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Abstract

It has been long known that continuations and evaluation strategies are two intimately
related concepts of functional programming languages. In one of the earliest results,
continuation-passing style (CPS) was introduced as a means to decouple the evaluation
order of a language from the evaluation order of its interpreter. Since then, this style of
programming has been proved extremely useful in areas ranging from compiler implemen-
tation to denotational semantics.

Since the introduction of CPS, a wide variety of control operators have been devel-
oped. Delimited control operators, in particular, are a powerful mechanism of functional
programming languages that generalize traditional first-class control operators, such as
call/cc, and provide the means to abstract control. One notable application of delim-
ited control operators is the construction of a novel abstract machine for the call-by-need
λ-calculus that simulates store-based effects with delimited continuations.

Pattern matching on algebraic data types is an essential feature of functional program-
ming languages. However, pattern matching is often thought to be syntactic sugar that can
be merely represented by a proper encoding. In this thesis we study the operational charac-
teristics of non-strict pattern matching. We also explore the semantics of control operators,
as well as some of their applications. Finally, we seek to examine the connection between
implementing a non-strict pattern matching evaluator and delimited continuations.
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Chapter 1

Introduction

1.1 Programming Models

The importance of programming languages in modern applications is unquestionable, and
their design and implementation has been an incessantly active area of research since the
advent of computers. Not all programming languages, however, are designed based on the
same model. Some have been heavily influenced, if not originally inspired, from a primitive
model of computation — the λ-calculus. Languages falling into this category are called
functional programming languages. In this thesis we aspire to comprehend and establish
certain aspects of these languages.1

A program written in a purely functional or applicative language consists of expressions
which may be composed of sub-expressions (constants, variables, functions, etc.). Eval-
uating these expressions returns a result — a value. In this programming paradigm the
notions of function and function application are fundamental (hence the name functional).
New functions can be defined in terms of expressions and these functions can in turn be
composed with other functions to build programs. In addition, functions can be saved in
variables just like any other value, they can be passed to other functions as arguments or
returned as results. That is, functions are first-class objects. Languages in which functions

1This introductory section is not intended to be a complete description of functional programming.
For a short, yet extensive, introduction, the interested reader is encouraged to read Hudak’s excellent
article [16].

1



2 Chapter 1. Introduction

enjoy first-class status are said to be higher-order.
In a purely functional program we can substitute an expression for any other, whose

value is the same, without altering the result of the original program. More precisely,
when an expression is used in a certain context, the value of the expression is all that
matters, and if we replace it with another equivalent — in terms of its value — expression,
the meaning of the context will not be affected. This property, which has its origins
in mathematics, is known as referential transparency [25]. In a referentially transparent
programming language, functions seem and behave more like mathematical objects rather
than just programming constructs, and helps us reason about our programs; a task that
otherwise would have been much harder.

By contrast, an imperative language contains constructs, called statements or com-
mands, that differ from expressions in that the former are used to carry out actions that
may change, or mutate, the program’s state. Thus, statements are said to have side effects.
For example, the assignment statement assigns a value or changes an existing value of a
variable. When a mutating assignment statement (e.g., x := x + 1) is introduced inside
the body of a function — which is not allowed in a purely functional program — calling this
function twice yields different results. This means that the value of the function depends
on the value of the variable x which is different in every function call. Consequently, we
can no longer deem that referential transparency holds for this function.

1.2 Semantics

A programming language is identified by its syntax and its semantics. The syntax of a
language consists of the grammar rules that specify how a program, written in this lan-
guage, should be structured. Nevertheless, being well-structured (or syntactically correct)
is necessary but not sufficient for a program to be entirely correct. Semantics fills this
gap and helps us understand a program’s behaviour by giving it an interpretation — its
meaning.

In his landmark book, Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory [25], Joseph Stoy remarks that a formal semantics can serve a
threefold purpose: (a) provide compiler implementers with a precise definition of the lan-
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guage, (b) help programmers understand and reason about the behaviour of their programs
and (c) guide language designers to improve programming languages. In other words, se-
mantics is an indispensable tool that allows us to understand and describe all aspects of a
programming language with rigor and accuracy.

In this work, we mainly focus on the second and third role. More precisely, we use the
formal semantics of specific language constructs to study their behaviour and thereby be
able to put these constructs together in a way that expands the language’s expressiveness.

There are various approaches to defining a semantics. Among them, is the operational
and the denotational approach. The first method, as its name implies, is concerned with
properties of the execution of a program. The operational semantics often takes the form of
an abstract machine, i.e., a prototype implementation (or an interpreter) of the language.
This type of machine aims at defining the behaviour of a language. In doing so, it abstracts
away low-level details, such as the concrete syntax of the language, and permits us to
concentrate on more general, yet essential things such as the result of a computation and
the execution steps that are followed.

An abstract machine consists of a set of transition rules, where on each step, a transition
is chosen according to the state of the machine’s input. Typically, this state is the abstract
syntax of the expression at a specific moment but, as we will see, it can also include other
parameters such as the surrounding context. Given a program, its meaning is taken to be
the exact sequence of transitions that were followed during the program’s execution by the
abstract machine. The last element of this sequence is the final state of the machine and
it denotes the value computed by the program. While an abstract machine hides many of
the details, whose importance is sometimes not inconsiderable, it can act as a high-level
specification, based on which a lower-level implementation can be built.

Denotational (or mathematical) semantics is another method of formal semantics where
the meaning of a program is given by a semantic function that maps programs to their
denotations, i.e., mathematical objects, such as numbers, functions or truth values. These
objects constitute a semantic domain whose elements represent values of programs. Thus,
defining a denotational semantics for a language boils down to defining its semantic do-
main along with a mapping from syntactic constructs of the language to elements of the
domain. Note, however, that when defining the denotational semantics of a language, we
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do not care for the actual execution of a program. In other words, while with the opera-
tional approach we are interested in how a program terminates (if at all), in denotational
semantics we focus on what the final result of the program is. The value that is assigned by
the semantic function to a program depends on the value that the same function assigns
to the expressions of which the program consists. This principle, which is essential to
denotational semantics, is called compositionality.

It is important to emphasize that different semantic approaches are not mutually ex-
clusive, but rather, complementary to each other. In fact, combining these approaches to
demonstrate safety, correctness or any other important property is often used as part of
the meta-theory of a well-designed language. Furthermore, showing that these approaches
agree with each other is often a challenging task.

1.3 Structure of the Thesis

The rest of this thesis is organized as follows: in Chapter 2 we introduce the features
and tools that constitute the building blocks of this work. In Section 2.1 we give a brief
introduction of the λ-calculus and its fundamental elements that will assist us in expressing
the main ideas studied in the chapters that follow. In Section 2.2 we explore the concept
of evaluation strategies which is essential to all programming languages. We also present
and compare the most widely used strategies and we concentrate on the advantages of
call-by-need (or lazy evaluation). In Sections 2.3 and 2.4 we cover two intimately related
features of functional programming languages: algebraic data types and pattern matching.
We describe the behaviour of these features in languages with non-strict semantics and we
attempt to uncover their operational characteristics via the use of examples.

Chapter 3 is devoted to continuations. In the introductory section of this chapter we
explain the basic concepts. Next, in Section 3.2 we explore continuation-passing style
and show how a program written in direct style can be transformed into CPS. Then,
we see how CPS can be used to eliminate the evaluation order dependency between a
language and its interpreter. In Sections 3.3 and 3.4 we provide an overview of control
operators and we consider some of their most notable applications. This chapter ends with
Section 3.5 in which we examine the most general form of a control abstraction mechanism:
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delimited control operators. In this section we also review some well-known proposals of
these operators found in the literature and we study their behaviour.

In Chapter 4, we seek to explore the relationship between non-strict pattern matching
and delimited control. In Section 4.1 we provide a detailed description of an abstract
machine that is used to evaluate expressions of a call-by-need language. The abstract
machine is accompanied with an interpreter that uses delimited continuations to simulate
variable bindings. In Section 4.2 we extend the abstract machine so that it also evaluates
user-defined types and pattern matching expressions respecting the lazy semantics of the
source language. In Section 4.3 we show how the interpreter can be used to simulate our
rules.





Chapter 2

Background

This chapter introduces the basic concepts, and lays the foundation for the following chap-
ters. As its title implies, Section 2.1 is concerned with the λ-calculus. In Section 2.2 we
explore the fundamental notion of evaluation strategies, which is not specific to functional
languages, but to every programming language, and we focus on an important concept
called evaluation context. Next, in Section 2.3 we present a standard abstraction mecha-
nism of many modern functional programming languages called algebraic data types, and
finally, in Section 2.4 we explain pattern matching: a tool that exploits the power of alge-
braic data types. In this last section we also examine how different evaluation strategies
affect the result of a pattern matching expression.

2.1 λ the Ultimate1

In the rest of this thesis, we shall be encountering elements of the λ-calculus in a variety
of contexts and cases. Even more so, in the last chapter where we explore the call-by-need
λ-calculus and we use extensively its basic concepts and notation. It is thereby inevitable
to give a presentation of the essentials. Of course, we barely touch on the topic; one can,
however, refer to Barendregt’s standard text [4] for an in-depth study. A more practical

1A phrase that appears in a series of papers, authored by Guy Steele and Gerald Sussman, as well as
in the title of a chapter of Daniel Friedman and Matthias Felleisen’s classic book A Little Schemer. It is
also the name of a popular weblog for programming languages.

7



8 Chapter 2. Background

treatise can be found in Peyton Jones’s The Implementation of Functional Programming
Languages [20] in which it is shown how the λ-calculus can be used as an implementation
framework for functional programming languages.

The λ-calculus was invented as a formal system by Alonzo Church in the 1920s and
first appeared in a paper published in 1932 [6]. Its original purpose was to provide a
foundation for logic, and for mathematics in general, but it was later proved that the
system itself was inconsistent. In 1936, Church suggested that the λ-calculus could define
the intuitive notion of effectively calculable functions, and used it as a formalization to
solve negatively the infamous Entscheidungsproblem. It was also shown by Kleene and
Turing that λ-definable functions, recursive functions and Turing-machines were all three
equivalent models that could describe the computational aspects of functions.

Besides computability theory, the λ-calculus has played an important role in the devel-
opment of functional programming languages, and it has influenced many of their features.
Moreover, despite the fact that the λ-calculus is surprisingly simple, it is so expressive that
it is often considered as a programming language in its own right.

The syntax of the pure untyped λ-calculus is defined by the set of its λ-terms:

t ::= x | λx.t | t t

where x ranges over an infinite set of variables. Terms of the form λx.t are called abstrac-
tions, and terms of the form t t are called applications. The former stand for function
definitions while the latter capture the notion of applying a function to an argument, and
as we said in Section 1.1, both of these notions are fundamental to programming languages,
especially to functional programming languages.

The set FV of a term’s free variables is defined inductively as follows:

FV(x) = {x}

FV(λx.t1) = FV(t1)− {x}

FV(t1 t2) = FV(t1) ∪ FV(t2)

An occurrence of a variable x is said to be bound in t if x /∈ FV(t). In other words, an
occurrence of a variable x is bound if it appears in the term t of an abstraction λx.t. A
term t is closed if FV(t) = ∅.
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The basic rewrite rule of the λ-calculus is the β-axiom (or β-reduction):

(λx.t) t1 = t{x 7→ t1}

Here the expression t{x 7→ t1} denotes the substitution of t1 for x in t. This rule states
that if a term t has the form of an application whose left-hand side term is an abstraction,
then t is reduced to another term that consists of the body of the abstraction in which all
free occurrences of x are replaced with t1.

