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CHAPTER 1 

1.TUBERCULOSIS  

 

1.1 DISEASE AND SYMPTOMS 
 

Tuberculosis (TB) is one of the most well-known and contagious diseases worldwide. 

It is caused by the bacterium Mycobacterium tuberculosis, which first discovered by 

the German microbiologist Robert Koch in 1882. The main organ of the body that is 

primarily affected by the disease is the lungs. For this reason, this kind of the disease 

is called pulmonary tuberculosis. It can also be spread to other organs of the body, 

such as kidneys, brain and spine known as extra-pulmonary tuberculosis. It is spread 

from person to person through the air, so the most common way to insert the body is 

through inhalation of air droplets from a cough, sneeze or spit of an infected person.  

According to the Centers for Disease Control and Prevention (CDC), there is a 

distinction between two kinds of tuberculosis infection: latent and active. Latent 

tuberculosis called the situation where the bacteria remain in the body in an inactive 

state. At this state there are no symptoms and the bacteria are not contagious, but they 

can become active. In active tuberculosis the bacteria do cause symptoms and can be 

transmitted to others. Common symptoms of active lung tuberculosis are cough with 

sputum and blood at times, chest pains, weakness, weight loss, fever and night sweats. 

 

1.2 HISTORY FACTS 

Tuberculosis has plagued humans since antiquity. During the 19th and early 20th 

centuries, the so-called pre-antibiotic era, tuberculosis was considered one of the 

deadliest diseases worldwide. Also known as “consumption,” “phthisis,” or the “white 

plague” was the cause of more deaths in industrialized countries than any other 

disease during this period. Between 70% and 90% of the urban populations of Europe 

and North America were infected with the TB bacillus, and about 80% of those 

individuals who developed active tuberculosis died of it. Around the 1880s, in an 

attempt to cure tuberculosis naturally and prevent its spread, infected people moved to 

sanatoria, quiet and isolated environments, where the air was pure and freely 

circulating. Other methods which were used to cure the fatal disease were gold, 
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arsenic, cod liver oil, herbs, bed rest, sunshine, etc. but none of them were really 

effective. (Birnbaum et al. 1891) 

With the discovery of streptomycin in 1943, the first antibiotic which used for the 

treatment of tuberculosis, series of possible anti-tuberculosis drugs (isoniazid, 

ethambutol, rifampin, etc.) were introduced to clinical practice during the period 

1940s-1970s. (Hedy 1972, Murray et al. 2015).The implementation of these drugs to 

TB treatment immediately resulted in a sharp decline of TB incidence throughout the 

world. At this period, it was commonly thought that TB was no longer a public health 

concern in many countries. Nonetheless, the disease came back in the 1980s. Not only 

the onset of multi-drug resistant tuberculosis (MDR-TB) play a vital role for that, but 

also the spreading epidemic οf the acquired immune deficiency syndrome (AIDS) is 

associated with the outbreak of tuberculosis.(Glynn  1998) 

Nowadays, tuberculosis is a preventable and curable disease. Although the disease’s 

rates are decreasing in the United States, still remains one of the top ten causes of 

death worldwide. According to World Health Organization (WHO) key facts, 

tuberculosis is a leading killer of HIV positive people in developing countries, such as 

West and sub-Saharan Africa, Afghanistan, Pakistan, and India. It is estimated that in 

2016, 10.4 million people fell ill with tuberculosis and 1.7 million died from the 

disease. Children (0-14 years of age) represent about 10-11% of all tuberculosis cases. 

In 2016, 250.000 children died of tuberculosis including children with HIV associated 

tuberculosis. Nevertheless, between the time period 2000 and 2016, due to anti-

tuberculosis treatment system, around 53 million people were saved through diagnosis 

and treatment. 
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1.3 TREATMENT 
 

1.3.1 NEED OF FIXED DOSE COMBINATION DRUGS 
 

By the term mono-therapy, we are referring to the treatment of a particular disorder or 

disease with a single drug. Contrary to mono-therapy, in combination therapy, more 

than one medication is received by the patient in order to treat a single disease. A 

combination drug, which include two or more active pharmaceutical ingredients 

(APIs) combined in a single dosage form, is known as fixed-dose combination drug 

(FDC). 

The transition from single-drug formulations to FDC tablets for the treatment of 

tuberculosis has been in process for many years, as the idea of using FDC tablets 

arose from the fact that tuberculosis always requires multidrug therapy. Since the late 

1980’s, two and three-drug FDC tablets have been used worldwide and are registered 

in more than 40 countries. Indeed, approximately one fourth of the TB cases world-

wide receive treatment with rifampicin-containing FDC tablets. (WHO 1999) 

However, the large number of different strengths of the available FDCs creates 

confusion and the potential for incorrect dosing. FDCs were a matter of concern in the 

treatment of tuberculosis as well, as substandard FDCs and relatively poor 

bioavailability of rifampicin were documented in the global market. (Pillai et al. 1999, 

Laserson et al. 2001) A 1998 WHO survey of the global market for FDCs showed that 

there is a significant number of such combinations available in the market, but with 

very little consistency in dose formulation. In fact, most of these preparations do not 

conform to the WHO dose specifications. In 1999s WHO and the International Union 

against Tuberculosis and Lung Disease (IUATLD) as an additional step to ensuring 

proper treatment, recommended to replace single-drug formulations for the treatment 

of tuberculosis and the standardization of the appropriate doses and strengths of FDC 

tablets. 

The justification for recommending that FDC tablets replace single-drug tablets as the 

primary treatment for tuberculosis includes the following factors: 

 FDCs prevent mono-therapy, and it is expected that this will reduce the 

emergence of drug resistant tuberculosis. If mono-therapy is prevented, the 

risk for selection of drug resistant bacilli is reduced. If given unsupervised, 
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FDC tablets do not prevent patients from interrupting treatment repeatedly 

Multiple interruptions of treatment can lead to emergence of drug resistance 

 FDCs simplify treatment, and thus minimize prescription error as fewer tablets 

required, and increase patient and doctor compliance 

 FDCs simplify drug stock management, shipping and distribution 

 FDCs reduce the risk of misuse of rifampicin for conditions other than 

tuberculosis. (Blomberg 2001) 

 

 

 

1.3.2 TREATMENT FOR ADULTS 
 

As regards the appropriate treatment for adults, the updated Guidelines for treatment 

of drug-susceptible tuberculosis and patient care provide recommendations based on 

newly emerged evidence on the treatment of drug-susceptible TB and patient care. 

Tuberculosis can be cured within a time period from 6 to 9 months. Of the approved 

drugs, the most common first-line anti-TB agents are  

 Isoniazid (INH  or  H ) 

 Rifampicin (RIF  or R ) 

 Ethambutol (EMB  or E) and  

 Pyrazinamide (PZA or Z).  

Although the above mentioned antimicrobial drugs used against the tuberculosis 

disease since years ago as we previously mentioned, the disease cannot be treated 

effectively due to incorrect use of antimicrobial drugs or use of ineffective 

formulations of drugs (such as use of single drugs, poor quality medicines or bad 

storage conditions).Moreover, the bacteria that cause tuberculosis can develop 

resistance to these antimicrobial agents. Multi-drug resistant tuberculosis (MDR-TB) 

means that the disease does not respond to at least isoniazid and rifampicin, the two 

most powerful anti-tuberculosis drugs. Due to these reasons, it was an emergency to 

find a new fixed combination product so as to improve the up to now treatment.  

Anti-tuberculosis treatment is divided into two phases: an intensive (initial) phase and 

a continuation phase. The purpose of the intensive phase is to rapidly eliminate the 
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majority of organisms and to prevent the emergence of drug resistance. The intensive 

phase uses more drugs. The purpose of the continuation phase is to eradicate the 

dormant organisms. Fewer drugs are generally used in the continuation phase because 

the risk of acquiring drug resistance is low, as most of the organisms have already 

been eliminated. For adults, a 6-month regimen of 2HRZE/4HR is recommended in 

order to treat new pulmonary tuberculosis patients with drug-susceptible TB. This 

regimen includes specifically2 months administration of isoniazid, rifampicin, 

pyrazinamide and ethambutol, followed by 4 months phase of continuation of 

treatment with isoniazid and rifampicin. If the 8-month regimen of 2HRZE/6HE (i.e. 

2 months of isoniazid, rifampicin, pyrazinamide and ethambutol, followed by 6 

months of isoniazid and ethambutol) for such patients is still in use, it is 

recommended that it be phased out.  

1.3.3 TREATMENT FOR CHILDREN 
 

Tuberculosis is an important health problem for pediatric population, too. However, 

there was no appropriate first-line tuberculosis treatment designed for children until 

recently. Inappropriate doses by cut or crushed pills were given to children as 

pediatric dosing regimens. These regimens were usually empirically derived from 

adult data, using linear extrapolation based on body weight and the guidelines relied 

on clinical experience instead of controlled trials. The issue was that children differ 

from adults in their response to drugs. WHO recognized that children population was 

administered with insufficient doses, especially for isoniazid and rifampicin. As a 

consequence of under-dosing medication, drug resistance and therapeutic failure 

occurred.(Donald PR et al.2011, Schaaf et al. 2005) 

The main reasons for non-existence of appropriate dose regimen for anti-tuberculosis 

treatment in children are both ethical and practical. First of all, to date, pharmaceutical 

companies hesitated to spend money in pediatric drug research and development of 

fixed dose combination drugs for children due to limited market. A second reason was 

that    before the production of a new FDC anti-tuberculosis drug, clinical studies have 

to be performed in pediatric population. Both for industry and for academic 

researchers, performing studies in children is very challenging due to ethical and 

practical reasons. Unlike clinical trials in healthy adults, research in healthy children 

is considered to be unethical. For this reason, all pediatric studies are performed in 
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patients. In all clinical trials, informed consent has to be signed by the patient before 

he or she can be enrolled into a trial. In pediatric trials, fully informed consent should 

be obtained from the parents or the legal guardian of the pediatric subject. Except for 

ethical challenges, practical matters also occur when conducting studies in children. 

(De Cock et al. 2011). According to the guideline Clinical Investigation of Medicinal 

Products in the Pediatric Population Guidance of European Medicines Agency, 

special measures are needed not only to protect the rights of pediatric study 

participants but also to shield from undue risk. The number of sampling times and the 

volume of blood withdrawn should be minimized in pediatric population. For this 

reason, several techniques are encouraged from Medical Agencies (European Medical 

Agency and FDA).One of these techniques is the use of population pharmacokinetic 

studies and sparse sampling design based on sampling theory so as to minimize the 

number of samples obtained from each patient. Generally, in sparse sampling 

approaches a patient should be contribute as few as 2 to 4 observations at the 

predetermined times to an overall population AUC. Another complicating factor is the 

limited available number of subjects that suffer from the same disease. 

After sustained advocacy and new investment, the dose regimen recommendation in 

children was amended in 2010 and the dose of all the first-line anti-TB drugs 

increased. The recommended doses for treatment of children with TB differ compared 

to treatment of adults. Current guidance of the WHO for the treatment of children 

with tuberculosis is based on the last scientific evidence and recommends the use of 

fixed-dose combinations drugs. (Global tuberculosis report 2017) In TABLE 1. , the 

recommended first-line drug dosages of anti-TB treatment for children are presenting 

and should be used daily in children. 
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TABLE 1. RECOMMENDED FIRST-LINE DRUG DOSAGES FOR CHILDREN AS CURRENTLY 

RECOMMENDED BY WHO 

 

Drug 

 

 

Currently recommended 

daily dose (dose range) 

mg/day 

Maximum Dose 

mg/day 

Isoniazid 10 (7–15) 300 

Rifampicin 15 (10–20) 600 

Pyrazinamide 35 (30–40) - 

Ethambutol 20 (15–25) - 

* As children approach a body weight of 25 kg, adult dosages can be use 

 

 

Children with suspected or confirmed pulmonary TB or TB peripheral lymphadenitis 

who live in settings with low HIV prevalence or low prevalence of isoniazid 

resistance and children who are HIV-negative, can be treated with a three-drug 

regimen consists of a two-month intensive phase with isoniazid, rifampicin, 

pyrazinamide (HRZ) followed by a two drug (HR) regimen for 4 months at the 

dosages specified in TABLE 1. 

For many years, ethambutol was not recommended, but contraindicated, for use in 

young children (<5 years of age). The concern was that ethambutol might cause optic 

neuritis in children who were too young to report the early visual symptoms, which 

could thus lead to irreversible blindness. (Graham 2015) Nowadays, ethambutol 

should be added in the intensive phase for children with extensive disease or living in 

settings where the prevalence of HIV or of isoniazid resistance is high. 

 

These days, formulations that do not need to be cut or crushed to achieve an 

appropriate dose are available, offering the opportunity to simplify and improve 

treatment for children. The formulations were developed in line with the revised 2014 

WHO Guidance for national tuberculosis programs on the management of 

tuberculosis in children.However, even these formulations are not properly qualified 

medicinal products according to EMA or FDA standards and have not been tested 

clinically, therefore cannot be used in Europe or in the US. These formulations have 

been approved only through the WHO prequalification programme and are intended 

to be used in deprived countries. So, in fact Europe and the US are still uncovered in 



 

14 
 

terms of the availability of first-line paediatric fixed dose combination products for 

TB. 

 

 

The child-friendly formulations (FIGURE 1.) currently available  

 for the intensive phase of TB treatment are rifampicin 75 mg, isoniazid 50 mg 

and pyrazinamide 150mg and 

 for the continuation phase of TB treatment are rifampicin 75mg and isoniazid 

50mg 

 

FIGURE 1. FIXED DOSE COMBINATION DISPERSIBLE TABLETS FOR THE TREATMENT OF TB 

IN CHILDREN. 

 

The following dosing table provides information on the number of daily tablets 

needed to reach the proper dosing, based on the child’s weight. 
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TABLE 2.NUMBER OF DAILY TABLETS BASED ON THE CHILD’S WEIGHT. 

 

  

Number of tablets 

 

Number of tablets 

 

Weight Bands 

(kg) 

 

Intensive phase 

RHZ                     E 

75:50:150          100 

 

Continuation phase 

RH 

75:50 

 

 

4-7 1                          1 1 

8-11 2                          2 2 

12-15 3                          3 3 

16-24 4                          4 4 

≥25 Adult dosages recommended 

 

R = rifampicin; H = isoniazid; Z = pyrazinamide; E = ethambutol 

 

1.4   SCOPE OF THE THESIS AND OUTLINE 

 

As we previously mentioned, the design and conduct of a pediatric clinical trial may 

be costly, unethical and impractical to be implemented. For these reasons, even 

though in drug development the use of modeling and simulations is still limited, it 

could improve the design of clinical trials and reduce the cost. The purpose of this 

thesis is to design a pediatric pharmacokinetic clinical trial with a common sparse 

sampling design for rifampicin, isoniazid and pyrazinamide simultaneously using D-

optimal design. This clinical trial if implemented, can be used to obtain Market 

Authorization for new first-line paediatric fixed dose combination products for TB in 

Europe which are currently lacking. 

The remaining of this thesis proceeds as follows: 

 Chapter 2: A brief introduction to pharmacometric theory, a detail description 

of the main pharmacokinetic parameters and models is given. Finally, an 

introduction to the population pharmacokinetic modeling and the non-linear 

mixed effects models theory is given. 

 Chapter 3: a basic mathematical theory based on Fisher Information Matrix 

and D-optimal Design and a description of model evaluation techniques. 
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 Chapter 4: a presentation of our work; the design of a sparse pediatric 

pharmacokinetic study with D-optimal design for the treatment of 

tuberculosis.  
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CHAPTER 2 

2. PHARMACOMETRICS 

 

According to Food and Drug Administration, pharmacometrics is an emerging science 

defined as the science that quantifies drug, disease and trial information to aid 

efficient drug development and regulatory decisions. Pharmacometrics uses 

mathematical models based on biology, pharmacology, physiology and disease for 

quantitative analysis of interactions between drugs and patients. Several kind of 

studies and respective models, belong to the field of pharmacometrics. These are: 

 Pharmacokinetic (PK) studies which with the use of pharmacokinetic models 

describe the drug concentration-time courses in body fluids resulting from 

administration of a certain drug dose. In other words, pharmacokinetic studies 

describe what the body does to a drug. 

  Pharmacodynamic (PD) studies which with the use of pharmacodynamic 

models describe the observed effect (response) resulting from a certain drug 

concentration when it enters the body or, what a drug does to the body. 

