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Introduction

The field of spintronics aims at a manipulation of the electron spin degree of freedom
with applications in information technology. In recent years, it has been realized that the
spin-orbit interaction in materials can affect their electronic properties in exotic ways that
can be used in spintronics applications. There is a number of directions in spintronics
that have emerged as a consequence. In this thesis we focus on the materials class of
topological insulators [1] and on the effect of spin-orbit torque (SOT) .

Spin-orbit torques are a class of magnetic torques that rely on the transfer of angular
momentum from the crystal lattice to the magnetization of magnetic defects, in the pres-
ence of an electric field. As it is shown in Fig. 1, the magnetization of a ferromagnetic
layer on a substrate of strong spin-orbit coupling is rotated in response to an electrical
current in the system, until finally the magnetization has acquired an opposite orientation.
This spin precession by SOT is pivotal for an electric-field control of magnetic memory,
where the “up” or “down” direction of magnetization is interpreted as a memory bit,
while the SOT serves as a switching lever.

The phenomenon has been intensively studied the last years for ferromagnetic bilayers
[2–4], i.e. systems of a thin ferromagnetic layer, which is deposited on top of a heavy
metal substrate. The conclusion of these studies was that SOT can lead to the reversal
of the magnetization in such systems.

In this thesis, the same effect will be investigated in a different system. We will study
the spin-orbit torque on states of magnetic Mn defects, which are embedded in the sur-
face of the topological insulator Bi2Te3, and for which it has been found that they present
ferromagnetic behavior in small concentrations. The topological insulator is chosen as a
substrate, due to its special characteristics. Topological insulators are narrow-gap semi-
conductors in the bulk and conducting at the surface, i.e., they are characterized by
metallic surface states. Consequently, all current flows near the surface, where the SOT
effect takes place, without energy loss from Joule heating in the bulk. In addition, these
surface states are special in the sense of their spin texture, due to strong spin-orbit cou-
pling. Their spin polarization is directly mainly in the plane of the surface, while the
magnetization of the Mn magnetic impurity atoms is perpendicular to the surface. As a
result, the torque is maximized, since it depends on the cross product of the two quan-
tities. Due to these properties, when the topological insulator surface is doped with Mn
magnetic impurities, a strong current-induced spin-orbit torque is expected to act on the
Mn impurity atoms.

This thesis is structured as follows.

In Chapter 1, the KKR (Korringa-Kohn-Rostoker) Green function method is presented.
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2 Introduction

More specifically, after a short definition of the Green function, we give an analysis of the
single scattering theory and then we generalize this theory in case of the scattering by all
atoms within the crystal, solving the multiple scattering problem in KKR representation.
Based on the KKR method, we focus on the scattering problem of impurity atoms in
otherwise periodic crystal, calculated the Green function of this system and scattering
properties, such as the transition rate.

In Chapter 2, the physical meaning of the spin-orbit torques is introduced, initially,
since its linear response to an applied electric field, based on the Kubo formalism. Fur-
thermore, the expressions of the expectation values of the spin, of the torque and of the
spin flux operators are given in KKR representation. Then, we show how the impurity-
driven spin-orbit torque response tensors in an applied electric field can be calculated,
using the Boltzmann transport formalism.

Applying the KKR Green function method and the Boltzmann formalism we calculate
the spin-orbit torque for the states on the Fermi surface of the topological insulator Bi2Te3
at the impurity atom Mn in Chapter 3. At first, the topological insulators and the special
characteristics of their surface states are briefly introduced. Then, we discuss about the
studied system, a Bi2Te3 surface doped with magnetic Mn defects. Finally, we present
the results and discussion of our calculations of spin-orbit torque, spin-accumulation and
spin flux in Mn/Bi2Te3 system.

This thesis concludes in Chapter 4, where the results of our study are given in sum-
mary.

Figure 1: A schematic representation of the magnetic torque acting on a ferromagnetic
layer on a substrate of strong spin-orbit coupling. The yellow and red arrows give the
direction of the current j and the magnetization, respectively.



Chapter 1

KKR Green function method

The calculation of the electronic structure of materials can be achieved by the KKR
(Korringa-Kohn-Rostoker) function method, which was introduced by Korringa [5] and
by Kohn and Rostoker [6]. This method was written as a wavefunction method, but it
was reformulated as a Green function method [7–9], which is able to produce the crystal
Green function by relating it to the Green function of free space via the Dyson equation.
The KKR Green function method efficiently solves the multiple-scattering problem due
to the presence of impurities within the crystal, which we will investigate in this thesis.

All first-principles calculations within this thesis was carried out with the KKRcode
developed in Jülich, which is a full-potential relativistic implementation of the KKR Green
function method method.

The development of the formalism in this Chapter is based on the Refs. [10–16].

1.1 Definition of the Green function

The Green operator for a system which is described by Hamiltonian H, is defined as

(E −H)G(E) = 1 (1.1)

In terms of eigenfunctions of H, |ψi⟩, which obey the eigenvalues relation H |ψi⟩ = ϵi |ψi⟩,
G(E) can be obtained in the spectral representation of the green function in real space

G(x,x′;E) =
∑
i

ψi(x)ψ
†
i (x

′)

E − ϵi + iΓ
, (1.2)

representing in the limit of Γ→ 0+ an outgoing wave at x with a source term at x′.

From the Eq. (1.2) it follows that the imaginary part of G is related to spectrally- and
space-resolved density of states ρ(x;E). Integrating in space and using the Dirac identity
the spectral density of states is derived

n(E) = − 1

π
ImTrG(E) (1.3)

3



4 Voronoi construction

1.2 Voronoi construction

In the KKR formalism the space is divided into atomic cells. The center of each cell is the
nuclear position and they are constructed as convex polyhedra by a Voronoi procedure.
In this way the calculation of the Green function is decomposed at first into a set of local
problems, with each one solved independently. In a second step, all local solutions are
connected, finding the full Green function of the crystal in this way. This decomposition
is achieved by defining a real space vector x as

x = r +Rn, (1.4)

where Rn is a lattice vector and r is locally defined only within the cell n, as shown in
Fig. 1.1.

Figure 1.1: Illustration of the atomic cells found by Voronoi construction. In the center
of the cells are shown the atoms of the crystal with gray color.

Within a crystal, the potential also must be cut off at the boundary of the atomic
cells, using the shape function θn(r) [17]

θn(r) =

{
1, if r +Rn ∈ cell n

0, otherwise,
(1.5)

Then, the crystal potential is given by

V n(r) = V n(r +Rn) (1.6)

The shape functions are expanded into real spherical harmonics as

θn(r) =
∑
L

θL(r)YL(r̂), (1.7)

where we have used the combined index L = {l,m} of the angular momentum indexes l
and m.
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In the systems studied in this thesis there are more than one atom per unit cell. In
that case it is essential to define an additional vector χµ, which determines the position
of the µth atom within a unit cell. The real space vector x is written as

x = r +Rn + χµ (1.8)

The crystal potential is then given by

V nµ(r) =

{
V (r +Rn + χµ), if r ∈ cell {n, µ}
0, otherwise

(1.9)

1.3 Scattering theory

In this section the KKR multiple scattering method will be used for the solution of the
Schrödinger equation. At first, we determine the scattering properties of each atom within
the crystal. Second, we take into account the scattering events by all atoms, considering
that the incident wave at each scattering center is equal to the sum of the outgoing waves
from all other centers.

1.3.1 Single scattering theory

In a first step we will study the single scattering theory. We consider the scattering
problem of a finite range atomic potential embedded in free space, of which the solutions
are analytically known. The Green function of a free-electron system is given as [18]:

g(r, r′;E) = − ei
√
E|r−r′|

4π|r − r′|
(1.10)

=
1

rr′

∑
L

YL(r̂)gl(r, r
′;E)YL(r̂′) (1.11)

In Eq. (1.11) the green function is written in angular momentum representation, which is
a useful form for further calculations on scattering by a central potential. The expansion
coefficients of Green function gl(r, r

′;E) which introduced in Eq. (1.11), are defined as

gl(r, r
′;E) = κrr′[θ(r′ − r)jl(κr)hl(κr′) + θ(r − r′)hl(κr)jl(κr′)], (1.12)

where jl(κr) are the Bessel functions and hl(κr) are the Hankel functions, with κ =
√
E.

The eigenfunctions in the case of free space, φk(r), are an incoming plane wave

φk(r) = eikr (1.13)

=
∑
L

4πiljl(
√
Er)YL(r̂)YL(k̂), (1.14)

Supposing now, that there is a perturbed potential V (r) of finite range embedded
in free space, the eigenfunctions of the corresponding Hamiltonian yield the following
Lippmann-Schwinger equation

ψs
k(r) = eikrχs +

∫
dr′g(r, r′;Ek)V (r′)ψs

k(r
′), (1.15)



6 Scattering theory

where Ek = k2 is the energy of a free particle of wave vector k and χs is a spin state.