Often, a term may contain more than one sub-term to which the β-axiom can be
applied. The evaluation strategy, which is the subject of the next section, determines the
order in which the reductions should proceed.

Parentheses are often used to resolve ambiguities such as precedence of operations.
When parentheses are omitted we follow two simple conventions. The first convention is
that we take application to be left-associative. For example, the term

(λx.λy.t1) (λw.t2) (λz.t3)

is equivalent to
((λx.λy.t1) (λw.t2)) (λz.t3)

The second convention is that abstraction associates to the right. That is, the body of an
abstraction extends as far to the right as possible. For example, the term

λx.λy.x y

is equivalent to
λx.(λy.(x y))

In the λ-calculus all functions take a single argument. However, higher-order support —
which exists inherently in the λ-calculus — allows multi-argument functions to be thought
of as multiple applications of single-argument functions; a process which is known as cur-
rying. Consider for example that we wish to define a function that takes two arguments
and returns a term t. This function can be defined as follows:

λx.λy.t
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The term above is a function that takes an argument, x, and returns another function that
takes an argument, y, and returns a term t.

In the next section, we discuss a concept which is related not only to the λ-calculus
but to all programming languages: evaluation strategies.

2.2 Evaluation Strategies

As we said in the introduction, a program written in a functional programming language
consists of expressions, and computing the result of this program amounts to evaluating
the result of each constituent sub-expression. But the order in which these expressions
are evaluated is significant and can sometimes affect the end result. Consider for exam-
ple applying a function f to an argument e. One option is to first evaluate e and pass
the returned value to f. Another would be to evaluate the body of f and if, during its
evaluation, e’s value is required then (and only then) it is evaluated.

An evaluation strategy is a set of rules that determine which expression (if any) is to
be evaluated next in a program. Evaluating this expression — or redex as it is called in
the context of the λ-calculus — returns a value which in turn may be part of a bigger
expression. If evaluating an expression reaches a point where there are no remaining
unevaluated sub-expressions, we say that the expression is in normal form. An expression
whose evaluation does not terminate does not have a normal form.

Yet, there are times that more than one unevaluated sub-expression in an expression
is subject to evaluation. Using the example referred to at the beginning of this section, in
a function application there are two possible redexes: the argument e and the body of the
function f. An evaluation strategy determines which one of these redexes will be evaluated
first. We consider three strategies: call-by-value (or strict) and call-by-name (non-strict),
as well as call-by-need (or lazy) as an extension to call-by-name.

call-by-value: In this strategy, the argument is evaluated before the body of the applied
function. More precisely, when a function application expression, e.g., f e, is evalu-
ated, first e is reduced and its value is then substituted for all the occurrences of the
formal parameter inside the body of the function. Then, the body of the function is
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evaluated. As an example, suppose that we define f and e as follows:

f x = x + x

e = 2 + 1

The reduction sequence of applying f to e in a call-by-value language is:

f e ⇒ f (2 + 1)

⇒ f 3

⇒ 3 + 3

⇒ 6

call-by-name: Unlike call-by-value, the call-by-name strategy proceeds with evaluating
the body of the function first, and then evaluates the argument, whenever its value
is needed. Note that if the function’s formal parameter is not referenced inside the
function, then the argument will never be evaluated. We can think of call-by-name
as a method that substitutes the argument, intact, for all the occurrences of the
formal parameter.2 It is important to highlight that in the call-by-name strategy
the argument is evaluated every time its value is needed. Using f and e from the
previous example, the reduction sequence in a call-by-name language is:

f e ⇒ f (2 + 1)

⇒ (2 + 1) + (2 + 1)

⇒ 3 + (2 + 1)

⇒ 3 + 3

⇒ 6

call-by-need: The call-by-need strategy is a more efficient implementation of call-by-
name. Semantically, the two strategies are exactly the same. The difference, how-
ever, lies in the former’s not re-evaluating the argument once that has already been

2Of course, that would be an extremely naive way to follow in an implementation. Abelson and Sussman
in [1, Chapter 4] implement an environment-based evaluator. For an even more advanced technique,
relevant to non-strict evaluation and based on graph-reduction, the reader can refer to Peyton Jones’s [20,
Chapter 12].
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evaluated. That is, the argument is not evaluated unless it is needed, and once this
happens its value is stored (or memoized) so that any future reference to it will not
have to be re-evaluated. In call-by-need, applying f to e is almost the same as in
call-by-name; but instead of substituting the expression that is bound to e for all
the occurrences of x in f, e is shared across the entire f’s body, so that when it is
evaluated once, all subsequent references will point to e’s computed value:

f e ⇒ e + e where e⇝ 2 + 1

⇒ 3 + 3

⇒ 6

We can think of e as a pointer to a location in which the expression 2 + 1 is stored.
When f’s body is evaluated, all occurrences of the formal parameter are substituted
for this pointer. The first time e’s value is needed, the expression in that location
will be evaluated and the result will be cached. From then on, any reference to e will
point to the memoized value. This ensures that a single instance of the expression is
shared among all occurrences of the formal parameter.

Besides call-by-value’s efficiency advantage over call-by-name when the argument is
needed more than once, and the opposite when the argument is not needed at all, there
is also another difference between the two strategies: if the argument’s evaluation does
not terminate, that is, it does not have a normal form, then with call-by-name the overall
computation is possible to terminate, if the argument’s value is not used (or is partly used)
inside the function. If, on the other hand, evaluating the argument always terminates, then
from a denotational point of view, the semantics of call-by-value and call-by-name give the
same result. Call-by-need eliminates the efficiency drawback of call-by-name but retains
its advantage of being able to evaluate functions applied to non-terminating arguments
that remain unused.

In general, we call a function that will always need the value of its argument strict.
More formally, a function f is strict if:

f ⊥ = ⊥
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where ⊥ (conventionally called bottom) denotes non-termination. A language is strict if
all of its functions are strict, and non-strict otherwise. The simplest example of a strict
function is id x = x, or so-called identity function. Conversely, an example of a non-strict
function is constant x = k, where k is a constant. In a non-strict language, applying
constant to ⊥ will terminate normally because the argument is never used inside the
body of the function. We often use the terms strictness and non-strictness as synonymous
with call-by-value and call-by-name (or call-by-need), respectively, but it is important to
emphasize that the former is a semantic property whereas the latter is an operational
property.

As an example that illustrates strictness vs. non-strictness, consider the following simple
function definition:

func a b = if a == 1 then 1 else b

Here, func takes two arguments. If its first argument equals 1 then it returns 1, otherwise
it returns b. Now, in a strict language calling this function as

func 1 (1 / 0)

will result in a divide-by-zero error because func will attempt to evaluate both of its
arguments before it starts evaluating its body. In a non-strict language, however, the
above will never use its second argument, and thus, it will return 1. Therefore, func is
said to be non-strict in its second argument.

The overwhelming majority of modern programming languages have strict semantics.
Nevertheless, many of them provide options (e.g., Scala’s lazy modifier [19], Python’s
yield statement [29]) that can be used to accomplish the same effects as in non-strict
languages. In general, laziness in an imperative language can sometimes lead to unpre-
dictable results due to side-effects. Examples of call-by-need languages are Miranda [28]
and Haskell [17].

There are two practical arguments in favour of call-by-need. The first argument is
efficiency; a lazy function computes only what is needed. The second argument is that
in a non-strict language, programs can use infinite data structures; and this increases the
expressive power and modularity of the language. Below, we give an example that stresses
the second argument.
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An example In his classic article on why functional programming matters [18], Hughes
presents programs that solve problems from the areas of numerical analysis and artificial
intelligence. One of these programs implements the Newton-Raphson algorithm which
computes an approximation of the square root of a real number. Instead of writing the
program as a single monolithic function in an imperative language, the author divides it
into parts so that each part can be also reused in a different context.

The idea behind this algorithm is that the following sequence converges to the square
root of a number a:

xn+1 =
1

2
(xn +

a

xn

)

where x0 is an initial approximation. So, the first step is to define a function that takes
xn and returns xn+1.

next a x = (x + a / x) / 2

Having defined next, the sequence of approximations can be thought of as a list of succes-
sive applications of the function f = next a:

[x0, f x0, f (f x0), ...]

To construct this list, we define a second function that uses next and returns the above
list.

repeat f x = x : (repeat f (f x))

Here, (:) is the list concatenation operator. The repeat function takes a function and
another argument, and recursively returns an infinite list whose head element is its second
argument, and its tail is the list returned from the call repeat f (f x); or, using a list
notation, [x, f x, f (f x), ...]. But this is the definition of our approximation list.
Notice that repeat is a higher-order function that can be used in any context where a list,
whose elements are results of successive applications of a function, is needed. Again, in
our case, f = next a.
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Finally, we define another function that is used to extract an element from the list:3

nth n l = if n == 1 then head l else nth (n - 1) (tail l)

The functions head and tail return the first element, and the list without the first element,
respectively. The recursive function above takes a number n and a list, and returns the
nth element of the list.4

Putting all the pieces together, calling nth as follows:

nth 10 (repeat (next 2) 1)

returns the tenth element of a list that consists of successive approximations to the square
root of 2, beginning from the initial approximation 1. The key point here is that if our
language were strict, the above expression would not terminate. But in a lazy language,
the function nth evaluates exactly the part of the list that it needs. To understand how
laziness is crucial in this program, we unfold the recursion tree of the execution. We start
by rewriting the first call:

nth 10 (repeat (next 2) 1) ⇒

if 10 == 1 then head l else nth (10 - 1) (tail l)

where l = (repeat (next 2) 1). Of course, the condition fails and the execution
continues with the next call:

nth (10 - 1) (tail l)

Note that so far, no argument of nth has been evaluated. Actually, the first argument is
evaluated later, when nth checks if the condition holds, i.e., if (10 - 1) == 1. Again, the
condition fails and nth is called recursively as

nth (9 - 1) (tail (tail l))
3Choosing nth instead of a function that returns the element from the list where the difference between

two consecutive approximations is less than a predefined number, to demonstrate laziness simplifies our
analysis below.

4For simplicity reasons, we do not handle exceptional cases such as when the index is greater than the
length of the list.
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Another important thing here is that since the first argument of nth was evaluated in the
previous call, it does not have to be re-evaluated and thereby, 9 is used instead of (10 -
1). As the evaluation continues and the recursive calls are expanded, the leaf of the tree is
reached:

nth (2 - 1) (tail ( ... (tail l)))

This time, the condition succeeds and the call returns

head ((tail ( ... (tail l)))

But again, both head and tail are lazy. Thus, the whole expression above is wrapped up
in a thunk [13] and is propagated back to the recursion root. Finally, it is returned as the
result of the program. Note that the program itself does not evaluate this expression when
it terminates; it returns it as it is: an unevaluated expression. Only if another program
required its result, would the expression be evaluated. For example, applying a function,
such as print, would force its evaluation. In this case, head would be applied to the list

i∗ : repeat (next 2) i∗

which is the result of the successive calls of tail to l. Here i∗, which is the tenth ap-
proximation of the square root of 2 (or the tenth element of the infinite list), would be
printed.

