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Introduction

The aim of this dissertation is threefold. At first, we develop a technique that

provides regularity results for Lp and Lp regular random variables (parts I and II

respectively). Next, we define a class of weighted hypergraphs that satisfy relative

counting and removal lemmas (part III). Finally, we present number theoretical

(part IV) and algorithmic (part V) applications of the aforementioned results.

In part I, which is based on [DKK16], we introduce the concepts of semirings

and uniformity norms, and prove a regularity result for Lp random variables with

p > 1. This result extends the previous work that dealt with the case p = 2, (see e.g.

[Tao06b, Tao06c, Tao11]) and its proof is implemented by developing a technique

which is based on an inequality about martingale difference sequences and may

be seen as an Lp analogue of the energy increment strategy. Moreover, we give

applications of this result in the context of martingale convergence and graphon

regularity.

In part II, which is based mainly on [DKK18], we define the class of Lp regular

random variables; a class of random variables that was introduced in [BCCZ14] and

originates from the work of Kohayakawa and Rödl [Koh97, KR03]. For this class, we

show that a Hölder-type inequality is satisfied and we use the techniques introduced

in the previous part to obtain a regularity result.

Part III is based on the work we did in [DKK15, DKK18]. After we introduce

some variants of the well known box norms, we proceed to define a class of weighted

hypergraphs. The most important property of this class is that it is the largest

class of weighted hypergraphs that we know of, which satisfies relative counting and

removal lemmas. This answers a question that was posed in [BCCZ14] and extends

similar results already known for smaller classes of weighted hypergraphs (see e.g.

[Tao06c, CFZ15, DK16]).

In part IV we give a number theoretical application of part III results. More

precisely, we prove a special case of the multidimensional Green–Tao theorem (see

[CM12]) using an arithmetic version of the relative removal lemma.

Finally, part V, which is based on [BK17], contains an algorithmic consequence

of the technique we developed in parts I and II. More precisely, we construct an

1



2 INTRODUCTION

algorithm that approximates Lp regular matrices (p > 1) by a finite sum of matrices

of rank 1. This approximation is done in the cut norm and extends the already

existing results about L∞ regular matrices (see e.g. [COCF10]).

Aknowlegments. I would like to thank my advisors P. Dodos and V. Kanellopoulos

for their constant guidance and useful suggestions.



Basic Concepts & General notation

1. By N,Z,R and C we denote the sets of natural numbers (including 0), inte-

gers, real numbers and complex numbers respectively. Moreover, for every positive

integer n we set [n] := {1, 2, . . . , n}. For every set X by |X| we shall denote its

cardinality and by P (X) we shall denote its powerset. If k ∈ N and k 6 |X| then

by
(
X
k

)
we shall denote the set of all subsets of X of cardinality k, i.e.(

X

k

)
= {Y ⊆ X : |Y | = k}.

2. By P we shall denote the set of prime numbers. Also for every positive

integer n, by Pn we shall denote the set of prime numbers which are lower or equal

to n. Also, by π(n) we shall denote the number of elements in Pn, i.e.

π(n) = |Pn|.

3. If X is a nonempty set and F ⊆ P (X) we write⋃
F =

⋃
F∈F

F.

Also, if k is a positive integer and A1, . . . ,Ak are families of subsets of X we write

k⋂
i=1

Ai =
{
A1 ∩ . . . Ak : Ai ∈ Ai for every i ∈ [k].

}
.

Finally, if d is a positive integer, X1, . . . , Xd are nonempty sets and Ai is a family

of subsets of Xi, for every i ∈ [d] then we write

d

×
i=1

Ai =
{
A1 × · · · ×Ad : Ai ∈ Ai for every i ∈ [d]

}
.

4. If (X,Σ, µ) is a probability space and f : X → R is a random variable we

will write ∫
X
f(x) dµ(x) ≡ EX(f) ≡ E[f(x) |x ∈ X]

to denote the mean value of f in X.

3



4 BASIC CONCEPTS & GENERAL NOTATION

5. If (X,Σ, µ) is a probability space and P ⊆ Σ is a partition of X by AP we

will denote the σ-algebra produced by the cells of P and by ι(P) we will denote

the measure of the “smallest” cell of P, i.e. ι(P) = min{µ(P ) : P ∈ P}. Also, if

f : X → R is a random variable we will write E(f | AP) to denote the conditional

probability of f on the σ-algebra P. Moreover, if P is finite then recall that

E(f | AP) =
∑
P∈P

∫
P f dµ

µ(P )
1P ,

where for every A ⊆ X, 1A stands for the characteristic function of A, that is,

1A =

1, if x ∈ A
0, otherwise.

6. For every function f : N → N and every ` ∈ [n] by f (`) := N → N we will

denote the `-th iteration of f defined recursively by the rulef (0)(n) = n

f (`+1)(n) = f(f (`)(n).

7. Recall that a hypergraph is a pair H = (V,E) where V is a non-empty set

and E ⊆ P (V ). The elements of V are called vertices and the elements of E are

called edges. If E is a nonempty subset of
(
V
r

)
for some r ∈ N, then the hypergraph

H is called r-uniform. Therefore, a 2-uniform hypergraph is a graph with at least

one edge.

8. Let (X,Σ, µ) be a probability space and recall that a graphon is an integrable

random variable W : X ×X → R which is symmetric, that is,

W (x, y) = W (y, x)

for every x, y ∈ X. If p > 1 and W is graphon which belongs to Lp, then W is said

to be an Lp graphon.

9. Let (X,Σ, µ) be a probability space. Recall that a set A ∈ Σ is called an

atom if µ(A) > 0 and for every B ⊆ A with B ∈ Σ, µ(B) = 0. The set of atoms of

the probability space X will be denoted by Atoms(X).

10. Let (X,Σ, µ) be a probability space and η > 0. The probability space X

will be called η-nonatomic if µ(A) 6 η for every A ∈ Atoms(X).

11. Let n,m be two positive integers. Then, by gcd(n,m) we denote the greatest

common divisor of n and m and by lcm(n,m) we denote their least common multiple.
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12. For every complex number s by Re(s) we shall denote the real part of s and

by Im(s) we shall denote its imaginary part.

13. By O(X) we shall denote a quantity Y for which there exists some constant

C > 0 such that |Y | 6 C|X|. If this constant depends on some parameters, say

a1, . . . , at we will write Y = Oa1,...,at(X).

14. By o(1) we shall denote a quantity that can be made arbitrarily close to 0.

If this quantity depends on some parameters, say a1, . . . , at we will write oa1,...,at(1).

15. For every positive integer d and for every K ⊆ Zd we denote the volume of

K by vold(K). If d is implied then we just write vol(K).

16. For every positive integer d and for every x = (x1, . . . , xd) ∈ Zd by ‖x‖∞
we denote its infinity norm as usual, i.e.

‖x‖∞ = max
16i6d

|xi|.





Part I

Decomposition of random variables



CHAPTER 1

Semirings and uniformity norms

We first introduce the following slight strengthening of the classical concept of

a semiring of sets (see also [BN08]).

Definition 1.1. Let X be a nonempty set and k a positive integer. Also let S
be a collection of subsets of X. We say that S is a k-semiring on X if the following

properties are satisfied.

(P1) We have that ∅, X ∈ S.

(P2) For every S, T ∈ S we have that S ∩ T ∈ S.

(P3) For every S, T ∈ S there exist ` ∈ [k] and R1, . . . , R` ∈ S which are pairwise

disjoint and such that S \ T = R1 ∪ · · · ∪R`.

From now on we view every element of a k-semiring S as a “structured” set and

a linear combination of few characteristic functions of elements of S as a “simple”

function. We will use the following norm in order to quantify how far from being

“simple” a given function is.

Definition 1.2. Let (X,Σ, µ) be a probability space, k a positive integer and S
a k-semiring on X with S ⊆ Σ. For every f ∈ L1(X,Σ, µ) we set

‖f‖S = sup
{∣∣ ∫

S
f dµ

∣∣ : S ∈ S
}
. (1.1)

The quantity ‖f‖S will be called the S-uniformity norm of f .

The S-uniformity norm is, in general, a seminorm. Note, however, that if the

k-semiring S is sufficiently rich, then the function ‖ · ‖S is indeed a norm. More

precisely, the function ‖·‖S is a norm if and only if the family {1S : S ∈ S} separates

points in L1(X,Σ, µ), that is, for every f, g ∈ L1(X,Σ, µ) with f 6= g there exists

S ∈ S with
∫
S f dµ 6=

∫
S g dµ.

The simplest example of a k-semiring on a nonempty set X, is an algebra of

subsets of X. Indeed, observe that a family of subsets of X is a 1-semiring if and

only if it is an algebra. Another basic example is the collection of all intervals

of a linearly ordered set, a family which is easily seen to be a 2-semiring. More

interesting (and useful) k-semirings can be constructed with the following lemma.

8



1. SEMIRINGS AND UNIFORMITY NORMS 9

Lemma 1.3. Let X be a nonempty set. Also let m, k1, . . . , km be positive integers

and set k =
∑m

i=1 ki. If Si is a ki-semiring on X for every i ∈ [m], then the family

S =
{ m⋂
i=1

Si : Si ∈ Si for every i ∈ [m]
}

(1.2)

is a k-semiring on X.

Proof. Clearly we may assume that m > 2. Notice, first, that the family S
satisfies properties (P1) and (P2) in Definition 1.1. To see that property (P3) is

also satisfied, fix S, T ∈ S and write S =
⋂m
i=1 Si and T =

⋂m
i=1 Ti where Si, Ti ∈ Si

for every i ∈ [m]. We set P1 = X \ T1 and Pj = T1 ∩ · · · ∩ Tj−1 ∩ (X \ Tj) if

j ∈ {2, . . . ,m}. Observe that the sets P1, . . . , Pm are pairwise disjoint. Moreover,

X \
( m⋂
i=1

Ti

)
=

m⋃
j=1

Pj (1.3)

and so

S \ T =
( m⋂
i=1

Si

)
\
( m⋂
i=1

Ti

)
=

m⋃
j=1

( m⋂
i=1

Si ∩ Pj
)
. (1.4)

Let j ∈ [m] be arbitrary. Since Sj is a kj-semiring, there exist `j ∈ [kj ] and pairwise

disjoint sets Rj1, . . . , R
j
`j
∈ Sj such that Sj \ Tj = Rj1 ∪ · · · ∪R

j
`j

. Thus, setting

(a) B1 = X and Bj =
⋂

16i<j(Si ∩ Ti) if j ∈ {2, . . . ,m},
(b) Cj =

⋂
j<i6m Si if j ∈ {1, . . . ,m− 1} and Cm = X,

and invoking the definition of the sets P1, . . . , Pm we obtain that

S \ T =

m⋃
j=1

( `j⋃
n=1

(
Bj ∩Rjn ∩ Cj

))
. (1.5)

Now set I =
⋃m
j=1

(
{j} × [`j ]

)
and observe that |I| 6 k. For every (j, n) ∈ I let

U jn = Bj ∩ Rjn ∩ Cj and notice that U jn ∈ S, U jn ⊆ Rjn and U jn ⊆ Pj . It follows that

the family {U jn : (j, n) ∈ I} is contained in S and consists of pairwise disjoint sets.

Moreover, by (1.5), we have

S \ T =
⋃

(j,n)∈I

U jn. (1.6)

Hence, the family S satisfies property (P3) in Definition 1.1, as desired. �

By Lemma 1.3, we have the following corollary.

Corollary 1.4. The following hold.
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(a) Let X be a nonempty set. Also let k be a positive integer and for every

i ∈ [k] let Ai be an algebra on X. Then the family

{A1 ∩ · · · ∩Ak : Ai ∈ Ai for every i ∈ [k]} (1.7)

is a k-semiring on X.

(b) Let d, k1, . . . , kd be a positive integers and set k =
∑d

i=1 ki. Also let

X1, . . . , Xd be nonempty sets and for every i ∈ [d] let Si be a ki-semiring

on Xi. Then the family

{S1 × · · · × Sd : Si ∈ Si for every i ∈ [d]} (1.8)

is k-semiring on X1 × · · · ×Xd.

Next we isolate some basic properties of the S-uniformity norm.

Lemma 1.5. Let (X,Σ, µ) be a probability space, k a positive integer and S a

k-semiring on X with S ⊆ σ. Also let f ∈ L1(X,Σ, µ). Then the following hold.

(a) We have ‖f‖S 6 ‖f‖L1.

(b) If B is a σ-algebra on X with B ⊆ S, then ‖E(f | B)‖S 6 ‖f‖S .

(c) If S is a σ-algebra, then ‖f‖S 6 ‖E(f | S)‖L1 6 2‖f‖S .

Proof. Part (a) is straightforward. For part (b), fix a σ-algebra B on X with

B ⊆ S and set P = {x ∈ X : E(f | B)(x) > 0} and N = X \ P . Notice that

P,N ∈ B ⊆ S. Hence, for every S ∈ S we have∣∣ ∫
S
E(f | B) dP

∣∣ 6 max
{∫

P∩S
E(f | B) dP,−

∫
N∩S

E(f | B) dP
}

(1.9)

6 max
{∫

P
E(f | B) dP,−

∫
N
E(f | B) dP

}
= max

{∫
P
f dP,−

∫
N
f dP

}
6 ‖f‖S

which yields that ‖E(f | B)‖S 6 ‖f‖S .

Finally, assume that S is a σ-algebra and notice that
∫
S f dP =

∫
S E(f | S) dP

for every S ∈ S. In particular, we have ‖f‖S 6 ‖E(f | S)‖L1 . Also let, as above,

P = {x ∈ X : E(f | S)(x) > 0} and N = X \ P . Since P,N ∈ S we obtain that

‖E(f | S)‖L1 6 2 ·max
{∫

P
E(f | S) dP,−

∫
N
E(f | S) dP

}
6 2‖f‖S (1.10)

and the proof is completed. �

We close this chapter by presenting some examples of k-semirings which are rel-

evant from a combinatorial perspective. In the first example the underlying space is
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the Cartesian product of a finite sequence of nonempty finite sets. The correspond-

ing semirings are related to the development of Szemerédi’s regularity method for

hypergraphs as we shall see in Part II.

Example 1. Let d ∈ N with d > 2 and V1, . . . , Vd nonempty finite sets. We

view the Cartesian product V1 × · · · × Vd as a discrete probability space equipped

with the uniform probability measure. For every nonempty subset F of [d] let

πF :
∏
i∈[d] Vi →

∏
i∈F Vi be the natural projection and set

AF =
{
π−1
F (A) : A ⊆

∏
i∈F

Vi

}
. (1.11)

The family AF is an algebra of subsets of V1 × · · · × Vd and consists of those sets

which depend only on the coordinates determined by F .

More generally, let F be a family of nonempty subsets of [d]. Set k = |F| and

observe that, by Corollary 1.4, we may associate with the family F a k-semiring SF
on V1 × · · · × Vd defined by the rule

S ∈ SF ⇔ S =
⋂
F∈F

AF where AF ∈ AF for every F ∈ F . (1.12)

Notice that if the family F satisfies [d] /∈ F and ∪F = [d], then it gives rise to a

non-trivial semiring whose corresponding uniformity norm is a genuine norm.

It turns out that there is a minimal non-trivial semiring Smin one can obtain

in this way. It corresponds to the family Fmin =
(

[d]
1

)
and is particularly easy to

grasp since it consists of all rectangles of V1 × · · · × Vd. The Smin-uniformity norm

is known as the cut norm and was introduced by Frieze and Kannan [FK99].

At the other extreme, this construction also yields a maximal non-trivial semir-

ing Smax on V1×· · ·×Vd. It corresponds to the family Fmax =
( [d]
d−1

)
and consists of

those subsets of the product which can be written as A1 ∩ · · · ∩Ad where for every

i ∈ [d] the set Ai does not depend on the i-th coordinate. The Smax-uniformity norm

is known as the Gowers box norm and was introduced by Gowers [Gow06, Gow07].

This norm should not be confused with the box norms that are discussed in Chapter

7.

In the second example the underlying space is of the form X × X where X is

the sample space of a probability space (X,Σ, µ). The corresponding semirings are

related to the theory of convergence of graphs (see, e.g., [BCL+08, Lov12]).

Example 2. Let (X,Σ, µ) be a probability space and define

S� =
{
S × T : S, T ∈ Σ

}
. (1.13)
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That is, S� is the family of all measurable rectangles of X ×X. By Corollary 1.4,

we see that S� is a 2-semiring on X×X. The S�-uniformity norm is also referred to

as the cut norm and is usually denoted by ‖ · ‖�. In particular, for every integrable

random variable f : X ×X → R we have

‖f‖� = sup
{∣∣ ∫

S×T
f dµ

∣∣ : S, T ∈ F
}
. (1.14)

There is another natural semiring in this context which was introduced by Bollobás

and Nikiforov [BN08] and can be considered as the “symmetric” version of S�.

Specifically, let

Σ� =
{
S × T : S, T ∈ Σ and either S = T or S ∩ T = ∅

}
(1.15)

and observe that Σ� is a 4-semiring which is contained, of course, in S�. On the

other hand, note that the family S� is not much larger than Σ� since every element

of S� can be written as the disjoint union of at most 4 elements of Σ�. Therefore,

for every integrable random variable f : X ×X → R we have

‖f‖Σ�
6 ‖f‖� 6 4‖f‖Σ�

. (1.16)



CHAPTER 2

Regularity lemma via martingales

2.1. Backround material

A main ingredient towards the proof of the Regularity Lemma is the following

martingale differences inequality.

2.1.1. A martingale difference sequence inequality. Let (X,Σ, µ) be a

probability space and recall that a finite sequence (di)
n
i=0 of integrable real-valued

random variables on (X,Σ, µ) is said to be a martingale difference sequence if there

exists a martingale (fi)
n
i=0 such that d0 = f0 and di = fi− fi−1 if n > 1 and i ∈ [n].

It is clear that every square-integrable martingale difference sequence (di)
n
i=0 is

orthogonal in L2 and, therefore,( n∑
i=0

‖di‖2L2

)1/2
=
∥∥ n∑
i=0

di
∥∥
L2
. (2.1)

We will need the following extension of this basic fact.

Proposition 2.1. Let (X,Σ, µ) be a probability space and 1 < p 6 2. Then for

every martingale difference sequence (di)
n
i=0 in Lp(X,Σ, µ) we have( n∑

i=0

‖di‖2Lp
)1/2

6
( 1

p− 1

)1/2 ∥∥ n∑
i=0

di
∥∥
Lp
. (2.2)

It is a remarkable fact that the constant (p− 1)−1/2 appearing in the right-hand

side of (A.5) is best possible. This sharp estimate was recently proved by Ricard

and Xu [RX16]. The proof is presented in Appendix A.

2.1.2. Some pieces of notation. We now introduce some pieces of notation

that we need in the statement and proof of the Regularity lemma that follows. For

every pair k, ` of positive integers, every 0 < σ 6 1, every 1 < p 6 2 and every

growth function F : N→ R we define h : N→ N recursively by the ruleh(0) = 0,

h(i+ 1) = h(i) + dσ2 ` F (h(i)+2)(0)2(p− 1)−1e
(2.3)

13



14 2. REGULARITY LEMMA VIA MARTINGALES

and we set

R = h
(
d` σ−2(p− 1)−1e − 1

)
. (2.4)

Finally, we define

Reg(k, `, σ, p, F ) = F (R)(0). (2.5)

Note that if F : N → N is a primitive recursive growth function which belongs to

the class En of Grzegorczyk’s hierarchy for some n ∈ N (see, e.g., [Ros84]), then the

numbers Reg(k, `, σ, p, F ) are controlled by a primitive recursive function belonging

to the class Em where m = max{4, n+ 2}1 .

2.2. Regularity Lemma

We are now ready to state the main result of this chapter.

Theorem 2.2. Let k, ` be positive integers, 0 < σ 6 1, 1 < p 6 2 and F : N→ R
a growth function. Also let (X,Σ, µ) be a probability space and (Si) an increasing

sequence of k-semirings on X with Si ⊆ Σ for every i ∈ N. Finally, let C be a family

in Lp(X,Σ, µ) such that ‖f‖Lp 6 1 for every f ∈ C and with |C| = `. Then there

exist

(a) a natural number N with N 6 Reg(k, `, σ, p, F ),

(b) a partition P of X with P ⊆ SN and |P| 6 (k + 1)N , and

(c) a finite refinement Q of P with Q ⊆ Si for some i > N

such that for every f ∈ C, writing f = fstr + ferr + funf where

fstr = E(f | AP), ferr = E(f | AQ)− E(f | AP) and funf = f − E(f | AQ), (2.6)

we have the estimates

‖ferr‖Lp 6 σ and ‖funf‖Si 6
1

F (i)
(2.7)

for every i ∈ {0, . . . , F (N)}.

The case “p = 2” in Theorem 2.2 is essentially due to Tao [Tao06b, Tao06c,

Tao11]. His approach, however, is somewhat different since he works with σ-algebras

instead of k-semirings.

The increasing sequence (Si) of k-semirings can be thought of as the higher-

complexity analogue of the classical concept of a filtration in the theory of mar-

tingales. In fact, this is more than an analogy since, by applying Theorem 2.2

to appropriately selected filtrations, one is able to recover the fact that, for any

1 < p 6 2, every Lp bounded martingale is Lp convergent. We discuss these issues

in section 4.1.

1For more information about primitive recursive functions see [DK16, Appendix A]
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We also note that the idea to obtain “uniformity” estimates with respect to an

arbitrary growth function has been considered by several authors. This particular

feature is essential when one wishes to iterate this structural decomposition (this

is the case, for instance, in the context of hypergraphs – see, e.g., [Tao06c]). On

the other hand, the need to “regularize”, simultaneously, a finite family of random

variables appears frequently in extremal combinatorics and related parts of Ramsey

theory (see, e.g., [DKT14, DKK18]). Nevertheless, in most applications one deals

with a single random variable and with a single semiring. Hence, we will isolate this

special case in order to facilitate future references.

To this end, for every positive integer k, every 0 < σ 6 1, every 1 < p 6 2 and

every growth function F : N→ R we set

Reg′(k, σ, p, F ) = (k + 1)Reg(k,1,σ,p,F ′) (2.8)

where F ′ : N → R is the growth function defined by the rule F ′(n) = F
(
(k + 1)n

)
for every n ∈ N. We have the following corollary.

Corollary 2.3. Let k be a positive integer, 0 < σ 6 1, 1 < p 6 2 and

F : N → R a growth function. Also let (X,Σ, µ) be a probability space and let S be

a k-semiring on X with S ⊆ Σ. Finally, let f ∈ Lp(X,Σ, µ) with ‖f‖Lp 6 1. Then

there exist

(a) a positive integer M with M 6 Reg′(k, σ, p, F ),

(b) a partition P of X with P ⊆ S and |P| = M , and

(c) a finite refinement Q of P with Q ⊆ S
such that, writing f = fstr + ferr + funf where

fstr = E(f | AP), ferr = E(f | AQ)− E(f | AP) and funf = f − E(f | AQ), (2.9)

we have the estimates

‖ferr‖Lp 6 σ and ‖funf‖S 6
1

F (M)
. (2.10)

Finally, we notice that the assumption that 1 < p 6 2 in the above results is

not restrictive, since the case of random variables in Lp for p > 2 is reduced to the

case p = 2. On the other hand, we remark that Theorem 2.2 does not hold true for

p = 1 (see Section 4.1). Thus, the range of p in Theorem 2.2 is optimal.

2.2.1. Proof of Theorem 2.2. We start with the following lemma.

Lemma 2.4. Let k be a positive integer, p > 1 and 0 < δ 6 1. Also let (X,Σ, µ)

be a probability space, S a k-semiring on X with S ⊆ Σ, Q a finite partition of X

with Q ⊆ S and f ∈ Lp(X,Σ, µ) with ‖f − E(f | AQ)‖S > δ. Then there exists a
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refinement R of Q with R ⊆ S and |R| 6 |Q|(k + 1), and such that ‖E(f | AR) −
E(f | AQ)‖Lp > δ.

Proof. By our assumptions, there exists S ∈ S such that∣∣ ∫
S

(
f − E(f | AQ)

)
dµ
∣∣ > δ. (2.11)

Since S is a k-semiring on X, there exists a refinement R of Q such that: (i) R ⊆ S,

(ii) |R| 6 |Q|(k + 1), and (iii) S ∈ AR. It follows, in particular, that∫
S
E(f | AR) dµ =

∫
S
f dµ. (2.12)

Hence, by (2.11) and the monotonicity of the Lp norms, we obtain that

δ <
∣∣ ∫

S

(
E(f | AR)− E(f | AQ)

)
dµ
∣∣ (2.13)

6 ‖E(f | AR)− E(f | AQ)‖L1 6 ‖E(f | AR)− E(f | AQ)‖Lp

and the proof is completed. �

We proceed with the following lemma.

Lemma 2.5. Let k, ` be positive integers, 0 < δ, σ 6 1 and 1 < p 6 2, and set

n =
⌈ σ2`

δ2(p− 1)

⌉
. (2.14)

Also let (X,Σ, µ) be a probability space and let (Si) be an increasing sequence of

k-semirings on X with Si ⊆ Σ for every i ∈ N. Finally, let m ∈ N and P a partition

of X with P ⊆ Sm and |P| 6 (k+ 1)m. Then for every family C in Lp(X,Σ, µ) with

|C| = ` there exist j ∈ {m, . . . ,m + n} and a refinement Q of P with Q ⊆ Sj and

|Q| 6 (k + 1)j, and such that either

(a) ‖E(f | AQ)− E(f | AP)‖Lp > σ for some f ∈ C, or

(b) ‖E(f | AQ)−E(f | AP)‖Lp 6 σ and ‖f−E(f | AQ)‖Sj+1 6 δ for every f ∈ C.

The case “p = 2” in Lemma 2.5 can be proved with an “energy increment strat-

egy” which ultimately depends upon the fact that martingale difference sequences

are orthogonal in L2 (see, e.g., [Tao06b, Theorem 2.11]). In the non-Hilbertian case

(that is, when 1 < p < 2) the geometry is more subtle and we will rely, instead,

on Proposition 2.1. The argument can therefore be seen as the Lp-version of the

“energy increment strategy”. More applications of this method are given in the next

chapter 6.

Proof of Lemma 2.5. Assume that the first part of the lemma is not satisfied.

Note that this is equivalent to saying that
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(H1) for every j ∈ {m, . . . ,m + n}, every refinement Q of P with Q ⊆ Sj and

|Q| 6 (k + 1)j and every f ∈ C we have ‖E(f | AQ)− E(f | AP)‖Lp 6 σ.

We will use hypothesis (H1) to show that part (b) is satisfied.

To this end we will argue by contradiction. Let j ∈ {m, . . . ,m + n} and let Q
be a refinement of P with Q ⊆ Sj and |Q| 6 (k+ 1)j . Observe that hypothesis (H1)

and our assumption that part (b) does not hold true, imply that there exists f ∈ C
(possibly depending on the partition Q) such that ‖f − E(f | AQ)‖Sj+1 > δ. Since

the sequence (Si) is increasing, Lemma 2.4 can be applied to the k-semiring Sj+1,

the partition Q and the random variable f . Hence, we obtain that

(H2) for every j ∈ {m, . . . ,m+n} and every refinement Q of P with Q ⊆ Sj and

|Q| 6 (k + 1)j there exist f ∈ C and a refinement R of Q with R ⊆ Sj+1

and |R| 6 (k + 1)j+1, and such that ‖E(f | AR)− E(f | AQ)‖Lp > δ.

Recursively and using hypothesis (H2), we select a finite sequence P0, . . . ,Pn of

partitions of X with P0 = P and a finite sequence f1, . . . , fn in C such that for

every i ∈ [n] we have: (P1) Pi is a refinement of Pi−1, (P2) Pi ⊆ Sm+i and |Pi| 6
(k + 1)m+i, and (P3) ‖E(fi | APi) − E(fi | APi−1)‖Lp > δ. It follows, in particular,

that (APi)ni=0 is an increasing sequence of finite sub-σ-algebras of Σ. Also note that,

by the classical pigeonhole principle and the fact that |C| = `, there exist g ∈ C and

I ⊆ [n] with |I| > n/` and such that g = fi for every i ∈ I.

Next, set f = g−E(g | AP) and let (di)
n
i=0 be the difference sequence associated

with the finite martingale E(f | AP0), . . . ,E(f | APn). Observe that for every i ∈ I
we have di = E(g | APi)−E(g | APi−1) and so, by the choice of I and property (P3),

we obtain that ‖di‖Lp > δ for every i ∈ I. Therefore, by Proposition 2.1, we have

σ
(2.14)

6
√
p− 1 δ

(n
`

)1/2
6
√
p− 1 δ|I|1/2 (2.15)

<
√
p− 1 ·

( n∑
i=0

‖di‖2Lp
)1/2

(A.5)

6
∥∥ n∑
i=0

di
∥∥
Lp

= ‖E(g | APn)− E(g | AP)‖Lp .

On the other hand, by properties (P1) and (P2), we see that Pn is a refinement of

P with Pn ⊆ Sm+n and |Pn| 6 (k+ 1)m+n. Therefore, by hypothesis (H1), we must

have ‖E(g | APn) − E(g | AP)‖Lp 6 σ which contradicts, of course, the estimate in

(2.15). The proof of Lemma 2.5 is thus completed. �

The following lemma is the last step of the proof of Theorem 2.2.
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Lemma 2.6. Let k, ` be positive integers, 0 < σ 6 1, 1 < p 6 2 and H : N → R
a growth function. Set L = d` σ−2(p− 1)−1e and define (ni) recursively by the rulen0 = 0,

ni+1 = ni + dσ2 `H(ni)
2(p− 1)−1e.

(2.16)

Also let (X,Σ, µ) be a probability space and let (Si) be an increasing sequence of

k-semirings on X with Si ⊆ Σ for every i ∈ N. Finally, let C be a family in

Lp(X,Σ, µ) such that ‖f‖Lp 6 1 for every f ∈ C and with |C| = `. Then there

exist j ∈ {0, . . . , L − 1}, J ∈ {nj , . . . , nj+1} and two partitions P,Q of X with the

following properties: (i) P ⊆ Snj and Q ⊆ SJ , (ii) |P| 6 (k + 1)nj and |Q| 6
(k + 1)J , (iii) Q is a refinement of P, and (iv) ‖E(f | AQ)− E(f | AP)‖Lp 6 σ and

‖f − E(f | AQ)‖SJ+1
6 1/H(nj) for every f ∈ C.

Proof. It is similar to the proof of Lemma 2.5. Indeed, assume, towards a

contradiction, that the lemma is false. Recursively and using Lemma 2.5, we select a

finite sequence J0, . . . , JL in N with J0 = 0, a finite sequence P0, . . . ,PL of partitions

of X with P0 = {X} and a finite sequence f1, . . . , fL in C such that for every i ∈ [L]

we have that: (P1) Ji ∈ {ni−1, . . . , ni}, (P2) the partition Pi is a refinement of Pi−1,

(P3) Pi ⊆ SJi with |Pi| 6 (k + 1)Ji , and (P4) ‖E(fi | APi) − E(fi | APi−1)‖Lp > σ.

As in the proof of Lemma 2.5, we observe that (APi)Li=0 is an increasing sequence

of finite sub-σ-algebras of Σ, and we select g ∈ C and I ⊆ [L] with |I| > L/` and

such that g = fi for every i ∈ I. Let (di)
L
i=0 be the difference sequence associated

with the finite martingale E(g | AP0), . . . ,E(g | APL). Notice that, by property (P4),

we have ‖di‖Lp > σ for every i ∈ I. Hence, by the choice of L, Proposition 2.1 and

the fact that ‖g‖Lp 6 1, we conclude that

1 6
√
p− 1σ|I|1/2 <

√
p− 1 ·

( L∑
i=0

‖di‖2Lp
)1/2

(2.17)

(A.5)

6
∥∥ L∑
i=0

di
∥∥
Lp

= ‖E(g | APL)‖Lp 6 ‖g‖Lp 6 1

which is clearly a contradiction. The proof of Lemma 2.6 is completed. �

We are ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. Fix the data k, `, σ, p, the growth function F , the

sequence (Si) and the family C. We define H : N→ R by the rule H(n) = F (n+2)(0)

and we observe that H is a growth function. Moreover, for every i ∈ N let mi =

F (i)(0) and set S ′i = Smi . Notice that (S ′i) is an increasing sequence of k-semirings

of X with S ′i ⊆ Σ for every i ∈ N.
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Let j, J,P and Q be as in Lemma 2.6 when applied to k, `, σ, p,H, the sequence

(Σi) and the family C. We set

N = mnj = F (nj)(0) (2.18)

and we claim that the natural number N and the partitions P and Q are as desired.

Indeed, notice first that nj 6 nL−1. Since F is a growth function, by the choice

of h and R in (2.3) and (2.4) respectively, we have

N 6 F (nL−1)(0) = F (R)(0)
(2.5)
= Reg(k, `, σ, p, F ). (2.19)

On the other hand, note that nj 6 F (nj)(0) = N and so |P| 6 (k+ 1)nj 6 (k+ 1)N

and P ⊆ S ′nj = SN . Moreover, by Lemma 2.6, we see that Q is a finite refinement of

P with Q ⊆ Si for some i > N . It follows that N,P and Q satisfy the requirements

of the theorem. Finally, let f ∈ C be arbitrary and write f = fstr + ferr + funf where

fstr = E(f | AP), ferr = E(f | AQ) − E(f | AP) and funf = f − E(f | AQ). Invoking

Lemma 2.6, we obtain that

‖ferr‖Lp = ‖E(f | AQ)− E(f | AP)‖Lp 6 σ. (2.20)

Also observe that nj + 1 6 J + 1 which is easily seen to imply that SF (N) ⊆ S ′J+1.

Therefore, using Lemma 2.6 once again, for every i ∈ {0, . . . , F (N)} we have

‖funf‖Si = ‖f − E(f | AQ)‖Si 6 ‖f − E(f | AQ)‖S′J+1
(2.21)

6
1

H(nj)
=

1

F
(
F (N)

) 6 1

F (i)
.

The proof of Theorem 2.2 is completed. �



CHAPTER 3

Applications of the regularity lemma

In this chapter we present two applications of Theorem 2.2. More applications of

Theorem 2.2, such as the well-known Szemerédi’s regularity lemma ([Sze78, Tao06b])

may be found in [DK16].

3.1. Martingale convergence theorem

Our goal in this section is to use Theorem 2.2 to show the well-known fact that,

for any 1 < p 6 2, every Lp bounded martingale is Lp convergent (see, e.g., [Dur10]).

Besides its intrinsic interest, this result also implies that Theorem 2.2 does not hold

true for the end-point case p = 1. In fact, based on the argument below, one can

easily construct a counterexample to Theorem 2.2 using any L1 bounded martingale

which is not L1 convergent.

We will need the following known approximation result (see, e.g., [Pis16]). We

recall the proof for the convenience of the reader.

Lemma 3.1. Let (X,Σ, µ) be a probability space and p > 1. Also let (gi) be a

martingale in Lp(X,Σ, µ) and δ > 0. Then there exist an increasing sequence (Σi)

of finite sub-σ-algebras of Σ and a martingale (fi) adapted to the filtration (Σi) such

that ‖gi − fi‖Lp 6 δ for every i ∈ N.

