estimation of values at 

specific future times, while prediction is used for more general estimations [10]. 
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3.2 Machine Learning 

As it has been already mentioned in the introductory paragraph, the data mining 

process usually uses machine learning algorithms. In this section, we will explain the 

basic concepts someone needs for a full understanding of machine learning by 

introducing basic definitions and different kinds of machine learning algorithms.  

 

3.2.1 Machine Learning Algorithms 

Machine learning algorithms can be separated into groups depending on the form by 

which the function f  is represented. Below we present the most popular machine 

learning algorithms. 

Decision trees: In this category, the form of the function f  is a tree. Decision trees 

are a collection of nodes, each of which has a function f  of x . There is a root node, 

interior nodes and the leaves nodes (nodes that don’t have children). To classify a 

feature vector x , we start from the root node and according to the value of  f x we 

decide to which child or children the search must proceed. The classification task is 

completed when a leaf is reached. Decision trees are suitable for binary and multiclass 

classification and regression problems. Some examples of decision tree algorithms are 

the Classification and Regression Tree, the Iterative Dichotomizer3, the Decision 

Stump and Conditional Decision Trees. 

Perceptrons: Perceptron is a function which is associated with a vector of weights 

 1 2 3, , ,..., nw w w w w  with real valued components and applied to a feature vector 

 1 2 3, , ,..., nx x x x x  with real valued components, too. Perceptron has a threshold . 

The output of the perceptron is equal to +1 if the inner product w x  is grater that 

threshold   or otherwise it is equal to -1. Perceptron is suitable for binary 

classification [11].  



23 
 

Neural nets: Neural nets are networks composed of layers, each of which contains one 

or more perceptrons. The output of some perceptrons can be used as input to next 

layer’s perceptrons. Neural nets are suitable for binary or multiclass classification. 

Multiclass classification is supported since many perceptrons can be used as outputs 

by associating each of them with a specific class. More details about neural nets are 

given in Chapter 5. 

Instance – based learning algorithms: An instance – based algorithm uses a similarity 

measure to compare new feature vectors with the data seen during the training 

procedure. According to the results of the comparison, it makes predictions and 

classifies new data properly.  An important kind of instance based algorithms is the k-

Nearest Neighbor algorithm (kNN). 

Support – vector machines: The goal of support vector machines is to find a 

hyperplane 0w x b    that separates the points of the training set into two classes 

and maximizes the distance  between the hyperplane and the points simultaneously. 

Support vectors are the points that are at distance  from the hyperplane [11]. 

Support vector machines are used for classification and regression analysis. 

 

3.2.2 Training Set 

The training set contains the data that are given to machine learning algorithms for 

learning. It comprises a set of pairs  ,x y , where x is a vector of categorical or 

numerical values, known as feature vector and y is the label that denotes the class in 

which x  belongs. There are many types y of that define the type of the machine 

learning problem. To be more specific, if y is a real number, then the machine learning 

problem is a regression problem. In contrast, if label y is a Boolean value -1 (false) or 

+1 (true) or a member of some finite set, then the machine learning problem is a 

binary or a multiclass classification problem respectively. Finally, the label y may be a 

member of potentially infinite set, such as a parse tree for x  [11]. 
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3.2.3 Supervised, Unsupervised and Semi - Supervised 
Learning 

Machine learning can be categorized into supervised, unsupervised and semi – 

supervised depending on the type of the given training set. 

Supervised learning: the training set is composed of input variables 1 2 3, , ,..., nx x x x , 

known as features and output variables 1 2 3, , ,..., ny y y y , known as labels. In this case, 

the algorithm learns how to map each input ix  to the corresponding label jy  and 

designs a function, which is capable of predicting the output label given any new input. 

Some supervised learning algorithms are the linear regression, random forest and 

support vector machines. 

Unsupervised learning: the training set comprises only the input variables 

1 2 3, , ,..., nx x x x and no corresponding labels. The unsupervised learning algorithms 

have to model the structure or the distribution in the input data. Some examples of 

unsupervised machine learning algorithms are the clustering and the association rule 

problem. 

Semi – supervised learning: the training set is composed of a large amount of 

unlabeled input data. In semi – supervised learning class only a small percentage of 

the input data include their corresponding labels. 

 

3.2.4 Data Preprocessing 

Data preprocessing is required before machine learning algorithms are applied to 

training sets, because the quality of the data and the information that they contain 

are two factors that affect the learning performance. Below we present some needful 

preprocessing techniques. Some of them will be used in Chapter 6.  

Missing values: missing values in real world datasets are a common incident that 

reduce the representativeness of the samples and can cause unpredictable results if 

they are ignored. There are several preprocessing techniques to treat the missing 

data, like mean imputation or simply removing the features or samples that contain 
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missing values. To eliminate features and samples with missing values is a convenient 

approach, but if many features or samples are removed from dataset, it can lead to 

the loss of valuable and useful information. In contrast, mean imputation is a safer 

approach. Mean imputation is an interpolation technique that substitutes missing 

values by the mean value of the total feature column.  

Training set and test set: Dividing dataset into training and test set is an effective 

approach to avoid overfitting. Overfitting occurs when the machine learning algorithm 

performs well only on the training set, but it is unable to generalize well to new data. 

So, to avoid overfitting the training set is used to train and optimize the model, while 

the test set is used to estimate the accuracy of the final model and indicate if the 

model is overfitting the data. The separation of the dataset into training and test set 

must reserve the valuable information in the training set. However, smaller test sets 

may lead to less accurate estimation of the generalization error. The most commonly 

used splits are 60-40, 70-30 or 80-20 calculate on size of the initial dataset. 

 

Figure 5: Training set derives the model and test set evaluate the final model.  

 

Feature scaling: Feature scaling is an essential step in data pre-processing, since 

machine learning algorithms behave better if the values of feature vectors are on the 

same scale. We present an example to understand the importance of feature scaling 

in machine learning.  