Clearly, the elegance of the lazy implementation of the Newton-Raphson method above
stems from the way it is modularized. In particular, data is separated from control, ren-
dering the two concepts orthogonal to each other. More precisely, the core function of the
algorithm is plugged into another function which iteratively composes the core function
with itself, and returns an infinite list. Of course, we could just as well have used another
core function. A third function — the consumer — takes this list and evaluates only the
part that it needs.

Evaluation Contexts

At the beginning of this section we said that the evaluation order of a programming lan-
guage is expressed as a set of rules. Next, we described call-by-value, call-by-name, and
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call-by-need in a somewhat informal manner. In the following paragraphs we study evalu-
ation strategies in a more formal way.

The rules that define the reduction order of the call-by-value λ-calculus are the follow-
ing:

(1)
t1 →β t′1

t1 t2 →β t′1 t2
(2)

t1 →β t′1
v t1 →β v t′1

where →β is the standard reduction relation (β-axiom) of the calculus and ti are terms.
Rule (1) states that in an application expression, the left-hand side term can always be
reduced. Rule (2) states that in an application expression, the right-hand side term can
be reduced only if the left-hand side term is a value.

An alternative way of expressing evaluation order rules is with evaluation contexts. An
evaluation context, denoted by E[ ], is a term (or expression) with a hole in it. If E1[ ] is
an evaluation context and t is a term, then E1[t] is the expression that derives from the
evaluation context whose hole is replaced with t. For example, let E1 = [ ]+3 and t = 1+2.
Then, E1[t] = (1+2)+3. The important thing here is that we can expressly specify which
expression must be evaluated next by decomposing a term into an evaluation context and
the next redex. Once this redex is reduced, its result is placed in the hole of the context.
This can be made explicit with the following rule:

t →β t′

E[t] →β E[t′]

This general context rule states that if a term can be decomposed into an evaluation context
E[ ] and a redex t, and t can be β-reduced to t′, then we can proceed with the reduction
and place the result t′ into E[ ]. Having this rule, we can define the set of evaluation
contexts for the call-by-value λ-calculus as:

E ::= [ ] | E t | v E

As an example that illustrates the concepts described above, consider the term

(λx.x) (1 + 2)

We can express this term as E1[t], where E1 = (λx.x) [ ] and t = (1 + 2). Obviously, E1

has the form of v E. Thus, using the general context rule, it becomes clear that t has to
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be evaluated before the function is applied to it. Equivalently, we could use rule (2) to
obtain the same result.

Evaluation contexts are useful, not only for defining evaluation order rules, but also for
representing continuations, as we shall see in the next chapter. In general, the concept of
evaluation context will be coming up very often throughout this thesis. Most importantly,
in the last chapter evaluation contexts are used to simulate store-based effects in an abstract
machine.

2.3 Algebraic Data Types

Algebraic data types are a powerful data abstraction mechanism of programming languages
that allows us to define new types. An algebraic data type definition abides by the following
syntax rule:

data T = C1 T1,1 . . . T1,m1

| ...
| Cn Tn,1 . . . Tn,mn

where T is the new type, also called type constructor, Ti,j’s are types and Ci’s are data
constructors with arity mi. A value is of type T if it has been created using one of T’s data
constructors.

Another way to look at algebraic data types is as a sum-of-products [21]: a data con-
structor with its fields can be thought of as a product type (or tuple) while the set of the
alternatives of constructors can be thought of as a sum type (or disjoint union), in the
sense that a value of type T can be constructed by (exactly) one of the Ci’s.

A data constructor can have no arguments, i.e., its arity can be 0. In this case, it is a
nullary constructor. For example, in some functional languages the type Bool is defined
as:

data Bool = True | False

Here, Bool is a user-defined type with two nullary data constructors: True and False.
Types that contain only nullary constructors are called enumeration types.
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Algebraic data types can also be recursive, that is, a type can refer to itself on the
right-hand side of the definition. As an example, below we define a recursive Tree type
that represents binary trees for integers:

data Tree = Node Integer Tree Tree
| Leaf Integer

Assuming Integer is the built-in type for integers, a value of type Tree can be either a
Node that has a value of type Integer and two values of type Tree, or a Leaf that has
just a value of type Integer. Put differently, the Tree type is the sum of two products:
the product (Integer×Tree×Tree) and the trivial product that has a single field of type
Integer. The following is an example of a value of type Tree:

Node 1 (Node 2 (Leaf 3) (Leaf 4)) (Leaf 5)

The node with the value 1 is the root of the tree. This node has two branches: one is
another node and the other is a leaf, with the value 5.

Along similar lines, we can define other recursive types such as lists. Most importantly,
with algebraic data types, lists and trees — which are essential to functional programming
— need not be built into the language; rather, we can define them ourselves in a concise,
clean, and intuitive way. Moreover, we can use standard mathematical methods, such as
induction, to formally reason about them.

2.4 Pattern Matching

In the previous section we saw how one can define a new type using algebraic data types.
Yet, we did not see how to deal with these user-defined types, and having such a powerful
feature requires the proper tool to make the most of it. Pattern matching is the standard
recognition and deconstruction tool used in conjunction with algebraic data types. More
precisely, pattern matching is the means by which we can:

• Inspect the structure of values and determine which data constructor has been used
for their construction.

• Extract the components from a value and bind them to variables.
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In general, a pattern matching expression has the following syntax:

case expr of
pat1 -> expr1
...

patn -> exprn

where expr is an expression, and each line of the form pati -> expri is called a branch,
and consists of a pattern and an expression. A pattern is a data constructor whose fields
are variables which we will call pattern variables.5

Informally, pattern matching evaluates the expression expr and checks the result against
each of the patterns pati starting from the topmost branch (we assume that evaluating
expr results in a constructor value). If the pattern’s constructor is the same as that of the
expression, then we say that the pattern match succeeds. When the first successful match
occurs, the expression of the right-hand side of the branch, whose pattern match succeeded,
is evaluated. The result of this evaluation is the final result of the whole pattern matching
expression. If no pattern match succeeds, then the program evaluation stops with an error.

As we said above, pattern matching is the standard deconstruction tool. When a match
succeeds, the components of the case argument are bound to the variables of the successful
pattern and can thereby be used when the expression part of the branch is evaluated.

As an example, consider the following program:

data NewType = Cons1 Integer
| Cons2 Integer

case Cons2 3 of
Cons1 x -> x + 1
Cons2 x -> x * 2

Here, we first define a new type called NewType that has two data constructors: Cons1

and Cons2, each of which has one integer field. Next, we pass a value of this type, which
has been constructed with the Cons2 data constructor, to a pattern matching expression

5In general, a pattern can be a constant (e.g., a number or a character), a variable, or a constructor
whose elements are patterns. In this work, however, we consider only the case in which a pattern is a
constructor whose elements are variables.
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with two branches. The first attempt to match the case argument against Cons1 fails
but the second attempt to match it against Cons2 succeeds. Then, the component of the
value constructed with Cons2, which is the integer value 3, is bound to the variable of the
successful pattern, x, and the expression x * 2 is evaluated; the final result of the whole
pattern matching expression is 6.

Pattern matching in a strict language behaves differently from a non-strict language.
We call the former strict pattern matching and the latter non-strict pattern matching.
Strict pattern matching semantics differs from non-strict in that, in the first case, the
expression passed to case is fully evaluated before pattern matching proceeds. That is, if
the expression is a constructor, all of its components are evaluated. On the other hand,
in non-strict pattern matching, a constructor’s argument is only evaluated if its value is
needed inside a branch expression. Therefore, when a match succeeds pattern variables
are bound to unevaluated expressions. We call a constructor whose arguments are not
evaluated lazy. In general, a constructor whose arguments may or may not be evaluated
is said to be in weak head normal form (WHNF) [20]. In this work, we focus on non-strict
semantics and its extension to pattern matching.

To explain non-strict semantics in the context of pattern matching, assume that we
have a recursive binding mechanism, such as Haskell’s let, which we use in conjunction
with the type definition of Tree we introduced in the previous section, to construct a value:

let inftree =
Node 1 (Node 2 (Leaf 3) (Leaf 4)) inftree

Note that this is a recursive definition and results in an infinite data structure. Here,
we define a tree whose root has two children. The left child has two children which are
both leaves. The right child recursively refers to the tree itself. In other words, the tree’s
rightmost branch is infinite.

In a strict language, this definition would lead to non-termination. But a lazy language
will evaluate only the parts that are needed.

To illustrate the difference, we define a function that takes a tree argument and checks
its data constructor; if it is a node, it binds the pattern variables to the node’s components.
That is, i is bound to the number, and l and r are bound to the left and right sub-tree,
respectively. Then, the function recursively calls itself passing it the left sub-tree. If t
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is a leaf, it just returns its number. This function essentially returns the number of the
leftmost leaf; and in doing so, it evaluates only parts of the sub-trees from which it passes.

leftmost t = case t of
Node i l r -> leftmost l
Leaf n -> n

Calling the above function and passing inftree to it as below:

leftmost inftree

yields 3. The first time leftmost is called, inftree’s outermost constructor is checked
against the pattern of the first branch but it does not evaluate its components. The match
succeeds and the pattern variables are bound to inftree’s components: i is bound to
1, l is bound to (Node 2 (Leaf 3) (Leaf 4)), and r is bound to inftree. But the
second leftmost call uses only the l variable, so i and r are not used at all and are thus
discarded without ever being evaluated. The computation proceeds with the next call, in
which it finds yet another node, calls leftmost again, this time matching the leaf pattern,
and finally returns 3.

Lazy pattern matching inherits all the advantages of lazy evaluation. In the example of
Section 2.2 we demonstrated the readability and conciseness of lazily evaluated programs
with the implementation of the Newton-Raphson algorithm, where we used two functions
— head and tail — to manipulate an infinite list. However, we took for granted that these
functions somehow exist and we did not disclose any detail about their implementation.
We just relied on their laziness as we did for the functions we defined ourselves. In fact, lazy
pattern matching, in tandem with algebraic data types, makes the definition of functions,
such as head and tail, simple, clean, and natural.

Pattern matching is, in general, regarded as an inseparable feature of functional pro-
gramming languages. Lazy pattern matching, in particular, combines the usefulness of
pattern matching with the elegance of non-strict semantics. In this work, we study the
relationship of lazy pattern matching with the subject of the next chapter: continuations.
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Continuations

The subject of this chapter is continuations. In Section 3.1 we give an insight into the
fundamental concepts, and in Section 3.2 we explore continuation-passing style: a style of
programming that makes the control flow of a program explicit. Sections 3.3 and 3.4 intro-
duce control operators which are mechanisms that allow us to manipulate continuations
in programs written in direct style. Finally, in Section 3.5 we present delimited control
operators which are more general and expressive than undelimited control operators, and
study some well-known proposals.