Proof. Fix a filtration (Bi) such that (gi) is adapted to (Bi) and let (∆i) be

the martingale difference sequence associated with (gi). Recursively and using the

fact that the set of simple functions is dense in Lp, we select an increasing sequence

(Σi) of finite sub-σ-algebras of Σ and a sequence (si) of simple functions such that

for every i ∈ N we have that: (i) Σi is contained in Bi, (ii) ‖∆i − si‖Lp 6 δ/2i+2,

and (iii) si ∈ Lp(X,Σ, µ). For every i ∈ N let di = E(∆i |Σi) and notice that the

sequence (di) is a martingale difference sequence since, by (i),

E(di+1 |Σi) = E
(
E(∆i+1 | Fi+1) |Σi

)
(3.1)

= E(∆i+1 |Σi) = E
(
E(∆i+1 | Bi) |Σi

)
= 0.

20
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Thus, setting fi = d0 + · · · + di, we see that (fi) is a martingale adapted to the

filtration (Σi). Moreover, by (ii) and (iii), for every i ∈ N we have

‖gi − fi‖Lp 6
i∑

k=0

‖∆k − dk‖Lp 6
δ

2
+

i∑
k=0

‖sk − dk‖Lp (3.2)

=
δ

2
+

i∑
k=0

‖E(sk −∆k |Σk)‖Lp 6
δ

2
+

i∑
k=0

‖sk −∆k‖Lp 6 δ

and the proof is completed. �

We will also need the following well known fact that martingale difference se-

quences are monotone basic sequence in Lp, for p > 1, i.e. if (di)
n
i=0 is a martingale

difference sequence in Lp for some p > 1, then for every 0 6 k 6 n and every

a0, . . . , an ∈ R we have

‖
k∑
i=0

aidi‖Lp 6 ‖
n∑
i=0

aidi‖Lp . (3.3)

In particular,

‖
∑̀
i=k

di‖Lp 6 2‖
n∑
i=0

di‖Lp , (3.4)

for every 0 6 k 6 ` 6 n.1 We pass now to the main theorem of this section.

Theorem 3.2. Let 1 < p 6 2 and (X,Σ, µ) be a probability space. Then any

Lp(X,Σ, µ) bounded martingale is Lp convergent.

Assume, towards a contradiction, that there exists a bounded martingale (gi)

in Lp(X,Σ, µ) which is not norm convergent. By (3.4), we see that (gi) has no

convergent subsequence whatsoever. Therefore, by passing to a subsequence of

(gi) and rescaling, we may assume that there exists 0 < ε 6 1/3 such that: (i)

‖gi‖Lp 6 1/2 for every i ∈ N, and (ii) ‖gi − gj‖Lp > 3ε for every i, j ∈ N with i 6= j.

By Lemma 3.1 applied to the martingale (gi) and the constant “δ = ε”, there exist

(P1) an increasing sequence (Σi) of finite sub-σ-algebras of Σ, and

(P2) a martingale (fi) adapted to the filtration (Σi)

such that ‖gi − fi‖Lp 6 ε for every i ∈ N. Hence,

(P3) ‖fi‖Lp 6 1 for every i ∈ N, and

(P4) ‖fi − fj‖Lp > ε for every i, j ∈ N with i 6= j.

1For further properties of martingale difference sequences see Appendix A.
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Notice that, by (P1), for every i ∈ N the space Lp(X,Σ, µ) is finite-dimensional.

Since ‖ · ‖Σi is a norm on Lp(X,Σ, µ), there exists a constant Ci > 1 such that

‖f‖Fi 6 ‖f‖Lp 6 Ci‖f‖Σi (3.5)

for every f ∈ Lp(X,Σ, µ).

Define F : N→ R by the rule

F (i) = (i+ 1) + (8/ε)

i∑
j=0

Ci (3.6)

and observe that F is a growth function. Next, set

n = F
(
Reg(1, 1, ε/8, p, F )

)
+ 1 (3.7)

and let (Si) be defined by Si = Σi if i 6 n and Si = Σn if i > n. Clearly, (Si) is an

increasing sequence of 1-semirings on X. We apply Theorem 2.2 to the probability

space (X,Σn, µ), the sequence (Si) and the random variable fn, and we obtain a

natural number N 6 Reg(1, 1, ε/8, p, F ), a finite partition P of X with P ⊆ SN and

a finite refinement Q of P such that, writing fn = fstr + ferr + funf where

fstr = E(fn | AP), ferr = E(fn | AQ)− E(fn | AP) and funf = fn − E(fn | AQ),

we have that ‖ferr‖Lp 6 ε/8 and ‖funf‖Si 6 1/F (i) for every i ∈ {0, . . . , F (N)}. In

particular, by the choice of n and (Si), we see that

‖ferr‖Lp 6
ε

8
and ‖funf‖ΣN+1

6
1

F (N + 1)
. (3.8)

Now observe that, by property (P2),

fN = E(fn |ΣN ) = E(fstr |ΣN ) + E(ferr |ΣN ) + E(funf |ΣN ) (3.9)

and, similarly,

fN+1 = E(fn |ΣN+1) = E(fstr |ΣN+1) + E(ferr |ΣN+1) + E(funf |ΣN+1). (3.10)

The fact that P ⊆ SN yields that AP ⊆ ΣN ⊆ ΣN+1 and so

fstr = E(fstr |ΣN ) = E(fstr |ΣN+1). (3.11)

On the other hand, by (3.8), we have

‖E(ferr |ΣN )‖Lp 6
ε

8
and ‖E(ferr |ΣN+1)‖Lp 6

ε

8
. (3.12)
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Finally, notice that E(funf |ΣN ) ∈ Lp(X,Σ, µ). Thus, by (3.5) and Lemma 1.5, we

obtain that

‖E(funf |ΣN )‖Lp 6 CN‖E(funf |ΣN )‖ΣN 6 CN‖funf‖ΣN (3.13)

6 CN‖funf‖ΣN+1

(3.8)

6
CN

F (N + 1)

(3.6)

6
ε

8
.

With identical arguments we see that

‖E(funf |ΣN+1)‖Lp 6
ε

8
. (3.14)

Combining (3.9)–(3.14), we conclude that ‖fN − fN+1‖Lp 6 ε/2 which contradicts,

of course, property (P4). Hence, every bounded martingale in Lp(X,Σ, µ) is norm

convergent, as desired.

3.2. Weak and strong regularity lemmas for graphons

We now extend the, so-called, strong regularity lemma for L2 graphons (see, e.g.,

[Lov12, LS07]).

Let (X,Σ, µ) and W be an Lp graphon.2 Also, let R be a finite partition of X with

R ⊆ Σ and notice that the family

R2 = {S × T : S, T ∈ R} (3.15)

is a finite partition of X ×X. As in Chapter 1, let AR2 be the σ-algebra on X ×X
generated byR2 and observe thatAR2 consists of measurable sets. IfW : X×X → R
is a graphon, then the conditional expectation of W with respect to AR2 is usually

denoted by WR. Note that WR is also a graphon and satisfies (see, e.g., [Lov12])

‖WR‖� 6 ‖W‖� (3.16)

where ‖ · ‖� is the cut norm defined in (1.14). On the other hand, by standard

properties of the conditional expectation (see, e.g., [Dur10]), we have ‖WR‖Lp 6
‖W‖Lp for any p > 1. It follows, in particular, that WR is an Lp graphon provided,

of course, that W ∈ Lp.
We have the following Proposition.

Proposition 3.3 (Strong regularity lemma for Lp graphons). For every 0 <

ε 6 1, every 1 < p 6 2 and every positive function h : N→ R there exists a positive

integer s(ε, p, h) with the following property. If (X,Σ, µ) is a probability space and

W : X ×X → R is an Lp graphon with ‖W‖Lp 6 1, then there exist a partition R

2 For the definition of a graphon see Basic Concepts & General Notation in the beging of the

thesis. Also for further results about Lp graphons see [BR09, BCCZ14].
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of X with R ⊆ Σ and |R| 6 s(ε, p, h), and an Lp graphon U : X ×X → R such that

‖W − U‖Lp 6 ε and ‖U − UR‖� 6 h
(
|R|
)
.

Proof. Fix the constants ε, p and the function h, and define F : N→ R by the

rule

F (n) = (n+ 1) +

n∑
i=0

8

h(i)
. (3.17)

Notice that F is a growth function. We set

s(ε, p, h) = Reg′(4, ε, p, F ) (3.18)

and we claim that with this choice the result follows.

Indeed, let (X,Σ, µ) be a probability space and fix an Lp graphonW : X×X → R
with ‖W‖Lp 6 1. Also let Σ� be the 4-semiring on X × X which is defined via

formula (1.15) for the given probability space (X,Σ, µ). We apply Corollary 2.3 to

Σ� and the random variable W and we obtain

(a) a partition P of X ×X with P ⊆ Σ� and |P| 6 Reg′(4, ε, p, F ), and

(b) a finite refinement Q of P with Q ⊆ Σ�

such that, writing the graphon W as Wstr + Werr + Wstr where Wstr = E(W | AP),

Werr = E(W | AQ)−E(W | AP) and Wunf = W −E(W | AQ), we have the estimates

‖Werr‖Lp 6 ε and ‖Wunf‖Σ�
6 1/F

(
|P|
)
. Note that, by (a) and (b) and the

definition of the 4-semiring Σ� in (1.15), there exist two finite partitions R,Z of X

with R,Z ⊆ Σ and such that P = R2 and Q = Z2. It follows, in particular, that

the random variables Wstr,Werr and Wunf are all Lp graphons.

We will show that the partition R and the Lp graphon U := Wstr +Wunf are as

desired. To this end notice first that

|R| 6 |R2| = |P| 6 Reg′(4, ε, p, F )
(3.18)

= s(ε, p, h). (3.19)

Next observe that

‖W − U‖Lp = ‖Werr‖Lp 6 ε. (3.20)

Finally note that, by (3.16), we have ‖(Wunf)R‖� 6 ‖Wunf‖�. Moreover, the fact

that P = R2 and the choice of Wstr yield that (Wstr)R = Wstr. Therefore,

‖U − UR‖� 6 2‖Wunf‖�
(1.16)

6 8‖Wunf‖Σ�
6

8

F
(
|P|
) (3.21)

(3.19)

6
8

F
(
|R|
) (3.17)

6 h
(
|R|
)

and the proof of Corollary 3.3 is completed. �
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We pass now to the so called weak regularity lemma. In [BCCZ14] Borgs,

Chayes, Cohn and Zhao extended the weak regularity lemma that already existed

for L2 graphons (see, e.g., [Lov12]) to Lp graphons for any p > 1. Their extension

follows, of course, from Proposition 3.3, but this reduction is rather ineffective since

the bound obtained by Proposition 3.3 is quite poor. However, this estimate can be

significantly improved if instead of invoking Corollary 2.3, one argues directly as in

the proof of Lemma 2.5. More precisely, we have the following result.

Proposition 3.4 (Weak regularity lemma for Lp graphons.). For every 0 <

ε 6 1, every 1 < p 6 2, every probability space (X,Σ, µ) and every Lp graphon

W : X ×X → R with ‖W‖Lp 6 1 there exists a partition R of X with R ⊆ Σ and

|R| 6 4(p−1)−1ε−2
(3.22)

and such that ‖W −WR‖� 6 ε.

The estimate in (3.22) matches the bound for the weak regularity lemma for the

case of L2 graphons (see, e.g., [Lov12]) and is essentially optimal.
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CHAPTER 4

Hypergraph systems

We introduce the concept of a hypergraph system (see [Tao06c, DK16, DKK15,

DKK18])

Definition 4.1. A hypergraph system is a triple

H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) (4.1)

where n is a positive integer, 〈(Xi,Σi, µi) : i ∈ [n]〉 is a finite sequence of probability

spaces and H is a hypergraph on [n]. If H is r-uniform, then H will be called an

r-uniform hypergraph system. On the other hand, if for every i ∈ [n], (Xi,Σi, µi)

is η-nonatomic, then H will be called η-nonatomic.

Given a hypergraph system H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) by (X,Σ,µ) we

denote the product of the spaces 〈(Xi,Σi, µi) : i ∈ [n]〉. More generally, for every

nonempty e ⊆ [n] let (Xe,Σe,µe) be the product of the spaces 〈(Xi,Σi, µi) : i ∈ e〉
and observe that the σ-algebra Σe can be “lifted” to X by setting

Be =
{
π−1
e (A) : A ∈ Σe

}
(4.2)

where πe : X → Xe is the natural projection. Observe that if f ∈ L1(X,Be,µ),

then there exists a unique random variable f ∈ L1(Xe,Σe,µe) such that

f = f ◦ πe (4.3)

and note that the map L1(X,Be,µ) 3 f → f ∈ L1(Xe,Σe,µe) is a linear isometry.

Now, when |e| > 2, let ∂e = {e′ ⊆ e : |e′| = |e| − 1} and define

S∂e =
⋂
e′∈∂e

Be′ ⊆ Be. (4.4)

Observe that for every |e| > 2, S∂e is a |e|−1 semiring. Hence, if f ∈ L1(Xe,Σe, µe)

is a random variable its uniformity norm on the previous semiring is

‖f‖S∂e = sup{
∣∣ ∫

A
f dµ

∣∣ : A ∈ S∂e}. (4.5)

From now on, we will refer to this norm as the cut norm of f. Also, observe that

every A ∈ S∂e is the intersection of events which depend on fewer coordinates, and

so it is useful to view the elements of S∂e as “lower-complexity” events.

28
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We present now a Sierpiński type result in the context of η-nonatomic hyper-

graph systems which will be very useful.

Proposition 4.2. Let n, r ∈ N with n > r > 2 and 0 < α, η < 1 with rη 6 1−a.

Also let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be an η-nonatomic hypergraph system,

and let e ∈ H with |e| = r. Then for every A ∈ S∂e with µ(A) < a there exists

B ∈ S∂e with A ⊆ B and a 6 µ(B) < a+ 2η.

Before we proceed to the proof of the previous Proposition we need some pre-

liminary work. To this end, recall that the classical theorem of Sierpiński asserts

that for every nonatomic finite measure space (X,Σ, µ) and every 0 6 c 6 µ(X)

there exists C ∈ Σ with µ(C) = c. This result may be extended on η-nonatomic

probability spaces in the following way.

Lemma 4.3. Let η > 0 and (X,Σ, µ) be an η-nonatomic probability space. Also

let B ∈ Σ with µ(B) > η and η 6 c < µ(B). Then, there exist C ∈ Σ with C ⊆ B

and c 6 µ(C) < c+ η.

Lemma 4.3 is straightforward for discrete probability spaces. The general case fol-

lows from the aforementioned result of Sierpiński and a transfinite exhaustion argu-

ment. More precicely,

Proof of Lemma 4.3. Assume not, that is,

(H) for every C ∈ Σ with C ⊆ B either µ(C) < c or µ(C) > c+ η.

We will use hypothesis (H) to construct a family 〈Zα : α < ω1〉 of measurable events

of (X,Σ, µ) such that µ(Zα) < c and µ(Zα+1 \ Zα) > 0 for every α < ω1. Clearly,

this leads to a contradiction.

We begin by setting Z0 = ∅. If α is a limit ordinal, then we set Zα =
⋃
β<α Zβ;

notice that µ(Zα) 6 c and so, by hypothesis (H), we see that µ(Zα) < c. Finally, let

α = β + 1 be a successor ordinal. By Sierpiński’s result and hypothesis (H), the set

B \ Zα must contain a set A ∈ Atoms(X). We set Zα+1 = Zα ∪ A and we observe

that µ(Zα+1 \ Zα) = µ(A) > 0. Also notice that µ(Zα+1) < c + η. Thus, invoking

hypothesis (H) once again, we conclude that µ(Zα+1) < c and the proof of Lemma

4.3 is completed. �

We are ready now to prove Proposition 4.2

Proof of Proposition 4.2. We argue as in the proof of Lemma 4.3. Specifi-

cally, fix A ∈ S∂e with µ(A) < a and assume, towards a contradiction, that

(H) for every B ∈ S∂e with A ⊆ B either µ(B) < a or µ(B) > a+ 2η.
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For every e′ ∈ ∂e we select Ae′ ∈ Be′ such that A =
⋂
e′∈∂eAe′ and we observe that∑

e′∈∂e
µ(X \Ae′) > µ

(
X \

⋂
e′∈∂e

Ae′
)
> 1− a > rη. (4.6)

Therefore, there exists e′1 ∈ ∂e such that µ(X \Ae′1) > η. Since H is η-nonatomic

we see that µ(A) 6 ηr−1 6 η for every atom A of (X,Be′1 ,µ). Hence, by Lemma 4.3

applied for “A = X \Ae′1” and “c = η”, there exists Be′1 ∈ Be′1 with Be′1 ⊆X \Ae′1
and η 6 µ(Be′1) < 2η. We set A1

e′1
= Ae′1 ∪ Be′1 and A1

e′ = Ae′ if e′ ∈ ∂e \ {e′1}.
Notice that: (i) µ(A1

e′1
) > µ(Ae′1)+η, (ii)

⋂
e′∈∂eA

1
e′ ∈ S∂e, and (iii) A ⊆

⋂
e′∈∂eA

1
e′ .

Moreover, µ
(⋂

e′∈∂eA
1
e′
)
6 µ(A) + 2η < a + 2η and so, by hypothesis (H), we

obtain that µ
(⋂

e′∈∂eA
1
e′
)
< a. It follows, in particular, that the estimate in (4.6)

is satisfied for the family 〈A1
e′ : e′ ∈ ∂e〉.

Thus, setting M = d2r/ηe, we select recursively: (a) a finite sequence (e′m)Mm=1

in ∂e, and (b) for every e′ ∈ ∂e a finite sequence (Ame′ )
M
m=0 in Be′ with A0

e′ = Ae′ ,

such that for every m ∈ [M ] the following hold.

(C1) For every e′ ∈ ∂e we have Am−1
e′ ⊆ Ame′ . Moreover, µ(Ame′m) > µ(Am−1

e′m
) +η.

(C2) We have µ
(⋂

e′∈∂eA
m
e′
)
< a.

By the classical pigeonhole principle, there exist L ⊆ [M ] with |L| > M/r and

g ∈ ∂e such that e′m = g for every m ∈ L. If ` = max(L), then by (C1) we conclude

that µ(A`g) > 2 which is clearly a contradiction. �



CHAPTER 5

Lp regular random variables

5.1. The class of Lp regular random variables

We describe now a generalisation of Lp random variables in the context of hyper-

graph systems, the class of Lp regular random variables (see [BCCZ14, DKK18]).

These random variables satisfy a Hölder-type inequality, a property which will play

a crucial role in what follows.

Before we introduce the aforementioned family of random variables it is useful

to recall one of the most well known pseudorandomness conditions for graphs, in-

troduced in [Koh97, KR03]. Specifically, let G = (V,E) be a finite graph and let

p := |E|/
(|V |

2

)
denote the edge density of G; the reader should have in mind that we

are interested in the case where G is sparse, that is, in the regime p = o(|V |2). Also,

let D > 1 and 0 < γ 6 1, and recall that the graph G is said to be (D, γ)-bounded

provided that for every pair X,Y of disjoint subsets of V with |X|, |Y | > γ|V |, we

have |E ∩ (X × Y )| 6 Dp|X||Y |. This natural condition expresses the fact that the

graph G has “no large dense spots”, and is satisfied by several models of sparse

random graphs (see, e.g., [BR09]).

Without further redue we proceed to the definition of Lp regular random vari-

ables.

Definition 5.1. Let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be a hypergraph system.

Also let C, η > 0 and 1 6 p 6 ∞, and let e ∈ H with |e| > 2. A random variable

f ∈ L1(X,Be,µ) is said to be (C, η, p)-regular (or simply Lp regular if C and η are

understood) provided that for every partition P of X with P ⊆ S∂e and µ(A) > η

for every A ∈ P we have

‖E(f | AP)‖Lp 6 C. (5.1)

The main point in Definition 5.1 is that, even though we make no assumption

on the existence of moments, an Lp regular random variable behaves like a function

in Lp as long as we project it on sufficiently “nice” σ-algebras of X.

Notice that Lp regularity becomes weaker as p becomes smaller. In particular,

the case “p = 1” is essentially of no interest since every integrable random variable

is L1 regular.

31



32 5. Lp REGULAR RANDOM VARIABLES

On the other hand, in the context of graphs L∞ regularity reduces to the bound-

edness hypothesis that we mentioned above. Indeed, it is not hard to see that a

bipartite graph G = (V1, V2, E) with edge density p is (D, γ)-bounded for some D, γ

if and only if the random variable 1E/p is L∞ regular. (Here, we view V1 and

V2 as discrete probability spaces equipped with the uniform probability measures.)

For weighted graphs, however, L∞ regularity is a more subtle property. It is im-

plied by the pseudorandomness conditions appearing in the work of Green and Tao

[GT08, GT10], though closer to the spirit of this work is the work of Tao in [Tao06a].

Between the above extremes there is a large class of sparse weighted hypergraphs

(namely those which are Lp regular for some 1 < p <∞) which are, as we shall see,

particularly well-behaved.

5.2. A Hölder-type inequality for Lp regular random variables

A useful inequality when studying Lp random variables is the Hölder inequal-

ity. The following proposition asserts that a similar inequality holds for Lp regular

random variables.

Proposition 5.2 (Hölder-type inequality). Let n, r ∈ N with n > r > 2 and

0 < η 6 (r + 1)−1. Also let C > 0 and 1 < p 6 ∞, and let q be the conjugate

exponent of p. Finally, let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be an η-nonatomic

hypergraph system, e ∈ H with |e| = r, and let f ∈ L1(X,Be,µ) be nonnegative.

Then the following hold.

(a) If f is (C, η, p)-regular, then for every A ∈ S∂e we have(∫
A
f dµ

)q
6 Cq

(
µ(A) + (r + 3)η

)
. (5.2)

(b) On the other hand, if (5.2) is satisfied for every A ∈ S∂e , then the random

variable f is (K, η, p)-regular where K = C(r + 4)1/qη−1/p. In particular,

if p =∞, then f is (C(r + 4), η,∞)-regular.

Proposition 5.2 is based on the simple (but quite useful) observation that for

every A ∈ S∂e with µ(A) > η we can find a partition of X which almost contains the

set A, and whose members are contained in S∂e and are not too small. We present

this fact in a slightly more general form (this form is related to the semiring defined

on (1.7) and is needed in the next chapter). Recall that for every probability space

(X,Σ, µ) and every finite partition P of X with P ⊆ Σ, ι(P) = min{µ(P ) : P ∈ P}.
Then, we have the following lemma.
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Lemma 5.3. Let r be a positive integer and 0 < θ < 1. Also let (X,Σ, µ) be a

probability space, (Bi)ri=1 a finite sequence of sub-σ-algebras of Σ, and set

S =
{ r⋂
i=1

Ai : Ai ∈ Bi for every i ∈ [r]
}
.

Then for every A ∈ S with µ(A) > θ there exist: (i) a partition Q of X with

Q ⊆ S and ι(Q) > θ, (ii) a set B ∈ Q with A ⊆ B, and (iii) pairwise disjoint sets

B1, . . . , Br ∈ S with µ(Bi) < θ for every i ∈ [r], such that B \A =
⋃r
i=1Bi.

Proof. Fix A ∈ S with µ(A) > θ and write A =
⋂r
i=1Ai where Ai ∈ Bi for

every i ∈ [r]. For every nonempty I ⊆ [r] and every i ∈ I let

CI,i =
( ⋂
j∈{`∈I:`<i}

Aj

)
∩ (X \Ai)

with the convention that CI,i = X \ Ai if i = min(I). It is clear that CI,i ∈ S
for every i ∈ I. Moreover, notice that the family {CI,i : i ∈ I} is a partition of

X \
⋂
i∈I Ai. We set G =

{
i ∈ [r] : µ(C[r],i) > θ

}
and we observe that if G = ∅, then

the trivial partition Q = {X} and the sets C[r],1, . . . , C[r],r satisfy the requirements

of the lemma. So, assume that G is nonempty and let

B =
⋂
i∈G

Ai and Q = {B} ∪
{
CG,i : i ∈ G

}
.

Also let Bi = B ∩C[r]\G,i if i /∈ G, and Bi = ∅ if i ∈ G. We will show that Q, B and

B1, . . . , Br are as desired.

Indeed, notice first that Q is a partition of X with Q ⊆ S, B ∈ Q and A ⊆ B.

Next, let Q ∈ Q be arbitrary. If Q = B, then µ(Q) = µ(B) > µ(A) > θ. Otherwise,

there exists i ∈ G such that Q = CG,i. Since C[r],i ⊆ CG,i and i ∈ G, we see that

µ(Q) = µ(CG,i) > µ(C[r],i) > θ. Thus, we have ι(Q) > θ. Finally, observe that

B1, . . . , Br ∈ S are pairwise disjoint and

B \A =

r⋃
i=1

(B ∩ C[r],i) =
⋃
i/∈G

(B ∩ C[r]\G,i) =

r⋃
i=1

Bi.

Moreover, for every i /∈ G we have

Bi = B ∩ C[r]\G,i =
( ⋂
j∈G

Aj

)
∩ C[r]\G,i ⊆ C[r],i

and so µ(Bi) 6 µ(C[r],i) < θ. The proof of Lemma 5.3 is completed. �

We are ready now to prove Proposition 5.2.
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Proof of Proposition 5.2. (a) Fix A ∈ S∂e. If η 6 µ(A), then we claim

that (∫
A
f dµ

)q
6 Cq

(
µ(A) + rη

)
. (5.3)

Indeed, by Lemma 5.3, there exist a partition Q of X with Q ⊆ S∂e and ι(Q) > η,

and B ∈ Q with A ⊆ B and µ(B \A) < rη. Since f is (C, η, p)-regular we see that∫
B f dµ

µ(B)
µ(B)1/p 6 ‖E(f | AQ)‖Lp 6 C.

(Here, we have µ(B)1/p = 1 if p =∞.) Hence,(∫
A
f dµ

)q
6
(∫

B
f dµ

)q
6 Cqµ(B) 6 Cq

(
µ(A) + rη

)
.

Next, assume that 0 6 µ(A) < η. Our hypothesis that 0 < η 6 (r + 1)−1 yields

that rη 6 1 − η and so, by Proposition 4.2, there exists B ∈ S∂e with A ⊆ B and

η 6 µ(B) < 3η. Therefore,(∫
A
f dµ

)q
6
(∫

B
f dµ

)q (5.3)

6 Cq
(
µ(B) + rη

)
6 Cq

(
µ(A) + (r + 3)η

)
(5.4)

and the proof of part (a) is completed.

(b) Let P be an arbitrary partition of X with P ⊆ S∂e and ι(P) > η. By (5.2) for

every P ∈ P we have
∫
P f dµ 6 C(r + 4)1/qµ(P )1/q. Therefore, if 1 < p <∞,

‖E(f | AP)‖pLp =
∑
P∈P

(∫
P f dµ

µ(P )

)p
µ(P ) 6 Cp(r + 4)p/q

∑
P∈P

µ(P )p/q+1−p

= Cp(r + 4)p/q|P| 6 Cp(r + 4)p/qη−1.

On the other hand, if p =∞,

‖E(f | AP)‖L∞ = max
{∫

P f dµ

µ(P )
: P ∈ P

}
6
C
(
µ(P ) + (r + 3)η

)
µ(P )

6 C(r + 4)

as desired. �
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Regularity lemma for Lp regular random variables

In this chapter we present a decomposition of Lp regular random variables which

first appeared in [DKK18]. The proof proceeds via an “energy”-type increment

argument and is close in the spirit of the proof of Theorem 2.2. More precicely, our

interest is to prove the following result.

Theorem 6.1 (Regularity Lemma). Let n, r ∈ N with n > r > 2, and let C > 0

and 1 < p 6∞. Also let F : N→ R be a growth function and 0 < σ 6 1. Then there

exists a positive integer Reg = Reg(n, r, C, p, F, σ) such that, setting η = 1/Reg,

the following holds. Let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be an η-nonatomic,

r-uniform hypergraph system. For every e ∈ H let fe ∈ L1(X,Be,µ) be nonnegative

and (C, η, p)-regular. Then there exist

(a) a positive integer M with M 6 Reg,

(b) for every e ∈ H a partition Pe of X with Pe ⊆ S∂e and µ(A) > 1/M for

every A ∈ Pe, and

(c) for every e ∈ H a refinement Qe of Pe with Qe ⊆ S∂e and µ(A) > η for

every A ∈ Qe,
such that for every e ∈ H, writing fe = festr + feerr + feunf with

festr = E(fe | APe), f eerr = E(fe | AQe)− E(fe | APe), feunf = fe − E(fe | AQe), (6.1)

we have the estimates

‖festr‖Lp 6 C, ‖feerr‖Lp† 6 σ and ‖feunf‖S∂e 6
1

F (M)
(6.2)

where p† = min{2, p}.

Note that, unless p = ∞, the structured part of the above decomposition

(namely, the function festr) is not uniformly bounded. This is an intrinsic feature

of Lp regular hypergraphs, and is an important difference between Theorem 6.1

and several related results (see, e.g., [BR09] ,[COCF10], [CFZ15], [Gow10], [GT08],

[Koh97], [RTTV08], [TZ08]). Observe, however, that, by part (b) and (6.2), one

has a very good control on the correlation between festr and fe
′

unf for every e, e′ ∈ H.

Hence, by appropriately selecting the growth function F , we can force the function
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festr to behave like a bounded function for many practical purposes. The main part

of the proof of Theorem 6.1 will be given in section 6. Before we proceed to it we

will need some preparatory work.

A partition lemma. Let n, r ∈ N with n > r > 2, let C > 0 and 1 < p 6∞. Let q

denote the conjuggate exponent of p, i.e. 1/p+1/q = 1 and set p† = min{2, p}. Also

let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be an r-uniform hypergraph system. These

data will be fixed throughout this section.

The following result is a refinement of Lemma 5.3. Recall that for every prob-

ability space (X,Σ, µ) and every partition P of X with P ⊆ Σ we write ι(P) =

min{µ(P ) : P ∈ P}.

Lemma 6.2. Let 0 < ϑ, η < 1 and e ∈ H. Let f ∈ L1(X,Be,µ) be nonnegative

and (C, η, p)-regular, and P a finite partition of X with P ⊆ S∂e. Assume that

η 6
(
ϑ · ι(P)

)q
(6.3)

and that H is η-nonatomic. Then for every A ∈ S∂e there exist: (i) a refinement

Q of P with Q ⊆ S∂e and ι(Q) >
(
ϑ · ι(P)

)q
, and (ii) a set B ∈ AQ, such that∫

A4B
E(f | AP) dµ 6 Crϑ and

∫
A4B

f dµ 6 5Cr2ϑ. (6.4)

Proof. We fix A ∈ S∂e and we set

θ = ϑq · ι(P)q−1. (6.5)

First, for every P ∈ P we select a partition QP of P with QP ⊆ S∂e and a

set BP ∈ S∂e as follows. Let P ∈ P be arbitrary. If µ(A ∩ P ) < θµ(P ), then we

set QP = {P} and BP = ∅. Otherwise, let (P,ΣP ,µP ) be the probability space

where ΣP = {C ∩ P : C ∈ Σ} and µP is the conditional probability measure of

µ with respect to P , that is, µP (C) = µ(C ∩ P )/µ(P ) for every C ∈ Σ. Write

∂e = {e′1, . . . , e′r} and for every i ∈ [r] let Bi = {B ∩ P : B ∈ Be′i}; observe that Bi
is a sub-σ-algebra of ΣP . Also let S =

{⋂r
i=1Bi : Bi ∈ Bi for every i ∈ [r]

}
⊆ S∂e.

By Lemma 5.3 applied to the probability space (P,ΣP ,µP ) and the set A∩ P ∈ S,

we obtain: (i) a partition QP of P with QP ⊆ S and ι(QP ) > θ, (ii) a set BP ∈ QP
with A∩P ⊆ BP , and (iii) pairwise disjoint sets BP

1 , . . . , B
P
r ∈ S with µP (BP

i ) < θ

for every i ∈ [r], such that BP \ (A ∩ P ) =
⋃r
i=1B

P
i .

Next, we define

Q =
⋃
P∈P
QP and B =

⋃
P∈P

BP . (6.6)
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Observe that Q is a refinement of P with Q ⊆ S∂e and ι(Q) > θ · ι(P) =
(
ϑ · ι(P)

)q
.

Also note that B ∈ AQ and, setting P∗ = {P ∈ P : µ(A ∩ P ) > θµ(P )}, we have

A4B =
( ⋃
P∈P\P∗

(A ∩ P )
)
∪
( ⋃
P∈P∗

( r⋃
i=1

BP
i

))
(6.7)

where for every P ∈ P∗ the sets BP
1 , . . . , B

P
r are as in (iii) above. In particular,

noticing that µ(A ∩ P ) < θµ(P ) for every P /∈ P∗ and µ(BP
i ) < θµ(P ) for every

P ∈ P∗ and every i ∈ [r], we see that

µ(A4B) 6 rθ. (6.8)

On the other hand, by (6.3), we have ι(P) > η, and so ‖E(f | AP)‖Lp 6 C since f

is (C, η, p)-regular. Hence, by Hölder’s inequality, we obtain that∫
A4B

E(f | AP) dµ 6 ‖E(f | AP)‖Lp · µ(A4B)1/q
(6.8)

6 Cr1/qθ1/q
(6.5)

6 Crϑ.

We proceed to show that
∫
A4B f dµ 6 5Cr2ϑ. To this end, notice first that∫

A4B
f dµ =

∑
P∈P\P∗

∫
A∩P

f dµ+
∑
P∈P∗

r∑
i=1

∫
BPi

f dµ. (6.9)

By (6.3) and (6.5), we have η 6 θµ(P ) for every P ∈ P. Hence, if P ∈ P \P∗, then,

by Proposition 5.2,(∫
A∩P

f dµ
)q
6 Cq

(
µ(A ∩ P ) + (r + 3)η

)
6 Cq

(
θµ(P ) + (r + 3)θµ(P )

)
6 5Cqrθµ(P )

and so ∑
P∈P\P∗

∫
A∩P

f dµ 6 5Crθ1/q
∑

P∈P\P∗
µ(P )1/q. (6.10)

Respectively, for every P ∈ P∗ and every i ∈ [r] we have(∫
BPi

f dµ
)q
6 Cq

(
µ(BP

i ) + (r + 3)η
)
6 5Cqrθµ(P )

which yields that ∑
P∈P∗

r∑
i=1

∫
BPi

f dµ 6 5Cr2θ1/q
∑
P∈P∗

µ(P )1/q. (6.11)

Finally, notice that the function x1/q is concave on R+ since q > 1. Therefore,∑
P∈P

µ(P )1/q 6 |P|1/p 6 ι(P)−1/p. (6.12)
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Combining (6.9)–(6.12) we conclude that∫
A4B

f dµ 6 5Cr2θ1/q
∑
P∈P

µ(P )1/q 6 5Cr2θ1/q · ι(P)−1/p (6.5)
= 5Cr2ϑ

and the proof of Lemma 6.2 is completed. �

Proof of Theorem 6.1. We begin the proof of the Regularity Lemma with the

following lemma. It asserts (roughly speaking) that if a given approximation of an

Lp regular random variable is not sufficiently close to f in the cut norm, then we

can find a much nicer approximation.