Example: If there are two features, one of which is measured on scale from 1 to 10 

and the second on scale from 1 to 100,000, then the squared error function in a 
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classifier will focus on optimizing the weights to larger errors in the second feature 

[12]. 

The well-known techniques for feature scaling are the normalization and 

standardization techniques. 

In normalization, the min – max scaling is applied to each feature column, so that each 

sample ix is replaced by the new value normx , where i

normx is calculated as follows: 

min

max min

i i
norm

x x
x

x x





 , where ix is a particular sample, minx is the minimum value in the 

feature vector and maxx is the maximum value in the feature vector. 

Standardization is a technique that can be more practical for many linear models 

which are used to initialize weights to zero or small random values close to zero. It 

centres the feature columns at mean zero with standard deviation equal to one, thus 

the feature columns take the form of a normal distribution which in turns eases the 

algorithm to learn the weights. In addition, standardization makes the algorithms less 

sensitive to outliers by holding useful information about them. The new value i

stdx  of 

each sample ix is calculated as follows: 

i i x
std

x

x
x






  , where x is the sample mean of a particular feature vector and x the 

corresponding standard deviation [12]. 

Regularization: The goal of a machine learning algorithm is to find a set of weight 

coefficients that minimizes the error on the training data. Regularization is a 

preprocessing technique that adds a penalty term to the initial error in order to 

penalize complex models. Finally, instead of the error on the data, the learning 

algorithm must minimize an augmented error which is given by the equation: 

E  error on moddata el  complexity  

The parameter  gives the weight of the penalty term [13].  
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Dimensionality reduction: Feature selection and feature extraction are two 

fundamental techniques for dimensionality reduction. In feature selection, algorithms 

intend to create a subset composed of the most relevant to the problem original 

features and remove the irrelevant features. In this way, they achieve to reduce the 

dimensions of the initial feature subspace. In feature extraction, algorithms derive the 

valuable information from the initial dataset and project the data onto a new feature 

subspace of lower dimensionality. Feature extraction can be understood as data 

compression with the goal of maintaining most of the relevant information [12]. The 

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are basic 

algorithms that are widely used for feature extraction and dimensionality reduction. 

 

3.3 MapReduce and Hadoop Ecosystem 

In this part, we will outline the MapReduce model and other tools, like Apache Hadoop 

and the Hadoop-related Apache projects Pig, Hive, HBase and Mahout. Big data 

analysis requires large amount of data to be managed with high speed. Computing 

clusters and Distributed File Systems (DFS), enable the parallelization of various 

operations, like computations and data transfer. Based on the DFS, many higher-level 

programing systems have been developed, with most significant the MapReduce 

system.  

MapReduce 

MapReduce is a programing model, that is used for data administration and 

processing. It is composed of two functions, the Map and the Reduce functions. The 

Map function applies an operation to a specific part of data and provides a set of 

intermediate key/value pairs. The Reduce function takes an intermediate key and a 

set of values related with that key, merges together these values and provides the 

final output.  

The simplest example to get an understanding of MapReduce is the word count 

example, in which the only operation is to count how many times each word appears 

in a collection of documents. In other words, the task is to create a list of words and 
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identify the frequency with which they appear in order to find the relative importance 

of certain words. In the following example, the input of the Map function is a line of 

text. At first, the Map function analyses the text string into individual words and 

produces a set of key/value pairs of the form <word, 1>. Finally, the Reduce function 

sums up the 1 values and provides the <word, count> pair, which is the final output. 

The MapReduce example is illustrated in Figure 6 [14]. 

 

Figure 6: MapReduce example [14]. 

 

Apache Hadoop 

Apache Hadoop is a project which develops open-source software for reliable, 

scalable, and distributed computing [15]. Hadoop successfully executes the operations 

of the MapReduce model at a high level. The base of Hadoop is the Hadoop Distributed 

File System (HDFS), in which data are distributed through a computing cluster. HDFS 

separates each file into fixed size blocks and stores them across a computing cluster. 

In addition, it creates three replicates of each block, that are stored on different nodes 

in the Hadoop cluster. As a result of replicates, Hadoop is capable of responding even 

in the case of a hardware failure and it is more flexible in determining which machine 

to use for the map step on a specific block. The manipulation of the data access in 

HDFS is accomplished by three background processes, usually called Java Daemons, 

each of which has a particular task. The three Java Daemons are known as Name Node, 

Data Node and Secondary Name Node. Name Node determines where the blocks of 

data are stored on a single machine, Data Node manages the stored data on each 
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machine and the Secondary Name Node can perform some of the Name Node tasks 

in order to reduce its workload.  Machines are classified into two categories by 

processes that they run. The first category is the master nodes and the second 

category is the worker nodes. Master nodes run the Name Node and the Secondary 

Name Node while worker nodes run the Data Nodes. 

Apache Pig 

Apache Pig is a high-level platform that contains an environment to execute the Pig 

code and a data flow language, called Pig Latin. The main advantage of Pig is the 

simplicity of developing and executing a MapReduce task. Pig instructions are 

translated into MapReduce jobs in background. Additionally, in Pig the execution of 

several common data manipulations, such as inner and outer joins between files, is 

the same as that of the SQL language used in a relational database. Finally, Pig 

language can be extended using user-defined functions (UDFs), thus some operations 

can be coded in other programing languages, for instance Python, JavaScript or 

Groovy, and then executed in the Pig environment [14].  

Apache Hive 

Apache Hive is a data warehouse structure built on top of Hadoop that provides data 

summarization, query and analysis [16]. The language of Hive is the HiveQL (Hive 

Query Language) and it is like the SQL language. Hive provides table structures with 

rows and columns. Each row represents a record, transaction or a particular entity. 

The value of the corresponding column represents the attribute of the row. Hive is a 

good tool to be used if the table is the appropriate structure for data visualization. 

However, Hive is not the suitable tool for real – time queries because a Hive query has 

to be translated into a MapReduce job and then submitted to the Hadoop cluster [14]. 