 Physiologically based pharmacokinetic (PBPK) models consist of a series of 

mathematical representations of biological tissues and physiological processes 

in the body and are designed to predict an internal dose at target organs for 

risk assessment applications. (Peters S.A. ,2012) 

 Exposure-response models describe the relationship between exposure (or 

pharmacokinetics), response (or pharmacodynamics) for both desired and 

undesired effects 

 Disease models describe the relationship between biomarkers and clinical 

outcomes, time course of disease and placebo effects. (Mould and Upton, 

2012) 

As in this thesis only PK models are going to be used, a further explanation of 

pharmacokinetic process is given in detail below.  
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2.1 PHARMACOKINETICS 
 

2.1.1 ADME PROCESS 
 

Pharmacokinetic studies assess the fate of the drug from the time it enters the living 

organism and their effects in the body. Pharmacokinetic process consists of four 

phases; the absorption, the distribution, the metabolism and the excretion phase. This 

process often referred to as ADME process. An illustration of ADME process is seen 

in FIGURE 2.This process determines when the drug appears in the blood stream and 

for how long it remains there. In order for a drug to cause a therapeutic response, it 

must reach adequate concentrations in the blood so that it can reach and interact with 

drug receptors in adequate numbers to trigger a noticeable action. The course of drug 

action is, therefore, directly correlated with the concentration of the drug in the blood 

stream, and is dependent upon the ADME processes. 

More specifically: 

 The absorption is the movement of a drug from its site of administration (e.g. 

oral administration, intravenous administration, sublingual administration 

e.tc.) to the bloodstream. The rate and extent of absorption depends on the 

route of administration, the formulation and chemical properties of the drug, 

and physiologic factors that can impact the site of absorption. 

 The distribution is the transportation of a drug often via the bloodstream, to its 

site of action. From there, the drug may distribute into muscle and organs, 

usually to differing extents. Blood flow to different organs of the body is not 

equal. The most vitally important organs of the body receive the greatest 

supply of blood such as the brain, the liver and the kidneys. 

 The metabolism refers to a process whereby the body converts a drug that has 

been absorbed by the body from its original form and into a new form, called 

metabolite. The most important site of drug metabolism is the liver. 

 The excretion refers to the removal of drug from the body usually through 

the kidneys (urine).The complete removal of the drug from the body is 

referred to as elimination. Elimination of the drug encompasses both the 

metabolism of the drug, and excretion of the drug through the kidneys.(Sakai, 

2008) 
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FIGURE 2.  ADME PROCESS 

 

2.1.2 PHARMACOKINETIC PARAMETERS 

 

In this section, a description of the main pharmacokinetic parameters is given. 

(AGAH working group pharmacokinetics, 2004) 

 

Dose (D) 

Dose is defined as the amount (A) of drug administered in the body. It is measured in 

amount units. A common dose measurement is mg. 

 

Volume of distribution (V) 

Volume of distribution (V) is often referred as the apparent volume of distribution. It 

is defined as the volume of plasma in which the total amount of drug in the body 

would be required to be dissolved in order to reflect the drug concentration attained in 

plasma. It is measured in volume units (e.g.L). 
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Concentration (C) 

Concentration is the amount of drug in a given volume of plasma, described by the 

formula  𝐶 =
𝐴

𝑉
  and is measured in amount/ volume units. (e.g.mg/L) 

 

𝑪𝒎𝒂𝒙   

Cmax is defined as the observed maximum plasma or serum concentration after drug 

administration. 

 

𝒕𝒎𝒂𝒙 

tmax is defined as the time which the drug needs to reach Cmax and is measured in 

time units (e.g.h). 

 

tlag 

tlag ,or lag-time , is the time delay between drug administration and first observed 

concentration above LOQ (Limit of Quantification) in plasma. 

 

 

Area under the curve (AUC) 

 

Area under the curve is the area under the concentration-time curve from zero up to ∞ 

with extrapolation of the terminal phase.  The area under the curve is the definite 

integral in a plot of drug concentration in blood plasma vs. time. In practice, the drug 

concentration is measured at certain discrete points in time and the trapezoidal rule is 

used to estimate AUC. The AUC represents the total drug exposure over time. 

Bioavailability 

Bioavailability refers to the fraction of dose which enters systemic circulation, thereby 

accessing the site of action. Bioavailability can be measured in terms of "absolute 

bioavailability" or "relative bioavailability ". 

 

 

https://en.wikipedia.org/wiki/Definite_integral
https://en.wikipedia.org/wiki/Definite_integral
https://en.wikipedia.org/wiki/Concentration
https://en.wikipedia.org/wiki/Blood_plasma
https://en.wikipedia.org/wiki/Trapezoidal_rule
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Absolute Bioavailability(F) 

Absolute bioavailability (in %) is the amount of drug from a formulation that reaches 

the systemic circulation relative to an intravenous (IV) dose. The IV dose is assumed 

to be 100% bioavailable, or F=100%. 

Relative Bioavailability(𝑭𝒓𝒆𝒍) 

Relative bioavailability (in %) is the amount of drug from a formulation that reaches 

the systemic circulation relative to a different formulation (non-IV) such as oral 

solution. Relative bioavailability compares the bioavailability between two different 

dosage forms and calculated by 𝐹𝑟𝑒𝑙= 𝑓𝑟𝑒𝑙 x 100, where  𝑓𝑟𝑒𝑙 is the fraction of the 

administered dose in comparison to a standard (non- IV) and calculated by𝑓𝑟𝑒𝑙 =

𝐴𝑈𝐶 𝑥 𝐷𝑠𝑡𝑑

𝐴𝑈𝐶𝑠𝑡𝑑 𝑥 𝐷
 , std=standard.  

 

Rates 

In order to describe the processes of ADME, the rates of these processes are described 

below. By the term of rate, we define the velocity at which each process proceeds. 

The rates of ADME include the absorption rates and elimination rates. 

 

Absorption Rate Constant (𝒌𝒂) 

The absorption rate constant is a fractional rate of drug absorption from the site of 

administration into the systemic circulation. The rate of absorption determines the 

required time for the administered drug to reach an effective plasma concentration and 

may thus affect the onset of the drug effect. This rate influences both the peak plasma 

concentration (Cmax) and the time it takes to reach this peak (tmax).It has units of 

time−1 . 

 

Elimination rate constant ( 𝒌𝒆𝒍) 

The elimination rate constant is used to describe the rate at which a drug is removed 

from the body. It has units of time−1. Rates of elimination can be separated as either 

zero-order or first order elimination kinetics. 

 If the amount of a drug is decreasing at a constant rate then the elimination of 

the drug is a zero –order elimination .The plasma concentration – time profile 

during the elimination is linear and the elimination process is independent of 
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the concentration of the drug present in the body. It can be described as 
𝑑𝐴

𝑑𝑡
 = -

kel . Zero order elimination is rather rare. 

 If the amount of drug is decreasing at a rate that is proportional to amount, 

then the elimination is a first-order elimination and can be described as 
𝑑𝐴

𝑑𝑡
 = -

kelx A. The plasma concentration – time profile during the elimination phase 

shows an exponential decrease. Most drugs used in clinical practice are 

eliminated in his manner. 

 

 

Elimination half-life (𝒕𝟏/𝟐) 

The time required to reduce the plasma concentration to one half its initial value is 

defined as the elimination half-life and described by the formulat1/2=
ln (2)

kel
 . 

Clearance (CL) 

Drug clearance is defined as the volume of plasma in the vascular compartment 

cleared of drug per unit time by the process of metabolite and excretion. 

Mathematically, clearance is the product of the first order elimination rate 

constant(kel)an the apparent volume of distribution (V).Thus,CL = kel x V. Hence the 

clearance is the elimination rate constant from the volume of distribution and is 

related to half-life by   t1/2=
ln(2)x V

CL
 . Clearance has a unit of Volume/time (e.g.L/h). 
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2.1.3 PHARMACOKINETIC MODELS 
 

Pharmacokinetic models are hypothetical structures that are used to describe the fate 

of the drug in a biological system following its administration. In other words, these 

models describe the relationship between drug concentrations and time. In order to 

model the pharmacokinetics the term of “compartments” is introduced. Compartments 

are regions of the body in which the drug is well mixed and kinetically homogeneous. 

Compartments are the building blocks of many pharmacokinetic models. A 

description of the commonest compartment models is given below.  

 

 One-compartment model 

One-compartment model is the simplest form of compartment modeling, where the 

drug can enter and leave the body (“open” model) and the entire body is modeled as a 

kinetically homogeneous unit. The drug distributed instantaneously throughout the 

body and the drug equilibrates instantaneously between tissues. Thus, the drug log 

concentration-time profile shows a monophasic response, as presented in FIGURE 3. 

The model parameters are the absorption rate constant, the volume of distribution and 

the clearance. As we mentioned above, a re-parameterization of the model can be 

done if we use the elimination rate constant. In FIGURE 4, a one-compartment model 

is shown. 

 

 



 

24 
 

 

FIGURE 3.  TIME PROFILE OF A ONE-COMPARTMENT MODEL SHOWING THE LOG 

CONCENTRATION (C) VERSUS TIME. 

 

 

FIGURE 4. ONE-COMPARTMENT MODEL WITH ABSORPTION RATE CONSTANT, VOLUME OF 

DISTRIBUTION AND CLEARANCE. 

 

The representation of a PK model can be done with algebraic or differential equations. 

Consider the simplest route of administration, a single intravenous bolus injection, of 

an initial dose D at time=0. The algebraic equation is: 

C(t) =
D

V
e−

CL

V
∗t

    (eq. 1) 

The independent variable is time (t), and the dependent is the concentration. The 

notation C(t) indicates that C depends on t. Dose, clearance and volume of 

distribution are constant parameters; they do not change with different values of t. 
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Some complex systems cannot be stated as algebraic equations. A simpler way is to 

obtain the solution rewriting the (eq.1) as a differential equation: 

dC

dt
 = −

CL

V
∗ C ,     C(0) =

D

V
 

Where 
dC

dt
 is the rate of change of concentration with respect to time and the value of 

C at time =0 is C(0). 

 

 

 Two-compartment model 

Two–compartment model is an extension of one-compartment model. Two 

compartment models divide the body into a central and a peripheral compartment. 

The central compartment consists of tissues which are highly perfused, such as liver, 

heart, lungs, etc. and the peripheral compartment comprises less tissues where the 

distribution of the drug are slower, such as fat, muscle and skin. Following drug 

administration into the central compartment, the drug distributes between that 

compartment and the peripheral compartment. However, the drug does not achieve 

instantaneous distribution. Under these circumstances, the drug log concentration–

time profile shows a biphasic response as shown in FIGURE 5. 

 

 

FIGURE 5. TIME PROFILE OF A TWO-COMPARTMENT MODEL SHOWING THE LOG 

CONCENTRATION (C) VERSUS TIME. 
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Moreover, it is important to understand that these compartments have no 

physiological meaning. A two compartmental model with first order absorption and 

elimination is illustrated in FIGURE 6. The parameters are used are; the volume of 

distribution in central compartment (Vc), the volume of distribution in peripheral 

compartment (Vper), the inter-compartmental rates constants (k12= rate constant of 

transfer from central to peripheral compartment and k21 = rate constant of transfer 

from peripheral to central compartment),the absorption rate constant ka   and  

elimination rate constantkel . 

 

FIGURE 6. A TWO-COMPARTMENT MODEL WITH FIRST-ORDER ABSORPTION AND 

ELIMINATION WITH TWO VOLUMES OF DISTRIBUTION VCAND VPER, INTER 

COMPARTMENTAL RATES CONSTANTS 𝐤𝟏𝟐,   𝐤𝟐𝟏  , THE ABSORPTION RATE CONSTANT 𝐤𝐚  

AND ELIMINATION RATE 𝐤𝐞𝐥  

 

If we consider A1 and A2 as the amounts of drug in central compartment and 

peripheral compartment, respectively, the ordinary differential equations system, 

which describes the kinetics is: 

 

dA1/dt = −k12 ∗ A1 + k21A2 − kel ∗ A1 

dA2/dt= k12 ∗ A1 − k21 ∗  A2 

Dividing by volumes of distribution, we can obtain the concentration in each 

compartment. (Soraya Dhillon and Andrzej Kostrzewski 2006). 
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Furthermore, an extension to one and two-compartment models, is the multi-

compartment models i.e. a three-compartment model, where the drug is distributed 

into more than one compartments. In addition to that, by using appropriate 

compartment models, we are able to describe the different properties of a drug such as 

different routes of administration and non-linearities in absorption or in elimination.  

In the present thesis, we are going to use another type of compartment model, known 

as transit compartment model. A detailed description is given below. 

 

 

 Transit compartment model 

It is not an unusual phenomenon that after an oral drug administration, some time 

passes before the drug appears in the systemic circulation. This phenomenon is known 

as an absorption delay. In order to deal with this matter, a lag time parameter  

(lag model) was used so as to describe the absorption delays. Nonetheless, Nerella et 

al.(1993),showed that lag time parameter can lead to incorrect estimates of 

pharmacokinetic parameters. An alternative method that has been proposed in order to 

assess the drug absorption is a multiple step process by introducing the transit 

compartmental model. Transit compartment absorption models are represented by a 

chain of pre-systemic compartments, without assigning a physical correlate to each 

transit compartment. In FIGURE 7, a schematic view of the drug flow through the 

chain of transit compartments is illustrated. According to the work of Savic et al. 

(2007), a comparison of the performance of lag model with the performance of the 

transit compartment model proved that by using the transit model resulted in a 

statistically significant improvement in the model fit compared to the lag model and 

in a better estimation of the absorption delay. 
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FIGURE 7. SCHEMATIC VIEW AND MATHEMATICAL DESCRIPTION OF THE DRUG FLOW 

THROUGH THE CHAIN OF TRANSIT COMPARTMENTS. 

 

This model described the absorption delay by the passage of drug through a series of 

transit compartments with a single transfer rate constant, ktr. 

The rate of change of the amount of drug in the nth compartment is given by: 

 

 

dan

dt
 =  ktr・an−1  −  ktr・ an 

 

Where 
dan

dt
 stands for the rate of change of substance a in compartment n at time t, 

an is the drug amount in the nth compartment at time t, ktrstands for a transit rate 

constant from nth−1 compartment to the nth compartment and n is the number of 

transit compartments. 

 

Following the administration, the drug is transferred through the series of transit 

compartments and from the last of the pre-systemic transit compartments to the 

central compartment via an absorption compartment in which the disappearance of 

drug was described with the rate constant  ka . The rate of change of drug amount in 

the absorption compartment 
dAa

dt
 is given by: 
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dAa

dt
= Dose・F ・ktr・

(ktr・ t)n・e−ktr・ t

√2π・nn+0.5・e−n
 − ka ・Aa 

 

where F stands for drug bioavailability, Aa stand for the drug amount. 

 

In this thesis we are going to use an additional useful parameter used in transit 

models. It is the mean transit time (MTT), which represents the average time spent by 

drug molecules traveling from the first transit compartment to the absorption 

compartment. The relationship between MTT, n and 𝑘𝑡𝑟  is shown in the equation 

below: 

 

 

ktr = 
 n+ 1

MTT
 

 

 

2.2 POPULATION PHARMACOKINETIC MODELING 
 

In the previous section an introduction to the field of pharmacokinetics is given. In 

this section the population pharmacokinetic modeling needed for this thesis is 

presented. 

 

Modeling and simulation is an important tool in drug development. By implementing 

models we can describe and understand the time course of drug exposure and 

response, which follows the administration and we can provide a means for estimating 

the associated parameters e.g. the volume of distribution. Population pharmacokinetic 

models not only describe the above referred processes but also can investigate sources 

of variability in patient exposure. Population pharmacokinetics is the study of 

pharmacometrics at the population level, in which data from all individuals in a 

population are evaluated simultaneously using a nonlinear mixed effects model. 

(Mould and Upton, 2013) 
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2.2.1 NONLINEAR MIXED EFFECTS MODELS 

 

Nonlinear mixed effects models are used to analyze population data. The term 

“nonlinear” refers to the fact that the dependent variable (e.g. concentration) is 

nonlinearly related to the independent variable (e.g. time). By the term “mixed 

effects” we are referring to the parameterization; mixed effects consist of fixed and 

random effects. Fixed effects are population parameters that they do not vary across 

individuals and random effects are random variables associated with each individual 

from the population. In order to build a population pharmacokinetic model, accurate 

information on dosing, covariates are also required.             

 

Population pharmacokinetic models are comprised of three different components: 

structural models, stochastic models and covariate models. (Mould and Upton, 2012) 

 The structural models are functions that describe the time course of a measured 

response and can be representing as algebraic or differential equations. We have 

already given a description of structural models in section 2.1.3. Stochastic or 

statistical models describe the variability of the observed data and covariates models 

describe the influence of factors such as demographics or disease on the individual 

time course. These components are described in the below sections.  

