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Abstract

Online decision making is a large research area whose literature includes
many different aspects and approaches. The problems it studies are based
on the following setting. There is a decision-maker who has to make a deci-
sion iteratively with no knowledge of the future and receive the cost of their
decision in each round. The goal is to perform well over time. Depending on
the definition of what consists of a good performance, that is the benchmark
to which we compare our algorithm’s total cost, and on the assumptions
made, different kinds of problems occur. A particularly interesting bench-
mark which captures many real life problems where the environment changes
over time, is a solution which balances the trade-off between the optimal costs
in each round and its stability. Online learning and competitive analysis are
two frameworks which study problems in this setting. In this thesis we will
discuss the differences between these two frameworks, the efforts to unify
them and finally we will demonstrate how such a unifying approach can give
a good approximation algorithm for the online facility location problem with
switching costs, which falls into this general setting.

Keywords: online decision-making; online learning; online linear optimiza-
tion; online convex optimization; competitive analysis; metrical task systems;
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Chapter 1

Introduction

In the online learning framework, we consider the problem of a decision-
maker who has to pick an action from an action set in every round. The
decision-maker chooses her action, and a cost associated with that action
is incurred. The costs can be assumed to arrive in an adversarial way and
usually the decision-maker learns more information about the costs of the
round than just what cost corresponds to her action. Since obviously we can
not aim to minimize the total cost of our actions, the goal is to minimize
the difference between our incurred total cost and the total cost of the best
fixed action. This notion is called regret and is the most common measure
of performance for online learning. It comes in several variations such as
adaptive regret, which we will discuss in later chapters.

It is obvious that this benchmark is weak for many problems, since it
may be the case that no single action performs well overall. Also, the cost
incurred in each round depends only on this round’s chosen action, although
many similar online problems do not fit in this particular model. For ex-
ample, a simple scenario would be to consider a problem where the cost we
suffer in each round depends on the action we choose as well as the state we
are (which depends on our previous actions). Another common feature is to
add a switching cost (sometimes called a movement cost) in the online lear-
ning setting. For example, consider having to schedule processes which arrive
online on a set of servers with different costs. In addition to this cost, an ad-
ditional switching cost is incurred whenever you decide to assign the current
procedure on a different server than the one currently running (imagine this
is the cost of turning off and on servers). This also is a setting which is not
modeled well by the online learning framework as we have described it so far.

This is where competitive analysis fits in. In competitive analysis, we
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assume a more general framework, where the cost function is not as con-
stricted and where the goal is to compete against an optimal offline solution.
Regret is not the common measure of performance in this case. The measure
of performance is the more well known competitive or approximation ratio
between the total cost of an algorithm and the total cost of the optimal off-
line solution, which is the minimum total cost. Obviously, this is a harder
performance criterion but there are several algorithms which yield a good
competitive ratio. Finally, an assumption that differentiates the two areas is
the assumption of 0-lookahead and 1-lookahead. In competitive analysis, the
assumption is that we know the cost function in the current round before
choosing our action, while in online learning we know the costs only after we
have made our choice.

In later chapters, we will examine some settings that may differ slightly
from one another but the main structure of the problem is the following. We
assume that in each round we have to return an action (one could think of it
as a solution to a problem), knowing the current cost function of the round,
that is assuming 1-lookahead. The cost incurred in each round includes, aside
from the cost of the action, a switching cost. The algorithms we will study
will analyse their performance either with respect to the competitive ratio or
the regret or both.
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Chapter 2

Online Optimization with
Switching Costs

In this chapter, we will make an introduction to the large area of Online
Optimization. We will consider some of the first and most important appro-
aches to unifying the two areas of Online Learning and Competitive Analysis
and explain their results. We will then describe some of the more recent
work in the area where very interesting techniques are employed. Some of
these techniques will be applied to the Online Facility Location problem with
Switching Costs in Chapter 4.
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2.1 Online Learning and Metrical Task Sys-

tems

We start exploring the area between the two frameworks with a combi-
nation of the well known and studied problem of Experts in Online Learning
([24]) and Metrical Task Systems (MTS) ([12]) in Competitive Analysis. This
is a simple setting and it provides a good ground for more complex problems.

The problem of Experts and MTS with a uniform metric has been stu-
died extensively. In [10], which was one of the first attempts towards this
direction, the authors prove that by tuning the parameters of known algo-
rithms one can achieve fairly low regret and high competitive ratio. The
notion of α-unfairness is used in this case, which essentially makes the solu-
tion we compete against to pay α times more for the switching cost than our
algorithm. This notion captures well the trade-off between the two different
frameworks, since for α = 1 the competing solution is the optimal as it is
considered in competitive analysis and for α → ∞ the benchmark solution
consists of the best fixed policy in hindsight, just like in the online learning
framework. Interpolating between different values of α one can interpolate
between the algorithms which yield good results with respect to the desired
benchmark.

However, this interpolation means that we can not use the same algo-
rithm with the same parameters to achieve low regret and high competitive
ratio simultaneously. Towards the search for an overall good algorithm, there
have been several papers, such as [8], which provide good problem-specific
algorithms but it wasn’t until [13] that a simple unifying approach which can
also be extended to more complex problems has been proposed. The authors
of the latter paper, using primal-dual techniques from competitive analysis
described in this survey [11], provide a unifying approach with good per-
formance with respect to the regret and the competitive ratio which allows
them to extend their results to more interesting settings.

We will now describe more formally the setting. We denote by T the total
number of rounds. We also have a set E of actions, with |E| = n to chose
from. In the experts setting in online learning, the decision maker maintains
a distribution of weights over the set of actions, which can be considered to
be a probability distribution over the actions (or better the experts), which
implies what action she should choose next. Since in online learning we
have 0-lookahead, we denote by wt−1

i the weight of the i-th expert that the
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algorithm has chosen at the end of the previous round, and by cti the cost
incurred in the current round for expert i which we assume is bounded in
[0, 1] by scaling. The total cost over all rounds can be formulated as:

S0 =
T∑
t=1

wt−1ct

Regret, which our goal is to minimize, is then formulated as follows:

T∑
t=1

wt−1ct −
T∑
t=1

w∗ct

where w∗ = arg minw≥0,‖w‖!=1

∑T
t=1 wct is the fixed distribution over the ex-

perts with the minimum total cost.

In this in-between area, a notion that is very useful is that of shifting and
drifting experts. In the case of shifting experts, we want to minimize the
difference

∑T
t=1 wt−1ct −

∑T
t=1 w∗t ct where w∗t for t ∈ {0, . . . , T − 1} is the

optimal sequence of actions which changes at most k times. Drifting experts
capture an even more general notion which generalizes shifting experts as
well. The goal in this case is to minimize the optimal sequence under the
constraint that

∑T
t=1

1
2
‖w∗t − w∗t−1‖1 ≤ k, which restricts in some sense the

distance of the movement of the distribution.

In the context of competitive analysis however, we assume 1-lookahead
so the total cost for the distribution we choose in each round is:

S1 =
T∑
t=1

wtct

In this setting, we also suffer a switching cost

M =
T∑
t=1

1

2
‖w∗t −w∗t−1‖1

Finally, in contrast to online learning, we compare our results to an op-
timal sequence w∗1, . . . ,w

∗
T which minimizes the total cost:

T∑
t=1

wtct +
T∑
t=1

1

2
‖w∗t −w∗t−1‖1

and has S∗1 total service cost and M∗ total switching cost.
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If we denote the optimal total cost as OPT = S∗1 + M∗ then we define
the competitive ratio to be the minimum c such that

S1 +M ≤ c ·OPT + d

where d is a constant that does not depend on T .
Finally, we formalize the α-unfair setting, where the optimal sequence is

the minimizing sequence of S1 +αM and we denote its total cost by OPT (α).

As in the paper we discuss, we make some preliminary observations about
the relationships between these cost definitions.

� If OPTk is the optimal k-drifting sequence, then OPT (α) ≤ OPTk +
αk, since the optimal α-unfair sequence is the minimum over all α-
unfair sequences, including the optimal k-drifting sequence which has
a bounded switching cost by k.

� Because the service costs are bounded, it holds S0 ≤ S1 + M . We can
imagine that we switch every distribution with the previous one and
suffer the switching cost if they are different.

Based on the above, the following inequalities hold, given that we have a
c competitive algorithm for the α-unfair setting.

S0 ≤ S1 +M ≤ cOPT (α) + d ≤ cOPTk + cαk + d

This gives us a good idea about how the costs of the different settings
are related. The algorithm that the paper proposes for the Experts/MTS
problem is the following:

Experts/MTS (online learning formulation)
Parameters: α ≥ 1, η > 0
Initialization: Set wi,0 = 1

n
for all i.

At each time t = [T ]:

1. Let ct ∈ [0, 1]n be the service cost vector.

2. Using binary search, find the smallest at such that
∑n

i=1wi,t is a distribution and

wi,t = max
{

0,
(
wi,t−1 +

1

eηα − 1

)
e−η(ci,t−at) − 1

eηα − 1

}
This algorithm achieves the following competitive ratio and regret as a

function of the parameters α and η:
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S1 ≤ OPT (α) +
lnn

η

M ≤
(

1 +
n

eηα − 1

)
(ηOPT (α) + lnn)

For α→∞ where we pointed out earlier that the setting approaches the
classic online learning setting with experts, it holds that S0 ≤ S1 + M ≤
(1 + η)OPT (∞) + lnn

η
+ lnn which matches the known bound from the mul-

tiplicative weights update framework.

The proof of the bound is based on the fact that this algorithm can be
also formulated equivalently in a primal-dual context. Aside from the fact
that it helps with the analysis, this equivalence also indicates how these two
areas we discuss are indeed connected.

The primal-dual formulation of the algorithm is the following:

Experts/MTS (primal-dual formulation)
Parameters: α ≥ 1, η > 0

Initialization: Set wi,0 = 1
n
, bi,1 = α− ln( e

ηα+n−1
n

)

η
for all i ∈ {1, . . . , n}.

During execution maintain the relation: wi,t = max
{

0, e
η(α−bi,t+1)

eηα−1
− 1

eηα−1

}
.

At each time t = [T ]:

1. Let ct ∈ [0, 1]n be the service cost vector.

2. Set bi,t+1 = bi,t + ci,t.

3. Using binary search, find the smallest at and set bi,t+1 = bi,t+1 − at such that∑n
i=1wi,t = 1.

The primal LP implied by the algorithm is the following:

min
∑T

t=1

∑n
i=1 ci,twi,t +

∑T
t=1

∑n
i=1 αzi,t

s.t.
∑n

i=1wi,t = 1 ∀t ≥ 0
zi,t ≥ wi,t − wi,t−1 ∀t ≥ 1,∀i ∈ [n]
wi,t ≥ 0 ∀t ≥ 0,∀i ∈ [n]
zi,t ≥ 0 ∀t ≥ 1,∀i ∈ [n]

And its dual whose variables the algorithm increases is:
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max
∑T

t=0 at
s.t. a0 + bi,1 ≤ 0 ∀i ∈ [n], t = 0

bi,t+1 ≤ bi,t + ci,t − at ∀i ∈ [n], t ≥ 1
0 ≤ bi,t ≤ α ∀i ∈ [n], t = 0

The algorithm increases the dual variables of this LP and sets the primal
variables accordingly, creating a feasible dual solution which bounds the pri-
mal solution’s cost, inspired by techniques in [15].
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2.2 Matroids

This primal-dual approach to online learning with switching costs is ge-
neral enough to be applied to more complex problems, meaning that in each
round we are given a service vector but the cost of the round is not just a
linear combination on the actions. Instead, we can imagine that we are given
the costs for an optimization problem (for example k-server ([8], [7]) or set
cover ([2])), and we return a feasible solution in each round.

To get from the simple experts/MTS setting to one such as the one we
just described, we are going to consider how using the same technique on
matroids works in a similar way.

Matroids have a structure which can be used to describe many optimi-
zation problems. Let E be a finite set (instead of the action set), and I a
collection of subsets of E, which are called independent sets. The structure
M = (E, I) is called a matroid if it satisfies the following properties:

� If S1 ⊆ S2 and S2 ∈ I then S1 ∈ I.

� If S1, S2 ∈ I and |S1| > |S2| then ∃e ∈ S1 \ S2 such that S2

⋃
{e} ∈ I.

The base B of S ⊆ E is a maximal independent subset of S and all bases
of S have the same size r(S). By B(M) we denote the convex hull of the
incidence vectors of the bases ofM, namely the base polytope ofM. Finally,
the density of a matroid is γ(M) = maxS⊆E,S 6=∅{|S|/r(S)}.

To make the connection to the previous setting more clear, we think of the
following equivalence between the elements of the problem. The algorithm
maintains a distribution wt ∈ B(M) over the elements of E, which corre-
spond to the actions in the previous setting. As before, where we wanted to
adjust the weights with the guarantee that wt would remain a distribution
(adding up to 1), now we want to adjust the weights with the guarantee that
wt would remain a fractional base (adding up to its rank). The algorithm in
the online learning formulation is the following:
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Matroids (online learning formulation)
Parameters: α ≥ 1, η > 0
Initialization: Find a fractional base w0 ∈ B(M) such that we,0 ≤ 1

γ(M)
for each e ∈ E

(equivalent to 1
n

for the experts).
At each time t = [T ]:

1. Let ct ∈ [0, 1]n be the service cost vector.

2. For each e ∈ E, set we,t = (we,t−1 + 1
eηα−1

)e−ηce,t − 1
eηα−1

.