Apache HBase 

Apache HBase is Hadoop database, that provides real-time read and write access to 

the big data. The HBase design is based on Google's 2006 paper on BigTable [14]. It is 

constructed upon HDFS. HBase achieves real-time operations very quickly by dividing 
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the workload over different nodes in a distributed cluster.  More specifically, each 

table is separated into a few regions and a worker node is responsible for a specific 

range of data in the table column. As the table size increases or the user load 

increases, additional nodes and region splits can be added to scale the cluster 

properly. The form that the contents are stored on an HBase table is a key/value form. 

The values represent the data stored at the intersection of the row, column and 

version. The key contains the next elements: 

1. Row 

2. Row length 

3. Column family 

4. Column family length 

5. Column qualifier 

6. Version 

7. Key type 

Row is used as the primary attribute to access the data of an HBase table. The way 

that data are distributed depends on it, so the structure of the row has to be designed 

according to how the data will be accessed. 

Column family provides grouping for the column qualifiers. 

Version or timestamp make it possible to maintain different values of the contents in 

an intersection of a row and a column. 

Key type indicates whether a write operation corresponds to add data into the HBase 

table or delete data from the table [14]. 

Apache Mahout 

Apache Mahout provides executable Java code that implements various machine 

learning algorithms and data mining techniques, that can be used for big data analysis. 

It contains classification algorithms, such as Logistic Regression, Naïve Bayes, Random 

forests and Hidden Markov models. It also contains clustering algorithms, like canopy, 

K-means, fuzzy K-means, dirichlet, mean-shift and some recommenders - 
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collaborative filtering, such as non-distributed recommenders and distributed item-

based collaborative filtering.   
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Chapter 4 SiteWhere: An Internet of Things 
Platform 

 

In the beginning of this chapter we describe SiteWhere, an Internet of Things solution 

used to manage and analyze device data. The next topic presented in this chapter is 

data visualization, which is performed using a GUI for MongoDB database, the 

MongoDB Compass. 

 

4.1 SiteWhere 

The middleware solutions discussed above are referred to as IoT platforms. In this 

section, we will focus our attention to SiteWhere, an open source Internet of Things 

platform that provides all the required functionalities for ingestion, storage, 

processing and integration of device data.  

The core of SiteWhere relies on many proven and open source technologies in order 

to carry out all the required functions mentioned in the previous paragraph. An 

important technology adopted is that of the Tomcat Server, a java servlet container in 

which SiteWhere runs as a Web Application Archive (WAR) file. Some other 

technologies are the Spring Framework, Spring Security and Hazelcast. In addition, 

SiteWhere utilizes datastore technologies, like MongoDB, Apache HBase and InfluxDB 

to store data. Finally, it uses complementary technologies like the Mule AnyPoint 

Platform and Apache Spark. 

SiteWhere architecture is illustrated in Figure 7. It consists of various components that 

will be analyzed further in the following paragraphs. 
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Figure 7: SiteWhere architecture. [17]. 

 

A significant component is the SiteWhere Server, a central component which controls 

all other system’s components and the processing of device data.  

Another component is the Tenant Engine. A specific SiteWhere instance is capable to 

have multiple tenants and thus to serve multiple IoT applications. Each system tenant 

can have different data storage and processing pipeline without affecting other 

tenants.  In addition, it is configured to communicate with devices over any number 

of most popular communication protocols, like Message Queue Telemetry Transport 

(MQTT), Advanced Message Queuing Protocol (AMQP) and Stomp. Although the 

default communication protocol is the MQTT.   

Communication engine is a component that is encapsulated in the Tenant Engine. It 

ensures the internal event handling. Its operations are the registration of new or 

existing devices, the receipt of events from connected devices and the delivery of 

commands to them.  
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It is also important to mention that events are the core data that SiteWhere revolves 

around. SiteWhere manages different types of events such as measurements, 

locations, alerts and command invocations and responses.  

Figure 8 illustrates the flow of data in the Communication Engine component.  

 

Figure 8: Diagram of data flow in Communication Engine component [17]. 

SiteWhere is able to send and receive data either from devices or from other agents 

via Representational State Transfer (REST) services. REST services can be used by 

authenticated users to create, view, update or delete entities in the system. They can 

also be used by devices and directly interact with SiteWhere.  

In addition, SiteWhere cooperates with NoSQL databases to store and retrieve the 

data that are collected from devices. MongoDB, Apache HBase and the InfluxDB are 

three databases which supported by SiteWhere. The MongoDB is a document 

oriented database with great performance, availability and high scalability. The HBase 

database is a NoSQL and distributed database in which device events are stored as 

time series data. A brief description of HBase has already been pointed out in Chapter 

3. The InfluxDB is a time series database that supports advanced clustering and 

provide high scalability. The InfluxDB database also provides a tool for data 

visualization, reffered to as Grafana [17].  
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Furthermore, SiteWhere facilitates the integration with other platforms through 

Hazelcast, an in-memory data grid. This way, SiteWhere’s functionalities and 

capabilities can be improved and extended.  

Another important feature of SiteWhere is its capability to support several external 

device platforms. These include the Android Development Kit, the Arduino 

Development Kit and the Java Agent. As a result, the interaction and the interchange 

of events between the server and the Android devices, Arduino devices or Java agents 

are easy to take place. Moreover, the Mule AnyPoint Platform and the Apache Spark 

are two external platforms that can connect to a SiteWhere server instance and 

exchange data with it via Hazelcast services. The Mule AnyPoint is an ESB platform 

which manages interactions across varied systems since it supports a lot of 

communication protocols and the Apache Spark is a computing framework which is 

used to large – scale data processing.   

Finally, SiteWhere makes it easy to associate the devices with physical assets, like 

people, places and things and describe the hardware information or configuration. 

Each device can be registered along with its unique hardware id and device specific 

metadata [17].  

In summary, SiteWhere is a platform suitable to support the work of this thesis. 