 

2.2.1.1. STATISTICAL MODELS 

 

The statistical model describes the variability around the structure model. In contrast 

to linear regression models , where only one level of unexplained variability exists 

,the residual unexplained variability (RUV), population models consist of two sources 

of unexplained variability .The first one is the residual variability common to standard 

linear regression, which counts the difference between a particular observation and 

model predicted value for this observation and the second source of variability is the 

between subject variability (BSV),which explains the variability between parameter 

values for a particular subject and the population value of parameters. 

There is also another source of variability known as between-occasion variability 

(BOV), where a drug is administered on two or more occasions in each subject that 

might be separated by a sufficient interval for the underlying kinetics to vary between 
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occasions.(Mould and Upton, 2012) In the present thesis, only residual variability and 

between-subject variability were applied. 

 

 Between-Subject Variability (BSV) 

 

As we mentioned above, fixed effects parameters, usually symbolized as β, have the 

same value for every subject in the population. They are also known as population 

parameters. Random effects, represented by b, reflect the difference between an 

individual’s parameter value and the population value. As regards the BSV’s 

parameterization, b assumed to be normally or log-normally distributed across the 

population being evaluated, with a mean of 0 and variance ω2.The different variances 

of b are reported in a “Ω matrix“ . In cases, where the random effects are treated as 

correlated then co-variances are also reported in the Ω matrix. Pharmacokinetic data 

are often modeled as log-normally distributed. 

For example, the parameter of CL and V for the ith subject would be written as: 

 

 

CLi = β1・exp (b1i) 

 Vi = β2・exp (b2i) 

 

Where  CLi,  Vi  are the individual values of CL and V of ith subject; β1 , β2are the 

population CL and V, respectively and  b1i,b2iare the deviation from the population 

CL and V for the ith subject, respectively, b is normally distributed, b~Ν(0,ω2) . 

The different variances and covariance of b are reported in a “Ω matrix“as shown 

below: 

 

Ω=[
ωCL

2 0

ωCL,V
2 ωV

2] 

 

 

Where ωCL 
2 is the variance of CL,ωV

2  is the variance of V and ωCL,V
2  is the covariance 

between CL and V. 
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 Residual Unexplained Variability (RUV) 

 

The difference between the dependent-variable (e.g. concentration) symbolized by y 

and the corresponding individual specific model predictions (f), defines the 

unexplained error (ε): 

y – f = ε 

 

There are several forms of residual error models. (Owen and Fiedler-Kelly 2014). 

Here we describe the error models present at this thesis: 

The additive error model, where the residual error may be expressed with a single 

variance that is not dependent upon other factors and error is just simply added to the 

prediction, is written as:     

 

y = f + ε 

 

The proportional or multiplicative error model is utilized when the magnitude of error 

varies with the magnitude of the prediction and is written as follows: 

 

Y = f + f・ε        or        y = f・(1+ε) 

 

The combined additive and proportional error model includes an additive and a 

proportional component. The additive component dominates the total combined error 

when the predicted concentrations are low, while the proportional component of the 

combined error is greater as predicted concentrations increase. The combined error is 

expressed as:             

 

y = f + f・ε1 +  ε2 

 

Where the ε1 is the random variable associated with the proportional residual 

variability, while ε2 is the additive portion of the residual variability. 

The residual error is assumed to be normally distributed and centered round zero with 

variance σ2,ε~Ν(0, σ2 ). Collectively, all the residual error components are referred 
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to as the residual variance or “Σ matrix”, where Σ is a general covariance structure 

that may depend on response values. 

 

 

2.2.1.2 COVARIATES MODELS 

 

In population modeling, covariates play an important role due to the fact that drug 

exposures may vary significantly according to them. Population modeling develops 

quantitative relationships between covariates (such as age and weight) and parameters 

accounting for the explainable between subject variability by incorporating the 

influence of covariates on fixed effects. There are several functions which incorporate 

the covariates effects on population model e.g. the linear function. Covariates can also 

be introduced to the model centered or normalized to the mean value of database or to 

a reference value. Normalizing covariate values is generally preferred from centering, 

as centering can give negative parameter values and cause numerical difficulties in 

parameters estimation. (Mould and Upton, 2013) 

Normalized weight covariate can be expressed by the following equation: 

 

  CLi =  βCL · (Wi/Wstd) 

 

Allometric scaling is an empirical examination of the relationships between body 

function and body size (body weight). Allometric equations have proven useful for 

the extrapolation of animal data to determine pharmacokinetic parameters in man. It 

has been proposed that these equations are also applicable over the human size range 

including the pediatric population. (Knibbe CA. et. al 2005) 

Anderson and Holford proposed the below mentioned allometric power model in 

order to scale metabolic processes such as drug CL  and V ,as follows:  

 

  CLi =  βCL · (Wi/Wstd)0.75 

                                               Vi= βV · (Wi/Wstd)1 

 

where 0.75 is the empirically derived constant and exponent for clearance, CLi is the 

clearance in the individual of weightWi,1 is the empirically derived constant and 
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exponent for the volume of distribution, βCL  is the clearance in a standardized 

individual with weight Wstd, Vi is the volume of distribution of weight Wi and βV  is 

the volume of distribution in a standardized individual with weight Wstd. 

 

As regards the pediatric population, growth and development are two major aspects of 

children not readily apparent in adults. Clearance in the pediatric population should be 

investigated using models that describe size, maturation and organ function 

influences. Babies must grow from an immature form to reach a size that allows 

reproduction. This maturation factor cannot be explained by allometry. Consequently, 

allometry alone is insufficient to predict clearance in neonates and infants from adult 

estimate.  

For this reason, in addition to allometric scaling, the rationale of introducing a 

maturation model was encouraged (Anderson and Holford, 2009). The equation which 

describes the maturation process is expressed as: 

 

                                        MF＝1/[1＋(PMA/TM50) 
－Hill] 

 

where MF is the maturation factor, 𝑇𝑀50 describes the maturation half-time, or in 

other words is the age at which maturation reaches 50% of the final value, while the 

Hill coefficient relates to the slope of this maturation profile and PMA is referred to 

post-menstrual ageand is equal to the post-natal age plus the gestation time. 
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CHAPTER 3 

3. MATHEMATICAL THEORY 

 

The process of drug development is not an easy issue. Before the development of the 

new drug, clinical trials take place. A randomized clinical trial can take a long time 

and be expensive. Pharmaceutical companies spend a lot of effort, time and money in 

order to design a proper clinical trial using prior knowledge effort. If the assumptions 

are wrong, the trial may yield unsatisfactory results. If this happens, it is always too 

late for the trial to start from scratch; the sponsor’s investment of time, money, and 

effort may have been wasted and patients have been subjected to unnecessary 

inconvenience, discomfort, and health risks. 

For this reason, experimental design is used so as to prevent as far as possible these 

problems. Using prior knowledge from previous studies and patient characteristics, 

experimental design can provide useful information in order to improve the upcoming 

trials. This information could be defined as knowledge about the appropriate sampling 

points, sample size or even dose selection. 

Some basic mathematical theory needed for this thesis is presented in this chapter. 

 

3.1 FISHER INFORMATION MATRIX (FIM) 

 

An efficient pharmacokinetic trial is that which can estimate the pharmacokinetic 

parameters with high precision. Design plays a vital role in order to obtain efficient 

parameter estimates. Methods based on Fisher Information Matrix are used in the 

field of population pharmacokinetic modeling in order to optimize designs. Many 

scientists have been worked to great extend with the development and implementation 

of population Fisher information matrix for non- linear mixed effects models. (Retout 

et al. 2001, Retout et al. 2002). 

The general idea is that; the relationship between FIM and the variance-covariance 

matrix is based on Rao-Cramer inequality. The Rao-Cramer inequality states that the 

inverse of FIM is the lower bound of the variance-covariance matrix of any unbiased 

estimator of the population parameters.  
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To derive the FIM, we first need to specify the non-linear mixed effects models that 

describe the pharmacokinetic of the drugs. The population model is described by the 

non-linear mixed effects structure. It is assumed that: 

 

yi= f(θi,ξi)+ εi 

 

Where yi is the ni–vector of observations for the ith individual, f is a function 

describing the nonlinear model, ξi=( 𝑡𝑖1, 𝑡𝑖2 , … , 𝑡𝑖𝑛𝑖
)𝑇is the ni–vector of sampling 

times of ith individual and θi is the p-vector of individual parameters and εi is the ni–

vector of random effects with εi~N(0,Σi) , Σi  are assumed to be ni x ni diagonal 

matrices. Let bi  to  symbolize the p-vector of random effects and β  the p-vector of 

fixed effects. It is assumed, as usual, that bi~Ν(0, Ω)  , with Ωdefined as p x p-

diagonal matrix with ωk
2   representing the variance of kth component of random 

vector. We assume εi|bi to be independent from one subject to the other and for each 

subject εi and  bi  are also independent. 

The expression of inter-individual variability is given by exponential form as 

θi =β・exp(bi). Consequently, f ( θi, ξi)can be also noted as f ( β, bi  , ξi).   

Finally, we note as Ψ the vector of all population parameters to be estimated, so that 

ΨT= (βT,ω1 
2  , … , ωk

2  ,σadd
2  ,σprop

2 )  

 

3.1.1 THE ELEMENTARY FISHER INFORMATION MATRIX 

 

The elementary Fisher Information Matrix, for only one individual with design ξ is 

given by the form: 

 

MF (Ψ, ξ) =E (-  
∂2l(Ψ;y)

∂Ψ∂ΨT
 )    (eq. 2) 

 

Where l(Ψ; y)is the log likelihood of the vector of observation y of the individual for 

the population parameters Ψ. The notation MF (Ψ, ξ) is used to stress the fact that 

information matrix depends on the underlying designξ and population parameters 

Ψand operator E() denotes the expectation. The subscript i is omitted, at this section, 
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for simplicity. Because of the non-linearity of the structural model f with respect to 

parameters θ, there is no analytical expression for l(Ψ; y); Retout et al. (2002) 

proposed a development of the MF (Ψ, ξ), by using the first-order Taylor expansion of 

the structural model f(β ,b,ξ), around the expectation of b ,that is around 0.The 

statistical model can  thus be written  

 

y= f(β ,b,ξ) + ε≅f (β, 0, ξ) + 
∂Tf(β,0,ξ)

∂b
b  + ε 

 

and then  

E(y) ≅  f (β, 0, ξ) 

 

Var (y) =V≅ 
∂Tf(β,0,ξ)

∂b
Ω

∂f(β,0,ξ)

∂b
  + Σ 

 

Where Σ are n x n-diagonal matrix, Ω is p x p-diagonal matrix and the 
∂Tf(β,0,ξ)

∂b
 is a  n 

x p- matrix. Since b and ε are assumed be normal the log-likelihood l is then 

approximated by l(Ψ;y) ≅-
1

2
(nln(2π) +ln|V| + (y − f(β, 0, ξ))

𝛵
𝑉−1(y − f(β, 0, ξ))) 

 

Consequently, the elementary fisher information matrix is approximated by a block-

diagonal matrix and is rewritten to the form: 

 

MF(Ψ, ξ)= 
1

2
[
𝐴(𝐸, 𝑉) 0

0 𝐵(𝐸, 𝑉)
] 

 

Where A is the matrix of fixed effects and B the matrix of random effects.  
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3.1.2 THE POPULATION FISHER INFORMATION MATRIX 

 

For more than one individual, the elementary Fisher information matrix is developed 

to population Fisher Information Matrix. For a population design Ξ={ξ1,... . ,ξN} , the 

sum of the N elementary Fisher information matrices MF(Ψ, ξi) , for each subject i 

with design ξi of the study  is : 

 

MF(Ψ, ξ) =∑ MF(Ψ, ξi)N
i=1  

 

The population fisher information matrix is usually composed of a limited number of 

Q elementary designs, each one of them is composed of a set of nq sampling times and 

it is performed in a number of Nqof subjects. This is expressed by: 

 

 

MF(Ψ, ξ) =∑ NqxMF(Ψ, ξq)
Q
q=1  

 

The expected values of the standard errors for each population parameter are 

computed as the square root of the diagonal elements of the inverse of MF(Ψ, ξ); these 

values are from Cramer Rao inequality, the lower bound of the standard errors of 

parameter estimation. 

 

3.2 D-OPTIMAL DESIGN 

 

D-optimality is the most common tool in optimal design. For a given vector 

Ψ0
Τ = (βT,ω1 

2  , … , ωk
2,σadd

2 ,σprop
2 ) of population parameters, a population design Ξ  is 

D-optimal if it maximizes the determinant of the Fisher information matrix : 

 

Ξ = arg max
Ξ

|MF(Ψ0
Τ, Ξ)| 

 

An optimization algorithm is needed to be applied in order to optimize the sampling 

design by maximizing the determinant of the Fisher information matrix. In the present 

thesis, particle swarm optimization (PSO) algorithm was used for optimization 

procedure.     
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A concept for the optimization of nonlinear functions using particle swarm 

methodology is introduced in 1955 by Kennedy and Eberhart. The Particle swarm 

optimization algorithm was first intended for simulating social behavior, as it is 

inspired from the nature social behavior and dynamic movements with 

communications of insects, birds and fish. The main concept of the algorithm is that; 

it uses a number of agents (particles) that constitute a population (swarm) moving 

around in the search space looking for the best solution. Each particle in search space 

adjusts its “flying” according to its own flying experience as well as the flying 

experience of other particles.(Kennedy and Eberhart, 1995) 

Consider an objective function f: 𝑅𝑛
 R. To minimize the function f, we should find  

an a ∈ R so that: ∀ b ∈ 𝑅𝑛  : f(a)≤ f(b). Then, a is called a global minimum for the 

function f. It is usually not possible to pinpoint the global minimum exactly in 

optimization and candidate solutions with sufficiently good fitness are deemed 

acceptable for practical reasons. In PSO the candidate solutions are the particles. The 

particle swarm algorithm begins by creating the initial particles, and assigning them 

initial velocities. It evaluates the objective function at each particle location, and 

determines the best (lowest) function value and the best location. It chooses new 

velocities, based on the current velocity, the particles’ individual best locations, and 

the best locations of their neighbors. It then iteratively updates the particle locations 

(the new location is the old one plus the velocity, modified to keep particles within 

bounds), velocities, and neighbors. The termination criterion can be the number of 

iterations performed, or a solution where the adequate objective function value is 

found. Some advantages of the PSO algorithm are; the simple implementation of the 

algorithm, it needs very few algorithm parameters and it is a very efficient global 

search algorithm.(Pederson, 2010) 
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3.3 EFFICIENCY CRITERION 

 

The determinant of Fisher information matrix has one more important use. A criterion 

Φ, known as efficiency criterion, is defined as the determinant standardized by the 

dimension of the vector Ψ; 

 

Φ(Ξ) = |MF (Ψ,Ξ)| 
1/dim (Ψ)

 

 

and has the ability of comparing the efficiency between the several designs. Designs 

can be compared by the evaluation of the criterion Φ. The efficiency of a population 

design   Ξ1with respect to a population design Ξ2   is given by Φ( Ξ1) / Φ ( Ξ2).  If the 

population design Ξ1 is more efficient than Ξ2, this ratio will be greater than 1. 

(Retout et al. 2001) 

 

3.4 MODEL EVALUATION 

 

“Model evaluation” is an important feature in model validation procedure as it 

required for both processes; to diagnose one or several intermediary or key models in 

a model-building procedure or evaluate a selected model with respect to the modeling 

objectives.  

NONMEM (non-linear mixed effects models) is the first software available for 

population PK modeling. (Owen and Fiedler‐Kelly 2014).This software is a model 

analysis program that can be used to fit models to many types of data. Three model 

evaluation techniques are described below.   

 

 Goodness of Fit plots 

 

Although there are many statistical tools for model evaluation, the primary tool for 

most biomedical science is graphical evaluations. Graphical methods have an 

advantage over numeric methods for model evaluation because they readily shed light 

on a broad range of complex aspects of the relationship between the model and the 

data. The fundamental diagnostic plot for the model evaluation in pharmacokinetic 

modeling is the scatter plot of individual predicted concentrations (IPRED) versus the 
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observed concentrations (DV).This plot compares the measured values of 

concentrations of the drug with the corresponding individual- specific predicted 

values. It represents the goodness of fit of the model after accounting for the subject 

specific random effects terms. 

