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ABSTRACT 
 
 

A Cloudlet is a computer or a cluster of computers connected at the edge of the network 
to provide low-latency access to Computing resources for IoT devices. The main aim of 
this Thesis is to provide an intelligent scheme for detection of Outliers in a Cloudlet 
simulation environment. For this purpose, Hilout algorithm is used, modified to use, in 
addition, a temporal approach. The experiments that took place focus on different 
configurations’ values of the input data, data-vectors with multiple dimensions coming 
from IoT devices. The results are examined by the scope of how the different 
configurations affect the number of Outliers that are detected by the scheme. The 
environment that is used, is provided by the CloudSim framework. 
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ΠΕΡΙΛΗΨΗ 

 

Ένα Cloudlet είναι ένας υπολογιστής ή ένα σύμπλεγμα υπολογιστών που συνδέονται 
στην άκρη του δικτύου για να παρέχει πρόσβαση χαμηλής καθυστέρησης σε 
υπολογιστικούς πόρους για συσκευές IoT. Ο κύριος στόχος της παρούσας εργασίας 
είναι να παράσχει ένα έξυπνο σχέδιο για την ανίχνευση ακραίων τιμών σε περιβάλλον 
προσομοίωσης Cloudlet. Για το σκοπό αυτό, χρησιμοποιείται ο αλγόριθμος Hilout, 
τροποποιημένος για να χρησιμοποιήσει επιπρόσθετα μια χρονική προσέγγιση. Τα 
πειράματα που πραγματοποιήθηκαν επικεντρώνονται στις διαφορετικές τιμές των 
συνθέσεων των δεδομένων εισόδου, των φορέων δεδομένων με πολλαπλές διαστάσεις 
που προέρχονται από συσκευές IoT. Τα αποτελέσματα εξετάζονται από το πεδίο 
εφαρμογής του τρόπου με τον οποίο οι διαφορετικές διαμορφώσεις επηρεάζουν τον 
αριθμό των ακραίων τιμών που ανιχνεύονται από το σχήμα. Το περιβάλλον που 
χρησιμοποιείται, παρέχεται από το framework CloudSim. 
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1. INTRODUCTION 

Our days are dominated by the rapidly evolution and progress of technology, and this 
has affected our everyday life. New devices such as smartphones and tablets have 
entered in users’ lives by helping them to improve their lives, to monitor remotely their 
home devices, to inform about the traffic or the pollution of a city and a lot of other 
applications. The next think was to connect all these devices, in order to exchange data 
and operate more automated, without requiring human-to-human or human-to-computer 
interaction. This is called Internet of Things (IoT). 

The IoT devices can be connected to a Cloud. A Cloud or Cloud Computing is a 
framework for sharing resources, information and software capabilities to different 
mobile/IoT devices. The resources will be available on the Cloud and can be shared by 
the devices on demand. It is actually a model for enabling convenient, on-demand 
network access to Computing resources that can be rapidly provisioned and released 
with minimal management effort. A very similar concept that enhances the “bond” 
between the client and the Cloud is the concept of Mobile Cloud Computing. Mobile 
Cloud Computing at its simplest, refers to an infrastructure where both the data storage 
and data processing happen outside of the mobile device. Mobile Cloud applications 
move the Computing power and data storage away from mobile phones and into the 
Cloud, bringing applications and MCC to not just smartphone users but a much broader 
range of mobile subscribers. 

Nowadays, the concept of Cloudlet appeared. In the Cloudlet concept, mobile device 
offloads its workload to a resource-rich, local Cloudlet. Cloudlets would be situated in 
common areas such as coffee shops, libraries or university halls, so that mobile devices 
can connect and function as a thin client to the Cloudlet. A Cloudlet could be any first 
hop element at the edge of network. 

In this Thesis we use an intelligent scheme for detection of Outliers on a Cloudlet 
simulation environment with the use of Hilout Algorithm, a bit modified to support a 
temporal approach. For this purpose, we use the CloudSim simulation framework in 
order to run our experiments and to make our conclusions regarding the effectiveness 
of the scheme. 