SiteWhere can be used to facilitate network connectivity of train sensors. Through this 

sensor measurements can be stores in the MongoDB database of SiteWhere. If the 

data are stored, can then be retrieved and stored locally allowing their offline 

processing. In Chapter 6 we propose the use of Neural Networks for forecasting using 

the sensor data retrieves from the MongoDB database and present some relevant 

experimental results. If the sensors are connected to SiteWhere, Neural Networks can 

be adopted and used for real time forecasting via services provided by Hazelcast. 

Finally, data visualization providing immediate insight into the server status and query 

performance can be also provided, using various visualization tools. In the next 

section, we will use the MongoDB Compass and visualize the train data that we have 

stored in the MongoDB database. 
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4.2 Data Visualization 

The database that was used in this thesis to store the collected train data was 

MongoDB. We also used MongoDB Compass for data visualization. MongoDB 

Compass is a graphical tool introduced by MongoDB.  

It allows the user to analyze and visualize its database scheme through histograms, 

which represent the frequency of the data and their distribution in a collection. Figure 

9 illustrate the histograms of the train data that are stored in a MongoDB database.   

 

 

Figure 9: Histograms of the train data as represented by MongoDB Compass.  
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In addition, MongoDB Compass makes easier the MongoDB queries. Users can simply 

click on the chart or on a range of charts of the data histogram and as a result a 

MongoDB query will be automatically built in the query bar. Figure 10 shows results 

of a query about the CO2 that was graphically built using MongoDB Compass.  

 

Figure 10: Results of a MongoDB query that was graphically built using MongoDB Compass. 

 

Finally, MongoDB Compass can use the geospatial functions provided by MongoDB. If 

a geospatial index introduced in the MongoDB collection, the MongoDB Compass 

shows a map with identified the points of interest. This map is illustrated in Figure 11. 

To create the geospatial data depicted below we combined the latitude and longitude 

data from the collected train dataset.  

 

 

Figure 11: Map with points of a route of the Reims train. 
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Since geospatial data are supported by MongoDB Compass, users are able to build 

geospatial queries and extract the results graphically and as a JSON documents. 

Figure 12 shows the implementation of a query and Figure 13 shows the graphical 

results for the location and the power consumption of the train.s 

 

 

Figure 12: Geospatial query graphically built using MongoDB Compass.  

 

 

Figure 13: Graphically results of the geospatial query. 
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Chapter 5 Overview of Neural Networks  

 

In this chapter, we provide an overview of Neural Networks. We introduce the 

different Neural Networks’ architectures and some algorithms related to them, such 

as the backpropagation and gradient descent algorithm. Finally, we analyze further 

the Multilayer Perceptrons and the Long Short-Term Memory neural network.  

 

5.1 Introduction 

Before trying to give a definition of Artificial Neural Networks, we will provide a review 

of biological brain. The human brain consists of many interconnected neurons. 

Neurons are computational cells, that are responsible for processing, transmitting 

signals and accomplishing recognition tasks. “Warren McCullock and Walter Pitts 

published the first concept of a simplified brain cell, the so-called McCullock-Pitts 

(MCP) neuron, in 1943”. Warren McCullock and Walter Pitts correlated the nerve cell 

with the logic gate. These logic gates get chemical and electrical signals as input and if 

they exceed a threshold, then a specific output signal is generated [12]. 

Artificial Neural Networks, that are usually referred to as “Neural Networks”, are a 

replica of Biological Neural Networks. Neural Networks are composed of a group of 

interconnected computational units, that are called neurons and they can interact 

with the environment. The knowledge is stored in synaptic weights by interneurons 

connection strengths. Finally, knowledge is accomplished through a learning 

algorithm. A learning algorithm is a function that updates the synaptic weights during 

the learning operation [18]. 

There are three basic elements of the neural model: 

1. A collection of synapses or connecting links between neurons. Each synapse 

has its own weight.  

2. An adder for summing the neuron’ s input signals. Before summing, each signal 

has been multiplied by the corresponding synaptic weight. The aggregation is 

linear. 
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3. An activation function for reducing the amplitude of the neuron’ s output. An 

activation function is a non-linear transformer, that limits the amplitude of the 

output into a specific range of finite values.   

4. An offset vector, usually called as bias, for increasing or decreasing the 

triggering of activation function. The bias vector is equal to synaptic weight 

0kw  and it does not depend on any input value. 

The neuron model is depicted in Figure 14. 

 

5.2 Activation Functions 

There are a plenty of activation functions. Some of them will be inferred in this part.  

Sigmoid Function 

 The sigmoid function is a non-linear function with the following mathematical form: 

 
1

1 x
x

e






.  

It accepts a set of real-valued numbers and limits them into a range between 0 and 1. 

Tanh function 

The tanh function is a non-linear function, which squashes each real-valued number 

into a range between -1 and 1. 

 

Figure 14: Non-linear model of a neuron [18]. 
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Rectified Linear Unit or ReLU function 

The mathematical form of ReLU function is    max 0,f x x . The symbol x in the 

ReLU’ s formula is the real-valued input of the neuron [5]. 

 

5.3 Neural Network Architectures 

Neurons of a neural network are grouped in layers. While the network layout is closely 

associated with the learning algorithm used to train the neural network, three basic 

structures of neural networks are referenced below. 

Single-Layer Feedforward Networks 

A single-layer neural network contains two layers. The first and the second layer are 

composed of input nodes, that can be called “source” nodes, and output nodes 

respectively. Even though there are two layers, it is considered that there is a single 

layer of neurons, the output layer. The reason is that only the output nodes perform 

computations. The source nodes of the network project input vectors straight onto 

output neurons. The input signal does not flow backward as the network architecture 

is a feedforward type. A single layer feedforward neural network is illustrated in Figure 

15 [18]. 

 

 
Figure 15: Feedforward network with a single layer of neuron [18]. 
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Multilayer Feedforward Networks 

The second category of neural networks architecture comprises two or more hidden 

layers. The neurons of a hidden layer do not communicate directly with the input and 

output layers. The source nodes transfer the input data to the second layer. Then the 

output of second layer is transmitted to the input of the third layer and so on. It is 

important to realize that if a network has more neurons and layers, then parallel 

computations can be accomplished because the information is distributed to more 

neurons. Like the first class, the input signal does not flow backward. A multilayer 

feedforward network is illustrated in Figure 16. The illustrated neural network is a fully 

connected one. The term “fully connected” refers to the fact that every node in each 

layer is linked with each node in the next layer. There are multilayer feedforward 

networks that are partially connected [18]. 