 

 Visual Predictive Check Plots (VPC)  

 

The Visual Predictive Check (VPC) plot is a popular tool for evaluating the 

performance of population PK models. The principle of the VPC is to assess 

graphically whether simulations from a model are able to reproduce both the central 

trend and variability in the observed data, when plotted versus an independent 

variable (usually time). In other words, a VPC will diagnose both the fixed and 

random effects in a mixed-effects model .VPCs generally involve simulation of data 

from the original or new database. The final model is used to simulate new data sets 

using the selected database design, and prediction intervals (usually 95%) are 

constructed from simulated concentration time profiles and compared with observed 

data. Percentiles of the simulated data are compared to the corresponding percentiles 

of the observed data. The percentiles are calculated either for each unique value of the 

independent variable (usually time) or for a bin (interval) across the independent 

variable. Data binning or grouping of simulated observations within small intervals of 

time following dosing is often performed to prevent a very erratic –looking profile. 

(Joel S. Owen and Jill Fiedler‐Kelly, 2014)Typically, the median, the 2.5th and the 

97.5th percentiles are presented. If the model is correct, the observed percentiles 

should be close to the predicted percentiles and remain within the corresponding CI. 

(Nguyen et al. 2017) 

 

 

 

 

 

 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Owen%2C+Joel+S
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Fiedler-Kelly%2C+Jill
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 Bootstrap Method 

 

In non-linear mixed effects models  the uncertainty of the parameters is usually 

quantified by the standard errors (SE) obtained asymptotically by the inverse of the 

Fisher information matrix (MF) and by the asymptotic confidence intervals (CI) 

which are assumed to be normal and symmetric. However, this uncertainty might be 

biased when the assumption of asymptotic normality for parameter estimates and their 

SE is incorrect. Sometimes, they cannot be even obtained due to the over-

parameterization of the model or numerical problems when evaluating the inverse of 

the MF. (Thai HT et al. 2014) 

 

 For this reason, besides the graphical tools, numeric methods, are always used in 

parallel to provide additional information for the reliability of a model. Re-sampling 

based methods, such as bootstrap, are some of them. Bootstrap methods are re-

sampling techniques that provide an alternative for estimating parameter precision. 

They are useful to verify the robustness of standard approximations for parameter 

uncertainty in parametric models. Bootstrap is a robust method as it assess the 

uncertainty of parameters while avoids parametric assumptions made when 

computing CIs using other methods. The principle idea of bootstrap is that; it 

generates replicate data sets of the same size as the original dataset where individuals 

are randomly drawn from the original database and can be drawn multiple times or 

not drawn for each replicate. In order to adequately reflect the parameter distributions, 

many replicates (at least 500) are generated and evaluated using the final model, and 

replicate parameter estimates are tabulated. The percentile bootstrap CI are 

constructed by taking the lower 2.5% and the upper 97.5% value of each parameter 

estimate.For most pharmacokinetic databases, <30% SE for fixed effects and <50% 

SE for random effects are usually achievable (generally, the SE for random effects are 

higher than the SE for fixed effects). (Mould and Upton, 2013) 
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CHAPTER 4 

4. PRESENT STUDY 

 

4.1 BACKGROUND AND OBJECTIVES 
 

Often in pediatric drug development, pharmacokinetic studies are employed as part of 

an adults-to-children extrapolation plan. However, even pharmacokinetic studies 

present challenging ethical limitations. Characterizing pharmacokinetic is optimally 

done by the use of mathematical modeling which is ideal for pediatrics as it allows 

sparse sampling. The scope of the present work is the application of D-optimal design   

for the design of a pharmacokinetic pediatric trial to study a fixed dose combination 

product of isoniazid, rifampicin and pyrazinamide with sparse sampling, for the 

treatment of tuberculosis. 

 

4.2 METHODS 

 

A priori knowledge    

 

In the present thesis, three pharmacokinetic models and their initial pharmacokinetic 

parameters, were assumed as a priori knowledge. This a priori knowledge, that we 

used in order to find the optimal  blood sampling time points for the three dugs 

simultaneously, were derived from the analysis of published data from previous 

studies. Below we briefly describe the subjects, patients’ therapy and the sampling 

time that these data were produced.  

Zvada et al.(2014) present at their work the demographic and clinical characteristics 

from the pediatric population. This work used combined data of 76 South African 

children with tuberculosis. The children were separated into two cohorts. The first 

cohort included 56 children and the second cohort had 20 children. 

Daily doses of rifampicin and isoniazid were given for 6 months with pyrazinamide 

added for the first 2 months. Dispersible tablets formulated for children were used. In 

Cohort 1 median daily doses of rifampicin, pyrazinamide and isoniazid approximated 

10, 23 and 5 mg/kg, respectively. In Cohort 2, two pharmacokinetic occasions were 
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carried out. In the first occasion median daily doses were adjusted as 10, 25 and 5 

mg/kg and in the second occasion 15, 36 and 10mg/kg were given for rifampicin, 

pyrazinamide and isoniazid, respectively. 

      As regards the blood sampling, the blood sampling for Cohort 1 was conducted in 

the first and fourth month after starting treatment, at   0.75, 1.5, 3, 4, 6 h after dosing.  

The blood sampling for Cohort 2 was conducted at some time after the two weeks 

after starting treatment and the second blood sampling was repeated one week later, at 

pre-dose, 0.5, 1.5,3 and 5 h post-dose. 

 

Zvada et al. concluded in the following pharmacokinetic models for the analysis of 

the concentration-time data that acquired from the children population. Our aim was 

to use these pharmacokinetic models and their parameters estimates as initial values 

for our analysis. For every dug, a full description of the respective pharmacokinetic 

model, is presented in the next sections. 

 

 

Rifampicin Model 

 

The pharmacokinetic model that we used for rifampicin, is one-compartment model 

with transit absorption compartments and first order elimination. The differential 

equation system that describes the pharmacokinetic model of rifampicin is: 

 

dA1(t)

dt
=D・Frel ・ka・

(ka・t)
n+1
・e−ka・t

√2π・(n+1)
n+1.5

・e−n−1
− 

CL

V
・A1(t),    A1(0)=0 , 

 

ktr=ka= 
 n+ 1

MTT
             and 

 

C(t)=
A1(t)

V
 

 

Where  
dA1

dt
is the rate of change of the amountof drug in the central compartment at 

time t,  A1is the drug amount in the central compartment; C the concentration at time 

t, D being the dose; CL, the clearance; V, the volume of distribution ; ka, the first 
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order absorption rate constant; MTT, the absorption mean transit time (value at full 

maturation) ; ktr, the transit rate constant ;n ,the number of transit compartments ; Frel 

,the relative bioavailabilty ; 

 

The model has a combined variability of an additive and proportional error terms. 

There is also between subject variability on parameters of clearance and volume of 

distribution. We also include a BSV parameter on the fixed effect of absorption mean 

transit time parameter, in order to have a more informative model as far as the 

variability in the absorption phase is concerned. The random effects are assumed to be 

of exponential form. 

An allometric weight model was applied to standardize the pharmacokinetic 

parameters using a standard weight of 12.5kg.The allometric weight model for 

clearance is given by (wt/12.5)
0.75

 and for volume parameter is given by (wt/12.5)
1
 

The equation for clearance and volume of distribution is: 

 

CLi=βCL・MF・(wti/12.5)0.75・exp (bCLi),             bCLi~Ν(0,ωCL
2 ) 

 

With MF= 1/ [1＋(PMA/TM50) 
－Hill

]     and 

 

Vi=βV・(wti/12.5)1・exp(bVi)      ,    bVi~Ν(0,ωV
2) 

 

 

Where CLi, Vi  are the scaled typical value of CL and V for individual i, 

respectively;βCL,   βV  are the population estimates for CL and V, respectively;   bCLi 

,bVi are the deviation from the population CL and V, respectively; ωCL
2 ,ωV

2  are the 

variances of CL and V, respectively; wti is the body weight of individual i in kg; MF 

is the maturation factor; TM50 is  the post-menstrual age at which 50% of clearance 

and mean transit time maturation is achieved; Hill is the  steepness of the maturation 

function; PMA is the  age derived by adding 36 weeks to the post-natal age, assuming 

no premature birth. 

 

The initial parameters values, used in our analysis, are presented in TABLE 3. 
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TABLE 3.INITIAL PARAMETERS VALUES OF RIFAMPICIN MODEL 

 

Parameters(units) Initial Parameter 

Values 

βCL(L/h) 8.15  

βV(L) 16.2  

   βMTT(h) 1.04  

βn 8.04 

  ωCL
2  0.09 

ωV
2  0.16 

    ωMTT
2  0.04  

   σadd
2 (mg/L)2 0.01 

   σprop
2  0.04 

 

 

Where βCL , βV , βMTT, βn  are population estimates parameters of clearance, volume, 

mean transit time and number of transit compartments respectively; ωCL
2 ,ωv

2,ωMTT
2 , are 

inter-individual variances of clearance, volume and  mean transit time, respectively 

and σadd
2 , σprop

2  are the residual variances of additive and proportional error, 

respectively. 

 

As described in published data (Zvada et al.2014), covariates such as HIV status and 

albumin levels had no influence on pharmacokinetics of rifampicin, so we do not 

incorporate them to the model. 

TM50 and Hill parameters were considered as covariates and, according to published 

data, a fixed value equal to 58.2(weeks) and 2.21 was given, respectively. 
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Pyrazinamide model 

 

The pharmacokinetic model that we used for pyrazinamide, is one-compartment 

distribution model with transit absorption compartments, first-order absorption and 

elimination, as described by the following differential equation system’ 

 

dA1(t)

dt
=D・Frel ・ktr・

(ktr・t)
n
・e−ktr・t

√2π・(n)
n+0.5

・e−n
−   ka・A1(t),    A1(0)=0 

 

dA2(t)

dt
=    ka・A1(t)-

CL

V
・A2(t),   A2(0)=0  ,    ktr = 

 n+ 1

MTT
    and 

 

C(t)=
A2(t)

V
 

 

Where  
dA1(t)

dt
 and 

dA2(t)

dt
are the rates of change of the amount of drug in the 

absorption and central compartment at time t, respectively;A1(t) and A2(t)are the drug 

amounts in the absorption and central compartment at time t; C the concentration at 

time t, D being the dose; CL, the clearance; V, the volume of distribution ; ka, the first 

order absorption rate constant; MTT, the absorption mean transit time (value at full 

maturation);k tr, the transit rate constant ; n, the number of transit compartments ; 

Frelthe relative bioavailabilty ; 

 

The residual error of the model, presented in the published data, was proportional’ 

consisted of two proportional error terms (10% proportional error for Cohort 1 and 

6% proportional error for Cohort 2).In our analysis, a 10% proportional error was 

used as we wanted to examine the worst case scenario of residual variability. We also 

include an additive error term. Consequently, a combined error model was applied to 

the pharmacokinetic model of pyrazinamide. 

With respect to the between subject variability of parameters, only the IIV of 

clearance was presented in the work of Zvada et al. (2014) For this reason, in order to 

have a more informative model about the inter-subject variability, we also include IIV 

on the below mentioned parameters’ volume of distribution parameter, absorption rate 
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constant and absorption mean transit time. The initial parameters values of 

pyrazinamide’s model, are presented in TABLE 4. 

From the published data, no significant covariate relationship was supported and no 

maturation function was applied to the clearance parameter. 

We applied to pyrazinamide’s model, the same allometric weight model was applied 

to the parameters of clearance and volume of distribution as described in the 

rifampicin model.  

 

TABLE 4.INITIAL PARAMETER VALUES OF PYRAZINAMIDE MODEL 

 

Parameters(units) Initial Parameter Values 

βCL(L/h) 1.08 

βV(L) 9.64 

βka(h)−1
 4.48 

βMTT(h) 0.10 

βn 3.94 

ωCL
2  0.09 

ωV
2  0.09 

ωka
2  0.09 

ωMTT
2  0.09 

    σadd
2 (mg/L)2 0.01 

      σprop
2  0.01 

 

Where  βCL , βV , βka, βMTT
, βn  are population estimates parameters of clearance, 

volume of distribution, absorption rate constant, absorption mean transit time and 

number of transit compartments, respectively;  ωCL
2 ,ωv

2,ωka
2 ωMTT

2 , are inter-individual 

variances of clearance, volume of distribution, absorption rate constant and  mean 
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transit time, respectively and σadd
2 ,σprop

2  are the residual variances of additive and 

proportional error, respectively. 

Isoniazid model 

 

The pharmacokinetic model that we used for isoniazid is a two-compartment 

distribution model with absorption transit compartments and first-order elimination. 

The differential equation system which describes the isoniazid model is shown 

below.The first equation describes the absorption compartment, the second equation, 

the central compartment and the third equation, the peripheral compartment.  

 

dA1(t)

dt
=D・Frel ・ktr・

(ktr・t)
n
・e−ktr・t

√2π・(n)
n+0.5

・e−n
−   ka・A1(t),  A1(0)=0 

 

dA2(t)

dt
=   ka・A1(t)- k12 ・A2(t) + k21・A3(t) −

CL

V
・A2(t), A2(0)=0 

 

dA3(t)

dt
=    k12・A2(t) −k21・A3(t),  A3(0)=0 

 

and 

 

C(t)=
A2(t)

V
,   k12= 

Q

V
  ,  k21=   k12

V

Vper
 ,      ktr=

 n+ 1

MTT
 

 

 

Where  
dA1(t)

dt
,
dA2(t)

dt
and

dA3(t)

dt
are the rates of change of the amount of isoniazid in 

the absorption, central and peripheral compartment at time t, respectively;A1(t), A2(t) 

and A3(t) are the drug amounts at the absorption, central and peripheral compartment 

at time t ; C the concentration at time t; D is the dose; CL, the clearance; Q, the inter-

compartmental clearance; V, the volume of distribution on central compartment;Vper, 

the volume of distribution on the peripheral compartment;  ka,  the first order 

absorption rate constant;k12, rate of transfer from central to peripheral compartment; 

k21  ,rate of transfer from peripheral to central compartment;MTT, the absorption 

mean transit time (value at full maturation);ktr, the transit rateconstant;n,the number 
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of transit compartments and Frel  ,the relative bioavailability between different 

acetylator groups (see further down). 

 

As in the residual error model of pyrazinamide, the proportional error of isoniazid was 

estimated separately for the two cohorts. The proportional error for Cohort 1 was 20% 

and for Cohort 2 was 7%. In our analysis, a 20% proportional error was assumed as 

we wanted to examine the worst case scenario of residual variability. 

 

Similarly to pyrazinamide model, inter-subject variability was assumed for V,   ka, 

MTT parameters,  as no available estimated values of these parameters could be 

obtained from the published data. No inter-individual variability was assumed for Q 

and Vper. Initial parameters values of isoniazid model are displayed in Table 5. 

The same allometric weight model was applied to the parameters of clearance and 

volume, as described in rifampicin model. In case of isoniazid this scaling was 

applied on the inter-compartmental clearance and on the peripheral volume of 

distribution, too. Maturation function was also included in the equation of clearance. 

NAT2 genotype was a significant covariate for the parameters of clearance and 

bioavailability. Clearance and bioavailability values differ according to the category 

of acetylatorfactor(slow, intermediate and fast). Acetylator factor was included into 

the equation of clearance as covariate. 

The equations for clearance, volume of distribution, inter-compartmental clearance 

and on the peripheral volume of distribution are: 

 

CLij=βCL・MF・ACET j・(wti/12.5)0.75・exp (bCLi)    bCLi~Ν(0,ωCL
2 ) 

 

With MF= 1/ [1＋(PMA/TM50) 
－Hill

]        and  

 

Vi=βV・(wti/12.5)1  ・exp (bVi )   bVi~Ν(0,ωV
2) 

 

Qi  =βQ・(wti/12.5)0.75
 

 

Vperi = βVper・(wti/12.5)1
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WhereCLij is the scaled typical value of CL for individual i for j acetylator category 

(j=1,2,3 where 1=slow ,2=intermediate ,3=fast) ,  Vi, Qi ,  Vperi  are the scaled typical 

value of V, Q ,  Vper  for individual i, respectively; βCL,   βV  , βQ, βVper are the 

population estimates for CL, V,Q and  Vper respectively;   bCLi ,bVi are the deviation 

from the population CL and V, respectively; ωCL
2 ,ωV

2  are the variances of CL and V, 

respectively;wti is the body weight of individual i in kg; MF is the maturation factor; 

TM50 is  the post-menstrual age at which 50% of clearance and mean transit time 

maturation is achieved; Hill is the  steepness of the maturation function; PMA is the  

age derived by adding 36 weeks to the post-natal age, assuming no premature birth. 