The Thesis is organized as follows: In Chapter 2 we give the definition of the Cloud 
Computing and of the Mobile Cloud Computing and we explain their architectures and 
their features. In Chapter 3 we give the definition of a Cloudlet and we explain its 
architecture and we mention few information regarding the Cooperative Caching 
concept. In Chapter 4 we explain our Hilout approach, we give some information 
regarding PCA dimension reduction, which we are using in some of our experiments 
and we give some information regarding the Variance of dataset, which we also use in 
our experiments. Last but not least for this chapter, we explain why we use this 
approach. In Chapter 5 we give few information regarding the CloudSim framework but 
most important we give the results of the experiments we had. In the last Chapter, we 
give some conclusions regarding the work we did. 
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2. Mobile Cloud Computing 

In this chapter we are going to give the definition of Cloud Computing, Mobile Cloud 
Computing, their architectures, advantages-disadvantages and the areas of usage. 

2.1 Cloud Computing Definition  

Cloud Computing is a framework for sharing resources, information and software 
capabilities to different mobile devices. The resources will be available on the Cloud and 
can be shared by the devices on demand. It is actually a model for enabling convenient, 
on-demand network access to Computing resources that can be rapidly provisioned and 
released with minimal management effort. [11] 

Cloud Computing is described also as a range of services which are provided by an 
Internet-based cluster system. Such cluster systems consist of a group of low-cost 
servers or Personal Computers (PCs), organizing the various resources of the 
computers according to a certain management strategy, and offering safe, reliable, fast, 
convenient and transparent services such as data storage, accessing and Computing to 
clients. [1] 

The concept behind Cloud Computing is to offload computation to remote resource 
providers. [13] The main objective behind the Cloud Computing is the delivery of 
different services, software and processing capacity over the Internet, increasing 
storage, reducing cost, automating systems and decoupling of service delivery from 
underlying technology, and providing flexibility and mobility of information in different 
purposes. [1] 

 

2.2 Cloud Computing Classification 

Cloud Computing can be viewed as a collection of services, which can be represented 
as a layered Cloud Computing architecture. In the upper layers of this paradigm, 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service 
(SaaS) are stacked: 

 Data centers layer: This layer provides the hardware facility and infrastructure for 
Clouds. In data center layer, a number of servers are linked with high-speed 
networks to provide services for customers. Typically, data centers are built in 
less populated places, with a high power supply stability and a low risk of 
disaster. 

 Infrastructure as a Service (IaaS): IaaS is built on top of the data center layer. It 
is the delivery of computer infrastructure (typically a platform virtualization 
environment) as a service. IaaS enables the provision of storage, hardware, 
servers and networking components. The capability provided to the end users is 
to provision processing, storage, networks, and other fundamental Computing 
resources where the end user is able to deploy and run arbitrary software, which 
can include operating systems and applications. The user does not manage or 
control the underlying Cloud infrastructure but it has control over operating 
systems, storage, deployed applications, and possibly limited control of select 
networking components. The end-user typically pays on a per-use basis. Thus, 
end-user can save cost as the payment is only based on how much resource 
they really use. Infrastructure can be expanded or shrunk dynamically as 
needed. The examples of IaaS are Amazon EC2 (Elastic Cloud Computing) and 
S3 (Simple Storage Service). 
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 Platform as a Service (PaaS): It is the delivery of Computing platform and 
solution stack as a service. The capability provided to the end users is to deploy 
onto the Cloud infrastructure user created or acquired applications created using 
programming languages and tools supported by the provider. PaaS offers an 
advanced integrated environment for building, testing and deploying custom 
applications. PaaS providers offer a predefined combination of OS and 
application servers, such as WAMP platform (Windows, Apache, MySQL and 
PHP), LAMP platform (Linux, Apache, MySQL and PHP), and XAMP (X-cross 
platform) limited to J2EE, and Ruby etc. The examples of PaaS are Google App 
Engine, Microsoft Azure, and Amazon Map Reduce/Simple Storage Service. 

 Software as a Service (Saas): SaaS supports a software distribution with specific 
requirements. In this layer, the users can access an application and information 
remotely via the Internet and pay only for that they use. Sales force is one of the 
pioneers in providing this service model. Saas is actually a model of software 
deployment whereby the provider licenses an application to the customers for 
use as a service on demand. The capability provided to the end users is to use 
the provider’s applications running on a cloud infrastructure. The applications are 
accessible from various client devices through a thin client interface such as a 
web browser (e.g., web enabled e-mail). The end users does not manage or 
control the underlying cloud infrastructure including network, servers, operating 
systems, storage, or even individual application capabilities, with the possible 
exception of limited user specific application configuration settings. Today SaaS 
is offered by companies such as Google, Salesforce, Microsoft, Zoho, etc. 

