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ABSTRACT

We examine volume computation of general-dimensional polytopes andmore general con-
vex bodies, defined as the intersection of a simplex by a family of parallel hyperplanes, and
another family of parallel hyperplanes or a family of concentric ellipsoids. Such convex
bodies appear in modeling and predicting financial crises.

We design and implement practical algorithms in the exact and approximate setting, we
experimentally juxtapose them and study the tradeoff of exactness and accuracy for speed.
We analyze the following methods in order of increasing generality:

• rejection sampling relying on uniformly sampling the simplex, which is the fastest
approach, but inaccurate for small volumes.

• exact formulae based on the computation of integrals of probability distribution func-
tions, which are the method of choice for intersections with a single hyperplane.

• an optimized Lawrence sign decomposition method, since the polytopes at hand are
shown to be simple with additional structure.

• Markov chain Monte Carlo algorithms using random walks based on the hit-and-run
paradigm generalized to nonlinear convex bodies and relying on new methods for
computing a ball enclosed in the given body, such as a second-order cone program.
This last is experimentally extended to non-convex bodies with very encouraging
results.

We give the Tables of experiments showing our claims. A part of the current Thesis is
given in the paper titled ”Practical Volume Computation of Structured Convex Bodies, and
an Application to Modeling Portfolio Dependencies and Financial Crises” [6] which was ac-
cepted for presentation at SOCG 2018 (34th International Symposium on Computational
Geometry).

SUBJECT AREA: Computational Geometry

KEYWORDS: Polytope volume, convex body, simplex, sampling, financial portfolio



ΠΕΡΙΛΗΨΗ

Στην παρούσα διπλωματική εργασία αναπτύσουμε και βελτιώνουμε μεθόδους και αλγορίθ-

μους για την αποτελεσματική επίλυσηπροβλημάτων υπολογισμού όγκου. Τα προβλήματα
τα οποία επιλύουμε προκύπτουν από μία εφαρμογή της οικονομικής επιστήμης που αφορά
την κατασκευή ενός μαθηματικού μοντέλου πρόβλεψης χρηματιστηριακών κρίσεων.

Τα προβλήματα υπολογισμού όγκου προκύπτουν από την τομή δύο οικογενειών παράλλη-

λων υπερεπιπέδων ή από μια οικογένεια πράλληλων υπερεπιπέδων και μια οικογένεια
από ομόκεντρες ελλείψεις με το μοναδιαίο άπλοκο σε αυθαίρετη διάσταση. Επομένως
ζητείται ο όγκος απλώνπολυτόπων, αλλά και κυρτών ή μη κυρτών μη γραμμικών σωμάτων.

Για τον υπολογισμό αυτών των όγκων αναπτύσουμε ή βελτιώνουμε αλγορίθμους όπως:

• Δημιουργίας τυχαίων σημείων στο εσωτερικό του απλόκου και προσέγγιση του ποσο-

στού του όγκου όλων των σωμάτων ως προς τον όγκο του απλόκου.

• Χρησιμοποίηση επαναληπτικών τύπων που δίνουν την ακριβή τιμή του όγκου της
τομής ενός υπερεπιπέδου και ενός απλόκου.

• Χρησιμοποίηση του τύπου του Lawrence για τον όγκο απλώνπολυτόπων και βελτιστο-

ποίησή του στα πλαίσια του δικού μας προβλήματος.

• Χρησιμοποίηση αλγορίθμωνMonte Carlo και τυχαίου περιπάτου και πιο συγκεκριμέ-
να τον αλγόριθμο VolEsti[14], τον οποίο επεκτείνουμε για μη γραμμικά σώματα, ενώ
δείχνουμε πειραματικά ότι λειτουργεί ικανοποιητικά για μικρές σχετικά διαστάσεις και
για τα μη κυρτά σώματα που προκύπτουν κάνοντας τις κατάλληλες τροποποιήσεις.

Τέλος δίνονται σε πίνακες όλα τα πειράματα που εκτελέσαμε και χρησιμοποιούνται για
να δείξουμε τους ισχυρισμούς που διατυπώνονται στην εργασία. Κομμάτι της εργασίας
αναπτύσσεται σε επιστημονικό άρθρο με τίτλο ”Practical Volume Computation of Struc-
tured Convex Bodies, and an Application to Modeling Portfolio Dependencies and Fi-
nancial Crises” [6] το οποίο θα παρουσιαστεί τον Ιούνιο του 2018 στο συνέδριο με την
επωνυμία SOCG 2018 (34th International Symposium on Computational Geometry).

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Υπολογιστική Γεωμετρία

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: Όγκος πολυτόπου, κυρτό σώμα, άπλοκο, ανίχνευση κρίσεων στα οικονομικά
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Practical Volume Computation of Structured Convex Bodies for Modeling Financial Crises

1. INTRODUCTION

Given that volume computation of polytopes is #P-hard for both V- and H-representations
[12] and no poly-time algorithm can achieve better than exponential error [13], the prob-
lem is not expected to admit of an efficient deterministic algorithm in general dimension.
Developing algorithms for volume computation has received a lot of attention in the exact
setting [5]. In the approximate setting, following the breakthrough polynomial-time algo-
rithm by random walks [11], several algorithmic improvements ensued. The current best
theoretical bounds are in [25] and for polytope sampling in [26]. Interestingly, only two
pieces of software offer practical algorithms in high dimension: VolEsti, a public-domain
C++ implementation that scales to a few hundred dimensions [14], based on the Hit-and-
Run paradigm [27], and the Matlab implementation of [8], which treats hyperplanes as an
ellipsoid, and seems competitive to VolEsti in very high dimensions. Sampling from non-
convex bodies appears in experimental works, with very few methods offering theoretical
guarantees, e.g. in star shaped bodies [7] or, more recently, in [1].

In the current thesis we consider some volume computation problems that arise from a
financial application which is described in 7.1. For a specific set of assets we want to
characterize portfolios by their return and their risk which is the variance of the portfolios’
returns. The goal is the detection of crises through return/volatility dependency and to
measure the efficiency of financial markets. If we consider the canonical simplex ∆d ⊂
Rd+1 where each point represents a portfolio and d + 1 is the number of assets the first
is about a family of parallel hyperplanes and a family of concentric ellipsoids intersecting
the canonical simplex and the second consists of two families of parallel hyperplanes
intersecting the canonical simplex. The copulas for the two problems arise from all the
volume computations defined by the intersections.

We design and implement the following different approaches for volume computation: Effi-
cient sampling of the simplex and using rejection to approximate the target volume, which
is fast but inaccurate for small volumes. Exact formulae of integrals of appropriate prob-
ability distribution functions, which are implemented for the case of a single hyperplane.
Optimizing the use of Lawrence’s sign decomposition method, since the polytopes at hand
are shown to be simple with extra structure; a major issue here is numerical instability. Ex-
tending state-of-the-art randomwalks based on the hit-and-run paradigm to convex bodies
defined as the intersection of linear halfspaces and ellipsoids. The latter is experimentally
generalized to non-convex bodies defined by two ellipsoids with same quadratic form, and
accurate approximations are obtained under certain mild conditions.

Our randomized algorithms for volume approximation extend VolEsti, where themain prob-
lem to address is to compute the maximum inscribed ball of the convex body P a.k.a.
Chebychev ball. This reduces to a linear program when P is a polytope. For a convex
body defined by intersecting a polytope with k balls, the question becomes a second-order
cone program (SOCP) with k cones. When interchanging input balls with ellipsoids, the
SOCP yields a sufficiently good approximation of the Chebychev ball.

Our implementations are in C++, lie in the public domain (github), are based on CGAL,

A. Chalkis 12
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rely on Eigen for linear algebra, on Boost for random number generators, and experiment
with two SOCP solvers for initializing random walks. Our software tools are general and
of independent interest. They are applied to allow us to extend the computation of a
portfolio score to up to 100 dimensions, thus doubling the size of assets studied in financial
research.

The rest of the thesis is organized as follows. The Chapter 2 gives the basic definitions and
lemmas, the Chapter 3 overviews methods for representing and uniform sampling from
simplices. In Chapter 4 we give some theoretical and practical results for the rejection-
sampling method. Chapter 5 considers volumes defined as the intersection of a simplex
and one hyperplane or more hyperplanes, the latter being organized in at most two families
of parallel hyperplanes. Chapter 6 studies convex bodies defined as the intersection of a
simplex and an ellipsoid, for which random walk methods are developed. In Chapter 7 we
givemore details about the financial application and we conclude with experimental results
and open questions for future work. Tables of experiments are given in the Appendix.

A. Chalkis 13
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2. BASIC CONCEPTS

In this chapter we give some basic definitions and theorems which are used in the next
chapters.

2.1 Polytopes

We will work with polytopes in H-representation and V-representation.

Definition 2.1. A H-representation of a polytope in d dimension is system of inequalities

Ax ≤ b

where A is a m × d matrix and b an m-dimensional vector. The feasible region S = {x ∈
Rd|Ax ≤ b} is called a polyedron.
A bounded polyhedron is called a polytope.

So every polytope can be expressed as a set of d-dimension halfspaces.

A polytope, P , can be given in V-representation where we are given a set of vertices V
then

P = conv(V )

where,

conv(V ) := {
|V |∑
i=1

αivi|vi ∈ V, αi ≥ 0,

|V |∑
i=1

αi = 1}

So the V-representation of the polytope is simply the convex hull conv(V ) of the vertices.

Definition 2.2. We call the (d−1)-dimensional faces of a polytope of dimension d a facet.

In some cases we have a H-representation of a polytope corresponding to a m× d matrix
A, but some halfspaces, e.g. ℓ, could be redundant in the sense that them−ℓ halfspaces
define the same polytope.

Definition 2.3. A row ai of A corresponding to an inequality aix ≤ bi is called redundant if
and only if the feasible region S does not change when we delete the row. Otherwise it is
called non-redundant.

Definition 2.4. The H-redundancy problem of a polytope P is the problem of finding a mini-
mal set of non-redundant constraints representing P , where P is given in H-representation.

A. Chalkis 14
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Inmany problemswewill work with simplices which is a specific kind of polytope. A simplex
is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. A d-
simplex is a d-dimensional polytope which is the convex hull of its d+ 1 vertices.
Definition 2.5. Let the d+1 points u0, . . . , ud ∈ Rd are affinely independent, which means
u1−u0, . . . , ud−u0 are linearly independent. Then, the set of points,

R =

{
λ0u0 + · · ·+ λdud|λi ≥ 0,

d∑
i=0

λi = 1

}
is called a d-simplex.

A special case of a d-simplex is the unit d-simplex, ∆d.
Definition 2.6. The convex hull of the d+ 1 vertices,

Vj = (v1j, . . . , vij)

where

vij = δij =

{
1 if i = j

0 if i ̸= j
, for j = 1, . . . , d+ 1 and i = 1, . . . , d

is called the unit d-simplex ∆d in Rd (or the unit simplex in d dimension).

Another representation of the unit simplex is the canonical simplex which we use in the
next chapters.
Definition 2.7. The convex hull of the d vertices,

Vj = (v1j, . . . , vij)

where

vij = δij =

{
1 if i = j

0 if i ̸= j
, for j = 1, . . . , d and i = 1, . . . , d

is called the canonical d−1-simplex∆d−1 inRd (or the canonical simplex in d−1 dimension).

2.2 Convex sets and bodies

Definition 2.8. A set C ⊂ Rd is called convex, if for any two points x, y ∈ C the line
segment [x, y] := {z ∈ Rd|z = tx+ (1−t)y , for 0 ≤ t ≤ 1} is entirely in C.
Definition 2.9. A set C ⊂ Rd is called convex body, if it is closed, bounded and convex
with non-empty interior.
Theorem 2.1. If X is a convex set and x1, . . . , xk are any points in it, then

x =
k∑
i

λixi

where all λi ≥ 0 and
∑k

i λi = 1 is also in X.