3.1 Fundamentals

A continuation is the rest of the computation at any given moment. Continuations exist
naturally in all programming languages. When evaluating an expression that is part of a
program, the continuation at this particular point is the rest of the program waiting for
the result of this expression. A continuation can be thought of as a program with a hole
in it which is filled with the value of the currently evaluated expression once the latter is
completed. We denote this hole with a □. For example, in the program (1 + 2) + 3, the
expression 1 + 2 has to be evaluated first and its value is passed to another expression,
whose outcome is the value plus 3. In other words, the continuation of the expression 1 +

2 in this program, is □ + 3. Clearly, a continuation can be regarded as a one-argument
function. Therefore, in our simple example, the function λx.x + 3 functionally represents

23
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the continuation □ + 3 of the expression 2 + 1. Invoking this continuation and passing
it a value is equivalent to applying the function that represents the continuation, to the
passed value.

3.2 Continuation-Passing Style

In the traditional way of structuring programs, when a function is called, it performs its
computation and then returns its result to the point it was called. This style of program-
ming is referred to as direct. Continuation-passing style (CPS) [27], on the other hand, is a
programming style in which all functions are defined so that they take an additional param-
eter — a continuation. This continuation is a function which is applied to the computed
value, and represents what has to happen from that point until the end of the execution
of the program.

In CPS, functions do not return. Instead, they hand their result to their continuation.
A program written in CPS is a computation that consists of a chain of function calls. The
last action of each of these functions, after computing their value, is apply the function that
stands for their continuation to their result. The restriction that every function performs
its computation and then passes its result on to the next function makes control and data
flow of a program explicit and saves us from keeping track of things such where a function
should return.

Any program written in direct style can be transformed into CPS automatically. As an
example, let us define two functions (in Haskell): append and sumlist. The first function
appends a list to another, while the second returns the sum of the elements of a list. We
also define a third function called appendsum that uses the composition of append and
sumlist, and returns the sum of the elements of two concatenated lists. In direct style,
these functions can be written as follows:

append :: [Int] -> [Int] -> [Int]
append l1 l2 =

case l1 of
[] -> l2
x:xs -> x : append xs l2
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sumlist::[Int] -> Integer
sumlist l =

case l of
[] -> 0
x:xs -> x + sumlist xs

appendsum::[Int] -> [Int] -> Int
appendsum l1 l2 =
sumlist (append1 l1 l2)

Listing 3.1: Direct style.

Apparently, the append and sumlist functions are recursive. The function appendsum

first calls append, passing it its arguments, and then applies sumlist to the value returned
from the first call. Finally, the value returned from appendsum is the value returned from
sumlist.

To transform these functions into CPS, we rewrite them so that they take an additional
parameter, the continuation, which they use to apply to the value they compute. This
parameter is a function that represents the rest of the computation.

append :: [Int] -> [Int] -> ([Int] -> t) -> t
append l1 l2 k =

case l1 of
[] -> k l2
x:xs -> append xs l2 (\a -> k (x : a))

sumlist :: [Int] -> (Int -> t) -> t
sumlist l k =

case l of
[] -> k 0
x:xs -> sumlist xs (\a -> k (x + a))

appendsum :: [Int] -> [Int] -> (Int -> t) -> t
appendsum l1 l2 k =
append l1 l2 (\a -> sumlist a k)

Listing 3.2: Continuation-passing style.



26 Chapter 3. Continuations

In all three functions the parameter k is the continuation. Note that in both append and
sumlist, after turning them into CPS, recursive calls became tail calls. In addition, in-
termediate results that were implicit in direct-style, in CPS, their computation becomes
explicit. These distinctive features of CPS make it a suitable form on which several opti-
mizations, such as tail-recursion elimination, can be applied. An extensive and thorough
study of CPS as an intermediate representation and its benefits to optimizing compilers
can be found in Appel’s book [2].

CPS has found numerous — theoretical and practical — applications in the field of
programming languages. A notable example of the first kind is denotational semantics.
In their seminal work [26], Strachey and Wadsworth used CPS as the foundation to build
a mathematical model which describes the behaviour of programs that contain non-local
jumps, i.e., a mechanism that allows the programmer to alter the control flow of a program
by defining functions that can be used to exit a function or escape while evaluating an
expression. In their model, they introduce two semantic functions, P and E which are based
on a set of equations. These functions translate terms of the language into their meaning.
The language comprises both expressions and statements (commands). P gives a semantic
interpretation to the former while E is for the latter. In both cases, however, the meaning
of a program is taken to be a state transformation, i.e., a function from a program state to
another. Moreover, besides the standard arguments, an environment and a store, P and E
take a continuation. Given a term of the language, this continuation represents the state
transformation that corresponds to the rest of a program after the term has been evaluated.
If the term contains a transfer of control, along with a label denoting the destination, then
the passed continuation is replaced with the continuation that corresponds to this label.
This type of denotational semantics, which is also known as continuation semantics, has
been one of the standard models used in the design of programming languages. Moreover,
despite its simplicity, the model can be easily extended to describe a wide set of terms and
language features.

Another remarkable work that introduced continuations in the definition of functional
programming languages is that of Reynolds [23]. In this highly-influential paper, a meta-
circular interpreter, which is written in a language called the defining (or target) language,
is used to define another, called the defined (or source) language. Here, meta-circularity
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means that the features of the source language are defined in terms of the corresponding
features of the target language. This implies that if the order of evaluation of the target
language changes, e.g., from call-by-name to call-by-value, so does the source language’s,
which in turn alters the meaning of some (but not all) programs.

Initially, the interpreter is written in direct style, but this approach suffers from the
shortcoming that the programs it evaluates are dependent on its own evaluation order.
That is, functions in the source language evaluate their arguments in the same order as
the target. To overcome this restriction, the interpreter is transformed into CPS.

In his paper, Reynolds uses the CPS transformation so that the source language eval-
uates functions’ arguments in a call-by-value order, regardless of the evaluation order of
the language in which the interpreter itself is written. The same method, however, can
also be used to define a call-by-name language. The transformation is motivated by the
observation that if the order of evaluation is made an explicit part of a program’s structure,
it becomes independent of the evaluation order of the program’s interpreter.

The interpreter has the form of a double-argument evaluation function, called eval,
whose execution depends on the type of its first argument: the expression that is evaluated.
The second argument of eval is the environment. The environment is a data structure in
which variable bindings to values are stored. The eval function is essentially an abstract
machine that gives the operational semantics of the defined language.

Consider the case in which the eval function evaluates a function application expres-
sion. That is, the part of the interpreter that applies a function of the source language to
an argument:

eval(r0 r1, e) ⇒ (eval(r0, e)) (eval(r1, e))

Here, the expression that is evaluated is r0 r1, where r0 and r1 are a sub-expression that
is expected to yield a function, and the argument, respectively, and e is the environment.
Obviously, the order of evaluation of the target language affects the order of evaluation of
the source language. For example, if the target language follows a call-by-value strategy,
then r0 is evaluated first, and if the result is a function, then r1 is evaluated. Finally, the
body of the function returned from r0 is applied to the value returned from r1. Conse-
quently, call-by-value will also be the evaluation order of the source language. If, on the
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other hand, a call-by-name strategy is used by the target language, r0 is again evaluated
first but, as opposed to call-by-value, r1 will not be evaluated unless its value is required
during the evaluation of the function’s body returned from r0.

Fortunately, we can loosen this tight coupling, by using the CPS transformation to
embed the evaluation order within the program. For example, using a call-by-value strategy
for the source language means that the interpreter has to carry out the following steps in
this specific order:

1. Evaluate r0.

2. Evaluate r1.

3. Apply the value of r0 to the value of r1.

Thus, eval has to be rewritten so that the above execution order is encoded into its struc-
ture: as soon as eval identifies that the expression is a function application, it evaluates
r0 and passes the result to a function that evaluates r1, which in turn passes the result
to another function that applies r0 to r1. Encoding this sequence of steps into the eval’s
code, results in the following form:

eval(r0 r1, e, c) ⇒

eval(r0, e, λf.eval(r1, e, λv.eval(body(f), ext(e, f, v), c)))

Here, if f is a function, body(f) returns its body. Moreover, ext(e, f, v) extends the envi-
ronment e by adding a binding of the formal parameter of f with the value v.

When an application expression r0 r1 is met, eval evaluates r0 and passes the result
to λf.eval(r1, e, λv.eval(body(f), ext(e, f, v), c)). In this function, eval is called once
again, this time with r1 as its first argument and λv.eval(body(f), ext(e, f, v), c) as the
continuation. Finally, the last call to eval performs the application and passes the result
to c. Evidently, in this sequence no call to eval ever returns to the point it is called.

The additional parameter eval takes is the continuation. Notice that the parameter c

of the eval function is also used in the innermost call. This is the continuation passed to
eval when it is invoked and can be any function that takes a value and returns a value.
Typically, the function λx.x, i.e., the identity function, is used to bootstrap the evaluation.
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A similar approach as the one presented above but with a different continuation function
could be used to define call-by-name. For example, we could have defined the order of call-
by-name and encode it directly in the eval function just as we did with call-by-value.

The method used by Reynolds to eliminate the evaluation order dependence was later
formalized in the context of the λ-calculus by Plotkin, and it is referred to in the literature
as the Indifference Theorem [22, 13].

3.3 Control Operators

Thus far, we have only seen continuations that are represented by ordinary functions and
thereby, calling or constructing them does not require any special mechanism from the
language, apart from higher-order support. Therefore, using continuations in a program
implies that this program is written in CPS. Continuations in a CPS-written program
are often referred to as explicit. In this section, we explore operators that are used to
manipulate continuations implicitly. More precisely, in the paragraphs that follow we study
mechanisms that allow us to interact with continuations in a program that is written in
direct-style.

In Section 3.2 we mentioned that when an expression is evaluated, its value is passed
to the remainder of the program — its continuation. In a sense, the continuation is a
functional representation of the context (or the control stack) surrounding this expression,
and control operators allow us to gain access to this context. The type of access, however,
varies greatly. Some control operators just discard (or abort) this context. Others, capture
it and hand it to the programmer as an abstraction, in the form of a function; a process
which is known as reification. In the following section we describe some of the most widely-
studied control operators. Note that there are numerous variants of these operators in the
literature and this thesis does not provide a complete list.

A basic control operator which is present in many programming languages is abort.
This function takes one argument, and when it is called, it evaluates its argument and
then, it aborts (or deletes) the current continuation. The final result of a call to abort

is the result of the evaluation of its argument. The behaviour of abort is defined by the
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following reduction rule:

E[abort e] ⇒ e

where E is an evaluation context and e is an expression. From the right-hand part of this
rule, we see that the evaluation context, in which abort is invoked, is removed completely
and what remains is the evaluation of e. In other words, calling abort inside an expression
passing it another expression discards the first expression altogether and returns the one
that is passed to it as its argument.

3.4 First-Class Continuations

The abort operator, described above, removes all the information stored in the control
stack at a given moment and thereby, discards the entire evaluation context. We would
like, however, to save this information so we can use it later. Higher-order control operators
store the context and hand it to the user as a functional abstraction. With these operators,
we can control first-class continuations, that is, continuations that can be passed to and
returned from functions, be saved, invoked and in general, handled just like any other
first-class object of the language.