 

Figure 1: Cloud Layers 

 There is also an extra layer, Monitoring-as-a-Service (MaaS): It is the 
outsourced provisioning of security, primarily on business platforms that 
leverages the Internet to conduct business. MaaS has become increasingly 
popular over the last decade. Since the advent of Cloud Computing, its popularity 
has grown even more. Security monitoring involves protecting an enterprise or 
government client from cyber threats. A security team plays a crucial role in 
securing and maintaining the confidentiality, integrity, and availability of IT 
assets. The major functionality of MaaS is to monitor the working of the top three 
layers SaaS, PaaS and IaaS. [5] 
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2.3 Cloud Computing Deployment Models 

There are three types of Cloud Computing deployment models: 

1. Private Cloud (or Internal Cloud): A type of Cloud in which the Cloud services 
are delivered over a network which is open for public usage. It refers to Cloud 
Computing on private networks. Private Clouds are built for the exclusive use of 
one client, providing full control over data, security, and quality of service. Private 
Clouds can be built and managed by a company’s own IT organization or by a 
Cloud provider. 

2. Public Cloud (or External Cloud): A type of Cloud that is implemented on a 
Cloud-based secure environment that is safeguarded by a firewall. Private Cloud 
as it permits only the authorized users can use the data. In this model, 
Computing resources are dynamically provisioned over the Internet via Web 
applications or Web services from an off-site third party provider. Public Clouds 
are run by third parties, and applications from different customers are likely to be 
mixed together on the Cloud’s servers, storage systems, and networks. 

3. Hybrid Cloud (or Mixed Cloud): A type of Cloud which is integrated. It can be an 
arrangement of two or more Cloud servers, i.e. private, public or community 
Cloud that is bound together but remain individual entities. This environment 
intersects and combines multiple public and private Cloud models. Hybrid Clouds 
introduce the complexity of determining how to distribute applications across both 
a public and private Cloud. [5] 

 

Figure 2: Cloud Models 

4. There is an extra type of deployment model, Community Cloud: A type of Cloud 
in which the setup is mutually shared between many organizations that belong to 
a particular community. [14] 
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2.4 Cloud Computing Features 

Below are the Cloud Computing features: 

 Scalability and On-Demand Services:  Cloud Computing provides resources 
and services for users on demand. The resources are scalable over several data 
centers. 

 Quality of Service (QoS): Cloud Computing can guarantee QoS for users in 
terms of hardware or CPU performance, bandwidth, and memory capacity. 

 User-Centric Interface: Cloud interfaces are location independent and they can 
be accessed by well-established interfaces such as Web services and Web 
browsers. 

 Autonomous System: Cloud Computing systems are autonomous systems 
managed transparently to users. However, software and data inside Clouds can 
be automatically reconfigured and consolidated to a simple platform depending 
on user’s needs. 

 Pricing – Cloud: Computing does not require up-front investment. No capital 
expenditure is required. Users may pay and use or pay for services and capacity 
as they need them. [5] 

 

2.5 Mobile Cloud Computing Definition 

There are several existing definitions for Mobile Cloud Computing. In general, it is a 
running service on a resource rich Cloud server which is used by a thin mobile client. It 
can also be referred when mobile nodes play as a resource provider role in a peer-to-
peer network. MCC can be considered as a network with certain characteristics. The 
need for adaptability, scalability, availability and self-awareness in Cloud Computing 
concept is taken and is expanded to Mobile Cloud Computing. [15] 

Alternatively, MCC could be defined in a more comprehensive way as it is quoted as 
follows: “Mobile Cloud Computing at its simplest, refers to an infrastructure where both 
the data storage and data processing happen outside of the mobile device. Mobile 
Cloud applications move the Computing power and data storage away from mobile 
phones and into the Cloud, bringing applications and MCC to not just smartphone users 
but a much broader range of mobile subscribers”. [5] 

Mobile Cloud Computing at its simplest refers to an infrastructure where both the data 
storage and data processing happen outside of the mobility devices (e.g., tablet PC, 
smart-phone). Mobile Cloud apps move the Computing power and data storage 
capacity away from mobile phones and into the Cloud power, bringing applications and 
MC to not just smartphone users but a much broader range of mobile subscribers. [2] 

Mobile Cloud Computing is a paradigm where data processing and storage are moved 
from mobile device to powerful and centralized Computing platforms located in Clouds 
over the internet. All these centralized applications are then accessed over the wireless 
connection based on a thin native client or web browser on the mobile devices. 
Alternatively, Mobile Cloud Computing can be defined as a combination of mobile web 
and Cloud Computing, which is the most popular tool for mobile users to access 
applications and services on the Internet. [6] 

Mobile Cloud Computing has three different definitions: 
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1. The term Mobile Cloud Computing means to run an application for mobile on a 
remote resource rich server as displayed in while the mobile device acts like a 
thin client connecting over to the remote server through 3G. 