3. As long as
∑

e∈E we,t < r(E): Let S be the set of elements that do not belong to a
tight set. For each e ∈ S, update we,t = (we,t + 1

eηα−1
)e−ηaS,t − 1

eηα−1
where aS,t is

the smallest value such that there exists e ∈ S to join a tight set.

We can see how the matroids generalize the previous problem, in the sense
that the elements are the actions/experts, a base could be any single element
and a fractional combination of the bases lives in the convex hull ∆n. The
rank of the element set is 1 and the density is n. With these observations, it
is easy to see how the following performance guarantee of the algorithm for
the matroid setting can be applied to the experts/MTS.

S1 ≤ OPT (α) +
r(E)

η
ln(γ(M)) +

nα

eηα − 1

M ≤
(

1 +
n− r(E) + 1

eηα − 1

)
(ηOPT (α) + ln(γM))

The algorithm we presented from [13] returns a distribution over the ma-
troid bases, i.e. a fractional base, in each round and measures its expected
cost. However, optimization problems usually require an integral solution in
each round. For example, the minimum spanning tree problem, which can
be formulated in the matroid setting, would require that in every round the
algorithm returns a spanning tree and not a distribution over all possible
spanning trees. Accordingly, the switching cost would be different. There-
fore, algorithms for these settings usually require a rounding technique to be
applied along with the online algorithm which returns the distribution.

A more complete approach for the matroid setting is given in [26], where
the authors provide an algorithm for the Multistage Matroid Maintenance
problem, which is the maintenance of a matroid base in each round with
switching costs, and their results are optimal unless P = NP . Also, their
approach works for non-uniform switching costs as well, in contrast to the
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approach we just presented. More specifically, by reducing the online mul-
tistage matroid maintenance problem to the online multistage spanning set
maintenance problem, and solving the latter, they provide a O(log |E| log rT )
where E is the matroid element set and r is its rank. When the switching
costs are uniform, the factor T is removed from the competitive ratio. They
also prove that this is the optimal approximation ratio. It is worth mentio-
ning however that no measure of regret is analysed in this case.
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2.3 Online Convex Optimization

We are now going to generalize the problem a bit more. We consider
the following formulation which describes a problem in Online Convex Op-
timization. In each round, a learner must choose an action xt drawn from a
convex decision space which doesn’t necessarily have to be the convex space
of probability distributions over a finite number of discrete elements as be-
fore. After that, the learner receives a convex cost function ct and suffers cost
ct(xt). The difference is that in this case, the learner receives an unknown
convex function instead of a cost vector on the decisions set, so the setting
again generalizes the Expert problem of Online learning that we described
in the previous sections.

Notice that we abused the notation and used the same round index t for
the decision and the cost function of the round even though the setting is
0-lookahead. But we are going to merge again this problem with the MTS
problem, so we are going to have 1-lookahead eventually. To include the
MTS problem in the setting, aside from 1-lookahead, we include a switching
cost metric in the cost incurred by the learner in each round. In the MTS
problem, the service cost functions ct are not assumed to be convex and the
decision space is usually discrete, but we will not incorporate these assump-
tions into the setting.

The problem we have now described, which generalizes the problem of
the previous section and combines Online Convex Optimization and MTS is
considered to be in Smoothed Online Convex Optimization, or SOCO. The
goal is again to minimize the total cost of the algorithm. More specifically,
in each round the cost incurred by the learner is

ct(xt) + ‖xt − xt−1‖

where ‖ · ‖ is any norm. Two very common assumptions we are going
to include are that the decision space is bounded and closed and that the
Euclidian norm of the gradient of the service cost function is bounded in
every round.

There are several more specific problems which fit this setting and have
received great attention, such as k-armed bandits or the k-server problem.
Aside from many applications, there are also many algorithms for this set-
ting, each making less or more assumptions on the cost functions and the
switching cost metric.

18



Before moving on to describe some of those, we have to mention the On-
line Gradient Descent algorithm, which is a well-known algorithm for the
Online Convex Optimization setting and also performs well in the SOCO
setting with respect to Regret.

Online Gradient Descent
Parameters: ηt > 0 changing in every round
Initialization: Choose an arbitrary x1 ∈ F , where F is the convex decision space.
At each time t = [T ]:

1. Let ct be the service cost function.

2. Suffer cost ct(xt).

3. Update the decision as follows:

xt+1 = P (xt − ηt∇ct(xt))

where P (y) = arg minx∈F ‖x− y‖2 is the projection of point y on the convex space
F under the Euclidian norm.

This algorithm achieves sublinear regret, depending on the choice of the
learning rates ηt. The well-known result is that for ηt = Θ(1/

√
t) the regret

after T rounds with respect to the best action in hindsight is O(
√
T ). If

we make some additional assumptions and choose ηt = Θ(1/t) instead, the
regret bound falls to O(log T ).

It turns out that the same algorithm provides a good regret bound even
for switching costs. As noted in [33], if

∑T
t=1 ηt = O(γ1(T )) and the algo-

rithm’s regret is O(γ2(T )) for Online Convex Optimization problems, then
the same algorithm guarantees an O(γ1(T ) + γ2(T )) for SOCO problems.
This means the two algorithms we mentioned before yield the same regret
bounds for the SOCO setting as well.

From the competitive analysis point of view, there are also algorithms
which achieve a good approximation ratio for the problem. In fact, the ap-
proximation ratio for the problem can be even constant for the case that the
convex decision space is a line. More specifically, in [9], the authors give three
algorithms for the SOCO problem if the convex decision space F = R. A
randomized algorithm that yields a fractional solution and a corresponding
deterministic algorithm with competitive ratio 2 as well as a “memoryless”
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algorithm which only remembers the previous decision point xt−1 and has a
3-competitive ratio, which is also optimal for any memoryless deterministic
algorithm (and close to 1.86 which is the lower bound for probabilistic non-
memoryless algorithms as well).

The randomized algorithm maintains a probability distribution over R
and it is given a cost function ct(x) in each round. Then it computes the
minimizer of the cost function but of course it does not return this point
because it has to take into account the distance from the previous decision
point as well. To do this, it computes two points, one to the right and one
to the left of the minimizer, let us denote them by xr and xl respectively.
The constraint is that the cost function’s derivative at xr must be twice the
total probability mass to the right of this point and the corresponding (op-
posite) equality must hold for the left point as well. Then the probability is
increased by 1

2
c′′(x) for each point in [xr, xl] and is zero outside this segment.

This way, we take into account more points so that we do not receive a large
moving cost by choosing the minimizer, but the probability distribution is
more concentrated around the minimizer, since the second derivative of the
convex cost function is higher closer to the extreme point. The algorithm
is analysed using a potential function as usual which takes into account two
terms, the expected distance between the optimal point and the algorithm’s
“fractional” point and the expected distance between two randomly drawn
points from the algorithm’s probability distribution. The deterministic algo-
rithm picks in each round the expected point and because of the convexity of
the cost function and the absolute function, this does not affect the approx-
imation ratio. Finally, the memoryless algorithm proposed by the authors
is very simple. In each round, the algorithm returns the point xt which is
ct(xt)/2 away from the previous point xt−1 or the minimizer if it is within
this bound.

For this result, the analysis of the algorithms is based in the potential
function, which is a common analysis technique for Online Learning. Next,
we will introduce some results based on another very useful technique for
Online Convex Optimization problems, among which lies the framework we
are going to use for the Facility Location problem with Switching Costs in
the last chapter.
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2.3.1 The Regularization technique

The general idea of regularization is to alter the objective function of an
optimization problem in order to enforce some property on the optimal so-
lution. The most common approach is to add a regularizer to the objective
function which is a smooth convex function, such as the negative entropy or
the Bregman divergence. The use of the regularizer will make the overall
solution more stable and it has been used for the MTS problem ([1]) as well
as the more general problem of SOCO, such as in [16].

In this paper, the authors propose an algorithm for any problem that can
be formulated as a covering LP (which could potentially have precedence
constraints as well). In their framework, they provide an O(logm) approxi-
mation online algorithm which returns a fractional solution satisfying a set
of covering and fixed precedence constraints that change over time, where m
is the maximal sparsity of the covering constraints. The example problem
they use is the Online Set Cover problem with Switching Costs and they
also provide an O(logm log n) rounding algorithm for this problem where n
is the number of elements. This setting implies that the convex space of the
decision points is a polyhedron that can be described by covering and fixed
precedence constraints. This is not a very restrictive implication, since many
problems’ solution space can be described by such constraints. For example,
the fractional shortest path problem with time-varying costs , which is a well
studied problem, falls into this category. In this problem, we are given a
graph with edge costs and a source and a destination node that need to be
connected by the shortest path. An online algorithm for this problem needs
to maintain a capacity for each edge (hence the fractional) given new edge
costs in each round. At the end of the round, it pays the service cost which
is the total cost of the edges as well as the movement cost which is incurred
for increasing and decreasing the capacity of the edges. The feasible set of
solutions in each round is defined by the covering constraints corresponding
to cuts which separate the source from the destination.

Let us first define the example problem the authors are using to demon-
strate the framework. Consider the classic Set Cover problem, where we need
to choose the smallest number of sets whose union includes all the elements.
In the SOCO setting, in each round a subset of the elements need to be cove-
red (the decision space changes over time as well). This model allows for sets
to be both added and deleted in each round. Each chosen set however pays
an opening cost (switching cost), as well as a service cost for every round
it is chosen. Therefore an algorithm for this problem can add and delete
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sets from the solution throughout its execution and pay the corresponding
switching or movement cost.

More formally, the algorithm starts with Rn as the feasible solution space
and it is given a new polyhedron Pt in each round, defined by covering and
fixed precedence constraints, along with a cost vector ct ∈ Rn

+. The objective
function we seek to minimize is:

T∑
t=1

ctyt +
T∑
t=1

n∑
i=1

wi · |yi,t − yi,t−1|

where yt ∈ Pt and the weights w model the case when the movement cost
for the sets is not uniform.

Notice that as sets and elements are interchangeable in the Set Cover
problem, this is an equivalent formulation of the problem. Let yi,t be the
indicator variable, denoting if we include set i in the solution for this round
or not. In each round, the subset of elements to be covered changes, so we
denote by mt the new number of constraints for this round. Finally, let Sj,t
be the set of sets which include element j in round t. The LP which describes
the problem is the following.

min
∑T

t=1 ctyt +
∑T

t=1

∑n
i=1wizi,t

s.t.
∑

i∈Sj,t yi, t ≥ 1 ∀t ≥ 1, 1 ≤ j ≤ mt

zi,t ≥ yi,t − yi,t−1 ∀t ≥ 1, 1 ≤ i ≤ n
zi,t, yi,t ≥ 0 ∀t, 1 ≤ i ≤ n

The first constraint ensures that the j-th element to be covered is indeed
fractionally covered and

∑n
i=1wizi,t =

∑n
i=1wi max{0, yi,t − yi,t−1} denotes

the movement cost in round t.

To use regularization in this case would mean to add a smooth function
to the objective function ctyt in each round to ensure that the distribution
yt with not change too much from the previous round. A natural function
which is an indication of the resemblance of two distributions is the relative
entropy function

n∑
i=1

(pi ln
pi
qi

+ pi − qi)

The online regularization algorithm which is one of the two main results
of the paper is the following.
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Regularization Algorithm
Parameters: ε > 0, η = ln(1 + n/ε)
Initialization: yi,0 = 0 ∀i ∈ [n]
At each time t = [T ]:

1. Let ct be the service cost vector and let Pt be the feasible set of solutions.

2. Solve the following convex program to obtain yt:

yt = arg min
x∈Pt

{
ctx +

1

η

n∑
i=1

wi

(
(xi +

ε

n
) ln(

xi + ε/n

yi,t−1 + ε/n
)− xi

)}

We examine the objective function of each round. Aside from the service
costs, it seeks to minimize a regularization function, with the learning para-
meter η serving as a tuning parameter between the two terms. For a large η,
the service cost is more important that the movement cost and the opposite
holds for a small η. The regularization function is almost the relative en-
tropy of the current point and the previous point returned by the algorithm,
adjusted for the weighted case. One more difference is that the points are
noisy, since we have added a small amount of noise ε uniformly distributed
on the coordinates.

The analysis of the algorithm is presented in the last chapter, where
we use the same framework for the Online Facility Location problem with
Switching Costs.
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2.3.2 Measuring performance with respect to Regret

So far, most algorithms we have examined achieve good competitive ra-
tios. However, no regret guarantees were provided for these algorithms. In
this section, we are going to present an algorithm which guarantees low re-
gret, by tracking the best trajectory of the solutions under some assumptions.
The setting is different from the general one we have seen so far, falling into
the category of Online Convex Optimization with external regret, but the
two are closely related.