A widely-studied control operator of this kind, which exists in most of the functional
programming languages, is call-with-current-continuation (abbreviated call/cc).
The call/cc function — which is similar to escape (see [23]) — first appeared in Scheme [7].
This operator captures the current continuation and binds it to a variable, enabling the
programmer to call it like any other function. (Although, as we will see below, a contin-
uation captured by call/cc lacks a fundamental property of functions: composability.)
Calling a continuation captured by call/cc results in the replacement of the current with
the stored context. Thus, a continuation can be regarded as a jump to the point where it
was captured.

The call/cc function takes one argument: a function. When it is called, it captures
the current continuation and binds it to the formal parameter of its argument. When this
parameter is invoked with an argument passed to it, it discards the current continuation,
and restores the captured continuation, applied to its argument. Below is the reduction
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rule for call/cc:

E[call/cc (λk.M)] ⇒ E[(λk.M) (λv.abort E[v])]

where, again, E is an evaluation context. To give an explanation of this rule, call/cc’s ar-
gument is the function λk.M . Here, M denotes the body of the function. When call/cc

is invoked, it binds the function λv.abort E[v] to k and it goes on to evaluate M . If,
during M ’s evaluation, k is applied to a value, e.g., k v, then abort discards the current
continuation, and the captured continuation is restored with v in its hole, i.e., E[v]. An
important thing here, however, is that since k’s invocation removes the current contin-
uation, k cannot be composed with itself or any other function, simply because it does
not return where it was called; rather, it returns to the point where call/cc was called.
Therefore, k is not an ordinary function, and continuations captured by call/cc are said
to be non-composable or abortive as opposed to composable or delimited continuations that
we will look at shortly.

The simple Scheme program below exemplifies call/cc’s behaviour:1

(+ 1 (call/cc
(lambda (k)

(+ 2 (k 3)))))

Listing 3.3: A simple call/cc example.

In this example, call/cc is called with the function (lambda (k) (+ 2 (k 3))) as its
argument. First, call/cc captures the current continuation, which, at the moment of its
call is (+ 1 □), and binds it to k. Then, it proceeds with the evaluation of the lambda’s
body, where k is first applied to 3. Now, the result of this expression would normally be
passed to its continuation, i.e., (+ 2 □), which is the current continuation when k 3

is evaluated. But this is not the case! When k is applied to 3, the current continuation
is discarded, and the captured continuation is reinstated, with 3 passed to it. Thus, the
captured continuation (+ 1 □) is instead applied to 3, and the final result of the program
is 4.

1In this chapter we use Scheme to write the examples because of its simple and clean syntax, as well
as its extended support of control operators.
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As we said at the beginning of this section, a continuation can be stored and used
outside call/cc. To illustrate this, let us consider the following example:

(define cont #f) ;; Dummy initialization of a global variable

(+ 1 (call/cc
(lambda (k)

(set! cont k)
(+ 2 (k 3)))))

(+ 1000 (cont 1))

Listing 3.4: Saving a continuation.

In this slightly different program, we first define a global variable and then run call/cc

again, but this time, the function passed to it stores the continuation, bound by call/cc,
to the global variable before doing the same computation as in the previous example.
Again, this expression yields 4. Next, we add the result of the (cont 1) to 1000. But once
we call cont, the current continuation (i.e., (+ 1000 □)) is discarded and the captured
continuation is restored. Thus, the final result is 2.

Going back to the previous section for a while, where we stated that continuation
semantics is the standard model for reasoning about control operators, we can give a
semantic equation for call/cc as follows:

EJcall/cc (λx.e)Kρκ = EJeKρ{x 7→ λv.λκ′.κ v}κ

In this equation, ρ is the environment and κ is the continuation passed to the semantic
function (we deliberately omit the store argument since we assume that the language we
denote is functional). What this equation says is that the meaning of a call/cc invocation,
with a function as its argument, is the meaning of the function’s body, where ρ is extended
with a mapping from x to another function. This last function takes two arguments: a
value v and a continuation κ′. When this function is called, it passes v to the continuation
κ, which was initially passed to E , but discards the current continuation (bound to κ′).
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Coroutines and Continuations

The call/cc operator has been used to model jumps in a variety of applications. Among
them is an implementation of coroutines proposed by Haynes, Friedman, and Wand [15].
In this work, a coroutine framework is built using first-class continuations. Avoiding the
introduction of other complicated mechanisms into the language and relying on the intuitive
notion of continuations helps to greatly reduce the complexity of the framework.

Coroutines are collaborative program components that keep their own local state as well
as share data between each other. A coroutine is said to be non-preemptive, if it voluntarily
suspends its own execution and passes control to another coroutine. Each coroutine must
store its current state of computation so that when it is resumed, it can continue from the
point it was suspended.

The continuation-based framework models coroutines with functions. Each function,
which has a local state, implements its private resume function. The resume function takes
two arguments: the resuming coroutine and a value passed to it. When called, resume
records the current state of its coroutine. This current state is the coroutine’s continuation
which is captured by call/cc and is stored in a local variable. After having captured the
current state, resume suspends the execution of its coroutine and invokes the resuming
coroutine.

Logic and Continuations

Another notable work that uses first-class continuations and call/cc in particular is
Haynes’s backtracking method [14]. This method combines two programming paradigms,
namely logic and functional programming, to solve complex problems from artificial intel-
ligence.

Often enough, in applications of logic programming the programmer needs to impose a
search strategy, which may depend on various runtime factors, rather than rely on a lan-
guage’s default strategy. One way to define such a strategy is with the manipulation of the
control context. This, however, requires that the programmer has access to an appropriate
control abstraction mechanism, such as first-class continuations, that allows the definition
of a non-standard control behaviour. In general, logic programming languages do not pro-
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vide such a mechanism. Therefore, the programmer has to resort to other programming
paradigms such as functional programming.

In general, an embedding is an implementation which translates a language, called the
embedded language, into another language, called the embedding language, so that the
former can take advantage of the facilities of the latter. In his article, Haynes proposes an
embedding of a logic programming language (e.g., Prolog) into a functional programming
language (e.g., Scheme). Thus, a program written in the embedded language can exploit
the control abstraction mechanism of continuations of the embedding language — or any
other feature for that matter — whenever that is required.

In particular, the problem that the embedding of Haynes’s article addresses is called
non-blind backtracking and it is essentially the ability of a system to discard, yet remember
the state of a context that took place in the past. In other words, non-blind backtracking
means that when a computation backtracks from a given point to another that was previ-
ously visited, it has to record the state from the discarded point in case it needs to transfer
the control back to it. As an example, consider a program that starts in a context A and
proceeds to another context B. There, an action takes place that alters the program’s
state, and the program moves to another context, C. But while being in C, the program
realizes that the option made in B was not the optimal and decides to backtrack to B,
undo the action and choose a different context, D. However, this path turns out to be
even worse; so the program moves back to C. But now the program’s state needs to be
restored to that of its previous visit to C.

3.5 Delimited Control Operators

In the previous section, we explained what a control operator is and how it allows a
programmer to capture and reinstate the remaining part of a computation. Moreover, we
described how call/cc works and gave an overview of some of the most notable examples
in which it is used to solve real-life problems.

The call/cc control operator, however, is restricted to capture the entire rest of the
computation. In this section, we concern ourselves with more powerful operators; that is,
operators that let us capture part of the rest of a computation rather than the whole of it.
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As is revealed by their name, delimited control operators are used to delimit a captured
continuation. In other words, before turning the control context into an abstraction, these
operators allow us to mark a point, up to which the context extends. In this section, we
focus on this kind of operators, we examine their operational characteristics and finally,
we present some of the most widely-studied proposals.

In many languages, the abort operator is accompanied with an additional mechanism
that allows the programmer to delimit the context that is aborted. Put simply, calling
abort in a delimited context aborts part of the continuation instead of discarding the
entire control stack. This delimited abort is the most basic form of delimited control
operators and constitutes the basis for an exception handling system such as, for example,
OCaml’s try/with construct along with the raise function.

The delimited abort operator, like its undelimited counterpart, does not offer any
significant power to the language. As we said above, in order to take full advantage of
continuations we would like them to have first-class status. In the paragraphs that follow
we present delimited control operators that, unlike delimited abort, give us access to
first-class continuations.

Usually, delimited control operators come in pairs; one of them is the reifier, while the
other is the delimiter. The former captures and binds the continuation to a variable and
the latter specifies the point up to which the captured continuation extends. One such pair
is shift/reset by Danvy and Filinski [8].

The shift operator takes two arguments. When called, it captures the current contin-
uation, which is delimited by the innermost enclosing reset, binds it to its first argument
and evaluates its second argument. Obviously, the ability to capture a segment of the
continuation makes it more general than call/cc. There is, however, another significant
difference regarding the functional abstraction that represents the captured continuation.
Rather than being non-composable, as is the case with call/cc, the continuation captured
by shift can be composed just like an ordinary function. In other words, the continuation
returns to the point where it was called; not where it was captured. Thus, continuations
captured with shift/reset are called delimited or composable continuations (or simply
subcontinuations).
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The following two rules define the operational behaviour of shift/reset:

reset v ⇒ v

reset (E[shift k e]) ⇒ reset ((λk.e) (λx.reset E[x]))

Here E is an evaluation context, e is an expression and v is a value. According to the first
rule, reset applied to a value returns the value. The second rule says that shift refies
the continuation delimited by the innermost reset and binds it to k. Then, it proceeds
with e’s evaluation. If, during the evaluation of e, k is applied to a value, the result of the
refied continuation applied to this value is returned. If, on the other hand, k is not used at
all, then the captured continuation is discarded. In both cases, reset’s result is the value
returned from shift. Consider the following example, taken from [24], that illustrates the
above rules:

(cons 1
(reset
(cons 2

(shift k (cons 3 (k (k (cons 4 '()))))))))

Listing 3.5: shift/reset example.

In this program, the continuation captured by shift, which is (cons 2 □), is bound to
k and it is first applied to the result of (cons 4 '()), (or '(4)). Then, k is once again
invoked, this time composed with itself. That is, the continuation (cons 2 □) is applied
to '(2 4). Next, 3 is appended to the head of the list of the last application. Finally, the
resulting list, which is '(3 2 2 4), is passed to the current continuation, i.e., (cons 1 □),
and the final result of the program is '(1 3 2 2 4).

In Section 3.2 we said that a program written in direct style can be automatically
transformed into CPS. Of course, the same holds for the λ-calculus. In particular, the
translation function for the call-by-value λ-calculus is given in Figure 3.1. (t1{x 7→ t2}
denotes the substitution of t2 for x in t1.) The shift/reset operators were originally
defined as an extension of this transformation with the aim of harnessing the unused
expressiveness of CPS [8, 9]. Obviously, these operators are not expressed in continuation-
passing style, but rather in continuation-composing style. This means that in the definitions
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x = λκ.κ x

λx.e = λκ.κ (λxκ′.e κ′)

e1 e2 = λκ.e1 (λf.e2 (λv.f κ v))

reset e = λκ.κ (e (λx.x))

shift k e = λκ.e{k 7→ (λaκ′.κ′ (κ a)}(λx.x)

Figure 3.1: The call-by-value CPS translation of the λ-calculus with shift/reset.

of shift/reset, the continuation calls are not tail-calls. Thereby, the evaluation order-
independence of CPS that we described in Section 3.2 is lost. To overcome this problem,
Danvy and Filinski transformed once again the definitions of Figure 3.1 — a method called
extended continuation-passing style (ECPS) — which turned all continuation calls into
tail-calls. Apart from the usual continuation, the second translation introduced another
continuation, called meta-continuation, which in the case of shift/reset represents the
context that is outside of the captured continuation. That is, it is that part of the context
that is not captured by a call to shift. The method of ECPS can be also generalized
to continuation semantics so that a formal description based on continuations is given to
delimited control operators.