2. Consider other mobile devices themselves too as resource providers of the Cloud 
making up a mobile peer-to-peer network. This approach supports user mobility, 
and recognizes the potential of Mobile Clouds to do collective sensing as well. 

3. The Cloudlet concept proposed by Satyanarayanan is another approach to Mobile 
Cloud Computing. The mobile device offloads its workload to a local Cloudlet 
comprised of several multi-core computers with connectivity to the remote Cloud 
servers. PlugComputers can be considered good candidates for Cloudlet servers 
because of their form factor, diversity and low power consumption. They have the 
same general architecture as a normal computer, but are less powerful, smaller, 
and less expensive, making them ideal for role small scale servers installed in 
the public infrastructure. [13] 

2.6 Mobile Cloud Computing Architecture 

The general architecture of MCC proposed can be shown in the picture below: 

 

Figure 3: Mobile Cloud Architecture 

Mobile devices are connected to the mobile networks via base stations (e.g., base 
transceiver station (BTS), access point, or satellite) that establish and control the 
connections (air links) and functional interfaces between the networks and mobile 
devices. Mobile user’s requests and information (e.g., ID and location) are transmitted 
to the central processors that are connected to servers providing mobile network 
services. Here, Mobile network operators can provide services to mobile users as AAA 
(Authentication, Authorization and Accounting) based on the home agent (HA) and 
subscriber’s data stored in databases. After that, the subscriber’s requests are delivered 
to a Cloud through the Internet. In Cloud, the Cloud controllers process the requests to 
provide mobile users with the corresponding Cloud services. These services are 
developed with the concepts of utility Computing, virtualization, and service oriented 
architecture (e.g. web application, and database servers). [5] 

Mobile Cloud Computing has three components, mobile device, wireless communication 
channel and Cloud. Mobile devices have resource constraint in terms of battery power, 
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memory, processing power and have different types of hardware, operating system, and 
input -output interface. Wireless communication channel has different radio access 
technologies such as GPRS, 3G, WLAN and WiMAX with variable network conditions in 
terms of limited and unstable bandwidth. [7] 

There are two types of Architecture in Mobile Cloud Computing: 

1. Non Cloudlet Architecture: there are three components Mobile client, 
Transmission channel and Cloud. Mobile client requests desired service from 
Cloud and Cloud provides the service. Cloud is owned by an organization or 
Cloud provider and services thousands of users at time. In this architecture, main 
disadvantage is communication latency for getting service from distant Cloud. 

2. Cloudlet Architecture: a local Cloudlet contains cached copy of data. It is 
installed between client and Cloud. The cost of installation is less as compared to 
Cloud as it is only a data center at business premises. A Cloudlet services only a 
few users and has less communication latency as compared to Cloud. Cloudlet is 
owned by local business. [8] 

 

2.7 Mobile Cloud Computing Models 

There are three Mobile Cloud Models: 

1. Client Model: In this model, mobile device act as client and mobile user access 
service is offered by Cloud by thin layer of interface web browser. Cloud charges 
for services till the duration client is connected. Client model depicts Software as 
a Service model of Cloud Computing. 

2. Client / Cloud Model: In client /Cloud model, the concept of task partitioning 
comes in which mobile users give a part of task to Cloud for processing. 

3. Cloud Model: In Cloud model, mobile device itself is the part of Cloud. One or 
more mobile devices create the structure of Cloud. [7] 

 

2.8 Mobile Cloud Computing Features and Challenges 

2.8.1 Features –Advantages 

The main objective of Mobile Cloud Computing is to provide a convenient and rapid 
method for users to access and receive data from the Cloud, such convenient and rapid 
method means accessing Cloud Computing resources effectively by using mobile 
devices. Below there are enlisted the advantages of Mobile Cloud Computing: 

 Extending battery lifetime: Battery is one of the main concerns for mobile 
devices. Several solutions have been proposed to enhance the CPU 
performance, and to manage the disk and screen in an intelligent manner, to 
reduce power consumption. However, these solutions require changes in the 
structure of mobile devices, or they require a new hardware that results in an 
increase of cost and may not be feasible for all mobile devices. 