A set that is not convex is called a non-convex set.

A. Chalkis 15
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3. SAMPLING UNIFORMLY FROM SIMPLEX

In this chapter we give all the known algorithms to sample uniformly from an arbitrary
simplex or from the unit simplex. We experimentally compare them and make some im-
provements. In order to improve the implementations we use a Bloom filter variation. First
we give all the known algorithms for sampling from the unit simplex and then from an ar-
bitrary one. Finally we end up with the optimal implementations in practice.

3.1 Smith and Tromble algorithm

Smith and Tromble in [37] give an O(d log d) algorithm for sampling from the unit Simplex
in Rd. They suggest the following:

Algotrithm 1:

• Generate d + 2 distinct integers x0, x1, · · · , xd randomly in {0, 1, 2, · · · ,M} and
set x0 = 0, xd+1 = 1.

• Sort sequence xi: x0 < x1 < · · · < xd+1

• Define point y in Rd+1: yi =
xi − xi−1

M
, i = 1, · · · , d+ 1, so

∑d+1
i=1 yi = 1.

• Then point y belong to the canonical simplex in Rd+1. So if we ignore the last
coordinate we project them to the ∆d.

The algorithm above is given by Rubinstein and Krose in [34] too.

Figure 1: Smith and Tromble algorithm
before projection, d = 1

Figure 2: Smith and Tromble algorithm
before projection, d = 2

Sorting takes O(d log d) and if we assume that we have a perfect hash function the distinct
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choice of integers can be done in O(d). So total complexity is O(d logd). Nevertheless
in practice distinct choice of d integers causes some problems as the assumption of a
perfect hash function is not so simple. If we use C++ structures as std :: unordered_map
or std :: set, the implementation becomes worse, for d ≤ 600, than using std :: vector with
a linear search in every step (when complexity becomes O(d2)). Figures 3, 4 below shows
that std :: vector is better for a large number of dimensions.

Figure 3: Comparing data structures for
Smith’s & Tromble’s algorithm.

Figure 4: Comparing data structures for
Smith’s & Tromble’s algorithm.

3.1.1 Hash function (division method)

In order to overcome these problems we implemented a hash function with the division
method. Our keys are integers, so we can define the following hash function:

h(xi) = ximodp

And p is the closest prime number to
⌈
d

3

⌉
and p >

⌈
d

3

⌉
. We can assume that the chosen

integers are distributed uniformly in the hash table. So in every step we check in O(1)
for distinct choice and we use O(d) memory. In figure 5 we see the improvement but
std :: vector is still better for d ≤ 150.

3.1.2 Filter

A more efficient implementation is to use a variation of Bloom filter. The difference here
is that we take a larger filter than the stream and only one hash function. So in order to
guarantee distinct choice we do the following:

• We set p to be the smallest prime number such that p > 3d.
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Figure 5: Comparing hash function with default C++ data structures.

• We construct the vector-filter ∈ Rp, filter = [0, 0, · · · , 0]

• In step i we uniformly pick integer xi. If filter(ximodp) = 1 the we reject xi and
generate another integer. Otherwise we accept xi and add it to the list.

It’s easy to notice that in some step i there is a probability to reject an integer that we
shouldn’t because filter(ximodp) = 1 from a previous step j with xj ̸= xi (false positive).
But if we assume that the integers are distributed uniformly in the filter then the probability
to generate two different integers mapped to the same filter’s position is 1

3d
· 1
3d

=
1

9d2
. In

figures 6, 7 we can see that filter is better than hash function in order to guarantee distinct
choice. But as we can notice in 7 the implementation using std :: vector is still better for
d ≤ 60. So for d > 60 we can use our filter.

Figure 6: Comparing Bloom filter variation
with hash function.

Figure 7: Comparing Bloom filter variation
with hash function.
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3.2 Rubinstein’s and Melamed’s algorithm

A more efficient algorithm is given by Rubinstein and Melamed in [35]. They suggest the
following:

Algorithm 2:

• Generate d+1 independent unit-exponential random variables Y1, · · · , Yd+1 and
normalize, computing T =

∑d+1
i=1 Yi and then return Y ′

i = Yi/T .

• Y ′ will belong to the canonical simplex in Rd+1 and we can project it to the unit
simplex ∆d as we did in Algorithm 1.

To generate one point in unit simplex takes O(d) time. But in figures 8, 9 we can notice
that Algorithm 2 is faster for d > 80 than our implementation for Algorithm 1 but for d ≤ 80
is slower due to constants.

So we can experimentally conclude that the most efficient implementation for sampling
from the unit simplex is Algorithm’s 1 implementation for d ≤ 80 and Algorithm’s 2 imple-
mentation for d > 80. Furthermore we can assume with safety that the total complexity for
uniformly sampling k points in ∆d is O(kd) in practice.

Figure 8: Comparing Rubinstein’s &
Melamed’s algorithm with Smith’s &

Tromble’s algorithm.

Figure 9: Comparing Rubinstein’s &
Melamed’s algorithm with Smith’s &

Tromble’s algorithm.

3.3 Sampling from an arbitrary simplex

If we uniformly sample a point from the unit simplex we can easily map it to a point in the
arbitrary simplex through a linear transformation. The idea outcomes from figure 10 (an
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example in R2). Let V = {v0, v1, . . . , vd} be the set of vertices of the arbitrary simplex.
First we shift our simplex to the origin. Then if x = (x1, . . . , xd) is a point in the unit simplex
we can map it to the shifted simplex. We define matrix,

T =


v11 − v01 v21 − v01 v31 − v01 . . . vd1 − v01
v12 − v02 v22 − v02 v32 − v02 . . . vd2 − v02

... ... ... . . . ...
v1d − v0d v2d − v0d v3d − v0d . . . vdd − v0d

 (3.1)

Through matrix in 3.1 we define the linear transformation which maps points from the unit
simplex to the arbitrary simplex below,

W (x) = Tx+ v0 (3.2)

Figure 10: Transform arbitrary simplex.

We can easily prove that the mapping through linear transformation 3.2 is uniform preserv-
ing. So in order to sample from an arbitrary simplex we could first sample from the unit
and then apply the linear transformation. Expanding Smith’s and Tromble’s proof about
uniform sampling from unit simplex it is enough to show that 3.2 is 1-1 in order to prove
uniform preserving. Indeed it’s easy to notice that kerT={0} so 3.2 is bijective.
Applying 3.2 results to a total complexity O(d2) for uniformly sampling one point from an
arbitrary simplex.

In figure 11 we give time execution for sampling 5000 points from an arbitrary simplex
using linear transformation 3.2. In figure 12 we give time execution related with the quan-
tity d2. We notice that we have an almost perfect positive linear relation and Pearson’s
coefficient is 0.9966. So we can conclude that time complexity in practice is O(d2).
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Figure 11: Owen’s algorithm time efficiency. Figure 12: Owen’s algorithm time
complexity.

3.3.1 Owen’s algorithm

Art Owen in [33] gives a seemingly different algorithm for sample from an arbitrary simplex,
but it all ends to linear transformation 3.2. His idea begins with Dirichlet Distribution which
s.p.p. is:

D(α)−1

d∏
j=1

x
αj−1
j , x ∈ ∆d−1

While D(α) =
∏d

j=1 (α)/(
∑d

j=1 α) and ∆d−1 is the unit simplex in Rd−1. If α = 1, for every
j we have a random variable X ∼ U(∆d−1). So in order to sample from X we have to do
the followings:

• Let U1, · · · , Ud be independent U(0, 1) random variables with U0 ≤ U1 ≤ · · · ≤ Ud

and assume U0 = 0, Ud+1 = 1.

• We define the random variable Xj = Uj − Uj−1, j = 1, · · · , d + 1 and then X ∼
U(∆d), where ∆d ⊂ Rd+1 is the canonical simplex in Rd+1.

• Let vj, with j = 1, · · · , d+ 1 be the vertices of the arbitrary simplex. Then

Y =
d+1∑
j=1

Xjvj, where X ∼ U(∆d) (3.3)

would generate uniformly random points in that arbitrary simplex.

So Art Owen suggest us to sample points from the unit simplex as Smith and Tromble do
and then apply mapping 3.3 to the arbitrary simplex. But it is easy to notice that 3.3 is
equivalent to 3.2 as 3.3 maps a point that is sampled from the canonical simplex ∆d ⊂
Rd+1 before we project it to the unit simplex ∆d. Moreover there is a bijective relation
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between points in the canonical simplex and the unit simplex. So that means that we
could equivalently sample points from the unit simplex as we described in 3.1 and then
apply 3.3.

Furthermore it is easy to notice that 3.3 takes d2 + d multiplications and d2 additions and
3.2 takes d2 multiplications and 2d2 additions. So 3.2 needs more operations than 3.3. In
figures 13, 14 we notice that advantage. Figure 15 shows the time ratio between 3.2 over
3.3.

Figure 13: Comparing Owen’s algorithm with
Smith’s & Tromble’s for arbitrary simplex.

Figure 14: Comparing Owen’s algorithm with
Smith’s & Tromble’s for arbitrary simplex.

Figure 15: Ratio between time execution of Owen’s algorithm over Smith’s & Tromble’s for
arbitrary simplex.
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3.3.2 Grimme’s algorithm

Cristian Grimme in [16] gives a different but less time efficient algorithm for uniformly
sampling points from an arbitrary simplex. His main idea comes from Turk’s method. We
will not deal with details, so we just give the formula:

PdS =
d∑

i=1

(
(1− λi)

i−1∏
j=1

λj

)
Ai +

( d∏
k=1

λk

)
Ad+1 =

PdS =
d+1∑
i=1

(
(1− λi)

i−1∏
j=0

λj

)
Ai with λ0 = 1 and λd+1 = 0

Vectors (vertices) Ai, i = 1, · · · , d+1, spanning the simplex. In order to choose a random
point for each λj ∈ (λ1, · · · , λd) we pick a random number zj ∈ U(0, 1) and set λj =
k
√
zj with k = d+ 1− j.

The time complexity for a random point to be generated is O(d2). In figures 16, 17 we can
notice that Grimme’s algorithm is slower for every dimension due to constants.

Figure 16: Comparing Grimme’s algorithm with
Smith’s & Tromble’s algorithm.

Figure 17: Comparing Grimme’s algorithm with
Smith’s & Tromble’s algorithm.

Finally we can conclude that the most efficient method to uniformly sample points from
an arbitrary simplex is to sample points as we described in 3.1 and then map them to the
arbitrary simplex applying mapping 3.3
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4. REJECTION-SAMPLING METHOD

In this chapter we discuss rejection-sampling methods which are used for the volumes’
computations in the financial application we describe in 7.1. At first we give some results
for the accuracy of the rejection-sampling algorithmic family. We show that we can bound
the error with high probability by setting an appropriate number of points we sample. This
result can be applied in rejection-sampling method from a simplex or a sphere. Next we
use these results in order to solve the main problem efficiently and finally we give formulas
for the ellipsoid transformation to a full dimensional ellipsoid intersecting the unit simplex
∆d. The latter is necessary for the random walk methods we use in chapter 6.