The shift/reset operators are said to be static in that the extent of the captured
continuation is determined statically, as opposed to the control/prompt operators which
were introduced by Felleisen [11] and are said to be dynamic. In Felleisen’s proposal, the
prompt operator is the delimiter while the control operator is the reifier. These operators
resemble shift/reset. However, as can be seen from the reduction rules below, there is a
subtle difference between shift/reset and control/prompt:

prompt v ⇒ v

prompt (E[control k e]) ⇒ prompt ((λk.e) (λx.E[x]))

Apparently, these rules are similar to shift/reset’s. They only differ in that shift

encloses the captured continuation in a reset whereas control does not. This restricts
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the continuation in the former case from accessing its outer context. Put differently, when
a continuation is captured inside another continuation that has been captured by shift,
the enclosed continuation’s extent will always be confined in the enclosing continuation.2

The control operator, on the other hand, does not place a delimiter on the captured
continuation. Thus, any call to control from inside a captured continuation will result
in a newly captured continuation which is delimited by the innermost prompt; and this
prompt may lie outside the enclosing continuation.

The difference between static and dynamic control operators can be best shown by an
example:

(prompt
(cons
(control k (cons 1 (k 2)))
(control j '()))))

Listing 3.6: Dynamically-extended Continuation.

In this expression, the continuation captured and bound to k is (cons □ (control j '())).
Applying k to 2 results in the evaluation of (cons 2 (control j '())). In this sub-
expression, the continuation captured by the second call to control, which is bound to
j, is delimited, not by the enclosing continuation, i.e., k, but by prompt. Therefore, the
entire continuation is discarded and the value '() is returned.

Now, if we replace control/prompt with shift/reset and evaluate the program again,
the continuation captured and bound to k is (cons □ (shift j '())). Applying k to 2

triggers the evaluation of the expression (cons 2 (shift j '())). This time, however,
j is bound to the continuation (cons 2 □) instead of the one delimited by reset. That
is, j’s extent does not fall outside k; and it is this continuation that is discarded, yielding
'(). This value is in turn passed to the current continuation, which is (cons 1 □), and
the final result is '(1).

Obviously, shift can be simulated by control: we enclose every invocation of a cap-
tured continuation in a prompt; but it is also possible to go the other way around. Bier-
nacki, Danvy and Shan [5] investigate thoroughly the difference between control/prompt
and shift/reset described above, and the effects that it has in complicated problems.

2An analogy can be drawn with lexical vs. dynamic scoping in functional programming languages.
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The last set of delimited control operators we will examine in this thesis was proposed
and implemented by Dybvig, Peyton Jones and Sabry [10]. Unlike the delimited control
operators presented above, these do not constitute a pair. Instead, the proposal defines
the following four operators: newPrompt, pushPrompt, withSubCont and pushSubCont.
Informally, given terms t1, t2 of the call-by-value λ-calculus, the four operators are defined
as follows:

newPrompt. The newPrompt operator creates and returns a new prompt. A prompt is
a construct that is used as the delimiter when a continuation is captured. The
framework ensures that each successive call to newPrompt returns a fresh prompt.

pushPrompt t1 t2. The pushPrompt operator first evaluates t1, which expects to yield
a prompt, and then uses this prompt to delimit the current continuation in the
evaluation of t2. The pushPrompt operator generalizes reset and prompt.

withSubCont t1 t2. The withSubCont operator evaluates t1 and t2 which expects to yield
a prompt and a function, respectively. Then, it captures the continuation that is de-
limited by the innermost enclosing pushPrompt that corresponds to the same prompt,
aborts the current continuation delimited by the same pushPrompt, and calls its func-
tion argument, passing it a functional abstraction of the captured continuation. Note
that the captured continuation does not contain the delimiter whereas when aborting
the part of the current continuation, it also aborts pushPrompt. The withSubCont

operator generalizes shift and control.

pushSubCont t1 t2. The pushSubCont operator evaluates t1, which expects to be a cap-
tured continuation, and composes the current continuation with the result of t1.
Then, it evaluates its second argument t2 and passes the result to the composed
continuation. Put simply, pushSubCont is the operator that is used to invoke the
captured continuation returned from the evaluation of t1, passing it the result of t2.

The following simple example, which is taken from [10], illustrates how the four opera-
tors work:
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((lambda (p)
(+ 2
(pushPrompt p
(if (withSubCont p

(lambda (k)
(+ (pushSubCont k #f)

(pushSubCont k #t))))
3
4))))

(newPrompt))

Listing 3.7: Example using the multi-prompt framework.

Here, newPrompt is first evaluated, returning a fresh prompt and binding it to p. Then,
withSubCont captures the continuation up to pushPrompt’s call, which is associated with
the same prompt, and binds the captured continuation to k. The captured continuation
is (if □ 3 4). Next, the body of the lambda abstraction passed to withSubCont is
evaluated which is the sum of two continuation calls. This expression can also be regarded
as:

(+ ((lambda (x) (if x 3 4)) #f)
((lambda (x) (if x 3 4)) #t))

In other words, pushSubCont is used to push the captured continuation, once with #f and
once with #t. The first invocation yields 4 and the second yields 3, and their sum is passed
to the current continuation (+ 2 □) which yields 9.

This set of delimited control operators is more general than all first-class control opera-
tors already presented in this thesis. In fact, they form the foundation, based on which, all
the other operators can be built. For example, assuming we have created a top-level prompt
p0, i.e., a prompt that delimits the continuation that captures the entire computation, we
can define an operator withCont as follows:

withCont e = withSubCont p0 (lambda (k) pushPrompt p0 (e k))

This operator captures the top-level continuation, binds it to k and passes it to its argument
e. Having defined withCont, we can easily simulate call/cc:
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call/cc = (lambda (f)
withCont (lambda (k) pushSubCont k (f (reify k)))

where reify k = (lambda (v) abort (pushSubCont k v)) and abort e = withCont

(lambda (d) e). Notice that the definition of call/cc is a direct implementation following
the semantics given in the previous paragraphs. Similarly, we can define shift/reset and
control/prompt.

In this chapter we explored continuations. We introduced the basic concepts and we
considered two notable applications of CPS: definitional interpreters and denotational se-
mantics. We also studied control operators, a control abstraction mechanism of functional
programming languages, and we examined their behaviour. Last, we focused on a general-
ization of traditional control operators, called delimited control operators that are used to
manipulate continuations whose extent can be determined by the programmer, and we re-
viewed several proposals. The last proposal we concerned ourselves with, is a multi-prompt
framework that defines four operators. The distinctive property of these operators is that
they handle continuations delimited by specific prompts. In other words, there can be
multiple prompts in a single program, and the reifier operator can capture a continuation
that is delimited not by the innermost delimiter, as is the case with other proposals, but
by a corresponding prompt. This feature is proved to be very useful in the simulation of
an abstract machine for the call-by-need λ-calculus, as we will see in the following chapter.





Chapter 4

Lazy Pattern Matching and
Delimited Continuations

This chapter presents the main contribution of this thesis. We begin by describing the
work of Garcia, Lumsdaine and Sabry [10], and their abstract machine that reveals a
connection between lazy evaluation and delimited continuations. Next, we extend the
abstract machine, by adding two rules, so that it also evaluates user-defined data types
and pattern matching expressions following a lazy semantics. Last, we show how these
rules can be simulated by an interpreter using delimited control operators.

4.1 An Abstract Machine for a Lazy Language

In their paper, Garcia et al. [12] devise an abstract machine for the call-by-need λ-calculus
as formalized by Ariola and Felleisen [3]. Instead of using an explicit heap-like store, the
machine follows a novel approach to simulate variable bindings with terms: it properly
employs evaluation contexts as a replacement of store-based operations. The way the
evaluation contexts are used exposes a profound relation with delimited continuations in
that when a value of a term, bound to a variable, is needed, the machine restores the part
of the context that belongs to the variable’s scope.

In this paragraph we present the basic building blocks of the abstract machine. The

43
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language that the machine evaluates has the following syntax:

t ::= x | λx.t | t t | b | f b | cons t t | head t | tail t | ⟨x, x⟩

with v denoting the set of values:

v ::= λx.t | b | ⟨x, x⟩

The language supported by the abstract machine is the untyped λ-calculus augmented with
constants b, constant functions f , and lazy pairs. A lazy pair, created with cons, is a pair
whose elements are evaluated lazily. The value ⟨x1, x2⟩ is a pair that has been constructed
with cons, and its elements are variables bound to terms. The functions head and tail

are used to extract the elements from a pair. That is, if t is a pair constructed with cons,
then head t extracts t’s first element while tail t extracts its second element.

An important component of the call-by-need λ-calculus that is related with the notion
of shared computation, is that of an answer:

a ::= v | (λx.a) t

An answer is a syntactic representation of a binding (or a closure) and as we will see, it is
what the abstract machine returns as the result of a computation.

A machine configuration consists of an evaluation context and a term. A configuration
of the form ⟨E, t⟩ denotes the term E[t]. The evaluation of the term starts with an empty
context and terminates when the composition of the context with the term yields an answer.
The rule that is followed on each step depends primarily on the type of the term, but also
on the form of the evaluation context.

The machine uses a predefined set of evaluation contexts, contained in single-element
lists, called frames. A concatenation of two lists, denoted by ◦, replaces the hole of the
first context with the second context, e.g., [E1] ◦ [E2] is equivalent to [E1[E2]]. On each
step, a new frame, whose type depends on the rule executed at a given moment, is pushed
onto the top of the evaluation context.
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The frames that are used by the abstract machine are the following:

[(λx.□) t]

[(κx.E) □]

[□ t]

The first frame is called binder and it represents a variable binding. That is, a binder is
an evaluation context that represents a function application whose hole is the body of the
function. A binder frame is pushed whenever a reduction takes place.

The second frame, which has the form [(κx.E) □], is called cont and it represents a
context that waits for an operand which is in turn substituted for x. Here, κx.E denotes
a continuation and is equivalent to the (meta-)expression λx.E[x]. The former notation,
however, does not merely represent a term; it indicates that E has already been explored
by the machine. A cont frame is pushed onto the evaluation context whenever a variable
is referenced. That is, when the value of a variable x is needed, the machine finds the
binder frame that corresponds to x and constructs a cont frame that encloses the context
up to that binder. Thus, the machine can focus on the operand part of the binder while it
retains the segment that consists of the frames which have been pushed after x’s binder.

Finally, a frame of the form [□ t] is called operand and it represents a suspended
function application that has a standard operand but waits for an operator. The machine
pushes an operand frame whenever it handles a function application.