 Improving data storage capacity and processing power: Storage capacity is 
also a constraint for mobile devices. MCC is developed to enable mobile users to 
store/access the large data on the Cloud through wireless networks. 

 Improving reliability: Storing data or running applications on Clouds is an 
effective way to improve the reliability since the data and application are stored 
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and backed up on a number of computers. This reduces the chance of data and 
application lost on the mobile devices. In addition, MCC can be designed as a 
comprehensive data security model for both service providers and users. 

 Dynamic provisioning: Dynamic on-demand provisioning of resources on a fine-
grained, self-service basis is a flexible way for service providers and mobile 
users to run their applications without advanced reservation of resources. 

 Scalability: The deployment of mobile applications can be performed and scaled 
to meet the unpredictable user demands due to flexible resource provisioning. 
Service providers can easily add and expand an application and service without 
or with little constraint on the resource usage. 

 Multi-tenancy: Service providers (e.g., network operator and data center owner) 
can share the resources and costs to support a variety of applications and large 
number of users. 

 Ease of Integration: Multiple services from different service providers can be 
integrated easily through the Cloud and the Internet to meet the users’ demands. 
[1] 

The advantages of Mobile Cloud Computing are: 

 Mobile devices allow users access to Cloud services anywhere and anytime. 

 Mobile Cloud services can give information about a user’s location, context, and 
requested services to improve user experience. 

 Each mobile device has storage, Computing, sensing, and power resources which 
are advantageous. 

 Mobile Computing can help to overcome some problem of Cloud Computing such 
as solving the problem of WAN latencies by using Cloudlet. 

 Major problems faced by MCC are discussed such as stability of wireless 
connectivity, tackling the unnecessary battery usage etc. Certain barriers such as 
network availability and bandwidth are focused. Two aspects of security issues 
such as mobile device security and Cloud security are addressed. [4] 

The major characteristics of Mobile Cloud Computing are listed below: 

 Flexibility/Elasticity: Users can rapidly access provision Computing resources 
without human interaction. User Capabilities can be rapidly and elastically 
provisioned, in some cases dynamically, to quickly scale out or up. 

 Scalability of Infrastructure: In the physical servers, new nodes can be added or 
dropped from the network with limited modifications to infrastructure set up and 
software. According to demand mobile Cloud architecture can scale horizontally 
or vertically easily. 

 Broad Network Access: User capabilities and ability are available over the 
network and can be accessed  through standard mechanisms that promote use 
by heterogeneous platforms like mobile phones, laptops, and PDAs etc. 

 Location Independence: Location independence is another characteristic of 
Mobile Cloud Computing. There is a sense of different location independence 
where customer generally has no control or knowledge over the exact location of 
the provided resources. But it may be able to specify location at a higher level of 
abstraction from country, state, or datacenter. 
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 Reliability: Through the use of multiple redundant site reliability can be improved 
and this makes Cloud Computing more worthy for disaster recovery applications 
and business continuity. [6] 

2.8.2 Challenges and strategies to solve them 

2.8.2.1 Challenges 

The major challenge of Mobile Cloud Computing comes from the characters of mobile 
devices and wireless networks, as well as their own restriction and limitation, and such 
challenge makes application designing, programming and deploying on mobile and 
distributed devices more complicated than on the fixed Cloud devices. The important 
factors that affect assessing from Cloud Computing are below: 

 Limitations of mobile devices: While discussing mobile devices in Cloud the first 
thing is resource constrain. Though smart phones have been improved obviously 
in various aspects such as capability of CPU and memory, storage, size of 
screen, wireless communication, sensing technology, and operation systems, still 
have serious limitations such as limited Computing capability and energy 
resource, to deploy complicated applications. By contrast with PCs and Laptops 
in a given condition, these smart phones like iPhone 4S, Android serials, 
Windows Mobile serials decrease 3 times in processing capacity, 8 times in 
memory, 5 to 10 times in storage capacity and 10 times in network bandwidth. 

 Quality of communication: In contrast with wired network uses physical 
connection to ensure bandwidth consistency, the data transfer rate in Mobile 
Cloud Computing environment is constantly changing and the connection is 
discontinuous due to the existing clearance in network overlay. Furthermore, 
data center in large enterprise and resource in Internet service provider normally 
is far away to end users, especially to mobile device users. In wireless network, 
the network latency delay may 200 ms in ’last mile’ but only 50 ms in traditional 
wired network. 