 

As regards the number of compartments, i.e. the n parameter, a fixed value equal to 4 

is provided by the data, as no estimation of this parameter is given.TM50 and Hill, 

were handled, as in rifampicin model, with fixed values equal to 49.0 (in weeks) and 

2.19, respectively. 
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TABLE 5. INITIAL PARAMETER VALUES OF ISONIAZID MODEL 

 

Parameters(units) Initial Parameter 

Values 

βCL(L/h) 4.44 

βV(L) 11.0 

βka(h)−1
 2.47 

βMTT(h) 0.179 

βQ 2.00 

βVper 5.03 

ωCL
2  0.09 

ωV
2  0.09 

ωka
2  0.25 

ωMTT
2  0.09 

      σprop
2  0.04 

 

 

 

 

Covariates  

 

The aim of this thesis was the design of a sparse sampling clinical trial in children 

with tuberculosis, mainly focused on the age ranged from 1 month to approximately 

7.5 years old. The covariates used in the present thesis are age, weight and genotype. 
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I. Age and Weight  

 

To start with, age and weight are important covariates that should be included in 

pediatric pharmacokinetic models. Although these covariates have an effect on 

pharmacokinetic parameters and consequently on sampling points, we handled them 

by averaging them out. By this way, a good comprise of the entire range of the 

covariates is achieved. 

A separation of four different age groups was carried out. The first age group ranges 

from 1 month to 6 month with a step of a month, the second group from 7 months to 

24 months with a step of 3months, the third from 25 to 45 with a step of 3 months and 

the fourth from 46 to 88 months with a step of 6 months. The step in every age group 

was decided in such way that the same amount of information of every group can 

finally be obtained. Consequently, 27 age values were generated, created an age 

distribution. 

           As regards the covariate of weight, the median weight (in kg) per age (in 

weeks) that we used in our analysis, was derived from WHOs’ child growth standards 

tables. In FIGURE 8. - 9., the weight-for-age percentiles for boys from birth to 5 

years and 5 to 10 years is presenting, respectively. As a consequence, four weight 

bands were created. The first weight band ranges from 5kg to 7.9kg , the second from 

8kg  to 11.9kg, the third from 12 kg to 15.9 kg and the last from 16 kg to 24 kg. 

Finally, 27 weight values were created, allocated to the above referred 27 age values. 

Furthermore, we applied the recommended specifications of WHO (i.e. 75/50/150mg 

of rifampicin/isoniazid/pyrazinamide in each fixed dose combination tablet). The 

number of daily tablets used for the analysis were applied according to the above 

referred weight bands. More specifically, one tablet of FDC drug for children 

weighting 5-7.9 kg, two tablets for children weighting 8-11.9 kg, three tablets for 

children weighting 12-15.9 kg and four tablets for children weighting 16-24kg. 
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FIGURE 8. THE WEIGHT-FOR-AGE PERCENTILES FOR BOYS FROM BIRTH TO 5 YEARS. 

 

 

FIGURE 9. THE WEIGHT-FOR-AGE PERCENTILES FOR BOYS FROM 5 TO 10 YEARS. 
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II. NAT2 enzyme 

 

Isoniazid differs from rifampicin and pyrazinamide as far as the metabolism is 

concerned. The reason is that the primary step in the metabolism of isoniazid is 

acetylation. Acetylation catalyzed by the enzyme, N-acetyltransferase (NAT2), 

resultsto the formation of acetyl INH. NAT2 enzyme displays genetic polymorphism. 

Human subjects show a wide degree of variation in their capacity to acetylate INH to 

acetyl INH. Individuals can be distinctly characterized phenotypically as being either 

slow or rapid acetylators (the activity of the enzyme being higher in rapid acetylators). 

Molecular techniques that are now available permit identification of three genotypes: 

rapid, intermediate and slow. Slow acetylators are known to be at a risk for most drug 

induced toxicities, while rapid acetylators are likely to experience decreased 

therapeutic efficacy. It has been suggested that NAT2 genotyping before therapy 

could be useful to predict adverse reactions and make dose adjustments, if necessary. 

The acetylator gene frequency for the slow allele differs widely across ethnic groups 

and countries: 10 per cent in people from the mongoloid race such as the Eskimos, 

Japanese and Chinese, 90 per cent in the Middle East, 60 per cent in the Negroid and 

Caucasian populations and 72 per cent in the USA. (Hemanth Kumar AK et al. 2017). 

 

As in the present thesis, we used published data from previous conducted studies, we 

had to handle the covariate of NAT2 genotype. Oral clearance values of isoniazid 

differ according to the category of NAT2 enzyme. The categories of acetylators are 

separated into three groups, the slow, intermediate and fast acetylator category. 

In order to handle this covariate, a simulation of data sample (27 values of  

genotyping were creating) was carried out. Weighting factors were used in sampling 

to make sample match the population. Our main focus was to design a study in 

Caucasian population. In order to gain a representative sample, we used the below 

weighting factors according the acetylator gene: 60% for slow, 20 % for intermediate 

and 20% for fast acetylators.  
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Construction of elementary Fisher information matrix 

 

In this thesis, we considered a combined error model for rifampicin and 

pyrazinamide: 

yi= f(θi,ξi)+  (1 + εprop  )  +εadd , 

 

so the Σ n x n-diagonal matrix is restricted to the form :  

 

Σ= diag( σadd
2  + σprop

2 ・f ( θi, ξi)2)   , 

 

And a proportional error model for isoniazid was assumed : 

 

                                     yi= f(θi,ξi)+  (1 + εprop  ) , 

 

so  Σ  is restricted to the form: 

 

Σ=diag(σprop
2 ・f ( θi, ξi)2) 

 

 

We applied the method of constructing the elementary Fisher Information Matrix as 

described by Retout et al.2002. We will describe the case of a combined error model 

for inter-individual random effects. The statistical model as we described in section 

3.1.1 is: 

 

y= f(β ,b,ξ) + ε≅ f (β, 0, ξ) + 
∂Tf(β,0,ξ)

∂b
b  + ε 

And then  

 

E(y) ≅  f (β, 0, ξ) 

 

V(y) =V≅ 
∂Tf(β,0,ξ)

∂b
Ω

∂f(β,0,ξ)

∂b
  + Σ   (eq. 3) 

 

Where Σ are n x n-diagonal matrix and Ω is p x p-diagonal matrix. 

The 
∂Tf(β,0,ξ)

∂b
  is  a  n x p- matrix. Thus, the variance matrix has dimensions n x n. 

 

In order to describe in detail the construction of variance of the vector of observation 

y, we write the (eq.3) in the below form. 
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V(y) =   

 

[
 
 
 
∂f(β,0,t1)

∂b1
⋯

∂f(β,0,t1)

∂bp

⋮ ⋱ ⋮
∂f(β,0,tn)

∂b1
⋯

∂f(β,0,tn)

∂bp ]
 
 
 

[

ω1
2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ωp

2
] [

∂f(β,0,t1)

∂b1
⋯

∂f(β,0,tn)

∂b1

⋮ ⋱ ⋮
∂f(β,0,t1)

∂bp
⋯

∂f(β,0,tn)

∂bp

]+   

 

[

σadd
2  + σprop

2 f ( β, 0, t1)
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ σadd

2  + σprop
2 f ( β, 0, tn)

2
] 

 

 

Where the  
∂f(β,0,tk)

∂bj
 is the finite difference for time k of the random parameter j and 

calculated by the formula  

 

 

 f (β,0,tk)−f (β′,0,tk)

h 
(eq.4) 

 

Where β′ = β x exp(b + h) = β x exp(0 + h) , where h = 10−5. 

 

If we assume that λ= (ω1
2, ω2

2, … , ωp
2 , σadd

2 , σprop
2 )T the vector of variances, thenΨT =

(βTλT). After some calculations, that there is no need to be described here  (see 

Retout et al .2002), we ended up that the initial form of elementary Fisher information 

matrix (eq.1) is approximated by a block diagonal matrix : 

 

 

MF(Ψ, ξ)=[
A 0
0 B

] =[

∂Tf(β,0,ξ)

∂β
V−1 ∂f(β,0,ξ)

∂β
0

0
F

2

] 

 

 

The expression 
∂f(β,0,ξ)

∂β
is also calculated by the formula in eq.4 andβ΄= β + h , where  

h = 10−5. 

 

Where Fjk= trace (  V−1 ∂V

∂λj
V−1 ∂V

∂λk
  ).    (eq.5)  
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The A is a p x p symmetric matrix for the fixed effects; B is a (p+2) x (p+2) 

symmetric matrix for the variances.  

In order to develop the B matrix, as the expression of (eq.5) is complicated for 

straight calculation, we followed the simplifications that proposed by Retout et al. 

2002. 

 

 

i) First, for j and k in {1,….,p} 

 

Fjk= (  
∂fT(β,0,ξ)

∂bj
V−1 ∂f(β,0,ξ)

∂βk
 )  2 

 

ii) Second, for k in {1,…..,p} 

 

                  F(p+1)k=F(p+2)k = (
∂f

T
(β,0,ξ)

∂bk
V−2 ∂f(β,0,ξ)

∂βk
) 

 

iii) Third ,  

 

F(p+1)(p+1) =tr(V−2) 

 

F(p+1)(p+2)= F(p+2)(p+1)=tr (V−2y2) 

 

F(p+2)(p+2) = tr(V−2y4) 

 

 

 Population FIM 

 

In the present thesis, we assume that we will recruit 100 subjects. These subjects are 

separated in two different sampling cohorts. The population fisher information matrix 

for each one of the drugs are expressed by the below equation:  

 

MF(Ψ, ξ) =50xMF(Ψ, ξ1) + 50xMF(Ψ, ξ2) 

 

Where ξ1, ξ2are the designs for Cohort 1 and Cohort 2, respectively and50are the 

number of subjects in Cohort 1 and Cohort 2, respectively. 

 

After the construction of the three Fisher information matrices (one for each drug), we  

calculated the determinants of each FIM. Since the FIM depends on the covariates, we 

calculated the average determinant of FIM with respect to the covariates. In order to 

do the averaging, we considered the 27 weight/age/genotype values of the distribution 

that we created (see section: Ι. Αge and Weight, II. NAT2 enzyme) and we calculated 
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the determinant of FIM for each one of them. Finally, we calculated the mean of all 

determinants. 

 

The particle swarm optimization algorithm is used for the optimization procedure. In 

this study, we want to optimize the sampling times for rifampicin, pyrazinamide and 

isoniazid, simultaneously. In order to optimize the design overall the 3 PK models 

concurrently, we averaged on the log scale the three determinants of each FIM, 

having first standardized them by the number of parameters in each model.   

 

 For this purpose, the below relationship has been used: 

 

ΨP−D  = arg max
Ξ

(∑ log (m
i |MF (Ψ, Ξ)| αi/pi)),   (eq.6) 

 

Where m are the number of models, ai is the weighting in each model and pi the 

parameters of the ith model and Ψi the parameter vector. 

 

In the present thesis we use in the eq.6 so the parameter m is equal to 3, arifampicin= 

apyrazinamide =aisoniazid=1, as no particular weighting have been applied to the any of 

models andprifampicin = 9,pryrazinamide =11 , pisoniazid= 11 , are the number of parameters  

of rifampicin, pyrazinamide and isoniazid model, respectively. 

 

 

 

The design optimization procedure was carried out using MATLAB2018a. All 

MATALB routines were original and written from scratch. For optimization the 

function particleswarm for PSO found in the Global Optimization Toolbox of 

MATLAB was used. The model evaluation procedure for the model of rifampicin, 

pyrazinamide and isoniazid was carried out via NONMEM software. Diagnostic plots 

(scatter plots and visual predictive check plots) were generated in Perl Speaks 

NONOMEM software (PsN) and Xpose (an R package).Bootstrap results were also 

generated by NONMEM software through PsN. 
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Software in MATLAB 

Α  diagram of the software that we created in Matlab2018a  is presented below: 

 

 

 

 

  

 

 

 

   

 

 

 

   

  

 

 

 

 

The main program includes the 

initial parameters values of 

each PK model and the 

optimization algorithm (PSO) 

 

MAIN Program 

 

Weighted Averaging of the 3 

determinants of rifampicin, 

pyrazinamide and isoniazid 

 

3DET 

Calculation of the determinant 

of each drug including the 

averaging of covariates (age, 

weight, genotype) 

 

DET 

pyrazinamide 

 

DET 

isoniazid 

 

DET 

rifampicin 

 

Calculation of the total FIM of 

each drug consisting of the sum 

of the FIM of Cohort 1 and the 

FIM of Cohort 2. 

 

TOTALFIM 

pyrazinamide 

 

TOTALFIM 

isoniazid 

 

TOTALFIM 

rifampicin 

 

Calculation of FIM including 

estimation of concentrations, 

calculation of derivatives, creation 

of fixed effects matrix (A) and 

random effects matrix (B). 

 

 

FIM 

isoniazid 
 

FIM 

pyrazinamide 

 

FIM 

rifampicin 

 

Isoniazid 

PK model 

Drug models include the 

differential equations system of 

each model.  

Pyrazinamide 

PK model 
 

Rifampicin 

PK model 
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4.3 RESULTS 

 

Before the presentation of the common optimal sampling schedule for the three drugs 

concurrently, first we examined the sampling schedule for each drug, separately. 

 

 Optimal design for rifampicin 

The design region was set between 0.10 (the lower bound) and 6h (upper bound). As a 

sampling point under the 0.10h will give a low drug concentration (close to 0) and 

consequently this time point has no meaning for our design, we set the design region 

to begin 6minutes after drug administration. As the particle swarm algorithm does not 

require an elementary design, no initial times were provided to the algorithm. 

First, we examined the case of an optimal sampling schedule with 6 sampling points 

for only one cohort. For rifampicin model, the optimal sampling schedule is: 

 

                   Timesoptimal,rifampicin= [ 0.10h , 0.51 h ,0.51 h, 1.40h, 2.10h ,6h] 

 

While we asked for a 6 sampling point design, our optimization algorithm ended up to 

5 different sampling points. It is obvious that we obtained a replicate of the second 

sampling point, as the algorithm provide us the more informative sampling times.  

Furthermore, we notice a characteristic of our algorithm; it tends to give the final 

sampling point close to upper bound that we defined. Second, we examined the case 

of a 5 sampling time design. The optimal sampling schedule that we obtained is: 

 

Timesoptimal,rifampicin= [ 0.10h , 0.57 h, 1.42h, 2.17h , 6h]  (eq.7) 

 

The optimization procedure ended up to 5 different sampling points, similar to those 

obtained from the last case with no replicates this time.    

 

As our aim is to design a study in two different cohorts of 50 children each, we 

examine the case of a sparser sampling schedule with 4 sampling times per subject. 

The optimal sampling schedule for the two cohorts for rifampicin drug is: 
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Timesoptimal,rifampicin, cohort1=[0.10h, 0.93h, 2.0 h, 6h] 

   Timesoptimal,rifampicin, cohort2=[ 0.56h,  1.44h, 2.17h , 6h] 

 

The optimal sampling points obtained are quite similar with those obtained by the 

optimization procedure for only one cohort (eq.7). If we decided to design a sparse 

clinical study for rifampicin with only 3 sampling points per patient the optimal 

sampling schedule would be: 

 

                               Timesoptimal,rifampicin, cohort1=[0.10h, 1.2h, 6h] 

 Timesoptimal,rifampicin, cohort2 =[0.56h, 1.41h, 1.99h] 

 

As the algorithm found the optimal times for the two cohorts, we notice that the 

optimal sampling schedule does not differentiate to a great extend from the sampling 

schedule obtained by the 4 sampling design per subject. 

 

 

 Optimal design for pyrazinamide 

 

For pyrazinamide, we set up the particle swarm algorithm with the same properties as 

described in rifampicin’s section. First, we examined the case of an optimal sampling 

schedule with 6 sampling points for only one cohort. The optimal sampling schedule 

is: 

 

Timesoptimal, pyrazinamide= [ 0.10h , 0.10 h ,0.17 h, 0.58h, 1.41 h , 6h]  (eq.8) 

 

We noticed, that pyrazinamide’s optimization gives 5 optimal times, while the first 

point (0.10h) is replicated. We understand that a more sparse design will be adequate 

for this drug.  For this reason, we examined the case of a 5 sampling time schedule. 

The optimal times that we obtained are: 

 

 

                      Timesoptimal, pyrazinamide= [ 0.10h , 0.16 h, 0.57h, 1.41 h , 6h] 
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As we expected, the design is quiet similar to (eq.8), while the replicate of the first 

sampling point had been removed. 