 

 

Figure 16: Fully connected feedforward network with one hidden layer and one output layer [18]. 

 

Recurrent Networks 

The difference between the above-mentioned feedforward networks and the 

recurrent networks, usually called RNN, is that the latter has at least one feedback 

loop. More specifically, the recurrent network may have a layer, in which neurons feed 

other neurons of the network with their outputs. This feedback loop allows 
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information to persist. A recurrent network with a hidden layer is illustrated Figure 17. 

Hidden neurons and output neurons feed into other neurons as it is depicted below. 

Because of feedback loops, some synapses are composed of time delayed units so the 

network has non-linear performance [18] [6]. 

 

Figure 17: Recurrent Network with hidden neurons [18]. 

 

5.3.1 Multilayer Perceptrons  

The basic properties of Multilayer Perceptrons neural networks are: 

1. Each neuron of the MLP network has an activation function that is non-linear 

and differentiable. 

2. The network is composed of one or more hidden layers. 

3. The neurons are highly connected and the extent of their connectivity is 

determined by the value of their synaptic weights.  

A Multilayer Perceptron is shown in Figure 18, in which the MLP network contains one 

hidden layer. 
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Figure 18: Multilayer Perceptrons Network with one hidden layer. 

 

3.3.1.1 Backpropagation algorithm 

 The Backpropagation algorithm is the most popular learning algorithm for multilayer 

perceptron training. While a Backpropagation algorithm is used, the training 

procedure is separated into two phases, the forward phase and the backward phase. 

Through the first phase, the input signal is transmitted from the input to output layer, 

layer by layer, and the synaptic weights’ values are constant. In the second phase, the 

comparison between the output and the desired response leads to an error signal. The 

error signal is propagated through the network backwards, starting from the output, 

and then the synaptic weights are changed to minimize the loss function. The loss 

function is a function that calculates the divergence between predicted and expected 

network’s response values. The back-propagation algorithm is an efficient and famous 

algorithm, because it is simple to compute locally and it executes stochastic gradient 

descent [18]. 

 

3.3.1.2 Gradient Descent 

Gradient descent is an algorithm that is used to “optimize” an objective function 

finding its local minimum. The local minimum can be found using gradient descent. 

Steps associated with the function’s gradient are taken in order to converge to the 

local minimum.  
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3.3.1.3 Stochastic gradient descent  

Stochastic gradient descent, is stochastic approximation of the gradient descent 

optimization algorithm for minimizing an objective function that is written as a sum of 

differentiable functions [4]. 

Adaptive Moment Estimation (Adam) is a class of stochastic gradient descent 

algorithm. In this optimization algorithm, running averages of both gradients and then 

the second moments of the gradient are used [4]. 

 

5.3.2 Long Short - Term Memory 

LSTM (short for Long Short-Term Memory) networks are a class of recurrent neural 

networks, that were mentioned above. LSTMs contain a set of recurrent blocks, known 

as memory blocks. Each block is composed of one or more memory cells and each cell 

contains three units, the input, output and forget gates.   LSTMs are able to learn long-

term dependencies, because they remember information that was earned in previous 

epochs.  There are some basic phases through the training procedure of LSTM 

network. During the first phase, LSTM decides which information it is going to discard. 

The unit that makes this decision is a sigmoid layer, known as “forget gate” layer. After 

that, the networks choose the information that they are going to keep in the cell state. 

In this phase, there is a combination of two layers, the sigmoid layer, usually called 

“input gate” layer, that decides which values will be updated and the tanh layer that 

selects which candidate values will be added to the state. In the next phase, the old 

cell state is updated to a new cell state. Finally, LSTM decides what information it is 

going to output. In this last phase, the sigmoid layer decides which parts of the cell 

state it is going to output and the tanh layer outputs them [6] [19]. Figure 19 provides 

an illustration of LSTM memory block with one cell. 
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Figure 19: LSTM memory block [6].  
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Chapter 6 Forecasting based on Neural 
Networks (NN) techniques 

 

In this chapter, we introduce the notion of time series and summarize the results of 

the implementation of neural networks in time series forecasting. We used two 

different types of Neural Networks, the Multilayer Perceptrons and the LSTM network. 

Finally, we compare the results of these implementations. 

  

6.1 Time Series 

Time series is a set of data points, each of which is recorded at a specific time. There 

are two categories of time series. First class is the discrete-time time series, which is a 

sequence taken at fixed time intervals and second class is the continuous-time time 

series, which is a sequence of observations recorded continuously over some time 

interval [20]. 

Forecasting future values of an observed time series can be challenging in many fields 

of science and engineering. Forecasting can be carried out using different statistical 

methods and models, such as auto – regressive, moving average and vector auto – 

regressive models. Although, recent years machine learning models, like Artificial 

Neural Networks (ANN), LSTM Recurrent Neural Networks, Decision Trees and 

Support Vector Machines are widely used for time series forecasting.  In next sections, 

we approach the time series forecasting problem using two different types of neural 

networks, the MLP and LSTM.  
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6.2 Results of MLP implementation 

In this section, we will present the experimental results of the MLP implementation 

on the train dataset. We used MLP networks for the power consumption forecasting. 

Before data pre-processing, we selected some quantities that we considered more 

important for power forecasting. We took line plots across time and analyzed these 

quantities of the initial dataset visually. The plots are illustrated in Figure 20. 

 The first step was to split the dataset into two parts, the training set and the test set. 

The training set contains 80% of the total dataset and the remaining 20% comprises 

the test set. The second step was to transform the time series problem into a 

supervised problem, which means that we used the observation at the previous time 

step as the model’s input and the observation at the current time step as the model’s 

output. Finally, we rescaled the data to a range of [-1,1], because machine learning 

and optimization models behave better, if data are on the same scale. In the following 

experiments, we calculate one-step ahead forecast using the test set. 