 Division of application services: In Mobile Cloud Computing environment, due 
to the issue of limited resources, some applications of compute-intensive and 
data-intensive cannot be deployed in mobile devices, or they may consume 
massive energy resources. Therefore, we have to divide the applications and use 
the capacity of Cloud Computing to achieve those purposes, which is: the core 
Computing task is processed by Cloud, and those mobile devices are 
responsible for some simple tasks only. In this processing, the major issues 
affecting performance of Mobile Cloud Computing are: data processing in data 
center and mobile device, network handover delay, and data delivery time. The 
following strategies can be used to response to the above challenges: 

 Upgrade bandwidth for wireless connection, make the web content more 
suitable for mobile network using regional data centers. 

 Deploy the application processing node at the ’edge’ of the Cloud in order 
to reduce data delivery time. 

 Duplicate mobile devices to Cloud using virtualization and image 
technologies, to process Data-Intensive Computing (DIC) and Energy-
Intensive Computing, such as virus scanning in mobile devices. 
Dynamically optimize application push in Cloud and the division with 
mobile terminals. [1] 
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There are several challenges in the process of consuming Web Services (WS) from 
mobile clients. The following are enlisted: 

 Loss of connection: The interaction between clients and service requires a 
steady connection. However, due to the mobility of the clients and the wireless 
network setup, mobile clients can be temporarily removed from the previous 
connected network and later may enter to another network. In such occurrences, 
either service requests or responses may fail to be delivered to their destination. 

 Bandwidth/Latency: Cell networks have limited bandwidth and are often billed 
based on the amount of data transferred. However, even a simple SOAP 
message often contains a large amount of XML data/information, which 
consumes a lots of bandwidth and the transmission can cause major network-
latency. In addition, the SOAP messages contain mostly XML tags that are not all 
necessary for the mobile clients. 

 Limited resources: Mobile clients are “thin clients” with limited processing power. 
The boundaries are essential to mobility and not just the failings of current 
technology. For example, a service mash up involves parsing and combining 
different WS results requires a lot of computation. The challenges are minimizing 
the data processing on mobile clients and extending processing power beyond 
mobile clients. In addition, several mobile platforms do not include necessary 
libraries for SOAP Web Services. 

Most of the challenge of Mobile Cloud Computing comes from the characters of mobile 
devices and wireless networks and their own restriction and limitation. All these 
challenge makes application more complicated than on the fixed Cloud devices. The 
entire limitations of mobile devices, quality of wireless communication and support from 
Cloud Computing to mobile are all important factors that affect accessing from Cloud 
Computing. [2] 

Major limitations and solutions of Mobile Cloud Computing is listed below: 

 Low Bandwidth: Since mobile network resource is much smaller compared with 
the traditional networks bandwidth is the one of major important issues in Mobile 
Cloud environment. Therefore, P2P Media Streaming for distributing small 
bandwidth among the subscriber who are located nearby in the same area for the 
similar content such as the same video. Using this procedure, each user can 
transmit or exchanges parts of the same content with second users, which is 
resulted in improvement of content quality, especially for videos transmission. 

 Security and Privacy in the Cloud: In Mobile Cloud Computing security and 
privacy has become the biggest concern. When establishing a remote Cloud 
base infrastructure certainly any organization will give away private data and 
information which might be sensitive and confidential. Then it gives to the Cloud 
service provider to manage, protect and retain them. The existence of the 
company might be jeopardous, so before taking any decision all the possible 
alternatives should be explored. Therefore, users might feel uncomfortable 
surrendering their data to a third party. 

 Prone to Attack: It is more vulnerable to external hack attacks and threats to 
store information in the Cloud. Nothing on the internet is completely protected. 
Sensitive data and information may be stealth on the internet as many hackers 
and malicious users always lurk for the chances. 

 Dependency and Vendor Lock-In: One of the major disadvantages of Mobile 
Cloud Computing is the implicit dependency on the internet service provider. It is 
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really painful and cumbersome if one user wants to switch from one provider to 
some other provider as he has to transfer large number of data from the previous 
provider to the new one. This is another main reason why have to carefully and 
thoroughly contemplate in all options when picking a vendor. 

 Limited Control and Flexibility: Since all the applications and services run on 
remote or third party virtual environments, users have limited control over the 
whole function and execution of the hardware and software. In addition, since 
remote software is being used for Mobile Cloud Computing, it usually lacks the 
features of an application running locally. 