The authors of [36] consider the following setting. In each round a lear-
ner chooses an action xt and an adversary chooses the loss function ct which
satisfies some nice properties such as bounded and Lipschitz continuous gra-
dients and strong convexity. The learner suffers a cost ct(xt) and also learns
∇ct(xt). The benchmark of the algorithm is the dynamic regret. In this case,
instead of comparing the total cost of the algorithm to that of the best fixed
solution in hindsight, we compare it to the total cost of the best sequence
of solutions. This is similar to the benchmark we have considered so far be-
cause it is with respect to the best sequence of solutions, but there are two
differences. There is no switching cost, and the regret guarantee is an addi-
tive guarantee in contrast to the competitive ratio which is a multiplicative
guarantee.

More formally, the dynamic regret is

R(x∗1, . . . ,x
∗
T ) =

T∑
t=1

ct(xt)−
T∑
t=1

ct(x
∗
t )

We also define the movement cost of a solution sequence as usual. Re-
member however that there is no such cost incurred in each round.

CT (u1, . . . ,uT ) =
T∑
t=2

‖ut − ut−1‖

The Online Gradient Descent algorithm for this problem is the following:
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Online Gradient Descent with constant step
Parameters: h, γ
Initialization: Arbitrary vector x1

At each time t = [T ]:

1. Play action xt.

2. Observe ∇ct(xt).

3. Compute x̂t = P (xt − 1
γ
∇ct(xt)).

4. Update xt+1 = (1− h)xt + hx̂t

We notice that the algorithm has 0-lookahead as in the pure online le-
arning setting. Also γ is the tuning parameter which defines how much the
solution will move towards the minimization direction and h is the tuning
parameter which defines how much it will move from the previous point. In
fact, the projected point x̂t is the minimizer of the first order approximation
of the cost function and a regularization term.

x̂t = arg min
x
{∇ct(xt)T (x− xt) +

γ

2
‖x− xt‖2}

This algorithm guarantees an O(1 + CT (x∗1, . . . ,x
∗
T )) regret. Intuitively,

the more the optimal sequence of solutions changes, the harder it is to follow.

The algorithm achieves this performance with respect to dynamic regret,
because in every round it manages to return a point which is closer to the best
solution of the previous round compared to the previous round’s solution.
Hence, if the optimal sequence of solutions does not change too much over
time, the algorithm’s sequence of solutions essentially converges to it. More
specifically, it holds that:

‖xt+1 − x∗t‖ ≤ ρ‖xt − x∗t‖

where ρ = (1−hµ/γ)1/2 < 1 is a constant depending on the tuning para-
meters h and γ (which is chosen to be necessarily larger than the Lipschitz
continuity constant) as well as µ which is the strong convexity parameter.

It is not hard to prove that if this inequality holds, then the total distance
between the algorithm’s solution and the optimal is also bounded by the
movement of the optimal solution.
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T∑
t=1

‖xt − x∗t‖ ≤ K1

T∑
t=2

x∗t − x∗t−1 +K2

for K1 and K2 depending on the parameters and the initial values of the
algorithm.

The regret bound follows if we use the boundedness of the gradient of the
cost function ct.
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2.3.3 Regret and Competitiveness Incompatibility

There is an inherent reason why we have not yet encountered algorithms
which have good performance with respect to the competitive ratio and the
regret at the same time. As the authors of [4] prove, there is a fundamental
incompatibility between these two metrics.

Theorem 1. There is no algorithm (randomized or deterministic) which can
achieve sublinear regret and constant competitive ratio in the SOCO setting,
even when the cost functions are linear.

This theorem is not based on a pathological example, rather in the case
of fairly simple and linear cost functions (only two different functions, one
for the even and one for the odd rounds), and for a linear decision space.
It also includes the concept of α-unfairness, which interpolates between low
regret and high competitive ratio but does not achieve both simultaneously.

The good news is that it is possible to nearly achieve the goal of simulta-
neous good performance in the linear decision space case. The authors of the
same paper provide an algorithm, named Randomly Biased Greedy (RBG)
which achieves a competitive ratio of (1 + γ) and O(max{T/γ, γ} regret.
Obviously, for γ =

√
T , the performance of the algorithm with respect to

the two metrics is balanced, both the competitive ratio and the regret are
O(
√
T ). For γ = 1 the competitive ratio is 2 but as expected the regret is

linear. The parameter γ defines the order of the norm that the algorithm
uses to estimate the distance of the new and the previous decision point, so
it manages how strict the algorithm is going to be about the movement cost.

Randomly Biased Greedy
Parameters: Norm N .
Initialization: w0(x) = N(x)
At each time t = [T ]:

1. wt(x) = miny{wt−1(y) + ct(y) +N(x− y)}.

2. Generate a random number r ∈ (−1, 1) uniformly.

3. Return xt = arg minx{wt−1(x) + rN(x)}.
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2.4 Coin Betting

Another line of work which gives a new perspective to Online Convex
Optimization algorithms is that of Orabona et al. Aside from providing a
connection between Online Optimization and Coin Betting, which allows us
to use algorithms from the latter to solve problems in the former, this line of
work also addresses a disadvantage of the vast majority of algorithms in the
field. All the previous algorithms which provide a low regret guarantee do so
for certain values of the learning parameter (or the several parameters) of the
algorithm, defined in the beginning of the algorithm. These values however
assume prior knowledge on the number of rounds or on characteristics of the
optimal solution sequence or the optimal solution sequence itself. The design
of parameter-free algorithms for this area is important for applications since
such knowledge usually can not be assumed. The fundamental connection
between Coin Betting and certain Online Optimization settings yields opti-
mal results for the latter achieved by parameter-free algorithms.

Again, we are going to consider the relatively simple setting of Online Li-
near Optimization first. In each round the learner chooses a point xt from a
convex decision set (let us denote this set by K) and receives a reward vector
gt, aiming to minimize the regret with respect to any fixed point u. Repla-
cing the cost vector with a reward vector brings us closer to Coin Betting,
which we will describe next, and does not change the setting of Online Linear
Optimization since the rewards can also be negative. In [38], the authors fo-
cus on two common decision spaces we have already seen, the N -dimensional
probability simplex ∆N and a Hilbert space H, which is a generalization of
the Euclidian space in N dimensions. The problem with ∆N as the decision
space is the known problem of Learning with Expert Advise (LEA) we men-
tioned in earlier sections. For both decision spaces, we make the assumption
that the rewards are bounded, more specifically gt ∈ [0, 1]N for LEA and
‖g‖ ≤ 1 for the Hilbert space.

We will introduce now the very similar setting of Coin Betting. In each
round, a gambler (the learner) makes a bet on the outcomes of an adversarial
coin flip. The gambler starts with an initial amount of money ε > 0 and she
is not allowed to bet more than the money she has. We denote by gt the
outcome of the coin flip in round t, where gt = {−1, 1} and +1 denotes heads
while −1 denotes tails. Let us denote by xt the betted amount of the learner
in round t, the sign of which corresponds to whether she betted on heads or
tails. If the learner looses then she looses |x| and if she wins she gets the
betted amount back as well as the same amount as a reward. Let Wealtht
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be the learner’s total wealth in round t. It holds that:

Wealtht = ε+
t∑
i=1

xigi

since in each round the wealth increases or decreases by the betted amount
|xt| depending on whether the bet and the outcome have the same sign. Also,
the reward of the learner at the end of round t which is the difference between
her wealth and her initial amount is:

Rewardt = Wealtht − ε
It is also convenient to formulate xt = βtWealtht−1, where βt ∈ [−1, 1]

as the learner can not bet more money than she owns. So βt is the fraction
of the current wealth to bet.

If we relax the rewards to be gt ∈ [−1, 1] then it is easy to see how
any algorithm for the coin betting problem could be used to solve the one
dimensional Online Linear Optimization problem, where −gt would be the
cost of the action in round t. The total reward of the algorithm in this case
would be

RewardT =
T∑
t=1

xtgt = WealthT − ε

where the WealthT is defined the same way it is defined for Coin Betting.
The goal of an Online Linear Optimization algorithm though is to mi-

nimize regret. Assume we have an algorithm A for Coin Betting. Let
F : V → R be a function such that Wealtht ≥ F (

∑T
t=1 gt) is the guarantee

of the algorithm on the total wealth. Let F ∗ : V ∗ → R be its Fenchel con-
jugate. V ∗ is the dual vector space of V , which is the space of all the linear
functionals of V and a Fenchel conjugate is defined as supx∈V 〈θ, x〉 − F (x).
Also F is assumed to be a proper lower semi-continuous function so F ∗∗ = F
and since V is the Hilbert space, it also holds that V ∗ = V = H.

The first result for this simple case is the following, linking the Reward
and the Regret bounds:

For any sequence of xt and gt, and ε ∈ R

RewardT =
T∑
t=1

〈gt, xt〉 ≥ F (
T∑
t=1

gt)−ε⇔ RegretT (u) =
T∑
t=1

〈gt, u−xt〉 ≤ F ∗(u)+ε,∀u ∈ V ∗

There is an optimal strategy for Coin Betting proposed by Kelly, if we
assume that the coin flips are i.i.d. with probability of heads p. In this case
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the fraction of the bet should be βt = 2p − 1, constant in all rounds. Even
without knowledge of p but if we assume knowledge of the total number of
rounds T we can still get optimal results, choosing β∗t =

∑T
t=1 gt/T which is

the expected outcome, in all rounds. This gives a wealth guarantee

WealthT (β∗) = εe(T ·D( 1
2

+
∑T
t=1 gt
2T

‖ 1
2

))

where D(·‖·) is the relative entropy of the two distributions. Finally, we rid
ourselves from the assumption of knowledge of T and choose

βt = 2(
1
2

+
∑t−1

i=1 1[gi = +1]

t
)− 1

which approximates the probability of heads by the history of the outco-
mes. This estimator of the probability p is called the Krichevsky-Trofimov
estimator and the wealth guarantee of this strategy is:

WealthT ≥
WealthT (β∗)

2
√
T

For this strategy, which is called adaptive Kelly betting, one can prove
that

Wealtht ≥ Ft(
t∑
i=1

gi) (2.1)

for a certain sequence of functions that are called potentials. Such functi-
ons have to satisfy some properties such as monotonicity, logarithmic con-
vexity and twice-differentiability as well as the following inequality:

(1 + gβt)Ft−1(x) ≥ Ft(x+ g)

for

βt =
Ft(x+ 1)− Ft(x− 1)

Ft(x+ 1) + Ft(x− 1)

which is essential for preserving equation 2.1 for all rounds.

Therefore, using βt =
Ft(‖

∑t
i=1 gi‖+1)−Ft(‖

∑t
i=1 gi‖−1)

Ft(‖
∑t
i=1 gi‖+1)+Ft(‖

∑t
i=1 gi‖−1)

for the general problem

of OLO in a Hilber space (not necessarily one dimensional) achieves a regret
bound

RegretT (u) ≤ F ∗T (‖u‖) + ε,∀T,∀u
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For the case of Learning from Expert Advice, we assume a prior distribu-
tion π = (π1, . . . , πN) over the ∆N simplex and the idea is to use an algorithm
A for the one dimensional OLO for each coordinate of the probability distri-
bution, i.e. for each expert. An algorithm for LEA would compute in each
round p̂i = πi · [xi,t]+ where [xi,t]+ is the positive part of the decision for
expert i of the algorithm A. Then it would normalize this into a probability
vector and return this as the decision of the current round. Finally, given
the reward vector, it would define the reward for each i as:

g̃i,t =

{
gi,t − 〈gt, pt〉 xi,t > 0

[gi,t − 〈gt, pt〉]+ xi,t ≤ 0

which can be interpreted as the amount of reward i earns more than the
average.

Given a guarantee of sequence of potentials Ft for the algorithm A, the
algorithm for LEA that we just described is proven by the authors to give a
guarantee of

RegretT (u) ≤ f−1
T (D(u‖π)),∀T,∀u ∈ ∆N

where ft(x) = ln(Ft(x)).
Since we have reduced the two problems to the coin betting problem

(equivalent to the OLO in one dimension Hilbert space), all we need is an
actual good sequence of potentials to have algorithms with low regret guaran-
tees. It turns out that the δ-shifted KT potentials are a good such sequence
of potentials, which are defined as:

Ft(x) =
2tΓ(δ + 1)Γ( t+δ+1

2
+ x

2
)Γ( t+δ+1

2
− x

2
)

Γ( δ+1
2

)2Γ(t+ δ + 1)

where Γ() is the Euler gamma function.

These achieve O(‖u‖
√
T ln(1 + ‖u‖T )) regret for OLO in the Hilbert

space and O(
√
T (1 +D(u‖π))) regret for LEA.