4.1 Sampling-Rejection accuracy

Let B be a convex or non convex full dimensional body in dimension d, let S be an en-

closing simplex such that B ⊆ S and let p = V ol(B)

V ol(S)
. Then if we uniformly sample a point

from S it lies in B with probability p. So if we sample N points from S the random variable
X which gives the number, k, of points that lie in B follows the binomial distribution. So,

P (X = k) =

(
N

k

)
pk(1− p)N−k

Moreover if we sampleN points and reject in order to compute an approximation of V ol(B)
the sum,

n2∑
k=n1

P (X = k) (4.1)

where n1 = Np(1− e) and n2 = Np(1+ e), is the probability that the rejection method error
is at most e.

Theorem4.1. LetX be a binomial random variable with parametersN, p and limN→∞Np =
λ is a constant that is independent of N . Then for any fixed k,

limN→∞P (X = k) = e−λλ
k

k!

Theorem 4.1 is known as Poisson limit theorem. If we set N = m1 · 10x, where x =
m2 + ⌈− log10 p⌉, we notice that Np ≈ m1 · 10m2. So we can use Poisson limit theorem
to approximate the random variable X which gives the number, k, of points that lie in B
through Poisson distribution,

P (X = k) ≈ e−λλ
k

k!
, where λ = m1 · 10m2
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Then from Poison cumulative distribution function,

FXn(x) = P (Xn ≤ k) =
Γ(⌊k + 1⌋, λ)
⌊k⌋!

(4.2)

we can approximate probability 4.1. For example for e = 0.01 we set N = 4 · 104+⌈− log10 p⌉

and we get,
n2∑

k=n1

P (X = k) ≈ FX(n2)− FX(n1) = 0.955

So it seems that we can guarantee with high probability that the error of rejection-sampling
method is at most 1%, whenwe sampleN = 4·104+⌈− log10 p⌉ points from S. Notice that when
the order of p drops by one we have to increase the order of N by one. This result also
applies to rejection-sampling method using enclosing sphere. If we compute probability
4.1 from binomial distribution for one thousand values of p we get figure 18 which seems
to agree with previous results.

Figure 18: Probabilities related to the proportion of the enclosed body’s volume over the enclosing
body’s volume for 1% error using binomial distribution.

Moreover c.d.f. 4.2 could be used to approximate same probabilities as in 4.1 for a differ-
ent given error. Table 1 gives the probabilities of maximum errors of rejection-sampling
method related to the number of points N we have to sample.

An alternative approach is to use Chebyshev inequality and obtain the following:

P

(
Np(1− e) ≤ X ≤ Np(1 + e)

)
≥ 1−

1

p
− 1

4Ne2
(4.3)

Using 4.3 and direct computations from 4.1 we can get almost the same values as in table
1.
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Table 1: Maximum rejection-sampling method errors with high probability.

Sampling - Rejection accuracy
error N Pr

1% 4 · 104+⌈− log10 p⌉ 0.955

2% 9 · 103+⌈− log10 p⌉ 0.942

3% 4 · 103+⌈− log10 p⌉ 0.942

4% 4 · 103+⌈− log10 p⌉ 0.972

5% 2 · 103+⌈− log10 p⌉ 0.975

6% 1 · 103+⌈− log10 p⌉ 0.942

7% 8 · 102+⌈− log10 p⌉ 0.952

8% 6 · 102+⌈− log10 p⌉ 0.951

9% 5 · 102+⌈− log10 p⌉ 0.956

10% 4 · 102+⌈− log10 p⌉ 0.955

4.2 Mapping convex bodies to the unit base

In practice when we use sampling for volume computation it is not common to uniformly
sample points from an arbitrary simplex because we use 3.2 in order to transform the
arbitrary simplex and any convex body that intersects with simplex to the unit base. Then
we can equivalently sample from the unit simplex. The transformation of the simplex is
trivial because linear transformation 3.2 defines a bijective relation between the points in
the unit and in the arbitrary simplex.

Proposition 4.1. Let C be a convex set andW be a linear transformation. ThenW (C) is
convex set.

Proof. Let x =Wu and y = Wv, for some u, v ∈ C. Then for any t ∈ [0, 1] we have,

tx+ (1− t)y = tWu+ (1− t)Wv =W (tu+ (1− t)v)

but tu+ (1− t)v ∈ C so tx+ (1− t)y ∈ W (C).

So for every convex body that intersects an arbitrary simplex we can use linear transforma-
tion 3.2 in order to get a new convex body that intersects with the unit simplex. Moreover
the proposition below is very useful.

Proposition 4.2. Let S be a set and A be a linear transformation matrix. Then V ol(TS) =
V ol(T )V ol(S).

For more details about proposition 4.2 see [40].
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So if S is the set defined by the intersection of the unit simplex and a convex body C and

T is a matrix of a linear transformation then V ol(S)

V ol(∆d)
=

V ol(TS)

V ol(T∆d)
. So if we transform

a convex body C and an arbitrary simplex R to the unit base using 3.2 we can have an

approximation of the ratio V ol(R ∩ C)
V ol(C)

by uniformly sampling the unit simplex.

For example, if a halfspace H := cTx ≤ z, where c ∈ Rd, z ∈ R intersects with a simplex

R then V ol(H ∩R)
V ol(R)

=
V ol(H ′ ∩∆d)

V ol(∆d)
, where H ′ := cTAx ≤ z.

So the main idea is to pay some time for the transformation of the convex body and then
sample inO(kd) rather than sampling inO(kd2), where k is the number of points we sample.
In practice this is always beneficial.

4.3 Two parallel families of hyperplanes or ellipsoids

In the financial application described in chapter 2 the main problem was to compute the
volumes defined by the intersection of two full-dimensional parallel families of hyperplanes
or one family of hyperplanes and one family of concentric parallel ellipsoids with the canon-
ical simplex in Rd+1. So, for both problems, we have to make some modifications to the
sampling algorithms in chapter 3, because we have to sample from the canonical simplex
and not from the unit.

In section 3.1 we first sample from the canonical simplex ∆d ⊂ Rd+1 in both variants of
the sampling algorithm and then project to the unit simplex. So it is easy to apply only
the sampling and not the projection. After sampling we set the distance between two
successive hyperplanes of the same family such as to define volume equal to 1% of the
canonical simplex ∆d. We compute the inner products between the direction of the family
and all the N points, then we sort them and finally we choose the constants that leave
N/100 points between successive hyperplanes. An exact and better in time efficiency
method could be applied using Varsi’s or Lasserre’s formulas described in section 5.1.

Furthermore we use the results from section 4.1 in order to achieve an efficient approxima-
tion. In practice the smallest volume in dimension d = 100 is V ol(∆d) · 10−5. So achieving
1% error is unrealistic for these volumes but if we set N = 4 · 107 we achieve 3% error at
most with probability 0.942 for the 99% of the volumes. If better accuracy is required we
can follow table 1 in order to set the number of points we sample accordingly.

4.3.1 Transform the ellipsoids

The d-dimensional canonical simplex ∆d ⊂ Rd+1 may be represented by barycentric co-
ordinates λ = (λ0, . . . , λd) s.t.

∑d
i=0 λi = 1, λi ≥ 0. The points are

∑d
i=0 λivi, where

v0, . . . , vd ∈ Rd are affinely independent. In order to run random walk methods we have to
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use a full-dimensional simplex, by switching to Cartesian coordinates x = (x1, . . . , xd):

mbc : Rd+1 7→ Rd : λ→ x =M(λ1, . . . , λn) + v0, whereM = [v1 − v0 · · · vd − v0],

is a d× d invertible matrix. The inverse transform is:

mcb : Rd 7→ Rd+1 : x→ λ =

[
−1Td
Id

]
M−1(x− v0) +

[
1
0d

]
, (4.4)

where 0d, 1d are d-dimensional column vectors of 1’s and 0’s, respectively, and Id is the
d-dimensional identity matrix.

In our financial application, portfolios are points in the canonical simplex. The simplex
lies in hyperplane

∑d
i=0 λi = 1. To model levels of volatility, a family of full-dimensional

ellipsoids in Rd+1, centered at the origin, is defined by the covariance matrix C of asset
returns. We wish to compute the volume of intersections of this family with the simplex
and, moreover, with a family of hyperplanes on the simplex. Except Sampling-Rejection
which would work in this context, however methods employing random walks require a
full-dimensional convex body. Given a full (d+ 1)-dimensional ellipsoid G : λTCλ− c = 0
centered at the origin, where C ∈ R(d+1)×(d+1) is symmetric positive-definite, we compute
the equation of the ellipsoid defined G ∩∆d ⊂ Rd, by imposing the constraint

∑d
i=0 λi = 1

by transform mcb in expression (4.4), thus obtaining:

(x− v0)T
(
M−T [−1 Id]C

[
1
0d

]
M−1

)
(x− v0) + A(x− v0) = c′,

where the expression in parenthesis is the matrix defining the new d-dimensional ellipsoid
in Cartesian coordinates, and A ∈ Rd×d, c′ ∈ R are obtained by direct calculation. Similarly
the simplex maps to Cartesian coordinates.
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5. EXACT COMPUTATIONS

In this chapter we are dealing with the polytopes defined by the two families of parallel
hyperplanes applying exact computation algorithms. First we give Varsi’s and Lassere’s
formulas which are exact formulas for the volume defined by the intersection of a simplex
with a hyperplane. This formula is useful in order to define the distances between succes-
sive hyperplanes that belong to the same family. Next we give an optimized Lawrence
sign decomposition method since the polytopes at hand are shown to be simple.

5.1 Varsi’s formula

There exist an exact, iterative formula for the volume defined by intersecting a simplex
with a hyperplane. A geometric proof is given in [39], by subdividing the polytope into
pyramids and, recursively, to simplices. Here we give a somewhat simpler formula [2],
which also requires O(d2) operations. This formula was expressed by Ali using Fourier-
Stiltjes transform. Let H = {(x1, . . . , xd)|

∑d
i=1 aixi ≤ z} be the linear halfspace.

1. Compute uj = aj − z, j = 1, . . . , d. Label the nonnegative uj as Y1, . . . , YK and the
negatives as X1, . . . , XJ . Initialize A0 = 1, A1 = A2 = · · · = AK = 0.

2. For h = 1, 2, . . . , J repeat: Ak ←−
YkAk −XhAk−1

Yk −Xh

, for k = 1, 2, . . . , K.

If ∆d ⊂ Rd is the unit simplex then, for h = J , AK = vol(∆d ∩H)/vol(∆d).

Recall, from Section 3.1, that sampling uniformly over the simplex can be obtained by
drawing exponential random variables. Thus, an alternative formula follows from comput-
ing the cumulative distribution of a linear combination of exponential random variables.
In [30], they propose an exact method to compute the distribution f of such linear com-
bination. It consists in representing f as its moment generating function, analogous to a
Laplace transform, simplifying it with a generalized partial-fraction technique of integration,
before inverting its terms. However, in double precision, the method showed numerical
discrepancies above 20 dimensions and was thus abandoned. However, it has the advan-
tage of being generalizable to nonlinear combinations.

5.2 Lasserre’s formula

Lasserre, in [22], gives another formula for the volume defined by intersecting a simplex
with a hyperplane 22 years after Varsi, using Laplace transform and the following Lemma.

Lemma 5.1. Let c := (c1, . . . , cn) ∈ Rd, c0 := 0, with ci ̸= cj for every distinct pair (i, j).
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Then ∫
∆d

exp(−cTx) =
d∑

i=0

exp(−ci)∏
j ̸=i(ci − cj)

Let H = {(x1, . . . , xd)|
∑d

i=1 aixi ≤ t} be the linear halfspace and a0 = 0. Then

V ol(∆d ∩H) =
1

d!

d∑
i=0

(t− ai)d+∏
j ̸=i(aj − ai)

(5.1)

Given a scalar x ∈ R, the notation (x)+ stands for max[0, x]. The formula 5.1 takes O(d2)
and it seems to be simpler than Varsi’s formula. In [22] Lasserre gives an exact formula
for the case of identical weights of the halfspace H and for the case of an arbitrary simplex.