To illustrate how the machine operates, we will go through the steps followed in a
simple example such as that of a function application. The evaluation starts with

⟨[ ], t1 t2⟩

According to the transition rules, the machine first pushes an operand frame onto the
evaluation context and focuses on t1:

⟨[□ t2], t1⟩

If we assume that t1 is already a lambda abstraction, say λx.t3, the machine retrieves t2

and pushes a binder frame, i.e., [(λx.□) t2] onto the context, and focuses on t3:

⟨[(λx.□) t2], t3⟩
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Now, while the machine keeps evaluating t3, it pushes frames onto the context as required.
If, at some point, the value of x is needed, the machine will have to search into the context
and find the correct binder frame, that is, the frame that corresponds to x.

Obviously, one option would be to start searching the context, frame by frame, until
the machine finds the binder frame in question. However, that would be utterly inefficient
because the number of frames, which have been pushed after the binder frame, is unknown.
In addition, when the binder frame is found, the context up to (but not including) that
frame will need to be stored. Ideally, the machine could accomplish these actions in one
step.

This is where the abstract machine uses the idea of context delimitation. When it
pushes a binder, it also sets a delimiter (or a prompt). If, later on, the value of this variable
is needed, then the machine captures the evaluation context, delimited by the prompt of
the corresponding binder, and focuses on the binding. This can be best illustrated by the
example below:

⟨E1 ◦ [(λx.□) t2] ◦ E2, x⟩

Looking carefully at this configuration we can infer that at some point in the past the
reduction rule pushed a binder frame for x and went on to evaluate the rest of the term,
while it kept pushing frames as the evaluation proceeded. The part of the context that
consists of the frames pushed after x’s binder frame is represented by E2. Now that the
value of x is needed, and thereby has to be dereferenced, the corresponding binder frame
has to be retrieved. Fortunately, having set a prompt that delimits the context up to that
binder allows the machine to capture this part of the context and find the binder in a single
step. Once it finds [(λx.□) t2], the machine pulls the operand t2 of the binder, it pushes
a cont frame [(κx.E2) □] onto the context and turns its focus on t2. When it finishes
evaluating t2, it pushes a new binder frame for x, whose operand now is a value, restores
E2 and proceeds with the reduction. Thus, in case x’s value is needed again, the machine
will find the new binder and thereby will not have to re-evaluate it.

Another key feature of the abstract machine that relies on context delimitation is when
it carries out a reduction. More precisely, when the machine is focused on a value, which
implies that the term is in normal form, the next thing it does is look into the evaluation
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context. If the context consists only of binder frames, then the computation terminates.
If, on the other hand, the context contains either a cont or an operand frame, then the
machine captures the part of the context up to the innermost non-binder frame. Having
this segment, which consists only of binder frames, the machine can perform a reduction
of the call-by-need λ-calculus. That is, it pushes the value into the binder frames and
proceeds with the reduction that depends on the type of the innermost non-binder frame.
In this case, however, the machine does not need a new prompt for each reduction; one
prompt suffices for all the reductions. This prompt is initialized in the beginning of the
program’s evaluation, and it is used to extend the captured context every time a cont or
an operand frame is pushed.

The transition rules of the abstract machine are divided into four groups: refocus,
rebuild, need and reduce. The refocus set of rules examine the term: if it is a value the
machine transitions to rebuild, whereas if it is a variable it transitions to the need rules.
If the term is an application, the machine pushes an operand frame and refocuses on the
operator part of the application.

The rebuild rules search into the context for the next available redex. That is, when
the machine is in the stage of rebuild, it pulls the innermost non-binder frame and switches
to the reduce rules according to the type of the frame.

Last, the machine transitions to the need phase when the value of a variable is required.
In this case, the need rule finds the binder frame that corresponds to the variable in question
and refocuses on the operand of the binder.

4.2 Extending the Abstract Machine

In this section we extend the language supported by the abstract machine by adding pattern
matching expressions. The syntax of the extended language is defined as follows:

d ::= data TConstructor = DConstructor t, . . . , t

t ::= . . . | DConstructor t1, . . . , tn | case v of [p1 7→ e1, . . . , pm 7→ em]

v ::= . . . | DConstructor t1, . . . , tn
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In the definitions above, d denotes the set of algebraic data type declarations, where
TConstructor and DConstructor are strings for the type and the data constructor, respec-
tively, as explained in Section 2.3. Having a way to define a data type, we can add two new
terms: the first term is a value constructed with a user-defined data type. A value of this
type consists of the constructor’s name along with a list of terms which may or may not be
evaluated. The second term that we add to the language is a case expression. Here, v is
a value. In this work we consider only the case in which v is restricted to be a constructor
value. Furthermore, we denote a list of branches by [p1 7→ e1, . . . , pn 7→ em], where pi is a
pattern with its set of variables i′1 . . . , i

′
n and ei is the expression which is evaluated once

a pattern match succeeds.
To extend the abstract machine so that it also evaluates case expressions we add two

new transition rules. The first rule handles constructors. Since we consider them to be
values, when the machine is focused on a data constructor, it changes its stage and moves
to the rebuild rules. (The subscript of the function indicates the group that a rule belongs.)
This allows the machine to remain focused on the constructor while it searches into the
context to find the nearest non-binder frame and proceed with the reduction. If no such
frame is in the context, that is, the evaluation context contains only binder frames, the
machine returns a tuple consisting of the binders and the data constructor value, and halts.
If a non-binder frame does exist, the machine turns from rebuild to reduce and performs
the reduction.

⟨E, DConstructor t1, . . . , tn⟩refocus 7−→ ⟨E, DConstructor t1, . . . , tn⟩rebuild

As a simple example of the rule above, we consider the following term:

(λx.Constr x) λy.y

where Constr is a data constructor already declared. The machine begins the evaluation
with an empty context:

⟨[ ], (λx.Constr x) λy.y⟩refocus

Since the term is a function application, the machine pushes an operand frame and focuses
on the operator:

⟨[□ λy.y], λx.Constr x⟩refocus
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Now, it realizes that the term is a value and shifts to rebuild, to find the nearest reduction.
Once it finds the operand frame pushed in the previous step, it carries out the reduction
by pushing a binder frame and then focusing on the body of the lambda abstraction:

⟨[(λx.□) λy.y],Constr x⟩refocus

Being in refocus, the machine invokes our rule for constructors, and it shifts to rebuild.

⟨[(λx.□) λy.y],Constr x⟩rebuild

But at this point, the term is a (constructor) value and the evaluation context contains only
binder frames. Thus, the computation terminates. Had the evaluation context contained
any non-finder frame, the rebuild rule would have pulled the nearest such frame and the
machine would have moved to the reduce phase.

The next rule handles case expressions. This rule states that when the machine reaches
a pattern matching expression, it starts comparing the constructor’s name with all the
patterns of the list, from left to right, until a match succeeds. Once this happens, the
machine creates a set of binder frames and pushes this set onto the evaluation context.
Then, it focuses on the term of the branch whose match succeeded.

⟨E, case v of [p1 7→ e1, . . . , pm 7→ em]⟩refocus 7−→ ⟨E ◦ E1, ei⟩refocus

where E1 = ((λi′1.(λi
′
2.(. . . (λi

′
n.□) tn) . . .) t2) t1)

and v =d pi

Here, t1, . . . , tn are the constructor’s elements and i′1, . . . , i
′
n are pattern variables. More-

over, =d is a predicate that holds whenever the data constructor, used to create a value,
is the same as that of the pattern being matched. The set of binder frames pushed by
the transition rule for case expressions represents all the bindings of the pattern variables
with the constructor’s elements. When a variable is referenced during the evaluation of
the term of the successful branch, the machine transitions to the need rule and evaluates
the term with which the pattern variable is bound. By using binder frames for pattern
variable bindings we accomplish laziness in pattern matching without further complicating
the abstract machine. Put differently, non-strict pattern matching evaluation is achieved
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using the same rules that delay the evaluation of regular variables in the original language;
but instead of pushing one binder frame at a time, which is the case when the machine
evaluates a function application, it creates a number of binders, and pushes them all at
once. Furthermore, having checked if the constructor matches any of the patterns, the
machine does no longer need the name of the constructor and thereby it can safely discard
it. It stores in the context its arguments bound with the pattern variables and remains in
refocus, but now the term being evaluated is the term of the matching branch. If, during
the latter term’s evaluation, the value of a pattern variable is needed, the need rule will
find the corresponding frame, it will store the context up to that frame, and eventually, it
will evaluate the operand part of the binder.

As an example that illustrates the use of the above rule, we consider the following term:

case Constr (λx.x) (λy.y) of [Constr i′1 i′2 7→ Constr1 i′2 λz.z]

Here, we assume that Constr and Constr1 are already defined and each of them has two
elements. Again, the machine starts with refocus and an empty context.

⟨[ ], case Constr (λx.x) (λy.y) of [Constr i′1 i′2 7→ Constr1 i′2 λz.z]⟩refocus

The term that is evaluated triggers the rule for case expressions that we added. This
rule first attempts to match the constructor with the pattern. The match succeeds and
the machine creates two binder frames, one for each of the constructor’s elements. Then,
it pushes these binder frames onto the context and switches to evaluate the term of the
branch:

⟨[(λi′1.□) λx.x] ◦ [(λi′2.□) λy.y],Constr1 i′2 λz.z⟩refocus

Now, the machine turns to our first rule (for constructors) and changes to rebuild. At this
point the term is a value and the context contains only binder frames. That is, we have
an answer and therefore, the computation terminates. Note that although in the returned
term only i′2 is referenced, both binders are stored in the context. However, their bound
term remains unevaluated until their value is required. Had we demanded that instead of
yielding a constructor, the program returned the value of either of the bound terms, we
could have used the binders in the context to do so.
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The two rules that we introduced extend the abstract machine so that it can also
accept user-defined data types and pattern matching expressions, evaluating both kinds of
expressions under a lazy strategy. In the following section we show how these rules can be
embedded into the interpreter.

4.3 Extending the Interpreter

In their article [12], Garcia et al. also present an interpreter that simulates the abstract
machine described in Section 4.1. The interpreter translates a program written in a call-
by-need language into a call-by-value language with delimited control operators. More
precisely, the interpreter takes a λ-term, and returns another λ-term that contains the four
delimited control operators introduced by Dyvbig et al. in [10]: newPrompt, pushPrompt,
withSubCont and pushSubCont. Evaluating the latter term with a call-by-value interpreter
yields the same result as if the first term had been evaluated under a call-by-need strategy.
In the following paragraphs we give an outline of the simulation.

The translation of a program begins by calling newPrompt which returns a prompt,
typically bound to a variable s. Besides being the top-level prompt, s delimits all con-
tinuations that represent reductions; these continuations consist only of binder frames.
More precisely, before a reduction takes place, the interpreter uses pushPrompt to delimit
the continuation in which the reduction is performed. Therefore, when the next available
reduction is carried out, the interpreter captures a continuation that represents all the
bindings related with that reduction. The outcome of this operation is a pair consisting of
the captured continuation and the resulting value.