However, the setting we are interested in is more complicated than that.
The environment is changing so static regret is not a good measure of perfor-
mance since it assumes that a single decision can be a good solution overall.
In [30] the authors extend their setting, by using Strongly Adaptive Regret
and m-shift regret (corresponding to the case of the shifting experts we have
mentioned). These types of regret compare the cost of the algorithm to
a more challenging benchmark. More specifically, Strongly Adaptive Re-
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gret is obtained by evaluating the static regret in each continuous interval
I = [I1 . . . I2] ⊆ [T ] with length τ and it is given by the equation:

SA−RegretT (τ) = max
I⊆[T ]:|I|=τ

(∑
t∈I

ct(xt)−min
w

∑
t∈I

ct(w))
)

The m − Shift − RegretT is defined as the difference between the total
cost of the algorithm and the total cost of the optimal m-shifting sequence
of decisions, which is restricted to change at most m times over the T rounds.

It is common in the design of a meta-algorithm for changing environments
to assume a black-box B of a simple online learning algorithm with Lipsitchz
convex cost functions, and run a new instance of that algorithm in every
time-step. Applying this technique means that we instantiate a new run of
a black-box BJ for each interval J . The decision of the algorithm at round t
would then be a weighted average of the decisions of all the alive black-box
algorithms at time t. The reason why this is a popular technique for chan-
ging environments is that the instances which begin at time t do not have
any dependence on the previous rounds so if the environment changes in this
round, these black-boxes will follow the change more quickly. However good
this technique, it requires a new run in each round, which induces high com-
putational complexity to the meta-algorithm. For this reason, we consider
a more carefully designed set of intervals, the geometric covering intervals,
which are intervals of doubling length, with intervals of size 2k partitioning
exactly the set N r{1, . . . 2k−1}. Any set can be partitioned into geometric
covering intervals and this way the number of alive black-boxes at each round
t is reduced to O(log2(t)).

Strongly Adaptive regret depends on the meta-algorithm M and the
black-box algorithm B. There is an additive decomposition of the regret
which separates these two sources of regret. The SA−Regret for interval I
which can be decomposed into

⋃b
i=−a J

(i) is:

SA−RegretI(w) =
b∑

i=−a

∑
t∈J(i)

(ct(x
M(B)
t )−ct(x

B
J(i)

t ))+
b∑

i=−a

∑
t∈J(i)

(ct(x
B
J(i)

t )−ct(w))

The inner summations of the two terms are the meta regret and the black-
box regret on J (i) respectively. It is proven that if the regret in each interval
scales like Õ(

√
|J (i)|) then the outer summation is Õ(

√
|I|). Since we know

black-box algorithms which achieve this bound for regret, it remains to also
find a meta algorithm with such a guarantee. The Coin Betting algorithm
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for LEA which we described with δ-KT potentials is such an algorithm where
each black-box is treated as an expert. This is not completely true because
we have to account for the fact that not all experts/black-boxes are running
at all rounds, but the algorithm can be adjusted to this case, borrowing some
ideas from the Sleeping Bandits setting.

This algorithm manages to have Õ(
√

(I2 − I1) log(I2)) SA-Regret and

Õ(
√
mT (logN + log T )) m-shifting regret, using Coin Betting as the black-

box algorithm.
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Chapter 3

The Facility Location Problem

In this chapter we will introduce the Facility Location problem. First,
we are going to define the problem in its simplest offline form and then we
are going to discuss several of the many variations that this problem has and
some main results. The online version of the problem we also be discussed
and the similar problem of Facility Leasing. Finally, we will state the dynamic
version of the problem, that is the offline version with switching costs, and
state the results and the techniques that have been used to solve it.
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3.1 Definitions and Variants

The Facility Location problem, is a well know problem that has been
studied for decades and in various forms. The main setting is that we are
given a set of demand points, i.e. clients, C and a set of facilities F . Each
facility i ∈ F has an opening cost fi and the cost of connecting client j with
facility i is denoted as dij and is usually thought to describe the distance
between the client and the facility. An algorithm for this problem should
choose which facilities to open and connect each client to a facility. The goal
is to minimize the total cost of the solution, which is the sum of the opening
costs and the connection costs. One common way to think of this problem is
that the facilities are possible positions for hospital buildings, and we need
to decide where we are going to build hospitals so that the total opening cost
of the hospitals and the total distance between the citizens (clients) and the
hospitals is the lowest.

There is a large number of variants of the Facility Location problem. One
reason for this is that the problem is hard but can accept good approxima-
tion algorithms or even optimal algorithms depending on the assumptions.
Another reason is that it is related to many real world problems and different
models and assumptions may be necessary in each case.

The previous description of the problem implies that every client needs
to be connected to at least one facility in a feasible solution. However, there
is a variant of the problem where each client has a different demand rj, me-
aning that they need to be connected to at least rj facilities. These kind
of problems are called fault tolerant, because if a facility is suddenly down,
the client can use another facility. It is better understood in the area of net-
works, where a facility could be a server or a router. Because fault tolerant
Facility Location is a popular variant, the original problem is also called unit
demand. Another variant of the problem, is to allow for clients to not be
connected to a facility and pay a penalty instead. Even in this specific area
there are different assumptions to what these penalties could be, where linear
and submodular functions are the two main choices.

Another very common variant is the Capacitated Facility Location pro-
blem. This variant limits the number of clients that each facility i can be
connected to by ui. It would not make sense for example for a hospital to be
able to treat an unlimited number of patients at the same time. A variant
which is generalized by the previous one is the case where all capacities are
the same. Again, the original problem has a new name because of the po-
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pularity of this variant, and it is called the Uncapacitated Facility Location
problem.

Last but not least, the most common assumption is that the points are
in a metric space. This means that the distances between the clients and
the facilities all satisfy the triangle inequality. This is a very important
assumption, since the non-metric Facility Location problem can not be solved
in polynomial time. This follows from an easy reduction of the NP-hard Set
Cover problem to the Facility Location problem, where the sets represent the
facilities, the elements represent the clients and we can consider all opening
costs to be 1 and all connection costs to be 1 or∞ depending on whether the
element is in a set or not. Despite its hardness, the problem does admit an
approximation algorithm, similar to the greedy Set Cover algorithm, which
achieves log n approximation ratio.
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3.1.1 Static Facility Location

The static Facility Location problem is just the original offline problem,
where “static” is used to distinguish this problem from the dynamic one
which we will focus on towards the last part of the thesis. We consider only
the metric case. Even for the metric case, [25] proved as soon as 1999 that the
problem does not have an approximation algorithm with ratio better than
1.463, given that some common complexity assumptions hold. The facility
location problem has two types of cost. The facility opening cost and the
connection cost. An even more detailed bound presented in [28] states that
there is no (γf , γc) approximation factor for the opening and connection costs
respectively with γc < 1 + 2e−γf . The gap between the approximation factor
and the lower bound is not yet closed ([17]).

The first constant factor approximation for the problem was 3.16 ([39])
and later the ratio was improved to 1 + 2/ε ([19]). The first result was based
in [32] which provides a technique for rounding LP solutions, and the second
result used LPs and randomized rounding as well. The 3-approximation al-
gorithm in [29] uses a primal-dual scheme. We are going to present the LP
formulation and relaxation of the problem, as it is apparently used in many
algorithms and it provides the reader with a good intuition behind the varia-
bles of the problem. Aside from that, the algorithms for the dynamic version
of facility location will also use the corresponding LP formulation of that
problem.

Let yi and xij be the variables that denote if facility i is open and if client
j is connected to facility i respectively.

min
∑

i∈F,j∈C dijxij +
∑

i∈F fiyi
s.t.

∑
i∈F xij ≥ 1 ∀j ∈ C

yi − xij ≥ 0 ∀i ∈ F, ∀j ∈ C
xij ∈ {0, 1} ∀i ∈ F, ∀j ∈ C
yi ∈ {0, 1} ∀i ∈ F

The first constraint demands that every client should be connected to
at least one facility and the second constraint demands that if a client is
connected to a facility then that facility should be open. The LP relaxation
of the problem is the following:
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min
∑

i∈F,j∈C dijxij +
∑

i∈F fiyi
s.t.

∑
i∈F xij ≥ 1 ∀j ∈ C

yi − xij ≥ 0 ∀i ∈ F, ∀j ∈ C
xij ≥ 0 ∀i ∈ F, ∀j ∈ C
yi ≥ 0 ∀i ∈ F

In the LP relaxation, the variables can take any non-negative real value
and this allows for the constraints to be satisfied in a fractional way. This
means that a client can be connected by 0.3 to one facility and by 0.7 to
another facility, this way being covered, while the respective facilities should
be at least 0.3 and 0.7 open.

The dual LP program is the following:

max
∑

j∈C aj
s.t.

∑
j∈C eij ≤ fi∀i ∈ F

aj − eij ≤ dij ∀i ∈ F, ∀j ∈ C
aj ≥ 0 ∀j ∈ C
eij ≥ 0 ∀i ∈ F, ∀j ∈ C

The dual program provides an intuition to the role of each variable in
the LP. Let us assume the integral case for simplicity. The dual variable
aj denotes how much a client must pay in total to be served and eij is the
amount of that which goes towards the opening cost of the facility they are
connected to. More specifically, if we look at the complementary slackness
conditions, we can see that for every yi = 1, that is every open facility i,
the opening cost must be covered, i.e.

∑
j∈C eij = fi. In addition, for every

xij = 1, that is if client i is connected to facility j, then aj − eij = dij must
hold. This equality denotes that client j must pay eij just for the opening of
the facility and dij for the connection, while this is the total amount aj they
must pay since they are not connected to any other facility and they do not
contribute any amount ei′j for another facility i′.

The algorithm by Jain and Vazirani, increases the dual variables (making
sure no constraint is violated at each time step) until all clients are connected
and then chooses a subset of these facilities to open and connects the remai-
ning clients to the closest facility “indirectly”, achieving an approximation
factor of 3, which is only due to the opening cost. The analysis is tight and
there is an example in which the algorithm can construct a dual solution
whose value is 3− ε away from the optimal ([18]).
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There have been many other approaches for this problem. In [6] the
authors prove a local search heuristic with 5 + ε approximation ratio. In
[27] the authors use the dual fitting method. This method is based on the
following idea: in the greedy algorithm (similar to the algorithm for set
cover) the dual program is infeasible. However, if the dual program is shrunk
(devided by a certain factor γ) then it becomes feasible. Since the dual
solution serves as a lower bound to the dual solution, this means that we
have a γ approximation factor and the problem is then to find the minimum
γ. Finally, the best known approximation ratio so far in 1.488 ([31]).
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3.1.2 Online Facility Location

In the online version of the Facility Location problem, which was intro-
duced in its most known form in [34], the clients arrive one at a time and
we must maintain a set of open facilities at each time so that every client is
connected. The goal is to minimize the total opening and connection cost
over time. Also, a common assumption we are going to make from now on
is that the opening costs are uniform, that is every facility has the same
opening cost f . This variant of the problem is very natural and this can be
demonstrated with the network example we mentioned for the offline case.
In this example, we are building a network and we need to connect clients
to servers with the smallest total cost, which includes the connection cost
as well as an “opening” cost whenever we buy a new server. New clients
may need to join the network after the original structure has been built and
this is modeled by this online variant of the problem. The benchmark is the
minimum total cost achieved by the optimal offline solution.

Any algorithm for this problem essentially needs to maintain a balance
between the opening and the connection cost. In this first paper which in-
troduced the problem, Meyerson gives a constant approximation algorithm
for the case the clients arrive in a random order. The intuition behind his
algorithm is that there is a potential of d(Fi−1, ui) to each demand point ui,
which is an upper bound to its connection cost and how much it can contri-
bute to the opening of facilities close to it ([23]). This algorithm opens a new
facility on ui’s location with probability d(Fi−1, ui)/f and connects it to the
nearest facility otherwise. Unfortunately, if the clients arrive in an adversa-
rial order, then no algorithm can give a constant approximation ratio. There
is however an O(log n) competitive algorithm, where n denotes the number
of demands. Both these algorithms are randomized.

In this setting, any facility opens irrevocably. This may capture in some
sense the network example we gave but it is quite restrictive for other real
life problems. This is why another variant of the problem, namely the Incre-
mental Facility Location problem was defined. In the Incremental Facility
Location problem, the clients arrive one by one and must be assigned a faci-
lity upon arrival. But the algorithm can merge two facilities by closing one
of them and re-assigning its clients to the second one. The goal is the same.

There is a lower bound of Ω( logn
log logn

) on the competitive ratio of any al-

gorithm for the Online Facility Location problem ([22]). This lower bound
does not depend on a rare instance of the problem and it holds even for sim-

40



ple metric spaces such as the real line. It holds for randomized algorithms
against an oblivious adversary. To prove the lower bound, the construction
uses a metric space which is described by a Hierarchically Well-Separated
Tree and proves the bound for deterministic algorithms, using Yao’s princi-
ple afterwards to extend the result to randomized algorithms. However, in
the same paper Fotakis presents a deterministic algorithm with an asympto-
tically matching competitive ratio of O( logn

log logn
). The analysis is based on the

fact that any metric space has a hierarchical cover with the property that any
component is either large or is relatively well-separated and on a potential
function argument which distinguishes between the two kinds of components.
Then the well-separated components can be treated as independent instances
with a single facility as their optimal solutions, and for the large diameter
components the algorithm incurs a bounded additional cost.