5.3 Simple polytopes

This section considers simple polytopes defined by a constant number of families of par-
allel hyperplanes; in our application there are two such families. The defined polytopes
are simple, i.e., all vertices are defined at the intersection of d hyperplanes, assuming that
no hyperplane contains any of the simplex vertices and, moreover, two hyperplanes does
not intersect on a simplex edge at the same point.

For a simple polytope P , the decomposition by Lawrence [23] picks c ∈ Rd, q ∈ R such that
cTx+ q is not constant along any edge, i.e. c,−c do not lie on the normal fan of any edge.
For each vertex v, let A(v) be the d×dmatrix whose columns correspond to the equations
of hyperplanes through v. Then A(v) is invertible and vector γ(v) such that A(v)γ(v) = c
is well defined up to a permutation. The assumption on c assures no entry vanishes, then

vol(P ) = 1

d!

∑
v

(cTv + q)d

| detA(v)|
∏d

i=1 γ(v)i
.

The computational complexity is O(d3n), where n is the number of vertices. We set q = 0
for simplicity in the implementation. An issue is to choose c so as to avoid that cTx + q
be nearly constant on some edge, because this would result in very small entries in the
denominator and numerical issues. A theoretical choice is given in [23], but its practi-
cal importance is very small. The main drawback of Lawrence’s decomposition remains
numerical instability when executed with floating point numbers, and high bit complexity,
when executed over rational arithmetic. The latter is indispensible for d > 30 in our appli-
cations, because then numerical results become very unstable.

To compute the volume defined by the intersection of a simplex and two arbitrary hy-
perplanes, we exploit the fact that the simplex is unit in order to compute more effec-
tively the determinants and the solutions of the linear system. The hardest case is when
vertex v is defined by the two arbitrary hyperplanes Ha, Hb, the supporting hyperplane
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H0 :
∑d

i=1 xi = 1, and d− 3 hyperplanes of the form Hi : xi = 0. Then, up to row permuta-
tions,

A(v) =



−1 1 a1 b1
. . . ... ... ...
−1 1 ad−3 bd−3

1 ad−2 bd−2

1 ad−1 bd−1

1 ad bd


, (5.2)

where the ij, i = a, b are the coefficients of the equation of Hi up to permutation. Then
we solve the lowest right 3 × 3 linear system in O(1) and then the computation of each
remaining unknown γ(v)i, i = 1, . . . , d− 3 requires O(1) operations for a total of O(d). The
corresponding determinant is computed in O(1).

Lemma 5.2. Polytopes in H-representation, defined by intersecting the simplex with two
arbitrary hyperplanes in Rd, have O(d2) vertices, which are computed in O(1) each.

Proof. A vertex in the new polytope is of one of 3 types: (i) It may be a vertex of unit simplex
∆. It suffices to check all simplex vertices against hyperplanes Ha, Hb in total time O(d).
(ii) It may be the intersection of a simplex edge with Ha, which is easy to identify and
compute by intersecting simplex edges whose vertices lie on different sides of Ha, with
Ha. Each such edge is defined by at least one coordinate hyperplane, so computing the
edge intersection with Ha is in O(1). These vertices are checked against Hb in O(1) each,
since they contain at most two nonzero coordinates. There are O(d2) such edges, hence
the total complexity is O(d2).

(iii) It may be defined as Ha ∩ Hb ∩ ∆, i.e. the intersection of Ha with the edges of Hb ∩
∆. Let B1, B2 be vertices on Hb ∩ ∆. Then B1 is defined by the intersection of Hb and
an edge (vi, vj) of the unit simplex, when vi and vj lie on different sides of Hb and B2

by the intersection of Hb and an edge (vk, vm). That means that every vertex in Hb ∩ ∆
corresponds to a unit simplex edge. Then we have 3 cases:

1. B1, B2 lie on the same side of Ha: no vertex is defined.

2. If i ̸= k, i ̸= m, j ̸= k, j ̸= m there is not an edge between B1 and B2.

3. If B1, B2 correspond to simplex egdes that have a common vertex and lie on differ-
ent sides of Ha, then a polytope’s vertex is defined, which has at most 3 nonzero
coordinates.

In the worst case d/2 simplex vertices lie on the same side of Hb and d/2 on the other.

Then the polytope’s vertices that are defined by Ha ∩Hb ∩∆ are dd
2
= O(d2).

Lawrence’s formula requires both H- and V-representation. In our setting, the H-representation
is known, but the previous lemma allows us to obtain vertices as well.
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Proposition 5.1. Let us consider polytopes defined by intersecting the simplex with two
arbitrary hyperplanes. The total complexity of the Lawrence sign decomposition method,
assuming that the H-representation is given, is O(d3).

The entire discussion extends to polytopes defined by two families of parallel hyperplanes.
The matrices A(v) remain of the same form because each vertex is incident to at most one
hyperplane from each family.
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6. RANDOM WALKS

This chapter considers more general convex bodies, defined as a finite, bounded inter-
section of linear and nonlinear halfspaces. For this, we extend the polynomial-time ap-
proximation algorithm VolEsti in [14] so as to handle nonlinear constraints. Our primary
motivation here is computing the volume of the intersection of a simplex with an ellipsoid
and two parallel hyperplanes in general dimension.

6.1 Previous work

The method in [14] follows the Hit-and-Run algorithm in [27], and is based on an approx-
imation algorithm in O∗(d5). It scales in a few hundred dimensions by integrating certain
algorithmic improvements to the original method.

Figure 19: A 2D representation of VolEsti.

Given a polytope P = {x ∈ Rd : aTi x ≤ b, i = 1, . . . ,m} in H-representation, the VolEsti
algorithm could be divided into four steps:

1. Rounding of the polytope (optional). An efficient method to get a well rounded poly-
tope (or a convex body) is to sample uniformly from the polytope a large number of
points denoted as the set S and then compute an ϵ-approximate minimum volume
ellipsoid E covering S:

E/(1 + ϵ)d ⊂ CH(S) ⊂ E

Then we could apply a linear transformation to the ellipsoid and get the unit sphere
and transform the polytope similarly, see Figure 20. We can repeat this process until
the ratio of the maximum over minimum ellipsoid axis reaches threshold.

2. Computation of the chebychev ball B(c, rmin) and approximate the minimum enclos-
ing ball of the polytope P . The computation of the polytope’s Chebychev ball reduces
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Figure 20: Rounding a polytope.

to a Linear program. We want to compute the largest ball B = {xc + u : ||u||2 ≤ r}
in the interior of P , so we have to solve the following LP:

maximize r

subject to aTi xc + r||ai||2 ≤ bi, i = 1, . . . ,m

In order to find an approximate enclosing ball of the polytope P we sample uniformly
from P , obtaining a set of random points S and then define the ballB(xc, rmax), where
rmax = max{||xc − p||2 : p ∈ S}.

3. Define the sequenceB(c, 2i/d) of concentric ballsB(c, 2i/d), i = ⌊dlog(rmin)⌋, . . . , ⌈dlog(rmax)⌉
and B(c, rmin) ⊂ P ⊂ B(c, rmax). Then Pi := P ∩B(c, 2i/d)

4. At each iteration i sample uniformly from Pi in order to estimate all the ratios Pi+1

Pi

.
We sample uniformly using Coordinate Directions Hit-and-Run from the Pi+i and
reject points in the Pi.

Figure 21: Approximating ratios of volume using uniform sampling.

Then we have that,

V ol(P ) = V ol(Pdlog(rmin))

⌈dlog(rmax)⌉∏
i=⌊dlog(rmin)⌋+1

Pi+1

Pi

For the uniform sampling fromPi there aremany algorithms based on randomwalks as you
can see in Table 2. We use Coordinate Direction Hit-and-Run because is more efficient
in practice.
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Table 2: Random walk algorithms

Random walk algorithms
Year Algorithm Steps Cost/step
1997 [19] Ball Walk n3 mn
2003 [28] Hit-and-Run d3 md
2009 [20] Dikin Walk md mdω−1

2016 [26] Geodesic Walk md3/4 mdω−1

2017 [25] RHMC md2/3 mdω−1

Figure 22: Coordinate Directions HnR.

Coordinate Directions Hit-and-Run

Input: point x ∈ P and polytope P ⊂ Rd

Output: a uniform point in P

• line ℓ through x, uniform on
{e1, . . . , ed}, ei = (. . . , 0, 1, 0, . . . )

• x is uniformly distributed on P ∩ ℓ

Perform W steps, return x.

In Figure 22 you can see a 2D representation of CDHR algorithm. In VolEsti which is a
practical method for volume approximation we set W = O(d).

6.2 Extend VolEsti

We have to generalize VolEsti because the input is not a polytope but a general convex
body, while the method works for d-polytopes. It suffices to solve two subproblems:

1. Compute the maximum inscribed ball of the convex body a.k.a. Chebychev ball

2. Compute the intersection points of a line that crosses the interior of the convex body
P with the boundary of P .
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The first problem is treated in the next section. For the second one, when the body is
the intersection of linear and quadratic halfspaces, it suffices to solve systems of linear or
quadratic equations. In our case where P has few input hyperplanes we can optimize that
procedure by transforming a base of our polytope to an orthonormal base thus obtaining
very simple linear systems. One heuristic is to first compute the intersection of the line
with all hyperplanes and test whether the intersection points lie inside the ellipsoid so as to
avoid intersecting the line with the ellipsoid. Formally, every ray ℓ in Coordinate Direction
Hit-and-Run is of the form p+ λek and parallel to d− 1 simplex facets. The roots of,

λ2 + 2λpk + |p|2 −R2

define the intersection of a sphere with radius R, centered at the origin, and a coordinate
direction ray ℓ. If C is the matrix of an ellipsoid centered at the origin its intersections with
ℓ are roots of:

Ckkx
2 + bx+ c = 0, b = 2Ckkpk + 2

d∑
j=k+1

Ckjpj + 2
k−1∑
i=0

Cikpi,

c =
d∑

i=0

Ciip
2
i + 2

d∑
j=i+1

Cijpipj, i = 0, . . . , d.

Computing the roots, and keeping the largest negative and smallest positive λ is quite fast,
as it takes O(d).

In our application, there are non-convex bodies defined by the intersection of two parallel
hyperplanes and two concentric ellipsoids. We thus modify VolEsti in order to compute
the non convex volume. We make two major changes:

• First, in ray shooting, we have to check whether one quadratic equation has only
complex solutions, which implies the ray does not intersect the ellipsoid. For λ, we
take the largest negative and the smallest positive root in every step as well.

• Second, for the initial interior point, we sample from the unit simplex and when we
find a point inside the intersection we stop and use it for initialization. We define an
inscribed ball with this center and radius equal to some small ϵ > 0. We stop the
algorithm when we find the first inscribed ball as described in the next subsection.
So we can set ϵ sufficiently small so it always defines an inscribed ball in practice,
but the enclosing ball is enough to run the algorithm and do not stop until we find an
inscribed ball.

The method works fine for d < 35 using the same walk length and number of points as for
the convex case, and has time complexity and accuracy competitive to running VolEsti
on the convex set defined by one ellipsoid. For d > 35, the method fails to approximate
volume for most of the cases. This should be due to inaccurate rounding bodies and the
inscribed ball we define.
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6.2.1 Chebychev ball

This section offers methods for computing a ball inside the given convex region. Ideally,
this is the largest inscribed ball, aka Chebychev ball, but a smaller ball may suffice. Com-
puting the Chebychev ball reduces to a linear program when P is a polytope. For general
convex regions, more general methods are proposed.