Lemma 6.3. Let 0 < δ, η < 1 and set ϑ = δ(12Cr2)−1. Also let e ∈ H and

let f ∈ L1(X,Be,µ) be nonnegative and (C, η, p)-regular. Finally, let P be a finite

partition of X with P ⊆ S∂e such that ‖f − E(f | AP)‖S∂e > δ. Assume that

η 6
(
ϑ · ι(P)

)q
(6.13)

and that H is η-nonatomic. Then there exists a refinement Q of P with Q ⊆ S∂e
and ι(Q) >

(
ϑ · ι(P)

)q
, such that ‖E(f | AQ)− E(f | AP)‖L

p†
> δ/2.

Proof. We select A ∈ S∂e such that∣∣ ∫
A

(
f − E(f | AP)

)
dµ
∣∣ > δ. (6.14)

Next, we apply Lemma 6.2 and we obtain a refinement Q of P with Q ⊆ S∂e and

ι(Q) >
(
ϑ · ι(P)

)q
, and a set B ∈ AQ such that

∫
A4B E(f | AP) dµ 6 Crϑ and∫

A4B f dµ 6 5Cr2ϑ. Then, by the choice of ϑ, we have

∣∣ ∫
A

(
f − E(f | AP)

)
dµ−

∫
B

(
f − E(f | AP)

)
dµ
∣∣ 6

6
∫
A4B

f dµ+

∫
A4B

E(f | AP) dµ 6 5Cr2ϑ+ Crϑ 6 6Cr2ϑ = δ/2

and so, by (6.14), ∣∣ ∫
B

(
f − E(f | AP)

)
dµ
∣∣ > δ/2. (6.15)

On the other hand, the fact that B ∈ AQ yields that∫
B

(
f − E(f | AP)

)
dµ =

∫
B

(
E(f | AQ)− E(f | AP)

)
dµ. (6.16)
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Therefore, by the monotonicity of the Lp norms, we conclude that

‖E(f | AQ)− E(f | AP)‖L
p†
> ‖E(f | AQ)− E(f | AP)‖L1 >∣∣ ∫

B

(
E(f | AQ)− E(f | AP)

)
dµ
∣∣ (6.16)

=
∣∣ ∫

B

(
f − E(f | AP)

)
dµ
∣∣ (6.15)

> δ/2

as desired. �

The previous lemma has the following dichotomy as a consequence.

Lemma 6.4. Let 0 < δ, η < 1 and 0 < σ 6 1, and set ϑ = δ(12Cr2)−1 and

N = d4(p† − 1)−1σ2δ−2e. Also let e ∈ H, let f ∈ L1(X,Be,µ) be nonnegative and

(C, η, p)-regular, and let P be a finite partition of X with P ⊆ S∂e. Assume that

η 6
(
ϑN · ι(P)

)qN
(6.17)

and that H is η-nonatomic. Then there exists a refinement Q of P with Q ⊆ S∂e
and ι(Q) >

(
ϑN · ι(P)

)qN
, such that either

(a) ‖E(f | AQ)− E(f | AP)‖L
p†
> σ, or

(b) ‖E(f | AQ)− E(f | AP)‖L
p†
6 σ and ‖f − E(f | AQ)‖S∂e 6 δ.

The proof follows similar steps with the proof of Lemma 2.5.

Proof. Assume that part (a) is not satisfied, that is,

(H1) for every refinement Q of P with Q ⊆ S∂e and ι(Q) >
(
ϑN · ι(P)

)qN
we

have ‖E(f | AQ)− E(f | AP)‖L
p†
6 σ.

We claim that there exists a refinement Q of P which satisfies the second part of

the lemma. Indeed, if not, then, by (H1) and Lemma 6.3, we see that

(H2) for every refinement Q of P with Q ⊆ S∂e and ι(Q) >
(
ϑN · ι(P)

)qN
there

exists a refinement R of Q with R ⊆ S∂e and ι(R) >
(
ϑ · ι(Q)

)q
such that

‖(f | AR)− E(f | AQ)‖L
p†
> δ/2.

Recursively and using (H2), we select partitions P0, . . . ,PN of X with P0 = P such

that for every i ∈ [N ] we have: (P1) Pi is a refinement of Pi−1 with Pi ⊆ S∂e and

ι(Pi) >
(
ϑ · ι(Pi−1)

)q
, and (P2) ‖E(f | APi)− E(f | APi−1)‖L

p†
> δ/2.

Next, set g = f −E(f | AP) and let (di)
N
i=0 be the difference sequence associated

with the finite martingale E(g | AP0), . . . ,E(g | APN ). Notice that for every i ∈ [N ]

we have di = E(f | APi) − E(f | APi−1) which implies, by (P2), that ‖di‖L
p†
> δ/2.
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Therefore, by the choice of N and Proposition 2.1,

σ 6 (p† − 1)1/2 δ

2
N1/2 < (p† − 1)1/2

( N∑
i=0

‖di‖2L
p†

)1/2

6
∥∥ N∑
i=0

di
∥∥
L
p†

= ‖E(f | APN )− E(f | AP)‖L
p†
.

On the other hand, by (P1), we see that PN is a refinement of P with PN ⊆ S∂e
and ι(Q) >

(
ϑN · ι(P)

)qN
and so, by (H1), ‖E(f | APN )− E(f | AP)‖L

p†
6 σ which

contradicts, of course, the above estimate. The proof is thus completed. �

We introduce some numerical invariants. For every growth function F : N→ R
and every 0 < σ 6 1 we define, recursively, a sequence (Nm) in N and two sequences

(ηm) and (ϑm) in (0, 1] by setting N0 = 0, η0 = 1, θ0 =
(
12Cr2F (1)

)−1
and

Nm+1 = d4(p† − 1)−1σ2F (dη−1
m e)2e,

ηm+1 = (ϑ
Nm+1
m · ηm)q

Nm+1
,

ϑm+1 =
(
12Cr2F (dη−1

m+1e)
)−1

.

(6.18)

The following lemma is the last step of the proof of Theorem 6.1 and is similar to

Lemma 2.6.

Lemma 6.5. Let 0 < σ 6 1 and F : N→ R a growth function. Set

L = dC2(p† − 1)−1σ−2nre (6.19)

and let (ηm) be as in (6.18). Let 0 < η 6 ηL and assume that H is η-nonatomic.

For every e ∈ H let fe ∈ L1(X,Be,µ) be nonnegative and (C, η, p)-regular. Then

there exist: (i) a positive integer m ∈ {0, . . . , L− 1}, (ii) for every e ∈ H a partition

Pe of X with Pe ⊆ S∂e and ι(Pe) > ηm, and (iii) for every e ∈ H a refinement

Qe of Pe with Qe ⊆ S∂e and ι(Qe) > ηm+1, such that for every e ∈ H we have

‖E(fe | AQe)− E(fe | APe)‖Lp† 6 σ and ‖fe − E(fe | AQe)‖S∂e 6 1/F (dη−1
m e).

Proof. It is similar to the proof of Lemma 6.4 and so we will briefly sketch the

argument. If the lemma is false, then using Lemma 6.4 we select for every e ∈ H
partitions Pe0 , . . . ,PeL of X with Pe0 = {X} as well as e1, . . . , eL ∈ H such that

for every m ∈ [L] we have: (P1) Pem is a refinement of Pem−1 with Pem ⊆ S∂e and

ι(Pem) > ηm for every e ∈ H, and (P2) ‖E(fem | APemm ) − E(fem | APemm−1
)‖L

p†
> σ.

By the pigeonhole principle, there exist e ∈ H and I ⊆ [L] with |I| > L/nr, such

that e = em for every m ∈ I. Let (dm)Lm=0 be the difference sequence associated

with the finite martingale E(fe | APe
0
), . . . ,E(fe | APe

L
) and notice that ‖dm‖L

p†
> σ

for every m ∈ I. Moreover, since fe is (C, η, p)-regular and ι(Pe
m) > ηm > ηL > η
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we see that ‖E(fe | APe
m

)‖L
p†
6 ‖E(fe | APe

m
)‖Lp 6 C for every m ∈ [L]. Hence, by

the choice of L in (6.19) and Proposition 2.1, we conclude that

C < (p† − 1)1/2
( L∑
m=0

‖dm‖2L
p†

)1/2
6
∥∥ L∑
m=0

dm
∥∥
L
p†

= ‖E(fe | APe
L
)‖L

p†
6 C

which is clearly a contradiction. �

We are ready to complete the proof of Theorem 6.1.

Proof of Theorem 6.1. Let F : N→ R be a growth function and 0 < σ 6 1,

and let L and ηL be as in (6.19) and (6.18) respectively. We set Reg = dη−1
L e and

we claim that with this choice the result follows. Indeed, set η := 1/Reg 6 ηL
and assume that H is η-nonatomic. For every e ∈ H let fe ∈ L1(X,Be,µ) be

nonnegative and (C, η, p)-regular. Let m ∈ {0, . . . , L − 1}, 〈Pe : e ∈ H〉 and 〈Qe :

e ∈ H〉 be as in Lemma 6.5 and define M = dη−1
m e. It is clear that M , 〈Pe : e ∈ H〉

and 〈Qe : e ∈ H〉 are as desired. �
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CHAPTER 7

Box norms

We begin by introducing some pieces of notation. Let H = (n, 〈(Xi,Σi, µi) : i ∈
[n]〉,H) be a hypergraph system and e ⊆ [n] be nonempty. Then, recall that by

πe : X → Xe we denote the natural projection. If the set [n] \ e is nonempty, then

for every xe ∈ Xe and every x[n]\e ∈ X[n]\e we denote the unique element x of X

such that xe = πe(x) and x[n]\e = π[n]\e(x). Moreover, for every f : X → R and

every xe ∈ Xe let fxe : X[n]\e → R be the section of f at xe, that is, fxe(x[n]\e) =

f(xe,x[n]\e). Finally, let ` ∈ N with ` > 2. For every x
(0)
e = (x

(0)
i )i∈e, . . . ,x

(`−1)
e =

(x
(`−1)
i )i∈e in Xe and every ω = (ωi)i∈e ∈ {0, . . . , `− 1}e we set

x(ω)
e = (x

(ωi)
i )i∈e ∈Xe. (7.1)

Notice that if ω = me for some m ∈ {0, . . . , `− 1} (that is, ω = (ωi)i∈e with ωi = m

for every i ∈ e), then x
(ω)
e = x

(m)
e .

Recall now, that the box norm of a random variable f : Xe → R is the quantity

‖f‖�e := E
[ ∏
ω∈{0,1}e

f(x(ω)
e )

∣∣∣x(0)
e ,x(1)

e ∈Xe

]1/2|e|

. (7.2)

These norms were introduced by Gowers [Gow01], [Gow07] and are a fundamental

tool in additive and extremal combinatorics.

7.1. `-Box norms

Throughout this section let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) denote a hyper-

graph system. The variant of the box norm that interests us in this work is the

following one, which first appeared1 in [Hat09]. Let ` > 2 be an even integer and

e ∈ H. Then the `-box norm of a random variable f : Xe → R is defined by

‖f‖�e` := E
[ ∏
ω∈{0,...,`−1}e

f(x(ω)
e )

∣∣∣x(0)
e , . . . ,x(`−1)

e ∈Xe

]1/`|e|

. (7.3)

Observe that when ` = 2 then the previous norm coincides with the classic box

norm of (7.2).

1Actually, the framework in [Hat09] is more general and includes several other variants of (7.2).

44
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7.1.1. Basic properties. Let e ⊆ [n] be nonempty and let ` > 2 be an even

integer. Also let f ∈ L1(Xe,Σe,µe). We first observe that the `-box norm of f can

be recursively defined as follows. If |e| = 1, then by (7.3) we have

‖f‖�e` = E
[ `−1∏
ω=0

f(x
(ω)
j )

∣∣∣x(0)
j , . . . , x

(`−1)
j ∈ Xj

]1/`|e|

=
(
E[f ]`

)1/`
= |E[f ]|. (7.4)

On the other hand, if |e| > 2, then for every j ∈ e we have

‖f‖�e` = E
[∥∥ `−1∏

ω=0

f( · , x(ω)
j )
∥∥`|e|−1

�e\{j}`

∣∣∣x(0)
j , . . . , x

(`−1)
j ∈ Xj

]1/`|e|

. (7.5)

In the following proposition we gather further properties of the `-box norms.

Proposition 7.1. Let e ⊆ [n] be nonempty and let ` > 2 be an even integer.

(a) (Gowers–Cauchy–Schwarz inequality) For every ω ∈ {0, . . . , ` − 1}e let

fω ∈ L1(Xe,Σe,µe). Then we have∣∣∣E[ ∏
ω∈{0,...,`−1}e

fω(x(ω)
e )

∣∣∣x(0)
e , . . . ,x(`−1)

e ∈Xe

]∣∣∣ 6 ∏
ω∈{0,...,`−1}e

‖fω‖�e` . (7.6)

(b) Let f ∈ L1(Xe,Σe,µe). Then we have |E[f ]| 6 ‖f‖�e` . Moreover, if `1 6

`2 are even positive integers, then ‖f‖�e`1 6 ‖f‖�e`2 .

(c) If |e| > 2, then ‖ · ‖�e` is a norm on the vector subspace of L1(Xe,Σe,µe)

consisting of all f ∈ L1(Xe,Σe,µe) with ‖f‖�e` <∞.

(d) Let 1 < p 6∞ and let q denote the conjugate exponent of p. Assume that

` > q and that e = {i, j} is a doubleton. Then for every f ∈ L1(Xe,Σe,µe),

every u ∈ Lp(Xi,Σi, µi) and every v ∈ Lp(Xj ,Σj , µj) we have

|E[f(xi, xj)u(xi)v(xj) |xi ∈ Xi, xj ∈ Xj ]| 6 ‖f‖�e` ‖u‖Lp‖v‖Lp . (7.7)

Proof. (a) We follow the proof from [GT10, Lemma B.2] which proceeds by

induction on the cardinality of e. The case “|e| = 1” is straightforward, and so

let r > 2 and assume that the result has been proved for every e′ ⊆ [n] with

1 6 |e′| 6 r − 1. Let e ⊆ [n] with |e| = r be arbitrary. Fix j ∈ e, set e′ = e \ {j}
and for every ω ∈ {0, . . . , ` − 1}e let fω ∈ L1(Xe,Σe,µe). Moreover, for every

ωj ∈ {0, . . . , `− 1} we define Gωj : X`
e′ → R by

Gωj (x
(0)
e′ , . . . ,x

(`−1)
e′ ) = E

[ ∏
ωe′∈{0,...,`−1}e′

f(ωe′ ,ωj)
(x

(ωe′ )
e′ , xj)

∣∣∣xj ∈ Xj

]
(7.8)
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where (ωe′ , ωj) is the unique element ω of {0, . . . , ` − 1}e such that ω(j) = ωj and

ω(i) = ωe′(i) for every i ∈ e′. Observe that

∣∣∣E[ ∏
ω∈{0,...,`−1}e

fω(x(ω)
e )

∣∣∣x(0)
e , . . . ,x(`−1)

e ∈Xe

]∣∣∣ =
∣∣∣E[ `−1∏

ωj=0

Gωj

]∣∣∣
and, by Hölder’s inequality, |E

[∏`−1
ωj=0Gωj

]
| 6

∏`−1
ωj=0 E[G`ωj ]

1/`. Therefore, it is

enough to show that for every ωj ∈ {0, . . . , `− 1} we have

E[G`ωj ] 6
∏

ωe′∈{0,...,`−1}e′
‖f(ωe′ ,ωj)

‖`�e` . (7.9)

Indeed, fix ωj ∈ {0, . . . , `− 1} and notice that, by (7.8),

G`ωj(x
(0)
e′ , . . . ,x

(`−1)
e′ ) = E

[ ∏
ωe′∈{0,...,`−1}e′

`−1∏
ω=0

f(ωe′ ,ωj)
(x

(ωe′ )
e′ , x

(ω)
j )
]

(7.10)

where the expectation is over all x
(0)
j , . . . , x

(`−1)
j ∈ Xj . By (7.10) and Fubini’s

theorem, we see that

E[G`ωj ] = E
[
E
[ ∏
ωe′∈{0,...,`−1}e′

`−1∏
ω=0

f(ωe′ ,ωj)
(x

(ωe′ )
e′ , x

(ω)
j )

∣∣x(0)
e′ , . . . ,x

(`−1)
e′ ∈Xe′

]]

where the outer expectation is over all x
(0)
j , . . . , x

(`−1)
j ∈ Xj . Thus, applying the

induction hypothesis and Hölder’s inequality, we obtain that

E
[
G`ωj

]
6 E

[ ∏
ωe′∈{0,...,`−1}e′

∥∥ `−1∏
ω=0

f(ωe′ ,ωj)
( · , x(ω)

j )
∥∥
�e
′
`

]
(7.11)

6
∏

ωe′∈{0,...,`−1}e′
E
[∥∥ `−1∏

ω=0

f(ωe′ ,ωj)
( · , x(ω)

j )
∥∥`|e′|
�e
′
`

]1/`|e
′|

.

By (7.5) and (7.11), we conclude that (7.9) is satisfied.

(b) It is a consequence of the Gowers–Cauchy–Schwarz inequality. Specifically, for

every ω ∈ {0, . . . , `− 1}e let fω = f if ω = {0}e and fω = 1 otherwise. By (7.6), we

see that |E[f ]| 6 ‖f‖�e` . Next, let `1 6 `2 be even positive integers. As before, for

every ω ∈ {0, . . . , `2 − 1}e let fω = f if ω ∈ {0, . . . , `1 − 1}e; otherwise, let fω = 1.
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Then we have

‖f‖`
|e|
1
�e`1

= E
[ ∏
ω∈{0,...,`1−1}e

f(x(ω)
e )

∣∣∣x(0)
e , . . . ,x(`1−1)

e ∈Xe

]

= E
[ ∏
ω∈{0,...,`2−1}e

fω(x(ω)
e )

∣∣∣x(0)
e , . . . ,x(`2−1)

e ∈Xe

] (??)

6 ‖f‖`
|e|
1
�e`2

which implies that ‖f‖�e`1 6 ‖f‖�e`2 .

(c) Absolute homogeneity is straightforward. The triangle inequality

‖f + g‖�e` 6 ‖f‖�e` + ‖g‖�e`

follows by raising both sides to the power `|e| and then applying (7.6). Finally, let

f ∈ L1(Xe,Σe,µe) with ‖f‖�e` = 0 and observe that it suffices to show that f = 0

µe-almost everywhere. First we note that using (7.6) and arguing precisely as in

[GT10, Corollary B.3] we have that E[f · 1R] = 0 for every measurable rectangle

R of Xe (that is, every set R of the form
∏
i∈eAi where Ai ∈ Σi for every i ∈ e).

We claim that this implies that E[f · 1A] = 0 for every A ∈ Σe; this is enough

to complete the proof. Indeed, fix A ∈ Σe and let ε > 0 be arbitrary. Since f

is integrable, there exists δ > 0 such that E[ |f | · 1C ] < ε for every C ∈ Σe with

µe(C) < δ. Moreover, by Caratheodory’s extension theorem, there exists a finite

family R1, . . . , Rm of pairwise disjoint measurable rectangles ofXe such that, setting

B =
⋃m
k=1Rk, we have µe(A4B) < δ (see, e.g., [Bil08, Theorem 11.4]). Hence,

E[f · 1B] = 0 and so

|E[f · 1A]| = |E[f · 1A]− E[f · 1B]| 6 E[ |f | · 1A4B] < ε.

Since ε was arbitrary, we conclude that E[f · 1A] = 0.

(d) Set I = E[f(xi, xj)u(xi)v(xj) |xi ∈ Xi, xj ∈ Xj ] and let `′ denote the conjugate

exponent of `. Notice that 1 < `′ 6 p. By Hölder’s inequality, we have

|I| =
∣∣E[E[f(xi, xj)v(xj) |xj ∈ Xj ]u(xi)

∣∣xi ∈ Xi

]∣∣ (7.12)

6 E
[
E[f(xi, xj)v(xj) |xj ∈ Xj ]

`
∣∣xi ∈ Xi

]1/` · ‖u‖L`′ 6 I1/`
1 · ‖u‖Lp
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where I1 = E
[∏`−1

ω=0 f(xi, x
(ω)
j )v(x

(ω)
j )

∣∣xi ∈ Xi, x
(0)
j , . . . , x

(`−1)
j ∈ Xj

]
. Moreover,

I1 = E
[
E
[ `−1∏
ω=0

f(xi, x
(ω)
j )

∣∣xi ∈ Xi

]
·
`−1∏
ω=0

v(x
(ω)
j )

∣∣∣x(0)
j , . . . , x

(`−1)
j ∈ Xj

]

6 E
[
E
[ `−1∏
ω=0

f(xi, x
(ω)
j )

∣∣xi ∈ Xi

]` ∣∣∣x(0)
j , . . . , x

(`−1)
j ∈ Xj

]1/`
· ‖v‖`L`′

(7.5)
= ‖f‖`�e` · ‖v‖

`
L`′
6 ‖f‖`�e` · ‖v‖

`
Lp .

By (7.12) and the previous expression the result follows. �

7.1.2. The (`, p)-box norms. We will need the following Lp versions of the

`-box norms. We remark that closely related norms appear in [Can]. Recall that by

H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) we denote a hypergraph system.

Definition 7.2. Let e ⊆ [n] be nonempty and let ` > 2 be an even integer. Also

let 1 6 p <∞ and f ∈ Lp(Xe,Σe,µe). The (`, p)-box norm of f is defined by

‖f‖�e`,p :=
∥∥|f |p∥∥1/p

�e`
. (7.13)

Moreover, for every f ∈ L∞(Xe,Σe,µe) we define the (`,∞)-box norm of f by

‖f‖�e`,∞ := ‖f‖L∞ . (7.14)

We have the following analogue of Proposition 7.1.

Proposition 7.3. Let e ⊆ [n] be nonempty and let ` > 2 be an even integer.

(a) Let 1 6 p <∞. If fω ∈ Lp(Xe,Σe,µe) for every ω ∈ {0, . . . , `− 1}e, then

E
[ ∏
ω∈{0,...,`−1}e

|fω|p(x(ω)
e )

∣∣∣x(0)
e , . . . ,x(`−1)

e ∈Xe

]
6

∏
ω∈{0,...,`−1}e

‖fω‖p�e`,p . (7.15)

(b) Let 1 < p, q <∞ be conjugate exponents, that is, 1/p+ 1/q = 1. Then for

every f ∈ Lp(Xe,Σe,µe) and every g ∈ Lq(Xe,Σe,µe) we have

‖fg‖�e` 6 ‖f‖�e`,p · ‖g‖�e`,q . (7.16)

(c) Assume that |e| > 2 and let 1 6 p < ∞. Then ‖ · ‖�e`,p is a norm on the

vector subspace of Lp(Xe,Σe,µe) consisting of all f ∈ Lp(Xe,Σe,µe) with

‖f‖�e`,p <∞. Moreover, the following hold.

(i) For every f ∈ Lp(Xe,Σe,µe) we have ‖f‖Lp 6 ‖f‖�e`,p.

(ii) For every 1 6 p1 6 p2 < ∞ and every f ∈ Lp2(Xe,Σe,µe) we have

‖f‖�e`,p1 6 ‖f‖�e`,p2 .

(iii) For every f ∈ L∞(Xe,Σe,µe) we have limp→∞ ‖f‖�e`,p = ‖f‖�e`,∞.
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Proof. Part (a) follows immediately by (7.6). For part (b) fix a pair 1 < p, q <

∞ of conjugate exponents, and let f ∈ Lp(Xe,Σe,µe) and g ∈ Lq(Xe,Σe,µe) be

arbitrary. We define F,G : X`
e → R by F (x

(0)
e , . . . ,x

(`−1)
e ) =

∏
ω∈{0,...,`−1}e f(x

(ω)
e )

and G(x
(0)
e , . . . ,x

(`−1)
e ) =

∏
ω∈{0,...,`−1}e g(x

(ω)
e ). By Hölder’s inequality, we have

‖fg‖`|e|�e` 6 E[ |F ·G| ] 6 E[ |F |p]1/p · E[ |G|q]1/q.

Noticing that E[ |F |p]1/p = ‖f‖�e`,p and E[ |G|q]1/q = ‖g‖�e`,q we conclude that (7.16)

is satisfied.

We proceed to show part (c). Arguing as in the proof of the classical Minkowski’s

inequality we see that the (`, p)-box norm satisfies the triangle inequality. Absolute

homogeneity is clear and so, by Proposition 7.1, we conclude that ‖·‖�e`,p is indeed a

norm. Next, observe that part (c.i) follows by (7.15) applied for fω = f if ω = {0}e

and fω = 1 otherwise. For part (c.ii) set p = p2/p1 and notice that

‖f‖p1

�e`,p1
=
∥∥|f |p1

∥∥
�e`

(7.16)

6
∥∥|f |p1

∥∥
�e`,p

= ‖f‖p2/p1

�e`,p2

Finally, let f ∈ L∞(Xe,Σe,µe). By part (c.i), we have ‖f‖Lp 6 ‖f‖�e`,p 6 ‖f‖L∞ .

Since limp→∞ ‖f‖Lp = ‖f‖L∞ , we obtain that limp→∞ ‖f‖�e`,p = ‖f‖L∞ = ‖f‖�e`,∞
and the proof is completed. �

7.2. A counting lemma for Lp graphons

Let n be a positive integer and let G be a nonempty graph on [n]. Recall that

the maximum degree of G is the number ∆(G) := max
{
|{e ∈ G : i ∈ e}| : i ∈ [n]

}
.

Given two graphons W and U , a natural problem (which is of particular importance

in the context of graph limits – see [Lov12]) is to estimate the quantity∣∣∣E[ ∏
{i,j}∈G

W (xi, xj)
∣∣∣x1, . . . , xn ∈ X

]
− E

[ ∏
{i,j}∈G

U(xi, xj)
∣∣∣x1, . . . , xn ∈ X

]∣∣∣.
If W and U are uniformly bounded, then this problem has a very satisfactory answer

(see, e.g., [Lov12]). The unbounded case, however, is quite involved. Recently, there

was progress in this direction in [BCCZ14, Theorem 2.20] where effective estimates

were obtained provided that W and U are Lp graphons for some p > ∆(G). It

is important to note that this integrability restriction is necessary at this level of

generality. Indeed, if p < ∆(G), then the above difference may not even be defined.

Nevertheless, we have the following theorem which has the advantage of being

applicable to Lp graphons for any p > 1 but requires a rather different type of

integrability assumption.
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Theorem 7.4. Let ∆ be a positive integer, C > 1 and 1 < p 6∞. We set ` = 2

if either p =∞ or ∆ = 1; otherwise, let

` = min
{

2n : n ∈ N and 2n > p(∆−1)−1
(p(∆−1)−1 − 1)−1

}
. (7.17)

Also let G = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,G) be a 2-uniform hypegraph system with

∆(G) = ∆. For every e ∈ G, let fe, ge ∈ Lp(X,Be,µ) such that

‖fe‖�e`,p6 1 and ‖ge‖�e`,p6 1 (7.18)

where fe and ge are as in (4.3) for fe and ge respectively. Assume that for every

G1,G2 ⊆ G with G1 ∩ G2 = ∅ we have∥∥ ∏
e∈G1

fe
∏
e∈G2

ge
∥∥
Lp
6 C. (7.19)

(Here, we follow the convention that the product of an empty family of functions is

equal to the constant function 1.) Then we have∣∣∣E[∏
e∈G

fe

]
− E

[∏
e∈G

ge

]∣∣∣ 6 C ·∑
e∈G
‖fe − ge‖�e` . (7.20)

Proof. Set M = |G| and write G = {e1, . . . , eM}. Since

E
[∏
e∈G

fe

]
− E

[∏
e∈G

ge

]
=

m∑
k=1

E
[∏
s<k

ges(fek − gek)
∏
s>k

fes

]
it suffices to show that for every k ∈ [M ] we have∣∣∣E[∏

s<k

ges(fek − gek)
∏
s>k

fes

]∣∣∣ 6 C · ‖fek − gek‖�ek` . (7.21)

So, fix k ∈ [M ], and set e = ek and He = fek − gek ∈ Lp(X,Be,µ). Moreover, for

every e′ ∈ G \ {e} let s ∈ [M ] \ {k} be such that e′ = es and set he′ = ges if s < k

and he′ = fes if k < s; notice that he′ ∈ Lp(X,Be′ ,µ). Thus, setting

I = E
[
He

∏
e′∈G\{e}

he′
]
,

we need to show that |I| 6 C · ‖He‖�e` where He is as in (4.3) for He.

To this end, we first observe that if ∆ = 1, then the result is straightforward.

Indeed, in this case we have ` = 2, and the edges of G are pairwise disjoint. Hence,

by part (b) of Proposition 7.1 and part (c.ii) of Proposition 7.3, we see that

|I| = |E[He]| ·
∏

e′∈G\{e}

|E[he′ ]| 6 ‖He‖�e2 ·
∏

e′∈G\{e}

‖he‖�e2,p
(7.18)

6 C · ‖He‖�e2 .

Therefore, in what follows we will assume that ∆ > 2. To simplify the exposition

we will also assume that p 6= ∞. (The proof for the case p = ∞ is similar.) Write
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e = {i, j}, and set G(i) = {e′ ∈ G \ {e} : i ∈ e′} and G∗(i) = {e′ ∈ G \ {e} : i /∈ e′};
notice that G \{e} = G(i)∪G∗(i). Let `′ be the conjugate exponent of ` and observe

that, by (7.17), we have ` > q′ where q′ is the conjugate exponent of p(∆−1)−1
.

Hence,

1 < `′ 6 p(∆−1)−1
6 p. (7.22)

We set

Ie,G(i) = E
[ `−1∏
ω=0

He(x
(ω)
i , xj)

∏
e′∈G(i)

he′(x
(ω)
i , xe′\{i})

]
(7.23)

and

IG(i) = E
[ ∏
e′∈G(i)

`−1∏
ω=0

|he′ |`
′
(x

(ω)
i , xe′\{i})

]
(7.24)

where both expectations are over all x
(0)
i , . . . , x

(`−1)
i ∈ Xi and x[n]\{i} ∈X[n]\{i}.

Claim 7.5. We have |I| 6 C · I1/`
e,G(i).

Proof of Claim 7.5. Since i /∈ e′ for every e′ ∈ G∗(i), we have

I = E
[
E
[
He(xi, xj)

∏
e′∈G(i)

he′(xi, xe′\{i})
∣∣xi ∈ Xi

]
·
∏

e′∈G∗(i)

he′(xe′)
]
.

By Hölder’s inequality, (7.19), (7.22) and (7.23), we obtain that

|I| 6 E
[
E
[
He(xi, xj)

∏
e′∈G(i)

he′(xi, xe′\{i})
∣∣xi ∈ Xi

]`]1/`
·
∥∥ ∏
e′∈G∗(i)

he′
∥∥
L`′

6 I
1/`
e,G(i) ·

∥∥ ∏
e′∈G∗(i)

he′
∥∥
Lp
6 C · I1/`

e,G(i)

as desired. �

We proceed with the following claim.

Claim 7.6. We have Ie,G(i) 6 ‖He‖`�e` · I
1/`′

G(i) .

Proof of Claim 7.6. Note that j /∈ e′ for every e′ ∈ G(i), and so

Ie,G(i) = E
[
E
[ `−1∏
ω=0

He(x
(ω)
i , xj)

∣∣xj ∈ Xj

]
·
∏

e′∈G(i)

`−1∏
ω=0

he′(x
(ω)
i , xe′\{i})

]
.

Using this observation the claim follows by Hölder’s inequality and arguing precisely

as in the proof of Claim 7.5. �

The following claim is the last step of the proof.

Claim 7.7. We have IG(i) 6 1.
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Proof of Claim 7.7. We may assume, of course, that G(i) is nonempty. We

set m = |G(i)| and we observe that 1 6 m 6 ∆ − 1. Therefore, by (7.22), we see

that

1 < (`′)r 6 (`′)∆−1 6 p (7.25)

for every r ∈ [m]. Write G(i) = {e′1, . . . , e′m} and for every r ∈ [m] let jr ∈ [n] such

that e′r = {i, jr}. For every d ∈ [m] set

Qd = E
[ m∏
r=d

`−1∏
ω=0

|he′r |
(`′)d(x

(ω)
i , xjr)

]
(7.26)

and note that

Q1 = IG(i) and Qm = E
[ `−1∏
ω=0

|he′m |
(`′)m(x

(ω)
i , xjm)

]
. (7.27)

(Here, the expectation is over all x
(0)
i , . . . , x

(`−1)
i ∈ Xi and x[n]\{i} ∈X[n]\{i}.) Now

observe that it is enough to show that for every d ∈ [m− 1] we have

Qd 6 Q
1/`′

d+1. (7.28)

Indeed, by (7.28), we see that Q1 6 Q
1/(`′)m−1

m . Hence, by (7.27), the monotonicity

of the Lp norms and part (a) of Proposition 7.3, we obtain that

IG(i) 6 E
[ `−1∏
ω=0

|he′m |
(`′)m(x

(ω)
i , xjm)

]`′/(`′)m
(7.29)

(7.25)

6 E
[ `−1∏
ω=0

|he′m |
p(x

(ω)
i , xjm)

]`′/p
6
∥∥he′m∥∥``′�e′m`,p (7.18)

6 1.

It remains to show (7.28). Fix d ∈ [m − 1] and notice that jd /∈ e′r for every

r ∈ {d+ 1, . . . ,m}. Thus,

Qd = E
[
E
[ `−1∏
ω=0

|he′d |
(`′)d(x

(ω)
i , xjd)

∣∣xjd ∈ Xjd

]
·
m∏

r=d+1

`−1∏
ω=0

|he′r |
(`′)d(x

(ω)
i , xjr)

]
.

By Hölder’s inequality and arguing as in the proof of (7.29), we see that

Qd 6 E
[ ∏
ω∈{0,...,`−1}e

′
d

|he′d |
(`′)d(x

(ω)
e′d

)
]1/`
·Q1/`′

d+1 6
∥∥he′d∥∥`(`′)d�

e′
d
`,p

·Q1/`′

d+1

as desired. �

By Claims 7.5, 7.6 and 7.7, we conclude that (7.21) is satisfied, and so the entire

proof of Theorem 7.4 is completed. �



CHAPTER 8

Pseudorandom families

8.1. Definition and basic properties

We introduce a class of weighted hypergraphs which first appeared in [DKK18,

Definition 6.1]. Closely related definitions appear in [CFZ15, Tao06a]. As we have

already noted in the introduction, the most important property of this class is that

it satisfies relative versions of the counting and removal lemmas, as we will see in

the following two chapters. We follow the notation1 described in the beginning of

Chapter 7.

Definition 8.1. Let n, r ∈ N with n > r > 2, and let C > 1 and 0 < η < 1.

Also let 1 < p 6 ∞ and let q denote the conjugate exponent of p. Finally, let

H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be an r-uniform hypergraph system. For every

e ∈ H let νe ∈ L1(X,Be,µ) be a nonnegative random variable. We say that the

family 〈νe : e ∈ H〉 is (C, η, p)-pseudorandom if the following hold.

(C1) (Copies of sub-hypergraphs of H) For every nonempty G ⊆ H we have

E
[∏

e∈G νe
]
> 1− η.

(C2) For every e ∈ H there exists ψe ∈ Lp(X,Be,µ) with ‖ψe‖Lp 6 C and

satisfying the following properties.

(a) (The cut norm of νe − ψe is negligible) We have ‖νe − ψe‖S∂e 6 η.