 
Figure 20: Plots of parameters CO2, Station, Velocity, Acceleration and Power. 



49 
 

 

In order to tune the network, throughout each experiment we changed a specific 

parameter of the network and estimated the forecast error. To evaluate these errors, 

we utilized the root-mean-squared-error metric (RMSE). Below we will present the 

results that have been derived from our network’s parameter analysis.   

In the beginning, we investigated the number of epochs. The number of epochs 

determine the maximum number of passes over the training dataset. Unless we set a 

maximum number of iterations, the weights will never stop updating. Figure 21 

depicts RMSE against the number of epochs. As we can see, RMSE starts to get small 

values after 100 epochs, shows an increment at 150 and 200 epochs and finally 

converges after 250 epochs. Thus, we set the number of epochs to 250 for the rest of 

the MLP experiments. While we ran the experiment to determine the number of 

epochs, number of neurons, batch size and window size was set to 10, 50 and 1, 

respectively.  

 

Figure 21: RMSE metric for different number of epochs for the MLP neural network. 

 

Then, the batch size parameter has been investigated. The batch size is the number of 

training instances used in each iteration. The larger the size of the batch, the faster 

the training procedure is, because the weights are updated after each batch 
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propagation. The results are plotted in Figure 22. During this experiment, the number 

of neurons, the number of epochs and the window size was set to 10, 250 and 1, 

respectively. Based on these results, the batch size has been set to 150 for the rest of 

the MLP experiments. 

 

Figure 22: Plot that illustrates the results of RMSE metric for different batch size for the MLP neural 
network. 

 

Following this, the number of neurons in a network with a single hidden layer and the 

number of hidden layers is evaluated for number of epochs, batch and window size 

equal to 250, 150 and 1, respectively. The results are plotted in Figure 23 and Figure 

24 and summarized in following tables. It is concluded that the network architecture 

with one hidden layer and twenty neurons succeed the most accurate power 

consumption forecasting.   
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Figure 23: Plot that illustrates the results of RMSE metric for different number of neurons for the 
MLP neural network with a single hidden layer. 

 

Table 1: Results of RMSE metric for different number of neurons for the MLP neural network with a 
single hidden layer. 

Number of neurons Number of epochs Batch size Window Size RMSE 

5 250 150 1 0.001306 

10 250 150 1 0.001258 

15 250 150 1 0.001241 

20 250 150 1 0.001229 

25 250 150 1 0.001239 

30 250 150 1 0.001252 

35 250 150 1 0.001270 

40 250 150 1 0.001285 

50 250 150 1 0.001327 
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Figure 24: Plot that illustrates the RMSE versus the number of hidden layers for the MLP neural 
network. 

 

Table 2: Results of RMSE metric for different hidden layers for the MLP neural network. 

Number of hidden 

layers 

Number of epochs Batch size Window Size RMSE 

1 hidden layer 

20 neurons 

250 150 1 0.001229 

2 hidden layers 

25-50 neurons 

250 150 1 0.001364 

3 hidden layers 

10-20-30 neurons 

250 150 1 0.001414 

4 hidden layers 

10-20-30-40 neurons 

250 150 1 0.002147 

5 hidden layers 

40-50-60-70-80 

neurons 

250 150 1 0.001731 

6 hidden layers 

40-50-60-70-80-90 

neurons 

250 150 1 0.001463 

7 hidden layers 

40-50-60-70-80-90-

100 neurons 

250 150 1 0.001603 
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Finally, the window size has been evaluated. On a time series forecasting problem, the 

window size corresponds to the number of previous time steps that are used as input 

to the network. The results of the experiments are summarized in the following Table, 

and plotted in Figure 25. Smaller RMSE derived from the previous time step, while the 

error is significantly increased for larger windows. 

 

Table 3: Comparative 0predictive performance for different values of window size. The MLP network 
was composed of 1 hidden layer with 20 neurons, the number of epochs was 250 and the batch size 
was 150.  

Number of neurons Number of epochs Batch size Window Size RMSE 

20 250 150 1 0.001229 

20 250 150 2 0.013037 

20 250 150 3 0.017000 

20 250 150 4 0.020464 

20 250 150 5 0.022947 

 

 

Figure 25: Results for different values of window size. The MLP network was composed of 1 hidden 
layer with 20 neurons, the number of epochs was 250 and the batch size was 150. 
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Once we have preprocessed the data and tuned the network with the appropriate 

network’s parameters, a feature selection has been made. Feature selection is 

important for selecting a subset of features that are most relevant to the problem and 

as a result to improve computational efficiency or reduce the generalization error of 

the model by removing irrelevant features or noise. Moreover, selecting a subset of 

features results to dimensionality reduction and thus to overfitting prevention [12]. In 

previous experiments, we used only the power feature as input to the MLP neural 

network. Afterwards, we experimented with different subsets of features that we 

could use as input to the neural network to find the one that will lead to better 

performance. The subset of features that ended up with better results was the 

[longitude, latitude, velocity, acceleration] with RMSE equal to 0.017508. 

Based on the above analysis, we deduce that a MLP neural network model cannot 

succeed adequate predictive performance on power forecasting. The MLP model 

achieved to forecast the power consumption of the train with RMSE 0.001229 using 

as input the observation of previous time step of the power.  Finally, our MLP model 

was able to forecast the power consumption of the train with RMSE 0.017508 using 

as input the observations of previous and current time step of the features longitude, 

latitude, velocity and acceleration. Given the fact that the mean value of the power is 

equal to 0.006411, we can evaluate that the total error of the forecasting is 19.17% at 

first case, which is considered a non-acceptable predicted error and 273% at second 

case, which is a very high predicted error. 
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6.3 Results of LSTM implementation 

In this section, we will present the experimental results of the LSTM implementation 

on the train dataset. We used LSTM neural networks for the power consumption 

forecasting. Two different LSTM neural network models were developed and 

compared, a stateless and a stateful LSTM. The main difference between the stateless 

and stateful LSTM is that the latter uses as an initial state for each sample at a specific 

position in a batch, the last state of the sample at the same position in the previous 

batch. 