Unlike reductions, for which a single prompt is used in the entire program, binder frames
require their own prompt. More specifically, for every binder frame the machine sets a new
prompt which then uses to delimit the continuation that is captured when the value of
the corresponding variable is needed. This continuation represents the context up to that
binder frame which is identified by the need rule of the abstract machine. To simulate this
behaviour, when the interpreter translates a function application, it first calls newPrompt

and binds its result to an identifier, which then substitutes for the bound variable inside
the body of the operator. Next, it calls pushPrompt to delimit the continuation up to
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the binder frame, suspends the evaluation of the operand and proceeds to evaluate the
operator’s body. If the value of the variable is needed, withSubCont will capture the
continuation which is associated with the variable, force the evaluation of the suspended
term and finally, it will push its result to the captured continuation.

In the previous section, we introduced two new transition rules: the first rule handles
constructor values while the second rule handles case expressions. In the current section
we extend the interpreter so that it also simulates these two rules. This will allow us to
translate pattern matching expressions obeying a non-strict semantics.

The first rule, which is concerned with the evaluation of constructor values, can be
simulated following an approach similar to the translation of the other type of values —
lambda abstractions. Essentially, the translation function needs to be defined so that when
dealing with a constructor value, it captures all the bindings up to the nearest reduction,
and returns a representation of an answer. This can be accomplished using the following
translation equation:

N [DConstructor t1, . . . , tn] ≡ withSubCont s λka.⟨ka, DConstructor t1, . . . , tn⟩

Adopting the original paper’s [12] stylistic choices, we denote by N [·] the translation func-
tion; that is, the function that translates a call-by-need term into call-by-value with delim-
ited control operators. According to the above equation, the translation of a constructor
value yields a pair whose first element is the continuation delimited by s, and its sec-
ond element is the value itself. This equation relies on the fact that the translation uses
pushPrompt to delimit the continuation before every reduction, thus making sure that
when the continuation is captured it will contain only bindings.

The second rule, which is concerned with the evaluation of case expressions, creates a
set of bindings and goes on to evaluate the term of the matching branch. To simulate the
latter task we introduce a built-in function, called matchCase, that takes two arguments:
the first argument is the constructor value passed to case, and the second argument is the
list of branches. This function returns the term associated with the pattern that matches
the constructor. What matchCase actually does is perform a textual comparison between
the data constructor passed to case and each of the patterns of the list. Once it finds a
match, matchCase returns the term of the branch that succeeded.
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The bindings of the rule can be carried out with the translation equation for function
applications. The constructor elements are thus successively bound to pattern variables
and these bindings surround the result of the call to matchCase.

N [case v of [p1 7→ e1, . . . , pm 7→ em]]

≡ let t = matchCase v [p1 7→ e1, . . . , pm 7→ em]

in N [(((λi′1. . . . λi
′
n.t) t1) . . .) tn]

Here, i′1, . . . , i
′
n are pattern variables and t1, . . . , tn are the elements of the constructor

passed to case. The translation calls matchCase with v and the list of branches, and binds
the resulting term to t, which then uses as the body of a lambda abstraction. In other
words, t is an identifier for ei where i is such that pi’s data constructor matches with v’s
data constructor. Furthermore, the bindings (((λi′1. . . . λi

′
n.t) t1) . . .) tn represent all the

binder frames that are created and pushed when the case rule of the abstract machine is
invoked.

If we expand the translation of the outermost function application we end up with the
following expression:

let t = matchCase v [p1 7→ e1, . . . , pm 7→ em]

in let ⟨ka, va⟩ = pushPrompt s N [(((λi′1. . . . λi
′
n.t) t1) . . .) tn−1]

in pushSubCont ka (let xp = newPrompt

in let fk = pushPrompt xp (va xp)

in fk λ().N [tn])

The translation first binds the term of the matching branch to t — which is matchCase’s
work to find it — and executes

N [(((λi′1. . . . λi
′
n.t) t1) . . .) tn−1]

≡ withSubCont s λka.⟨ka, λi′1.N [(((λi′2. . . . λi
′
n.t) t1) . . .) tn−1]⟩

When evaluated by a call-by-value interpreter, the expression above returns a pair ⟨ka, va⟩,
where ka is a continuation that contains all the binders produced by the translation of

N [(((λi′1. . . . λi
′
n.t) t1) . . .) tn−1]
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Each of these binders is represented by a continuation. In general, the translation of each
function application of the form (λi′j.t) tj returns a continuation that represents the binder
(λi′j.□) tj, which is in turn composed with the continuation that encloses all the binders
produced by the evaluation of N [t]. These continuations are all delimited by s.

In addition to the continuation, the pair also contains va = λi′j.N [. . .]. Once this pair
is produced, a new prompt is created to which va is applied. This action leads to the
replacement of all occurrences of i′j with the newly created prompt in va’s body. As we will
see below, this prompt, which specifically corresponds to i′j, is effectively used to delimit
the context in which i′j is visible; that is, it specifies the variable’s scope.

Applying va = λi′j.N [. . .] to the prompt triggers the simulation of its outer binding
using the exact same steps as with the previous binding.

The process continues until all bindings are built. Finally, the translation of the term
t, which is returned from matchCase, is evaluated inside the binder continuation.

During t’s evaluation, if the value of a pattern variable is needed the interpreter will
invoke the need rule just as it does with ordinary variables. The translated program will
use withSubCont with the variable itself — which has been replaced with a prompt —
as its first argument, and will capture the continuation up to the corresponding binder.
Then, it will force the evaluation of the suspended operand of the binder. The result of
the bound term’s evaluation will be used twice: once as the value passed to the captured
continuation and once as an operand to a new binder frame that replaces the old with
the unevaluated term. Last, the captured continuation will be composed with the current
continuation and the execution will continue with the rest of t.

An example The procedure described above can be best demonstrated by an exam-
ple. Consider the following program:

data Constr = Constr t t

case Constr Ω ((λx.x) λy.y) of [Constr i′1 i′2 7→ i′2]

Here, Ω denotes a non-terminating term. First, we declare an algebraic data type, called
Constr, that has two elements. Then, we use a value constructed with Constr in a simple
case expression. This expression attempts to match the value with the first (and only)
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pattern, and if the match succeeds, it returns the second element of the constructor. More-
over, when the value is matched with the pattern both of its elements are bound to the
pattern variables; but since only the second element is needed, as opposed to the first
element which is never used, the evaluation eventually halts.

The translation begins with the initialization of the program: a new prompt, bound to
s — the reduction prompt — is constructed:

let s = newPrompt

in pushPrompt s N [case Constr Ω ((λx.x) λy.y) of [Constr i′1 i′2 7→ i′2]]

Having set and pushed the top-level prompt, we use the translation of case expressions as
follows:

let s = newPrompt

in pushPrompt s

let t = matchCase (Constr Ω ((λx.x) λy.y)) [Constr i′1 i′2 7→ i′2]

in N [((λi′1.λi
′
2.t) Ω) ((λx.x) λy.y)]

The call to matchCase in the program above returns the term of the first branch whose
pattern matches with the constructor value. Then, we enclose this term in two lambda
abstractions, λi′1.λi

′
2.(. . .), where again, i′1 and i′2 are the two pattern variables, and we

apply the result to the elements of the constructor value. Next, we translate this term as
a typical function application:

let ⟨ka, va⟩ = pushPrompt s N [(λi′1.(λi
′
2.i

′
2)) Ω]

in pushSubCont ka

let xp = newPrompt

in let fk = pushPrompt xp (va xp)

in fk λ().N [(λx.x) λy.y]

For the sake of simplicity, in the expression above we expand only the outermost func-
tion application, i.e., (λi′1.[. . .]) ((λx.x) λy.y), but the procedure followed for the second
application is identical.
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The translation N [(λi′1.(λi
′
2.i

′
2)) Ω] yields a pair ⟨ka, va⟩, where ka is a continuation

that represents the binder (λi′1.□) Ω and va = λi′2.N [i′2]. Applying va to xp substitutes
the prompt stored to xp for all the occurrences of i′2 in va’s body. Note that when this
replacement takes places, the evaluation of the translation of the inner application, i.e.,
(λi′1.λi

′
2.i

′
2) Ω, has already created another prompt which has been used to replace i′1 in

the body of λi′1.N [λi′2.i
′
2] (although there is no occurrence of i′1 in it).

Once the pair ⟨ka, va⟩ is created and va is applied to xp, pushSubCont composes ka

with the current continuation and evaluates the translation N [i′2], enclosed in a new binder
frame (λi′2.□) ((λx.x) λy.y), in the extended continuation. In other words, the evaluation
of N [i′2] will occur inside the context represented by the composition of (λi′1.□) Ω with
(λi′2.□) ((λx.x) λy.y). Most importantly, each of these binders is delimited by its own
prompt.

At this point, the simulation proceeds with the evaluation of N [i′2] in which the value
of the variable i′2 is immediately required. Therefore, the translation begins the simulation
of the need rule.

N [i′2] ≡ withSubCont i′2 λk.λfth.[. . .]

This rule uses the variable (which is now a prompt) to capture the context up to — but not
including — i′2’s binder. (In our case, this context is empty but it could have equally well
been any context.) Then, it stores the captured continuation to k, and returns a function
λfth.[. . .]. The function λfth.[. . .] can be thought of as a simulation of κx.E where E is
the part of the context that is represented by k. This function is applied to the suspended
term, forces its evaluation, and replaces the binder itself with another; but now the bound
term of the new binder is a value.

λfth.let ⟨ka, va⟩ = pushprompt s (fth ())

in pushSubCont ka (let fk = pushPrompt i′2 pushSubCont k N [va]

in fk λ().N [va])

Last, the current continuation (λi′1.(λi
′
2.□) λy.y) Ω is composed with the captured

continuation, and □ is replaced with λy.y.
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In this chapter we explored the abstract machine of a call-by-need language, as well as its
simulating interpreter, of Garcia et al. Furthermore, we extended its supported language
by adding rules for handling algebraic data types and pattern matching expressions. These
rules allow us to evaluate case expressions in a way that respects laziness. The new rules do
not complicate significantly the abstract machine. Instead, they rely on concepts already
defined for the original language. This extension can form the basis for an even more
complicated pattern matching language.





Chapter 5

Conclusion

Non-strictness, as prescribed by call-by-name and call-by-need, allows functions to ter-
minate, even when one or more of their arguments do not, as long as the value of these
arguments is not needed (or is partly needed) inside the function’s body. Pattern matching
in non-strict languages behaves similarly, evaluating no more than whatever is required
to decide whether its expression argument matches a pattern or not. This makes it an
invaluable tool, especially when dealing with infinite data structures.

Abstract machines provide a formal description of a programming language and its
features by defining the operational characteristics of the language. In this thesis, we
study an interpreter that simulates an abstract machine for the call-by-need λ-calculus.
This interpreter translates a program written in a call-by-need language to a call-by-value
language endowed with delimited continuations. We extend the language supported by the
abstract machine, adding pattern matching expressions, and use the interpreter to simulate
these rules.

Delimited continuations play a crucial role in the evaluation of pattern matching expres-
sions. Arguments of the constructors are not evaluated when the matching is performed;
instead, they are bound to pattern variables and they are evaluated only when needed.
The interpreter treats pattern variables just like ordinary variables. Each pattern variable
is assigned a prompt which the evaluator uses to delimit their scope once their values
is needed. It also seems that a similar approach could be used to yield an operational
semantics and interpret a complete pattern matching language such as Haskell’s.
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