(b) (Local linear forms condition) For every e′ ∈ H \ {e} and every ω ∈
{0, 1} let g

(ω)
e′ ∈ L1(X,Be′ ,µ) such that either 0 6 g

(ω)
e′ 6 νe′ or

0 6 g
(ω)
e′ 6 1. Let νe and ψe be as in (4.3) for νe and ψe respectively.

Then we have∣∣∣E[(νe−ψe)(xe) ∏
ω∈{0,1}

E
[∏
e′∈H\{e}

g
(ω)
e′ (xe,x[n]\e)

∣∣x[n]\e ∈X[n]\e
]∣∣∣xe ∈Xe

]∣∣∣ 6 η. (8.1)

(C3) (Integrability of the marginals) Let e ∈ H and let G ⊆ H\{e} be nonempty,

and define νe,G : Xe → R by νe,G(xe) = E
[∏

e′∈G νe′(xe,x[n]\e)
∣∣x[n]\e ∈

1Recall, that if (X,Σ, µ) is a probability space and f : X → R is a random variable then the

mean value of f in X is denoted by

∫
X

f(x) dµ(x) = E
[
f(x)

∣∣x ∈ X].
53
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X[n]\e
]
. Then, setting

` := min
{

2n : n ∈ N and 2n > 2q +
(

1− 1

C

)
+

1

p

}
, (8.2)

we have

E[ν`e,G ] 6 C + η. (8.3)

Definition 8.1 looks rather technical at first sight, but it is possible to justify

combinatorially conditions (C1)–(C3). First observe that condition (C1) expresses

a natural combinatorial requirement, namely that the weighted hypergraph 〈νe : e ∈
H〉 contains many copies of every sub-hypergraph of H. Condition (C2.a) is also

rather mild and implies that each νe is, to some extend, well-behaved. Specifically,

we have the following lemma.

Lemma 8.2. If the family 〈νe : e ∈ H〉 satisfies condition (C2.a), then for every

e ∈ H the random variable νe is (C + 1, η, p)-regular.

Proof. Let e ∈ H and let P be a partition of X with P ⊆ S∂e and µ(P ) > η

for every P ∈ P. By condition (C2.a), for every P ∈ P we have

|
∫
P (νe − ψe) dµ|

µ(P )
6 1

and, consequently, ‖E(νe − ψe | AP)‖L∞ 6 1. Therefore, by the triangle inequality

and the monotonicity of the Lp norms, we conclude that

‖E(νe | AP)‖Lp 6 ‖E(ψe | AP)‖Lp + ‖E(νe − ψe | AP)‖Lp 6 C + 1

and the proof is completed. �

Condition (C2.b), the local linear forms condition, is the strongest (and as such,

the most restrictive) condition of all. In the case where ψe = 1 for every e ∈ H it was

explicitly isolated2 by Conlon, Fox and Zhao in [CFZ15, Lemma 6.3], though closely

related variants appear in the work of Green and Tao [GT08]. One of the signs of the

strength of the local linear forms condition is that it implies condition (C2.a) as long

as the hypergraph H is not too sparse. More precisely, assume that for every e ∈ H
we have ∂e ⊆ {e′ ∩ e : e′ ∈ H} (this is the case, for instance, if H is the r-simplex).

Fix e ∈ H and for every f ∈ ∂e let Af ∈ Bf . We set g
(0)
e′ = 1Af if e′ ∩ e = f ;

otherwise, let g
(j)
e′ = 1. By (8.1), we see that |

∫
(νe − ψe)

∏
f∈∂e 1Af dµ| 6 η which

implies, of course, that ‖νe−ψe‖S∂e 6 η. Condition (C3) can be seen as an instance

of the general fact that by taking averages we improve integrability. It will be used

in the following form.

2Note that in [CFZ15] condition (C2.b) is referred to as the “strong linear forms” condition.
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Lemma 8.3. If the family 〈νe : e ∈ H〉 satisfies condition (C3), then for every

e ∈ H and every nonempty G ⊆ H \ {e} the following hold.

(a) If either C > 1 or 1 < p <∞, then ` > 2q and for every A ∈ Σe we have∫
A
ν2q
e,G dµe 6 (C + 1)µe(A)e(C,p) (8.4)

where e(C, p) = (4pq)−1 if 1 < p <∞, and e(C,∞) = 1/2 if C > 1.

(b) Assume that the family 〈νe : e ∈ H〉 also satisfies condition (C1), and that

C = 1 and p = ∞. Then ` = 2 and ‖νe,G − 1‖L2 6 4η1/2. In particular,

for every A ∈ Σe we have∫
A
ν2
e,G dµe 6 2µe(A) + 8η1/2. (8.5)

Proof. (a) The fact that ` > 2q follows immediately by (8.2). Next, fix A ∈ Σe.

By Hölder’s inequality, we have∫
A
ν2q
e,G dµe 6 ‖νe,G‖

2q
L`
· µe(A)1− 2q

`

(8.3)

6 (C + 1)µe(A)1− 2q
` . (8.6)

On the other hand, by (8.2) and the choice of e(C, p), we see that 1− 2q
` > e(C, p).

By (8.6), the proof of part (a) is completed.

(b) First observe that ` = 2. Moreover, by Fubini’s theorem and Jensen’s inequality,

1− η
(C1)

6
∫ ∏

e′∈G
νe′ dµ =

∫
νe,G dµe 6

(∫
ν2
e,G dµe

)1/2 (C3)

6 (1 + η)1/2

and, consequently, |
∫

(ν2
e,G − 1) dµe| 6 2η and |

∫
(νe,G − 1) dµe| 6 η1/2. Therefore,

‖νe,G − 1‖2L2
=

∫
(ν2
e,G − 2νe,G + 1) dµe (8.7)

6
∣∣ ∫ (ν2

e,G − 1) dµe
∣∣+ 2

∣∣ ∫ (νe,G − 1) dµe
∣∣ 6 4η1/2.

Now let A ∈ Σe and note that ‖νe,G · 1A − 1A‖L2 6 ‖νe,G − 1‖L2 . Hence, by (8.7)

and the triangle inequality, we have ‖νe,G · 1A‖L2 6 ‖1A‖L2 + (4η1/2)1/2 and so∫
A
ν2
e,G dµe 6

(
µe(A)1/2 + (4η1/2)1/2

)2
6 2µe(A) + 8η1/2

as desired. �
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8.2. Conditions on the majorants

Although for the analysis of pseudorandom families we need precisely conditions

(C1)–(C3), in practice some of these conditions are not so easily checked. This

is the case, for instance, with the local linear forms condition, since it requires

verifying the estimate in (8.1) not only for the “majorants” 〈νe : e ∈ H〉 but also

for all nonnegative functions which are pointwise bounded by them. However, this

problem can be effectively resolved by imposing some slightly stronger conditions on

〈νe : e ∈ H〉, and then reducing (8.1) to these conditions by repeated applications of

the Cauchy–Schwarz inequality. This method was developed extensively by Green

and Tao [GT08, GT10] and has become standard in the field. As such, we will not

present the proof of the following proposition here, see e.g [DKK15, CFZ15].

Proposition 8.4. Let C > 1 and 0 < η < 1. Also let 1 < p 6 ∞ and let

q denote the conjugate exponent of p. For every e ∈ H let νe ∈ L1(X,Be,µ) be

a nonnegative random variable and let νe be as in (4.3) for νe. Assume that the

following properties are satisfied.

(P1) If ` is as in (8.2), then

1− η 6 E
[ ∏
e∈H

∏
ω∈{0,...,`−1}e

ν
ne,ω
e (x(ω)

e )
∣∣x(0)

e , . . . ,x(`−1)
e ∈Xe

]
6 C + η

for any choice of ne,ω ∈ {0, 1}.
(P2) For every e ∈ H there exists ψe ∈ Lp(X,Be,µ) with ‖ψe‖Lp 6 C such that∣∣E[ ∏

ω∈{0,1}e
(νe −ψe)(x(ω)

e )
∏

e′∈H\{e}

∏
ω∈{0,1}e′

ν
ne′,ω
e′ (x

(ω)
e′ )

∣∣ x(0)
e ,x

(1)
e ∈Xe

x
(0)

e′ ,x
(1)

e′ ∈Xe′

]∣∣ 6 η
for any choice of ne′,ω ∈ {0, 1}.

Then 〈νe : e ∈ H〉 is a (C, η′, p)-pseudorandom family where η′ = (C + 1) η1/2r .

8.3. The linear forms condition

We isolate now a special subclass of pseudorandom families that will play an

important role in the arithmetic applications of the relative removal lemma in Part

4.

Definition 8.5 (Linear forms condition for hypergraphs). Let n, r ∈ N with

n > r > 2 and H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be an r-uniform hypergraph

system. Also for every e ∈ H, let νe ∈ L1(X,Be,µ) be a nonnegative random

variable. We say that the family 〈νe : e ∈ H〉 satisfies the linear forms condition if

E
[ ∏
e∈H

∏
ω∈{0,1}e

ν
ne,ω
e (x(ω)

e )
∣∣x(0)

e ,x(1)
e ∈Xe

]
= 1 + o(1) (8.8)
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for any choice of ne,ω ∈ {0, 1}. In the previous expression νe is as in (4.3) .

Taking C = 1, p = ∞, ` = 1 and ψe = 1 for every e ∈ H then a family of

measures that satisfies (8.8) we see that it also satisfies properties (P1) and (P2) in

Proposition 8.4, see [CFZ15, Lemma 6.3].

8.4. Examples of Pseudorandom families

We present now two examples of pseudorandom families. The proofs that the

following examples are indeed pseudorandom families are omitted and may be found

in [DKK15].

Our first example is the following theorem.

Theorem 8.6. Let n ∈ N with n > 3, C > 1 and 1 < p 6 ∞, and let ` be

as in (8.2). Also let 0 < η 6 (4C)−n`
n

and let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H)

be a hypergraph system with H =
(
n
n−1

)
. (In particular, H is (n− 1)-uniform.) For

every e ∈ H let λe ∈ L1(X,Be,µ) and ϕe ∈ Lp(X,Be,µ) be nonnegative random

variables, and let λe and ϕe be as in (4.3) for λe and ϕe respectively. Assume that

the following conditions are satisfied.

(I) We have

1− η 6 E
[ ∏
e∈H

∏
ω∈{0,...,`−1}e

λ
ne,ω
e (x(ω)

e )
∣∣∣x(0), . . . ,x(`−1) ∈X

]
6 1 + η (8.9)

for any choice of ne,ω ∈ {0, 1}.
(II) For every e ∈ H we have ‖ϕe‖�e`,p 6 C.

Then the family 〈λe + ϕe : e ∈ H〉 is (C ′, η′, p)-pseudorandom where C ′ = (4C)n`

and η′ = (4C)n` η1/`n−1
.

We will briefly comment on the assumptions of Theorem 8.6. We first observe

that condition (I) is a modification of the “linear forms condition”. It expresses

the fact that the weighted hypergraph 〈λe : e ∈ H〉 contains roughly the expected

number of copies of the `-blow-up ofH and its sub-hypergraphs; as such, it is a rather

strong independence-type assumption. On the other hand, note that condition (II)

is just an integrability assumption for the function ϕe. Thus, we see that the family

〈λe+ϕe : e ∈ H〉 is a perturbation of 〈λe : e ∈ H〉 where only integrability conditions

are imposed on each “noise” ϕe.

The second example is the following theorem. This theorem was motivated by

[CFZ13, Lemmas 5 and 6] which dealt with the case C = 1, p = ∞ and ψe = 1 for

every e ∈ H.
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Theorem 8.7. Let n ∈ N with n > 3, C > 1 and 1 < p 6 ∞, and let ` be as

in (8.2). Also let 0 < η 6 1/(n`) and let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be

a hypergraph system with H =
(
n
n−1

)
. (Again observe that H is (n − 1)-uniform.)

For every e ∈ H let νe, ψe ∈ Lp(X,Be,µ) be nonnegative random variables, and

let νe and ψe be as in (4.3) for νe and ψe respectively. Assume that the following

conditions are satisfied.

(I) We have

1− η 6 E
[ ∏
e∈H

∏
ω∈{0,...,`−1}e

ψ
ne,ω
e (x(ω)

e )
∣∣∣x(0), . . . ,x(`−1) ∈X

]
6 C + η (8.10)

for any choice of ne,ω ∈ {0, 1}.
(II) We have 1 6 ‖νe‖�e`,p <∞, ‖ψe‖�e`,p 6 C and

‖νe −ψe‖�e` 6 η (C ·M)−(n−1)` (8.11)

where M = max{‖νe‖�e`,p : e ∈ H}.
Then the family 〈νe : e ∈ H〉 is (C, η′, p)-pseudorandom where η′ = n`η.



CHAPTER 9

Relative counting lemma for pseudorandom families

We present now a relative counting lemma for pseudorandom families. Similar

results may be found in several places, see e.g. [Tao06c, NRS06, GT08, CFZ15].

Theorem 9.1 (Relative Counting lemma). Let n, r ∈ N with n > r > 2, and let

C > 1 and 1 < p 6∞. Also let ζ > 1 and 0 < γ 6 1. Then there exist two strictly

positive constants η = η(n, r, C, p, ζ, γ) and α = α(n, r, C, p, ζ, γ) with the following

property. Let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be an r-uniform hypergraph system,

and let 〈νe : e ∈ H〉 be a (C, η, p)-pseudorandom family. Moreover, for every e ∈ H
let ge, he ∈ L1(X,Be,µ) such that 0 6 ge 6 νe, 0 6 he 6 ζ and ‖ge − he‖S∂e 6 α.

Then we have ∣∣ ∫ ∏
e∈H

ge dµ−
∫ ∏

e∈H
he dµ

∣∣ 6 γ. (9.1)

The hypotheses of Theorem 9.1 might appear rather strong: on the one hand

the function ge is dominated by νe (and so, by Lemma 8.2 , it is Lp regular), but

on the other hand it is approximated in the cut norm by a nonnegative function he

with ‖he‖L∞ 6 ζ. It turns out, however, that for every 0 6 fe 6 νe we can indeed

satisfy these requirements by slightly truncating fe, as we will see in Proposition

10.3. The rest of this chapter is devoted to the proof of Theorem 9.1.

Proof of Theorem 9.1. First we need to do some preparatory work. Let n, r ∈
N with n > r > 2, and let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be an r-uniform

hypergraph system. Also let C > 1 and 1 < p 6∞, and denote by q the conjugate

exponent of p. These data will be fixed throughout the proof.

Next, observe that it suffices to prove Theorem 9.1 only for the case “ζ = 1”.

Indeed, if the numbers η(n, r, C, p, 1) and α(n, r, C, p, 1) have been determined, then

it is easy to see that for every ζ > 1 Theorem 9.1 holds true for the parameters

η(n, r, C, p, 1, γζ−n
r
) and ζ · α(n, r, C, p, 1, γζ−n

r
). Thus, in what follows we will

assume that ζ = 1. To avoid trivialities, we will also assume that |H| > 2.

We proceed to introduce some numerical invariants. For every 0 < γ 6 1 we set

β(γ) =
(
10(C + 1)2γ−1

)2q/x(C,p)
and θ(γ) =

(
20(C + 1)β(γ)

)−2q
γ2q, (9.2)

59
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where x(C, p) = (4pq)−1 if 1 < p < ∞, x(C,∞) = 1/2 if C > 1, and x(1,∞) = 1.

Moreover, for every m ∈ {0, . . . , nr} and every 0 < γ 6 1 we define αm(γ) and

ηm(γ) in (0, 1] recursively by the rule

α0(γ) = γ/5 and αm+1(γ) = αm
(
θ(γ)

)
(9.3)

and

η0(γ) =
(
30(C + 1)

)−4q
γ4q and ηm+1(γ) = ηm(θ(γ). (9.4)

Notice that αm+1(γ) 6 αm(γ) and ηm+1(γ) 6 ηm(γ) for every 0 < γ 6 1.

After this preliminary discussion we are ready to enter into the main part of

the proof which proceeds by induction. Specifically, let 〈νe : e ∈ H〉 be a family

of nonnegative random variables such that νe ∈ L1(X,Be,µ) for every e ∈ H.

By induction on m ∈ {0, . . . , |H|} we will show that for every 0 < γ 6 1 if the

family 〈νe : e ∈ H〉 is (C, η(γ), p)-pseudorandom where ηm(γ) is as in (9.4), then

the estimate (9.1) is satisfied for any collection 〈ge, he ∈ L1(X,Be,µ) : e ∈ H〉 with

the following properties: (P1) for every e ∈ H we have that either 0 6 ge 6 νe or

ge = he, (P2) for every e ∈ H we have 0 6 he 6 1 and ‖ge − he‖S∂e 6 αm(γ) where

αm(γ) is as in (9.3), and (P3) |{e ∈ H : ge 6= he}| 6 m.

The initial case “m = 0” is straightforward, and so let m ∈ {1, . . . , |H|} and

assume that the induction has been carried out up to m− 1. Fix 0 < γ 6 1 and let

〈ge, he ∈ L1(X,Be,µ) : e ∈ H〉 be a collection satisfying properties (P1)–(P3). Set

∆ :=

∫ ∏
e∈H

ge dµ−
∫ ∏

e∈H
he dµ

and recall that we need to show that |∆| 6 γ. To this end, we may assume that

|{e ∈ H : ge 6= he}| = m (otherwise, the desired estimate follows immediately from

the inductive assumptions). Thus, we may select e0 ∈ H with ge0 6= he0 ; note that,

by property (P1), we have 0 6 ge0 6 νe0 . We set G = {e ∈ H \ {e0} : ge 6= he} and

we define G,H : Xe0 → R by the rule

G(xe0) =

∫ ∏
e∈H\{e0}

(ge)xe0 dµ[n]\e0 and H(xe0) =

∫ ∏
e∈H\{e0}

(he)xe0 dµ[n]\e0 .

Observe that 0 6 H 6 1. Moreover, if G is nonempty, then we have 0 6 G 6 νe0,G
where νe0,G is as in Definition 8.1. On the other hand, notice that G = H if G = ∅.

We are ready present two claims which are the main steps towards the proof

of Theorem 9.1. Their proof will be given after we see how they are used in the

proof of this Theorem. In the following claim we obtain a first estimate for |∆|. As

we said earlier it is the first step of the proof of Theorem 9.1 and is important to

note that its proof does not use the inductive assumptions and relies, instead, on



9. RELATIVE COUNTING LEMMA FOR PSEUDORANDOM FAMILIES 61

the local linear forms condition (condition (C2.b) in Definition 8.1) and Hölder’s

inequality. Closely related estimates appear in [CFZ15, Tao06a].

Claim 9.2. We have

|∆| 6 2(C + 1)
(
‖G−H‖L2q + ηm(γ)1/2

)
+ ‖ge0 − he0‖S∂e0 . (9.5)

The next claim is the second step of the proof.

Claim 9.3. If β(γ) and θ(γ) are as in (9.2), then we have∫
(G−H)2q dµe0 6 2β(γ)2qθ(γ) + (C + 1)2β(γ)−x(C,p) + 8ηm(γ)1/2. (9.6)

Granting Claims 9.2 and 9.3, the proof of the inductive step (and, consequently,

of Theorem 9.1) is completed as follows. First observe that, by (9.4) we have ηm(γ) 6(
30(C + 1)

)−4q
γ4q; in particular 8ηm(γ)1/2 6

(
10(C + 1)

)−2q
γ2q. On the other

hand, by Claim 9.3 and the choice of β(γ) and θ(γ) in (9.2), it is easy to see that

‖G−H‖L2q 6 3
(
10(C + 1)

)−1
γ. Therefore, by Claim 9.2 and property (P2)

|∆| 6 2(C + 1)
(
‖G−H‖L2q + η(γ)1/2

)
+ ‖ge0 − he0‖S∂e0

6 4γ/5 + αm(γ) 6 4γ/5 + α0(γ) 6 4γ/5 + γ/5 = γ.

It remains to prove Claims 9.2 and 9.3.

Proof of Claim 9.2. Let ge0 be as in (4.3) for ge0 . Set

I1 =

∫
ge0(G−H) dµe0 and I2 =

∫
(ge0 − he0)

∏
e∈H\{e0}

he dµ

and notice that |∆| 6 |I1|+ |I2|. Next, observe that

|I2| 6 ‖ge0 − he0‖S∂e0 . (9.7)

This follows by Fubini’s theorem and the following well-known fact (see, e.g., [Gow07]).

We recall the proof for the convenience of the reader.

Fact 9.4. Let e ∈ H with |e| > 2 and ge ∈ L1(X,Be,µ). For every f ∈ ∂e let

uf ∈ L∞(X,Bf ,µ) with 0 6 uf 6 1. Then we have |
∫
ge
∏
f∈∂e uf dµ| 6 ‖ge‖S∂e.

Proof. Set k = |e| and let {f1, . . . , fk} be an enumeration of ∂e. We de-

fine Z : [0, 1]k → R by the rule Z(t1, . . . , tk) =
∫
ge
∏k
i=1 1[ufi>ti]

dµ. Notice that⋂k
i=1[ufi > ti] ∈ S∂e for every (t1, . . . , tk) ∈ [0, 1]k and so ‖G‖L∞ 6 ‖ge‖S∂e . On the

other hand, denoting by λ the Lebesgue measure on [0, 1]k, by Fubini’s theorem we

have
∫
ge
∏
f∈∂e uf dµ =

∫
Gdλ and the result follows. �
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We proceed to estimate |I1|. First, by the Cauchy–Schwarz inequality and the

fact that 0 6 ge0 6 νe0 , we obtain

|I1|2 6
∫

ge0 dµe0 ·
∫

ge0(G−H)2 dµe0 6
∫
νe0 dµe0 ·

∫
νe0(G−H)2 dµe0 .

Let ψe0 ∈ Lp(X,Be0 ,µ) with ‖ψe0‖Lp 6 C be as in Definition 8.1 and notice that

by condition (C2.a) we have |
∫

(νe0 − ψe0) dµ| 6 η(γ). This is easily seen to imply

that
∫
νe0 dµ 6 C + 1 and so, by the previous estimate, we have

|I1|2 6 (C + 1) ·
(∫

ψe0(G−H)2 dµe0 +

∫
(νe0 −ψe0)(G−H)2 dµe0

)
where ψe0 is as in (4.3) for ψe0 . Next, writing (G − H)2 = G2 − 2GH + H2 and

applying (8.1), we see that |
∫

(νe0 − ψe0)(G − H)2 dµe0 | 6 4η(γ). On the other

hand, by Hölder’s inequality, |
∫
ψe0(G−H)2 dµe0 | 6 C‖G−H‖2L2q

. Therefore,

|I1| 6 2(C + 1)
(
‖G−H‖L2q + ηm(γ)1/2

)
. (9.8)

Combining (9.7) and (9.8) we conclude that the estimate in (9.5) is satisfied, as

desired.

Before we pass to the proof of Claim 9.3 we make the following comments.

Estimates of this form are usually obtained for stronger norms than the cut norm,

and as such, they depend on stronger pseudorandomness conditions. In fact, so far

the only general method available in this context was developed by Conlon, Fox

and Zhao [CFZ15]. It is known as densification and consists of taking successive

marginals in order to arrive at an expression which involves only bounded functions

(see also [Sha16, TZ15b]).

We introduce a new method to deal with these types of problems which is based

on a simple decomposition scheme. The method is best seen in action: we first

observe the pointwise bound

(G−H)2q 6 (G−H)2q 1[G>H] + (H −G)H2q−11[G<H].

Since 0 6 H2q−11[G<H] 6 1 the expectation of the second term of the above de-

composition can be estimated using our inductive hypotheses. For the first term we

select a cut-off parameter β > 1 and we decompose further as

(G−H)2q 1[G>H] 6 G
2q 1[G>H]1[G>β] + (G−H)G2q−11[G>H]1[G6β].

If β is large enough, then we can effectively bound the expectation of the first term

of the new decomposition using Lemma 8.3 and Markov’s inequality. On the other

hand, we have 0 6 G2q−11[G>H]1[G6β] 6 β2q−1 and so the second term can also be

handled by our inductive assumptions. By optimizing the parameter β, we obtain

the estimate in (9.6) thus completing the proof of Claim 9.3. More precicely
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Proof of Claim 9.3. Recall that G stands for the set {e ∈ H \ {e0} : ge 6= he}.
We may assume, of course, that G is nonempty and, consequently, that G 6= H. Set

A = [G < H], B = [G > H]∩ [G 6 β(γ)] and C = [G > H]∩ [G > β(γ)], and notice

that A,B,C ∈ Σe0 . Next, define

I1 =

∫
(H −G)H2q−11A dµe0 , I2 =

∫
(G−H)G2q−11B dµe0 , I3 =

∫
C
G2q dµe0

and observe that I1, I2, I3 > 0 and
∫

(G−H)2q dµe0 6 I1 + I2 + I3. Thus, it suffices

to estimate I1, I2 and I3.

First we argue for I1. Let h′e0 = (H2q−11A) ◦ πe0 ∈ L1(X,Be0 ,µ) and notice

that 0 6 h′e0 6 1. Moreover, by the definition of G and H, we see that

I1 =
∣∣ ∫ ∏

e∈H\{e0}

ge · h′e0 dµ−
∫ ∏

e∈H\{e0}

he · h′e0 dµ
∣∣.

On the other hand, by (9.3) and property (P2), we have ‖ge−he‖S∂e 6 αm−1

(
θ(γ)

)
for every e ∈ H \ {e0}. Hence, by our inductive assumptions, we obtain that

I1 6 θ(γ). (9.9)

The estimation of I2 is similar. Indeed, observe that

I2 = β(γ)2q−1

∫
(G−H)

(
G/β(γ)

)2q−1
1B dµe0

and 0 6
(
G/β(γ)

)2q−1
1B 6 1. Therefore,

I2 6 β(γ)2q−1θ(γ). (9.10)

We proceed to estimate I3. Let νe0,G and ` be as in Definition 8.1, and recall that

0 6 G 6 νe0,G . By Markov’s inequality and the monotonicity of the Lp norms,

µe0(C) 6 µe0
(
[νe0,G > β(γ)]

)
6

∫
νe0,G dµe0
β(γ)

6
‖νe0,G‖L`
β(γ)

(??)

6
C + 1

β(γ)
.

Thus, by Lemma 8.3 and the choice of x(C, p), we have

I3 6
∫
C
ν2q
e0,G dµe0 6 (C + 1)µe0(C)x(C,p) + 8ηm(γ)1/2 (9.11)

6 (C + 1)2β(γ)−x(C,p) + 8ηm(γ)1/2.

Combining (9.9)–(9.11) we conclude that the estimate in (9.6) is satisfied. The proof

of Claim 9.3 is completed.



CHAPTER 10

Relative removal lemma for pseudorandom families

Theorem 10.1 (Relative Removal lemma). Let n, r ∈ N with n > r > 2, and

let C > 1 and 1 < p 6 ∞. Then for every 0 < ε 6 1 there exist two strictly

positive constants η = η(n, r, C, p, ε) and δ = δ(n, r, C, p, ε) and a positive integer

k = k(n, r, C, p, ε) with the following property. Let H = (n, 〈(Xi,Σi, µi) : i ∈
[n]〉,H) be an η-nonatomic, r-uniform hypergraph system and let 〈νe : e ∈ H〉 be a

(C, η, p)-pseudorandom family. For every e ∈ H let fe ∈ L1(X,Be,µ) with 0 6 fe 6

νe such that ∫ ∏
e∈H

fe dµ 6 δ. (10.1)

Then for every e ∈ H there exists Fe ∈ Be with∫
X\Fe

fe dµ 6 ε and
⋂
e∈H

Fe = ∅. (10.2)

Moreover, there exists a collection 〈Pe′ : e′ ⊆ e for some e ∈ H〉 of partitions of X

such that: (i) Pe′ ⊆ Be′ and |Pe′ | 6 k for every e′ ⊆ e ∈ H, and (ii) for every e ∈ H
the set Fe belongs to the algebra generated by the family

⋃
e′ e Pe′.

Before we proceed to the proof of the previous theorem we need some preparatory

work.

10.1. Preliminary tools

The first key ingredient towards the proof of Theorem 10.1 is the following

version of the removal lemma for hypergraph systems which is due to Tao [Tao06c]

(see also [DK16] for an exposition). Closely related discrete analogues were obtained

earlier by Gowers [Gow07] and , independently, by Nagle, Rödl, Schacht and Shokan

[NRS06, RS04].

Theorem 10.2 (Removal lemma). For every n, r ∈ N with n > r > 2 and every

0 < ε 6 1 there exist a strictly positive constant ∆(n, r, ε) and a positive integer

K(n, r, ε) with the following property. Let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be an

64
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r-uniform hypergraph system and for every e ∈ H let Ee ∈ Be such that

µ
( ⋂
e∈H

Ee

)
6 ∆(n, r, ε). (10.3)

Then for every e ∈ H there exists Fe ∈ Be with

µ(Ee \ Fe) 6 ε and
⋂
e∈H

Fe = ∅. (10.4)

Moreover, there exists a collection 〈Pe′ : e′ ⊆ e for some e ∈ H〉 of partitions of X

such that: (i) Pe′ ⊆ Be′ and |Pe′ | 6 K(n, r, ε) for every e′ ⊆ e ∈ H, and (ii) for

every e ∈ H the set Fe belongs to the algebra generated by the family
⋃
e′ e Pe′.

Another key ingredient for the proof of Theorem 10.1 is the following proposition.

Proposition 10.3. Let n, r, C, p and H be as in Theorem 9.1, and let M be

a positive integer, 0 < α 6 1 and e ∈ H. Also let Pe be a partition of X with

Pe ⊆ S∂e and µ(P ) > 1/M for every P ∈ Pe, and let Qe be a finite refinement

of Pe with Qe ⊆ S∂e. Finally, let fe ∈ L1(X,Be,µ) be nonnegative and write

fe = festr + feerr + feunf where festr, f
e
err and feunf are as in (6.1). Assume that the

estimates in (6.2) are satisfied for σ = α/2 and a growth function F : N → R with

F (m) > 2α−1m for every m ∈ N. Then the following hold.

(a) For every A ∈ APe we have ‖fe · 1A − festr · 1A‖S∂e 6 α.

(b) Assume that 1 < p < ∞. Let ζ > 1 and set A = [festr 6 ζ]. Then we have

A ∈ APe and µ(X \A) 6 (C/ζ)p. Moreover,∫
X\A

fe dµ 6 C
pζ1−p + α and

∫
X\A

festr dµ 6 C
pζ1−p. (10.5)

Proof. For part (a), fix A ∈ APe and let P ′ ⊆ Pe such that A =
⋃
P ′. Notice

that |P ′| 6 |Pe| 6M and

fe · 1A − festr · 1A = feerr · 1A +
∑
P∈P ′

feunf · 1P .

Therefore, for any B ∈ S∂e we have∣∣ ∫
B

(fe · 1A − festr · 1A) dµ
∣∣ 6 ∣∣ ∫

B∩A
feerr dµ

∣∣+
∑
P∈P ′

∣∣ ∫
B∩P

feunf dµ
∣∣

6 ‖feerr‖Lp† +M · ‖feunf‖S∂e 6 σ +
M

F (M)
6 α

which implies, of course, that ‖fe · 1A − festr · 1A‖S∂e 6 α.
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For part (b), let ζ > 1 be arbitrary and set A = [festr 6 ζ]. First observe that

A ∈ APe since festr = E(fe | APe). Next, by Markov’s inequality, we have

µ(X \A) 6

∫
(festr)

p dµ

ζp
6 Cpζ−p

and so, by Hölder’s inequality,∫
X\A

festr dµ 6 ‖festr‖Lp · µ(X \A)1/q 6 Cpζ1−p.

Finally, by part (a) and the fact that X \A ∈ APe , we conclude that∫
X\A

fe dµ 6
∫
X\A

festr dµ+
∣∣ ∫

X\A
(fe − festr) dµ

∣∣
6 Cpζ1−p + ‖fe · 1X\A − festr · 1X\A‖S∂e 6 C

pζ1−p + α

and the proof of Proposition 10.3 is completed. �

10.2. Proof of the Relative Removal lemma

We begin by introducing some numerical invariants. First, we set

ζ = ζ(C, p, ε) = (C + 1)q(ε/6)1−q,

where q is the conjugate exponent of p. Also let ∆(n, r, ε6ζ ) and K(n, r, ε6ζ ) be as in

Theorem 10.2 and note that we may assume that ∆(n, r, ε6ζ ) 6 ε
6ζ . We define

δ = δ(n, r, C, p, ε) =
∆(n, r, ε6ζ )n

r

2
and k = k(n, r, C, p, ε) = K

(
n, r,

ε

6ζ

)
. (10.6)

Next, let α(n, r, C, p, ζ, δ) and η(n, r, C, p, ζ, δ) be as in Theorem 9.1 and set

α = min{k−2r(ε/3), α(n, r, C, p, ζ, δ)} and Reg = Reg(n, r, C + 1, p, F, α/2)

where F : N → R is the growth function defined by the rule F (m) = 2α−1(m + 1)

and Reg(n, r, C + 1, p, F, α/2) is as in Theorem 6.1. Finally, we define

η = η(n, r, C, p, ε) = min{1/Reg, η(n, r, C, p, ζ, δ)}. (10.7)

We will show that the parameters η, δ and k are as desired.

Indeed, let H = (n, 〈(Xi,Σi, µi) : i ∈ [n]〉,H) be an η-nonatomic, r-uniform

hypergraph system and let 〈νe : e ∈ H〉 be a (C, η, p)-pseudorandom family. For

every e ∈ H let fe ∈ L1(X,Be,µ) with 0 6 fe 6 νe and assume that∫ ∏
e∈H

fe dµ 6 δ. (10.8)

By Lemma 8.2, for every e ∈ H the random variable νe is (C + 1, η, p)-regular and,

consequently, so is fe. Therefore, by (10.7), we may apply Theorem 6.1 and we
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obtain: (a) a positive integer M with M 6 Reg, (b) for every e ∈ H a partition Pe
of X with Pe ⊆ S∂e and µ(A) > 1/M for every A ∈ Pe, and (c) for every e ∈ H a

finite refinement Qe of Pe, such that for every e ∈ H, writing fe = festr + feerr + feunf

where festr, f
e
err and feunf are as in (6.1), we have the estimates

‖festr‖Lp 6 C + 1, ‖feerr‖Lp† 6 α/2 and ‖feunf‖S∂e 6
1

F (M)
(10.9)

where p† = min{2, p}. For every e ∈ H let

Ae = [festr 6 ζ], ge = fe · 1Ae and he = festr · 1Ae (10.10)

and notice that 0 6 ge 6 νe and 0 6 he 6 ζ. Moreover, by Proposition 10.3, we see

that ‖ge − he‖S∂e 6 α.

Claim 10.4. We have
∫ ∏

e∈H he dµ 6 ∆(n, r, ε6ζ )n
r
.

Proof. First observe that, by the choice of α and Theorem 9.1,∣∣ ∫ ∏
e∈H

ge dµ−
∫ ∏

e∈H
he dµ

∣∣ 6 δ. (10.11)

On the other hand, we have 0 6 ge 6 fe for every e ∈ H. Hence, by (10.8) and

(10.11), ∫ ∏
e∈H

he dµ 6
∫ ∏

e∈H
fe dµ+

∣∣ ∫ ∏
e∈H

he dµ−
∫ ∏

e∈H
ge dµ

∣∣ 6 2δ.