We start with some simple approaches. Let us consider the case of intersecting a simplex
with an ellipsoid.

• If there are z1 simplex vertices inside the ellipsoid and z2 outside, then we have
(z2 + 1)z1 vertices on the boundary of the convex intersection. Since z1 + z2 = d+ 1,
then (z2 + 1)z1 ≥ d+ 1 and a new inscribed simplex is defined. In this case we take
its largest inscribed ball and start hit and run.

• More generally, we sample from the unit simplex until we have d+1 points inside our
section and then take the largest inscribed ball of this new simplex that is defined by
the d+ 1 points.

• Another approach is to consider the transformation mapping the ellipsoid to a sphere
and apply it both to the simplex and to the ellipsoid. We compute the distance from
the sphere’s center to the new simplex and compare it with the sphere’s radius.

At the very least, one point must be obtained inside the convex region. When we do not
have the Chebychev ball, an issue is that concentric balls with largest radii will again be
entirely contained in the convex region, thus wasting time in the computation. In practice
we use the one interior point as center of an enclosing ball, then reduce the radius until
the first inscribed ball. To decide whether a given ball is inscribed, with high probability,
we check whether all boundary points in Hit-and-Run belong to the sphere instead of any
other constrain.

For a convex body that comes from intersecting a polytope with k balls the problem be-
comes a Second-Order Cone Program (SOCP) [4] with k cones. However in our case
we need to consider input ellipsoids. Assume that we transformed the ellipsoid to a ball
B′ = {x′c + u′ : ∥u′∥ ≤ r′}, and applied the same transformation to the simplex to have
aix ≤ bi for i ∈ [d + 1], ai ∈ Rd, bi ∈ R. The following SOCP computes the maximum ball
B = {xc + u : ∥u∥ ≤ r} in the intersection of the simplex and B′:

max r

subject to : aTi xc + r||ai|| ≤ bi

||x′c − xc|| ≤ r′ − r

There are several ways to solve SOCP’s such as to reformulate it to as a semidefinite
program or perform a quadratic program relaxation. Moreover, since in our case we only
have a single cone we could utilize special methods as in [15]. However, for our case it
suffices to use the generic SOCP solver from [9] as it is very efficient; for a random simplex
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and a ball, it takes 0.06 sec in d = 100 and < 20 sec in d = 1000, on Matlab using ecos and
yalmip packages.

It is possible to apply the inverse transformation and get an inscribed ellipsoid, which is
not necessarily largest possible. However we can use the maximum inscribed ball in that
ellipsoid as an approximation of the Chebychev ball, by taking the center of that ellipsoid
and the minimum eigenvalue of its matrix as the radius.
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7. APPLICATION AND EXPERIMENTS

Our implementations are in C++, lie in the public domain1, and are using CGAL and Eigen.
All experiments of the paper have been performed on a personal computer with Intel Pen-
tium G4400 3.30GHz CPU and 16GB RAM. Times are averaged over 100 runs. Some
resulting tables and figures are given in the Appendix.

We test the following convex bodies: a d-simplex intersected with: (1) two arbitrary half-
spaces, (2) two parallel halfspaces, (3) an ellipsoid, (4) two parallel halfspaces and two
cocentric ellipsoids (non convex body).

Here we use the following notation for the methods we develop: The (M1) method is
the Varsi’s exact formula for the volume defined by the intersection of simplex with a
hyperplane. The second (M2 or s/r) is to sample the unit simplex and approximate all the
volumes directly. The third method (M3) is the optimized Lawrence formula for simple
polytopes and is used for the first problem. The fourth method (M4) is the generalization
of the VolEsti algorithm to non-linear and non-convex bodies.

In general, M1 is preferred when available. Method M2 is the fastest and scales easily to
100 dimensions, so it is expected to be useful for larger dimensions. However, for small
volumes its accuracy degrades; sampling more points makes it slower than M4. The latter
is thus the method of choice for volumes < 1% of the simplex volume, but it is not clear
whether it would be fast beyond d = 100. Method M3 is useful, even for small volumes,
but it cannot scale to d = 100 due to numerical instability; if we opt for exact computing, it
becomes too slow.

7.1 Financial context and application

Modern finance has been pioneered by Markowitz who set a framework to study choice
in portfolio allocation under uncertainty, see [29].2 Within this framework, Markowitz char-
acterized portfolios by their return and their risk which is defined as the variance of the
portfolios’ returns. And an investor would build a portfolio that will maximize its expected
return for a chosen level of risk. It has since be common for asset managers to optimize
their portfolio within this framework. And it has led a large part of the empirical finance
research to focus on the so-called efficient frontier which is defined as the set of portfolios
presenting the lowest risk for a given expected return. Figure 23 (left panel) presents such
an efficient frontier. The region on the left of the efficient frontier represent the portfolios
domain.

Interestingly, despite the fact that this framework considers the whole set of portfolios, no
attention has been given to the distribution of portfolios. Figure 23 (middle panel) presents

1https://github.com/TolisChal/volume_approximation
2for which he was awarded the Nobel Prize in economics in 1990.
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such distribution. When comparing the contour of the empirical portfolios distribution3 and
the portfolio domain bounded by the efficient frontier in Figure 23 (right panel), we observe
that the density of portfolios along the efficient frontier is dim and that most of the portfolios
are located in a small region of the portfolios domain.

Figure 23: (left) Efficient frontier, (middle) Empirical portfolio distribution by portfolios’ return and
variance, (right) Efficient frontier in blue and contour of the empirical portfolio distribution in red.
The market considered is made of the 19 sectoral indices of the DJSTOXX 600 Europe. The data is

from October 16, 2017 to January 10, 2018.

We also know from the financial literature that financial markets exhibit 3 types of behav-
ior. In normal times, stocks are characterized by slightly positive returns and a moderate
volatility, in up-market times (typically bubbles) by high returns and low volatility, and dur-
ing financial crises by strongly negative returns and high volatility, see e.g. [3] for details.
So, following Markowitz’ framework, in normal and up-market times, the stocks and port-
folios with the lowest volatility should present the lowest returns, whereas during crises
those with the lowest volatility should present the highest returns. These features motivate
us to describe the time-varying dependency between portfolios’ returns and volatility.

However this dependency is difficult to capture from the usual mean-variance represen-
tation, as in Figure 23 (middle panel), so we will rely on the copula representation of
the portfolios distribution. A copula is a bivariate probability distribution for which the
marginal probability distribution of each variable is uniform. As we following Markowitz’
framework, the variables considered are the portfolios’ return and variance. Figure 24 il-
lustrates such a copula and shows a positive dependency between portfolios returns and
variances. Each line and column sum to 1% of the portfolios.

The methods introduced here can be used to study other dependencies such as the mo-
mentum effect [18] which is implied by the dependencies of asset returns with their past
returns.

The dependencies mentioned here are important because

• through the return/volatility dependency, the detection of crises raises policy makers
3Region over which at least 1 random portfolio lies.
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Figure 24: Copula representation of the portfolios distribution, by return and variance. The market
considered is made of the 19 sectoral indices of the DJSTOXX 600 Europe. The data is from

October 16, 2017 to January 10, 2018.

awareness and allows them to act accordingly with potentially large implications in
citizens’ life (employment, wages, pensions, etc).

• the momentum, if persistent, questions the efficiency of financial markets, a strong
assumption which still cannot be proven wrong.

Interestingly, the copulas can be computed over a single period of time making the infor-
mation available as early as the sample allows. The copula for the momentum depen-
dency can be computed over very short periods (even intra-daily). The copula for the re-
turn/volatility dependency requires the estimation of the stock returns variance-covariance
matrix which has to be estimated over a sufficiently large period of time to be reliable thus
delaying the detection of crises.

In the general case, the framework to describe the dependencies is as follows. First, as the
set of portfolios, we consider the canonical d-dimensional simplex ∆d ⊂ Rd+1 where each
point represents a portfolio and d+1 is the number of assets. The vertices represent port-
folios composed entirely of a single asset. The portfolio weights, i.e. fraction of investment
to a specific asset, are non-negative and sum to 1. This is the most common investment
set in practice today, as portfolio managers are typically forbidden from short-selling or
leveraging. Second, considering some asset characteristic ac quantified by C ∈ Rd+1, we
define a corresponding quantity fac(ω,C) for any portfolio ω ∈ ∆d. For instance, consid-
ering the vector of asset returns R ∈ Rd+1, ω has the return fret(ω,R) = RTω. Then, we
define the cross-sectional score of a given portfolio ω∗ as

ρac =
vol(∆∗)

vol(∆d)
, where ∆∗ = {ω ∈ ∆d : f(ω,C) ≤ f(ω∗, C)},

which corresponds to the share of portfolios with a return lower or equal toR∗ = RTω∗. This
score corresponds to the cumulative distribution function of fac(ω,C) where the portfolios
are uniformly distributed over the simplex. In the following, we consider the cases where
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fac is a linear combination or a quadratic form of C. Finally, the relationship between two
asset characteristics ac1 and ac2 is presented in the form of a copula whose marginals are
ρac1, ρac2. In our applications, the asset characteristics considered are the assets’ returns
and variances, and their values correspond to a linear combination of the returns and a
quadratic form of the returns, respectively.

A copula is computed by slicing a simplex, i.e. the set of portfolios, along the asset char-
acteristics. Thus, these questions are formulated in terms of convex bodies defined by
intersecting simplices on one hand by a family of parallel hyperplanes and, on the other
hand, by another family of parallel hyperplanes in the linear case or a family of concentric
ellipsoids in the quadratic case. Furthermore, the latter case yields non-convex bodies
between two ellipsoids.

In financial applications, one considers compound returns over periods of k observations,
where typically k = 20 or k = 60; the latter corresponds to roughly 3 months when ob-
servations are daily. Compound returns are obtained using k observations starting at the
i-th one where the j-th coordinate corresponds to asset j and the component j of the new
vector equals:

(1 + ri,j)(1 + ri+1,j) · · · (1 + ri+k−1,j)− 1, j = 1, . . . , d.

This defines the normal vector to a family of parallel hyperplanes, whose equations are
fully defined by selecting appropriate constants. The second family of parallel hyperplanes
is defined similarly by using an adjacent period of k observations.

The covariance matrix of the stock returns is computed using the shrinkage estimator of
[24],4 as it provides a robust estimate even when the sample size is short with respect
to the number of assets. A covariance matrix C defines a family of ellipsoids centered at
the origin 0 ∈ Rd whose equations xTCx = c are fully specified by selecting appropriate
constants c.

To compute the copulas, we determine constants defining hyperplanes and ellispoids so
that the volume between two consecutive such objects is 1% of the simplex volume. The
former are determined by bisection using the Varsi’s exact formula. For ellipsoids E(x) =
ci, we look for the ci’s by sampling the simplex, then evaluating E(x) at each point. The
values are sorted and the ci selected so as to define intervals containing 1% of the values.
Two consecutive ellipsoids intersecting the simplex and the family of parallel hyperplanes
define a non-convex body for which we practically extend VolEsti algorithm.

The volume between two consecutive hyperplanes and two consecutive ellipsoids defines
the density of portfolios whose returns and volatilities lie between the specified constants.
We thus get a copula representing the distribution of the portfolios with respect to the
portfolios returns and volatilities. Fig. 25 illustrates such copulae, and shows the different
relationship between returns and volatility in good (left, dot-com bubble) and bad (right,
bubble burst) times.5

4Matlab code on http://www.econ.uzh.ch/en/people/faculty/wolf/publications.html.
5We consider 100 components of DJ 600 with longest history, over 60 days ending at the given date.
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Figure 25: Returns/variance relationship on the 1st September 1999 (left), i.e. during the dot-com
bubble, and on the 1st September 2000 (right), at the beginning of the bubble burst. Blue= low

density of portfolios, yellow=high density of portfolios.