The Green function of this scattering problem is given in terms of the corresponding
right regular RL(r) (converging at r → 0) and irregular SL(r) (diverging at r → 0), since
in terms of left regular R̄L(r) and irregular S̄L(r) scattering solutions

Gs(r, r
′;E) = κ

∑
L

[θ(r′ − r)RL(r)S̄L(r) + θ(r − r′)SL(r)R̄L(r
′)] (1.16)

Expanding the wavefunctions in real spherical harmonics and replacing that in Eq.
(1.15), we obtain the Lippmann-Schwinger equations which yield the scattering solutions:

Rs
L(r;E) = jl(κr)YL(r̂)χ

s +

∫
dr′g(r, r′;Ek)V (r′)Rs

L(r
′;E) (1.17)

Ss
L(r;E) =

∑
L′

hl′(κr)YL′(r̂)βs
LL′(E) +

∫
dr′g(r, r′;Ek)V (r′)Ss

L(r
′;E), (1.18)

with β matrix

βs
LL′(E) = δLL′χs − κ

∫
dr′jl(κr)YL(r̂)V (r)Ss

L′(r;E) (1.19)

The scattering functions RL(r), SL(r) are called right solutions. On the other hand, the
functions R̄L(r), S̄L(r) are referred as left solutions, since they obey a differential equation
in which the Hamiltonian acts to the left-hand side, in the sense that is explained in
Ref. [11]. These solutions are defined by similar Lippmann-Schwinger equations as right
solutions. Both right and left solutions are expanded in real spherical harmonics:

Rs
L(r;E) =

∑
L′

1

r
Rs

L′L(r;E)YL′(r̂), (1.20)

R̄s
L(r;E) =

∑
L′

1

r
R̄s

LL′(r;E)YL′(r̂) (1.21)

The expansion coefficients of right scattering solutions Rs
L′L(r;E), S

s
L′L(r;E) are 2×1

spinors in Schrödinger-Pauli theory, or 4×1 spinors in Dirac theory. They are calculated
by the following Lippmann-Schwinger equations in the Fredholm formulation [11]:

Rs
L′L(r;E) = JL(r;E)δL′Lχ

s +
∑
L′′

∫
dr′′gl′(r, r

′′;E)VL′L′′(r′′)Rs
L′′L(r

′′;E) (1.22)

Ss
L′L(r;E) = HL(r;E)β

s
L′L(E) +

∑
L′′

∫
dr′′gl′(r, r

′′;E)VL′L′′(r′′)Ss
L′′L(r

′′;E), (1.23)

where β matrix is defined by the expression:

βs
L′L(E) = δL′Lχ

s − κ
∫
dr′JL(r

′;E)
∑
L′′

VL′L′′(r′)Ss
L′′L(r

′;E) (1.24)
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Respectively, the expansion coefficients of left scattering solutions, which are 1×2 spinors
in Schrödinger-Pauli theory, or 1×4 spinors in Dirac theory, are given according to fol-
lowing Lippmann-Schwinger relations:

R̄s
LL′(r;E) = J̄L(r;E)δL′Lχ

s +
∑
L′′

∫
dr′′R̄s

L′′L(r
′′;E)VL′′L′(r′′)gl′(r

′′, r;E) (1.25)

S̄s
LL′(r;E) = β̄LL′(E)H̄L(r;E) +

∑
L′′

∫
dr′′S̄s

L′′L(r
′′;E)VL′L′′(r′′)gl′(r

′′, r;E), (1.26)

with β̄ matrix:

β̄s
LL′(E) = δLL′χs − κ

∫
dr′R̄s

LL′′(r′;E)
∑
L′′

VL′′L′(r′)HL′(r′;E) (1.27)

In the above relations we have used the abbreviations JL(r;E) = rjl(
√
Er) andHL(r;E) =

rhl(
√
Er).

It is significant to introduce a fundamental quantity of scattering theory, the atomic
transition matrix (t-matrix), which contains the scattering properties of the above system.
Having calculated the regular scattering solutions, the ∆t matrix is written as an integral

tLL′(E) =
∑
L′′

∫
drJ̄L(r;E)V

n
LL′′(r)RL′′L′(r;E), (1.28)

where V n(r) is the atomic potential on site n.

1.3.2 Multiple scattering theory

Until here we discussed the problem of an isolated scatterer. Having solved this, we will
take into account the multiple scattering by all atoms within the crystal.

The expansion coefficients of the potential-free Green function, also called structure
constants, of multiple scattering problem are given by the relation

gnn
′

LL′ = −(1− δnn′)4π
√
E
∑
L′′

il−l′+l′′CLL′L′′hL′′(Rn −Rn′ ;E), (1.29)

where we have used the Gaunt coefficients CLL′L′′ =
∫
dΩ YL(r̂)YL′(r̂)YL′′(r̂).

Assuming now, a scattering periodic potential in crystal, the Green function consists of
two terms, the single-site term and the multiple scattering term, which refers to scatterers
on different sites [19]

G(r +Rn, r
′ +Rn′ ;E) = δnn′Gs(r, r

′;E) +
∑
ΛΛ′

RΛ(r;E)G
nn′

ΛΛ′(E)R̄Λ′(r′;E) (1.30)

In the above equation (1.30) the multi-index Λ = (L, s) = (l,m, s) was introduced, which
consists of the orbital and spin quantum numbers. The coefficients Gnn′

ΛΛ′(E) are called
structural Green functions and they can be determined by the following algebraic Dyson
equation

Gnn′

ΛΛ′(E) = gnn
′

ΛΛ′(E) +
∑

n′′Λ′′Λ′′′

gnn
′′

ΛΛ′′(E) ∆tn
′′

Λ′′Λ′′′(E) Gn′′n′

Λ′′′Λ′(E) (1.31)
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Expanding the sum on the right-hand side of Eq. (1.31), it is obvious that an electron
can travel from site n′ to n directly, or after scattering by the potential on site n, or n
and n′, etc.

As we referred in section (1.2), the unit cell of the study system consists of more than
one atoms per unit cell. In the next relations, we will introduce the index µ, taking into
account the different atom types.

In practice, the calculations of Green functions are performed firstly in k-space. The
structural Green functions gΛΛ′ and GΛΛ′ are solved by matrix inversion after a cutoff at
l = lmax

1. We will introduce the Fourier transform of the structure constants gµµ
′

ΛΛ′′(k;E),
which depends only on the geometry of the lattice and is given according to

gµµ
′

ΛΛ′′(k;E) =
∑
n′µ′

gnµ;n
′µ′

ΛΛ′′ (E)eik·(Rn+χµ−Rn′−χµ′ ) (1.32)

Having calculated the structure constants and the t-matrix the eigenvalue problem can
be solved for electrons in a periodic crystal. In particular, the bandstructure E(k) of the
crystal can be found by the KKR secular equation

∑
Λ′µ′

[
δΛΛ′δµµ′ −

∑
Λ′′

gµµ
′

ΛΛ′′(k;E)∆t
µ′

Λ′′Λ′(E)

]
cµ

′

kΛ′ = 0, (1.33)

which gives for certain k the corresponding energy E. The coefficients cµ
′

kΛ are the eigen-
vectors for the total incoming wave at the scatterer on the site χµ′ . These coefficients
vectors correlate the Bloch wavefunctions in the crystal ψk with the radial scattering
solutions Rµ

Λ

ψk(r +Rn + χµ) =
∑
Λ

cµkΛR
µ
Λ(r;E) (1.34)

1.4 Scalar-relativistic approximation

In this section we will include to our study relativistic effects. The scalar-relativistic ap-
proximation (SRA) neglects the spin-orbit coupling, keeping other relativistic effects. The
motivation, then, of formulated this approximation is retaining spin as a good quantum
number. We will generalize the single scattering problem of a finite range potential, which
is described on Section 1.3.1 in the case of the scalar-relativistic approximation.

The potential-free Green function for the single-site scalar-relativistic approximation
reads

G0

l
= 2M0κθ(r

′ − r)R0
l(r)S̄

0
l(r

′) + 2M0κθ(r − r′)S0
l(r)R̄

0
l(r

′), (1.35)

where we defined the relativistic mass M0 and the momentum vector κ according to
relations

M0 ≡
1

2
+

E

2c2
, κ =

√
E +

E2

c2
=

√
2M0E (1.36)

1The lmax is determined as the l after which the t matrix becomes negligible. In our calculations we
used lmax=3.
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The regular and irregular right- and left-hand side potential free-solutions in scalar-
relativistic approximation are given by:

R0
l(r) = r

(
jl(κr)

1
2M0

∂rjl(κr)

)
, R̄

0
l(r) = r

(
jl(κr) − 1

2M0
∂rjl(κr)

)
(1.37)

S0
l(r) = r

(
hl(κr)

1
2M0

∂rhl(κr)

)
, S̄

0
l(r) = r

(
hl(κr) − 1

2M0
∂rhl(κr)

)
(1.38)

The regular and irregular scattering solutions in the case of a finite potential in crys-
tal can be calculated by Lippmann-Schwinger equations. Expanding the solutions in
real spherical harmonics and replacing the potential-free single-site Green function (Eq.
(1.35)) we arrive at the Lippmann-Schwinger equations in the Fredholm formulation,
which yields the expansion coefficients of regular RLL′(r;E) and irregular SLL′(r;E) right-
hand solutions [11]

RLL′(r;E) = R0
L(r;E)δLL′

+ 2M0κR
0
L(r;E)

∫ Rmax

r

dr′S̄
0
L(r

′;E)
∑
L′′

∆V
LL′′(r

′)RL′′L′(r′;E)

+ 2M0κS
0
L(r;E)

∫ r

0

dr′R̄
0
L(r

′;E)
∑
L′′

∆V
LL′′(r

′)RL′′L′(r′;E) (1.39)

SLL′(r;E) = S0
L(r;E)βLL′

+ 2M0κR
0
L(r;E)

∫ Rmax

r

dr′S̄
0
L(r

′;E)
∑
L′′

∆V
LL′′(r

′)SL′′L′(r′;E)

+ 2M0κS
0
L(r;E)

∫ r

0

dr′R̄
0
L(r

′;E)
∑
L′′

∆V
LL′′(r

′)SL′′L′(r′;E) (1.40)

where β is defined as

βLL′ = 1 + 2M0κ

∫
dr′R0

L(r
′)
∑
L′′

∆V
LL′′(r

′)SL′′L′(r′) (1.41)

1.5 Spin orbit coupling

Spin-orbit coupling is the most important mechanism which couples the spin magnetic
moment of an electron to its orbital angular momentum. This spin-orbit interaction is
described by the Hamiltonian term

ĤSO =
1

M(r)2 c2
1

r

∂V (r)

∂r
L · σ, (1.42)

where M(r) is the relativistic mass and c is the light velocity. The potential V (r) is the

average spin-up and spin-down potential, i.e. V (r) =
(V↑+V↓)

2
.