Finally, by (10.6), we have 2δ 6 ∆(n, r, ε6ζ )n
r

and the proof is completed. �

Now for every e ∈ H set Ee = [he > ∆(n, r, ε6ζ )]. Since |H| 6
(
n
r

)
6 nr − 1 and

∆(n, r, ε6ζ ) 6 1, by Claim 10.4 and Markov’s inequality, we have

µ
( ⋂
e∈H

Ee

)
6 µ

({
x ∈X :

∏
e∈H

he(x) > ∆
(
n, r,

ε

6ζ

)|H|})
6 ∆

(
n, r,

ε

6ζ

)
.

Thus, by Theorem 10.2, for every e ∈ H there exists Fe ∈ Be with

µ(Ee \ Fe) 6
ε

6ζ
and

⋂
e∈H

Fe = ∅. (10.12)

Moreover, by (10.6), there exists a collection 〈Pe′ : e′ ⊆ e for some e ∈ H〉 of

partitions of X such that: (i) Pe′ ⊆ Be′ and |Pe′ | 6 k for every e′ ⊆ e ∈ H, and (ii)

for every e ∈ H the set Fe belongs to the algebra generated by the family
⋃
e′ e Pe′ .

Therefore, the proof of the theorem will be completed once we show that∫
X\Fe

fe dµ 6 ε (10.13)
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for every e ∈ H. To this end, fix e ∈ H and notice that∫
X\Fe

fe dµ 6
∫
X\Fe

he dµ+
∣∣ ∫

X\Fe
(ge − he) dµ

∣∣+
∣∣ ∫

X\Fe
(fe − ge) dµ

∣∣. (10.14)

Next observe that, by the definition of Ee and the fact that 0 6 he 6 ζ, we have∫
X\Fe

he dµ 6
∫
X\Ee

he dµ+

∫
Ee\Fe

he dµ (10.15)

6 ∆
(
n, r,

ε

6ζ

)
+ ζ µ(Ee \ Fe)

(10.12)

6 ε/3.

To estimate the second term in the right-hand side of (10.14), let A denote the

algebra on X generated by the family
⋃
e′ e Pe′ and note that every atom of A is

of the form
⋂
e′ eAe′ where Ae′ ∈ Pe′ for every e′  e. It follows that the number

of atoms of A is less than k2r and, moreover, every atom of A belongs to S∂e. In

particular, there exists a family F ⊆ S∂e consisting of pairwise disjoint sets with

|F| 6 k2r and such that X \Fe =
⋃
F . Therefore, by the fact that ‖ge−he‖S∂e 6 α

and the choice of α, we have∣∣ ∫
X\Fe

(ge − he) dµ
∣∣ 6∑

A∈F

∣∣ ∫
A

(ge − he) dµ
∣∣ 6 |F|α 6 k2rα 6 ε/3. (10.16)

Finally, to estimate the last term in the right-hand side of (10.14), notice that if

p = ∞, then this term is equal to zero. (Indeed, in this case we have ζ = C + 1

and Ae = X.) On the other hand, if 1 < p <∞, then, by Proposition 10.3 and the

choice of ζ and α, we obtain that∣∣ ∫
X\Fe

(fe − ge) dµ
∣∣ =

∫
X\Fe

fe · 1X\Ae dµ 6
∫
X\Ae

fe dµ (10.17)

6 (C + 1)pζ1−p + α 6 ε/3.

Combining (10.14)–(10.17) we conclude that (10.13) is satisfied, and so the entire

proof of Theorem 10.1 is completed.



Part IV

Arithmetic consequences of the

Relative Removal lemma



CHAPTER 11

An arithmetic version of the Relative Removal lemma

In this chapter we present a Szemerédi-type result for sparse preudorandom

subsets of finite additive groups. (Recall that an additive group is an abelian group

written additively.) The argument for deducing this result is well-known – see ,

e.g., [Gow07, RTST06, Sol04, Tao06a] – and originates from the work of Ruzsa and

Szemerédi [RS78]. It follows from Theorem 10.1 arguing precisely as in the proof of

[Tao06a, Theorem 2.18].

Theorem 11.1. For every integer k > 3, every C > 1, every 1 < p 6 ∞
and every 0 < δ 6 1 there exist a positive integer N = N(k,C, p, δ) and a strictly

positive constant c = c(k,C, p, δ) with the following property. Let Z,Z ′ be finite

additive groups and let 〈ϕi : i ∈ [k]〉 be a collection of group homomorphisms from

Z into Z ′ such that the set {ϕi(d) − ϕj(d) : i, j ∈ [k] and d ∈ Z} generates Z ′.

Consider the (k − 1)-uniform hypergraph system H = (k, 〈(Xi, µi) : i ∈ [k]〉,H)

where: (a) H =
(
k
k−1

)
, and (b) (Xi, µi) is the discrete probability space with Xi = Z

and µi the uniform probability measure on Z for every i ∈ [k]. Also let ν : Z ′ → R
be a nonnegative function and for every j ∈ [k] define ν[k]\{j} : X → R by the rule

ν[k]\{j}
(
(xi)i∈[k]

)
= ν

(∑
i∈[k]

(
ϕi(xi)− ϕj(xi)

))
. (11.1)

(Here, we have X = X1 × · · · × Xk). Assume that the family 〈ν[k]\{j} : j ∈ [k]〉
is (C,N−1, p)-pseudorandom and that |Z| > N . Then for every f : Z ′ → R with

0 6 f 6 ν and E[f(x) |x ∈ Z ′] > δ we have

E
[ ∏
j∈[k]

f
(
a+ ϕj(d)

) ∣∣∣ a ∈ Z ′, d ∈ Z] > c. (11.2)

Proof. Let k,C, p and δ be as in the statement of the theorem and set r = k−1.

Also let η(k, r, C, p, δ
2k2 ) and δ(k, r, C, p, δ

2k2 ) be as in Theorem 10.1 and define

N = N(k,C, p, δ) =
⌈ 1

η(k, r, C, p, δ
2k2 )

⌉
and c = c(k,C, p, δ) = δ

(
k, r, C, p,

δ

2k2

)
.

We will show that N and c are as desired.

70
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To this end, fix the data Z,Z ′, 〈ϕi : i ∈ [k]〉,H , ν and 〈ν[n]\{j} : j ∈ [k]〉.
Moreover, let f : Z ′ → R with 0 6 f 6 ν and E[f ] > δ and assume, towards a

contradiction, that (11.2) is not satisfied. First, we introduce some families of group

homomorphisms between the additive groups X, Z ′×Z and Z ′ as follows. We begin

by defining Q : X → Z ′ × Z by the rule

Q
(
(xi)i∈[k]

)
=
(∑
i∈[k]

ϕi(xi),−
∑
i∈[k]

xi

)
. (11.3)

Using the fact that the set {ϕi(d)−ϕj(d) : i, j ∈ [k] and d ∈ Z} generates Z ′, we see

that Q is an onto homomorphism. Next, for every j ∈ [k] we define sj : Z ′×Z → Z ′

and Qj : X → Z ′ by setting

sj(a, d) = a+ ϕj(d) and Qj(x) = sj
(
Q(x)

)
. (11.4)

Observe that for every j ∈ [k] the maps sj and Qj are onto homomorphisms. Also

notice that, by (11.3) and (11.4), we have

Qj
(
(xi)i∈[k]

)
=
∑
i∈[k]

(
ϕi(xi)− ϕj(xi)

)
=

∑
i∈[k]\{j}

(
ϕi(xi)− ϕj(xi)

)
(11.5)

and so Qj ∈ L1(X,B[k]\{j},µ). Finally, for every j ∈ [k] we set ej = [k] \ {j} and

we define fej : X → R by

fej = f ◦Qj . (11.6)

Note that, by (11.1) and (11.5), we also have νej = ν ◦Qj for every j ∈ [k].

We claim that the hypergraph system H and the families 〈νej : j ∈ [k]〉 and

〈fej : j ∈ [k]〉 satisfy the assumptions of Theorem 10.1. Indeed, by the choice of N

and the fact that |Xi| = |Z| > N for every i ∈ [k], the hypergraph system H is

η(k, r, C, p, δ
2k2 )-nonatomic and r-uniform. It is also clear that for every j ∈ [k] we

have fej , νej ∈ L1(X,Bej ,µ) and 0 6 fej 6 νej . Hence, it is enough to show that

E
[ ∏
j∈[k]

fej (x)
∣∣∣ x ∈X

]
6 δ
(
k, r, C, p,

δ

2k2

)
. (11.7)

To see that (11.7) is satisfied notice first that |Q−1(a1, d1)| = |Q−1(a2, d2)| for every

(a1, d1), (a2, d2) ∈ Z ′×Z since Q : X → Z ′×Z is an onto homomorphism. Therefore,

the map Q is a measure preserving transformation. (Here, we view X and Z ′ × Z
as discrete probability spaces equipped with the corresponding uniform probability

measures.) By (11.4), (11.6), the choice of c and our assumption that (11.2) is not
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satisfied, we conclude that

E
[ ∏
j∈[k]

fej (x)
∣∣∣ x ∈X

]
= E

[ ∏
j∈[k]

f
(
sj(a, d)

) ∣∣∣ a ∈ Z ′, d ∈ Z]
= E

[ ∏
j∈[k]

f
(
a+ ϕj(d)

) ∣∣∣ a ∈ Z ′, d ∈ Z] < δ
(
k, r, C, p,

δ

2k2

)
.

It follows from the previous discussion that we may apply Theorem 10.1 and we

obtain a family 〈Fej : j ∈ [k]〉 with Fej ⊆
∏
i∈ej Xi for every j ∈ [k] such that,

setting Fej = Fej ×Xj , we have⋂
j∈[n]

Fej = ∅ and E[fej · 1X\Fej ] 6
δ

2k2
. (11.8)

Now for every j ∈ [k] we set

Aj =
{
a ∈ Z ′ : |Q−1

j (a) ∩ (X \ Fej )| <
1

k
· |Q−1

j (a)|
}
. (11.9)

Claim 11.2. The following hold.

(a) For every a ∈ Z ′ and every d ∈ Z we have
∏
j∈[k] 1Aj

(
a+ ϕj(d)

)
= 0.

(b) For every j ∈ [k] we have E[f · 1Z′\Aj ] < δ/k.

Granting the above claim, the proof of the theorem is completed as follows.

By part (a) of Claim 11.2 applied for “d = 0”, we see that
⋂
j∈[k]Aj = ∅ and as

such Z ′ =
⋃
j∈[k](Z

′ \ Aj). Therefore, invoking part (b) of Claim 11.2, we get that

E[f ] 6
∑

j∈[k] E[f · 1Z′\Aj ] < δ which is clearly a contradiction.

We proceed to the proof of Claim 11.2. First we argue for part (a). Assume that

there exists a pair (a0, d0) ∈ Z ′×Z such that a0 +ϕj(d0) ∈ Aj for every j ∈ [k]. Set

E0 = Q−1
(
{(a0, d0)}

)
. Note that E0 = Q−1

j

(
{a0 +ϕj(d0)}

)
for every j ∈ [k] and so,

by (11.9), we have |E0 ∩ (X \ Fej )| < |E0|/k. But this is impossible by (11.8) and

the classical pigeonhole principle. Thus, we conclude that
∏
j∈[k] 1Aj

(
a+ϕj(d)

)
= 0

for every a ∈ Z ′ and every d ∈ Z. For part (b), fix j ∈ [k]. Since Qj : X → Z′ is an

onto homomorphism, we have |Q−1
j (a)| = |X|/|Z ′| for every a ∈ Z ′. Therefore,

E[f · 1Z′\Aj ] =
1

|X|
∑

a∈Z′\Aj

|Q−1
j (a)| · f(a)

(11.9)

6
1

|X|
∑
a∈Z′

k |Q−1
j (a) ∩ (X \ Fej )| · f(a)

(11.6)
= kE[fej · 1X\Fej ]

(11.8)

6
δ

2k
.
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This completes the proof of Claim 11.2, and as we have already indicated, the proof

of Theorem 11.1 is also completed. �



CHAPTER 12

“Pseudorandom” functions in the primes

In this chapter we introduce the appropriate arithmetic setting in order to apply

Theorem 11.1. So, we first define a function in Pd that is majorized by a function

that obeys certain pseudorandomness conditions. In order to do so we use the W -

trick-see e.g. [Tao06a, GT10, CFZ14, FZ15, TZ15a]- which originates from the work

of B. Green [Gre05]. The W -trick is very useful since it states that if we want to

find certain “structures” in Pd by the Dirichlet theorem we may restrict our selves

to primes that belong to an arithmetic progression.

In the second section we discuss the form the majorizing function should have

and in the last two sections we define this majorant and prove that it obeys certain

pseudorandomness conditions.

Before we begin we need to fix some notation and prove some preliminary results.

At first, we define the functions w,W : N→ [0,∞) by the rule

w(n) = log(4)(n) and W (n) =
∏

p∈P : p6w(n)

p, (12.1)

for every n ∈ N. For these functions we will need the following lemma.

Lemma 12.1. Let N be a large positive integer1, w = w(N) and W = W (N).

Then,

W 6
√

logN. (12.2)

Proof. The prime number theorem (see Appendix B, Theorem B.1) suggests

that

logW =
∑
p6w

log p =
(
1 + oN→∞(1)

)
w = O(w)

and thus W = eO(w). This implies of course (12.2). �

Now, for every γ > 0 we define the function Rγ : N→ [1,∞) by the rule

Rγ(n) = nγ/2. (12.3)

1From now on when we say that N is a large positive integer we practically see this N as

tending to ∞, i.e. is sufficiently large for the purpose at hand.

74
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Finally, from now on φ will denote the Euler totient function, µ will denote the

Möbius function and Λ̃ will denote the restriction of the Von Mangoldt function in

the primes, i.e. Λ̃(n) = 1P(n) log n, for every n ∈ Z. For more details about these

functions see Appendix B.

12.1. The W -trick

We begin with the one dimensional case. Let N be large positive integer and

w = w(N),W = W (N) be as in (12.1). Then, for every b ∈ {0, . . . ,W−1} such that

gcd(b,W ) = 1 the modified Von Mangoldt function Λ̃b,W : Z→ [0,∞) is defined by

the rule

Λ̃b,W (n) =


φ(W )
W log(Wn+ b), when Wn+ b ∈ P

0 , otherwise,
(12.4)

for every n ∈ Z. A very important fact about this function is the following2.

Proposition 12.2. For every large positive integer N and for every b ∈ {0, . . . ,W (N)−
1} such that gcd

(
b,W (N)

)
= 1 we have that∑

n∈[N ]

Λ̃b,W (N)(n) =
(
1 + oN→∞(1)

)
N. (12.5)

Proof. Let N be a large positive integer, w = w(N),W = W (N) and b ∈
{0, . . . ,W − 1} with gcd(b,W ) = 1. The main ingredient for the proof is the Siegel-

Walfisz theorem (Theorem B.8 in Appendix B). By (12.2) we see that this theorem

may be applied and thus

φ(W )

W

∑
n∈[WN+b]
n≡bmodW

Λ̃(n) =
(
1 + oN→∞(1)

)
N.

But then ∑
n∈[N ]

Λ̃b,W (n) =
∑
n∈[N ]

φ(W )

W
Λ̃(Wn+ b) =

φ(W )

W

∑
n∈[WN+b]
n≡bmodW

Λ̃(n)

=
(
1 + oN→∞(1)

)
N.

and the proof is completed. �

We extend now the previous function to higher dimensions. To this end, let N

be a large positive integer, w = w(N),W = W (N) be as in (12.1) and d be a

positive integer. Then, for every b = (b1, . . . , bd) ∈ Zd such that bi ∈ {0, . . . ,W −1}

2Using the terminology of [GT08, GT10] the following proposition states that the function

defined on (12.4) constitutes a “measure” on the set ZN .
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and gcd(bi,W ) = 1 for every i ∈ [d] we define the multidimensional modified Von

Mangoldt function Λ̃b,W,d : Zd → [0,∞) by the rule

Λ̃b,W,d(n) = Λ̃b1,W (n1) . . . Λ̃bd,W (nd), (12.6)

for every n = (n1, . . . , nd) ∈ Zd. As a straightforward consequence of Proposition

12.2 we have the following similar result for the multidimensional modified Von

Mangoldt function.

Proposition 12.3. For every large positive integer N and b = (b1, . . . , bd) ∈ Zd

such that bi ∈ {0, . . . ,W (N)− 1} and gcd
(
bi,W (N)

)
= 1 for every i ∈ [d] we have∑

n∈[N ]d

Λ̃b,W (N),d(n) = (1 + oN→∞(1))Nd. (12.7)

12.2. Truncated divisor sums

We define now a function that as we will see later on gives rise to a pointwise

“majorant” of the modified Von Magoldt function with the additional property that

this “majorant” has “good” pseudorandom properties. In [GT08], motivated by

[GY03, GY], this function was defined as

ΛR(n) =
∑
d|n
d6R

µ(d) log(R/d),

for R > 0.3 In the works that followed (see e.g [GT10]), the previous function was

modified to take eventually the following form. Let χ : R → [0, 1] be a smooth and

compactly supported function, a be a positive integer and R > 0. Then, we define

the function Λχ,R,a : Z→ [0,∞) by the rule

Λχ,R,a(n) = logR
(∑
d|n

µ(d)χ
( log d

logR

))a
, (12.8)

for every n ∈ Z.4

Remark 1. Note that ΛR = Λχ,R,1, where χ(x) = max(1− |x|, 0), although we

have abused notation since χ is not smooth in this case.

Observe now that if χ is supported on [−1, 1], n = pk for some prime p and some k

and gcd(n,
∏
p6R p) = 1 then Λχ,R,a(n) = χ(0)a logR. Thus, Λχ,R,a may be seen as

weights on the “almost” primes, although it also give weights to other numbers as

well. When a = 1 we have the disadvantage that Λχ,R,1 can be negative. Therefore

in what follows we will take a = 2.

3For intuition about what reason could lead to this function see Proposition B.4.
4 This function for a = 2 is closely related to the Λ2 Selberg sieve (see [IK04, Chapter 6]).
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We will need the following result about the functions that where defined (12.8). This

result is known as the linear forms condition estimate, see [GT08, GT10, CFZ14]

and is an immediate consequence of Theorem C.20 in Appendix C.

Proposition 12.4. Let D be a positive integer, χ : R → [0, 1] be a smooth

and supported on [−1, 1] function such that χ(0) = 1 and
∫
|χ′(x)|2dx = 1 and

N be a large positive integer. Also, let w = w(N),W = W (N) as in (12.1) and

Ñ = bN/W c. Then, there exists a constant γ = γ(D,χ) > 0 such that if R = Rγ(Ñ)

is as in (12.3) the following holds. Let 1 6 d, t 6 D and ψ1, . . . , ψt : Zd → Z be non

zero affine linear forms with no two of them be rational multiples of each other and

with coefficients bounded by D. Also, let B =
∏
i∈[d] Ii where for every i ∈ [d], Ii is

a set of Ñ consecutive integers and b1, . . . , bt ∈ {0, . . . ,W − 1} with gcd(bi,W ) = 1

for every i ∈ [t]. Then,

E
[(φ(W )

W

)t∏
i∈[t]

Λχ,R,2(Wψi(n) + bi) |n ∈ B
]

= 1 + oD,N→∞(1). (12.9)

12.3. Construction of the majorants

From now on we fix a positive integer D, a large integer N,w = w(N),W =

W (N) and Ñ = bN/W c. Moreover, we fix a smooth and supported on [−1, 1] func-

tion χ : R→ [0, 1] with the additional properties that χ(0) = 1 and
∫
R |χ

′(x)|2dx = 1.

Finally, we fix the constant γ = γ(D,χ) that arises from Proposition 12.4 for the

previous choice of D and χ and also fix R = Rγ(Ñ).

We will first construct a majorant for the one dimensional modified Von Mangoldt

function and then we will do the same for higher dimensions.

For the one dimensional case we have the following. For every 0 < ε1, ε2 < 1 with

ε1 < ε2 and every b ∈ {0, . . . ,W − 1} with gcd(b,W ) = 1 we define the function

νε1,ε2,b : Z
Ñ
→ [0,∞)

by the rule

νε1,ε2,b(n) =


φ(W )
W Λχ,R,2(Wn+ b), when n ∈ [ε1Ñ , ε2Ñ ]

1 , otherwise,
(12.10)

for every n ∈ Z
Ñ
. Let’s show first that the previous function bounds pointwise Λ̃b,W .

Proposition 12.5. Let 0 < ε1, ε2 < 1 with ε1 < ε2, b ∈ {0, . . . ,W − 1} such

that gcd(b,W ) = 1 and Λ̃b,W be as in (12.4). Then, there exists δγ > 0 such that

δγ · Λ̃b,W (n) 6 νε1,ε2,b(n),

for every positive integer n ∈ [ε1Ñ , ε2Ñ ].
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Proof. Let δγ = γ/6 and n ∈ [ε1Ñ , ε2Ñ ]. It suffices to consider the case Wn+b

is prime since otherwise Λ̃b,W (n) = 0. Then, by the definition of Ñ , Lemma 12.1

and the fact that
√

logN 6 Ñ for large N we have

Wn+ b 6
√

logNÑ +
√

logN 6 Ñ3.

and hence by the definition of R

δγ log(Wn+ b) 6
γ

6
log Ñ3 6 log Ñγ/2 = logR.

On the other hand, by the discussion after (12.8) and since χ(0) = 1 we have that

Λχ,R,2(Wn+ b) = logR, when Wn+ b is prime. Thus,

δγΛ̃b,W (n) = δγ
φ(W )

W
log(Wn+ b) 6

φ(W )

W
logR = νε1,ε2,b(n)

and the proof is completed. �

We proceed to the higher dimensions. For every d 6 D, every 0 < ε1, ε2 < 1 with

ε1 < ε2 and every b = (b1, . . . , bd) ∈ Zd with bi ∈ {0, . . . ,W −1} and gcd(bi,W ) = 1

we define the function νε1,ε2,b,d : Zd
Ñ
→ [0,∞) by the rule

νε1,ε2,b,d(n) = νε1,ε2,b1(n1) . . . νε1,ε2,bd(nd) (12.11)

for every n = (n1, . . . , nd) ∈ ZdÑ . Using Proposition 12.5 we see that the following

proposition holds.

Proposition 12.6. For every d, ε1, ε2 and b as before the following holds. If δγ

is as in Proposition 12.5 and δγ,d = δdγ > 0 we have that

δγ,d · Λ̃b,W,d(n) 6 νε1,ε2,b,d(n),

for every n ∈ [ε1Ñ , ε2Ñ ]d.

Remark 2. The quantities ε1, ε2 will be chosen in the proof of the multidimen-

sional Green–Tao theorem in order to extend constellations of Zd
Ñ

that arise from

the use of Theorem 11.1 to genuine constellations of Zd.

12.4. Pseudorandomness conditions for the majorants.

Our task now is to show that νε1,ε2,b,d obeys a certain pseudorandomness condi-

tion. We will prove this result for the one dimensional case and then as a consequence

we will have a similar result for higher dimensions also. More precisely, we have

Proposition 12.7. Let 0 < ε1, ε2 < 1 with ε1 < ε2, b ∈ {0, . . . ,W − 1} with

gcd(b,W ) = 1 and 1 6 d, t 6 D be positive integers. Also let ψ1, . . . , ψt : Zd → Z be
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non constant affine-linear forms where no two of them are rational multiples of one

another and where their coefficients are bounded by D. Then,

En∈Zd
Ñ

[ ∏
i∈[t]

νε1,ε2,b
(
ψi(n)

)]
= 1 + oD,N→∞(1).

In the last expression5 we induce the affine linear forms ψj : Zd
Ñ
→ Z

Ñ
from their

global counterparts ψj : Zd → Z in the obvious manner.

Proof. The idea is to split Zd
Ñ

into smaller boxes and then apply Proposition

12.4. For notational simplicity we set νε1,ε2,b = ν. So, let Q = Q(N) be the largest

prime that is lower or equal to Ñ1/2 and observe that by the Bertrand-Chebysev

theorem (Theorem B.3) we have that Q > Ñ1/2/2. Then,

Ñ1/2 6 Ñ/Q 6 2Ñ1/2. (12.12)

Consider now the boxes

Bu1,...,ud :=
{

n ∈ Zd
Ñ

: nj ∈
[
buj

Ñ

Q
c, b(uj + 1)

Ñ

Q
c
)}
,

for every (u1, . . . , ud) ∈ ZdQ. Then, we have the following result.

Claim 12.8. The following holds true.

En∈Zd
Ñ

[ ∏
i∈[t]

ν
(
ψi(n)

)]
= (1 + od(1))Eu1,...,ud∈ZQ

[
En∈Bu1,...,ut

[ ∏
i∈[t]

ν
(
ψi(n)

)]]
.

Proof of the claim. First observe that for every u1, . . . , ud ∈ ZQ we have(Ñ
Q
− 1
)d
6 |Bu1,...,ud | 6

(Ñ
Q

+ 1
)d

and since Q 6 Ñ1/2 we have,

|Bu1,...,ud | =
(
1 + od(1)

)(Ñ
Q

)d
.

Hence,

En∈Bu1,...,ud

[ ∏
i∈[t]

ν
(
ψi(n)

)]
=

1

Qd

∑
u1,...,ud∈ZQ

∑
n∈Bu1,...,ud

∏
i∈[t] ν(ψi(n))

|Bu1,...,ud |

=
(
1 + od(1)

)
En∈Zd

Ñ

[ ∏
i∈[t]

ν
(
ψi(n)

)]
and the proof is completed. �

5This expression is usually referred to as the linear forms condition for functions in ZÑ , see

[GT10]
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In order to apply Proposition 12.4 we do the following dichotomy. We call a box good

if for every i ∈ [t] the set {ψi(n) : n ∈ Bu1,...,ud} either lies in the subset [ε1Ñ , ε2Ñ ]

of Z
Ñ

or it is completely outside of this subset. If a box is not good we call it bad.

For the good boxes using (12.12) and since N is sufficiently large we may apply

Proposition 12.4 and obtain that

En∈Bu1,...,ud

[ ∏
i∈[t]

ν
(
ψi(n)

)]
= 1 + oD,N→∞(1). (12.13)

For the bad boxes we take the trivial bound

ν(n) 6 1 +
φ(W )

W
Λχ,R,2(Wn+ 1)

which by expansion and the use of Proposition 12.4 yields that

En∈Bu1,...,ud

[ ∏
i∈[t]

ν
(
ψi(n)

)]
6
(
2t + oD,N→∞(1)

)
and thus

En∈Bu1,...,ud

[ ∏
i∈[t]

ν
(
ψi(n)

)]
= OD(1). (12.14)

Therefore it suffices to show that the number of bad boxes is at most OD(Qd−1).

Indeed, assuming the previous bound we have

En∈Zd
Ñ

[ ∏
i∈[t]

ν
(
ψi(n)

)]
=
(
1 + od(1)

) 1

Qd

∑
u1,...,ud∈ZdQ

EBu1,...,ut

[ ∏
i∈[t]

ν
(
ψi(n)

)]

=
(
1 + oD(1)

) 1

Qd

((
Qd −OD(Qd−1)

)(
1 + oD(1)

)
+OD(Qd−1)

)
= 1 + oD,N→∞(1),

since Q increases with N. It remains to show the bound about the number of bad

boxes. Before we do so we need the following result.

Claim 12.9. Assume that for some u1, . . . , ud ∈ ZQ and for some i ∈ [t] there

exists n ∈ Bu1,...,ud and ` ∈ Z such that

ε1Ñ 6 ψi(n) + `Ñ 6 ε2Ñ .

. Then, for every n′ ∈ Bu1,...,ud we have that

1 6 ψi(n
′) + `Ñ 6 Ñ .

Proof of the Claim. Since ψi is an affine linear form there exist Li,1, . . . , Li,d, ci ∈
Z such that

ψi(x) =
∑
j∈[d]

Li,jxj + ci,
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for every x = (x1, . . . , xd) ∈ Zd. Then if n = (n1, . . . , nd) we have that

(ε1 − `)Ñ − ci 6
∑
j∈[d]

Li,jnj 6 (ε2 − `)Ñ − ci. (12.15)

Let now n′ = (n′1, . . . , n
′
d) ∈ Bu1,...,ud and observe that |nj − n′j | 6 Ñ/Q for every

j ∈ [d]. Then we have that∑
j∈[d]

Li,jn
′
j =

∑
j∈[d]

Li,j(n
′
j − nj) +

∑
j∈[d]

Li,jnj
(12.15)

6 (ε2 − `)Ñ − ci + 2DtÑ1/2

6 (ε2 − `)Ñ − ci + 2D2Ñ1/2 6 (1− `)Ñ − ci,

since D, ε2 are fixed and N is large enough. Working similarly we also obtain that∑
j∈[d]

Li,jn
′
j > −`Ñ − ci

and thus we have proved the desired result. �

We are ready now to bound the number of bad boxes.

Claim 12.10. The number of bad boxes is bounded by OD(Qd−1).

Proof of the claim. Assume that for every x = (x1, . . . , xd) ∈ Zd

ψi(n) =
∑
j∈[d]

Li,jxj + ci,

for some Li,1, . . . , Li,d, ci ∈ Z. Also assume that Bu1,...,ud is bad. Then, by the

definition of bad boxes there exist i ∈ [t] and n,n′ ∈ Bu1,...,ud such that ψi(n) lies

in [ε1Ñ , ε2Ñ ] while ψi(n
′) does not. Then, by the Claim 12.9 we may find integer `

such that either

1 6 ψi(n
′) + `Ñ < ε1Ñ 6 ψi(n) + `Ñ 6 ε2Ñ (12.16)

either

ε1Ñ 6 ψi(n) + `Ñ 6 ε2Ñ < ψi(n
′) + `Ñ 6 Ñ . (12.17)

But from the definition of Bu1,...,ud and since Li,js, ci are bounded by D we also

have

ψi(n), ψi(n
′) =

∑
j∈[d]

Li,jbuj
Ñ

Q
c+ ci +OD(

Ñ

Q
)

which together with (12.16) and (12.17) yields that either

ε1Ñ =
∑
j∈[d]

Li,jbuj
Ñ

Q
c+ ci + `Ñ +OD(

Ñ

Q
)
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either

ε2Ñ =
∑
j∈[d]

Li,jbuj
Ñ

Q
c+ ci + `Ñ +OD(

Ñ

Q
).

Since now buj ÑQ c = uj
Ñ
Q +O(1) we have∑

j∈[d]

Li,juj =
(
ε1Q− ci

Q

Ñ
+OD(1)

)
modQ

or ∑
j∈[d]

Li,juj =
(
ε2Q− ci

Q

Ñ
+OD(1)

)
modQ.

Since (Li,j)j∈[d] is non-zero, the number of d-tuples u1, . . . , ud which satisfy these

equations is OD(Qd−1), which happens because we have d − 1 degrees of freedom

in the choice of uj ’s. Therefore, letting i vary and taking into account that the

previous should hold for ε1 or ε2 we have that the number of bad boxes is bounded

by

2DOD(Qd−1) = OD(Qd−1)

which completes the proof of the claim. �

With the completion of the proof the previous claim we also have completed the

proof of Proposition 12.7. �

As an immediate consequence we have the following proposition for the function

νε1,ε2,b,d.

Proposition 12.11. Let 0 < ε1, ε2 < 1 with ε1 < ε2 and d, t be positive integers

with 1 6 dt 6 D. Also, for every i ∈ [t] and every j ∈ [d] let ψij : Zd → Z be

non constant affine-linear forms where no two of them are rational multiples of one

another and where their coefficients are bounded by D. Then,

En∈Zd
Ñ

[ ∏
i∈[t]

νε1,ε2,b,d
(
ψi1(n), . . . , ψid(n)

)]
= 1 + oD,N→∞(1),

where as in Proposition 12.7 we induce the affine linear forms ψj : Zd
Ñ
→ Z

Ñ
from

their global counterparts ψj : Zd → Z in the obvious manner.



CHAPTER 13

A multidimensional Green–Tao theorem

In this section we prove a special case of the multidimensional Green–Tao the-

orem. More specifically we will show that every “large” subset of Pd
N , where N is

large, contains at least one constellation of every finite set of Zd that is in general

position. This result was proved by B. Cook and Á. Magyar in [CM12]. For the

general case the arguments that we use here don’t work and in order to give a com-

plete proof one needs to take a completely different approach passing through some

deep results, [GT10, GTZ12, GT12, FZ15].

13.1. Shapes in Zd

This section contains definitions about special types of shapes in Zd and a tech-

nical lemma concerning one of these types. First recall that a shape in Zd is just a

finite set of vectors u1, . . . , uk ∈ Zd and a constellation of this shape is called every

homeothetic copy of it, i.e. a constellation of u1, . . . , uk ∈ Zd is a set of the form

x+ tu1, . . . , x+ tuk ∈ Zd, for some x ∈ Zd and t ∈ Z \ {0}.

Definition 13.1 (General Position). A shape {u1, . . . , uk} ⊆ Zd \ {0} is in

general position if for every i, j ∈ [k] with i 6= j and every l ∈ [d] we have that

ui,l 6= uj,l, where ui,l and uj,l are the lth coordinates of ui and uj respectively.

For example, the shape of Z2, {(1, 2), (2, 1)} is in general position while the shape

of Z3, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is not.

Observe now that a shape {u1, . . . , uk} ⊆ Zd may be seen as a vector u = (u1, . . . , uk) ∈
Zdk. Having this in mind we have the following definition.

Definition 13.2 (Primitive shapes). A shape u = (u1, . . . , uk) ∈ Zdk is called

primitive if

{x ∈ Zdk : x = λu, for some 0 < λ < 1} = ∅,
i.e. the line segment [0,u] does not contain other point of Zdk other than 0 and u.

Remark 3. Observe that if u ∈ Zdk is primitive then

inf
m∈Zd2\{0,u},

y∈[0,u]

‖m− y‖∞ = 1.

83
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From now on, for every x ∈ Zdk for some d, k > 1, by [0,x] we will denote the line

segment with boundary points 0 and x.

We proceed now to a lemma concerning affine linear forms defined on shapes

that are in general position.1.

Lemma 13.3. Let d be a positive integer and {u1, . . . , ud} ⊆ Zd be a shape in

general position such that uis are linearly independent for every i ∈ [d]. Also, for

every j, l ∈ [d] let Ψj,l : Zd → Z be the function defined by the rule

Ψj,l(x) =
∑
i 6=j

xiui,l −
(∑
i 6=j

xi

)
uj,l,

where x = (x1, . . . , xd) ∈ Zd and ui,l is the lth coordinate of ui for every i, l ∈ [d].

Then, no two of the functions Ψj,l are rational multiples of each other.

Proof. Let j, j′, l, l′ ∈ [d]. We distinguish the following two cases. The first

case is when j = j′. Assume on the contrary that there exists some rational λ such

that

Ψj,l(x) = λΨj,l′(x)

for all x ∈ Zd. Then, by the definition of Ψi,js this λ would satisfy the following

equation

λ =

∑
i 6=j xi(ui,l′ − uj,l′)∑
i 6=j xi(ui,l − uj,l)

,

for all x. But by comparing the coefficients of the xis this would imply one of the

following two cases in turn

• either for every i, i′ 6= j, with i 6= i′ we have that ui,l−uj,l = ui′,l−uj,l and

ui,l′ − uj,l′ = ui′,l′ − uj,l′
• either there exists some b such that for every i 6= j, ui,l′−uj,l′ = b(ui,l−uj,l)

But the first case contradicts the fact that u1, . . . , ud are in general position while the

second case contradicts the fact that u1, . . . , ud are linearly independent. Therefore

the case j = j′ is proved. For the case j 6= j′ we work similarly 2. Thus, the proof

of the lemma is completed. �

13.2. A special case of the multidimensional Green–Tao Theorem

Our interest in this section is to prove the multidimensional Green–Tao Theorem

for shapes in general position. Before we proceed to the precise statement and proof

of this theorem we have the following preparatory lemma.