The main problem is to compute all the volumes that arise from the intersection of the two
families with the unit simplex. We totally have to handle three types of full dimensional
bodies and thus we develop or use existing methods for three different problems. The first
is to compute the volume of the polytope defined by the intersection of the unit simplex
with four hyperplanes which are pairwise parallel. The second arises when an ellispoid
intersects with the unit simplex and a family of parallel hyperplanes. The third is to compute
the volume of a non-convex body defined by the intersection of two concentric ellipsoids
with a simplex and a family of parallel hyperplanes.

7.1.1 Market volatility expressed by ellipsoids

In our financial application, portfolios are points in the unit d-dimensional simplex ∆d ⊂
Rd+1 defined as the convex hull of v0, . . . , vd ∈ Rd, where vi lies on the i-th axis. The sim-
plex lies in hyperplane

∑d
i=0 λi = 1. Tomodel levels of volatility, a family of full-dimensional

ellipsoids in Rd+1, centered at the origin, is defined by the covariance matrix C of asset re-
turns. We wish to compute the volume of intersections of this family with the simplex and,
moreover, with a family of hyperplanes on the simplex. Rejection sampling would work in
this context, however methods employing random walks require a full-dimensional convex
body. Given a full (d + 1)-dimensional ellipsoid G : λTCλ − c = 0 centered at the origin,
where C ∈ R(d+1)×(d+1) is symmetric positive-definite, we compute the equation of the el-
lipsoid defined G ∩ ∆d ⊂ Rd, by imposing the constraint

∑d
i=0 λi = 1 by transform mcb in

expression (4.4), thus obtaining:

(x− v0)T
(
M−T [−1 Id]C

[
1
0d

]
M−1

)
(x− v0) + A(x− v0) = c′,

where the expression in parenthesis is the matrix defining the new d-dimensional ellipsoid
in Cartesian coordinates, and A ∈ Rd×d, c′ ∈ R are obtained by direct calculation. Similarly
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the simplex maps to Cartesian coordinates.

7.2 Moments’ computation

Equivalently to the framework we described in 7.1 we can define a simplex representation
using barycentric coordinates. Let consider a portfolio x investing in n assets and whose
weights are x = (x1, . . . , xn). The portfolios in which a long-only asset manager can invest
are subject to

n∑
i=1

xi = 1 and xi ≥ 0, ∀i. Thus the set of portfolios available to this asset

manager is the unit (n− 1)−simplex, denoted ∆n−1 and defined as

∆n−1 =

{
n∑

i=1

xivi

∣∣∣∣∣(x1, . . . , xn) ∈ Rn,

n∑
i=1

xi = 1 and xi ≥ 0,∀i ∈ (1, . . . , n)

}
.

where v1, . . . , vn ∈ Rn−1 are a set of n affinely independent points in some Euclidean space
of dimension n− 1. The vertices (vi)i=1,...,n represent the n portfolios made of a single as-
set and the simplex is the convex hull of these vertices.

We define v1, . . . , vn such that:

1. the center of the simplex is set to the origin,

2. the distances of the simplex vertices to its center are equal,

3. the angle subtended by any two vertices through its center is arccos( −1
n−1

).

The weights (xi)i=1,...,n of portfolio x are called its barycentric coordinates, whereas in Rn−1

they are called its Cartesian coordinates and are denoted x̆ = (x̆1, . . . , x̆n−1).

There are affine maps to pass

• from barycentric to Cartesian coordinates:
mbc : Rn 7→ Rn−1

x → x̆ = Tx+ vn

where T =
[
v1 − vn . . . vn−1 − vn

]
• from Cartesian to barycentric coordinates:

mcb : Rn−1 7→ Rn

x̆ → x =

[
In−1

−1′n−1

]
T−1(x̆− vn) +

[
0n−1

1

]
where 0n−1 and 1n−1 are the n − 1 column vectors of 1’s and 0’s, respectively, and
In−1 is the n− 1 identity matrix.
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7.2.1 Moments of the portfolio returns distribution

We are interested in the distribution of the portfolio returns in the case of observed asset
returns R = (R1, . . . , Rn).

The return of portfolio x is given by R′x = Ax̆ − Avn + Rn, where A = R′
[

In−1

−1′n−1

]
T−1.

The moments of the portfolio returns distribution is given by

M1 = 1
V ol(∆n−1)

∫
∆n−1

Ax̆− Avn +Rn dx̆

M2 = 1
V ol(∆n−1)

∫
∆n−1

(Ax̆− Avn +Rn −M1)
2 dx̆

Mk = 1
V ol(∆n−1)(

√
M2)k

∫
∆n−1

(Ax̆− Avn +Rn −M1)
kdx̆ , n ≥ 3

(7.1)

where the term 1
V ol(∆n−1)

is normalizing the equations. Indeed, the distance between the
vertices vi is arbitrary, and so is the volume of ∆n−1. An alternative is to choose the
distance between the vertices vi such that V ol (∆n−1) = 1.

From Lasserre and Avranchenkov in [21], and slightly adapted to our notations, we have

Theorem 7.1. Let v1, . . . , vn be the vertices of an (n−1)−dimensional simplex∆n−1. Then,
for a symmetric q-linear form H : (Rn−1)q → R, we have∫

∆n−1

H(X, . . . , X) dx̆ =
V ol (∆n−1)(
n− 1 + q

q

) ∑
1≤i1≤i2≤···≤iq≤n

H(vi1 , vi2 , . . . , viq)

where V ol (∆n−1) =

∫
∆n−1

1 dx̆ stands for the volume of the simplex ∆n−1.

7.2.2 Complete homogeneous symmetric polynomials in terms of power sums

In our real data application we are not able to compute moments in 7.1 for k > 4 if we just
use the Theorem 7.1. The bottleneck is the computation of the complete homogeneous
symmetric polynomial (CHSP) in the right side of the equation of Theorem 7.1. In real
data applications the direct computation of CHSPs is very complex and we are not able to
compute moments for k > 4. For the efficient computations of 7.1, for k ≥ 3, we will need
the following identity:
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Lemma 7.1. For n, k ∈ N, it holds

(k!)
n∑

i1=1

n∑
i2=I1

· · ·
n∑

ik=ik−1

xi1xi2 · · · xik =
∑

m1+2m2+···+kmk=k

k!
k∏

j=1

1

mj!jmj

( n∑
i=1

xji

)mj

where m1 ≥ 0,m2 ≥ 0, · · · ,mk ≥ 0.

The right sum of the identity is the sum over all the partitions of k. The k!∏k
j=1mj!jmj

is the

number of permutations of k elements with the corresponding cyclic type.

• 1st moment: M1

Lemma 7.2. In a market of n assets, n ∈ N, whose returns areR = (Ri)
n
i=1, the 1st moment

of the portfolios’ returns is

M1 =
1

n

n∑
i=1

Ri

Proof. By definition, we have

V ol
(
∆n−1

)
M1 =

∫
∆n−1

Ax̆− Avn +Rn dx̆ =

∫
∆n−1

Ax̆ dx̆+ (−Avn +Rn)V ol
(
∆n−1

)

From Lemma 7.1, and simplifying by V ol (∆n−1), we get

M1 =

(
1

n

n∑
i=1

Avi

)
+ (−Avn +Rn) =

1

n

n∑
i=1

(Avi − Avn +Rn) =
1

n

n∑
i=1

Ri

which concludes the proof.

• 2nd moment: M2

Lemma 7.3. In a market of n assets, n ∈ N, whose returns are R = (Ri)
n
i=1, the 2nd

moment of the portfolios’ returns is

M2 =
1

n(n+ 1)

n∑
i=1

(Ri −M1)
2 =

1

n+ 1
V ar(R)

where V ar is the biased sample variance.
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Proof. By definition, we have

V ol
(
∆n−1

)
M2 =

∫
∆n−1

(Ax̆− Avn +Rn −M1)
2 dx̆

=

∫
∆n−1

(Ax̆)2 dx̆+ 2(−Avn +Rn −M1)

∫
∆n−1

Ax̆ dx̆+ (−Avn +Rn −M1)
2

From Lemmas 7.1, and simplifying by V ol (∆n−1), we get

M2 =
1

n(n+ 1)

( n∑
i=1

Avi

)2

+
n∑

i=1

(Avi)
2

+2(−Avn+Rn−M1)
1

n

n∑
i=1

Avi+(−Avn+Rn−M1)
2

And, as 1
n

n∑
i=1

Avi =M1 + Avn −Rn, we get

M2 =
1

n(n+ 1)

( n∑
i=1

Avi

)2

+
n∑

i=1

(Avi)
2

− 1

n2

(
n∑

i=1

Avi

)2

= − 1

n2(n+ 1)

( n∑
i=1

Avi

)2
+

1

n(n+ 1)

n∑
i=1

(Avi)
2

=
1

n+ 1

(1

n

n∑
i=1

(Avi)
2

)
−

(
1

n

n∑
i=1

Avi

)2


=
1

n+ 1

 1

n

n∑
i=1

(
Avi −

1

n

n∑
j=1

Avj

)2


Moreover,

M2 =
1

n+ 1

 1

n

n∑
i=1

(
Avi −

1

n

n∑
j=1

Avj

)2


=
1

n+ 1

 1

n

n∑
i=1

(
(Avi − Avn +Rn)−

1

n

n∑
j=1

(Avj − Avn +Rn)

)2
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Thus,

M2 =
1

n+ 1

 1

n

n∑
i=1

(
Ri −

1

n

n∑
j=1

Rj

)2


=
1

n(n+ 1)

n∑
i=1

(Ri −M1)
2

which concludes the proof.

• ktk moment: Mk

For k ≥ 3 we have,

MkV ol (∆
n−1) (

√
M2)

k =

∫
∆n−1

(Ax̆− 1

n

n∑
i=1

Avi)
kdx̆

=
(
k
0

) ∫
∆n−1

(Ax̆)kdx̆+

(
k

1

) n∑
i=1

Avi

∫
∆n−1

(Ax̆)k−1dx̆+ · · ·+
(
k

k

)( n∑
i=1

Avi

)k ∫
∆n−1

1dx̆

As it holds 1
n

n∑
i=1

Avi =M1 + Avn −Rn, and

∫
∆n−1

(Ax̆)k =
V ol (∆n−1)

n(n+ 1) · · · (n+ k − 1)
(k!)

n∑
i1=1

n∑
i2=I1

· · ·
n∑

ik=ik−1

Avi1Avi2 · · ·Avik

For the last computation we could use directly the Lemma 7.1.

Now we can compute∼ 35moments in real data applications with d = 600, e.g. DJSTOXX
600 Europe’s data set. The bottleneck of the identity in lemma 7.1 and for the moments’
computation as well is the computation of the partitions of k. For the latter we use the
algorithm given in [38].

7.3 Experiments with synthetic data

The formula M1 is used in all Tables where exact computation is needed between two
parallel hyperplanes intersecting the simplex.