Taking into account this interaction term, the problem is solved by the Pauli equation,
which consists of the Scrödinger or the scalar-relativistic equations plus the spin-orbit
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coupling Hamiltonian term. Then, the total Hamiltonian can be written as a 2×2 matrix
in spin-space (

H tot
↑↑ H tot

↑↓
H tot

↓↑ H tot
↓↓

)
=

(
H↑↑ 0
0 H↓↓

)
+

(
HSOC

↑↑ HSOC
↑↓

HSOC
↓↑ HSOC

↓↓

)
(1.43)

1.6 Scattering off impurities

The existence of an impurity or a defect in a periodic crystal will destroy its periodicity.
The perturbing potential of the defects causes the multiple scattering of electrons in the
crystal. This scattering problem can be solved in two steps. Firstly, we calculate the
Green function of the crystal without impurities, and in a second step we calculate the
effect of the impurities in the crystal, which is described by the perturbing potential ∆V .

1.6.1 Green function of a crystal with impurities

The atoms on the impurity region shall be labeled by a combined index i = (n, µ), where
the center of the ith cell is located at

τi = Rn + χµ (1.44)

Then, the real space vector which defined by Eq. (1.8) is given in form

x = r + τi (1.45)

The calculation of the wavefunctions of an impurity ψimp
k (x), embedded in a periodic

host system, has to be considered as a scattering problem. The scattering solutions of the
impurity potential are related to the host eigenstates ψk(x) (Eq. 1.34) by the Lippmann-
Schwinger equation

ψimp
k (x) = ψk(x) +

∫
dr′G(x,x′)∆V (x′)ψimp

k (x′), (1.46)

where G(x,x′) is the Green function of the host system, which is calculated by Eq.
(1.30) and ∆V (x′) is the perturbing potential in the host system, which is defined as
the difference between the impurity potential and the potential of the host system, i.e.
∆V (x′) = V imp − V host. We have to note that the host wavefunctions ψk(x) obey the
Bloch’s theorem, due to the periodicity of the crystal. In the calculations we choose
usually another form of the Lippmann-Schwinger equation

ψimp
k (x) = ψk(x) +

∫
dr′Gimp(x,x′)∆V (x′)ψk(x

′), (1.47)

where is used the impurity Green function Gimp. This is consisted of two terms, the
single-site term and the back-scattering term

Gimp(r + τi, r
′ + τi′) = δii′G

imp,i
s (r, r′) +

∑
ΛΛ′

Rimp,i
Λ (r) Gimp,ii′

ΛΛ′ R̄imp,i′

Λ′ (r′) (1.48)
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The impurity scattering wavefunctions are expanded into the regular scattering solu-
tions of the perturbed atomic potentials

ψimp
k (r) =

∑
Λ

cimp,i
Λ Rimp,i

Λ (r;E) (1.49)

The regular solutions are defined by the Lippmann-Schwinger equation

Rimp,i
Λ (r;E) = jl(κr)YL(r̂)χ

s +

∫
dr′g(r, r′;E)V imp(r′)Rimp,i

Λ (r′;E) (1.50)

and they are expanded in real spherical harmonics according to

Rimp
Λ (r;E) = Rimp,s

L (r;E) =
∑
L′

1

r
Rimp,s′

L′L (r;E)YL′(r̂) (1.51)

It can be proved that the coefficients cimp,i
Λ are written in terms of the coefficients of the

Bloch states ci
′

Λ′ = cµ
′

Λ′eik·Rn′ , i.e. of the host system states, according to relation [13]:

cimp,i
Λ =

∑
Λ′,i′

{
δΛΛ′δii′ +

∑
Λ′′

Gimp,ii′

ΛΛ′′ ∆timp,i′

Λ′′Λ′

}
cµ

′

Λ′e
ik·Rn′ , (1.52)

where we have introduced the t-matrix elements, which are defined by

∆timp,i
ΛΛ′ =

∑
Λ′′Λ′′′

∫
drR̄i

ΛΛ′′(r)∆V i
Λ′′Λ′′′(r)R

imp,i
Λ′′′Λ′(r) (1.53)

In addition, in Eq. (1.52) are used the matrix elements of the impurity Green func-
tion. The structural Green functions of the impurity are related to the structural Green
functions of the host system by the algebraic Dyson equation

Gimp,ii′

ΛΛ′ = Ghost,ii′

ΛΛ′ +
∑
Λ′′Λ′′′

∑
i′′

Ghost,ii′

ΛΛ′ ∆ti
′′

Λ′′Λ′′′G
imp,i′′i′

Λ′′′Λ′ , (1.54)

where ∆ti
′′

Λ′′Λ′′′ = timp,i′′

Λ′′Λ′′′ − thost,i
′′

Λ′′Λ′′′ is defined as the difference between the t-matrix of the
impurity potential V imp and the host potential V host. The sum over the i′′ is referred to
atoms, for which the perturbation is significant. The Eq. (1.54) is solved in direct space
with inversion matrix

Gimp,ii′

ΛΛ′ =
[
1−Ghost,ii′

ΛΛ′ ∆ti
′′

Λ′′Λ′′′

]−1
Ghost,ii′

ΛΛ′ (1.55)

1.6.2 Transition Rate

An important quantity is being studied in scattering off impurities calculations is the
transition rate wkk′ , which is defined as the scattering probability from an initial state k′

to a final state k per unit time:

wkk′ =
dPkk′

dt
(1.56)
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The knowledge of the transition rate between states leads to the calculation of measurable
properties in solids such as relaxation time or transport properties, as we will discuss in
Chapter 2. The scattering rate can be expressed in terms of the T -matrix by the Fermi’s
Golden Rule

wkk′ =
2π

ℏ
δ(E(k)− E(k′))|Tkk′ |2, (1.57)

The k-space representation of the transition matrix is written as

Tkk′ =

∫
dxψ†

k′(x)∆V (x)ψimp
k (x) (1.58)

Replacing in Eq. (1.58) the expansions of the host and impurity wavefunctions, accord-
ing to equations (1.34) and (1.49) respectively, we arrive in another form of the scattering
amplitudes

Tkk′ =
∑
ΛΛ′

∑
i

[cik′,Λ]
∗∆i

ΛΛ′ [c
imp,i′

k,Λ′ ], (1.59)

where the ∆-matrix reads [14]

∆i
ΛΛ′ =

∑
Λ′′Λ′′′

∫
dr[Ri

ΛΛ′′(r)]∗∆V i
Λ′′Λ′′′(r)R

imp,i
Λ′′′Λ′(r) (1.60)

We can simplify the above equation (1.59) introducing the coefficients of the scatter-
ing wavefunction by Eq. (1.52), resulting in a form of the T -matrix in which only the
coefficients of the Bloch states enter

Tkk′ =
∑
ΛΛ′

∑
i,i′

[cik′,Λ]
∗T i,i′

ΛΛ′c
i′

k,Λ′ , (1.61)

where we have introduced the {Λ, i} representation of the T -matrix

T i,i′

ΛΛ′ =
∑
Λ′′

∆i
ΛΛ′′

(
δii′δΛ′′Λ′ +

∑
Λ′′′

Gimp,ii′

Λ′′Λ′′′∆t
imp,i′

Λ′′′Λ′

)
. (1.62)



Chapter 2

Impurity-driven spin-orbit torques

2.1 Spin-orbit torques

The spin-orbit torque (SOT) can be described as a precession of magnetization in response
to an electric current. This precession is mediated through the spin-orbit coupling in the
studied system, which converts the orbital angular momentum of the conduction electrons
to spin angular momentum of magnetic atoms.

The discussion of spin-orbit torques is related to the problem of the description of
the magnetization dynamics. The equation of motion for the magnetization M̂ in the
presence of spin-orbit torque is given by the Landau-Lifshitz-Gilberg (LLG) equation in
addition to the spin-orbit torque term

dM̂

dt
= −|γ|M̂ × Seff + αM̂ × dM̂

dt
− |γ|
µ0MΩ

T (E), (2.1)

where M̂ is the direction and M is the magnitude of the magnetization. The factor |γ|
is the gyromagnetic ratio of electrons and α is the Gilbert damping. The precession of
the magnetization around the effective field Seff is described by the first term on the
right-hand side of Eq. (2.1). The second term represents the fact that the magnetization
tends to align with the effective field. The last term, the so-called spin-orbit torque term,
describes the change on the magnetization due to current-induced spin-orbit torque T (E).