1This lemma along with Proposition 12.11 and Theorem 11.1 plays an important role in the

proof of the special case of the multidimensional Green–Tao Theorem.
2In fact, in this case only the linear independency of the uis is needed.
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Lemma 13.4. Let δ > 0 and d, k be positive integers with k > 3. Also let N be

a large positive integer, w = w(N),W = W (N) be as in (12.1) and Ñ = bN/W c.
Then, for every A ⊆ Pd

N with |A| > δ|PN |d there exists b = (b1, . . . , bd) ∈ Zd with

bi ∈ {0, . . . ,W − 1} and gcd(bi,W ) = 1, for every i ∈ [d] such that∑
n∈[Ñ ]d

1A,b,W (n)Λ̃b,W,d(n) >
δ

2d+1
Ñd, (13.1)

where for every b

1A,b,W (n) = 1A(Wn1 + b1, . . . ,Wnd + bd),

for every n = (n1, . . . , nd) ∈ Zd.

Proof. We begin with the following result.

Claim 13.5. The following expression holds true

|A ∩ [
√
N,N ]d| > δ

2
|Pd

N |. (13.2)

Proof of the Claim. Recall that for every positive integer n, π(n) = |Pn|.
Assume now that (13.2) does not hold true. Then we should have that

δ

2
π(N)d =

δ

2
|PN |d 6 |A∩

(
[1, N ]\ [

√
N,N ]

)d| 6 π(N)d−
(
π(N)+π(

√
N)
)d
. (13.3)

By the binomial theorem and the prime number theorem we have that

π(N)d −
(
π(N) + π(

√
N)
)d

=
d−1∑
k=0

(
d

k

)
π(N)kπ(

√
N)d−k

=
(
1 + oN→∞(1)

) 1

logdN

d−1∑
k=0

(
d

k

)
2d−kN

d+k
2

6
1

logdN
2d+1(d− 1)dNd− 1

2 .

But then (13.3) and the prime number theorem would imply that

Nd 6
2

δ
2d+1(d− 1)dNd− 1

2 ,

which is clearly a contradiction since N is sufficiently large. Therefore we have

completed the proof of Claim 13.5. �

Using now the previous claim and the prime number theorem once again we have

that ∑
n=(n1,...,nd)∈A∩[

√
N,N ]d

Λ̃(n1) . . . Λ̃(nd) >
δ

2
π(N)d log(

√
N)d >

δ

2d+1
Nd. (13.4)
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Set

Co(W ) = {(b1, . . . , bd) ∈ {0, . . . ,W−1}d : gcd(bi,W ) = 1, for every i ∈ [d]} (13.5)

and observe that there exists b = (b1, . . . , bd) ∈ Co(W ) such that(φ(W )

W

)d ∑
n=(n1,...,nd)∈[Ñ ]d

1A,b,W (n)
∏
i∈[d]

log(Wni + bi)

=
(φ(W )

W

)d
max

b′=(b′1,...,b
′
d)∈Co(W )

∑
n=(n1,...,nd)∈[Ñ ]d

1A,b′,W (n)
∏
i∈[d]

log(Wni + b′i)

>
1

W d

∑
b′=(b′1,...,b

′
d)∈Co(W )

∑
n=(n1,...,nd)∈[Ñ ]d

1A,b′,W (n)
∏
i∈[d]

log(Wni + b′i)

(13.6)

We will show that the previous b is the desired one. To this end, for this choice of

b we have∑
n∈[Ñ ]d

1A,b,W (n)Λ̃b,W,d(n)

(13.6)

>
1

W d

∑
b=(b1,...,bd)∈{0,...,W−1}d

∑
n=(n1,...,nd)∈[Ñ ]d

1A,b,W (n)
∏
i∈[d]

log(Wni + bi)

>
1

W d

∑
n=(n1,...,nd)∈A∩[

√
N,N ]d

Λ̃(n1) . . . Λ̃(nd)
(13.4)

>
δ

2d+1
Ñd

which completes the proof of the Lemma. �

We are ready now to prove the main result of this chapter and of this part in

general.

Theorem 13.6. Let d, k be positive integers with k > 3, u = (u1, . . . , uk) ∈
Zkd \ {0} be a shape in general position and δ > 0. Also, let N be sufficiently large.

Then for every A ⊆ Pd
N with |A| > δ|Pd

N | there exist x ∈ Zd and t ∈ Z \ {0} such

that

x+ tu1, . . . , x+ tuk ∈ A.

Proof. Our aim is to form the proper setting in order to apply Theorem 11.1.

So, let

D = max{kd2d(k−1),max
i∈[k]
‖ui‖∞},

w = w(N),W = W (N) be as in (12.1), Ñ = bN/W c, Z = Z
Ñ
, Z ′ = Zd

Ñ
and

b = (b1, . . . , bd) ∈ Zd be as in Lemma 13.4. Moreover, let γ = γ(D,χ) be as in
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Proposition 12.4 and R = Rγ(Ñ) be as in (12.3). Finally, let

ε2 =
(
1− δ

10d+1d2

)
, ε1 =

δ

10d+1d2
ε2, (13.7)

δγ,d be as in Proposition 12.6 and

N0 = N(k, 1,∞, δδγ,D/2d+2), c0 = c(k, 1,∞, δδγ,D/2d+2) (13.8)

be as in Theorem 11.1. We begin with the following claim.

Claim 13.7. We may assume that k = d and also that the vectors u1, . . . , uk
are linearly independent. We may also assume that the shape u = (u1, . . . , uk) is

primitive.

Proof of Claim 13.7. For the first part of the claim let w1, . . . , wk ∈ Zk be

independent vectors. For every i ∈ [k] set u′i = (ui, wi) ∈ Zd+k. Expand the linearly

independent u′i’s to form a basis u′1, . . . , u
′
k, u
′
k+1, . . . , u

′
k+d of Zd+k and observe that

this expansion can be done in order for the basis 〈u′i : i ∈ [k + d]〉 of Zd+k to be in

general position. Set A′ := A×Pk and observe that if there exist x1 ∈ Zd, x2 ∈ Zk

and t ∈ Z \ {0} such that (x1, x2) + tu′i ∈ A′ for every i ∈ [k + d] then x1 + tui ∈ A
for every i ∈ [k].

For the second part of the claim observe that it suffices to show that there exists

a primitive shape u′ = (u′1, . . . , u
′
k) ∈ Zdk and a positive integer s such that u = su′.

To this end we assume that u is not primitive since otherwise we take s = 1 and

u′ = u. Then, there exist finite λ ∈ (0, 1) such that λ−1
∣∣ui,j for every i, j ∈ [d],

where as usual ui,j is the jth coordinate of ui. Setting λ0 to be the minimum λ

that has the previous property we have that u′ = λ0u is primitive. Thus, if we take

s = λ−1
0 we have the desired result. The proof of the claim is completed. �

Hence in what follows we assume that k = d, that u1, . . . , ud form a basis of Zd and

that {u1, . . . , ud} is primitive.

We define now the functions ϕ1, . . . , ϕd, : Z
Ñ
→ Zd

Ñ
by the rule

ϕi(m) = m · ui,

for every m ∈ Z
Ñ

and every i ∈ [d] and observe that the set

{ϕi(m)− ϕj(m) : i, j ∈ [d] and m ∈ Z
Ñ
}

generates Zd
Ñ
, since 〈ui : i ∈ [d]〉 is a basis of Zd.

We consider further the (d − 1)-uniform hypergraph system H = (d, 〈(Xi, µi) : i ∈
[d]〉,H) where: (a) H =

(
d
d−1

)
, and (b) (Xi, µi) is the discrete probability space with

Xi = Z
Ñ

and µi the uniform probability measure on Z
Ñ

for every i ∈ [d].
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Moreover, we set ν = νε1,ε2,b,d : Zd
Ñ
→ R to be the function defined in (12.11) and

define

ν[d]\{j} : X → R

by the rule

ν[d]\{j}
(
(xi)i∈[k]

)
= ν

(∑
i∈[d]

(
ϕi(xi)− ϕj(xi)

))
.

By Lemma 13.3, the choice of D and Corollary 12.11 we see that

E
[ ∏
j∈[d]

∏
ω∈{0,1}[d]\{j}

ν
(∑
i∈[d]

ϕi(x
(ωi)
i )− ϕj(x(ωi)

i )
)nj,ω ∣∣ x(0)

1 ,x
(1)
1

...
x

(0)
d ,x

(1)
d

∈ Z
Ñ

]
= 1 + oN→∞(1),

for any choice of nj,ω ∈ {0, 1}. Therefore, the family 〈ν[d]\{j} : j ∈ [d]〉 satisfies the

linear forms condition defined in (8.8) and thus since N is sufficiently large we see

that the previous family is (1, N−1
0 ,∞) pseudorandom and |Z| = Ñ > N0, where

N0 is as in (13.8).

We set now f : Zd
Ñ
→ [0,∞) to be the function defined by the rule

f(n) = δγ,d · Λ̃b,W,d(n) · 1
A∩[ε1Ñ,ε2Ñ ]d

(Wn1 + b1, . . . ,Wnd + bd),

where n = (n1, . . . , nd) ∈ Zd and Λ̃b,W,d is as in (12.6) and by Theorem 12.6 we see

that f 6 ν. For the function f we also have the following Claim.

Claim 13.8. The following inequality holds true.

E
[
f(n) |n ∈ Zd

Ñ

]
>
δδγ,d
2d+2

. (13.9)

Proof of claim 13.8. For the choice of ε1 and ε2 in (13.7) we use Proposition

12.6 and obtain that ∑
n∈[Ñ ]d\[ε1Ñ,ε2Ñ ]d

Λ̃b,W,d(n) 6
δ

10d+1
Ñd

and thus ∑
n∈[Ñ ]d\[ε1Ñ,ε2Ñ ]d

f(n) 6
δδγ,d
10d+1

Ñd.

Combining now the previous expression with Lemma 13.4 we see that∑
n∈[Ñ ]d

f(n) > δδγ,d
( 1

2d+2
− 1

10d+2

)
Ñ >

δδγ,d
2d+2

Ñ .

Using now the identification Z
Ñ

= [Ñ ] the proof of the Claim is completed. �
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Therefore, by Theorem 11.1 we have that

E
[ ∏
j∈[d]

f
(
x + ϕj(t)

) ∣∣x ∈ Zd
Ñ
, t ∈ Z

Ñ

]
> c0. (13.10)

We observe now that by the prime number theorem the contribution of the trivial

term t = 0 is O(log−d Ñ) and thus since N is large we see that there exist x ∈ Zd
Ñ

and t ∈ Z
Ñ
\ {0} such that

x + tu1, . . . ,x + tud ∈ A ∩ [ε1Ñ , ε2Ñ ]d. (13.11)

It remains to show that the previous expression gives rise to a genuine constellation.

More precisely we have the following claim.

Claim 13.9. There exist x′ ∈ Zd and t′ ∈ Z \ {0} such that

x′ + t′u1, . . . ,x
′ + t′ud ∈ A (13.12)

Proof of Claim 13.9. By (13.11) there exist x1, . . . ,xd ∈ Zd and t1, . . . , td ∈
Z \ {0} such that

x1 + t1u1, . . . ,xd + tdud ∈ A ∩ [ε1Ñ , ε2Ñ ]d,

with xi = x in Zd
Ñ

and ti = t in Z
Ñ

for every i ∈ [d]. Thus, our task is to show that

there exist x′ ∈ Zd and t′ ∈ Z \ {0} such that xi = x′ and ti = t′ for every i ∈ [d].

Assume first that we have found a t′ such that ti = t′ in Zd and t′ui ∈ [ε1Ñ , ε2Ñ ]d

for every i ∈ [d]. Then, for every i ∈ [d], xi + t′ui ∈ [ε1Ñ , ε2Ñ ]d and thus by the

choice of ε1, ε2 we have xi = x in Zd for every i ∈ [d]. Thus, we may set x′ = x.

It remains to show that there exists a t′ such that ti = t′ in Zd and t′ui ∈
[ε1Ñ , ε2Ñ ]d, for every i ∈ [d]. To this end we will use the fact that u = (u1, . . . , ud)

is a primitive shape and more precisely that by Remark 3 we have

inf
m∈Zd2\{0,u},

y∈[0,u]

‖m− y‖∞ = 1. (13.13)

We do the identification Z
Ñ

= [Ñ ] and observe that for every i ∈ [d] there exists

ki ∈ Z and mi ∈ Zd such that

ti = t+ kiN and tiui −miÑ ∈ [ε1Ñ , ε2Ñ ]d.

Thus there exist m′1, . . . ,m
′
d ∈ Zd such that

tui −m′iÑ ∈ [ε1Ñ , ε2Ñ ]d, (13.14)

for every i ∈ [d]. More especially we have that for every i ∈ [d]

‖tui −m′iÑ‖∞ < Ñ
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and thus

‖ t
Ñ

u−m‖∞ < 1,

where m = (m′1, . . . ,m
′
d) ∈ Zd

2
. Since t ∈ [Ñ − 1] by (13.13) we see that m = 0 or

m = u. Therefore by (13.14), taking t′ = t in the first case and t′ = t − N in the

second one we have completed the proof of the claim. �

With the proof of the previous claim the proof of Theorem 13.6 is completed

also. �

Theorem 13.6 provides us with the following corollaries.

Corollary 13.10. Let d, k be positive integers with k > 3, u = (u1, . . . , uk) ∈
Zdk \ {0} be a shape in general position and δ > 0. Then, every A ⊆ Pd with

lim sup
N→∞

|A ∩ [1, N ]d|
|Pd

N |
> δ3 (13.15)

contains infinitely many constellations of u.

Proof. By (13.15) there exists a sequence (Nj)
∞
j=1 of large positive integers

such that

|A ∩ [1, Nj ]
d| > δ|Pd

Nj |,
for every j. Therefore applying Theorem 13.6 successively to those Nj ’s gives us the

desired result. �

Furthermore, by the previous corollary we obtain the following result.

Corollary 13.11. For every positive integers d, k with k > 3, the set Pd con-

tains infinitely many constellations of every shape u ∈ Zdk \ {0} that is in general

position.

Finally, as a corollary we obtain the Green–Tao theorem, [GT08]. More precisely,

Corollary 13.12 (Green-Tao theorem). Let k be a positive integer with k > 3,

N be sufficiently large and δ > 0. Also, let A ⊆ PN with |A| > δ|PN |. Then there

exist x, t ∈ Z with t 6= 0 such that

x+ t, . . . , x+ kt ∈ A.

Proof. Just observe that the set {1, . . . , k} is in general position in Z and apply

Theorem 13.6. �

3The (LHS) of this expression is usually referred to as the upper density of the set A.
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CHAPTER 14

An algorithmic regularity lemma for Lp regular sparse

matrices

In this chapter we discuss an algorithmic regularity lemma for Lp regular sparse

matrices. This result is based on the techniques described in Parts I and II.

To proceed with our discussion it is useful at this point to introduce some pieces

of notation and some terminology. Unless otherwise stated, in the rest of this chapter

by n1 and n2 we denote two positive integers. Now, ifX is a nonempty finite set, then

by µX we denote the uniform probability measure on X, that is, µX(A) = |A|/|X|,
for every A ⊆ X. For notational simplicity, the probability measures µ[n1], µ[n2] and

µ[n1]×[n2] will be denoted by µ1, µ2 and µ. If P is a partition of [n1]× [n2], then by

AP we denote the (finite) σ-algebra on [n1]× [n2] generated by P.
Next, let X1, X2 be nonempty finite sets and set

SX1×X2 = {A1 ×A2 : A1 ⊆ X1 and A2 ⊆ X2}.

If X1 and X2 are understood from the context (in particular, if X1 = [n1] and

X2 = [n2]), then we shall denote SX1×X2 simply by S. Moreover, fro every partition

P of X1 ×X2 with P ⊆ SX1×X2 we set

ι(P) = min
{

min{µX1(P1), µX2(P2)} : P = P1 × P2 ∈ P
}
.

That is, the quantity ι(P) is the minimal density of each side of each rectangle

P1 × P2 belonging to the partition P.
Now recall that a cut matrix g : [n1]× [n2]→ R is a matrix for which there exist

two sets S ⊆ [n1] and T ⊆ [n2], and a real number c such that g = c · 1S×T ; the

set S × T is called the support of the matrix g. Also recall that for every matrix

f : [n1]× [n2]→ R the cut norm of f (see also Chapter 1, Example 1) is the quantity

‖f‖� = max
S⊆[n1]
T⊆[n2]

∣∣∣ ∑
(x1,x2)∈S×T

f(x1, x2)
∣∣∣ = (n1 n2) · max

S⊆[n1]
T⊆[n2]

∣∣∣ ∫
S×T

f dµ
∣∣∣.

We are now ready to introduce the class of Lp regular matrices (see also Defini-

tion 5.1).

92
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Definition 14.1 (Lp regular matrices). Let 0 < η 6 1, C > 1 and 1 6 p 6∞.

A matrix f : [n1]× [n2]→ {0, 1} is called (C, η, p)-regular (or simply Lp regular if C

and η are understood) if for every partition P of [n1]× [n2] with P ⊆ S and ι(P) > η

we have

‖E(f | AP)‖Lp 6 C ‖f‖L1 . (14.1)

The following theorem is the main result of this chapter.

Theorem 14.2 (Algorithmic Regularity Lemma). There exist absolute constants

a1, a2 > 0, an algorithm and a polynomial Π0 such that the following holds. Let

0 < ε < 1/2 and C > 1. Also let 1 < p 6 ∞, set p† = min{2, p} and let q denote

the conjugate exponent of p† (that is, 1/p† + 1/q = 1). We set

τ =
⌈ a1 · C2

(p† − 1) ε2

⌉
and η =

(a2 · ε
C

)∑τ+1
i=1 ( 2

p†
+1)i−1qi

. (14.2)

If we input

INP: a (C, η, p)-regular matrix f : [n1]× [n2]→ {0, 1},
then the algorithm outputs

OUT: a partition P of [n1]× [n2] with P ⊆ S, |P| 6 4τ and ι(P) > η, such that

‖f − E(f | AP)‖� 6 ε‖f‖�. (14.3)

Moreover, this algorithm has running time (τ 4τ ) ·Π0(n1 n2).

Theorem 14.2 extends [COCF10, Theorem 1] which corresponds to the case

p =∞1. Note that, by (14.2) and (14.3), the matrix f is well approximated by a sum

of at most 4τ cut matrices with disjoint supports and, moreover, the positive integer

τ is independent of the size of f and its density. Also observe that, as expected, the

running time of the algorithm in Theorem 14.2 increases as p decreases to 1.

14.1. Backround material

The proof of Theorem 14.2 will be based on Proposition 2.1 and the following

algorithmic version of Grothendieck’s inequality. This result is due to Alon and

Naor [AN06].

Proposition 14.3. There exist a constant a0 > 0, an algorithm and a polyno-

mial ΠAN such that the following holds. If we input

INP: a matrix f : [n1]× [n2]→ R,

1Actually, the argument in [COCF10] works for the more general case p > 2. We also remark

that the cut matrices obtained by [COCF10, Theorem 1] do not necessarily have disjoint supports,

but this can be easily arranged—see [COCF10, Corollary 1] for more details.
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then the algorithm outputs

OUT: a set A ∈ S such that (n1 n2)
∣∣ ∫
A f dµ

∣∣ > a0‖f‖�.

Moreover, this algorithm has running time ΠAN(n1 n2).

The constant a0 in Proposition 14.3 is closely related to Grothendieck’s constant

KG (see, e.g., [Pis12]); in particular, we have a0 > K
−1
G .

14.2. Preparatory Lemmas

In this section we prove some preparatory results concerning Lp regular matrices.

We begin with the following lemma.

Lemma 14.4. There exist an algorithm and a polynomial Π1 such that the fol-

lowing holds. Let X1, X2 be two nonempty finite sets, let ν1, ν2 denote the uniform

measures on X1 and X2 respectively, and let ν denote the uniform probability mea-

sure on X1 ×X2. Also let 0 < ϑ < 1/2. If we input

INP: two sets A1 ⊆ X1 and A2 ⊆ X2 with ν1(A1) > ϑ and ν2(A2) > ϑ,

then the algorithm outputs

OUT1: a partition Q ⊆ S with |Q| 6 4 and ι(Q) > ϑ, and

OUT2: a set B ∈ Q such that A1 ×A2 ⊆ B and ν
(
B \ (A1 ×A2)

)
6 2ϑ.

Moreover, this algorithm has running time Π1(|X1| · |X2|).

Proof. We distinguish the following four (mutually exclusive) cases.

Case 1: ν1(A1) < 1 − ϑ and ν2(A2) < 1 − ϑ. In this case the algorithm outputs

Q = {A1×A2, (X1\A1)×A2, A1×(X2\A2), (X1\A1)×(X2\A2)} and B = A1×A2.

Notice that Q and B satisfy the requirements of the lemma.

Case 2: ν1(A1) < 1 − ϑ and ν2(A2) > 1 − ϑ. In this case the algorithm outputs

Q = {A1 ×X2, (X1 \ A1)×X2} and B = A1 ×X2. Again, it is easy to see that Q
and B satisfy the requirements of the lemma.

Case 3: ν1(A1) > 1 − ϑ and ν2(A2) < 1 − ϑ. This case is similar to Case 2. In

particular, we set Q = {X1 ×A2, X1 × (X2 \A2)} and B = X1 ×A2.

Case 4: ν1(A1) > 1 − ϑ and ν2(A2) > 1 − ϑ. In this case the algorithm outputs

Q = {X1 ×X2} and B = X1 ×X2. As before, it is easy to see that Q and B are as

desired.

Finally, notice that the most costly part of this algorithm is to estimate the

quantities ν1(A1) and ν2(A2), but of course this can be done in polynomial time of

|X1| · |X2|. Thus, this algorithm will stop in polynomial time of |X1| · |X2|. �
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The following lemma is a Hölder-type inequality for Lp regular matrices (see

also Proposition 5.2).

Lemma 14.5. Let 0 < η < 1/2 and C > 1. Also let 1 < p 6 2 and let q denote

its conjugate exponent. Finally, let f : [n1]× [n2]→ {0, 1} be (C, η, p)-regular. Then

for every A ⊆ [n1]× [n2] with A ∈ S we have∫
A
f dµ 6 C ‖f‖L1(µ(A) + 6η)1/q. (14.4)

Proof. Fix a nonempty subset A of [n1] × [n2] with A ∈ S, and let A1 ⊆ [n1]

and A2 ⊆ [n2] such that A = A1 × A2. If µ1(A1) > η and µ2(A2) > η, then we

claim that ∫
A
f dµ 6 C ‖f‖L1(µ(A) + 2η)1/q. (14.5)

Indeed, by Lemma 14.4 applied for X1 = [n1] and X2 = [n2], we obtain a partition

Q of [n1] × [n2] with Q ∈ S and ι(Q) > η, and a set B ∈ Q such that A ⊆ B and

µ(B \A) 6 2η. By the Lp regularity of f , we have∫
B f dµ

µ(B)
µ(B)1/p 6 ‖E(f | AQ)‖Lp 6 C ‖f‖L1

and so ∫
A
f dµ 6

∫
B
f dµ 6 C ‖f‖L1µ(B)1/q 6 C ‖f‖L1(µ(A) + 2η)1/q.

Next, we assume that µ1(A1) > η and µ2(A2) < η and observe that we may

select a set B ⊆ [n2] with η < µ2(B) 6 2η. Then, we have∫
A
f dµ 6

∫
A1×(A2∪B)

f dµ
(14.5)

6 C ‖f‖L1

(
µ
(
A1 × (A2 ∪B)

)
+ 2η

)1/q
6 C ‖f‖L1(µ(A) + 2η µ1(A1) + 2η)1/q 6 C ‖f‖L1(µ(A) + 4η)1/q.

The case µ1(A1) < η and µ2(A2) > η is identical.

Finally, assume that µ1(A1) < η and µ2(A2) < η, and observe that there exist

B1 ⊆ [n1] and B2 ⊆ [n2] such that η < µ1(B1) 6 2η and η < µ2(B2) 6 2η. Then,∫
A
f dµ 6

∫
(A1∪B1)×(A2∪B2)

f dµ

(14.5)

6 C ‖f‖L1

(
µ
(
(A1 ∪B1)× (A2 ∪B2)

)
+ 2η

)1/q
6 C ‖f‖L1(µ(A) + 8η2 + 2η)1/q 6 C ‖f‖L1(µ(A) + 6η)1/q

and the proof of the lemma is completed. �

Lemmas 14.4 and 14.5 will be used in the proof of the following result.
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Lemma 14.6. There exist an algorithm and a polynomial Π2 such that the fol-

lowing holds. Let 0 < ε < 1/2 and C > 1. Let 1 < p 6 ∞, set p† = min{2, p} and

let q denote the conjugate exponent of p†. Also let a0 be as in Proposition 14.3, and

set

ϑ =
a0 ε

16C
and η 6

(
ϑ · ι(P)

2

p†
+1
)q
.

If we input

INP1: a partition P of [n1]× [n2] with P ⊆ S,

INP2: a subset A of [n1]× [n2] with A ∈ S, and

INP3: a (C, η, p)-regular matrix f : [n1]× [n2]→ {0, 1},
then the algorithm outputs

OUT1: a refinement Q of P with Q⊆S, |Q|64|P| and ι(Q) > (ϑ · ι(P)
2

p†
+1

)q, and

OUT2: a set B ∈ AQ such that∫
A4B

E(f | AP) dµ 6 2C ‖f‖L1ϑ and

∫
A4B

f dµ 6 6C ‖f‖L1ϑ. (14.6)

If we additionally assume that the matrix f in INP3 satisfies∣∣ ∫
A

(
f − E(f | AP)

)
dµ
∣∣ > a0 ε ‖f‖L1 , (14.7)

then the partition Q in OUT2 satisfies

‖E(f | AQ)− E(f | AP)‖L
p†
>
a0 ε ‖f‖L1

2
. (14.8)

Finally, this algorithm has running time |P| ·Π2(n1 n2).

Lemma 14.6 is an algorithmic version of Lemmas 6.2 and 6.3. We also notice

that if the matrix f satisfies the estimate in (14.7), then inequality (14.8) implies

that the partition Q is a genuine refinement of P. We proceed to the proof.

Proof of Lemma 14.6. We may (and we will) assume that A is nonempty.

We select A1 ⊆ [n1] and A2 ⊆ [n2] such that A = A1 ×A2, and we set

θ = ϑq · ι(P)
2q

p† .

Also let

P1 = {P = P1 × P2 ∈ P : µ1(A1 ∩ P1) < θµ1(P1) and µ2(A2 ∩ P2) < θµ2(P2)},

P2 = {P = P1 × P2 ∈ P : µ1(A1 ∩ P1) < θµ1(P1) and µ2(A2 ∩ P2) > θµ2(P2)},

P3 = {P = P1 × P2 ∈ P : µ1(A1 ∩ P1) > θµ1(P1) and µ2(A2 ∩ P2) < θµ2(P2)},

P4 = {P = P1 × P2 ∈ P : µ1(A1 ∩ P1) > θµ1(P1) and µ2(A2 ∩ P2) > θµ2(P2)}.

Clearly, the family {P1,P2,P3,P4} is a partition of P.



14.2. PREPARATORY LEMMAS 97

Now for every P ∈ P we perform the following subroutine. First, assume that

P ∈ P1 ∪P2 ∪P3 and notice that in this case we have µ(A∩P ) 6 θµ(P ). Then we

set BP = ∅ and QP = {P}. On the other hand, if P = P1×P2 ∈ P4, then we apply

Lemma 14.4 for X1 = P1 and X2 = P2, and we obtain2 a partition QP of P with

Q ∈ S, |QP | 6 4 and ι(QP ) > θ · ι(P), and a set BP ∈ QP such that A ∩ P ⊆ BP
and µ(BP \ (A ∩ P )) 6 2θµ(P ).

Once this is done, the algorithm outputs

Q =
⋃
P∈P
QP and B =

⋃
P∈P

BP .

Notice that there exists a polynomial Π2 such that this algorithm has running time

|P| ·Π2(n1 n2). Indeed, recall that the algorithm in Lemma 14.4 runs in polynomial

time and observe that we have applied Lemma 14.4 at most |P| times.

We proceed to show that the partition Q and the set B satisfy the requirements

of the lemma. To this end, we first observe that Q satisfies the requirements in OUT1.

Moreover, we have B ∈ AQ and

A4B =
( 3⋃
i=1

⋃
P∈Pi

(A ∩ P )
)
∪
( ⋃
P∈P4

(
BP \ (A ∩ P )

))
. (14.9)

Therefore,

µ(A4B) 6 2θ (14.10)

and so, by the Lp regularity of f , Hölder’s inequality, the monotonicity of the

Lp norms and the fact that p† 6 p, we obtain that∫
A4B

E(f | AP) dµ 6 ‖E(f | AP)‖L
p†
· µ(A4B)1/q 6 ‖E(f | AP)‖Lp · µ(A4B)1/q

6 C ‖f‖L1(2θ)1/q 6 2C ‖f‖L1ϑ

which proves the first inequality in (14.6). For the second inequality, by (14.9), we

have ∫
A4B

f dµ =
∑

P∈P1∪P2∪P3

∫
A∩P

f dµ+
∑
P∈P4

∫
BP \(A∩P )

f dµ (14.11)

and, by the definition of θ and the fact that η 6 (ϑ · ι(P)
2

p†
+1

)q, we have η 6 θµ(P )

for every P ∈ P. Thus, if P ∈ P1∪P2∪P3, then, by Lemma 14.5 and our assumption

that f is (C, η, p)-regular (and, consequently, (C, η, p†)-regular), we have∫
A∩P

f dµ 6 C ‖f‖L1(µ(A ∩ P ) + 6η)1/q 6 3C ‖f‖L1

(
θµ(P )

)1/q
2Notice that if ν1 is the uniform probability measure on X1, then for every A ⊆ X1 we have

ν1(A) = µ1(A)/µ1(X1), and similarly for X2.
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which yields that∑
P∈P1∪P2∪P3

∫
A∩P

f dµ 6 3C ‖f‖L1 θ
1/q

∑
P∈P1∪P2∪P3

µ(P )1/q. (14.12)

On the other hand, by the choice of the family {BP : P ∈ P4} and Lemma 14.5,∑
P∈P4

∫
BP \(A∩P )

f dµ 6 6C ‖f‖L1 θ
1/q

∑
P∈P4

µ(P )1/q. (14.13)

Moreover, since q > 2 we have that x1/q is concave on R+, and so∑
P∈P

µ(P )1/q 6 |P|
1

p† 6 ι(P)
− 2

p† . (14.14)

Combining (14.12)–(14.14), we see that the second inequality in (14.6) is satisfied.

Finally, assume that the matrix f satisfies (14.7). By (14.6) and the choice of ϑ,∣∣∣ ∫
A

(
f − E(f | AP)

)
dµ−

∫
B

(
f − E(f | AP)

)
dµ
∣∣∣

6
∫
A4B

E(f | AP) dµ+

∫
A4B

f dµ 6
a0 ε ‖f‖L1

2

and so, by (14.7), we have∣∣∣ ∫
B

(
f − E(f | AP)

)
dµ
∣∣∣ > a0 ε ‖f‖L1

2
. (14.15)

Moreover, the fact that B ∈ AQ yields that∫
B

(
f − E(f | AP)

)
dµ =

∫
B

(
E(f | AQ)− E(f | AP)

)
dµ. (14.16)

Thus, by the monotonicity of the Lp norms, we conclude that

‖E(f | AQ)− E(f | AP)‖L
p†
> ‖E(f | AQ)− E(f | AP)‖L1

>
∣∣∣ ∫

B

(
E(f | AQ)− E(f | AP)

)
dµ
∣∣∣ (14.16)

=
∣∣∣ ∫

B

(
f − E(f | AP)

)
dµ
∣∣∣ (14.15)

>
a0 ε ‖f‖L1

2

and the proof of Lemma 14.6 is completed. �

14.3. Proof of the algorithmic regularity lemma

We will describe a recursive algorithm that performs the following steps. Start-

ing from the trivial partition of [n1] × [n2] and using Lemma 14.6 as a subroutine,

the algorithm will produce an increasing family of partitions of [n1] × [n2]. Simul-

taneously, using Proposition 14.3 as a subroutine, the algorithm will be checking

if the partition that is produced at each step satisfies the requirements in OUT of

Theorem 14.2. The fact that this algorithm will eventually terminate is based on

Proposition 2.1.
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Proof of Theorem 14.2. Let a0 be as in Proposition 14.3, and set

ϑ =
a0 ε

16C
, τ =

⌈ 4C2

(p† − 1) ε2 a2
0

⌉
and η = ϑ

∑τ+1
i=1 ( 2

p†
+1)i−1qi

. (14.17)

Also fix a (C, η, p)-regular matrix f : [n1] × [n2] → {0, 1}. The algorithm performs

the following steps.

InitialStep: We set P0 = {[n1] × [n2]} and we apply the algorithm in Proposi-

tion 14.3 for the matrix f −E(f | AP0). Thus, we obtain a set A0 ⊆ [n1]× [n2] with

A0 ∈ S and such that (n1 n2)|
∫
A0

(
f − E(f | AP0)

)
dµ| > a0‖f − E(f | AP0)‖�. If

|
∫
A0

(
f −E(f | AP0)

)
dµ| 6 a0 ε ‖f‖L1 , then the algorithm outputs the partition P0

and Halts. Otherwise, the algorithm sets m = 1 and enters into the following loop.

GeneralStep: The algorithm will have as an input a positive integer m ∈ [τ − 1], a

partition3 Pm−1 ⊆ S and a set Am−1 ⊆ [n1]× [n2] with Am−1 ∈ S, such that

(a) |Pm−1| 6 4m,

(b) (ϑ · ι(Pm−1)
2

p†
+1

)q > ϑ
∑m
i=1( 2

p†
+1)i−1qi

, and

(c) |
∫
Am−1

(
f − E(f | APm−1)

)
dµ| > a0 ε ‖f‖L1 .

By (b) and the choice of η in (14.17), we have η 6 (ϑ · ι(Pm−1)
2

p†
+1

)q. This fact

together with the choice of ϑ in (14.17) allows us to perform the algorithm in

Lemma 14.6 for the matrix f , the partition Pm−1 and the set Am−1. Thus, we obtain

a refinement Pm of Pm−1 with Pm ⊆ S, |Pm| 6 4|Pm−1|, ι(Pm) > (ϑ·ι(Pm−1)
2

p†
+1

)q,

such that

‖E(f | APm)− E(f | APm−1)‖L
p†
>
a0 ε ‖f‖L1

2
.

Next, we apply the algorithm in Proposition 14.3 for the matrix f−E(f | APm), and

we obtain a set Am ⊆ [n1]× [n2] with Am ∈ S and such that

(n1 n2)
∣∣∣ ∫

Am

(
f − E(f | APm)

)
dµ
∣∣∣ > a0 ‖f − E(f | APm)‖�.