 Increased Vulnerability: Privacy and security related Cloud based solutions is 
more vulnerable target for hackers and malicious users as all Cloud based 
solutions are exposed on the public internet. Many biggest players suffer from 
serious attack and security breakage in the internet. Nothing on the internet is 
fully secured. 

2.8.2.2 Strategies 

The following strategies can be used to reduce to the challenges in Mobile Cloud 
Computing: for wireless connection upgrade bandwidth and make the web content more 
usable for mobile network using regional data centers. In order to reduce data delivery 
time, deploy the application processing node at the ’edge’ of Cloud. Duplicate mobile 
devices to Cloud using virtualization and image technologies, to process Data-Intensive 
Computing (DIC) and Energy-Intensive Computing, such as virus scanning in mobile 
devices. Optimize application push in Cloud dynamically and the division with mobile 
terminals. [6] 

There are some Data Security Issues concerning the Mobile Cloud: 

 Privacy and Confidentiality: Once the client host data to the Cloud there should 
be some guarantee that access to that data will only be limited to the authorized 
access. Inappropriate access to customer sensitive data by Cloud personnel is 
another risk that can pose potential threat to Cloud data. Assurances should be 
provided to the clients and proper practices and privacy policies and procedures 
should be in place to assure the Cloud users of the data safety. The Cloud 
seeker should be assured that data hosted on the Cloud will be confidential. 

 Data Integrity: With providing the security of data, Cloud service providers should 
implement mechanisms to ensure data integrity and be able to tell what 
happened to a certain data set and at what point. The Cloud provider should 
make the client aware of what particular data is hosted on the Cloud, the origin 
and the integrity mechanisms put in place. 

 Data Location and Relocation: Cloud Computing offers a high degree of data 
mobility. Consumers do not always know the location of their data. However, 
when an enterprise has some sensitive data that is kept on a storage device in 
the Cloud, they may want to know the location of it. They may also wish to 
specify a preferred location (e.g. data to be kept in India). This, then, requires a 
contractual agreement, between the Cloud provider and the consumer that data 
should stay in a particular location or reside on a given known server. Also, 
Cloud providers should take responsibility to ensure the security of systems 
(including data) and provide robust authentication to safeguard customers’ 
information. Another issue is the movement of data from one location to another. 
Data is initially stored at an appropriate location decide by the Cloud provider. 
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However, it is often moved from one place to another. Cloud providers have 
contracts with each other and they use each other’s resources. 

 Data Availability: Customer data is normally stored in chunk on different servers 
often residing in different locations or in different Clouds. In this case, data 
availability becomes a major legitimate issue as the availability of uninterruptible 
and seamless provision becomes relatively difficult. [7] 

The following issues have not been sufficiently solved: 

 Supporting continuous mobility while ensuring connectivity to the Cloud: 
Even if the reception is sufficient, data costs and latency has a huge impact on 
these kinds of Mobile Cloud Computing apps. When supporting mobility and 
connectivity, some of the questions we need to contemplate are; How can a user 
device know of impending dis-connectivity? In what ways can the most ‘stable’ 
and ‘efficient’ surrogates be chosen so as to ensure seamless connectivity? 
What fault-tolerance mechanisms can be employed to minimize potential 
failures? 

 Security in Mobile Clouds: Although an issue of paramount importance, little 
research has been carried out in this regard. Although many of the reviewed 
frameworks mention the need for security and trust, very few of them have 
actually implemented it and have left the implementation for future directions. 

 Incentives for surrogates: If users are to be persuaded to collaborate and share 
their resources with others, there needs to be motivation either through monetary 
or social incentives to do so. An interesting method is using common goals, but 
in the absence of common activities this will not prevail. In the case of monetary 
incentives, several questions need to be answered such as: how is credit 
represented in a Mobile Cloud? how will monetary transactions proceed in a 
secure method? how will the price of resources be decided? Using social 
incentives such as suggested in also raises challenges such as preventing free 
riding and enforcing standards. [13] 

The research challenges are defined as the issues that include how to abstract the 
complex heterogeneous underlying technology, how to model all the different 
parameters that influence the performance and interactivity of the application, how to 
achieve optimal adaptation under different constraints, how to integrate computation 
and storage with the Cloud while preserving privacy and security. 