In this thesis we study the linear response of the spin-orbit torque to an applied electric
field E , which is represented by the torkance tensor t,

T (E) = tE (2.2)

If we observe how the SOT, the electric field and the torkance are transformed under the
inversion operator I, we will find that the torkance vanishes in a system which is character-
ized by inversion symmetry [20]. Therefore, a finite response of the torque to the electric
field, i.e. a non zero torkance tensor, exists only in the case of a non-centrosymmetric sys-
tem. In this work, the topological insulators surface is studied, i.e. no inversion symmetry
exists.

13
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2.1.1 Kubo formalism

According to the Kubo linear response formalism the torkance tensor t, as defined by Eq.
(2.2), has the following three contributions [21] 1

t
I(a)
ij =

e

h

∫ ∞

−∞
dE

df(E)

dE
Tr

⟨
TiGR(E)vjG

A(E)
⟩

(2.3)

t
I(b)
ij = − e

h

∫ ∞

−∞
dE

df(E)

dE
ReTr

⟨
TiGR(E)vjG

R(E)
⟩

(2.4)

tIIij = − e
h

∫ ∞

−∞
dEf(E)ReTr

⟨
TiGR(E)vj

dGR(E)

dE
− Ti

dGR(E)

dE
vjG

R(E)

⟩
, (2.5)

where h is the Planck’s constant, f(E) is the Fermi-Dirac distribution function, vj is the
jth component of the velocity operator and Ti is the ith Cartesian component of the
torque operator. On the above equations GR(E) and GA(E) represent the retarded and
advanced Green functions, respectively. The first two contributions (Eq. (2.3),(2.4)) are
referred as Fermi surface terms. Their calculation implies the knowledge of the Green
function at the Fermi energy only, as the derivative of the distribution function df(E)

dE

reduces to a Dirac distribution in the limit of low temperatures (T → 0). The third
contribution (Eq. (2.5)) is called Fermi sea contribution, as it depends on an integral over
all occupied states.

The torque operator is defined as

T (r) = −µBσ ×Bxc(r), (2.6)

where σ is the vector of Pauli spin matrices and Bxc(r) is the exchange field. The
determination of the exchange field requires the use of ab initio calculations, as it varies
rapidly at the atomic scale.

The retarded and advanced Green functions in Eq. (2.3)-(2.5), are defined as GR(E) =
ℏ[E −H + iΓ]−1 and GA(E) = ℏ[E −H − iΓ]−1, where Γ(E) is the self energy due to the
disorder or electron-phonon scattering in the system. Using the constant effective band
broadening Γ, which is equivalent to a constant relaxation time approximation, we can
be inserted in our investigation the influence of disorder in the system.

The torkance tensor t is decomposed into even and odd components as tij = tevenij +toddij ,

with respect to the direction of magnetization M̂ . In this work we will investigate only the
odd components of the torkance, since they are dependent on the scattering mechanisms
which present in the system. Considering the limit Γ → 0, the so-called clean limit, the
odd component of the torkance tensor takes the form [22]

toddij =
eℏ

2ΓN
∑
kn

⟨ψkn|Ti|ψkn⟩ ⟨ψkn|vj|ψkn⟩
∂f(Ekn)

∂E
, (2.7)

with ℏ the reduced Planck’s constant, k the Bloch vector and N the number of the k-
points in the Brillouin zone. With ψkn and Ekn are symbolized the eigenfunctions and

1We set e = −|e|, the electron’s charge.
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eigenenergies of the system, respectively, with n a band index. From Eq. (2.7) it follows
that the odd part of the torkance diverges as 1/Γ, i.e. it is proportional to the quasi-
particle lifetime. In Section (2.3) we will treat the odd torkance based in Boltzmann
formalism in the low-temperature limit.

2.2 KKR Representation of Operators

The calculation of the torque which is exerted at an impurity atom implies a calculation
of the torque expectation values of individual electronic states. In this Section, following
G. Geranton [20] analysis, we present the expressions for expectation values of the spin
and the torque operators based on the KKR formalism. We can also determine to what
extent the torque arises from spin currents, computing the expectation value of the spin
flux operator.

2.2.1 Spin expectation value

The contribution of a state k to the i-th component of the spin at the atom µ is given as
the expectation value of the spin operator σ:

⟨σiµ⟩k =
⟨
ψimp
k

∣∣∣σiµ∣∣∣ψimp
k

⟩
=

∫
Ωµ

dr [ψimp
k (r)]†σi[ψ

imp
k (r)] (2.8)

The space integration can be extended to the entire space introducing the shape function
θ(r) (Eq. (1.5)) of the atomic cells in the integral. Expanding the wavefunction of the
impurity atom µ (ψimp,µ

k ) into the regular scattering solutions (Rimp,µ
Λ ) according to Eq.

(1.49) the spin expectation value is written

⟨σiµ⟩k =
∑
Λ

∑
Λ′

[cimp,µ
Λ ]∗cimp,µ

Λ′

∫
dr θµ(r)[Rimp,µ

Λ (r;E)]†σiR
imp,µ
Λ′ (r;E) (2.9)

Defining the spin matrix elements as [23]

Σµ
ΛΛ′,i =

∫
dr θµ(r)[Rimp,µ

Λ (r;E)]†σiR
imp,µ
Λ′ (r;E), (2.10)

Eq. (2.9) is written in the form of a matrix multiplication

⟨σiµ⟩k =
∑
Λ

∑
Λ′

[cimp,µ
Λ ]∗ Σµ

ΛΛ′,i c
imp,µ
Λ′ (2.11)

Since both the shape function θµ(r) and the scattering solutions Rimp,µ
Λ (r;E) are expanded

in real spherical harmonics, according to Equations (1.7) and (1.51) respectively, the spin
matrix elements are finally written as

Σss′,µ
LL′,i =

∑
L1L2L3

CL1L2L3

∫
dr θµL1

(r)[Rimp,s,µ
L2L

(r)]†σiR
imp,s′,µ
L3L′ (r) (2.12)
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2.2.2 Torque expectation value

According to the definition of the torque operator (Eq. 2.6) its components are given by
the equation

Ti(r) = −µB

∑
jk

ϵijkσjBk(r), (2.13)

where ϵijk is the Levi-Civita symbol and the indices i, j, k take the values x, y and z.
The expectation value of the torque exerted on a state k of the atom µ due to an

external electric field is calculated, using Eq. (2.13), by the following relation

⟨Tiµ⟩k =
⟨
ψimp
k

∣∣∣Tiµ∣∣∣ψimp
k

⟩
(2.14)

= −µB

∑
jk

ϵijk

∫
Ωµ

dr [ψimp
k (r)]†σj[ψ

imp
k (r)]Bk(r) (2.15)

With respect to Eq. (2.9), the previous equation takes the form

⟨Tiµ⟩k =
∑
Λ

∑
Λ′

[cimp,µ
Λ ]∗ Tµ

ΛΛ′,i c
imp,µ
Λ′ , (2.16)

where the matrix elements Tµ
ΛΛ′,i are defined by the following equation

Tµ
ΛΛ′,i = −µB

∑
jk

ϵijk

∫
dr θµ(r)[Rimp,µ

Λ (r;E)]†σjR
imp,µ
Λ′ (r;E)Bµ

k (r) (2.17)

In the above equation (2.17) space integration extended to the entire space using the
shape function θµ(r) of the atomic cell.

The scattering solutions Rimp,µ
Λ (r), the shape function θµ(r) and the exchange field

Bµ
k (r) are expanded in spherical harmonics. Defining the convoluted exchange field as

bµk(r) = Bµ
k (r)θµ(r) the calculation of the two spherical harmonics of the exchange field

and the shape function is restricted to one for the convoluted exchange field bµk(r):

bµk(r) =
∑
L3

bµL3,k
YL3(r̂) (2.18)

Replacing that in Eq. (2.17) the torque matrix elements are finally calculated in the KKR
formalism by the relation

Tss′,µ
LL′,i = −µB

∑
jk

ϵijk
∑

L1L2L3

CL1L2L3

∫
dr [Rimp,s,µ

L1L
(r)]†σjR

imp,s′,µ
L2L′ (r)bµL3,k

(r) (2.19)

2.2.3 Spin flux expectation value

The spin flux operator is equivalent to the spin current operator, but represents the
magnetic moment through the spin current which enters to a sphere of muffin-tin radius,
rMT

2, around an atom.

2The muffin-tin radius is equal to the half of the first neighbor distance.
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The expectation value of the spin flux operator of a state at the atom µ is given
according to the relation

⟨Qiµ⟩k =
⟨
ψimp
k

∣∣∣Qiµ

∣∣∣ψimp
k

⟩
=
µBℏ
2ie

∫
Sµ

dS
[
[ψimp

k (r)]†σi∇ψimp
k (r)− [∇ψimp

k (r)]†σiψ
imp
k (r)

]
, (2.20)

where the integration takes place into the surface Sµ, which corresponds to the muffin-tin
sphere of the atom µ. The integral into the surface of the muffin-tin sphere can be replaced
by an integral over the solid angle dΩ according to relation dS = r2MTeΩdΩ, where rMT is
the radius of the muffin-tin sphere and eΩ is the unit vector with direction to the center
of the sphere.