Like the MLP implementation, before feeding the LSTM model with the dataset, we 

preprocessed it properly. At first step, we split the dataset into training set and test 

set, so that the training set comprises the 65% and 70% of the total dataset while the 

remaining 35% and 30% constitutes the test set for the stateless and the stateful LSTM 

respectively. At second step, we transformed time series data in order to be 

stationary. Then we transformed the time series problem into a supervised problem, 

using the observations of a sequence of time steps as the model’s input and the 

observation at the current time step as model’s output. Finally, we rescaled the data 

to a range of [-1,1]. In the following experiments, we calculated one-step ahead 

forecast using the test set. 

Once we had preprocessed the data, we investigated the network’s parameter for 

each LSTM model.  

The first parameter that was studied was the number of neurons. In Figure 26, we 

illustrate our results for the stateless LSTM and in Figure 27 for the stateful LSTM.  
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Figure 26: Results for different values of neurons for the stateless LSTM neural network. The LSTM 
was composed of 1 hidden layer, the number of epochs was equal to 1, the batch size equal to 50 

and the sequence length equal to 50. 

 

 

Figure 27: Results for different values of neurons for the stateful LSTM neural network. The LSTM 
was composed of 1 hidden layer, the number of epochs was equal to 1, the batch size equal to 50 

and the sequence length equal to 50. 

 

During this experiment, we used one hidden layer, one epoch, while batch size and 

sequence length were set to 50. According to the plots, we set the number of neurons 

to 10 for the stateless LSTM and to 15 for the stateful LSTM.  
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The next parameter that was researched was the length of the sequence. As the length 

of the sequence increases, the available learning information for the neural network 

increases too. Feeding the LSTM network with sequences results in teaching itself how 

to construct pattern of the sequences based on the previous window received. 

Sequences are sliding windows and shift by one at a time, causing a constant overlap 

of the prior windows. We used only one epoch, in which the LSTM cycled through all 

the sequence windows in the training set once. The results of this experiment are 

illustrated in Figure 28 for the stateless LSTM and in Figure 29 for the stateful LSTM.  

 

Figure 28: Results for different lengths of sequence for the stateless LSTM neural network. The LSTM 
was composed of 1 hidden layer with 10 neurons, the number of epochs was equal to 1 and the 

batch size equal to 50. 
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Figure 29: Results for different lengths of sequence for the stateful LSTM neural network. The LSTM 
was composed of 1 hidden layer with 15 neurons, the number of epochs was equal to 1 and the 

batch size equal to 50. 

 

According to the plots above, we set the parameter “sequence length” to 500 for 

stateless LSTM and to 200 for stateful LSTM.  

The last parameter that was investigated was the number of hidden layers. We 

register the results in the following tables and illustrate the RMSE versus the number 

of hidden layers in Figure 30, Figure 31 for the stateless and the stateful LSTM 

respectively. From the presenting tables and figures we conclude that the best 

architecture for stateless LSTM is the one with four hidden layers, each of which 

composed of ten neurons and for stateful LSTM is the one with ten hidden layers each 

of which composed of four neurons.  
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Table 4: Results of RMSE metric for different hidden layers for the stateless LSTM neural network. 

Number of hidden 

layers 

Sequence length Batch size Number of 

epochs 

RMSE 

1 hidden layer 

10 neurons 

500 50 1 0.001256 

2 hidden layers 

10 neurons each 

500 50 1 0.000528 

3 hidden layers 

10 neurons each 

500 50 1 0.000616 

4 hidden layers 

10 neurons each 

500 50 1 0.000123 

5 hidden layers 

10 neurons each 

500 50 1 0.000469 

6 hidden layers 

10 neurons each 

500 50 1 0.000544 

 

Table 5: Results of RMSE metric for different hidden layers for the stateful LSTM neural network. 

Number of hidden 

layers 

Sequence length Batch size Number of 

epochs 

RMSE 

1 hidden layer 

4 neurons 

500 50 1 0.000425 

2 hidden layers 

4 neurons each 

500 50 1 0.000227 

4 hidden layers 

4 neurons each 

500 50 1 0.000148 

5 hidden layers 

4 neurons each 

500 50 1 0.000127 

6 hidden layers 

4 neurons each 

500 50 1 0.000053 
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7 hidden layers 

4 neurons each 

500 50 1 0.000048 

8 hidden layers 

4 neurons each 

500 50 1 0.000048 

9 hidden layers 

4 neurons each 

500 50 1 0.000036 

10 hidden layers 

4 neurons each 

500 50 1 0.000017 

15 hidden layers 

4 neurons each 

500 50 1 0.000111 

 

s

 

Figure 30: Plot that illustrates the RMSE versus the number of hidden layers for the stateless LSTM 
neural network. 
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Figure 31: Plot that illustrates the RMSE versus the number of hidden layers for the stateful LSTM 
neural network. 

 

In previous experiments, we used only the sequences of the power feature as input to 

the stateless and stateful LSTM model to predict the next time step power forecasting. 

Afterward, we experimented with different subsets of features that we could use as 

input to the neural network to identify the one that would lead to power forecasting 

with acceptable RMSE. So, we fed the stateless LSTM with different subset of features 

and estimated the RMSE for each of them. The results are presented in the following 

table and in the Figure 32.  
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Table 6: RMSE values for different subset of features that used as input to the stateless LSTM neural 
network. 