If |
∫
Am

(
f −E(f | APm)

)
dµ| 6 a0 ε ‖f‖L1 , then the algorithm outputs the partition

Pm and Halts. Otherwise, if m < τ − 1, then the algorithm reruns the loop we

described above for the positive integer m + 1, the partition Pm and the set Am,

while if m = τ − 1, then the algorithm proceeds to the following step.

FinalStep: The algorithm will have as an input a partition Pτ−1 ⊆ S and a set

Aτ−1 ⊆ [n1]× [n2] with Aτ−1 ∈ S, such that

(d) |Pτ−1| 6 4τ−1,

3Notice that P0 ⊆ S and ι(P0) = 1.
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(e) (ϑ · ι(Pτ−1)
2

p†
+1

)q > ϑ
∑τ
i=1( 2

p†
+1)i−1qi

, and

(f) |
∫
Aτ−1

(
f − E(f | APτ−1)

)
dµ| > a0 ε ‖f‖L1 .

Again observe that, by (e) and the choice of η in (14.17), we have η 6 (ϑ ·
ι(Pτ−1)

2

p†
+1

)q. Using this fact and the choice of ϑ in (14.17), we may apply

the algorithm in Lemma 14.6 for the matrix f, the partition Pτ−1 and the set

Aτ−1. Therefore, we obtain a refinement Pτ of Pτ−1 with Pτ ⊆ S, |Pτ | 6 4|Pτ−1|,
ι(Pτ ) > (ϑ · ι(Pτ−1)

2

p†
+1

)q, and such that

‖E(f | APτ )− E(f | APτ−1)‖L
p†
>
a0 ε ‖f‖L1

2
.

The algorithm outputs the partition Pτ and Halts.

Notice that there exists a polynomial Π0 such that the previous algorithm has

running time (τ 4τ ) · Π0(n1n2). Indeed, by Proposition 14.3, there exists a poly-

nomial Π′0 such that the InitialStep runs in time Π′0(n1 n2). Moreover, by the

running times of the algorithms in Lemma 14.6 and Proposition 14.3, there exists

a polynomial Π′′0 such that each of the GeneralStep runs in time 4τ · Π′′0(n1 n2).

Finally, invoking again Lemma 14.6, we see that there exists a polynomial Π′′′0 such

that the FinalStep runs in time Π′′′0 (n1 n2). Therefore, the algorithm we described

above runs in time

Π′0(n1 n2) + (τ − 1) 4τ Π′′0(n1 n2) + Π′′′0 (n1 n2)

which in turn yields that there exists a polynomial Π0 such that the algorithm has

running time (τ 4τ ) ·Π0(n1 n2).

It remains to verify that the previous algorithm will produce a partition that

satisfies the requirements in OUT of Theorem 14.2. As we have noted, the argument

is based on Proposition 2.1.

We proceed to the details. First assume that the algorithm has stopped before

the FinalStep. Then the output of the algorithm is one of the partitions we de-

scribed in InitialStep and in GeneralStep, say Pm for some m ∈ {0, . . . , τ − 1}.
Observe that Pm satisfies Pm ⊆ S, |Pm| 6 4m, and ι(Pm) > η; in other words, Pm
satisfies the first three requirements in OUT of Theorem 14.2. Moreover, recall that

there exists a set Am ⊆ [n1]× [n2] with Am ∈ S, and such that

(n1 n2)
∣∣∣ ∫

Am

(
f − E(f | APm)

)
dµ
∣∣∣ > a0 ‖f − E(f | APm)‖�.

On the other hand, since the output of the algorithm is the partition Pm, we have

|
∫
Am

(
f − E(f | APm)

)
dµ| 6 a0 ε ‖f‖L1 . Combining these estimates, we conclude

that ‖f − E(f | APm)‖� 6 ε‖f‖�.
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Next, assume that the algorithm reaches the FinalStep. Recall that Pτ ⊆ S
and observe that, by (d) above and the fact that |Pτ | 6 4|Pτ−1|, we have |Pτ | 6 4τ .

Moreover, by (e) and the choice of η in (14.17),

ι(Pτ ) > (ϑ · ι(Pτ−1)
2

p†
+1

)q > ϑ
∑τ
i=1( 2

p†
+1)i−1qi

> η. (14.18)

Thus, we only need to show that ‖f − E(f | APτ )‖� 6 ε‖f‖�. To this end assume,

towards a contradiction, that ‖f−E(f | APτ )‖� > ε‖f‖�. Notice that, by the choice

of η in (14.17) and (14.18), we have (ϑ · ι(Pτ )
2

p†
+1

)q > η. Using the previous two es-

timates, Proposition 14.3, Lemma 14.6 and arguing precisely as in the GeneralStep,

we may select a refinement Pτ+1 of Pτ with Pτ+1 ⊆ S and ι(Pτ+1) > η, and such

that ‖E(f | APτ+1) − E(f | APτ )‖L
p†
> (a0 ε ‖f‖L1)/2. It follows that there exists

an increasing finite sequence (Pi)τ+1
i=0 of partitions with P0 = {[n1]× [n2]} and such

that for every i ∈ [τ + 1] we have Pi ⊆ S, ι(Pi) > η, and

‖E(f | APi)− E(f | APi−1)‖L
p†
>
a0 ε ‖f‖L1

2
. (14.19)

Now set d0 = E(f | AP0) and di = E(f | APi)−E(f | APi−1) for every i ∈ [τ + 1], and

observe that the sequence (di)
τ+1
i=0 is a martingale difference sequence. Therefore, by

Proposition 2.1 and the fact that the matrix f is (C, η, p)-regular, we have

a0 ε ‖f‖L1

2
·
√
τ + 1

(14.19)

6
( τ+1∑
i=1

‖di‖2L
p†

)1/2
6
( τ+1∑
i=0

‖di‖2L
p†

)1/2

(A.5)

6
1√
p† − 1

∥∥ τ+1∑
i=0

di
∥∥
L
p†

=
1√
p† − 1

‖E(f | APτ+1)‖L
p†

6
C√
p† − 1

‖f‖L1

which clearly contradicts the choice of τ in (14.17). The proof of Theorem 14.2 is

thus completed. �



CHAPTER 15

Applications

15.1. Tensor approximation algorithms

Throughout this chapter let k > 2 be an integer. Also let n1, . . . , nk be positive

integers, and let µk denote the uniform probability measure on [n1]× · · · × [nk].

Recall that a k-dimensional tensor is a function F : [n1]×· · ·×[nk]→ R. (Notice,

in particular, that a 2-dimensional tensor is just a matrix.) Also recall, that a tensor

G : [n1]× · · · × [nk]→ R is called a cut tensor if there exist a real number c and for

every i ∈ [k] a subset Si of [ni] such that G = c · 1S1×···×Sk . Finally, recall that for

every tensor F : [n1]× . . . [nk]→ R its cut norm is defined as

‖F‖� =
( k∏
i=1

ni

)
·max

{∣∣∣ ∫
S1×···×Sk

F dµk

∣∣∣ : Si ⊆ [ni] for every i ∈ [k]
}
.

Next, let

k1 = bk/2c, Ak = [n1]× · · · × [nk1 ] and Bk = [nk1+1]× · · · × [nk], (15.1)

and for every tensor F : [n1]× · · · × [nk]→ {0, 1} let the respective matrix fF of F

be the matrix fF : Ak ×Bk → {0, 1} defined by the rule

fF
(
(i1, . . . , ik1), (ik1+1, . . . , ik)

)
= F (i1, . . . , ik) (15.2)

for every
(
(i1, . . . , ik1), (ik1+1, . . . , ik)

)
∈ Ak ×Bk = [n1]× · · · × [nk].

As in [COCF10], we extend the notion of Lp regularity from matrices to tensors

as follows.

Definition 15.1 (Lp-weakly regular tensors). Let 0 < η 6 1, C > 1 and 1 6

p 6∞. A tensor F : [n1]×· · ·× [nk] is called (C, η, p)-weakly regular if its respective

matrix fF is (C, η, p)-regular, that is, if for every partition P of Ak × Bk with

P ⊆ SAk×Bk and ι(P) > η we have ‖E(fF | AP)‖Lp 6 C.

To state our main result about Lp regular tensors we need to introduce some

numerical invariants. Specifically, let ε > 0 and C > 1. Also let 1 < p 6 ∞, set

p† = min{2, p} and let q denote the conjugate exponent of p†. Finally, let a1, a2 be

102
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as in Theorem 14.2, and define

τ(ε, C, p) =
⌈ a1C

2

(p† − 1) ε2

⌉
and η(ε, C, p) =

(a2 ε

C

)∑τ(ε,C,p)+1
i=1 ( 2

p†
+1)i−1qi

. (15.3)

We have the following theorem.

Theorem 15.2. There exist a constant b, an algorithm and a polynomial Π3

such that the following holds. Let 0 < ε < 1/2 and C > 1. Also let 1 < p 6∞, and

let τ = τ(ε/2, C, p) and η = η(ε/2, C, p) be as in (15.3). If we input

INP: a (C, η, p)-weakly regular tensor F : [n1]× · · · × [nk]→ {0, 1},
then the algorithm outputs

OUT: cut tensors G1, . . . , Gs with s 6
(2bC

ε η2

)2(k−1)
and such that

∥∥F − s∑
i=1

Gi
∥∥
� 6 ε‖F‖� and

s∑
i=1

‖Gi‖2L∞ 6
(C ‖F‖L1

η2

)2
b2k. (15.4)

Moreover, this algorithm has running time
(
τ 4τ +

(
2C
εη2

)3k) ·Π3

(∏k
i=1 ni

)
.

Theorem 15.2 can be proved arguing precisely as in the proof of [COCF10,

Theorem 2] and using Theorem 14.2 instead of [COCF10, Corollary 1]. We leave

the details to the interested reader.

15.2. MAX-CSP instances approximation

It is well known that it is NP-hard not only to compute the optimal solution

for the MAX-CSP problem, but also to find “good” approximations of this optimal

solution (see, e.g., [H̊as01, KKMO07, TSSW00]). We will show that such approxima-

tions may be computed in polynomial time if we assume some additional properties

for the given MAX-CSP problem (see also [FK99, COCF10]). In what follows let

n, k denote two positive integers with k 6 n.

Let V = {x1, . . . , xn} be a set of Boolean variables, and recall that an assignment

σ on V is a map σ : V → {0, 1}. Notice that if σ is an assignment on V and W ⊆ V ,

then σ|W : W → {0, 1} is an assignment on W . Also recall that a k-constraint is a

pair (φ, Vφ) where Vφ ⊆ V with |Vφ| = k and φ : {0, 1}Vφ → {0, 1} is a not identically

zero map. Finally, recall that a k-CSP instance over V is a family F of k-constraints

over V .

For every k-CSP instance F we define

OPT(F) = max
σ∈{0,1}V

∑
(φ,Vφ)∈F

φ(σ|Vφ). (15.5)
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Moreover, let Ψk be the set of all non-zero maps {0, 1}k → {0, 1}. We have the

following definition.

Definition 15.3. Let ψ ∈ Ψk. Also let (φ, Vφ) be a k-constraint over V where

Vφ = {xi1 , . . . , xik} for some 1 6 i1 < · · · < ik 6 n. We say that (φ, Vφ) is of type

ψ if for every assignment σ : V → {0, 1} we have

ψ
(
σ(xi1), . . . , σ(xik)

)
= φ(σ|Vφ).

Observe that every k-CSP instance F can be represented by a family (FψF )ψ∈Ψk

of 22k − 1 tensors where for every ψ ∈ Ψk the tensor FψF : [n]k → {0, 1} is defined by

the rule

FψF (i1, . . . , ik) =


1 if there is (φ, Vφ) ∈ F of type ψ

with Vφ = {xi1 , . . . , xik},
0 otherwise.

(15.6)

Having this representation in mind, we say that a k-constraint F is (C, η, p)-weakly

regular for some 0 < η 6 1, C > 1 and 1 6 p 6∞, provided that for every ψ ∈ Ψk

the tensor FψF defined above is (C, η, p)-weakly regular.

We have the following theorem which extends [COCF10, Theorem 3]. It follows

from Theorem 15.2 using the arguments in the proof of [COCF10, Theorem 3]; as

such, its proof is left to the reader.

Theorem 15.4. There exist an algorithm, a constant γ > 0 and a polynomial Π4

such that the following holds. Let k be a positive integer, and let 0 < ε < 1/2, C > 1

and 1 < p 6 ∞. Set a = ε 2−(2k+2k+2), and let τ = τ(a,C, p) and η = η(a,C, p) be

as in (15.3). If we input

INP: a (C, η, p)-weakly regular k-CSP instance F over a set V = {x1, . . . , xn} of

Boolean variables,

then the algorithm outputs

OUT: an assignment σ : V → {0, 1} such that∑
(φ,Vφ)∈F

φ(σ|Vφ) > (1− ε) ·OPT(F).

Moreover, this algorithm has running time

Π4

(
nk · exp

(
k 2k 22k

( 2C

ε η2

)2k
ln
( 2C

ε η2

)))
.
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APPENDIX A

Analytic inequalities

Through the rest of this chapter (X,Σ, µ) will denote a probability space and

Lp will denote the space Lp(X,Σ, µ), for every 1 < p 6∞.

A.1. A uniform convexity inequality

Our aim in this section is to show the following proposition (see, e.g. [Nao04]).

Proposition A.1. Let 1 < p 6 2 and f, g ∈ Lp. Then

‖f‖2Lp + (p− 1)‖g‖2Lp 6
‖f + g‖2Lp + ‖f − g‖2Lp

2
. (A.1)

The proof of the previous inequality is a straightforward consequence of two well

known analytic inequalities, the Bonami-Beckner “two point” inequality ([Gar07,

Proposition 13.1.1]) and Hanner’s inequality ([Nao04]). We present them here for

the convenience of the reader.

Theorem A.2 (Bonami-Beckner inequality). Let 1 < p1 6 p2 <∞ and x, y ∈ R.
Then,

(1

2
(|x+ rp2y|p2 + |x− rp2y|p2)

)1/p2 6
(1

2
(|x+ rp1y|p1 + |x− rp1y|p1)

)1/p1 , (A.2)

where for every 1 < p < ∞, rp = 1/
√
p− 1. More specifically, for every 1 < p 6 2,

we have that (
x2 + (p− 1)y2

)1/2
6
( |x+ y|p + |x− y|p

2

)1/p
. (A.3)

Theorem A.3 (Hanner’s inequality). Let 1 < p 6 2 and f, g ∈ Lp. Then∣∣‖f‖Lp − ‖g‖Lp∣∣p +
(
‖f‖Lp + ‖g‖Lp

)p
6 ‖f + g‖pLp + ‖f − g‖pLp . (A.4)

We are now ready to prove Theorem A.1.
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Proof of Theorem A.1. We have that(
‖f + g‖2Lp + ‖f − g‖2Lp

2

)1/2

>

(
‖f + g‖pLp + ‖f − g‖pLp

2

)1/p

(A.4)

>


(
‖f‖Lp + ‖g‖Lp

)p
+
∣∣∣ ‖f‖Lp − ‖g‖Lp ∣∣∣p

2

1/p

(A.3)

>
(
‖f‖2Lp + (p− 1) ‖g‖2Lp

)1/2

and the proof of Theorem A.1 is completed. �

A.2. A martingale difference sequence inequality

We will now prove Proposition 2.11. We restate it here for the convenience of

the reader.

Proposition 2.1. Let (X,Σ, µ) be a probability space and 1 < p 6 2. Then for

every martingale difference sequence (di)
n
i=0 in Lp(X,Σ, µ) we have( n∑

i=0

‖di‖2Lp
)1/2

6
( 1

p− 1

)1/2 ∥∥ n∑
i=0

di
∥∥
Lp
. (A.5)

The proof of Proposition 2.1 follows directly from the following lemma whose

proof is based on an elegant pseudo-differentiation argument and is due to Ricard

and Xu (see [RX16]).

Lemma A.4. Let f ∈ Lp and G be a sub-σ-algebra of Σ. Then,

‖E(f | G)‖2Lp + (p− 1)‖f − E(f | G)‖2Lp 6 ‖f‖
2
Lp . (A.6)

Let’s see first how this Lemma implies Proposition 2.1.

Proof of Proposition 2.1. By iteration of (A.6) we obtain that

‖d0‖2Lp + (p− 1)

n∑
i=1

‖di‖2Lp 6
∥∥ n∑
i=0

di‖2Lp .

But p 6 2 and thus we have

(p− 1)

n∑
i=0

‖di‖2Lp 6 ‖d0‖2Lp + (p− 1)

n∑
i=1

‖di‖2Lp ,

which completes the proof of Proposition 2.1. �

1For a more instructive yet far more lengthy and with a worst contant proof of the previous

inequality the reader may refer (and is encouraged to do so) to [Pis16].
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It remains to prove Lemma A.4.

Proof of Lemma A.4. The proof is based on a pseudo-differentiation argu-

ment. Set a = E(f | G) and b = f − E(f | G). Define the function F : [0, 1] → R by

the rule F (t) = ‖a+ tb‖2Lp + (p− 1)t2‖b‖2Lp , for every t ∈ [0, 1]. Also, for every real

continuous function φ defined on an interval I of R recall that its pseudo-derivative

of second order at t ∈ I is

D2φ(t) = lim inf
h→0+

φ(t+ h) + φ(t− h)− 2φ(t)

h2
.

Also recall that if D2φ > 0, then φ is convex.

Fact A.5. The function F is convex.

Proof of Fact A.5. Let h > 0 and t ∈ R. Applying Proposition A.2, for

f = a/h+ tb/h and g = b we obtain that

F (t+ h) + F (t− h)− 2F (t)

h2
> 0.

Hence, D2F > 0 and thus F is convex. �

Define the function G(t) = ‖a + tb‖2Lp , for every t ∈ [0, 1]. Since E(· | G) is a

contraction on Lp we have that

‖a+ tb‖Lp > ‖E(a+ tb | G)‖Lp = ‖a‖Lp .

Also, since G is convex its right-derivative G′+ exists and by the previous inequality

we have that G′+(0) > 0 and thus F ′+(0) = G′+(0) > 0 too. Thus, F is increasing

and hence F (0) 6 F (1). This completes the proof of Lemma A.4. �



APPENDIX B

Analytic number theory backround

B.1. Prime number theorems

Recall that π(n) = |{p ∈ P : p 6 n}| for every positive integer n. Then,

Theorem B.1 (Prime number theorem). Let N be a large positive integer, then

π(N) = (1 + oN→∞(1))
N

logN
.

The previous theorem is a celebrated result first proved in 1896 independently by

J.Hadamard and C.J. de la Valle-Poussin. For a proof of this result see [Apo76,

Chapter 13].

The following result was first proved by P.G.L Dirichlet and is sometimes referred

to as the Dirichlet’s prime number theorem.

Theorem B.2 (Dirichlet’s theorem). Let a, q be coprime. Then there exist in-

finitely many primes of the form a+ nq.

For a proof see [Apo76, Chapter 7]. Observe that if for some a, q we have that

gcd(a, q) > 1 then there is no prime of the form a+ nq, for n > 1.

Closing this section we present the Bertrand-Chebysev theorem, see [AZHE10,

Chapter 2]. It states the following

Theorem B.3 (Bertrand-Chebysev theorem). For every n > 1, there exists at

least one p ∈ P such that n 6 p 6 2n.

B.2. Arithmetic functions

An arithmetic (or arithmetical) function is a real (or complex) function defined

on the set of natural numbers. An arithmetic function f is called multiplicative

if f(nm) = f(n) · f(m), for all coprime natural numbers n,m. If, f(1) = 1 and

f(nm) = f(n) · f(m) for all natural numbers n,m, regardless if they are coprime or

not, then the function f will be called completely mulptiplicative. In the rest of this

section we will present some well known arithmetic functions.

109
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B.2.1. The Möbius function µ. The Möbius function µ is the arithmetic

function defined by the rule

µ(n) =


1, if n is square-free with an even number of prime factors,

−1, if n is square-free with an odd number of prime factors,

0, otherwise.

Observe that µ is a multiplicative function. For the Möbius function we have the

following proposition (for a full proof see [Apo76]) which is known as the Möbius

inversion formula.

Proposition B.4 (Möbius inversion formula). Let f, g be two arithmetic func-

tions such that

g(n) =
∑
d|n

f(d),

for every positive integer n. Then, for every positive integer n

f(n) =
∑
d|n

µ(d)g(n/d).

B.2.2. The Euler totient function φ. The Euler totient function φ is the

arithmetic multiplicative function defined by the rule

φ(n) = |{k : 1 6 k 6 n and gcd(k, n) = 1}|,

for every positive integer n. The following identity (for a proof see [Apo76]) is known

as the Euler’s product formula.

Proposition B.5 (Euler’s product formula). For every positive integer n we

have

φ(n) = n
∏
p|n

(
1− 1

p

)
.

B.2.3. The Von Mangoldt function Λ. The Von Mangoldt function Λ is

the non muptiplicative arithmetic function defined by the rule

Λ(n) =

log p, if n = pk for some p ∈ P and some positive integer k,

0 , otherwise.

By a straightforward calculation one may see that for every positive integer n

log(n) =
∑
d|n

Λ(n)
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and thus by Proposition B.4,

Λ(n) =
∑
d|n

µ(d) log(n/d). (B.1)

Another important property of the Von Mangoldt function is the following propo-

sition (for a proof see [Apo76]), which is in fact equivalent to the prime number

theorem.

Proposition B.6. Let N be a large positive integer. Then∑
n∈[N ]

Λ(n) = (1 + o(1))N.

B.2.4. The restriction of the Von Mangoldt function in the primes Λ̃.

The restriction of the Von Mangoldt function Λ in the primes is the arithmetical

function Λ̃ defined by the rule

Λ̃(n) =

log n, if n ∈ P,

0 , otherwise,

i.e. Λ̃(n) = 1P(n)Λ(n). This function has similar properties with Λ. For example

we have the following proposition

Proposition B.7. Let N be a large positive integer. Then∑
n∈[N ]

Λ̃(n) = (1 + oN→∞(1))N.

A quantitative version of the previous proposition is the following theorem of C.L.Siegel

and A.Walfisz.

Theorem B.8 (Siegel-Walfisz Theorem). Let ε > 0 and m be a positive integer.

Also, let q, a be positive integers with gcd(q, a) = 1 and q 6 (logm)1−ε. Then, there

exists a constant c such that∑
n∈[m]

n≡amodq

Λ̃(n) =
m

φ(q)
+mOε

(
exp(−c

√
logm)

)
.

For a proof of the previous result see [Dav00, Chapter 20].

B.3. Euler products

We present now a useful result about arithmetic functions which proof can be

found in many textbooks, see e.g. [Apo76, Theorem 11.6]
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Theorem B.9. Let f be a multiplicative function, s ∈ C and assume that the
∞∑
n=1

∣∣f(n)

ns
∣∣ <∞.

Then,
∞∑
n=1

f(n)

ns
=
∏
p

∑
k∈N

f(pk)

pks
. (B.2)

Expressions of the form of the (RHS) of (B.2) are known as Euler products. A

straightforward consequence of the previous theorem is the following proposition.

Proposition B.10. Let f : Nd → C be a multiplicative function in each coordi-

nate, i.e.

f(n1, . . . , nimi, . . . , nd) = f(n1, . . . , ni, . . . , nd) · f(n1, . . . ,mi, . . . , nd)

for every i ∈ [d] and for every ni,mi such that gcd(ni,mi) = 1. Also, let s ∈ C.
Then, assuming that

∞∑
n1,...,nd=1

∣∣f(n1, . . . , nd)

(n1 . . . nd)s
∣∣ <∞

we have
∞∑

n1,...,nd=1

f(n1, . . . , nd)

(n1 . . . nd)s
=
∏
p

∑
m1,...,md∈N

f(pm1 , . . . , pmd)

p
∑d
i=1 mis

.

B.4. The Chinese remainder theorem

The classical Chinese remainder theorem states that for every positive integers

m1, . . . ,mt and every a1, . . . , at ∈ Z the system of equations
x ≡ a1modm1,
...

x ≡ atmodmt

is solvable if and only if ai ≡ ajmod gcd(mi,mj) for every i, j ∈ [t] with i 6= j.

Furthermore, this solution is unique modulo lcm(m1, . . . ,mt). This theorem implies

the following result which is known as the Chinese remainder theorem of group

theory.

Theorem B.11 (Chinese remainder theorem-Group theory). Let p1, . . . , ps be

distinct primes and m =
∏s
l=1 pl. Then, there exists an group isomorphism between

Zm and
⊕s

l=1 Zpl , where
⊕

denotes the direct sum of groups.

From the previous theorem we obtain the following proposition.
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Proposition B.12. Let d be a positive integer, L0, . . . , Ld ∈ Z and p1, . . . , ps be

distinct primes. Also, let a1, . . . , ad ∈ Z. Finally, let ψ : Zd → Z be an affine linear

form defined by the rule

ψ(x) =
d∑
i=1

Lixi + L0, (B.3)

for every x = (x1, . . . , xd) ∈ Zd and for every i ∈ [s] let xi ∈ Zdpi such that

ψ(xi) ≡ aimodpi. (B.4)

Then, if D =
∏
i∈[s] pi there exists a unique y ∈ ZdD such that

ψ(y) ≡ aimodpi,

for every i ∈ [s]. If in addition, a1 = · · · = as = 0 then there exists a unique y ∈ ZdD
such that

ψ(y) ≡ 0modD.

Proof. For every i ∈ [s], there exist xi,1, . . . ,xi,d ∈ Zdpi such that xi = (xi,1, . . . ,xi,d).

and thus by (B.3) and (B.4) we have that

∑d
i=1 Li · x1,i + L0 ≡ a1modp1∑d
i=1 Li · x2,i + L0 ≡ a2modp2

...∑d
i=1 Li · xs,i + L0 ≡ asmodps.

Moreover, by Theorem B.11 there exist unique y1, . . . , yd ∈ ZD such that for every

i ∈ [d], j ∈ [s]

yi = xj,imodpj .

Thus, setting y = (y1, . . . , yd) and using the linearity of the modulo operation we

see that

ψ(y) ≡ aimodpi,

for every i ∈ [s]. If now a1 = · · · = as = 0 for the previous y we have that

ψ(y) ≡ 0modpi, for every i ∈ [s] and hence ψ(y) ≡ 0modD. This completes the

proof of the lemma. �

B.5. The Riemann ζ function

Recall that the Riemman ζ function is defined for every s ∈ C with Re(s) > 1/2

by the rule

ζ(s) =

∞∑
n=1

1

ns
.
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Although this function has been studied a lot we will only need two basic properties.

The first one is the following lemma which shows that ζ has a simple pole at 1 with

residue 1.

Proposition B.13. If Re(s) > 1 and s = O(1), then ζ(s) = 1
s−1 +O(1).

Proof. Since,

1

s− 1
=

∫ ∞
1

dx

xs
=
∞∑
n=1

∫ n+1

n

dx

xs

we have that

ζ(s)− 1

s− 1
=
∞∑
n=1

∫ n+1

n
(

1

ns
− 1

xs
)dx.

From the mean value theorem and the hypotheses that s = O(1),Re(s) > 1 we have
1
ns −

1
xs = O( 1

n2 ). Indeed, for every n ∈ N and every x ∈ [n, n+ 1] we have

|n−s − x−s| =
∣∣s ∫ x

n
y−1−sdy

∣∣ 6 |s|n−1−R(s) 6 |s|n−2

and thus 1
ns −

1
xs = O( 1

n2 ). Therefore,

ζ(s)− 1

s− 1
=

∞∑
n=1

O(
1

n2
) = O(

∞∑
n=1

1

n2
) = O(1)

and the proof of the lemma is complete. �

The second basic property of the Riemann ζ function is the following amalgamation

of Proposition B.13 and Theorem B.9.

Proposition B.14. Let s ∈ C with Re(s) > 1 and s = O(1). Then,∏
p

(
1− 1

ps
)−1

=
1

s− 1
+O(1).

Proof. By Lemma B.13 we have

ζ(s) =
1

s− 1
+O(1)

and by Theorem B.9 we have

ζ(s) =
∏
p

(
1− 1

ps
)−1

.

Putting the two previous together we have the desired result. �



APPENDIX C

The Goldston–Yildirim estimate

C.1. Backround material

C.1.1. Sieve factors. Throughout this subsection let χ : R→ R be a smooth

and compactly supported function.

Recall that the modified Fourier transform ϕ of χ is defined by the formula

exχ(x) =

∫ +∞

−∞
ϕ(ξ)e−ixξdξ. (C.1)

One important property of the modified Fourier transform is the fact that it de-

creases rapidly. More precisely we have the following proposition (see [SS03, Chapter

5, Theorem 1.3])

Proposition C.1. Let ϕ be the modified Fourier transform of χ. Then, for every

ξ ∈ R and every A > 0 we have

|ϕ(ξ)| = OA
(
(1 + ξ)−A

)
.

We are about now to define the notion of sieve factors.

Definition C.2 (Sieve factors,[GT10]). Let a ∈ N with a > 1. Then, the sieve

factor of χ with parameter a is the quantity

cχ,a =

∫
R
· · ·
∫
R

∏
B⊆[a]

(∑
j∈B

(1 + iξj)
)(−1)|B|−1

a∏
j=1

ϕ(ξj)dξj ,

where ϕ is the modified Fourier transform of χ.

Despite the fact that sieve factors look very complicated to estimate, for some par-

ticular choices of a they take a rather simple form. To be more specific, we have

(see [GT10, Lemma D.2])

cχ,1 = −χ′(0) (C.2)

and

cχ,2 =

∫ +∞

−∞
|χ′(x)|2dx. (C.3)

Moreover, for every choice of a we have that cχ,a ∈ R.
115
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C.1.2. Systems of affine linear forms. Recall now that an affine linear form

(or affine linear map) on Zd, for some positive integer d is a function ψ : Zd → Z of

the form ψ = ψ+ψ(0), where ψ : Zd → Z is a linear form and ψ(0) ∈ Z. Also recall

that two affine linear forms ψ1, ψ2 : Zd → Z are called affinely related if the linear

maps ψ1 − ψ1(0) and ψ2 − ψ2(0) are parallel.

Next recall that a system of affine linear forms Ψ = (ψ1, . . . , ψt) is a t-tuple of

affine linear forms for some positive integer t. The previous system of affine linear

forms may be seen as an affine linear map from Zd to Zt, i.e. Ψ = Ψ + Ψ(0),

where Ψ: Zd → Zt is a linear map and Ψ(0) ∈ Zt. From now on, in order to avoid

degeneracies, we will assume that if we have a system Ψ as before none of the ψis

is constant. For any system of affine linear forms we define its size as follows.

Definition C.3. Let d, t,N be positive integers and Ψ: Zd → Zt be a system

of affine linear forms. Then, we define the size ‖Ψ‖N of Ψ with the respect to the

scale parameter N by the rule

‖Ψ‖N =

t∑
i=1

d∑
j=1

|ψi(ej)|+
t∑
i=1

∣∣ψi(0)

N

∣∣, (C.4)

where e1, . . . , ed is the standard basis of Zd.

Observe that the size of a system of affine linear forms Ψ is a decreasing function

of the scale parameter. More precisely, if N1, N2 are positive integers with N1 6 N2

then ‖Ψ‖N1 > ‖Ψ‖N2 . We also have the following definition.

Definition C.4. Let d, t, q be positive integers and Ψ = (ψ1, . . . , ψt) : Zd → Zt

be a system of affine linear forms. Then, we define the set

C(Ψ, q) =
{
n ∈ Zdq :

∏
i∈[t]

gcd
(
ψi(n), q

)
= 1
}
.

In the previous expression we induce the affine forms ψi : Zdq → Z from their global

counterparts ψi : Zd → Z in the obvious way.

C.1.3. Local factors. We define now the so-called local factors and isolate

some of their basic properties.

Definition C.5 (Local factors, [GT10]). Let d, t be two positive integers. Also

let Ψ = (ψ1, . . . , ψt) : Zd → Zt be a system of affine linear forms. For every positive

integer q the q-local factor of Ψ is defined by the rule

βΨ,q =
( q

φ(q)
)t En∈Zdq1C(Ψ,q),
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where C(Ψ, q) is as in Definition C.4 and φ is the Euler totient function (see Ap-

pendix B, Subsection B.2.2.). More specifically, if q ∈ P then

βΨ,q =
( q

q − 1

)t En∈Zdq1C(Ψ,q). (C.5)

Notice at this point that if q is a positive integer and Ψ is a system of affine

linear forms by the Chinese remainder theorem (see Appendix B, Section B.4) we

have

βΨ,q =
∏
p∈P,
p|q

βΨ,p. (C.6)

We finally have the following lemma.

Lemma C.6. Let t, d, L be positive integers and Ψ = (ψ1, . . . , ψt) be a system

of affine linear forms from Zd to Z with ‖Ψ‖1 6 L. Also let p ∈ P. Then βΨ,p =

1 +O(1/p). If in addition no two of the forms ψ1, . . . , ψt are affinely related then we

have that βΨ,p = 1 +O(1/p2). The implied constants depend on d, t, L.

Proof. Let n be selected uniformly at random from Zdp. Then, 1C(Ψ,q)(n) = 1

with probability 1−Ot(1/p). Moreover it is easy to observe that( p

p− 1

)t
= 1 +Ot(1/p).

Combining the previous two estimations and (C.5) we have βΨ,p = 1 + O(1/p).

For the second part of the lemma assume that no two of the forms ψ1, . . . , ψt are

affinely related. Then, it is easy to see that for every 1 6 i < j 6 t, ψi, ψj are not

multiple of each other modulo p. Therefore , if n is selected uniformly at random

from Zdp then p divides both ψi(n), ψj(n) with probability O(1/p2). Then, using the

inclusion-exclusion principle and working as in the proof of the first part of the

Lemma we obtain that βΨ,p = 1 +O(1/p2). �

C.2. The Goldston–Yildirim correlation estimates

The following theorem is due to Green and Tao[GT10] who where based on the

work of Goldston and Yildirim (see ,e.g,[GY, GY03, GY07]). Similar results may

be found in [GT08, Tao06a, CFZ14].

Theorem C.7 (Goldston–Yildirim correlation estimate). Let t, d, L be positive

integers, N be a large positive integer and Ψ = (ψ1, . . . , ψt) : Zd → Zt be a system of

non-constant affine linear forms with ‖Ψ‖1 6 L.1 Let a = (a1, . . . , at) ∈ Nt be a t-

tuple of positive integers, K ⊆ [−N,N ]d be a convex body and χ1, . . . , χt : R→ [0, 1]

1In the original statement of Green–Tao they assume that ‖Ψ‖N 6 L. Since, this affects only

the constants that arise, for argument clarity we take the size of Ψ with scale parameter 1.
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be smooth and compactly supported functions. Also let R = Nγ , for some sufficiently

small γ = γ(t, d, L, χ1, . . . , χt, α) > 0. Additionally for every i ∈ [t] let Λχi,R,ai be as

in (12.8), let cχi,ai be the sieve factor of χi with parameter ai, and for every p ∈ P

let βΨ,p be the p-local factor of Ψ. Finally, set

PΨ = {p ∈ P : ψi, ψj are linearly dependent modp for some i, j ∈ [t]} (C.7)

and X =
∑

p∈PΨ
p−1/2. Then,

∑
n∈K∩Zd

∏
i∈[t]

Λχi,R,ai(ψi(n)) =
∏
i∈[t]

cχi,ai ·vol(K)·
∏
p

βΨ,p+O
( Nd

log1/20R
eO(X)

)
, (C.8)

where the implied constants depend on t, d, L, χ1, . . . , χt and a.