Replacing the impurity wavefunction of atom µ by Eq. (1.49) the spin flux expectation
value is written as a matrix multiplication:

⟨Qiµ⟩k =
∑
Λ

∑
Λ′

[cimp,µ
Λ ]∗ qµΛΛ′,i c

imp,µ
Λ′ , (2.21)

where the matrix elements qµΛΛ′,i are defined as

qµΛΛ′,i =
µBℏ
2ie

∫
Sµ

dS
[
[Rimp,µ

Λ (r;E)]†σi∇Rimp,µ
Λ′ (r;E)− [∇Rimp,µ

Λ (r;E)]†σiR
imp,µ
Λ′ (r;E)

]
(2.22)

Replacing the integral into the surface and expanding the regular solutions Rimp,µ
Λ in

spherical harmonics, the spin flux matrix elements in the KKR representation are given
by

qss
′,µ

LL′,i =
µBℏ
2ie

∑
L1

[
[Rimp,s,µ

L1L
(r)]†σi

∂

∂r

(
Rimp,s′,µ

L1L′ (r)
)
− ∂

∂r

(
[Rimp,s,µ

L1L
(r)]†

)
σiR

imp,s′,µ
L1L′ (r)

]
r=rMT

(2.23)

2.3 Boltzmann formalism for the spin-orbit torque

In this work we will investigate transport phenomena on Fermi surface. A very fruitful
formalism to describe such phenomena is based on the semiclassical approach 3. In this
Section we present the calculation of the impurity-driven spin-orbit torque, of the spin
and of the spin-accumulation, applying the Boltzmann formalism.

2.3.1 Boltzmann transport equation

Within the semiclassical approach, the crystal electrons are viewed as a wavepacket of
Bloch states with a width ∆k in reciprocal space, which spreads only over a distance
∆r ∼ 1/∆k, according to the Heisenberg uncertainly principle.

We can define the distribution function fk(r, t) of a non-equilibrium system, which
gives the electrons concentration in a finite region on time t. This is written as sum of

3The Boltzmann equation was first combined with KKR theory by Mertig and co-workers [24].
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two terms, of the Fermi-Dirac function f 0(Ek) (equilibrium distribution function) and of
the deviation by the equilibrium due to the external forces, gk,

fk = f 0(Ek) + gk (2.24)

The flow of the distribution function in the presence of external forces and as a result
of electron scattering processes can be investigated by the Boltzmann equation:

∂fk
∂t

+
∂fk
∂t

∣∣∣∣
field

+
∂fk
∂t

∣∣∣∣
diffusion

=
∂fk
∂t

∣∣∣∣
sc

(2.25)

For a homogeneous and time-independent external electric field and in the description of
a steady state, i.e. ∂fk

∂t
= 0, only the field term on the left-hand side in Eq. (2.25) survives.

Then, the Boltzmann equation is written:

∂fk
∂t

∣∣∣∣
field

=
∂fk
∂t

∣∣∣∣
sc

(2.26)

The motion of an electron wavepacket in an external electric field E , is described by
the semiclassical equations

ṙ = vk =
1

ℏ
∂Ek

∂k
(2.27)

k̇ =
e

ℏ
E , (2.28)

where in Eq. (2.27) we defined the group velocity vk. Making use of the chain rule for
the derivative and using Eq. (2.28), the Boltzmann equation (2.26) reads

∂fk
∂t

∣∣∣∣
field

=
∂fk
∂k

· dk
dt
⇒

∂fk
∂t

∣∣∣∣
field

=
e

ℏ
∇kfk · E (2.29)

If we are only interested in phenomena that depend linearly on the external field we
can replace fk by f 0(Ek) on the right hand side of Eq. (2.29), because the term ∇kgk · E
is higher than first order term and can be dropped 4:

∂fk
∂t

∣∣∣∣
field

=
e

ℏ
∇kf

0(Ek) · E (2.30)

Inserting the group velocity of Bloch’s electrons (2.27) in Eq. (2.30), we arrive at the
following form for the field term [25]:

∂fk
∂t

∣∣∣∣
field

= e
∂f 0(Ek)

∂Ek

vk · E (2.31)

The scattering term can be written in its most general form by using the quantum-
mechanical transition rate wkk′ . The rate of change of the distribution fk is built up

4In the low-temperature limit the deviation gk will be linear in the electric field (gk ∝ E).
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of two terms, one increasing the value of f for the electrons that are scattered from all
other states k′ into the state k and one reducing the value of f for the electrons that are
scattered out from the state k to all others [26].

∂fk
∂t

∣∣∣∣
sc

=
∑
k′

(fk′wkk′ − fkwk′k) (2.32)

=
∑
k′

(gk′wkk′ − gkwk′k) +
∑
k′

(f 0(Ek′)wkk′ − f 0(Ek)wk′k) (2.33)

The following argument shows that only the first term of Eq. (2.33) survives. In the
limit of vanishing electric field, i.e. in the equilibrium state, the rhs of Eq. (2.31) van-
ishes. Then, the Eq. (2.32) for the equilibrium state inserting the Fermi function reads∑

k′(f 0(Ek′)wkk′ − f 0(Ek)wk′k) = 0.
It is significant to mention that in a crystalline solid the transition rate wkk′ , cor-

responding to a single defect, should be scaled by the number of defects in the crystal
(assuming that all defects are of the same type), i.e. wkk′ → xcNcrwkk′ , where xc is the
defect concentration and Ncr is the number of atoms in the crystal.

We can find the linearized expression with respect to the electric field for the distri-
bution function due to defects, by introducing the mean free path Λk :

gk = −e∂f
0(Ek)

∂Ek

E ·Λk (2.34)

The mean free path Λk declares the average distance traveled by an electron between
scattering events. During this “collisionless flight”, the electron gains energy −eE ·(r−r0),
as a result of its acceleration by the electric field, moving from the position of scattering r0
to r. Setting, on the average, Λk = ⟨r − r0⟩, the term −eE ·Λk corresponds to the average
energy gained due to the acceleration. In this sense, the band energy may be considered
as a function of r in the presence of the electric field, i.e., Ek → Ek − eE · (r − r0) and
thus ∇EEk = −e(r − r0). Expanding the non-equilibrium distribution function fk

fk = f 0(Ek) + E ·∇Efk + · · · , (2.35)

and setting

E ·∇Efk =
∂fk
∂Ek

E ·∇EEk ≈
∂f 0(Ek)

∂Ek

E ·∇EEk, (2.36)

we obtain to another form of the deviation function, in terms of the derivative of the
equilibrium distribution function:

gk = fk − f 0(Ek) =
∂f 0(Ek)

∂Ek

E ·∇EEk (2.37)

= −e∂f
0(Ek)

∂Ek

E · (r − r0),

which justifies the choice (2.34).
In our study, we focus on the limit of low-temperatures (T → 0), in which the derivative

of the distribution function is proportional to the δ-function (−∂f0(Ek)
∂Ek

→ δ(Ek − EF )),

and the deviation gk, as it was defined by Eq. (2.34), has the following form:

gk = e δ(Ek − EF )E ·Λk (2.38)
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Inserting Eq. (2.38) into Eq. (2.33), and accounting for the number of defects xcNcr, we
arrive at another expression of the Boltzmann equation

∂fk
∂t

∣∣∣∣
sc

=
∑
k′

(gk′xcNcrwkk′ − gkxcNcrwk′k)⇒ (2.39)

∂fk
∂t

∣∣∣∣
sc

= −Ncr e
∂f 0(Ek)

∂Ek

E ·
∑
k′

(xcΛk′wkk′ − xcΛkwk′k) (2.40)

Combining Eqs. (2.26), (2.31) and (2.40) we arrive at a self-consistent equation of the
vector mean free path Λk

e
∂f 0(Ek)

∂Ek

uk · E = −Ncr e
∂f 0(Ek)

∂Ek

E ·
∑
k′

(xcΛk′wkk′ − xcΛkwk′k)⇒

(xcΛk · n̂E)Ncr =
1∑

k′ wk′k

[
vk · n̂E +Ncr

∑
k′

wkk′(xcΛk′ · n̂E)

]
(2.41)

It is worth noticing that the Eq. (2.41) depends only on the direction of the electric field,
n̂E = E/|E|, which is expected since we are only seeking the linear response of the system
to the electric field. Thus, we obtain two independent equations, one for each component
of the vector Λk. We can further manipulate Eq. (2.41) by defining the relaxation time
τk = 1/

∑
k′ wk′k.

(xcΛk · n̂E)Ncr = τk

[
vk · n̂E +Ncr

∑
k′

wkk′(xcΛk′ · n̂E)

]
(2.42)

The above Eq. (2.42) is solved iteratively, according to the flow diagram which is presented
in Appendix 4.

According to the Pauli principle, electrons which are far from Fermi level cannot make
transitions to nearby states increasing their energy, since all neighboring higher energy
states are occupied. Only the electrons at the Fermi surface are capable of absorbing
energy in infinitesimal quantities. Therefore, the transports phenomena are related with
the behavior of electrons at Fermi surface.

In view of the need to chart the Fermi surface, we introduce a local coordinate (k′⊥,
k′∥) on the surface. Thus, the crystal momentum element is decomposed d2k′ = dk′⊥dk

′
∥,

where k′⊥ is the component of k′ perpendicular to the surface, i.e. in the direction of the
velocity, and k′∥ is oriented in the surface. Then, the summation over the index k′, making
use of the chain rule, becomes an integration over the energies and the integration over
the isoenergy line ∑

k′

−→ 1

Srec

∫
BZ

d2k′ =
1

Srec

∫
dE

∫
Ek=EF

dk′∥
ℏ|vk′ |

(2.43)

where Srec = SBZ/Ncr = (2π)2/Scr is the surface element of the reciprocal lattice, SBZ is
the Brillouin zone surface and Scr is the crystal surface area.