When we examined the case of 2 children cohorts with 4 samples per subject, the 

optimal times were: 

 

 

Timesoptimal, pyrazinamide,cohort1= [ 0.10h, 0.17 h, 0.54 h, 1h] 

Timesoptimal, pyrazinamide,cohort2= [ 0.10h, 0.10h , 1.7h , 6h] 

 

The first sampling point (0.10h) is replicated 3 times for the cohort 2 sampling 

schedule, so we can continue examining an even sparser design with 3 samples per 

subject. The optimal sampling schedule for this design is: 

 

                             Timesoptimal, pyrazinamide,cohort1=[0.10h, 1.2h, 6h] 

Timesoptimal, pyrazinamide,cohort2=[0.56h, 1.41h, 1.99h] 

 

 

 Optimal design for isoniazid  

 

For isoniazid’s model, we set up the particle swarm algorithm between time-interval 

[0.10h, 6h], for the same reason as described in rifampicin’s section.As isoniazid’s 

model has more fixed parameters than the other two models, it seemed reasonable to 

start exploration demanding more than 6 sampling points.  We set up the algorithm to 

start exploration from 8 sampling points for one cohort. The optimal times that we 

obtained are: 

 

           Timesoptimal, isoniazid = [ 0.15h , 0.50h, 1.19h ,1.19h ,2.29h , 2.44 h , 4.33h , 6h] 

 

As some replicates are occurred, we continue the exploration with 7 sampling 

schedule and we obtained the below sampling schedule without any replicate. 

 

               Timesoptimal, isoniazid = [ 0.15 h , 0.50 h, 1.14 h , 1.27h , 2.42h ,4.35h , 6h] 
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As we noticed the times are quiet similar with times obtained before, without the 

existence of any replicate this time. 

Continuing to the same exploration pattern as we did with rifampicin and 

pyrazinamide model, a two cohort sampling schedule with 4 samples per subject is 

derived from the PSO algorithm and the below times were provided after optimization 

procedure; 

 

                      Timesoptimal, isoniazid, cohort1 =[0.10h, 0.43 h, 0.98 h, 2.41h] 

                      Timesoptimal,isoniazid, cohort2 =[0.16h, 2.05h , 4.30 h , 6h] 

 

And after the optimization procedure for 3 samples per patient, the optimal sampling 

schedule for the 2 cohorts are: 

 

                      Times optimal, isoniazid, cohort1 =[0.16h, 1.58h, 6h] 

                      Times optimal, isoniazid, cohort2 =[0.50h, 2.44h , 4.34h] 

 

 Optimal Design for Rifampicin-Isoniazid-Pyrazinamide 

 

The aim of our work was to find a unique optimal time schedule for rifampicin, 

isoniazid and pyrazinamide so as this time schedule to be a good compromise for the 

three drugs, concurrently. 

We set up the design region of the algorithm to allow a blood sampling schedule until 

6 hours. Two different children cohorts of 50 children each were assumed with 4 

samples per subject. After optimization, the optimal sampling times in Cohort 1 and 

Cohort 2 are 

 

Timesoptimal,Cohort1= [0.10h,0.13h, 0.55h , 4.28h] (eq.9) 

                          Timesoptimal,Cohort2 =[0.57h , 1.38h, 2.25 h,  6h] 

 

The optimal sampling times for the two cohorts have two sets of sampling 

points(0.10h  and 0.13h ) and (0.55 and 0.57h) which are too close. We notice the 

sampling time 0.10h is slightly differentiated from 0.13h only in the second decimal 

and the same issue is occurred in the set of 0.55h and 0.57h.This happens as the 

optimal sampling points for models without between-subject variability, should be 
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equal to the number of estimated fixed effects parameters. In models with between-

subject variability, the number of optimal sampling points it depend on the underlying  

model structure but it is reasonable to assume that the number of sampling times to be 

equal or greater than the number of estimated fixed effects parameters.(Stromberg 

2016). As the isoniazid’s PK model include the most fixed effects of the 3 drugs (it 

consists of six estimated fixed effects; CL, V, MTT, ka , Q, Vper) ,the algorithm  is 

trying to identify 6 optimal times. In optimal design evaluation, we also evaluated the 

accuracy of each model separately for the optimal times by using Visual Predictive 

Check Plots. VPCs were constructed based on 500 simulated replicates of the original 

dataset design. A unique bin was carried out with sampling points in eq.9 and also a 

bin for the six time points [0.115h, 0.56h, 1.38h, 2.25h, 4.28h ,6h]. The first and the 

second sampling point (0.115h, 0.56h) is an averaging of the two above mentioned 

sets. In FIGURE 13. - 15. , we presented the VPC plots for rifampicin, pyrazinamide 

and isoniazid model for the common design in eq.9. 

 

The evaluation of the efficient criterion Φwas carried out in order to compare the 

optimal sampling design of each drug to the common sampling design obtain from the 

simultaneous optimization of the three drugs. Specifically, we set as Ξ1   to be the 

optimal design of rifampicin for 2 cohorts with 4 samples per subject:  

 

Ξ1 = {
0.10h, 0.93h, 2.0 h, 6h
 0.56h, 1.44h, 2.17h, 6h

 

 

And as Ξ2  the common design for the three drugs. 

 

Ξ2  = {
 0.10h, 0.13h, 0.55h, 4.28h
0.57h, 1.38h, 2.25 h, 6h 

 

 

The criterion value was Φ = 1.12>1, which correspond to a 12% gain in information 

from rifampicin’s design compared to the common design. 

The same criterion was applied for the optimal times of pyrazinamide and isoniazid 

comparing to the common design and resulted to an increase 12% gain in information 

for pyrazinamide’s optimal times and 29% gain in information for the optimal times 

of isoniazid. We expected the additional increase of information in the model of 
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isoniazid as it is the model with the most fixed parameters. Nevertheless, the common 

design is a good compromise for the three drugs according to criterion Φ. 

 

 

 

Optimal design evaluation  

 

After the optimization procedure and having acquired the common sampling design 

for the 3 drugs concurrently (see eq.9), we would like to examine if this unique 

sampling design that we found is satisfactory. For this reason, we simulated a virtual 

clinical study, as if it is going to be implemented in reality. We analyzed this virtual 

study with NONMEM software and estimated the pharmacokinetic parameters. After 

that, we evaluated these estimations via diagnostic plots (scatter plots) and model 

evaluation techniques (VPC plots and Bootstrap method) 

 

A dataset with 100 patients, according to the unique optimal design determined, was 

simulated. 50 subjects was set in Cohort 1 with sampling time points at 0.10h,0.13h, 

0.55h and 4.28h and the other 50 subjects in Cohort 2 with sampling time points  

0.57h , 1.38h, 2.25 h and 6h. The dosage that administered to each subject was 

decided according to the respective weight band (see paragraph I. Age and Weight) 

 

 Goodness of Fit plots 

 

In FIGURE 10.-12., scatter plots of individual predicted concentrations versus the 

observed concentrations for rifampicin, pyrazinamide and isoniazid models are 

presented for the common design of the 3 drugs. The coefficient of determination R2   

is greater than 97.5 % for all models, so we have a first indication of a goodness of fit. 
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FIGURE 10. SCATTER PLOT OF INDIVIDUAL PREDICTED CONCENTRATIONS VERSUS 

THE OBSERVED CONCENTRATIONS FOR RIFAMPICIN MODEL 

 

 

FIGURE 11. SCATTER PLOT OF INDIVIDUAL PREDICTED CONCENTRATIONS VERSUS THE 

OBSERVED CONCENTRATIONS FOR PYRAZINAMIDE MODEL 
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FIGURE 12. SCATTER PLOT OF INDIVIDUAL PREDICTED CONCENTRATIONS VERSUS 

THE OBSERVED CONCENTRATIONS FOR ISONIAZID MODEL 
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 Visual predictive check plots  

 

In order to evaluate our PK models, the corresponding visual predictive check plots 

(VPC) for each drug is presented below.  

 

Rifampicin Concentrations (mg/L) vs Time after Dose (h) 

 

 

Time after dose 

 

  

FIGURE 13. VPC FOR THE RIFAMPICIN MODEL. 

The blue dots (o) presented are the observations (rifampicin concentrations). 

The lower, middle and upper lines are the 2.5th percentile, median (50th percentile) 

and 97.5th percentile of the observed data. Median and percentiles are plotted at the 

mean time since dose of the data observed within each time since dose interval. The 

blue shaded areas are the 95% CI for the 2.5th percentile and 97.5th percentile and the 

pink shaded area is the 95% CI for the median of simulated data. 
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Pyrazinamide Concentrations (mg/L) vs Time after Dose (h) 

 

 

 

Time after dose 

 

FIGURE 14.VPC FOR THE PYRAZINAMIDE MODEL. 

The blue dots (o) are presented the observations (pyrazinamide concentrations). 

The lower, middle and upper lines are the 2.5th percentile, median (50th percentile) 

and 97.5th percentile of the observed data. Median and percentiles are plotted at the 

mean time since dose of the data observed within each time since dose interval. The 

blue shaded areas are the 95% CI for the 2.5th percentile and 97.5th percentile and the 

pink shaded area is the 95% CI for the median of simulated data. 
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Isoniazid Concentrations (mg/L) vs Time after Dose (h) 

 

                                                       Time after dose 

 

 

FIGURE 15.  VPC FOR THE ISONIAZID MODEL. 

The blue dots (o) are presented the observations (isoniazid concentrations). 

The lower, middle and upper lines are the 2.5th percentile, median (50th percentile) 

and 97.5th percentile of the observed data. Median and percentiles are plotted at the 

mean time since dose of the data observed within each time since dose interval. The 

blue shaded areas are the 95% CI for the 2.5th percentile and 97.5th percentile and the 

pink shaded area is the 95% CI for the median of simulated data. 

 

For all pharmacokinetic models, the VPC results are supportive of the respective 

model. The median of the simulated prediction tracks are very well with the median 

of the observed data, across the entire dosing interval, and the 95% CI for the 2.5th 

percentile and 97.5th percentile of simulated data are also fairly consistent with 

corresponding percentiles based on data. In only the third time bin of pyrazinamide, 
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the 97.5th percentile of the data falls slightly outside the 95% CI around the upper 

prediction interval. 

 

 Bootstrap  

500 bootstrap datasets were generated by replacement, from the 100 simulated 

datasets for the three drugs. Bootstrap results for the three PK models and presented 

below. 

 

TABLE 6.  INITIAL PARAMETERS VALUES, NONMEM PARAMETER  ESTIMATES AND 

BOOTSTRAP RESULTS FOR RIFAMPICIN 

 

Parameters 

   (units) 

Initial 

Parameter  

values 

NONMEM 

Parameter 

Estimates 

(RSE(%) )            

                           Bootstrap 

 

Median           95 % CI           RSE(%) 

βCL(L/h) 8.15 9.10(3%) 8.94             7.88-11.93             9% 

βV(L) 16.2 18.20(6%) 18.16            16.08-21.07          7% 

 

βMTT(h) 1.04 1.03(3%) 1.02              0.96 -1.07            3% 

 

βn 8.04 7.46(6%) 7.49            6.54-8.62             7% 

β tm50   (wks) 58.2 57.10(7%) 57.78          46.67-83.57          15% 

β HILL 2.21 1.77(6%) 1.93           1.02-3.52               32% 

ωCL
2  0.09 0.09(22%) 0.08           0.04-0.11              23% 

ωV
2  0.16 0.16(25%) 0.16            0.09-0.24              22% 

 

    ωMTT
2  0.04 0.035(18%) 0.03           0.02-0.04              18% 

   σadd
2 (mg/L)2 0.01 0.01(11%) 0.01           0.008-0.012           10% 

   σprop
2  0.04 0.038(18%) 0.03           0.02 - 0.06             23% 
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TABLE 7. INITIAL PARAMETERS VALUES, NONMEM PARAMETER ESTIMATES AND 

BOOTSTRAP RESULTS FOR PYRAZINAMIDE 

 

Parameters 

(units) 

Initial 

Parameter  

Values  

NONMEM 

Parameter 

Estimates(RSE(%)) 

Bootstrap 

 

Median      95% CI       RSE(%) 

βCL(L/h) 1.08 1.21(4%) 1.20           1.12-1.30              3% 

βV(L) 9.64 9.40(4%) 9.36           8.79-10.1              3% 

βka(h)−1 4.48 4.08(7%) 4.08           3.64-4.74              6% 

βMTT(h) 0.10 0.09(8%) 0.09           0.08-0.10              6% 

βn 3.94 4.73(26%) 4.69           3.14-6.71            19% 

ωCL
2  0.09 0.082(17%) 0.08           0.05-0.10            17% 

ωV
2  0.09 0.11 (14%) 0.10           0.07-0.13            14% 

ωka
2  0.09 0.13(28%) 0.12           0.05-0.20            28% 

ωMTT
2  0.09 0.082(26%) 0.07           0.04-0.13            27% 

    σadd
2 (mg/L)2 0.01 0.02(50%) 0.02           0.006-0.05          47% 

      σprop
2  0.01 0.007(14%) 0.007          0.005-0.009        13% 
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TABLE 8.INITIAL PARAMETERS VALUES, NONMEM PARAMETER ESTIMATES AND 

BOOTSTRAP RESULTS FOR ISONIAZID 

 

Parameters 

(units) 

Initial 

Parameter  

Values  

NONMEM 

Parameter 

Estimates(RSE(%) ) 

Bootstrap 

 

Median      95% CI     RSE(%) 

βCL(L/h) 4.44 4.79(6%) 4.79         4.15-5.62            8% 

βV(L) 11.0 9.87(12%) 9.82         6.57-11.9           13% 

βka (h)−1
 2.47 2.10(15%) 2.12         1.38-2.81           17% 

βMTT(h) 0.179 0.18(4%) 0.18         0.16-0.20           4% 

βQ 2.00 2.60(32%) 2.52         1.59-5.00            34% 

βVper 5.03 4.82(15%) 5.27         4.05-9.37            36% 

βFim/fast 0.772 0.799(6%) 0.79         0.70-0.89            6% 

βTM50(wks) 49.0 48.8(7%) 49.5        42.9-62.3            10% 

βHill 2.19 2.49(30%) 2.47        1.39-5.28            51% 

ωCL
2  0.09 0.08(16%) 0.08        0.05-0.11            19% 

ωV
2  0.09 0.16(29%) 0.15        0.004-0.28           34% 

ωka
2  0.25 0.08(75%) 0.09        0.05-0.26             64% 

ωMTT
2  0.09 0.08(20%) 0.09        0.05-0.12            18% 

      σprop
2  0.04 0.03(13%) 0.03       0.02-0.04            11% 
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According to the table results for the three PK models, we have to discuss and 

comment two different points.  

The first of them is the precision and accuracy, as regards the difference between the 

initial parameter values obtained from literature (Initial Parameter Values) and the 

final parameter estimates obtained by NONMEM. For rifampicin model, for all fixed 

effects the difference between the initial parameters and final estimates does not 

exceed the 20%, for pyrazinamide model the 16% and for isoniazid model the 23%. 

The variance of random effects were also close to ΝΟΝΜΕΜ parameter estimates for 

the three PK models, except for absorption rate constant in isoniazid model which is 

underestimated.  The residual variability was under the 50% difference for all three 

models. The relative standard errors (RSE) for rifampicin model obtained by the 

NONMEM are precise. For the fixed effects, RSE are under 10% and for the random 

effects are under 30%.For the model of pyrazinamide, all RSE for fixed effects were 

under 26% and for the random effects under 30%. For isoniazid model, RSE are also 

precise even though for inter-compartmental clearance parameter and Hill factor 

parameter the RSE were at the limit of 30% and the RSE of absorption rate constant 

parameter is also increased (75%). This can be explained as the isoniazid model, were 

evaluated consisted of 11 parameters (including 9 fixed effects parameters)and can be 

considered as over-parameterized. Nevertheless, the RSE shown precision for all 3 

models, as the population mean parameters were within acceptance levels (defined as 

<30% for mean population parameters and <50 % for variance parameters values), 

except for ka in isoniazid model.   

 

The second point that has to be commented is the results obtained by bootstrap 

procedures. Bootstrap is a very robust method, gets reliable estimates for RSE and CI 

than the NONMEM, considering as “the gold standard” in design evaluation. Being in 

line with NONMEM results, RSE shown precision for the most pharmacokinetic 

parameters of the rifampicin, pyrazinamide and isoniazid model. More particularly, 

for rifampicin model, bootstrap results present small RSE (under 15%), apart from 

Hill factor that is 32%. For pyrazinamide model, all parameter estimates are unbiased. 

In isoniazid model, Hill Factor is increased to 51% while all the other population 

parameters are under from 36%. Bootstrap results showed that the variance of rate 

absorption constant is also increased (64%). A similar increase has been also noticed 

in NONMEM results. For both in model of isoniazid and rifampicin, we have to stand 
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and comment the results of the Hill factor parameter. The reason that this particular 

population parameter tends to have a bigger variability than the other fixed parameters 

lies to the fact that Hill factor is connected with the organ maturation process 

(maturation for oral clearance and MTT). As maturation process for children is 

reaching a plateau after the 6 months after birth, Hill factor stops playing a role. 