As for the incremental version, the problem admits a constant compe-
titive ratio. The algorithm of [21] maintains its facility configuration, its
merge configuration consisting of a merge ball for each facility, and the set of
unsatisfied demands. Every demand is unsatisfied upon arrival and holds a
potential equal to its distance to the closest facility. If the unsatisfied neig-
hbourhood of a new demand has accumulated enough potential (a fraction of
the opening cost of a facility), then we decide it is worth it to open a facility
and we open it in the location of the new demand. Then all the demands in
the neighbourhood are satisfied. The merge balls initially have a small radius
and include only the facility to which they belong and any new facility in the
ball of an old one is merged with the old one. To ensure that there will not
be too much merging to increase the connection costs dramatically, the ball
decreases over the course of the algorithm.

A more in depth presentation of the various results on the Online and
Incremental Facility Location problem, as well as some more related models
(streaming) and problems (k-clustering) can be found in [23].
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3.1.3 Facility Leasing

In [5], the authors introduced another variant of the Facility Location
problem. They introduced the notion of time. The problem can be described
as follows: We are given a set of facilities F and a set of clients C. There are
distinct time periods from time 1 to T and at each time period t, a subset Ct
of clients must be served by a facility that is open at that time. There are k
different lease types available `1, . . . , `k and each facility can be leased at any
period t for `j days at a cost f ji . The lease cost can be dependent on both the
facility and the lease period. The goal is to minimize the total connection
and leasing costs while ensuring that for each time period t, clients in Ct
can be served by at least one open facility in that period. This variant of
the problem can model other real life problems, where the facilities and the
demands have a limited lifespan.

By formulating the problem in its LP relaxation, the authors of [37] ma-
naged to treat the problem as a generalized Facility Location problem and
achieved a constant approximation ratio of 3 for the offline version of the
problem using the classic algorithm by Jain and Vazirani. More specifically,
they extend the definitions of the facilities and the clients to capture a spe-
cific time. The facilities are defined as triples including the facility, the lease
type, and the time t and the clients are defined as tuples including the client
and the time t.

For the online version of Facility Leasing, Nagarajan and Williamson
presented in the same paper a primal-dual O(k log n)-competitive algorithm.
For the online version it is important to clarify that the potential facility lo-
cations and their lease types are given to the algorithm in advance and only
the client sets Ct arrive online. Online Facility Leasing is a generalization of
Online Facility Location and the Online Parking Permit. The latter is defi-
ned in [35] and it can be seen as a variant of a well known problem in online
algorithms, the ski rental problem. The example for this problem is the fol-
lowing: A commuter has the choice to go to work either on foot or by driving
and we don’t know in advance what she will choose. On any driving day, she
can apply for a parking permit, picking from a set of parking durations and
permits following the subadditive property. There are k different types of
permits available and each one has a duration and a cost. The driving days
are revealed one at a time and the goal is to minimize the cost paid by the
algorithm. The benchmark is the optimal cost of an offline algorithm. In the
same paper, Meyerson provides an O(k)-competitive deterministic algorithm
for the problem.

42



The best known lower bounds for the Online Facility Leasing problem are
Ω(k + logn

log logn
) and Ω(log k + logn

log logn
) which follow the lower bounds on the

Online Facility Location and the Parking Permit problems respectively.
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3.2 Dynamic Facility Location

The problem we are interested in, which is closer to the area of research
we described in the previous chapter is the Online Facility Location problem
with Switching Costs. If the algorithm is not required to be online, the
problem changes into what is called in the literature the Dynamic Facility
Location problem.

As introduced in [20], the Dynamic Facility Location problem can be
described as follows: Let t ∈ {1, . . . , T} be the time variable. At each time t,
we are given the set of connection costs {dtij|j ∈ [n], i ∈ [m]}, where each dtij
denotes the connection cost between client j and facility i at time t. We also
know in advance the uniform opening cost f of the facilities which does not
change over time. At each time t, there are different connection costs, and
in the end we should return a feasible solution. A solution is described by
the vectors yt ∈ {0, 1}n and xt ∈ {0, 1}m×n, where yti is an indicator variable
for the opening of facility i at time t and xtij is an indicator variable for the
connection of client j to facility i at time t. In order for the solution to be
feasible, each client should be served, i.e. they should be connected to one
facility. Therefore, it should hold that

m∑
i=1

xtij = 1 ∀j ∈ [n]

In addition, no client should be connected to a closed facility, therefore

xtij ≤ yti ∀j ∈ [n]∀i ∈ [m]

The goal is to minimize over time the total opening cost, connection
cost and switching cost. The latter is what differentiates this problem from
the Facility Location problem. The switching cost at time t is given by
g
∑m

j=1

∑n
i=1 z

t
ij where zij = 1{xtij 6= xt−1

ij }. From the definition, an amount g
of switching cost is incurred whenever the connection status between a client
and a facility changes. More formally, the benchmark for our algorithm is:

min f
T∑
t=1

m∑
i=1

yti +
T∑
t=1

n∑
j=1

m∑
i=1

xtijd
t
ij + g

T∑
t=1

n∑
j=1

m∑
i=1

ztij

The linear relaxation of our problem is the following:
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min f
∑T

t=1

∑m
i=1 y

t
i +
∑T

t=1

∑n
j=1

∑m
i=1 x

t
ijd

t
ij+g

∑T
t=1

∑n
j=1

∑m
i=1 z

t
ij

s.t. xtij ≤ yti ∀t ∈ [T ],∀i ∈ [m],∀j ∈ [n]∑m
i=1 x

t
ij ≥ 1 ∀t ∈ [T ],∀j ∈ [n]

ztij ≥ xtij − xt−1
ij ∀t ∈ [T ],∀i ∈ [m],∀j ∈ [n]

yti ≥ 0 ∀t ∈ [T ],∀j ∈ [n]
xtij ≥ 0 ∀t ∈ [T ],∀i ∈ [m],∀j ∈ [n]
ztij ≥ 0 ∀t ∈ [T ],∀i ∈ [m],∀j ∈ [n]

Since yti depends also on the time t, the problem includes the case that
facilities can be opened and closed throughout the course of the algorithm.
One way to think about it is that the facilities have an hourly cost and we
pay for them only the times we use them. However, the change in the faci-
lity’s state does not incur any cost.

The algorithms for this problem assume the optimal fractional solution
given by the LP and use a rounding technique on this solution.
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3.2.1 Rounding Techniques

Logarithmic approximxation

In [20], where the problem was introduced, the authors give a randomized
rounding algorithm. Let us assume for now that yti = yi, that it the facilities
we choose to open are open at all times. Let (x, y, z) denote the optimal
fractional solution obtained by the LP relaxation. The rounding algorithm
is the following:

Randomized Rounding for Dynamic FL

1. Draw a facility at random Γ = 2 log(2nT )
∑

i∈F yi times independently
with a distribution proportional to y. These are the open facilities of the
algorithm. Denote this set by A.

2. For each client j determine when they should change facility using the
z-variables.

� Partition time greedily into `j intervals [tjk, t
j
k+1) such that tj1 =

1, tj`j+1 = T + 1 and every tjk+1 is inductively defined as the largest

t ∈ (tjk, T + 1] such that∑
i∈F

( min
tjk≤u<t

xuij) ≥ 1/2

� For each time interval [tjk, t
j
k+1) connect j to the facility in A which

is cheapest for j at that time interval.

The expected opening cost of the algorithm is obviously at most Γf =
2f log(2nT )

∑
i∈F yi since it is higher when we choose different facilities in

each draw and there are Γ = 2 log(2nT )
∑

i∈F yi draws.

The intuition for this algorithm is that it tries to maintain a stable so-
lution, but when the z variable is high enough it switches. The way the
intervals are chosen, the solution is guaranteed to not pay more than twice
as much as the optimal solution for the switching cost. The inequality that
defines the intervals seems complicated but it essentially does the following:
In each round, we update the minimum connection cost we have seen so far
in this interval for each facility that j could be connected to. Obviously the
sum of these numbers does not increase and could only decrease, because we
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maintain the minimum for each facility. Intuitively, if this number stayed
the same, it would mean that the environment does not change so the inter-
val should be long and there is no need to switch. Let us explain how the
inequality is connected to the z-variables.

It holds that: ∑
tjk≤t<t

j
k+1

∑
i∈F

ztij > 1/2,∀j,∀[tjk, t
j
k+1), k < `j

Proof. For all t, and in particular for t = tjk it holds that∑
i∈F

x
tjk
ij = 1 (3.1)

since x is the optimal and feasible solution of the LP. Since k < `j,
meaning we have not reached the end of the interval, it also holds that∑

i∈F (mintjk≤t≤t
j
k+1

xtij) < 1/2

Let ti be the time in the whole interval when the minimum connection
cost for our client and facility i occurs, that is xtiij = mintjk≤t≤t

j
k+1

xtij. The

previous inequality is then formulated as∑
i∈F

xtiij < 1/2 (3.2)

The z-variables are non-negative, so ztij ≥ 0. It follows that
∑

tjk≤t<t
j
k+1

ztij ≥∑
tjk≤t<ti

ztij ≥
∑

tjk≤t<ti
(xtij−xt+1

ij ) = x
tjk
ij −x

ti
ij where the last inequality holds

because of the LP constraint on ztij.
The sum of this quantity for all facilities is:∑

i∈F

∑
tjk≤t<t

j
k+1

ztij ≥
∑
i∈F

(x
tjk
ij − x

ti
ij)

3.1,3.2
> 1− 1/2 = 1/2

This fact yields an easy bound for the switching cost. The total swit-
ching cost of client j is g times the number of intervals minus 1. But for
every interval, except for the last one, the optimal solution’s ztij’s add up to
at least 1/2 over the interval so the optimal solution pays at least g/2 for
any interval. Therefore, the total switching cost of the rounded solution is
at most twice the switching cost of the optimal LP fractional solution, so at
most twice the cost of the optimal integral one.
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It remains to bound the connection cost for each client j for each interval
I = [tjk, t

j
k+1). Let xIij be the minimum connection cost for client j and faci-

lity i within this interval, that is xIij = mint∈I x
t
ij. The distribution which is

implied by these xIij’s is x̂Iij =
xIij∑

i′∈A x
I
i′j

. It seems a little bold to decide on

the open facilities the way the rounding algorithm does, because it is early
on the algorithm, it is random (following the distribution implied by the op-
timal solution of course) and it seems to not take into account the connection
costs. However, the authors prove that in fact the facility selection process
can be simulated by selecting a facility according to x̂Iij, losing only a factor
of 2 in the approximation ratio.

More specifically, consider the probability pIj =
∑
i∈F x

I
ij∑

i∈F yi
. Since xIij ≤ xtij ≤

yi, where the first inequality holds because of the definition of xIij and the
second holds because of the LP’s constraint, this is indeed a probability. If
with probability pIj we sample proportionally to xIij and with the remaining
probability we sample proportionally to (yi − xIij), then we sample in fact
proportionally to yi:

Pr{i is selected} =
∑
i∈F x

I
ij∑

i∈F yi
· xIij∑

i∈F x
I
ij

+
(

1−
∑
i∈F x

I
ij∑

i∈F yi

)
· yi−xIij∑

i∈F (yi−xIij)

=
xIij∑
i∈F yi

+
∑
i∈F yi−

∑
i∈F x

I
ij∑

i∈F yi
· yi−xIij∑

i∈F yi−
∑
i∈F x

I
ij

= yi∑
i∈F yi

(3.3)

More formally, we consider the following selection process, as a thought
experiment. If U is a uniform real number in the interval [0,

∑
i∈F yi),

we say that facility i is selected if U happens to fall into the sub-interval
[
∑

k<i yk,
∑

k≤i yk). Also, event BI
j occurs when U ∈ [

∑
k<i yk,

∑
k<i yk+xIij),

which is an even smaller interval. To sum up, according to this selection pro-
cess: i is distributed according to yi. Also,

Pr[BI
j ] = pIj =

∑
i∈F x

I
ij∑

i∈F yi
≥ 1

2
∑

i∈F yi
(3.4)

where the last inequality holds because of the algorithm’s criterion. Fi-
nally, conditioned to BI

j , i is selected proportionally to xIij.

The selection process is repeated Γ = 2 log(2nT )
∑

i∈F yi times indepen-
dently. For a pair (j, I), the probability that event BI

j never occurs is at most

(1− pIj )Γ
(1−x)a≤e−ax,3.4

≤ e
− Γ

2
∑
i∈F yi = 1

2nT
. Since there are at most nT pairs of
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(j, I), the union bound ensures that the events BI
j occur at least once with

probability at least 1/2.