In subsection C.2.1 we present a sceleton of the proof of the previous theorem

and in subsection C.2.2 we prove all the intermediate results which we used in this

sceleton.

From now on all the implied constants will depend on the parameters t, d, L,

χ1, . . . , χt and a or a subset of these parameters. Moreover µ will denote the Möbius

function and φ will denote the Euler totient function (see Appendix B).

C.2.1. Sceleton of the proof of Theorem C.7. Before we enter the main

part of the proof we need to write the (LHS) of (C.8) in a more manageable form.

To this end for every i ∈ [t] we set the fibre of i to be the set Fi = {i} × [ai] and

define

Ω = {(i, j) : i ∈ [t], j ∈ [ai]} =
⋃
i∈[t]

Fi ⊆ N2.

Then, we see that the (LHS) of (C.8) equals

logtR
∑

(mi,j)(i,j)∈Ω∈NΩ

mi,j square-free

( ∏
(i,j)∈Ω

µ(mi,j)χi
( logmi,j

logR

)) ∑
n∈K∩Zd

∏
(i,j)∈Ω

1mi,j |ψi(n).

Moreover, for every i ∈ [t] we set mi = lcm(mi,1, . . . ,mi,ai) and observe that the

previous expression may be rewritten as

logtR
∑

(mi,j)(i,j)∈Ω∈NΩ

mi,j square-free

( ∏
(i,j)∈Ω

µ(mi,j)χi
( logmi,j

logR

)) ∑
n∈K∩Zd

∏
i∈[t]

1mi|ψi(n). (C.9)

We enter now the main part of the proof.
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Step 1: Elimination of the role of K and N. For every m1, . . . ,mt as before

we set m = lcm(m1, . . . ,mt) (also square-free) and also we set

αm1,...,mt = En∈Zdm
∏
i∈[t]

1mi|ψi(n). (C.10)

for which we have the following claim.

Claim C.8.

αm1,...,mt =
∏
p∈P

αprp,1 ,...,prp,t

where for every p and for every i ∈ [t] we have rp,i = 1 if p|mi and rp,i = 0 otherwise.

We now have the following lemma.

Lemma C.9. For every square-free integers (mi,j)(i,j)∈Ω we have∑
n∈K∩Zd

∏
i∈[t]

1mi|ψi(n) = vol(K)αm1,...,mt +O(mNd−1) (C.11)

where am1,...,mt is as in (C.10).

Observe now that since χi’s are compactly supported we have that mi 6 RO(1) and

thus m 6 RO(1). Therefore the contribution of the error term of (C.11) in (C.9) is

O(RO(1)Nd−1 logtR), which is o(Nd) if γ in the definition of R is sufficiently small.

Therefore it suffices to prove that

logtR
∑

(mi,j)(i,j)∈Ω∈NΩ

mi,j square-free

( ∏
(i,j)∈Ω

µ(mi,j)χi
( logmi,j

logR

))
αm1,...,mt

=
∏
i∈[t]

cχi,ai
∏
p∈P

βΨ,p +O(eO(X) log−1/20R)

(C.12)

which is a genuinely simpler expression than (C.8) since the roles of K and N have

been eliminated.

Step 2: Fourier expansion. In this step our goal is to replace the sum of the

(LHS) of the previous expression by a product which is easier to cope with. To do

this, at first we replace χis by integrals using the Fourier expansion we saw in (C.1).

More precisely we have that for every square-free mi,j

χi
( logmi,j

logR

)
=

∫
R
m
− 1+iξ

logR

i,j ϕi(ξ)dξ,

where ϕi’s are as in (C.1). In order to simplify further the previous expression

using the rapid decrease of the Fourier transform (Proposition C.1) and setting
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I = [− log1/2R, log1/2R] we have that for every (i, j) ∈ Ω, every square-free mi,j ∈ N
and every A > 0, which we will choose later, we have

χi
( logmi,j

logR

)
=

∫
I
m
− 1+iξ

logR

i,j ϕi(ξ)dξ +OA(m
−1/ logR
i,j log−AR). (C.13)

Moreover, since every χi is Lipschitz continuous we have that for every i ∈ [t] and

every mi,j , χ(logmi,j/ logR) = O(m
−1/ logR
i,j ). Therefore, by (C.13) we have

∏
(i,j)∈Ω

χi
( logmi,j

logR

)
=

∫
I
· · ·
∫
I

∏
(i,j)∈Ω

m
−zi,j
i,j ϕi(ξi,j)dξi,j+OA(log−AR

∏
(i,j)∈Ω

m
−1/ logR
i,j )

(C.14)

where zi,j = (1 + i ξi,j)/ logR for every (i, j) ∈ Ω. For the error term of the previous

expression we have the following lemma.

Lemma C.10. There exists A > 0 such that

logtR
∑

(mi,j)(i,j)∈Ω∈NΩ

mi,j square-free

( ∏
(i,j)∈Ω

µ(mi,j)χi
( logmi,j

logR

))
αm1,...,mtOA(log−AR

∏
(i,j)∈Ω

m
−1/ logR
i,j )

= O(log−1/20R).

(C.15)

Thus we will have completed our proof as long as we show that

logtR
∑

(mi,j)(i,j)∈Ω∈NΩ

mi,j square-free

∫
I
· · ·
∫
I

∏
(i,j)∈Ω

µ(mi,j)m
−zi,j
i,j αm1,...,mtϕi(ξi,j)dξi,j

=
∏
i∈[t]

cχi,ai
∏
p∈P

βΨ,p +O(eO(X) log−1/20R).

(C.16)

To this end, by exchanging sums and integrals, which can be done since I is compact

and the summation is absolutely convergent2, we see that the (LHS) of the previous

equation equals

logtR

∫
I
· · ·
∫
I

∑
(mi,j)(i,j)∈Ω∈NΩ

mi,j square-free

∏
(i,j)∈Ω

µ(mi,j)m
−zi,j
i,j αm1,...,mtϕi(ξi,j)dξi,j

2One can use similar bounds with those that arise in the proof of Lemma C.10 (see Subsection

C.2.2. below)
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which in turn by the multiplicativity of α, which we saw in Claim C.8, may be

written as an Euler product

logtR

∫
t
· · ·
∫
t

∏
p

Ep,ξ ·
∏

(i,j)∈Ω

ϕi(ξi,j)dξi,j ,

where ξ = (ξi,j)(i,j)∈Ω ∈ IΩ and Ep,ξ is the Euler factor

Ep,ξ =
∑

(mi,j)(i,j)∈Ω∈{1,p}Ω

( ∏
(i,j)∈Ω

µ(mi,j)m
−zi,j
i,j αm1,...,mt

)
. (C.17)

These estimations along with (C.16) reduce further our task in to showing that

logtR

∫
I
· · ·
∫
I

∏
p∈P

Ep,ξ
∏

(i,j)∈Ω

ϕi(ξi,j)dξi,j =
∏
i∈[t]

cχi,ai
∏
p∈P

βΨ,p+O(eO(X) log−1/20R).

(C.18)

In order to prove the previous equality we need to estimate the Euler product∏
pEp,ξ, which is the next step of the proof.

Step 3: The Euler product
∏
pEp,ξ. We will “simplify” the Euler product∏

p∈PEp,ξ and to do so we first need to “simplify” the Euler factors Ep,ξ.

Lemma C.11 (Euler factor estimate). Let ξ = (ξi,j)(i,j)∈Ω ∈ IΩ, and let p ∈ P.

Set

E′p,ξ =
∏
B⊆Ω,

B vertical

(
1− 1

p1+
∑

(i,j)∈B zi,j

)|−1||B|−1

, (C.19)

where for every (i, j) ∈ Ω, zi,j = (1 + i ξi,j)/ logR. Then, we have

Ep,ξ =


(
1 +O(1/p2)

)
E′p,ξ, if p > log1/10R and p 6∈ PΨ,(

1 +O(1/p)
)
E′p,ξ, if p > log1/10R and p ∈ PΨ(

βΨ,p +O( log p

log1/2R
)
)
E′p,ξ, if p 6 log1/10R.

(C.20)

The previous lemma gives rise to the following one which completes Step 3 of

the proof of Theorem C.7.

Lemma C.12 (Euler product estimate). For every ξ ∈ IΩ we have∏
p∈P

Ep,ξ =
( ∏
p∈P

βΨ,p +O(eO(X) log−1/20R)
) ∏
p∈P

E′p,ξ,

where E′p,ξ is as in (C.19).

Step 4: Completion of the proof. We are ready now to prove (C.18). To do

this we first have the following claim
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Claim C.13. For every ξ = (ξi,j)(i,j)∈Ω ∈ IΩ we have∏
p∈P

E′p,ξ =
(
1 +O(log−1/2R)

) ∏
B⊆Ω

B vertical

( ∑
(i,j)∈B

zi,j
)(−1)|B|−1

,

where E′p,ξ is as in (C.19) and for every (i, j) ∈ Ω, zi,j = (1 + i ξi,j)/ logR.

Moreover, ∏
p∈P

∣∣E′p,ξ| 6 O( 1

logtR

∏
(i,j)∈Ω

(1 + |ξi,j |)O(1)
)
. (C.21)

We also have the following two lemmas.

Lemma C.14. We have

logtR

∫
I
· · ·
∫
I

( ∏
p∈P

E′p,ξ
) ∏

(i,j)∈Ω

ϕi(ξi,j)dξi,j =
∏
i∈[t]

cχi,ai +O(log−1/20R), (C.22)

where E′p,ξ is as in (C.19).

Lemma C.15. We have

logtR

∫
I
· · ·
∫
I

∏
p∈P

∣∣E′p,ξ∣∣ ∏
(i,j)∈Ω

∣∣ϕi(ξi,j)∣∣dξi,j = O(1),

where E′p,ξ is as in (C.19).

Combining the two previous lemmas with Lemma C.12 we see that (C.18) holds

true and thus the proof of Theorem C.7 is completed.

C.2.2. Proofs of the intermediate results. As we have already stated this

subsection is devoted to proving all the lemmas and claims that we presented in the

previous section.

Proof of Claim C.8. Let {p1, . . . , ps} be the set of primes that divide m and

observe that since m is square-free we have that m = p1p2 . . . ps. Then, we need to

show that

En∈Zdm
∏
i∈[t]

1mi|ψi(n) =
s∏
j=1

En∈Zdpj
∏

i : pj |mi

1pj |ψi(n). (C.23)

To this end notice that |Zdm| =
∏
p|m |Zdp| and by Lemma B.12 we have

∑
n∈Zdm

∏
i∈[t]

1mi|ψi(n) =

s∏
j=1

∑
n∈Zdpj

∏
i : pj |mi

1pj |ψi(n).

Thus (C.23) holds true and the proof of the claim is completed.
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Proof of Lemma C.9. First observe that since ψis are affine linear forms the

expression
∏
i∈[t] 1mi|ψi(n) seen as a function of n is periodic with respect to the

lattice m · Zd. Having this in mind, the idea of the proof is to “fill” K with copies

of Zdm, the problem being that some of these copies may not lie entirely inside K.

In order to quantify these “superfluous” copies we set ∂K to be the boundary of K,

and also set

F = {A ⊆ Zd : A = x+Zdm, for some x ∈ m·Zd andA∩K 6= ∅, A∩(Rd\K) 6= ∅} ⊆ ∂K.

Observe that the compactness of K implies that F is a finite family. Therefore,

there exists some 0 < l < 1 such that F ⊆ ∂K + [−ml,ml]d.
We have the following simple fact from convex geometry (see, e.g., [TV06,

GT10]).

Fact C.16. For any convex body K ⊆ [−N,N ]d and for every ε > 0 we have

that

vol(∂K + [−εN, εN ]) = O(εNd).

Applying the previous fact for ε = ml/N and observing that vol(
⋃
F) = |

⋃
F| we

obtain that

|
⋃
F| = O(m ·Nd−1).

Thus, using the last estimation and the periodicity of the expression
∏
i∈[t] 1mi|ψi(n)

we have that∑
n∈K∩Zd

∏
i∈[t]

1mi|ψi(n) =
vol(K)

md

∑
n∈Zdm

∏
i∈[t]

1mi|ψi(n) +
∑

n∈(∪F)∩K

∏
i∈[t]

1mi|ψi(n)

=
vol(K)

md

∏
i∈[t]

1mi|ψi(n) +O(1)|
⋃
F|

= vol(K)αm1,...,mt +O(m ·Nd−1)

and the proof of the lemma is completed.

Proof of Lemma C.10. Taking absolute values one sees that the (LHS) of (C.15)

is bounded up to a constant that depends on A by the quantity

(logR)O(1)−A
∑

(mi,j)(i,j)∈Ω∈NΩ

mi,j square-free

αm1,...,mt

∏
(i,j)∈Ω

m
−1/ logR
i,j . (C.24)

Then, by analyzing in prime factors and using Claim C.8 (see also Corollary B.10)

we have that the previous expression can be rewritten as

(logR)O(1)−A
∏
p

∑
(ri,j)(i,j)∈Ω∈{0,1}Ω

αpr1 ,...,prtp
−(

∑
(i,j)∈Ω ri,j)/ logR, (C.25)
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where ri = max(ri,1, . . . , ri,ai). Thus, we need to eastimate αpr1 ,...,prt which is the

exact purpose of the following claim.

Claim C.17. For every prime p and for every (r1, . . . , rt) ∈ {0, 1}t \ {0}t we

have

αpr1 ,...,prt 6
1

p
.

Furthermore, if r1 = · · · = rt = 0, αpr1 ,...,prt = 1.

Proof of Claim C.17. Let p be a prime number. First of all notice that

α1,...,1 = 1, i.e. if r1 = · · · = rt = 0 we have αpr1 ,...,prt = 1.

Next, let (r1, . . . , rt) ∈ {0, 1}t\{0}t. Let n ∈ Zdp be selected uniformly at random

and observe that 1pri |ψi(n) equals 1 with probability 1/p, for every i ∈ [t] such that

ri 6= 0. Thus,the product
∏
i∈[t] 1pri |ψi(n) takes the value 1 with probability lower or

equal that 1/p, which completes the proof of the claim. �

By the previous claim we have that (C.25) is bounded by

(logR)O(1)−A
∏
p∈P

(
1 +

1

p

( ∑
(ri,j)(i,j)∈Ω∈{0,1}Ω

not all1′s

p−(
∑

(i,j)∈Ω ri,j)/ logR))
(C.26)

and by the binomial theorem, applied for every p ∈ P, we have

1 +
1

p

(
(

1

p1/ logR
+ 1)|Ω| − 1

)
= 1 +

1

p

|Ω|∑
k=1

(
|Ω|
k

)
1

pk/ logR

6 1 +
1

p1+1/ logR

|Ω|∑
k=0

(
|Ω|
k

)
= 1 +

2|Ω|

p1+1/ logR

6
(
1 +

1

p1+1/ logR

)2|Ω|
6
( ∞∑
k=0

1

pk(1+1/ logR)

)2|Ω|

=
(
1− 1

p1+1/ logR

)−2|Ω|
.

Taking now product over all primes we have that (C.26) is bounded by

(logR)O(1)−A
∏
p∈P

(
1− 1

p1+1/ logR

)−O(1)
. (C.27)

But by Proposition B.14 we have∏
p∈P

(
1− 1

p1+1/ logR

)−O(1)
= O(logRO(1))
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and thus combining this estimation with (C.27) we see that the (LHS) of (C.15)

is bounded by OA((logR)O(1)−A). But for an adequate choice of A we have that

OA
(
(logR)O(1)−A) 6 O(log−1/20R) and thus the proof of the lemma is completed.

Proof of Lemma C.11. First of all notice that for every prime p and every

ξ = (ξi,j)(i,j)∈Ω ∈ IΩ we may rewrite the Euler factor of (C.17) as follows

Ep,ξ =
∑
B⊆Ω

(−1)|B|
α(p,B)

p
∑

(i,j)∈Ω zi,j
,

where for every (i, j) ∈ Ω, zi,j = (1 + i ξi,j)/ logR. In the previous expression

α(p,B) = αpr1 ,...,prt , where ri = 1 if B ∩ Fi 6= ∅ and ri = 0 otherwise. We also

have that α(p, ∅) = 1. So, if we want to estimate Ep,ξ the first thing to do is esti-

mate α(p,B). To this end we split the family {B ⊆ Ω, B 6= ∅} in two main classes,

the vertical sets and the rest. More precisely, call a set ∅ 6= B ⊆ Ω vertical if there

exists i ∈ [t] such that B ⊆ Fi, i.e. a set B is vertical if it is contained in a fibre Fi,
and non-vertical if there is no such fibre, i.e. if it intersects more than one fibres.

Finally, notice that since N is large we may assume that

log1/10R > L. (C.28)

We first have the following claim.

Claim C.18. For every vertical set B and for every prime p with p > log1/10R

we have α(p,B) = 1
p .

Proof. Let p be prime with p > log1/10R and letB be a vertical set. Then there

exists i ∈ [t] such that B ⊆ Fi and therefore by definition α(p,B) =
∑

n∈Zdp 1p|ψi(n).

The main ingredient of the proof is to show that since p is large enough we have

that ψi : Zdp → Zp uniformly covers Zdp, i.e. it is a pd−1 to 1 mapping. To do so,

since ψi is an affine linear form we only need to show that ψi(ej) 6= 0modp, for some

1 6 j 6 d. Assume on the contrary that p|ψi(ej) for every j. Since p > L we have

|ψi(ej)| 6 ‖Ψ‖1 6 L
(C.28)

6 log1/10R < p

and thus ψi(ej) = 0 for every j. But this is clearly a contradiction since ψi is not

constant. Therefore ψi is a pd−1 to 1 mapping and hence

α(p,B) =
1

pd

∑
n∈Zdp

1p|ψi(n) =
pd−1

pd

∑
n∈Zp

1p|n =
1

p

which completes the proof of the claim. �

On the other hand, for the non-vertical sets we have the following claim.
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Claim C.19. For every non-vertical set B ⊆ Ω, we have

α(p,B) =

O(1/p2), when p 6∈ PΨ

O(1/p), when p ∈ PΨ.

Proof. Let B be a non-vertical set and observe that there exist 1 6 i < i′ 6 t

such that

α(p,B) 6 En∈Zdp1p|ψi(n)1p|ψi′ (n).

We work as in Lemma C.6. If p 6∈ PΨ let n ∈ Zdp be selected uniformly at random.

Then, the expression 1p|ψi(n)1p|ψi′ (n), seen as a function of n, takes the value 1 with

probability 1/p2. Therefore α(p,B) = O(1/p2). On the other hand, if p ∈ PΨ then

we have the following. If p|ψi(n) we would have that p|ψi′(n) also. Therefore the

expression 1p|ψi(n)1p|ψi′ (n) seen as a function of n takes the value 1 with probability

1/p and thus α(p,B) = O(1/p). Thus the proof of the claim is completed. �

Now, towards the proof of (C.20) assume first that p > log1/10R. If p 6∈ PΨ,

then by claims C.18 and C.19 we have

Ep,ξ = 1−
∑
B⊆Ω,

B vertical

(−1)|B|−1 α(p,B)

p
∑

(i,j)∈B zi,j
+

∑
B⊆Ω,

B non-vertical

(−1)|B|
α(p,B)

p
∑

(i,j)∈B zi,j

= 1−
∑
B⊆Ω,

B vertical

(−1)|B|−1 1

p1+
∑

(i,j)∈B zi,j
+O(

1

p2
) =

(
1 +O(

1

p2
)
)
E′p,ξ,

where the last equality derives from the binomial theorem. If on the other hand

p ∈ PΨ following the same steps as before we have Ep,ξ =
(
1 +O(1/p)

)
E′p,ξ.

Assume now that p 6 log1/10R. First observe that since ξ ∈ IΩ then for every

B ⊆ Ω and every (i, j) ∈ B we have that |zi,j | = O(log−1/2R) and thus

|p
∑

(i,j)∈B zi,j | = e

∣∣∑
(i,j)∈B zi,j log p

∣∣
= 1 +O(

∣∣ ∑
(i,j)∈B

zi,j
∣∣ log p) = 1 +O(

log p

log1/2R
),

(C.29)

where we used the elementary inequality that for every c < 1 and for every x > 0

ecx 6 1 + cx. By Taylor expansion in w = p
∑
zi,j around w = 1, (C.29) and using

once again the fact that E′p,ξ = O(1) for p 6 log1/10R we have

Ep,ξ
E′p,ξ

=
Ẽp

Ẽ′p
+O(

log p

log1/2R
),

where Ẽp, Ẽ
′
p are defined setting all zi,j = 0 in Ep,ξ and E′p,ξ respectively, i.e.

Ẽp =
∑
B⊆Ω

(−1)|B|α(p,B) (C.30)
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and

Ẽ′p =
∑
B⊆Ω

B vertical

(1− 1

p
)(−1)|B|−1

. (C.31)

Therefore, in order to complete the proof of the lemma we need to show that∑
B⊆Ω

(−1)|B|α(p,B) = βΨ,p

∑
B⊆Ω

B vertical

(1− 1

p
)(−1)|B|−1

. (C.32)

To this end, using the binomial theorem we see that for every i ∈ [t] we have∑
∅6=B⊆{i}×[ai]

(−1)|B|−1 = 1

and thus the (RHS) of (C.32) may be rewritten as βΨ,p(1− p−1)t which by (C.5) is

equal to En∈Zdp
∏
i∈[t] 1p-ψi(n) and and thus we reduced our task to showing∑

B⊆Ω

(−1)|B|α(p,B) = En∈Zdp
∏
i∈[t]

1p-ψi(n). (C.33)

By the inclusion-exclusion principle the (RHS) of the previous expression can be

written as ∑
r1,...,rt∈{0,1}

(−1)r1+···+rtEn∈Zdp
∏

i : ri=1

1p|ψi(n)

which is equal to ∑
r1,...,rt∈{0,1}

(−1)r1+···+rtαpr1 ,...,prt .

Thus we have to show that the (LHS) of (C.32) is equal to the previous expression.

This will be done by comparing the coefficients of αpr1 ,...,prt in these two expressions.

For the (LHS) of (C.32) fix apr1 ,...,prt and let I = {i ⊆ [t] : ri = 1}. Then the

coefficient of apr1 ,...,prt equals∑
B⊆Ω,

B∩Fi 6=∅, for everyi∈I

(−1)|B| =
∏
i∈I

∑
Bi⊆[ai]

(−1)|Bi| = (−1)|I|,

where for the last equality we used the binomial theorem. With the previous es-

timation we showed that (C.33) holds true and thus the proof of Lemma C.11 is

completed.

Proof of Lemma C.12. The main idea is to dispose at first the contribution of

large primes (p > log1/10R) and then deal with the small ones.
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Let ξ ∈ IΩ. From Lemma C.6 we have that βΨ,p = 1 + O(1/p2) if p 6∈ PΨ and

βΨ,p = 1 +O(1/p) if p ∈ PΨ, which yields that

∏
p∈P

βΨ,p 6 e
O(X). (C.34)

We also have ∏
p∈P,

p6log1/10R

βΨ,p 6 e
O(X). (C.35)

By these estimations we obtain that

∏
p∈P,

p>log1/10R

βΨ,p 6 exp
(
O(

∑
p>log1/10R

p∈PΨ

1

p
)) 6 exp

(
O(log−1/20R

∑
p>log1/10R

p∈PΨ

1
√
p

))
)

= exp
(
O(X log−1/20R)

)
6 1 +O(eO(X) log−1/20R),

where for the last inequality we used the elementary inequality eλx 6 1 + λex, for

every real numbers λ, x such that λ 6 1 and x > 0. On the other hand using

the estimations for the βΨ,p once again and the inequalities 1 − x 6 e−x for every

0 6 x < 3/2 and e−λx > 1− λex for λ, x we also have

∏
p∈P,

p>log1/10 R

βΨ,p > 1 +O(eO(X) log−1/20R)

and thus ∏
p∈P,

p>log1/10R

βΨ,p = 1 +O(eO(X) log−1/20R). (C.36)

Thus by the previous estimation and by (C.35) we see that it suffices to show the

following

∏
p∈P

Ep,ξ =
( ∏

p∈P,
p6log1/10 R

βΨ,p +O(eO(X) log−1/20R)
) ∏
p∈P

E′p,ξ. (C.37)
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In order to do so, we use Lemma C.11 and obtain that

∏
p∈P,

p>log1/10R

Ep,ξ = exp
( ∑
p>log1/10 R

p 6∈PΨ

1

p2
+

∑
p>log1/10R

p∈PΨ

1

p

) ∏
p∈P,

p>log1/10R

E′p,ξ

= exp
(
O(1 +X) log−1/20R

) ∏
p∈P,

p>log1/10R

E′p,ξ

=
(
1 +O(eO(X) log−1/20R)

) ∏
p∈P,

p>log1/10R

E′p,ξ,

where for the last we equality we worked as in the proof of (C.36). But then we see

that we have completed our first task, that is to discard the contribution of large

primes, since now it suffices to prove

∏
p∈P,

p6log1/10 R

Ep,ξ =
( ∏

p∈P,
p6log1/10R

βΨ,p +O(eO(X) log−1/20R)
) ∏

p∈P,
p6log1/10R

E′p,ξ. (C.38)

To this end , by Lemma C.11 it suffices to show that

∏
p∈P,

p6log1/10 R

(
βΨ,p +O

( log p

log1/2R

))
=

∏
p∈P,

p6log1/10R

βΨ,p +O(eO(X) log−1/20R).

Assume first that there exists some p0 6 log1/10R such that βΨ,p0 = 0. Then, since

βΨ,p = 1 +O(1/p) (Lemma C.6) we have

∏
p∈P,

p6log1/10R

(
βΨ,p +O

( log p

log1/2R

))
= O

( log p0

log1/2R

) ∏
p∈P,

p6log1/10 R
p 6=p0

(
βΨ,p +O

( log p

log1/2R

))

= O
( log p0

log1/2R

)
eO(X) = O(eO(X) log−1/20R).
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On the other hand, if we assume that no βΨ,p vanishes we have the following. By

Lemma C.6 we have that βΨ,p = 1 +O(1/p) and thus∏
p∈P,

p6log1/10R

(
βΨ,p +O

( log p

log1/2R

))
=

∏
p∈P,

p6log1/10R

βΨ,p ·
∏
p∈P,

p6log1/10 R

(
1 +O(

log p

log1/2R
)
)

=
( ∏

p∈P,
p6log1/10R

βΨ,p

)(
1 +O(log−1/3R)

)
(C.35)

=
∏
p∈P,

p6log1/10R

βΨ,p +O(eO(X) log−1/3R)

=
∏
p∈P,

p6log1/10R

βΨ,p +O(eO(X) log−1/20R).

This completes the proof of Lemma C.11.

Proof of Claim C.13. Let ξ = (ξi,j)(i,j)∈Ω ∈ IΩ, and for every (i, j) ∈ Ω let

zi,j = (1 + i ξi,j)/ logR. Observe that |zi,j | = O(log−1/2R), for every (i, j) ∈ Ω. By

Lemma B.13 we see that∏
p∈P

E′p,ξ =
∏
B⊆Ω,

B vertical

( 1∑
(i,j)∈B zi,j

+O(1)
)(−1)|B|

=
∏
B⊆Ω,

B vertical

(
(1 +O(log−1/2R)

)(−1)|B|
∏
B⊆Ω,

B vertical

( ∑
(i,j)∈B

zi,j

)(−1)|B|−1

=
(
(1 +O(log−1/2R)

) ∏
B⊆Ω,

B vertical

( ∑
(i,j)∈B

zi,j

)(−1)|B|−1

,

where for the last equality we used the binomial theorem (see the proof of Lemma

C.11 above). This completes the first part of the lemma. For the second part of the

claim we work similarly. First, by the definition of zi,j we have∏
p

E′p,ξ =
∏
B⊆Ω,

B vertical

( 1

logR

)(−1)|B|−1 ∏
B⊆Ω,

B vertical

(1 + ξi,j)
(−1)|B|−1

. (C.39)

By the binomial theorem the first factor of the (RHS) of the previous expression

equals log−tR, while for the second factor we have∣∣ ∏
B⊆Ω,

B vertical

(1 + ξi,j)
(−1)|B|−1∣∣ 6 O(

∏
(i,j)∈Ω

(1 + |ξi,j |)O(1))
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Thus, combining the two previous estimations we see that (C.21) holds true. There-

fore the proof of Claim C.13 is completed.

Proof of Lemma C.14. By the first part of Claim C.13 we have that the (LHS)

of (C.22) equals

logtR

∫
I
· · ·
∫
I

∏
B⊆Ω,

B vertical

∑
(i,j)∈B

(zi,j)
(−1)|B|−1

∏
(i,j)∈Ω

ϕi(ξi,j)dξi,j

+ O(log−1/2R) logtR

∫
I
· · ·
∫
I

∏
(i,j)∈Ω

ϕi(ξi,j)dξi,j

By Proposition C.1 (the rapid decrease of ϕ) we have

logtR

∫
I
· · ·
∫
I

∏
B⊆Ω,

B vertical

∑
(i,j)∈B

(zi,j)
(−1)|B|−1

∏
(i,j)∈Ω

ϕi(ξi,j)dξi,j

= logtR

∫
R
· · ·
∫
R

∏
B⊆Ω,

B vertical

∑
(i,j)∈B

(zi,j)
(−1)|B|−1

∏
(i,j)∈Ω

ϕi(ξi,j)dξi,j +O(log−1/20R).

and also

O(log−1/2R) logtR

∫
I
· · ·
∫
I

∏
(i,j)∈Ω

ϕi(ξi,j)dξi,j = O(log−1/20R)

On the other hand,∫
R
· · ·
∫
R

∏
B⊆Ω,

B vertical

∑
(i,j)∈B

(zi,j)
(−1)|B|−1

∏
(i,j)∈Ω

ϕi(ξi,j)dξi,j

=
∏
i∈[t]

∫
R
· · ·
∫
R

∏
∅6=B⊆{i}×[ai]

(logR)(−1)|B|
( ∑

(i,j)∈B

(1 + iξi,j)
)(−1)|B|−1

ai∏
j=1

ϕ(ξi,j)dξi,j

= log−tR
∏
i∈[t]

cχi,ai .

Combining the three previous estimations the proof of Lemma C.14 follows.

Proof of Lemma C.15. By Proposition C.1 we have |φi(ξi,j)| = OA
(
(1 + ξi,j)

−A),
for every i ∈ [t], ξi,j ∈ I and A > 0. Therefore if we choose A to be adequately large

by (C.21) the proof of the Lemma C.15 follows.

Remark 4. By rerunning the proof we see that Theorem C.7 holds not only for

convex bodies K ⊆ [−N,N ]d but also for convex bodies that belong to translations

of [−N,N ]d, i.e. for K ′ ⊆ x+ [−N,N ]d for some x ∈ Zd.



132 C. THE GOLDSTON–YILDIRIM ESTIMATE

Remark 5. If we assume that χ1, . . . , χt are supported on [−1, 1] then we see

that γ 6 1
10t .

C.3. The Goldston–Yildirim correlation estimates-A special case

Using theorem C.7 we will now prove a theorem also known as the Goldston–

Yildirim correlation estimate, see [GT08, GT10, CFZ14]. This theorem gives as an

immediate result Proposition 12.4. From now on let D be a positive integer, let

χ : R → [0, 1] be a smooth and supported on [−1, 1] function such that χ(0) = 1

and
∫ 1

0 |χ
′(x)|2dx = 1, and let N be a large integer. Also, let w = log(4)N, W =∏

p∈P,p6w p, and Ñ = bN/W c. Finally, let R = Ñγ/2 for some small γ = γ(χ,D) >

0.

Theorem C.20 (Goldston–Yildirim correlation estimate). Let 1 6 d, t, L 6 D,

b1, . . . , bD ∈ {0, . . . ,W − 1} be coprime to W and Ψ = (ψ1, . . . , ψt) be a system of

affine linear forms such that ψi : Zd → Z, ‖Ψ‖1 = L and such that no two of the ψis

are affinely related. Then, for any convex body K ⊆ x+ [−Ñ , Ñ ]d, for some x ∈ Zd

we have that(φ(W )

W

)t ∑
K∩Zd

∏
j∈[t]

Λχ,R,2
(
Wψj(n) + bij

)
= vol(K) + o(Ñd), (C.40)

for every i1, . . . , it ∈ [t]. In the previous expression Λχ,R,2 is as in (12.8).

Proof. Let x ∈ Zd, K ⊆ x + [−Ñ , Ñ ]d be a convex body, let i1, . . . , it ∈ [t],

and let b = (bi1 , . . . , bit). Moreover, let βWΨ+b,p be the p-local factor of WΨ +b, for

every prime p, let cχ,2 be the sieve factor of χ with parameter 2, let PWΨ+b be as

in (C.7) and X =
∑

p∈PWΨ+b
p−1/2.

By Theorem C.7, Remark 4 and since by the choice of χ, cχ,2 = 1 we have∑
K∩Zd

∏
j∈[t]

Λχ,R,2
(
Wψj(n) + bij

)
=
∏
p∈P

βWΨ+b,p · vol(K) +O
(
eO(X) Ñd

log1/20R

)
.

(C.41)

For the error term first we observe that no two of the linear forms Wψi(n) +

bij are affinely related. Also we observe that if p ∈ PWΨ+b then p 6 w which

yields that p = O(w) = O(log(4)N) and thus X = O(log log log1/2N). Hence,

eO(X) log−1/20R = o(1), and thus the error term of (C.41) becomes o(Ñd).

It remains to show that
∏
p∈P βWΨ+b,p = (W/φ(W ))t. To this end, notice that

if p is prime with p 6 w we have βWΨ+b,p =
(
p/(p− 1)

)t
and thus∏

p∈P
p6w

βWΨ+b,p =
( W

φ(W )

)t
.
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Moreover, if p is prime with p > w we have that the affine linear forms Wψi(n)+ bij
are not related modulo p. Thus by Claim C.19 we have that βWΨ+b,p = 1 +O(1/p2)

and so
∏
p>w βΨ,p = 1+o(1). Combining the previous estimations we see that (C.40)

holds true and thus the proof of Theorem C.20 is completed. �
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[NRS06] B. Nagle, V. Rödl, and M. Schacht. The counting lemma for regular k-

uniform hypergraphs. Random Structures & Algorithms, 28(2):113–179,

2006.

[Pis12] G. Pisier. Grothendieck’s theorem, past and present. Bulletin of the

American Mathematical Society, 49:237–323, 2012.

[Pis16] G. Pisier. Martingales in Banach spaces, volume 155. Cambridge Uni-

versity Press, 2016.

[Pol12] DHJ Polymath. A new proof of the density Hales-Jewett theorem. An-

nals of Mathematics, 175:1283–1327, 2012.

[Ros84] H. E. Rose. Subrecursion: functions and hierarchies. Clarendon Press,

1984.
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[RTST06] V. Rödl, E Tengan, M Schacht, and N Tokushige. Density theorems

and extremal hypergraph problems. Israel Journal of Mathematics,

152(1):371–380, 2006.

[RTTV08] O. Reingold, L. Trevisan, M. Tulsiani, and S. Vadhan. Dense sub-

sets of pseudorandom sets. In Foundations of Computer Science, 2008.

https://web.math.princeton.edu/~naor/homepage%20files/inequality.pdf
https://web.math.princeton.edu/~naor/homepage%20files/inequality.pdf


138 Bibliography

FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 76–85. IEEE,

2008.
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