Nonetheless, in our study we have included children aged 1 month after birth and 

older, so Hill factor parameter had to be added in our model.  

 

4.4 DISCUSSION 

 

In the present work, D-optimality was the criterion used for the sampling design 

optimization procedure and the particle swarm optimization was the algorithm used 

for optimization. Particle swarm optimization algorithm has not been implemented 

before for the optimization procedure in the field of pharmacokinetics. This is the first 

time that this algorithm is used for optimization in pharmacokinetic studies.  

 

However, particle swarm was not the only algorithm that we used for optimization in 

the present thesis. A number of optimization algorithms are known from literature for 

designing optimal population pharmacokinetic studies. A common algorithm used is 

the Fedorov-Wynn algorithm which uses only a finite number of sampling times, 

which have been determined from the design region therefore leading to the selection 

of a local optimal design. Simplex algorithm, adaptive random search and simulating 

annealing (SA) are some algorithms that have also used.(Ogungbenro et al. 2005).  

Simulating annealing algorithm was the one that we applied in our work before the 

selection of particle swarm algorithm. Inspired by thermodynamics, SA is a stochastic 

derivative free minimization algorithm that search over the entire surface of the 

determinant and allows both upward and downward steps, although certain intrinsic 

variables change the range of uphill step. Uphill progress is controlled by Metropolis 

step. Although, it has been proposed as a superior and robust algorithm comparing to 

other algorithms such as simplex (Duffull et at. 2002), in our work some weaknesses 

appeared. This weakness lies to the fact that SA needs an elementary design to be 

provided. If the initial design is different in optimization procedure, the algorithm 

fails to find exactly the same optimal sampling times (especially the optimal sampling 

times close to upper bound).As opposed to SA, in the  particle swarm algorithm there 
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is no need of initial design and in every optimization run, the algorithm performed 

better, ending up to the same optimal sampling schedule every time. 

 

It is worth mentioning that, even when we do not averaging out the covariates 

(age,etc.) and gave them a fixed value, the particle swarm algorithm ended up 

approximately to the same optimal sampling points (a difference on the first or second 

decimal may be appeared). 

 

Generally, the robustness of the optimal design and the model specification is an 

important problem in the drug research. The optimization done in this study is model 

dependent. Although the three models used in this study are based on a priori 

information given by previous study which uses these PK models(Zvada et al. 2014), 

it would be interesting to test the robustness of the design on other models e.g. for 

different random effects models. 

 

Moreover, several modifications can also be done in the software that we created from 

scratch in MATLAB, according to user’s needs. For example, we created an even 

sparser common design schedule for the 3 drugs simultaneously with optimal times 

for each cohort the below: 

                                    Timesoptimal,Cohort1= [ 0.10h, 3.73h, 6h] 

Timesoptimal,Cohort2 = [ 0.51h, 1.13h, 1.80h] 

 

An even sparser design (e.g. 2 blood samples per subject) or the addition of one or 

more cohorts of subjects can also be applied to the software, with some modifications 

in the MATLAB routines. The number of subjects in each cohort can also be 

optimized, but caution should be taken in order to keep the design robust. Finally, the 

software that we created can also be used for the optimization design procedure of 

other drugs, apart from rifampicin, pyrazinamide and isoniazid.    
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4.5 CONCLUSIONS 
 

The final conclusions of the present work are; a common optimal design for a 

pediatric PK study can be obtained using D-optimal design technique for 3 drugs 

simultaneously. The sampling time schedule in which we finally concluded is: 0.10h, 

0.13h, 0.55h and 4.28h for Cohort 1 and 0.57 h, 1.38h, 2.25h and 6h for Cohort 2. 

This unique time schedule is a good compromise for rifampicin, pyrazinamide and 

isoniazid, concurrently and the evaluation of the 3 pharmacokinetic models shown 

accurate results, as regards the parameter estimates. 

Concluding, the general purpose of this work is that; via modelling and simulation 

techniques virtual clinical studies can be designed. Optimizing drug doses, blood 

sampling times, number of subjects etc. pharmaceutical industries can save money 

and time from designing inappropriate clinical studies.  

According to our work, if this clinical trial that we designed is implemented in Europe 

or US, the FDC product for the treatment of tuberculosis that is currently available 

only in deprived countries, will take Marketing Authorization Approval and will be 

available also in countries of Europe and US. 
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ABSTRACT 

 

The objective of this dissertation was to design a sparse sampling pediatric 

pharmacokinetic study for a fixed dose combination product of isoniazid (Η), 

rifampicin (R) and pyrazinamide (Z) for the treatment of tuberculosis. A single dose 

of FDC tablet was supposed to be given into two cohorts of fifty (50) children each. 

Non-linear mixed effects models were used to describe the structure of each drug 

model. We determined a unique optimal sampling schedule for the three drugs, such 

that the parameters of the PK models of each drug are estimated with high precision. 

We applied a method based on an expression for the Fisher Information Matrix (FIM) 

for non-linear mixed effects to improve the sampling design so as to obtain efficient 

parameter estimates. The approach is based on Rao-Cramer inequality which states 

that the inverse of FIM is the lower bound of the variance-covariance matrix of any 

unbiased estimators of the parameters. The criterion used for the optimization is D-

optimality; a design is considered D-optimal if it maximizes the determinant of the 

Fisher information matrix. The particle swarm optimization (PSO) algorithm was 

applied for the optimization procedure while all implementation was conducted in 

MATLAB. The final design was evaluated by simulations and estimation with 

NONMEM. Bootstrap, Visual Predictive Check (VPC) plots and Goodness of fit plots 

were generated. 

A pharmacokinetic study with 4 blood samples per subject was eventually designed. 

The optimal blood sampling times for the first cohort is0.10h, 0.13h, 0.55h and 4.28h 

and optimal blood sampling times for Cohort 2 is 0.57 h, 1.38h, 2.25h and 6h.The 

evaluation of the 3 pharmacokinetic models showed accurate results, as regards the 

parameter estimates. 

Finally, if the clinical trial that we designed is implemented, it could be used for 

taking Marketing Authorization Approval of first-line paediatric fixed dose 

combination product for the treatment of tuberculosis in Europe and USΑ, which is 

currently unavailable. 
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ΠΕΡΙΛΗΨΗ 

 

Ο σκοπός αυτής της εργασίας είναι να σχεδιαστεί μια παιδιατρική φαρμακοκινητική 

μελέτη αραιής δειγματοληψίας ενός φαρμακευτικού σκευάσματος σταθερού 

συνδυασμού δόσης, ισονιαζίδης, ριφαμπικίνης και πυραζιναμίδης για την θεραπεία 

της φυματίωσης. Θεωρείται ότι θα δοθεί μια μοναδική χορήγηση του φαρμακευτικού 

σκευάσματος σε δυο κοορτές των πενήντα(50) παιδιών η καθεμία. Μη γραμμικά 

μοντέλα μικτών επιδράσεων χρησιμοποιήθηκαν προκείμενου να περιγράψουν την 

δομή καθενός από τα φαρμακευτικά μοντέλα. Καθορίσαμε ένα μοναδικό 

δειγματοληπτικό σχήμα για τα τρία φάρμακα, έτσι ώστε οι παράμετροι των 

φαρμακοκινητικών μοντέλων να εκτιμηθούν με υψηλή ακρίβεια. Eφαρμόστηκε μια 

μέθοδος βασισμένη στον Πίνακα Πληροφορίας του Fisher (Fisher Information 

Matrix) για μη γραμμικά μοντέλα μικτών επιδράσεων προκειμένου να 

βελτιστοποιηθούν οι χρόνοι δειγματοληψίας αποκτώντας αποτελεσματικές εκτιμήσεις 

των παραμέτρων. Η προσέγγιση αυτή βασίζεται στην ανισότητα του Rao-Cramer 

κατά την οποία o αντίστροφος του Πίνακα Πληροφορίας του Fisher είναι το κάτω 

φράγμα του πίνακα διασποράς- συν διασποράς κάθε αμερόληπτού εκτιμητή των 

παραμέτρων. Το κριτήριο που χρησιμοποιήθηκε για την βελτιστοποίηση είναι το D-

βέλτιστο. Ένας σχεδιασμός θεωρείται D-βέλτιστος εάν μεγιστοποιεί την ορίζουσα 

του Πίνακα Πληροφοριών του Fisher. Ο αλγόριθμος particle swarm optimization 

(PSO) εφαρμόστηκε για την διαδικασία της βελτιστοποίησης καθώς και όλη η 

εφαρμογή διεξήχθηκε στο προγραμματιστικό πακέτο MATLAB. Ο τελικός 

σχεδιασμός αξιολογήθηκε μέσω προσομοιώσεων και εκτιμήσεων στο πακέτο 

NONMEM. Bootstrap, Visual predictive check plots και γραφήματα καλής 

προσαρμογής δημιουργήθηκαν. 

Τελικά σχεδιάστηκε, μια φαρμακοκινητική μελέτη με 4 δείγματα αίματος ανά 

ασθενή. Οι βέλτιστοι χρόνοι δειγματοληψίας για την πρώτη κοορτή είναι στις 0.10 , 

0.13 ,0.55 και 4.28 ώρες και οι βέλτιστοι χρόνοι δειγματοληψίας για την δεύτερη 

κοορτή είναι στις 0.57 , 1.38, 2.25 and 6 ώρες. 

Η αξιολόγηση των τριών φαρμακοκινητικών μοντέλων έδειξε ακριβή αποτελέσματα, 

όσο αναφορά τις εκτιμήσεις των παραμέτρων. 

Κλείνοντας, εάν αυτή η κλινική μελέτη πραγματοποιηθεί, τότε το φαρμακευτικό αυτό 

σκεύασμα σταθερού συνδυασμού δόσης για την θεραπεία της φυματίωσης, θα μπορεί 
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να πάρει έγκριση για άδεια κυκλοφορίας στην Ευρώπη και την Αμερική, το οποίο 

μέχρι τώρα δεν είναι διαθέσιμο. 
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APPENDIX 

 

Matlab Code  

 

% Main_Program 
clear; 
wt=[4.5,5.6,6.4,7,7.5,7.9,8.3,9.2,9.9,10.5,11.1,11.8,12.4,12.9,13.5,1

4,14.5,15,15.5,16,17,18,19,20.1,21.3,22.5,23.7]; 
pma=[40,44,48,52,56,60,64,76,88,100,112,124,136,148,160,172,184,196,2

08,220,244,280,292,316,340,364,388]; 
acetfactor=[ 

1,2.013,2.013,1,1,2.54,2.54,1,2.54,1,1,2.013,2.54,2.0130,1,1,1,1,1,2.

013,1,1,1,1,2.54,1,1]; 
ffactor=[1,0.772,0.772,1,1,0.772,0.772,1,0.772,1,1,0.772,0.772,0.772,

1,1,1,1,1,0.7720,1,1,1,1,0.772,1,1]; 
fori=1:length(wt) 
ifwt(i)<=7.9  
tablet(i)=1 ; 
elseifwt(i)>=8  &&wt(i)<=11.9 
tablet(i)=2; 
elseifwt(i)>=12    &&wt(i)<=15.9 
tablet(i)=3; 
else 
tablet(i)=4; 
end 
end 
riftheta(1)=8.15 ; 
riftheta(2)=16.2; 
riftheta(3)=1.04; 
riftheta(4)=8.04; 
rifsigma(1)=0.2; 
rifsigma(2)=0.1; 
rifwmega(1)=0.3; 
rifwmega(2)=0.4; 
rifwmega(3)=0.2; 
pyraztheta(1)=1.08 ; 
pyraztheta(2)=9.64; 
pyraztheta(3)=4.48; 
pyraztheta(4)=0.1; 
pyraztheta(5)=3.94; 
pyrazwmega(1)=0.3;   
pyrazwmega(2)=0.3; 
pyrazwmega(3)=0.3; 
pyrazwmega(4)=0.3; 
pyrazsigma(1)=0.1;  
pyrazsigma(2)=0.1; 
isontheta(1)=4.4;     %cl 
isontheta(2)=11;      %v 
isontheta(3)=2.47;    %ka 
isontheta(4)=0.179;   %mtt 
isontheta(5)=2;       %Q 
isontheta(6)=5.03;    %V periph 
isonsigma(1)=0.2;  
isonwmega(1)=0.3;  %wcl 
isonwmega(2)=0.3;   %wv 
isonwmega(3)=0.5;  %wka 
isonwmega(4)=0.3;  %wmtt 
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options = optimoptions('particleswarm','UseParallel',1) 
times=particleswarm(@(times)finalorizD2Coh3drugs_with_wt(times,rifthe

ta,pyraztheta,isontheta,rifwmega,pyrazwmega,isonwmega,rifsigma,pyrazs

igma,isonsigma,acetfactor,ffactor,tablet,wt,pma),8,[0.1 0.1 0.1 0.1 

0.1 0.1 0.1 0.1],[ 6 6 6 6 6 6 6 6],options) 

 

 

 

 

% 3DET 
function 

finaloriz2Coh3drugs=finalorizD2Coh3drugs_with_wt(times,riftheta,pyraz

theta,isontheta,rifwmega,pyrazwmega,isonwmega,rifsigma,pyrazsigma,iso

nsigma,acetfactor,ffactor,tablet,wt,pma) 
finalriforiz=finalDrif2cohort(times,riftheta,rifwmega,rifsigma,tablet

,wt,pma); 
finalpyrazoriz=finalDpyraz2cohort(times,pyraztheta,pyrazwmega,pyrazsi

gma,tablet,wt); 
finalisonoriz=finalDison2cohort(times,isontheta,isonwmega,isonsigma,a

cetfactor,ffactor,tablet,wt,pma); 
finaloriz2Coh3drugs=(finalriforiz/9 +finalpyrazoriz/11 + 

finalisonoriz/11); 
disp(times); 
disp(finaloriz2Coh3drugs) 
disp(finalriforiz) 
disp(finalpyrazoriz) 
disp(finalisonoriz) 
end 

 

 

 

% DET rifampicin 
function  

finalriforiz=finalDrif2cohort(times,riftheta,rifwmega,rifsigma,tablet

,wt, pma) 
oriz=zeros(length(wt)); 
parfori=1:length(wt)      

oriz(i)=finalriftwoCohortDfim(times,riftheta,rifwmega,rifsigma,tablet

(i),wt(i),pma(i)) 
end 
finalriforiz=-real(mean(log(-oriz))) 
disp(times); 
end 

 

 

 

 

%TOTALFIM rifampicin 
function 

oriz=finalriftwoCohortDfim(times,riftheta,rifwmega,rifsigma,tablet,wt

,pma) 
times1=times(1:4);%  or times1=times(1:3); 
times2=times(5:8);%  or times2=times(4:6); 
p=0.5; 
totalFim1=riftotalFim(times1,riftheta,rifwmega,rifsigma,tablet,wt, 

pma); 
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totalFim2=riftotalFim(times2,riftheta,rifwmega,rifsigma,tablet,wt, 

pma); 
totalfim=p*totalFim1 +(1-p)*totalFim2 ; 
oriz=-det(totalfim); 
end 
 

% FIM rifampicin 

 
functiontotalFim= 

riftotalFim(times,riftheta,rifwmega,rifsigma,tablet,wt, pma) 
A=rifA(times,riftheta,rifwmega,rifsigma,tablet,wt, pma); 
B=rifB(times,riftheta,rifwmega,rifsigma,tablet,wt, pma); 
totalFim=(1/2)*blkdiag(A,B); 
end 

 

 
function A=rifA(times,riftheta,rifwmega,rifsigma,tablet,wt, pma) 
dydz = deriv(times,riftheta,tablet,wt, pma); 
Var=rifVar(times,riftheta,rifwmega,rifsigma,tablet,wt, pma); 
A=2*dydz'*(inv(Var))*dydz ; 
End 

 

 

 
function B=rifB(times,riftheta,rifwmega,rifsigma,tablet,wt, pma) 
dydb=derivb(times,riftheta,tablet,wt, pma); 
y = conc(times,riftheta,tablet,wt, pma); 
Var=rifVar(times,riftheta,rifwmega,rifsigma,tablet,wt, pma); 
Fsasa=trace(Var^-2); 
Fsasp=trace((Var^-2)*diag(y.^2)); 
Fspsa=trace((Var^-1)*diag(y.^2)*(Var^-1)); 
Fspsp=trace((Var^-2)*diag(y.^4)); 
Fp1k=rifFp1k(times,riftheta,rifwmega,rifsigma,tablet,wt, pma); 
Fjk=(dydb'*(Var^-1)*dydb)^2; 
B=[Fjk,Fp1k',Fp1k';Fp1k,Fsasa,Fsasp;Fp1k,Fspsa,Fspsp]; 
End 

 