When BI
j occurs, the selection is selected proportionally to xIij, so for

each time t ∈ I the expected connection cost is:

∑
i∈F

xIij∑
i∈F x

I
ij

dtij ≤
1

1/2

∑
i∈F

xtijd
t
ij

where the last inequality holds because xtij ≥ xIij by the definition of xIij and
the algorithm’s criterion. This means that with probability 1/2, the expected
connection cost is at most twice the optimal connection cost of the fractional
solution. Therefore, in total it holds for the expected cost that:

E[C] ≤ 2 log(2nT ) ·OPTLP
with probability at least 1/2. Using Markov’s inequality, we conclude

that

Pr{C ≤ 4 log(2nT ) ·OPTLP} ≥ Pr{C ≤ 2(2 log(2nT )) ·OPTLP ∧ all BI
j occur at least once}

= Pr{C ≤ 2(2 log(2nT )) ·OPTLP | all BI
j occur at least once } · Pr{ all BI

j occur at least once} ≥ 1
2
· 1

2

= 1
4

(3.5)
If we repeat this algorithm O(log 1

ε
) times, then the best solution increa-

ses the success probability to 1− ε.

Let us go back to the case where yti is not fixed. The following is a
rounding algorithm for this case, which is similar to the previous algorithm
we analysed.
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Randomized Rounding for DFL with hourly costs

1. For each facility i, pick a random threshold ρi, such that Pr{ρi > a} =
e−2a log(2nT ) for all a ≥ 0. Open facility i at all times t such that yti > ρi.
Let At be the set of open facilities at time t.

2. For each client j determine when they should change facility using the
z-variables.

� Partition time greedily into `j intervals [tjk, t
j
k+1) such that tj1 =

1, tj`j+1 = T + 1 and every tjk+1 is inductively defined as the largest

t ∈ (tjk, T + 1] such that∑
i∈F

( min
tjk≤u<t

xuij) ≥ 1/2

� For each time interval I = [tjk, t
j
k+1) and facility i, connect j to the

facility in At that minimizes the ratio ρi/x
I
ij, where xIij = mint∈I x

t
ij.

Notice that an alternative way to define ρi is that it is a sample from an
exponential distribution with rate 1/(2 log(2nT )). Exponentially distributed
random variables have many nice properties, which explain their use in desig-
ning rounding algorithms. Exponential Clocks is an example of that. For an
introduction to Exponential Clocks, jump to 4.2.1. It is easier to understand
the analysis of this algorithm, having exponential clocks in mind.

The probability that a facility i is opened is Pr{ρi ≤ yti} = 1−e−2yti log(2nT ) ≤
yti log(2nT ). Therefore the expected opening cost is again at most f

∑
i∈F
∑T

t=1 y
t
i ·

2 log(2nT ). The switching cost also does not change since we use the same
criterion.

For the connection cost we will try to follow the same reasoning as before.
We want to imagine again that a facility is sampled according to xIij, but we
also need this facility to be alive at time t. We will consider the case that we
only open facility i if xIij > ρi. In the last step, we assign facility i to client
j if ρi/x

I
ij is minimum. So we get a facility if it also holds that ρi/x

I
ij < 1.

The probability that client j is not covered by an open facility this way
is

Pr{min
i∈F

(ρi/x
I
ij) ≥ 1} ρi :i.i.d.

= Πi∈F Pr{ρi ≥ xIij} = e−2(
∑
i∈F x

I
ij) log(2nT )
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But this probability is less than 1
2nT

since
∑

i∈F x
I
ij ≤ 1/2. Then the

union bound of the probabilities of the opposite event, that is that all clients
are covered in all intervals is at least 1/2. Conditioned to this event, the
expected connection cost between client j and every facility at time t is:

∑
i∈F

Pr{ρi ≤ xIij}
1/2

dtij ≤
∑
i∈F

2(1− e−2xIij log(2nT ))dtij ≤
∑
i∈F

4xIij log(2nT )dtij

So in the same way as before, with probability 1/4 the cost of the algo-
rithm is at most 4 log(2nT ) times the cost of the optimal solution.
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Constant Approximation

Borrowing some parts of the previous algorithm, the authors of [3] give a
constant approximation rounding algorithm for Dynamic Facility Location.
And in fact that constant is 14 which is relatively small. The algorithm
assumes the optimal fractional solution of the LP program, and applies a
preprocessing on this solution before doing the rounding.

The preprocessing consists of two parts. The first and most important
ensures that the solution will not switch too often, based on the same idea
from [20]. More specifically, if in each of the intervals that the previous

algorithm defines, we set xtij =
minu∈I x

u
ij∑

i′∈F minu∈I x
u
′ij

to be the value of the variable

for all t ∈ I, then this is at most twice the optimal value. If we double the
yti variable as well, the solution remains feasible. Finally, for the z variables,
we set ztij = xtij − xt+1

ij and we increase them until the total switching cost
is twice the optimal. After this preprocessing, the new solution (x, y, z) has
lost a 2 approximation factor but satisfies the following property

T−1∑
t=1

|Zt| ≤
T−1∑
t=1

∑
i∈F

∑
j∈C

ztij

where |Zt| is the number of clients who changed their connection variables
in that step. The second part of the preprocessing uses the standard techni-
que of duplicating facilities with care and ensures that all xtij ∈ {0, yti} and
yti ∈ {0, oi} for some oi ∈ [0, 1].

The algorithm is the following:
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Constant Approx. Randomized Rounding for DFL
Initiate: Sample independently an exponential clock Qi with expectation oi
for each facility i and Rj with expectation 1 for each client j.
At each time t ∈ [T ]:

1. Consider the clients in a non-decreasing order of their exponential clocks.

2. When client j is considered:

� Find the facility with the smallest clock among the facilities such
that xtij > 0, i.e. i = arg mini:xtij>0Qi.

� Find the client with the smallest clock in the neighbourhood of i,
i.e. j′ = arg minj′:xt

ij′>0Rj′ .

� If j is the smallest clock in the previous step, that is j = j′, then
connect j to i, otherwise connect j to j′’s facility.

The procedure is well defined, since if j′ is different than j and it is the
smallest clock, then it is smaller than j so it would have been examined be-
fore j meaning that it is already connected to a facility.

There is an alternative description of the previous algorithm which uses
graphs and is more intuitive for the proofs which will follow. Let SG(xt) be
the support graph of xt, that is a bipartite undirected graph with vertices
F ∪ C where an edge {i, j} exists if xtij > 0. Another graph CG(xt) is called
the connection graph where every vertex has exactly one outgoing edge to-
wards the vertex with the smallest clock in its neighbourhood. The algorithm
finds all lenght-2 cycles in the connection graph and opens any facility that
appears in such a cycle. Then a client j follows the path Pj(x

t) defined by
the unique outgoing edges of each vertex and stops before it is about to visit
an already visited vertex. The client j is connected to the facility visited last
in this path. It is easy to see that there exists no cycle with length more than
2 in the connection graph. This implies that every path stops at a length-2
cycle and this is why the algorithm is guaranteed to assign a facility to every
client. The equivalence of the two descriptions of the algorithm follows from
this observation, since essentially the only time the algorithm opens a facility
is when it is the facility with the smallest clock in the neighbourhood of the
client with the smallest clock in its own neighbourhood, which is exactly the
length-2 cycle.

To analyse the algorithm we define the random indicator variables X t
ij
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and Y t
i . The expected costs of the algorithm are bounded as follows:

1. Opening cost: E[
∑

i∈F fiY
t
i ] ≤

∑
i∈F fiy

t
i

2. Connection cost: E[
∑

i∈F
∑

j∈C d
t
ijX

t
ij] ≤ 6

∑
i∈F
∑

j∈C d
t
ijx

t
ij

3. Switching cost: gE[
∑

j∈C 1{X t
ij 6= X t+1

ij for some i ∈ F}] ≤ 7g|Zt|

If these bounds hold, then the overall approximation ratio of the algo-
rithm is indeed 14 because of the switching cost approximation factor and
the preprocessing of the fractional solution which incurred an additional 2
approximation factor.

The opening cost is relatively easy to bound. If the facility is not in
any client’s support in the graph, then E[Y t

i ] = 0. Otherwise, let j de-
note the client with the smallest clock in the neighbourhood of i in the
connection graph and let F (j) denote the facilities in j’s neighbourhood
in the support graph. Facility i will be opened only if it has the smal-
lest clock in F (j), which by the properties of the exponential clocks would

mean that E[Y t
i ] =

yti∑
i′∈F (j) y

t
i′

= yti , where the last equality holds because∑
i′∈Fj y

t
i′ =

∑
i′∈F (j) x

t
i′j = 1 by the second preprocessing and the optimality

conditions.

The switching cost is not that obvious but the main idea is that if only
one client k changes their connection variables, then she only affects her own
connection path and the clients which included k in their paths either before
or after the change of k. But the paths that contain k are at most 3 in
expectation (which is proven in the connection cost bound) so in expectation
there are at most 7 clients whose connection paths are different. Therefore
the switching cost at time t is at most 7|Zt|.

Because the proof for the connection cost bound is rather complicated, we
will drop the index t and use the simplified notation xij, yi, SG, CG and Pj.
By the triangle inequality, the connection cost of a client is at most the sum
of the connection costs of the edges of her connection path, therefore we will
bound instead E[

∑
j∈C dt(Pj)] =

∑
{i,j}∈SG d

t
ijE[|j′ ∈ C|(i, j′)or(j′, i) ∈ Pj′ |].

If the expected number of paths that use an edge {i, j} is 6xtij then the over-
all bound follows. To do that, a bound on the probability that a connection
path starts with a given prefix is required.

Consider a client j0 and its connection path Pj0 . The set prefix(Pj0) is
the set of all prefixes of this path, that is all the subpaths of Pj0 that start at
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j0. The set C(i) denotes the set of clients that are in the neighbourhood of
a facility i in the support graph SG. Similarly, F (j) is the set of facilities in
the neighbourhood of j in SG. The sets C(i1, . . . , i`) and F (j1, . . . , j`) denote
the union of the respective neighbourhoods. Finally, for a set of facilities F ′,
y(F ′) =

∑
i∈F ′ yi.

Pr[〈j0, i1, j1, . . . , ik, jk, ik+1〉 ∈ prefix(Pj0)] ≤ Πk
`=1

1

|C(i1, . . . , i`)|
Πk
`=0

yi`+1

y(F (j0, j1, . . . , j`))

Pr[〈j0, i1, j1, . . . , ik, jk〉 ∈ prefix(Pj0)] ≤ Πk
`=1

1

|C(i1, . . . , i`)|
Πk−1
`=0

yi`+1

y(F (j0, j1, . . . , j`))

For the first probability, the event is equivalent to the event that all the
arcs of the path exist in CG. First we bound the probability that the arcs
(i1, j1), . . . , (ik, jk) exist in CG. For such an edge (i`, j`) to exist, j` has to
be the smallest clock of all the clients in C(i`). Also, since j`−1 ∈ C(i`), it
must hold that Rj` < Rj`−1

and by repeating this argument we can see that
the exponential clocks must increase as ` increases in order for all the arcs
to exist. Therefore, the arcs exist only if

Rj` = min{Rj|j ∈ C(i1, . . . , i`)},∀` ∈ [k]

Each of these exponential clocks has a rate of 1, so the rate of that mini-
mum value, given by the exponential clocks’ properties is 1

|C(i1,...,ik)| . By the
memorylessness property, this probability is the same if we replace k with
each `. So in the end we get the first term of the bound, which states that the
probability that all these arcs exist in the connection graph is Πk

`=1
1

|C(i1,...,i`)|
.

We now need to bound the probability that all the arcs (j0, i1), . . . , (jk, ik+1)
exist in the connection graph. Similarly, each of these arcs exists if the expo-
nential clock of the facility at the endpoint of the arc is the smallest for all
previous clients. The clock of a facility is distributed exponentially with rate
oi = yi, so each individual probability of Qi`+1

being the minimum clock is
yi`+1

y(F (j0,j1,...,j`))
. Again by the memorylessness property, the probability that all

these arcs exist is Πk
`=0

yi`+1

y(F (j0,j1,...,j`))
. The overall bound follows by the fact

that the client clocks and the facility clocks are independent. The second
probability bound is also proven the same way.

With the prefix probability bound, we can go on to bound the expected
number of connection paths that use an edge in the support graph. More
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specifically, the expected number of connection paths that visits k clients
before going through arc (i, j) ((j, i) respectively) is at most

xij
2max{0,k−2} (

xij
2max{0,k−1} respectively). The proof is based in first estimating the expected
number of connection paths that have prefixes that visit k clients before
going through the arc. This helps complete the proof of the bound, since the
expected number of paths that use an arc (i, j) are then

∑∞
k=1

xij
2max{0,k−2} =

3xij (and the same holds for (j, i)). So the total number of paths that use
an edge {i, j} of the support graph are at most 6xij.
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Chapter 4

An Algorithm for the Online
Facility Location Problem with
Switching Costs

In this chapter, we consider the online facility location problem with
switching costs. In this setting, we seek to minimize the total cost of the
solution over time, which includes the opening costs and the connection costs
of each round, as well as the switching costs incurred by the connection
changes. We present an online Regularization Algorithm to find a O(logm)-
approximate fractional solution and an online Rounding Algorithm which
achieves a O(log n)-approximation with the use of competing exponential
clocks. The analysis follows the same steps as in [16] where the authors
present similar regularization and rounding algorithms for the online set cover
problem with switching costs, as well as any problem that can be formulated
as a convex linear program.
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4.1 The Regularization Algorithm

To make it possible for this chapter to be read independently, we will
describe again the online facility location problem with switching costs as
introduced in [20]. Let t ∈ {1, . . . , T} be the time variable. At each time t,
we are given the set of connection costs {dtij|j ∈ [n], i ∈ [m]}, where each dtij
denotes the connection cost between client j and facility i at time t. We also
know in advance the opening cost f of the facilities which does not change
over time.