In the low-field limit the scattering is dominated by elastic scattering off impurities and
the scattering rate is proportional to the Dirac δ-function, i.e. wkk′ = w̃kk′δ(Ek − Ek′).
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Consequently, we obtain an integro-differential equation for the calculation of the vector
mean free path Λk, which is solved iteratively:

(xcΛk · n̂E)Ncr = τk

[
vk · n̂E +

Ncr

Srec

∫
Ek=EF

dk′

ℏ|vk′ |
wkk′(xcΛk′ · n̂E)

]
(2.44)

The response of electrons under the application of an external electric field E is de-
scribed by Ohm law:

j =←→σ E (2.45)

Once the mean free path has been found (Eq. 2.44), the current density can be calculated
by means of the distribution function:

j =
e

Scr

∑
k

vkfk

=
e

ScrSrec

∫
δ(Ek − EF )dE

∫
Ek=EF

dk∥
ℏ|vk|

vkgk

=
1

xc

e2

4π2

∫
Ek=EF

dk∥
ℏ|vk|

vk(xcΛk · E) (2.46)

Then, according to Eqs. (2.45), (2.46) we can obtain the conductivity tensor:

σij =
1

xc

e2

4π2

∫
Ek=EF

dk

ℏ|vk|
(vk)i (xcΛk)j (2.47)

2.3.2 Response tensors in Boltzmann formalism

The torque which is exerted on atom µ by the electric field is written in the Boltzmann
formalism as

Tµ =
∑
k

fk ⟨T µ⟩k

=
∑
k

(f 0
k + gk) ⟨T µ⟩k (2.48)

Supposing that there is no torque in the equilibrium, only the second term of Eq. (2.48)
survives. Then, the torque which depends on the deviation function reads

Tµ =
∑
k

gk ⟨T µ⟩k , (2.49)

where the torque expectation value is calculated by the Eq. (2.16).
Replacing the distribution function (2.34) in the above equation (2.49), the expression

for the torque is written as an integral over the Fermi surface:

Tµ = − e

SBZ

∫
d2k

(
− ∂f 0(Ek)

∂Ek

)
(Λk · E) ⟨T µ⟩k (2.50)

= − e

ℏSBZ

∫
Ek=EF

dk∥
|vk|

(Λk · E) ⟨T µ⟩k . (2.51)
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The SOT is related to the electric field E by the response tensor for the torque tµ,
according to the relation [21]:

Tµ = tµE (2.52)

It is easily proved that the torkance tµ is given by the equation:

tµ = − e

ℏSBZ

∫
Ek=EF

dk∥
|vk|
⟨T µ⟩k ⊗Λk (2.53)

A similar Fermi surface integral to Eq. (2.51), can be calculated for the spin accumu-
lation which is induced by the electric field on atom µ:

sµ = − eµB

ℏSBZ

∫
Ek=EF

dk∥
|vk|

(⟨σµ⟩k ⊗Λk) · E (2.54)

The response tensor for the spin accumulation, χµ, is defined according to relation

sµ = χµE (2.55)

and finally is given by the equation:

χµ = − eµB

ℏSBZ

∫
Ek=EF

dk∥
|vk|
⟨σµ⟩k ⊗Λk (2.56)

In a similar way, one can find the spin flux which is absorbed by the atom µ:

Qµ =
e

ℏSBZ

∫
Ek=EF

dk∥
|vk|

(⟨Qµ⟩k ⊗Λk) · E (2.57)

Then, the response tensor for the spin flux, qµ, which is defined by the relation

Qµ = qµE , (2.58)

yields the following expression of the Fermi surface integral:

qµ =
e

ℏSBZ

∫
Ek=EF

dk∥
|vk|
⟨Qµ⟩k ⊗Λk (2.59)

According to above equations the response functions of each atom on system can be
investigated. It is also significant to refer to the total torque of all magnetic atoms of
system, which is defined as a sum over all atoms

T =
∑
µ

Tµ (2.60)

The total torkance tensor, which defined by Eq. (2.2), is written in Boltzmann formalism
as

t = − e

ℏSBZ

∫
Ek=EF

dk∥
|vk|
⟨T ⟩k ⊗Λk, (2.61)

where T =
∑

µ Tµ is the total torque operator.
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Spin-orbit torque in magnetically
doped topological insulator surfaces

3.1 Introduction to topological insulators

Topology is a branch of mathematics concerned with certain geometrical properties of
objects. Geometrical shapes which cannot be deformed into one another continuously are
called topologically inequivalent. A simple example of such objects is a sphere and a torus
(e.g. a doughnut). The sphere, as a closed surface, can be transformed into the shape of
a torus only after making a hole on it. These two shapes are distinguished by an integer
topological invariant called the genus, g, which is essentially the number of holes [27].

In analogy, the mathematically defined space, where topological objects are defined in
Solid State Physics, is the space of crystal momentum k of Bloch electrons. The existence
or absence of holes of the above example, corresponds in appearance or absence of band
inversion in band structure of the materials 1.

Figure 3.1: Schematic representation of the band inversion in band structures of the
topological insulator.

1In this thesis, the characteristics of topological insulators are given in summary. One can find more
details on Refs. [15,28]

23
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A normal insulator is characterized by an energy gap between the valence and the
conduction band. In a topological insulator, the two bands are shifted across each other,
closing the gap, due to strong spin-orbit coupling. Hybridization between the shifted
bands leads to a reopening of the band gap, i.e. to a band inversion in band structures,
as it is shown in Fig. (3.1).

In this thesis we focus on surfaces of the topological insulators due to its conduction
surface states. The surface electronic states of a topological insulator are metallic-like
states. The existence and the properties of these surface states are topologically protected,
i.e. they are not destroyed by the perturbing surface potential (surface reconstruction).
This property follows in a concrete mathematical sense that is derived from the symmetry
and ordering of the bands in the bulk [1].

In addition, these states preserve the time-reversal symmetry of the system. On topo-
logical insulators surfaces the electrons with spin s propagate only in one direction with
crystal momentum k, while the electrons of the opposite spin −s propagate only in the op-
posite direction with crystal momentum −k. This uni-directionality has as a consequence
an absence of back-scattering (from k to −k) off non-magnetic defects.

In this work, we investigate a system of a topological insulator surface doped with
magnetic defects. It is important to note that in the presence of magnetic transition
metal ions, the time-reversal symmetry is broken, due to the internal magnetic field, al-
lowing the back-scattering.

3.2 Studied system: Bi2Te3 with Mn defects

As a host system we choose the surface of the topological insulator bismuth telluride,
Bi2Te3 [29], modeled by a thick film. This film consists of 6 quintuple layers of Bi2Te3
“sandwiched” by 9 vacuum layers on top and 9 vacuum layers in the bottom, i.e. 78 sites.

Each quintuple layer is constructed by 10 sites, three Te atoms, two Bi atoms and
five empty spheres 2, placed between the atomic layers of Te and Bi. The interaction be-
tween atoms in a quintuple layer comes from strong covalent attraction, while interactions
between quintuple layers originate from weaker Van der Waals ones [31]. This slab size
is chosen, since on the one hand, it is thick enough to ensure the robustness of surface
states and, on the other hand, it is thin enough to be numerically manageable by ab initio
calculations.

The electronic structure of this film was computed using the Jülich KKR code. At
first, a self-consistent calculation of the host system was carried out. The Fermi level
was found to be in the middle of the band gap, using the Lloyd’s formula [32], correcting
the truncation error due to the finite angular momentum cutoff (lmax = 3). In Fig. 3.2
the bandstructure of host material Bi2Te3 is presented. As we can observe, around the
Fermi level the states form the so-called Dirac cone, which is a characteristic of topological
insulators.

2These empty spheres have no nuclear charge and thus can be considered as virtual atoms, which are
used to improve the sphericity of the constructed Voronoi cells [30].



Chapter 3: Spin-orbit torque in magnetically doped topological insulator surfaces 25

Figure 3.2: Band structure of Bi2Te3 thick film along MΓ and ΓK directions. The Fermi
level is EF = 8.6 eV and the lattice constant is α = 19.79111 Å.

The impurity system, which is studied in this work, is constructed by the Bi2Te3 sur-
face doped with magnetic Mn atoms, embedded in interstitial positions. In particular, the
impurity Mn atoms are placed in hollow site of the surface Te layer, following experiments
on transition metals impurities on topological insulator surfaces [33,34], as it is shown in
Fig. 3.3.

Figure 3.3: Illustration of the first quintuple layer of Bi2Te3. The Mn impurity atom is
embedded in interstitial position between the first layer of Te and the second layer of Bi.

In this work, two different approximations of the same system are studied. At first, we
consider a single Mn impurity atom, which is embedded in the Bi2Te3 surface. Secondly,
we study the case of 51 Mn impurity atoms on the surface of Bi2Te3. The 51 Mn impurities
occupy random positions in the two-dimensional surface lattice, within a disk of 1027
positions (Fig. 3.4), as it is shown in Fig. 3.4. This corresponds to a concentration of
≈ 5% impurities. Choosing these two cases we can study the difference of Boltzmann
equation with a single impurity scattering rate and with multiple scattering.
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Considering a finite region with randomly distributed atoms on lattice sites, the central
atom is the most representative, simulating a system with impurities, which are expand-
ing to infinity. Therefore, we focus on the calculated quantities of the central atom.
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Figure 3.4: Illustration of the random positions of the impurities on the surface. Mn
atoms are depicted in red.