Subset of 

features 

Number of 

hidden layers 

Sequence 

length 

Batch 

size 

Number of 

epochs 

RMSE 

[Longitude, 

Latitude, CO2, 

Velocity, 

Acceleration] 

4 hidden layers 

4 neurons each 

1 50 100 0.00304 

[Longitude, 

Latitude, 

Velocity, 

Acceleration] 

4 hidden layers 

4 neurons each 

1 50 100 0.00294 

 

[Longitude, 

Latitude, 

Acceleration] 

4 hidden layers 

4 neurons each 

1 50 100 0.00278 

[Velocity, CO2, 

Acceleration] 

4 hidden layers 

4 neurons each 

1 50 100 0.00223 

[Velocity, 

Acceleration] 

4 hidden layers 

4 neurons each 

1 50 100 0.00230 

[Velocity] 4 hidden layers 

4 neurons each 

1 50 100 0.00226 

[Acceleration] 4 hidden layers 

4 neurons each 

1 50 100 0.00027 
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Figure 32: Plot of RMSE values for different subset of features that used as input to the stateless 
LSTM neural network. 

 

In this multivariate continuous time series problem, we chose to go with 100 epochs 

and a length of sequence equal to 1. If those variables are highly correlated and there 

are no long-term dependencies, it is preferred to use many hidden units and smaller 

sequence length. More hidden units help to capture the correlation between features 

and smaller sequence length allowing the back-propagation algorithm to be faster, as 

the gradient is calculated at a smaller number of time steps.  

Taking into consideration the results presented in Table 6, we concluded that 

acceleration is the feature that provided improved results with RMSE equal to 

0.00027. To compare the performance of two LSTM models, we fitted the stateful 

LSTM to the acceleration feature too. Stateful LSTM achieved to predict the power 

consumption with RMSE equal to 0.000065. 

In summary, the LSTM recurrent neural network can succeed sufficient predictive 

performance on the power forecasting. Stateless LSTM achieved to forecast the power 

consumption of the train with RMSE equal to 0.000123, which means that the error 

was equal to 1.69%, when accepted a sequence of previous time steps of the power 

as input. It also predicted the power with RMSE equal to 0.000227, which means that 

the error was equal to 3.13%, when accepted the observation of previous and current 

time step of the acceleration as input. Finally, stateful LSTM achieved to forecast the 

power of the train with RMSE equal to 0.000017 (error equal to 0.25%) when accepted 

a sequence of previous time steps of the power as input. It also predicted the power 
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with RMSE equal to 0.000065 (error equal to 0.95%) when accepted the observation 

of previous and current time step of the acceleration as input. According to the last 

results, we concluded that the performance of the LSTMs is acceptable. 

 

6.4 Discussion  

In this section, we present a comparison of MLP and LSTM on power forecasting. Two 

variants of LSTM were considered, the stateless and the stateful LSTM. The 

experiments on our real train data show that LSTM is much better than MLP at 

predicting the power consumption of the train. Moreover, we found that the stateful 

LSTM neural network outperformed the stateless LSTM.  

In Figure 33, a histogram of RMSE for power consumption forecasting is presented. 

For MLP the input was the exact previous value of power while for the LSTMs the input 

was a sequence of previous power values. The same histogram is presented in Figure 

34. Although in this case the input for MLP was the exact previous and the current 

time step of features [longitude, latitude, velocity, acceleration] while for the LSTMs 

was the acceleration.  

 

Figure 33: Histogram plot of RMSE for MLP, stateless LSTM and stateful LSTM (input power). LSTM 
models outperformed MLP model and stateful LSTM outperformed stateless LSTM in terms of error 

performance. 

error 19.17%                
RMSE 0.001229

error 1.69%                  
RMSE 0.000123 error 0.25%                  

RMSE 0.000017

MLP LSTM STATELESS LSTM STATEFUL

Results for different NN architectures



65 
 

 

Figure 34:Histogram plot of RMSE for MLP, stateless LSTM and stateful LSTM. (input subset of 
features [longitude, latitude, velocity, acceleration] for MLP and feature acceleration for LSTMs). 

LSTM models outperformed MLP model and stateful LSTM outperformed stateless LSTM in terms of 
error performance. 

 

 

Figure 35: Histogram plot of RMSE for stateless LSTM and stateful LSTM. (input acceleration). LSTM 
stateful outperformed LSTM stateless model. 

 

  

error 286.00%             
RMSE 0.018350

error 3.13%                  
RMSE 0.000227

error 0.95%                  
RMSE 0.000065

MLP LSTM STATELESS LSTM STATEFUL

Results for different NN architectures
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Chapter 7 Summary 

 

This master thesis, introduced the concepts of Cloud Computing and Internet of Things 

and the basic notions related Big Data, Data Mining and Machine Learning. The 

MapReduce model and other tools capable to handle big data, such as Apache 

Hadoop, Pig, Hive, HBase, and Mahout are also described. Then SiteWhere, an IoT 

solution used to manage and analyze device data. SiteWhere was was used to manage 

and analyze device data collected from sensors supporting a railway use case. The 

theoretical background of Neural Networks was provided, while the processing of the 

dataset was composed of various quantities related with the railway use case was 

described.  

The first step of the processing involved storage of the train dataset in MongoDB, a 

database supported by SiteWhere. After data were stored, they were visualized using 

a GUI, the MongoDB Compass.  

The second step was the retrieval of the data from MongoDB in order to feed different 

types of Neural Networks, the MLP and LSTM, and forecast the train power 

consumption. We experimented with NNs by giving them different quantities as input. 

In the beginning, we fed the MLP and LSTMs with the exact previous time step of the 

power parameter. The errors derived from this experiment were 19.17% for the MLP, 

1.69% for the LSTM Stateless and 0.25% for the LSTM Stateful Neural Network. Then, 

we fed the NNs with various combinations of the quantities longitude, latitude 

velocity, CO2 and acceleration. MLP optimal results were derived when the subset 

[longitude, latitude, velocity, acceleration] was given as input. In this case, the error 

was equal to 286% which is a very high and insufficient error. LSTMs best results were 

obtained when the acceleration parameter was given as input with errors 3.13% for 

the Stateless and 0.95% for the Stateful LSTM. In experiments that were presented 

above, the output of the NNs was the value of the power at current time step. 

According to previous errors, we concluded that LSTM outperformed the MLP in that 

time series forecasting problem in accordance to the theoretical analysis performed.  
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