Since we study the online version of the problem, at each time t, after
we are given the new connection costs, we should return a feasible solution.
A solution is described by the vectors y ∈ {0, 1}n and x ∈ {0, 1}m×n, where
yti is an indicator variable for the opening of facility i at time t and xtij is
an indicator variable for the connection of client j to facility i at time t. In
order for the solution to be feasible, each client should be served, i.e. they
should be connected to one facility. Therefore, it should hold that

m∑
i=1

xij = 1 ∀j ∈ [n]

In addition, no client should be connected to a closed facility, therefore

xij ≤ yi ∀j ∈ [n]∀i ∈ [m]

The goal is to minimize over time the total opening cost, connection cost
and switching cost. The latter is what differentiates this problem from the
online facility location problem. The switching cost at time t is given by∑m

j=1

∑n
i=1 z

t
ij where zij = 1{xtij 6= xt−1

ij }. From the definition, a unit of
switching cost is incurred whenever the connection status between a client
and a facility changes. More formally, the benchmark for our algorithm is:

min f
T∑
t=1

m∑
i=1

yti +
T∑
t=1

n∑
j=1

m∑
i=1

xtijd
t
ij +

T∑
t=1

n∑
j=1

m∑
i=1

ztij

Notice that there is not a corresponding movement cost for the opening
and closing of facilities in our setting.
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We shall now introduce the linear relaxation of our problem. The LP,
denoted as (P ), is the following:

min f
∑T

t=1

∑m
i=1 y

t
i +
∑T

t=1

∑n
j=1

∑m
i=1 x

t
ijd

t
ij+
∑T

t=1

∑n
j=1

∑m
i=1 z

t
ij

s.t. xtij ≤ yti ∀t ∈ [T ],∀i ∈ [m],∀j ∈ [n]∑m
i=1 x

t
ij ≥ 1 ∀t ∈ [T ],∀j ∈ [n]

ztij ≥ xtij − xt−1
ij ∀t ∈ [T ],∀i ∈ [m],∀j ∈ [n]

yti ≥ 0 ∀t ∈ [T ],∀j ∈ [n]
xtij ≥ 0 ∀t ∈ [T ],∀i ∈ [m],∀j ∈ [n]
ztij ≥ 0 ∀t ∈ [T ],∀i ∈ [m],∀j ∈ [n]

Notice that the covering constraint is an inequality instead of an equality
but because of the structure of the objective function and the fact that this
is a minimization LP the two are equivalent.

Theorem 2. The Regularization Algorithm is an online O(logm)-approximation
algorithm for the relaxed online facility location problem with switching costs
described by (P ).

Let S = {(y, x) ∈ Rn
+·Rm×n

+ | xij ≤ yi ∀t ∈ [T ], i ∈ [m], j ∈ [n] and
∑m

i=1 xij ≥
1 ∀t ∈ [T ], j ∈ [n]} be the feasible solution set which is the same for all
t ∈ [T ]. The aforementioned Regularization Algorithm is the following:

Regularization Algorithm
Parameters: ε > 0, η = ln(1 + n/ε)
Initialization: Set y0

i = 0 ∀i ∈ [m] and x0
ij = 0 ∀i ∈ [m], j ∈ [n].

At each time t = [T ]:

1. Let dt ∈ Rm×n
+ be the connection cost vector.

2. Solve the following linear program (P ′) to obtain the fractional solution (yt, xt):

(yt, xt) = arg min
(y,x)∈S

{
f

m∑
i=1

yi+
n∑
j=1

m∑
i=1

xij·dtij+
1

η

n∑
j=1

m∑
i=1

[(
(xij+

ε

n
) ln

xij + ε
n

xt−1
ij + ε

n

)
−xij

]}
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For the proof of Theorem 2 we need to present more explicitly the L.P.
(P ′) solved by the Regularization Algorithm at time t, as well as the dual
L.P. of (P ), denoted by (D).

It is easy to see that (P ′) is formulated as follows:

min f
∑m

i=1 yi +
∑n

j=1

∑m
i=1 xij · dtij+

1
η

∑n
j=1

∑m
i=1

[(
(xij + ε

n
) ln

xij+
ε
n

xt−1
ij + ε

n

)
− xij

]
s.t. xij ≤ yi ∀i ∈ [m],∀j ∈ [n]∑m

i=1 xij ≥ 1 ∀j ∈ [n]
0 ≤ yi ≤ 1 ∀j ∈ [n]
0 ≤ xij ≤ 1 ∀i ∈ [m],∀j ∈ [n]

In order to formulate the dual (D), we define the dual variables corre-
sponding to the constraints of the primal L.P as shown next.

� xtij ≤ yti → etij for all t ∈ [T ], i ∈ [m], j ∈ [n]

�

∑m
i=1 x

t
ij ≥ 1 → atj for all t ∈ [T ], j ∈ [n]

� ztij ≥ xtij − xt−1
ij → btij for all t ∈ [T ], i ∈ [m], j ∈ [n]

Then it is easy to see that the dual L.P. (D) is formulated as:

max
∑T

t=1

∑n
j=1 a

t
j

s.t.
∑n

j=1 e
t
ij ≤ f ∀t ∈ [T ], ∀i ∈ [m]

btij ≤ 1 ∀t ∈ [T ], ∀i ∈ [m],∀j ∈ [n]
bt+1
ij − btij ≤ dtij + etij − atj ∀t ∈ [T ], ∀i ∈ [m],∀j ∈ [n]
btij ≥ 0 ∀t ∈ [T ], ∀i ∈ [m],∀j ∈ [n]
etij ≥ 0 ∀t ∈ [T ], ∀i ∈ [m],∀j ∈ [n]
atj ≥ 0 ∀t ∈ [T ], ∀j ∈ [n]

To prove the performance of the Regularization Algorithm as stated
in Theorem 2, we will show that the set of dual variables of the soluti-
ons that (P ′) returns is a feasible solution for the (D) within a factor of
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(1 + (1 + ε′) ln(1 + m
ε′

)) of the optimal. More specifically, we will prove the
relationship of the optimal primal solutions the Algorithm provides with its
dual optimal solutions using the KKT conditions for (P ′) and its dual. Conse-
quently, we will prove that these dual optimal solutions are feasible solutions
for the dual of (P ). Hence we will prove the relationship of the solution of
our Algorithm to the optimal solution of (D), whose cost equals the cost of
the optimal solution of (P ).

We define e∗ij to be the optimal dual variables corresponding to the pre-
cedence constraints of (P ′), i.e. the constraints of the form xij ≤ yi, and a∗j
to be the optimal dual variables corresponding to the covering constraints,
i.e. the ones of the form

∑m
i=1 xij ≥ 1.

The KKT conditions for the optimal solutions of (P ′), denoted by (y∗, x∗),
and its dual L.P. are the following:

x∗ij − y∗i ≤ 0 ∀j ∈ [n]∀i ∈ [m] (4.1)

1−
m∑
i=1

x∗ij ≤ 0 ∀j ∈ [n] (4.2)

e∗ij(x
∗
ij − y∗i ) = 0 ∀j ∈ [n]∀i ∈ [m] (4.3)

a∗j(1−
m∑
i=1

x∗ij) = 0 ∀j ∈ [n] (4.4)

f −
n∑
j=1

e∗ij ≥ 0 ∀i ∈ [m] (4.5)

y∗i (f −
n∑
j=1

e∗ij) = 0 ∀i ∈ [m] (4.6)

dtij +
1

η
ln

x∗ij + ε
n

xt−1
ij + ε

n

+ e∗ij − a∗j ≥ 0 ∀i ∈ [m]∀j ∈ [n] (4.7)

x∗ij(d
t
ij +

1

η
ln

x∗ij + ε
n

xt−1
ij + ε

n

+ e∗ij − a∗j) = 0 ∀i ∈ [m]∀j ∈ [m] (4.8)

a∗j ≥ 0 ∀j ∈ [n] (4.9)

e∗ij ≥ 0 ∀i ∈ [m]∀j ∈ [n] (4.10)

61



Claim 3. The set of optimal solutions for each round of the dual L.P. of
(P ′), (a∗,t, e∗,t), which satisfy the KKT conditions (4.1) - (4.10), along with
an appropriate btij, consist of a feasible solution for (D).

Proof of Claim 3. Set the variables of (D) at time t to be:

atj = a∗,tj

and
etij = e∗,tij

Also, set

bt+1
ij =

1

η
ln

1 + ε
n

x∗,tij + ε
n

To prove that the solution above is feasible for (D), we prove that it
satisfies its constraints one by one:

� By (4.5):
∑n

j=1 e
t
ij ≤ f

� btij = 1
η

ln
1+ ε

n

x∗,t−1
ij + ε

n

= 1
ln(1+n

ε
)
ln

1+ ε
n

x∗,t−1
ij + ε

n

x∗,t≥0

≤ 1
ln(1+n

ε
)
ln

1+ ε
n
ε
n

=
ln(n

ε
+1)

ln(n
ε

+1)
=

1

� bt+1
ij − btij = − 1

η
ln

x∗,tij + ε
n

x∗,t−1
ij + ε

n

≤ dtij + etij − atj, where the last inequality

holds due to (4.7).

� btij = 1
η

ln
1+ ε

n

x∗,t−1
ij + ε

n

x∗,t≤1

≥ 1
η

ln
1+ ε

n

1+ ε
n

= 0

� By (4.10): etij ≥ 0

� By (4.9): atj ≥ 0
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To bound the total switching cost and the total service cost (opening
and connection costs) of our Algorithm, we are going to need the following
inequalities.

h− k ≤ h ln(h/k) for any h, k > 0 (4.11)

∑
i

hi ln(hi/ki) ≤
(∑

i

hi

)
log

∑
i hi∑
i ki

(4.12)

Claim 4. The switching cost of our Algorithm, M , is at most η(1+ εm
n

) times
the cost of the dual feasible solution of Claim 3.

Proof of Claim 4. Let Mt be the switching cost of our Algorithm at time t.

Mt =
∑

t:x∗,tij >x
∗,t−1
ij

(x∗,tij − x
∗,t−1
ij )

= η 1
η

∑
t:x∗,tij >x

∗,t−1
ij

(x∗,tij − x
∗,t−1
ij )

= η 1
η

∑
t:x∗,tij >x

∗,t−1
ij

(x∗,tij + ε
n
− (x∗,t−1

ij + ε
n
))

(4.11)

≤ η
∑

t:x∗,tij >x
∗,t−1
ij

(x∗,tij + ε
n
) 1
η

ln
x∗,tij + ε

n

x∗,t−1
ij + ε

n

x∗,tij >x
∗,t−1
ij ≥0,(4.8)

= η
m∑
i=1

n∑
j=1

(x∗,tij + ε
n
)a∗,tj

= η
n∑
j=1

a∗,tj

( m∑
i=1

(x∗,tij + ε
n
)
)

= η
n∑
j=1

a∗,tj

( m∑
i=1

x∗,tij + εm
n

)
(4.4)
= η

n∑
j=1

a∗,tj (1 + εm
n

)

= η(1 + εm
n

)
n∑
j=1

a∗,tj

Hence,

M =
T∑
t=1

Mt ≤ η(1 +
εm

n
)

T∑
t=1

n∑
j=1

a∗,tj (4.13)
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Claim 5. The total service cost of the Algorithm, S, is less than the cost of
the dual feasible solution of Claim 3.

Proof of Claim 5.