 

 

function Fp1k=rifFp1k(times,riftheta,rifwmega,rifsigma,tablet,wt, 

pma) 
dydb=derivb(times,riftheta,tablet,wt, pma); 
Var=rifVar(times,riftheta,rifwmega,rifsigma,tablet,wt, pma); 
Fp1k=zeros(1,length(riftheta)-1); 
for k=1:length(riftheta)-1 
    Fp1k(:,k)=dydb(:,k)'*(Var^(-2))*dydb(:,k); 
End 

 

 
functionVar=rifVar(times,riftheta,rifwmega,rifsigma,tablet,wt, pma) 
w=WMEGA(rifwmega); 
s=S(times,riftheta,rifsigma,tablet,wt, pma); 
dydb = derivb(times,riftheta,tablet,wt, pma); 
Var=dydb*w*dydb' + s; 
end 
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function s=S(times,riftheta,rifsigma,tablet,wt, pma) 
s=diag(conc(times,riftheta,tablet,wt, pma)*rifsigma(1).^2 + 

rifsigma(2).^2); 
end 

 

 
function w=WMEGA(rifwmega) 
w=diag(rifwmega.^2); 
end 

 

 
functiondydb=derivb(times,riftheta,tablet,wt, pma) 
dydb=zeros(length(times),length(riftheta)-1); 
fori=1:length(riftheta)-1 
h=0.00001; 
theta2=riftheta; 
theta2(i)=riftheta(i)*exp(h); 
dydb(:,i)= (conc(times,theta2,tablet,wt, pma) - 

conc(times,riftheta,tablet,wt, pma)) / h ; 
end 

 

 

 

functiondydz = deriv(times,riftheta,tablet,wt, pma) 
dydz = zeros(length(times),length(riftheta)); 
fori=1:length(riftheta) 
h = h=0.00001;*riftheta(i); 
theta2 = riftheta; 
theta2(i) = riftheta(i) + h ; 
dydz(:,i) = (conc(times,theta2,tablet,wt, pma) - 

conc(times,riftheta,tablet,wt, pma)) / h ; 
end 

 
 

function y = conc(times,riftheta,tablet,wt, pma) 
yo=0; 
t =[0 6]; 
v=riftheta(2)*(wt/12.5); 
sol=ode45(@(t,y) rif(t,y,riftheta,tablet,wt, pma), t ,yo); 
y=deval(sol,times)/v; 
end 

 

 

 

% Rifampicin model 
functiondydt = rif(t,y,riftheta,tablet,wt,pma) 
MF =1/(1+(pma/58.2).^(-2.21)); 
cl=riftheta(1)* MF *(wt/12.5)^0.75; 
v=riftheta(2)*(wt/12.5); 
MTT=riftheta(3); 
n=riftheta(4); 
F=1; 
D=75*tablet; 
ka=(n+1)/MTT; 
nfac=sqrt(2*3.1415)*(n+1)^(n+1.5)*exp(-n-1); 
dydt=(D*F*ka*(ka*t)^(n+1)*exp(-ka*t))/nfac - (cl/v)*y(1); 
end 
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% DET pyrazinamide 
function  

finalpyrazoriz=finalDpyraz2cohort(times,pyraztheta,pyrazwmega,pyrazsi

gma,tablet,wt) 
oriz=zeros(length(wt)); 

 
parfori=1:length(wt)  
          

oriz(i)=finalpyraztwoCohortDfim_with_wt(times,pyraztheta,pyrazwmega,p

yrazsigma,tablet(i),wt(i)) 
end 

 
finalpyrazoriz=-real(mean(log(-oriz))); 

 
disp(times); 
End 

 

 

%TOTALFIM pyrazinamide  

 
function 

oriz=finalpyraztwoCohortDfim_with_wt(times,pyraztheta,pyrazwmega,pyra

zsigma,tablet,wt) 

 
times1=times(1:4); 
times2=times(5:8); 
p=0.5; 
totalFim1= 

pyraztotalFim_with_wt(times1,pyraztheta,pyrazwmega,pyrazsigma,tablet,

wt); 
totalFim2= 

pyraztotalFim_with_wt(times2,pyraztheta,pyrazwmega,pyrazsigma,tablet,

wt); 
totalfim=p*totalFim1 + (1-p)*totalFim2; 
oriz =-det(totalfim); 
end 

 

 

 

% FIM pyrazinamide 
functiontotalFim= 

pyraztotalFim_with_wt(times,pyraztheta,pyrazwmega,pyrazsigma,tablet,w

t) 
A=pyrazA_with_wt(times,pyraztheta,pyrazwmega,pyrazsigma,tablet,wt); 
B=pyrazB_with_wt(times,pyraztheta,pyrazwmega,pyrazsigma,tablet,wt); 
totalFim=(1/2)*blkdiag(A,B); 
end 

 
function 

B=pyrazB_with_wt(times,pyraztheta,pyrazwmega,pyrazsigma,tablet,wt) 
dydb=pyrazderivb_with_wt(times,pyraztheta,tablet,wt); 
y = pyrazconc_with_wt(times,pyraztheta,tablet,wt); 
Var=pyrazVar_with_wt(times,pyraztheta,pyrazwmega,pyrazsigma,tablet,wt

); 
Fsasa=trace(Var^-2); 
Fsasp=trace((Var^-2)*diag(y.^2)); 
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Fspsa=trace((Var^-1)*diag(y.^2)*(Var^-1)); 
Fspsp=trace((Var^-2)*diag(y.^4)); 
Fp1k=pyrazFp1k_with_wt(times,pyraztheta,pyrazwmega,pyrazsigma,tablet,

wt); 
Fjk=(dydb'*(Var^-1)*dydb)^2; 
B=[Fjk,Fp1k',Fp1k';Fp1k,Fsasa,Fsasp;Fp1k,Fspsa,Fspsp]; 
end 

 
function 

A=pyrazA_with_wt(times,pyraztheta,pyrazwmega,pyrazsigma,tablet,wt) 
dydz = pyrazderiv_with_wt(times,pyraztheta,tablet,wt); 
Var=pyrazVar_with_wt(times,pyraztheta,pyrazwmega,pyrazsigma,tablet,wt

); 
A=2*dydz'*(inv(Var))*dydz ; 
end 

 
function 

Fp1k=pyrazFp1k_with_wt(times,pyraztheta,pyrazwmega,pyrazsigma,tablet,

wt) 
dydb=pyrazderivb_with_wt(times,pyraztheta,tablet,wt); 
Var=pyrazVar_with_wt(times,pyraztheta,pyrazwmega,pyrazsigma,tablet,wt

); 
Fp1k=zeros(1,length(pyraztheta)-1); 
for k=1:length(pyraztheta)-1 
    Fp1k(:,k)=dydb(:,k)'*(Var^(-2))*dydb(:,k); 
end 

 
function 

Var=pyrazVar_with_wt(times,pyraztheta,pyrazwmega,pyrazsigma,tablet,wt

) 
w=pyrazWMEGA_with_wt(pyrazwmega); 
s=pyrazS_with_wt(times,pyraztheta,pyrazsigma,tablet,wt); 
dydb = pyrazderivb_with_wt(times,pyraztheta,tablet,wt); 
Var=dydb*w*dydb' + s; 
end 

 

 
functiondydb=pyrazderivb_with_wt(times,pyraztheta,tablet,wt) 
dydb=zeros(length(times),length(pyraztheta)-1); 
fori=1:length(pyraztheta)-1 
h=0.00001; 
theta2=pyraztheta; 
theta2(i)=pyraztheta(i)*exp(h); 
dydb(:,i)= (pyrazconc_with_wt(times,theta2,tablet,wt) - 

pyrazconc_with_wt(times,pyraztheta,tablet,wt)) / h ; 
end 

 
functiondydz = pyrazderiv_with_wt(times,pyraztheta,tablet,wt) 
dydz = zeros(length(times),length(pyraztheta)); 
fori=1:length(pyraztheta) 
h = 0.00001*pyraztheta(i); 
theta2 = pyraztheta; 
theta2(i) = pyraztheta(i) + h ; 
dydz(:,i) = (pyrazconc_with_wt(times,theta2,tablet,wt) - 

pyrazconc_with_wt(times,pyraztheta,tablet,wt)) / h ; 
end 
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function w=pyrazWMEGA_with_wt(pyrazwmega) 
w=diag(pyrazwmega.^2); 
end 

 

 
function s=pyrazS_with_wt(times,pyraztheta,pyrazsigma,tablet,wt) 
s=diag(pyrazconc_with_wt(times,pyraztheta,tablet,wt)*pyrazsigma(1).^2 

+ pyrazsigma(2).^2); 
end 

 
function y = pyrazconc_with_wt(times,pyraztheta,tablet,wt) 
yo=[0 0]; 
t =[0 6]; 
v=pyraztheta(2)*(wt/12.5); 
sol=ode45(@(t,y) pyraz_with_wt(t,y,pyraztheta,tablet,wt), t ,yo); 
amount=deval(sol,times); 
y=amount(2,:)/v; 
end 

 

 

 

%Pyrazinamide model 
functiondydt = pyraz_with_wt(t,y,pyraztheta,tablet,wt) 
dydt=zeros(2,1); 
cl=pyraztheta(1)*(wt/12.5).^0.75; 
v=pyraztheta(2)*(wt/12.5); 
ka=pyraztheta(3); 
MTT=pyraztheta(4); 
n=pyraztheta(5); 
F=1; 
D=150*tablet; 
ktr=(n+1)/MTT; 
nfac=sqrt(2*3.1415)*(n)^(n+0.5)*exp(-n); 
dydt(1)=(D*F*ktr*(ktr*t)^(n)*exp(-ktr*t))/nfac - ka*y(1); 
dydt(2)=ka*y(1)-(cl/v)*y(2); 
end 

 

 

 

 

%DET isoniazid  
function  

finalisonoriz=finalDison2cohort(times,isontheta,isonwmega,isonsigma,a

cetfactor,ffactor,tablet,wt,pma) 
oriz=zeros(length(wt)); 
parfori=1:length(wt)  
oriz(i)=finalisontwoCohortDfim(times,isontheta,isonwmega,isonsigma,ac

etfactor(i),ffactor(i),tablet(i),wt(i),pma(i)) 
end 

 
finalisonoriz=-real(mean(log(-oriz))); 
disp(finalisonoriz); 
disp(times); 
end 
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%TOTALFIM isoniazid 
function 

oriz=finalisontwoCohortDfim(times,isontheta,isonwmega,isonsigma,acetf

actor,ffactor,tablet,wt,pma) 
times1=times(1:4); 
times2=times(5:8); 
p=0.5; 
totalFim1=isontotalFim(times1,isontheta,isonwmega,isonsigma,acetfacto

r,ffactor,tablet,wt,pma); 
totalFim2=isontotalFim(times2,isontheta,isonwmega,isonsigma,acetfacto

r,ffactor,tablet,wt,pma); 
totalfim=p*totalFim1 +(1-p)*totalFim2 ; 
oriz=-det(totalfim); 
end 

 

 

%FIM isoniazid 
functiontotalFim= 

isontotalFim(times,isontheta,isonwmega,isonsigma,acetfactor,ffactor,t

ablet,wt,pma) 
A=isonA(times,isontheta,isonwmega,isonsigma,acetfactor,ffactor,tablet

,wt,pma); 
B=isonB(times,isontheta,isonwmega,isonsigma,acetfactor,ffactor,tablet

,wt,pma); 
totalFim=(1/2)*blkdiag(A,B); 
end 

 
function 

A=isonA(times,isontheta,isonwmega,isonsigma,acetfactor,ffactor,tablet

,wt,pma) 
dydz = isonderiv(times,isontheta,acetfactor,ffactor,tablet,wt,pma); 
Var=isonVar(times,isontheta,isonwmega,isonsigma,acetfactor,ffactor,ta

blet,wt,pma); 
A=2*dydz'*(inv(Var))*dydz ; 
end 

 

 

 

 
function 

B=isonB(times,isontheta,isonwmega,isonsigma,acetfactor,ffactor,tablet

,wt,pma) 
dydb=isonderivb(times,isontheta,acetfactor,ffactor,tablet,wt,pma); 
y = isonconc(times,isontheta,acetfactor,ffactor,tablet,wt,pma); 
Var=isonVar(times,isontheta,isonwmega,isonsigma,acetfactor,ffactor,ta

blet,wt,pma); 
Fspsp=trace((Var^-2)*diag(y.^4)); 
Fp1k=isonFp1k(times,isontheta,isonwmega,isonsigma,acetfactor,ffactor,

tablet,wt,pma); 
Fjk=(dydb'*(Var^-1)*dydb)^2; 
B=[Fjk,Fp1k';Fp1k,Fspsp]; 
end 
 

 



 

96 
 

function 

Fp1k=isonFp1k(times,isontheta,isonwmega,isonsigma,acetfactor,ffactor,

tablet,wt,pma) 
dydb=isonderivb(times,isontheta,acetfactor,ffactor,tablet,wt,pma); 
Var=isonVar(times,isontheta,isonwmega,isonsigma,acetfactor,ffactor,ta

blet,wt,pma); 
Fp1k=zeros(1,length(isontheta)-2); 
for k=1:length(isontheta)-2 
    Fp1k(:,k)=dydb(:,k)'*(Var^(-2))*dydb(:,k); 
end 

 

 

function 

Var=isonVar(times,isontheta,isonwmega,isonsigma,acetfactor,ffactor,ta

blet,wt,pma) 
w=isonWMEGA(isonwmega); 
s=isonS(times,isontheta,isonsigma,acetfactor,ffactor,tablet,wt,pma); 
dydb = isonderivb(times,isontheta,acetfactor,ffactor,tablet,wt,pma); 
Var=dydb*w*dydb' + s; 
end 

 
function 

s=isonS(times,isontheta,isonsigma,acetfactor,ffactor,tablet,wt,pma) 
s=diag(isonconc(times,isontheta,acetfactor,ffactor,tablet,wt,pma)*iso

nsigma(1).^2); 
end 

 
function w=isonWMEGA(isonwmega) 
w=diag(isonwmega.^2); 
end 

 

 
function 

dydb=isonderivb(times,isontheta,acetfactor,ffactor,tablet,wt,pma) 
dydb=zeros(length(times),length(isontheta)-2); 
for i=1:length(isontheta)-2 
h=0.00001; 
theta2=isontheta; 
theta2(i)=isontheta(i)*exp(h); 
dydb(:,i)= (isonconc(times,theta2,acetfactor,ffactor,tablet,wt,pma) - 

isonconc(times,isontheta,acetfactor,ffactor,tablet,wt,pma)) / h ; 
end 

 

 
function  

dydz = isonderiv(times,isontheta,acetfactor,ffactor,tablet,wt,pma) 
dydz = zeros(length(times),length(isontheta)); 
for i=1:length(isontheta) 
h = 0.00001*isontheta(i); 
theta2 = isontheta; 
theta2(i) = isontheta(i) + h ; 
dydz(:,i) = (isonconc(times,theta2,acetfactor,ffactor,tablet,wt,pma) 

- isonconc(times,isontheta,acetfactor,ffactor,tablet,wt,pma)) / h ; 
end 
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function y = 

isonconc(times,isontheta,acetfactor,ffactor,tablet,wt,pma) 
yo=[0 0 0]; 
t =[0 6]; 
v=isontheta(2)*(wt/12.5); 
sol=ode45(@(t,y) 

ison(t,y,isontheta,acetfactor,ffactor,tablet,wt,pma), t ,yo); 
amount=deval(sol,times); 
y=amount(2,:)/v; 
end 

 

 

%Isoniazid model 

functiondydt = ison(t,y,isontheta,acetfactor,ffactor,tablet,wt,pma) 
dydt=zeros(3,1); 
MF =1/(1+(pma/49).^(-2.19)); 
cl=isontheta(1)* acetfactor * MF *(wt/12.5)^0.75; 
v=isontheta(2)*(wt/12.5); 
ka=isontheta(3); 
MTT=isontheta(4); 
n=4; 
Q=isontheta(5)*(wt/12.5)^0.75; 
vper=isontheta(6)*(wt/12.5); 
F=ffactor; 
D=50*tablet; 
ktr=(n+1)/MTT; 
k12=Q/v; 
k21=k12*v/vper; 
nfac=sqrt(2*3.1415)*(n)^(n+0.5)*exp(-n); 
dydt(1)=(D*F*ktr*(ktr*t)^(n)*exp(-ktr*t))/nfac - ka*y(1); 
dydt(2)=ka*y(1)- k12*y(2)+ k21*y(3) -(cl/v)*y(2); 
dydt(3)=k12*y(2)-k21*y(3); 
end 

 

 

 

 

 

 

 

 

 

 