The self-consistent potential of the defects was computed in a cluster of atoms, includ-
ing the nearest neighbors of the defect, in order to account for the correct charge screening,
with the Jülich KKR impurity-embedding code (KKRimp). At first, we calculate the po-
tential of the single Mn impurity atom self-consistently, and then we approximate the
potential in the case of 51 impurity atoms, replicating the potential of the isolated Mn
impurity 51 times.

3.3 Scattering due to magnetic Mn defects

It is well known that the Fermi surface states are responsible for the spin transport
properties in a metallic system. In topological insulators there are metallic surface states,
therefore in our calculations we consider the states on the Fermi surface. A Jülich KKR
code was used to map the Fermi surface of Bi2Te3, solving the KKR secular equation (Eq.
1.33) [13]. The Fermi surface of the topological insulator Bi2Te3 film has the hexagonally
warped form which is presented in Fig. 3.5.
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Figure 3.5: The spin-polarization of the surface states of Bi2Te3 film (top-view).

Figure 3.6: The spin-polarization of the surface states of Bi2Te3 film (side-view). The red
arrow in the middle represents the magnetization of the Mn impurity. [Fig. adapted from
Ref. [15]]

Fig. 3.5 represents the spin-polarization of states on Bi2Te3 surface. In Fig. 3.6
the spin-polarization of surface states of Bi2Te3 by a side-view, and the magnetization of
the Mn impurity, are presented. As it is shown in Fig. 3.6, each state k on the Fermi
surface of Bi2Te3 is characterized by spin direction which is, to a large extent, parallel
to the surface, while the magnetic moment of the impurity atom is perpendicular to the
topological insulator surface, in agreement with experiments [34].



28 Scattering due to magnetic Mn defects

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

kx (2π/a)

−0.2

−0.1

0.0

0.1

0.2

k
y
 (
2
π
/a
)

(a)

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06 〈σ
x 〉(a

.u
.) 

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

kx (2π/a)

−0.2

−0.1

0.0

0.1

0.2

k
y
 (
2
π
/a
)

(b)

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06 〈σ
y 〉(a

.u
.) 

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

kx (2π/a)

−0.2

−0.1

0.0

0.1

0.2

k
y
 (
2π

/
a
)

(c)

−0.22

−0.20

−0.18

−0.16

−0.14

−0.12

−0.10

−0.08 〈σ
z 〉(a

.u
.) 

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

kx (2π/a)

−0.2

−0.1

0.0

0.1

0.2

k
y
 (
2π

/
a
)

(d)

−0.22

−0.20

−0.18

−0.16

−0.14

−0.12

−0.10

−0.08 〈σ 〉(a
.u

.) 

Figure 3.7: Expectation value of the x component of the spin ⟨σx⟩ (a), of the y component
of the spin ⟨σy⟩ (b), and of the z component of the spin ⟨σz⟩ (c), for the scattering states
on the Fermi surface integrated in the atomic cell of the Mn impurity, in the case of a
single Mn impurity on the Bi2Te3 surface. (d) The same as in (a-c), but with the x and
y components presented by arrows and the z component by a color code.

In the following, we first present the spin accumulation, torque, and spin flux in the
impurity Mn atom, caused by each scattering state ψimp

k on the Fermi surface, separately.
In a second step, these partial contributions are weighted and integrated, with the respec-
tive partial weights corresponding to the distribution function gk and the mean free path
Λk, as it is self-consistently calculated by solving the Boltzmann equation (2.42).

According to Section 2.2.1 we compute the expectation value of the spin operator ⟨σ⟩
in the presence of one impurity atom in the host system. In Fig. 3.7(a-c) we show the
expectation values of the components of the spin operator on the Fermi surface scattering
states at the Mn atom, as they are computed according to Eq. (2.8). The spin projection
on the x− y plane is shown in Fig. 3.7(d). The spin polarization presents 120

◦
rotation

symmetry in the x − y plane on the Fermi surface around the impurity axis (z axis),
due to the crystal structure. In the symmetry considerations we note that, due to the
magnetic field of the impurity, the time-reversal symmetry (k → −k) as well as the
reflection symmetry with respect to the y − z plane are broken. Furthermore, we have
to note that the magnetic moment of the Mn atom, corresponding to the Fermi surface,
exists in z direction only. The integrated magnetic moment on x−y plane vanishes, since
the magnetic moment is in z direction of impurity atom.
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Figure 3.8: Expectation value of the x component of the torque ⟨Tx⟩ (a), of the y com-
ponent of the torque ⟨Ty⟩ (b), and of the z component of the torque ⟨Tz⟩ (c), for the
scattering states on the Fermi surface integrated in the atomic cell of the Mn impurity,
in the case of a single Mn impurity on the Bi2Te3 surface. (d) The same as in (a-c), but
with the x and y components presented by arrows and the z component by a color code.

Next, we compute the expectation value of the torque exerted by each surface state
on the impurity atom, based on Section 2.2.2. Each component of the torque expectation
value, on the Fermi surface states on the impurity atom, as it is calculated by Eq. (2.14),
is presented in Fig. 3.8(a-c). Obviously, there is no torque in the direction of the mag-
netization, as it is also proved by the external product which relates the torque with the
magnetic field (Eq. 2.6). Therefore, the z component of the torque expectation value is
zero, as it is shown in Fig. 3.8(c). We observe in Fig. 3.8(d) that the projection of the
torque expectation value presents 120

◦
rotation symmetry in the x− y plane. Comparing

Figs. 3.7 and 3.8, we find that the torque expectation value ⟨Ty⟩ follows the opposite sign
of the spin expectation value (⟨−σx⟩), in accordance with Eq. (2.13). Also, the sign of
the torque expectation value ⟨Tx⟩ follows the sign of the spin expectation value (⟨σy⟩),
due to 90

◦
rotation.
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Figure 3.9: Expectation value of the x component of the spin flux ⟨Qx⟩ (a), of the y
component of the spin flux ⟨Qy⟩ (b), and of the z component of the spin flux ⟨Qx⟩ (c), for
the scattering states on the Fermi surface integrated in the atomic cell of the Mn impurity,
in the case of a single Mn impurity on the Bi2Te3 surface. (d) The same as in (a-c), but
with the x and y components presented by arrows and the z component by a color code.

As it was mentioned in Section 2.2.3 we can determine the part of the torque that
arises from spin currents, by calculating the expectation value of the spin flux operator.
Fig. 3.9(a-c) visualizes the expectation values of the components of the spin flux operator
⟨Qx⟩, ⟨Qy⟩, ⟨Qz⟩, which are calculated according to Eq. (2.20). In Fig. 3.9(d) the
projection of the spin flux in the x − y plane is presented. Comparing the Fig. 3.8 and
Fig. 3.9 we observe that the expectation values of the spin flux operator ⟨−Qx⟩, ⟨−Qy⟩
are in agreement with the torque expectation values ⟨Tx⟩, ⟨Ty⟩, respectively. Therefore,
we conclude that the torque on the impurity atom is mediated by the spin currents. As
the previously measured quantities, the spin flux operator presents the symmetry of 120

◦

rotation around the axis of the defect.
Next, the expectation values of the spin current, the torque and the spin flux will

be studied for a larger number of magnetic impurities on the surface and they will be
compared to the above results of the case of a single impurity on the surface. This way,
we take into account the multiple scattering of the impurities.

We construct a system with 51 Mn atoms embedded in the surface of the host system.
This corresponds to a concentration of ≈ 5% impurities, as it was described to Section
3.2. We compute the expectation values of the spin, the spin-orbit torque and the spin
flux for 10 different distributions of the impurities sites in the surface.

Since we want to model a random occupation by impurities in the infinitely large
surface, we consider the central impurity atom in the disk as the most representative
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for the average impurity in the physical system. In Figs 3.10, 3.11, 3.12 we present the
calculated quantities for the representative central impurity atom, for one distribution
selected out of ten. The calculations of the others distributions gave qualitatively similar
results and they are omitted.
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Figure 3.10: Expectation value of the x component of the spin ⟨σx⟩ (a), of the y component
of the spin ⟨σy⟩ (b), and of the z component of the spin ⟨σz⟩ (c), for the scattering states
on the Fermi surface integrated in the atomic cell of the central Mn impurity, in the case
of 51 Mn impurities on the Bi2Te3 surface. (d) The same as in (a-c), but with the x and
y components presented by arrows and the z component by a color code.

In Fig. 3.10(a-c), the components of the expectation values of the spin operator ⟨σx⟩,
⟨σy⟩, ⟨σz⟩ at the surface states of the central Mn atom are presented, as its projection in
the x− y plane, in the presence of 51 impurities on the surface.

Overall, we find a greater induced spin polarization at the surface states of the central
impurity atom in the presence of many impurities on the surface, comparing Fig. 3.7
with 3.10. This enhancement of the spin values originates, obviously, from the multiple
scattering of electrons. As it was expected, the 120

◦
rotation symmetry in the x−y plane

on the Fermi surface is broken in the presence of 51 impurities into the crystal, as it is
shown in Fig. 3.10(d), due to the change of the structure.
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Figure 3.11: Expectation value of the x component of the torque ⟨Tx⟩ (a), of the y
component of the torque ⟨Ty⟩ (b), and of the z component of the torque ⟨Tz⟩ (c), for
the scattering states on the Fermi surface integrated in the atomic cell of the central Mn
impurity, in the case of 51 Mn impurities on the Bi2Te3 surface. (d) The same as in (a-c),
but with the x and y components presented by arrows and the z component by a color
code.