In Tables 4, 5, 6, 7, 8, 9, k is the number of points sampled in the unit simplex, m the
number of points in the intersection, p is the percentage of the unit simplex volume of the
defined polytope, time is in seconds. In Tables including experiments with VolEsti W is
the walk length and N =

1

ϵ2
400d log d is the number of points we sample in each step of
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the algorithm. In Table 4, n the number of vertices in the intersection. R/r is the ratio of
radii of the smallest enclosing over the largest inscribed ball of the simplex

Table 4 considers the intersection of an arbitrary simplex with two hyperplanes. The ver-
tices of each simplex are randomly chosen uniformly from the surface of a ball with radius
100, using CGAL random point generator. All hyperplanes’ coefficients are randomly cho-
sen in [−10, 10] with Boost (mt19937) random generator. For VolEsti we do not use the
rounding option for the input polytope. This means that skinny polytopes have low accu-
racy since the random walk mixes slow, cf. row 10 of Table 4. On the other hand, M2 is
not affected by polytope shape. Up to d = 30 and for large volume ratio, namely > 1%,
M2 yields very accurate and fastest results. The last two experiments show that VolEsti
achieves the most accurate approximation when the ration of accepted sampled points is
small.

In Table 5 we use same runtime for M2 and M4 (analogous numbers of sampled points)
and compare their accuracy. We perform two experiments per dimension. For the first,
for each dimension we compute the volume between two parallel hyperplanes which is
1% of the simplex volume. For exact volume computation we use (M1). For the second
experiment, for each dimension we compute volumes defined by the intersection of 4
hyperplanes which are pairwise parallel with the simplex, which is close to 0.01% of the
simplex volume. For exact computation we used vinci default method, rlass. M2 is
fast but inaccurate for small volumes; M4 is most accurate but should not scale beyond
d = 100.

In Tables 6 and 7 we have an arbitrary simplex and two arbitrary hyperplanes that intersect
with it. We compare our Lawrence implementation in Sect. 5.3, using floating-point and
rational computation, with rlass and M2. We have two parallel hyperplanes intersect the
unit simplex. vinci fails to compute the volume for d > 31. Our exact computation works
even in d = 100 but becomes very slow.

Table 8 compares M2 (s/r) with two variants of M4 for ellipsoid intersection. The only
difference for the latter is the way we construct an inscribed ball: In s/V we implement
random sampling until d + 1 points are found, and in o/V we use SOCP. We see M2 is
significantly faster than either variant of M4. All methods yield similar output values.

Table 9 compares s/r with Hit-and-Run for non-convex bodies. Very small values of Vol-
ume means the method failed to approximate the volume.

7.4 Experiments with real data

When we work with real data in order to build the indicator, we wish to compare the den-
sities of portfolios along the two diagonals. In normal and up-market times, the portfolios
with the lowest volatility present the lowest returns and the mass of portfolios should be on
the up-diagonal. During crisis the portfolios with the lowest volatility present the highest
returns and the mass of portfolios should be on the down-diagonal, see Figure 25 as illus-
tration. Thus, setting up- and down-diagonal bands, we define the indicator as the ratio of
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the down-diagonal band over the up-diagonal band, discarding the intersection of the two.
The construction of the indicator is illustrated in Figure 26 where the indicator is the ratio
of the mass of portfolios in the blue area over the mass of portfolios in the red one.

Figure 26: Illustration of the diagonal bands considered to build the indicator.

In the following, the indicator is computed using copulae estimated using the sampling
method, drawing 500000 points. Computing the indicator over a rolling window of k = 60
days and with a band of ±10% with respect to the diagonal, we report in Table 3 all the
periods over which the indicator is greater than 1 for more than 60 days. The periods
should be more than 60 days to avoid the detection of isolated events whose persistence
is only due to the auto-correlation implied by the rolling window. All these periods offer
warnings, but only the longest ones correspond to crises.

We compare these results with the database for financial crises in European countries
proposed in [10]. The first crisis (from May 1990 to Dec. 1990) corresponds to the early
90’s recession, the second one (from May 2000 to May 2001) to the dot-com bubble burst,
the third one (from Oct. 2001 to Apr. 2002) to the stock market downturn of 2002, the
fourth one (from Nov. 2005 to Apr. 2006) is not listed and it is either a false signal or it
might be due to a bias in the companies selected in the sample, and the fifth one (from
Dec. 2007 to Aug. 2008) to the sub-prime crisis.

Regarding the momentum effect, i.e. the effect of the compound returns of the last 60
days on the following 60-day compound returns, we report the indicator in Figure 27. We
observe that there were only 10 events of lasting momentum effect, mostly around the
1998-2004 period. We remark that they nearly never overlap with the crisis events, with
the exception of the end of 2011. To the authors’ knowledge, this result is new in finance.
In Figure 28 we see the warning indicator which detects past crises correctly.
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Table 3: All periods over which the return/volatility indicator is greater than one for more than 60
days.

Start date End date Duration (days)
02-May-1990 20-Dec-1990 166
06-May-1992 14-Aug-1992 72
06-Oct-1994 27-Jan-1995 80
08-Apr-1996 24-Jul-1996 77
01-Jul-1997 13-Oct-1997 74
03-Mar-1999 01-Jun-1999 61
04-May-2000 09-May-2001 258
05-Oct-2001 05-Apr-2002 124
25-Feb-2004 28-May-2004 65
18-Nov-2005 11-Apr-2006 101
20-Dec-2007 04-Aug-2008 157
28-Dec-2010 12-Apr-2011 75
18-Oct-2011 16-Jan-2012 63
08-Oct-2013 04-Feb-2014 82
04-Jun-2015 05-Oct-2015 87
30-Nov-2015 03-Mar-2016 66

Figure 27: Representation of the periods over which the indicator is greater than one for over 60
days (yellow)
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Figure 28: Representation of the periods over which the indicator is greater than one for 61-100
days (yellow) and over 100 days (red)
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8. CONCLUSION AND FUTURE WORK

In the current thesis we give some competitive methods for volume computation problems
that arise from financial applications. By applying these methods to real data we show that
past crises could be detected successfully as we are able to work on higher dimensions
that before. The next challenge is to use real data in even higher dimensions and to obtain
better results.

Moreover there are some other extensions and improvements we could do. Random sam-
pling follows a Monte Carlo (MC) approach by relying on C/C++ functions such as random
which implement pseudorandomgenerators. A potential extension would be to experiment
with quasi-MC generators which require fewer points to simulate the uniform distribution.
An obvious enhancement is to parallelize our algorithms, which seems straightforward.
Then results can be obtained for larger classes of assets such as the entire DJ 600.

Another challenge is to speedup VolEsti algorithm for the convex case and to improve it or
to work on some different algorithms for the non-convex case. In the next two subsections
we provide some more details about future work we are planning on two topics.

8.1 Computing the volume of an ellipsoid intersecting the canonical simplex

Let A ∈ Rd×d be a symmetric and positive definite matrix, e.g. a matrix of an ellipsoid
centered at the origin. The goal is to approximate the volume defined by the intersection of
the ellipsoidE(A, 0) ⊂ Rd+1 and the canonical simplex∆d ⊂ Rd+1. Recall that a point in the
canonical simplex can be seen as a vector of idepedent exponential random variables. In
[32], [31] they give an algorithm for the approximation of the distribution of quadratic forms
of exponential and gamma random variables which is a similar problem to that in [30].

When the components of the random vector X = (X1, . . . , Xn) are exponentially distributed
with parameter β and density function,

f(x) =
1

β
e−x/βH(x), β > 0,

the mth moment of Q(X) = Q(X1, . . . , Xn) = XTAX =
∑n

i=1

∑n
j=1 aijXiXj, is

E(Q(X)m) = m!
∑
(m)

[ n∏
i,j

a
mij

ij

mij!

]
β
∑n

ℓ=1 δℓ

n∏
ℓ=1

Γ(1 + δℓ) (8.1)

where
∑

(m) denotes the sum over all the partitions of m into n2 terms such that m11 +
m12 + · · · + mnn = m with 0 ≤ mij ≤ m, the mij ’s being nonnegative integers, and
δℓ =

∑n
j=0(mℓj + mjℓ). Then we can consider the following generalized gamma density

function as a base density for the approximation of Q(X),

ψ(x) =
γ

βaγΓ(a)
zaγ−1e−(z/β)γH(x), a > 0, β > 0, γ > 0 (8.2)
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The parameters a, β and γ are determined by solving the following nonlinear system,

µj = mj for j = 1, 2, 3

where

mj =
βjΓ(a+ j/γ)

Γ(a)
, j = 0, 1, . . .

are the moments of 8.2 and µj can be computed from 8.1. Then a moment-based density
approximation of the following form is assumed for Q1:

fn(x) = ψ(x)
n∑

j=0

ξjx
j (8.3)

In order to determine the polynomial coefficients, ξj, we have to equating the hth moment of
Q(X) denoted by µh to the hth moment of the approximate distribution fn(x) for h = 1, . . . , n,

µh =

∫ q

p

xhψ(x)
n∑

j=0

ξj

∫ q

p

xh+jψ(x)dx =
d∑

j=0

ξjmh+j, h = 0, 1, . . . , n

where mh+j is the (h + j)th moment determined from ψ(x). This leads to a linear system
of (n+ 1) equations, 

m0 m1 . . . mn

m1 m2 . . . mn+1

. . . . . . . . . . . .
mn mn+1 . . . m2n



ξ0
ξ1
...
ξn

 =


µ0

µ1
...
µn


The fn(x) is referred as a nth degree polynomially adjusted density approximant. More
details in [32] and [31]. Then approximating the volume is left as a future extension of this
work.

8.2 Modeling financial crises using clustering

An alternative approach for modeling financial crises is to compute the copulas and try to
divide them into clusters rather than computing the indicator described in 7.1. Then each
cluster will correspond to a specific behavior of assets’ market, e.g. normal period, crisis
period etc. So in order to apply any clustering algorithm we have to define a distance
function between copulas. A choice would be to consider the Earth Mover’s Distance [36]
(EMD) which is a metric between two distributions and is based on the minimal cost that
must be paid to transform one distribution into the other.

We constructed the distance matrix using EMD and applied k-medoids algorithm for the
clustering. In Figure 29 you can see the representatives of each cluster for k = 12 and k =
15. Notice that the silhouette score is too small, while the same occurs for k = 12, . . . , 20,
which means that we have to use alternative approaches. For example in [17] they give
a clustering algorithm which might perform for the copulas’-clustering problem.
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Figure 29: Here we used Earth Mover’s Distance and K-medoids for clustering 6616 copulas from
DJSTOXX 600 Europe’s data set.
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APPENDIX A. TABLES OF EXPERIMENTS

Table 4: Experimental results for arbitrary simplex and two arbitrary hyperplanes. We set
k = 105 logd; Error denotes relative error (V− v)/V of computed value v over exact volume V.

Experimental results for arbitrary simplex and two arbitrary hyperplanes
d k

(105)
m n R/r Simplex

Vol.
Vinci Vol. s/r Vol. s/r Er-

ror
VolEsti Vol. VolEsti

Error
s/r
Time

VolEsti
Time

Vinci
Time

5 2 1464 4 39.3877 225859 1638.14 1653.29 0.0092 1551.961 0.0526 0.076 1.189 0.0
5 2 8269 5 240.261 31545.7 1287.54 1304.26 0.0130 1104.214 0.1423 0.072 2.474 0.0
10 3 111018 7 31.1786 1.14352e+09 4.22648e+08 4.2317e+08 0.0012 4.399476e+08 0.0409 0.156 8.290 0.0
10 3 16279 9 752.594 2.21485e+07 1.20556e+06 1.20185e+06 0.0031 0.023537e+06 0.9805 0.164 19.980 0.0
15 3 1695 11 112.756 2.87936e+10 1.62617e+08 1.62684e+08 0.0004 1.284843e+08 0.2099 0.204 43.547 0.0
15 3 168639 10 51.9497 1.8289e+11 1.02984e+11 1.02808e+11 0.0017 1.018419e+11 0.0111 0.224 31.848 0.0
20 4 52657 17 50.351 2.47765e+17 3.24630e+16 3.26163e+16 0.0047 3.201464e+16 0.0138 0.416 135.685 0.0
20 4 13952 17 140.094 6.76692e+15 2.38561e+14 2.3603e+14 0.0106 2.334992e+14 0.0212 0.42 181.058 0.0
25 4 4982 23 135.804 1.37457e+18 1.70146e+16 1.71202e+16 0.0062 1.119995e+16 0.3417 0.52 333.052 0.0
25 4 3809 25 89.8112 4.17323e+18 4.03833e+16 3.97396e+16 0.0159 5.017313e+18 123.2 0.508 384.346 0.0
30 4 118304 22 4164.1 1.28638e+17 4.12910e+16 4.10773e+16 0.0052 5.02297e+16 0.2165 0.64 863.056 11.4
30 4 27523 24 177.613 4.08094e+18 2.80038e+17 2.80799e+17 0.0027 1.891857e+17 0.3244 0.616 622.995 7.3
10 3 1151 10 61.3936 2.99231e+08 1.17756e+06 1.14805e+06 0.0251 1.185146e+06 0.0064 0.152 10.367 0.0
18 4 1318 16 57.0641 8.58015e+11 2.96758e+09 2.82716e+09 0.0473 2.908083e+09 0.0200 0.376 93.7450 0.0

Table 5: Experimental results for rejection and VolEsti. We set k = 107 logd.