S =
T∑
t=1

[
f

m∑
i=1

y∗,ti +
n∑
j=1

m∑
i=1

x∗,tij d
t
ij

]
(4.6),(4.8)

=
T∑
t=1

[ m∑
i=1

y∗,ti

( n∑
j=1

e∗,tij

)
+

n∑
j=1

m∑
i=1

x∗,tij (a∗,tj − e
∗,t
ij − 1

η
ln

x∗,tij + ε
n

x∗,t−1
ij + ε

n

)
]

=
T∑
t=1

[ m∑
i=1

n∑
j=1

(y∗,ti − x
∗,t
ij )e∗,tij +

n∑
j=1

m∑
i=1

x∗,tij a
∗,t
j − 1

η

n∑
j=1

m∑
i=1

x∗,tij ln
x∗,tij + ε

n

x∗,t−1
ij + ε

n

]
(4.3)
=

T∑
t=1

[ n∑
j=1

a∗,tj

( m∑
i=1

x∗,tij

)
− 1

η

n∑
j=1

m∑
i=1

x∗,tij ln
x∗,tij + ε

n

x∗,t−1
ij + ε

n

]
(4.4)
=

T∑
t=1

n∑
j=1

a∗,tj − 1
η

n∑
j=1

m∑
i=1

[ T∑
t=1

(x∗,tij + ε
n
) ln

x∗,tij + ε
n

x∗,t−1
ij + ε

n

− ε
n

T∑
t=1

ln
x∗,tij + ε

n

x∗,t−1
ij + ε

n

]
(4.12)

≤
T∑
t=1

n∑
j=1

a∗,tj − 1
η

n∑
j=1

m∑
i=1

[( T∑
t=1

(x∗,tij + ε
n
)
)

ln
∑T
t=1(x∗,tij + ε

n
)∑T

t=1(x∗,t−1
ij + ε

n
)
− ε

n
ln

x∗,Tij + ε
n

x∗,0ij + ε
n

]
Notice that if the two terms in the bracket of the right hand of the ine-

quality above cancel each other out, the inequality holds:

− ε
n

ln
x∗,Tij + ε

n

x∗,0ij + ε
n

x∗,0ij =0
= (x∗,0ij +

ε

n
) ln

x∗,0ij + ε
n

x∗,Tij + ε
n

(4.11)

≥ x∗,0ij − x
∗,T
ij

( T∑
t=1

(x∗,tij +
ε

n
)
)

ln

∑T
t=1(x∗,tij + ε

n
)∑T

t=1(x∗,t−1
ij + ε

n
)

(4.11)

≥
T∑
t=1

(x∗,tij +
ε

n
)−

T∑
t=1

(x∗,t−1
ij +

ε

n
) = x∗,0ij −x

∗,T
ij

Therefore, it holds that

S ≤
T∑
t=1

n∑
j=1

a∗,tj
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We can now easily prove the performance of our Algorithm.

Proof of Theorem 2. By Claim 4 and Claim 5, the total cost of our Algorithm
is:

S +M ≤ [1 + η(1 + εm
n

)]
T∑
t=1

n∑
j=1

a∗,tj

= [1 + ln(1 + n
ε
)(1 + εm

n
)]

T∑
t=1

n∑
j=1

a∗,tj

Claim 3

≤ [1 + ln(1 + n
ε
)(1 + εm

n
)]OPT(D)

ε′= εm
n= [1 + (1 + ε′) ln(1 + m

ε′
)]OPT(D)

= [1 + (1 + ε′) ln(1 + m
ε′

)]OPT(P )

65



4.2 The Rounding Algorithm

4.2.1 Exponential Clocks

The rounding technique we apply to round the fractional solution of the
previous section is based on exponential clocks, as are all the previous roun-
ding algorithms for this problem we will discuss.

Definition 6. Exponential clocks are competing independent exponential random
variables. A random variable X is distributed according to the exponential
distribution with rate λ, denoted as X ∼ exp(λ), if its probability density
function is

fX(x) =

{
λe−λx if x ≥ 0

0 otherwise.

The independent random variables are said to be competing because the
random variable with the smallest value indicates which facility or connection
is chosen in the rounding.

Some of the useful properties of exponential clocks are the following:

1. If X ∼ exp(λ) and c > 0, then X
c
∼ exp(λc).

2. LetX1, . . . , Xk be independent random variables for whichXi ∼ exp(λi)
∀i. Then it holds that:

� min{X1, . . . , Xk} ∼ exp(λ1 + . . .+ λk)

� Pr[Xi ≤ minj 6=i{Xj}] = λi
λ1+...+λk

Also, note that for any two independent exponential random variables
X, Y it holds that

Pr[X ≤ Y | X ≥ t] =
λX

λX + λY
e−λY t (4.14)

Exponential clocks can be used to round fractional solutions of covering
problems in general. In [14], the authors present an algorithm for the Multi-
way Cut problem which uses exponential clocks along with other techniques
and they also provide a randomized rounding algorithm for the Set Cover
problem based on exponential clocks. We present the latter as an easy exer-
cise for the reader who is not familiar with exponential clocks as well as for
later reference to some parts of the proof that are similar to the proof for the
rounding algorithm of the Online Facility Location problem with Switching
Costs.
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The instance of the Set Cover problem consists of a set of elements
E = {e1, . . . , en} and m subsets of E, S = {S1, . . . , Sm}, where each S ∈ S is
associated with a cost cS. The standard relaxation for the Set Cover problem
is:

min
∑
S∈S

cSyS∑
S:e∈S

yS ≥ 1 ∀e ∈ E

Set Cover Rounding Algorithm
Initialization: Choose i.i.d. random variables ZS ∼ exp(1) ∀S ∈ S.
Output ⋃

e∈E

arg min
S:e∈S

{ZS
yS

}
where y ∈ R|S|+ is the fractional solution of the LP.

Theorem 7. The Set Cover Rounding Algorithm yields an integral solution
of cost at most (lnSmax + 1) times the cost of the optimal solution, where
Smax = max

S∈S
|S|.

Proof. It suffices to prove that Pr[S ∈ S is chosen] ≤ (ln(|S|) + 1)yS.

Let Ae,S denote the event on which S has the smallest clock value among
all sets that could cover e. More formally,

Ae,S ↔
ZS
yS
≤ min

S′∈S

{ZS′
yS′
| e ∈ S ′, S ′ 6= S

}

67



Therefore, it holds that:

Pr[S ∈ S is chosen] = Pr[∃e : Ae,S]
= Pr[∃e : Ae,S | ZS/yS < a] · Pr[ZS/yS < a]

+ Pr[∃e : Ae,S | ZS/yS ≥ a] · Pr[ZS/yS ≥ a]
≤ Pr[ZS/yS < a] + Pr[∃e : Ae,S | ZS/yS ≥ a] · Pr[ZS/yS ≥ a]

=
a∫
0

ySe
−ySxdx+ Pr[∃e : Ae,S | ZS/yS ≥ a]

∞∫
a

ySe
−ySxdx

= (1− e−ySa) + Pr[∃e : Ae,S | ZS/yS ≥ a]e−ySa

U.B.

≤ (1− e−ySa) + e−ySa
∑
e∈S

Pr[Ae,S | ZS/yS ≥ a]

1−ex≤x
≤ ySa+ e−ySa

∑
e∈S

Pr[Ae,S | ZS/yS ≥ a]

(4.14)
= ySa+ e−ySa

∑
e∈S

[
yS∑

S′:e∈S′
yS′
e
−a(

∑
S′:e∈S′

yS′−yS)]
∑

S′:e∈S′
yS′≥1

≤ yS(a+ |S|e−a)
a,ln |S|

= yS(ln |S|+ 1)
≤ yS(lnSmax + 1)

(4.15)
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4.2.2 The Rounding Algorithm and its analysis

The Rounding Algorithm for the Online Facility Location Problem with
Switching Costs is the following:

Rounding Algorithm
Parameter: a ≥ 0
Initialization: Choose i.i.d. random variables Zij ∼ exp(1) ∀i ∈
[m], j ∈ [n].
At each time t = [T ]:

1. Let xtij be the value of the connection variable in the fractional
solution of the Regularization Algorithm.

2. If
Zij
xtij

< a then open facility i and connect j to i.

3. For each client j ∈ [n] who has not yet been connected, open facility

i = arg min
i′∈[m]

Zi′j
xt
i′j

and connect j to i.

Theorem 8. The Rounding Algorithm yields an integral solution with cost at
most (log n+1) times the cost of the fractional solution of the Regularization
Algorithm for the Online Facility Location Problem with Switching Costs.

Proof. The proof follows three steps to bound the total switching cost, ope-
ning cost and connection cost of the integral solution.

Switching Cost:

We break down the total movement from time t−1 to time t in the fracti-
onal solution into m× n intermediate steps, on each of which only the value
of exactly one xij is changed. We take first all the xij’s whose value increases
and then all the xij’s whose value decreases, thus managing to preserve a
feasible solution in all the intermediate steps. This way, the total switching
cost from time t−1 to time t of the fractional solution does not change while
the integral switching cost could only increase due to possible changes in the
intermediate steps.

First, we will prove the bound in the case the connection variable decre-
ases by δ, i.e. xtij = xt−1

ij − δ.
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Let Yij = min
i′ 6=i

Zi′j
xt
i′j

. By the properties of the exponential clocks Yij ∼ exp(λ)

where λ =
∑
i′ 6=i

xti′j ≥ 1− xtij.

When the value of xij decreases, the value of
Zij
xij

increases. Therefore, no

connection that had not been chosen at time t − 1 can be chosen at time t
due to the first condition. The same is true for the second condition for the
connection ij, but due to this same condition and the increase of

Zij
xij

, anot-

her connection could turn minimal that had not been chosen in the previous
time step. This is the only case, when a switching cost is incurred. The
probability of this event is bounded by:

Pr
[
Zij

xt−1
ij

≤ Yij <
Zij

xt−1
ij −δ

and Yij ≥ a
]

=
∞∫
a

fY (k) Pr
[
Zij

xt−1
ij

≤ k <
Zij

xt−1
ij −δ

]
dk

=
∞∫
a

λe−λk(e−(xt−1
ij −δ)k − e−x

t−1
ij k)dk

= λ
xtij−δ+λ

e−a(xt−1
ij −δ+λ) − λ

xt−1
ij

e−a(xt−1
ij +λ)

≤ e−a − 1
δ+1

e−a(δ+1)

= e−a(1− 1
δ+1

e−aδ)

≤ e−a(1− e−(a+1)δ)
≤ e−a(a+ 1)δ

(4.16)

Hence, the expected switching cost in the integral solution caused by a δ
decrease in xij is at most e−a(a+ 1)δ.

We will now bound the switching cost in the case xij increases from time
t − 1 to time t, i.e. xtij = xt−1

ij + δ. Connection ij could be chosen due to
the first or the second condition of the rounding algorithm, while no other
connection can be chosen due to this change.
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The probability that connection ij is chosen at time t and not at time
t− 1 due to the first condition is:

Pr
[ Zij

xt−1
ij + δ

< a ≤ Zij

xt−1
ij

]
= e−ax

t−1
ij (1− e−aδ)

xt−1
ij ≥0

≤ aδ (4.17)

The probability that connection ij is chosen at time t and not at time
t− 1 due to the second condition is:

Pr
[

Zij

xt−1
ij +δ

≤ Yij ≤ Zij

xt−1
ij

and
Zij

xt−1
ij +δ

≥ a
]

≤ Pr
[

Zij

xt−1
ij +δ

≤ Yij ≤ Zij

xt−1
ij

and Yij ≥ a
]

=
∞∫
a

fY (k) Pr
[

Zij

xt−1
ij +δ

≤ Yij ≤ Zij

xt−1
ij

]
dk

=
∞∫
a

λe−λk(e−x
t−1
ij k − e−(xt−1

ij +δ)k)dk

= λ
xtij+λ

e−a(xt−1
ij +λ) − λ

xt−1
ij +δ+λ

e−a(xt−1
ij +δ+λ)

≤ e−a − 1
δ+1

e−a(δ+1)

= e−a(1− 1
δ+1

e−aδ)

≤ e−a(1− e−(a+1)δ)
≤ e−a(a+ 1)δ

(4.18)

Hence, the expected switching cost in the integral solution caused by a δ
increase in xij is at most max{aδ, e−a(a+ 1)δ} = e−a(a+ 1)δ (by (4.17) and
(4.18)). Taking into account (4.16), the total switching cost of the integral
solution is expected to be at most e−a(a+ 1)δ times the total switching cost
of the fractional solution.

Opening Cost:

To bound the opening cost of the facilities, we recall the Set Cover Roun-
ding Algorithm from the previous section. It is easy to see that we can follow
almost the exact same analysis to prove that the probability that facility i is
opened at time t is at most:

(a+ ne−a)xtij ≤ (a+ ne−a)yti

Therefore, the total opening cost of the facilities in the integral solution
is at most (a+ ne−a) times the total opening cost of the fractional solution.
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Connection Cost:

Finally, each connection ij is chosen with probability at most:

Pr
[
Zij
xij

< a
]

+ Pr
[
Zij
xij

= min
i∈[m]
{Zij
xij
} | Zij

xij
≥ a
]
· Pr

[
Zij
xij
≥ a
]

= (1− e−axtij) + Pr
[
Zij
xij

= min
i∈[m]
{Zij
xij
} | Zij

xij
≥ a
]
e−ax

t
ij

= (1− e−axtij) +
xij∑
i′
xt
i′j
e
−a

∑
i′ 6=i

xt
i′j
e−ax

t
ij

≤ (1− e−axtij) + xtije
−a

≤ axtij + xtije
−a

= (a+ e−a)xtij

(4.19)

Therefore, the total connection cost in the integral solution is at most
(a+ e−a) times the total connection cost of the fractional solution.

If we set a , lnn, then the approximation ratios for the switching, ope-
ning and connection costs are (lnn+1) 1

n
, (lnn+1) and (lnn+ 1

n
) respectively.

We can conclude that the total cost of the integral solution is at most
(lnn+ 1) times the total cost of the fractional solution.

Since the fractional solution is O(logm) competitive with respect to the
optimal solution, the complete integral algorithm achieves an O(logm log n)
competitive ratio.

Notice that the analysis holds even if the opening cost is not the same for
all facilities and the switching cost is not 1 for all changes.
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