Calculating the expectation value of the spin-orbit torque for the scattering states
on the Fermi surface at the central Mn atom of the system with 51 impurities, as it is
shown in Fig. 3.11, we observe that they are one order of magnitude larger than the
corresponding torque expectation values of the system with only one defect (Fig. 3.8).
This gives a good indication of the dependency of the torque by the magnetic field. The
presence of magnetic impurities on the surface Bi2Te3 gives rise to a larger torque.

As the magnetization of all the impurity atoms is in z direction, the z component of
the torque expectation value is zero (Fig. 3.8(c)). The 120

◦
rotation symmetry of the

torque expectation values in the x− y plane on the Fermi surface is broken.
As on the system with one defect, as well as on this system with 51 Mn atoms the sign

of the torque expectation value ⟨Ty⟩ follows the negative sign of the spin expectation value
(⟨−σx⟩), i.e. a surface state in x direction causes a spin-orbit torque which is transverse
in y direction, in accordance with Eq. (2.13). Also, the sign of the torque expectation
value ⟨Tx⟩ follows the sign of the spin expectation value (⟨σy⟩).

In Fig. 3.12(a-c) the components of the spin flux expectation value are presented,
when Bi2Te3 is doped with 51 Mn impurities. As the spin and the torque operators, the
spin flux operator presents no symmetry rotation. It is important to note that the spin
flux expectation values ⟨−Qx⟩ are practically equal to the torque expectation values ⟨Tx⟩,
as ⟨−Qy⟩ are in agreement with ⟨Ty⟩.
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Figure 3.12: Expectation value of the x component of the spin flux ⟨Qx⟩ (a), of the y
component of the spin flux ⟨Qy⟩ (b), and of the z component of the spin flux ⟨Qz⟩ (c),
for the scattering states on the Fermi surface integrated in the atomic cell of the central
Mn impurity, in the case of 51 Mn impurities on the Bi2Te3 surface. (d) The same as in
(a-c), but with the x and y components presented by arrows and the z component by a
color code.
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3.4 Calculations of the response tensors based on

Boltzmann formalism

Applying an external electric field in the system, a current density is created, induced
by the propagated waves of the crystal electrons (Bloch’s electrons). The Bloch waves
forming the current, are scattered of the perturbing potential of magnetic impurities,
creating a wave interference in the region of impurities. In this Section we calculate the
current-induced spin orbit torques in the presence of Mn impurities on the Bi2Te3 surface,
based on the Boltzmann formalism.
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Figure 3.13: The response coefficient of (a) the spin accumulation χyx, (b) the torque tyx,
and (c) the spin flux qyx on the central impurity atom, in the presence of 1 Mn defect
(squares) and 51 Mn defects (circles) on the Bi2Te3 surface. The electric field (Ey) is in y
direction.
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According to Section 2.3.2, the self-consistently calculated vector mean free path (Eq.
2.41) and the deviation of the distribution function from equilibrium, we compute the
response tensors of the spin accumulation, the torque and the spin flux, in the electric
field, using Eqs (2.56), (2.53) and (2.59), respectively.

The results which are presented refer to the tensor components in response to the
electric field Ey. The tensor components in response to the electric field Ex are similar.
More specifically, Figs. 3.13(a-c) represent the spin accumulation χxy, the torkance txy,
and the spin flux response function qxy which are exerted on the Mn impurity atom of a
system with one defect, and on the central atom of a system with 51 Mn impurity atoms
for the ten different distributions. We observe that the results of all response functions
for the 10 different distributions present a large spread. However, we can deduce that the
system with a single impurity is a representative system, as the average of the response
tensors of the 10 different distributions converges to the value of the response tensor of
the one impurity system 3.

As we can observe in Fig. 3.14, where the torkance as a function of the response
tensor of spin accumulation is presented, there is no linear correlation between the spin
of the conduction electrons and the spin-orbit torque. This absence of linear coordination
is due to the external product of spin with the magnetic field, according to which the
spin-orbit torque is defined (Eq. 2.6). Then, the torkance ((2.53)) does not separate
into two integrals (one for the spin and one for the magnetic field), but is calculated by
a convolution involving one integral which includes the external product, according to
Equation (2.14).

In Fig. 3.15 the dependence of the torque response tensor by the response tensor of the
spin flux is presented. The torque has a linear dependence on the spin flux, in accordance
with the results of the corresponding expectation values. Consequently, the spin-orbit
torque exerted on the impurity moment is essentially mediated by the spin currents in
the presence of an external electric field on the system, while other contributions (in
particular, the spin-lattice contribution due to the SOC inside the Mn impurity) are
negligible.

Finally, comparing the results of this study to those of a ferromagnetic bilayer (a
FePt/Pt thin film [35]), we find that the spin-orbit torque, in particular the torkance,
is three orders of magnitude greater on Mn/Bi2Te3 system. As the strong spin-orbit
coupling exists in both systems, this strong spin-orbit torque can be attributed to the
two other main characteristics of topological insulators, i.e. to the metallic surface states
combined with an insulating bulk, and to the spin direction of the conducting states into
the surface. As only the surface in Bi2Te3 is conducting there is no current in the substrate,
such as in FePt/Pt, reinforcing the spin transport on the surface states. Furthermore,
on the FePt/Pt system the spin polarization of the conducting states is parallel to the
magnetization of the impurity atoms, in contrast with the Mn/Bi2Te3, where the spin
polarization is perpendicular to the magnetization of impurities.

3This should become more obvious if more distributions of impurities were included to our study.
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Figure 3.14: (a) The torkance ty as a function of the response coefficient of the spin
accumulation χx, (b) the torkance tx as a function of the response coefficient of the spin
accumulation χy on the central impurity atom, in the presence of 1 Mn defect (squares)
and 51 Mn defects (circles) on the Bi2Te3 surface. The electric field (Ey) is in y direction.

-16 -8 0 8 16
-16

-8

0

8

16

-16 -8 0 8 16
-16

-8

0

8

16
 51 impurities

        (central atom)
 1 impurity

(a)

t x 
(1

03 e
a 0)

t y 
(1

03 e
a 0)

 

 

 51 impurities
        (central atom)

 1 impurity

(b)

qx (103ea0) qy (103ea0) 

 

 

Figure 3.15: (a) The torkance ty as a function of the response coefficient of the spin flux
qy, (b) The torkance tx as a function of the response coefficient of the spin flux qx on
the central impurity atom, in the presence of 1 Mn defect (squares) and 51 Mn defects
(circles) on the Bi2Te3 surface. The electric field (Ey) is in y direction.



Chapter 4

Conclusion

In summary, the relativistic full potential KKR Green function method and the Boltzmann
transport theory were applied to the calculations of spin-orbit torque and spin flux in Mn-
doped Bi2Te3 surfaces.

We extracted results, studying two different approximations of the Mn/Bi2Te3 system.
Firstly, we investigated the case of a single Mn impurity, and then, of 51 Mn impurities,
randomly placed in the area of a disk containing 1027 sites, on the Bi2Te3 surface. Con-
sidering, initially, the equilibrium state, we calculated the expectation value of the spin,
the spin-orbit torque and the spin flux of the scattering states on the Fermi surface in the
region of the Mn impurity atom. The calculated values, in the case of 51 Mn impurities
are one order of magnitude larger than the corresponding results in the case of a single
impurity.

Then, we investigated the non-equilibrium state, considering the application of an
external electric field on the system. In particular, solving the Boltzmann equation we
found the out-of equilibrium distribution function gk in the presence of current flow.
Knowing the distribution function gk, we calculated the response tensors of the spin
accumulation and the spin flux in the region of the Mn impurity atom, as well as the
response tensor of the spin-orbit torque exerted in the impurity moment. This was done
in the case of a single impurity, as well as for a system with 51 impurities, considering 10
different distributions. In both cases the results are scaled to ≈ 5% concentration. We
observed that the system with a single Mn impurity gives representative values compared
to the 10 different many-impurities systems. Also, we concluded that the spin-orbit torque
on the impurity Mn atom is mediated by the spin flux.

Finally, we found three orders of magnitude greater torkance in the Mn/Bi2Te3 system,
compared to a ferromagnetic bilayer (FePt/Pt) studied in the literature. Therefore, we
conclude that the localized surface states and the perpendicular spin-polarization of the
surface electrons, with respect to the magnetization of impurities, both characteristic of
the topological insulator Bi2Te3, reinforce the spin-orbit torque.

The large spin-orbit torque predicted in Mn/Bi2Te3 system within this work, suggests
that these systems are very promising for spintronics applications.
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Appendix

In order to solve the linearized Boltzmann equation (2.42) numerically we use an itera-
tively method. In particular, beginning with an initial guess of the vector mean free path
(Λ

(in)
k ), and replacing it on the RHS of Eq. (2.42), by solving the Boltzmann equation

a new vector mean free path, Λ
(out)
k , is derived. If the integral of the difference between

the initial and the old vector mean free path is not smaller than a selected constant, the
procedure is repeated with Λ

(out)
k the initial vector mean free path. In Fig. 1 we show a

flow diagram of the iteratively method we described above.

Figure 1: Flow diagram of the iterative method we apply to numerically solve the Boltz-
mann equation.
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[15] P. Rüßmann, “Spin scattering of topologically protected electrons at defects”, PhD
thesis (RWTH Aachen, 2017).



42 Bibliography
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