Experimental results for rejection and VolEsti.
d k m s/r Vol s/r

time
N W ϵ VolEsti Time

VolEsti
Exact
Vol

Exact
Time

15 3·107 300345 7.66e-
15

14.716 101551 11 0.4 7.52e-
15

20.86 7.65e-
15

0.0

15 3·107 744 1.90e-
17

14.796 101551 11 0.4 2.15e-
17

21.49 2.01e-
15

0.0

20 3·107 299842 4.11e-
21

23.532 66571 12 0.6 4.44e-
21

36.17 4.11e-
21

0.0

20 3·107 2040 2.80e-
23

23.688 66571 12 0.6 2.72e-
23

34.88 2.74e-
23

0.1

25 3·107 299976 6.44e-
28

30.74 50294 12 0.8 5.81e-
28

34.03 6.45e-
28

0.0

25 3·107 980 2.10e-
30

30.664 65691 12 0.7 2.00e-
30

46.03 1.985e-
30

0.1

30 4·107 400395 3.77e-
35

51.104 50388 13 0.9 3.42e-
35

48.71 3.77e-
35

0.0

30 4·107 4769 4.49e-
37

60.32 63772 13 0.8 4.52e-
37

63.91 4.56e-
37

3.2
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Table 6: Experimental results for Lawrence and rejection methods. We set k = 10x logd, with
x = max{5,4+ ⌈− log10(p)⌉}.

Experimental results for Lawrence and rejection methods.
d k m s/r Vol s/r

Time
ex/Law
Vol

ex/Law
time

fl/Law
Vol

fl/Law
Time

Vinci
Vol

Vinci
Time

per.
Vol

2 105 969 0.0049 0.036 0.005 0.0 0.0005 0.0 0.005 0.0 1%
5 2·105 2034 8.475e-

05
0.056 8.33e-

05
0.0 8.33e-

05
0.0 8.33e-

05
0.0 1%

5 2·106 19967 8.320e-
05

0.492 8.33e-
05

0.0 8.33e-
05

0.0 8.33e-
05

0.0 1%

10 3·105 2952 2.711e-
09

0.136 2.76e-
09

0.0 2.76e-
09

0.0 2.76e-
09

0.0 1%

10 3·106 2986 2.743e-
09

1.132 2.76e-
10

0.0 2.76e-
10

0.0 2.76e-
10

0.0 0.1%

15 3·105 2991 7.624e-
15

0.156 7.64e-
15

0.02 7.64e-
15

0.0 7.64e-
15

0.0 1%

20 4·105 4096 4.209e-
21

0.332 4.11e-
21

0.052 4.11e-
21

0.0 4.11e-
21

0.0 1%

20 4·106 39800 4.09e-
21

3.204 4.11e-
21

0.052 4.11e-
21

0.0 4.11e-
21

0.0 1%

20 4·106 3894 4.001e-
22

3.14 4.11e-
22

0.02 4.11e-
22

0.0 4.11e-
22

0.0 0.1%

25 4·105 4049 6.526e-
28

0.416 6.45e-
28

0.076 6.45e-
28

0.0 6.45e-
28

0.0 1%

25 4·106 39858 6.424e-
28

4.108 6.45e-
28

0.076 6.45e-
28

0.0 6.45e-
28

0.0 1%

30 4·105 3986 3.757e-
35

0.52 3.77e-
35

0.12 2.37e-
35

0.0 3.77e-
35

0.0 1%

30 4·106 40155 3.785e-
35

4.808 3.77e-
35

0.12 3.77e-
35

0.0 3.77e-
35

0.0 1%

30 4·106 3979 3.750e-
36

4.96 3.77e-
36

0.08 3.77e-
35

0.0 3.77e-
36

0.0 0.1%

35 4·105 4077 9.864e-
43

0.588 9.67e-
43

0.184 9.68e-
43

0.004 —- – 1%

35 4·106 40155 9.696e-
43

5.852 9.67e-
43

0.184 6.22e-
42

0.0 —- – 1%

40 5·105 4977 1.220e-
50

0.864 1.226e-
50

0.34 1.06e-
50

0.0 —- – 1%

40 5·106 50074 1.227e-
50

8.56 1.226e-
50

0.34 1.23e-
50

0.0 —- – 1%

40 5·106 4923 1.207e-
51

8.464 1.226e-
51

0.344 -1.38e-
49

0.0 —- – 0.1%

50 5·105 5003 3.290e-
67

1.088 3.28e-
67

1.276 3.29e-
67

0.0 —- – 1%

50 5·106 49923 3.283e-
67

11.0 3.28e-
67

1.276 2.99e-
67

0.0 —- – 1%

50 5·106 5011 3.295e-
68

11.068 3.28e-
68

0.924 3.16e-
68

0.0 —- – 0.1%

60 5·105 5093 1.224e-
84

1.356 1.20e-
84

2.6 3.59e-
84

0.0 —- – 1%

60 5·106 50122 1.204e-
84

13.5 1.20e-
84

2.6 -4.20e-
83

0.0 —- – 1%

60 5·106 4897 1.177e-
85

13.512 1.20e-
84

2172 -2.27e-
80

0.0 —- – 0.1%
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Table 7: Experimental results for Lawrence and rejection methods. We set k = 10x logd, with
x = max{5,4+ ⌈− log10(p)⌉}.

Experimental results for Lawrence and rejection methods.
d k m s/r Vol s/r

Time
ex/Law
Vol

ex/Law
time

fl/Law
Vol

fl/Law
Time

Vinci
Vol

Vinci
Time

per.
Vol

70 6·105 6069 8.444e-
103

1.988 8.348e-
103

5.776 -1.85e-
95

0.0 —- – 1%

70 6·106 59911 8.336e-
103

19.436 8.348e-
103

5.776 -8.78e-
97

0.0 —- – 1%

70 6·106 6105 8.494e-
104

19.512 8.348e-
104

5.048 9.37e-
99

0.0 —- – 0.1%

70 107 10125 8.453e-
104

32.208 8.348e-
104

5.776 -1.28e-
95

0.0 —- – 0.1%

80 6·105 6059 1.410e-
121

2,24 1.397e-
121

11.564 2.33e-
91

0.0 —- – 1%

80 6·106 59991 1.397e-
121

22.576 1.397e-
121

11.564 —- – —- – 1%

80 6·106 5965 1.389e-
122

22.424 1.397e-
121

11.272 —- – —- – 0.1%

90 6·105 6045 6.781e-
141

2.492 6.73e-
141

25.036 —- – —- – 1%

90 6·106 59873 6.717e-
141

24.384 6.73e-
141

25.036 —- – —- – 1%

90 6·106 6083 6.823e-
142

24.416 6.73e-
142

20.764 —- – —- – 0.1%

90 107 10036 6.755e-
142

41.232 6.73e-
142

25.3 —- – —- – 0.1%

100 6·105 6020 1.075e-
160

2.696 1.072e-
160

41.56 —- – —- – 1%

100 6·106 60190 1.075e-
160

27.096 1.072e-
160

41.56 —- – —- – 1%

100 6·106 6034 1.077e-
161

27.472 1.072e-
161

37.352 —- – —- – 0.1%

100 107 9979 1.069e-
161

45.168 1.072e-
161

33.612 —- – —- – 0.1%

Table 8: Experimental results for the unit simplex and ellipsoid intersection.

Experimental results for the unit simplex and ellipsoid intersection.
d k

(105)
m s/r Vol. s/r

Time
N W ϵ s/V Vol. s/V

Time
o/V Vol. o/V

Time
3 1 1318 0.0804667 0.004 14648 10 0.3 0.0792319 0.592 0.0798146 0.564
6 1 7668 0.001065 0.004 47780 10 0.3 0.00107003 14.172 0.00105103 13.412
8 1 8798 2.18204e-

05
0.012 73935 10 0.3 2.18847e-

05
48.672 2.22077e-

05
55.324

15 2 19827 7.58102e-
13

0.02 64993 11 0.5 7.68531e-
13

96.888 7.46954e-
13

105.06

20 3 29951 4.1036e-
19

0.036 66571 12 0.5 3.93709e-
19

178.54 3.97954e-
19

170.476

25 3 39987 6.44486e-
26

0.056 89413 12 0.6 6.4879e-
26

457.196 6.51637e-
26

442.68

30 3 39987 3.76754e-
33

0.056 63772 14 0.8 3.92896e-
33

311.772 3.56866e-
33

311.872

40 4 39974 1.22559e-
48

0.096 40987 14 1.2 1.21068e-
48

253.38 1.30804e-
48

242.172

40 4 39999 1.22559e-
48

0.096 59022 14 1.0 1.28713e-
48

436.976 1.26529e-
48

448.472
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Table 9: Experimental results for non convex bodies. We set k = 5 · 105.

Experimental results for non convex bodies.
d k m s/r Vol. s/r

Time
N W ϵ s/V Vol. s/V

Time
3 5·105 6384 0.00213 0.172 14648 10 0.3 0.00174 2.028
6 5·105 43210 0.000120 0.22 47780 10 0.3 0.000120 22.036
8 5·105 72915 3.616e-

06
0.26 73935 10 0.3 3.633e-

06
114.596

15 5·105 38012 5.814e-
14

0.448 64993 11 0.5 5.834e-
14

139.908

15 5·105 41824 6.044e-
14

0.476 64993 12 0.5 8.109e-
14

240.74

20 5·105 31824 2.616e-
20

0.644 95863 12 0.5 2.642e-
20

1016.15

20 5·105 36273 2.981e-
20

0.620 66571 12 0.6 2.895e-
20

323.536

25 5·105 27650 3.565e-
27

0.86 89413 12 0.6 3.787e-
27

999.352

25 5·105 27055 3.488e-
27

0.82 65691 12 0.7 3.301e-
27

586.496

30 5·105 26451 1.994e-
34

1.032 83294 13 0.7 2.171e-
34

1051.19

30 5·105 26265 1.980e-
34

1.072 83294 13 0.7 2.179e-
34

1005.43

35 5·105 2158 4.176e-
43

1.196 49774 14 1.0 2.904e-
44

630.908

35 5·105 1115 2.158e-
43

1.348 61450 13 0.9 1.198e-
166

1417.01

35 5·105 10160 1.966e-
42

1.292 61450 13 0.9 1.061e-
42

810.248

40 5·105 8753 1.22559e-
48

1.36 72866 13 0.9 2.087e-
192

1873.56
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