The full potential of Mobile Cloud applications can only be unleashed, if computation 
and storage is offloaded into the Cloud, but without hurting user interactivity, introducing 
latency or limiting application possibilities. The applications should benefit from the rich 
built-in sensors which open new doorways to more smart mobile applications. As the 
mobile environments change, the application has to shift computation between device 
and Cloud without operation interruptions, considering many external and internal 
parameters. [12] 

 

2.9 Mobile Cloud Computing Applications 

Various applications based on Mobile Cloud Computing have been developed and 
served to users, such as Google's Gmail drive, Maps and Navigation systems for 
Mobile, I- Cloud from Apple Moto Blur from Motorola (with a special feature called 
remote wipe) Amazon ‘s new "Cloud-accelerated" Web browser Silk. Silk is a "split 
browser whose software resides both on Kindle Fire and EC2. The applications 
reinforced by mobile Cloud Computing include mobile commerce, mobile learning, and 
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mobile healthcare and other areas. Mobile applications extended extensive share in a 
global mobile market. Various mobile applications have engaged the recompenses of 
Mobile Cloud Computing. The following are the few inferences: 

 m-Commerce: Mobile commerce (m-commerce) is a buying and selling of 
products using mobile devices. The m-commerce applications normally used to 
achieve some tasks that necessitate mobility (e.g., mobile transactions and 
payments, mobile messaging, and mobile ticketing). The m-commerce 
applications have to face various complications (e.g., low network bandwidth, 
high complexity of mobile device configurations, and security). Subsequently, m-
commerce applications are integrated into Cloud Computing environment to 
solve these issues (X. Yang et al,2010). 

 m-Learning: Mobile learning (m-learning) is an electronic learning (e-learning) 
and mobility. However, traditional m-learning applications have limitations in 
terms of high cost of devices and network, low network transmission rate, and 
limited educational resources (X. Chen et al, 2010; H. Gao et al, 2010; Jian Li, 
2010). Cloud based m-learning applications are presented to solve these 
limitations, for example utilizing a Cloud with the large storage capacity and 
powerful processing ability, the applications offer learners with much comfortable 
services in terms of information size, processing speed. 

 m-HealthCare: MCC in medical applications is used to minimize the limitations of 
traditional medical treatment [e.g., small physical storage, security and privacy, 
and medical errors (D. Kopec et al, 2013)]. Mobile healthcare (m-healthcare) 
offers mobile users with appropriate help to access resources easily. m-
Healthcare provides healthcare organizations a diversity of on-demand services 
on Clouds rather than standalone applications on local servers. 

 m-Banking: M-Banking is an uprising in traditional banking services, where user 
can avail the bank services provided to them through their mobile despite of 
location and time (Z. Li et al, 2001). Transaction can be done even if user is busy 
in his routine work via SMS or the mobile Internet but can also use special 
programs, called mobile applications, downloaded to the mobile device. 

 m-Game: Mobile game (m-game) is a prospective market producing incomes for 
service providers. M-game can completely offload game engine requiring large 
Computing resource (e.g., graphic rendering) to the server in the Cloud, and 
gamers only interact with the screen interface on their devices (Jasleen et al, 
2013) demonstrates that offloading (multimedia code) can save energy for mobile 
devices, thereby increasing game playing time on mobile devices. [7] 

Applications of Mobile Cloud Computing: 

 Image processing: If user/subscriber visit foreign museum, he can’t perceive the 
language written in each object of the museum. He can take picture of the object 
and using Mobile Cloud Computing can understand the language written over the 
object. An optical character recognition (OCR) program on a collection of mobile 
devices can give this ability to users. 

 Natural language processing: Language translation is one possible application 
for Mobile Cloud Computing. Translation is a viable candidate for language 
processing since different sentences and paragraphs can be translated 
independently, and this is experimentally explored in using Pangloss-Lite. 
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 Crowd Computing: Video recordings from multiple mobile devices can be spliced 
to construct a single video that covers the entire event from different angles, and 
perspectives. 

 Sharing GPS/Internet data: It is more efficient to share data among a group of 
mobile devices that are near each other, through local-area or peer-to-peer 
networks. It is not only cheaper, but also faster. 

 Sensor data applications: Now-a-days almost every mobile device is built with 
sensors which are used to read data. Some sensors such as GPS, 
accelerometer, thermo sensor, light sensor, clock and compass may be time 
stamped and associated with other phone readings. In order to gather precious 
information in different situation different queries can be executed. 

 Multimedia search: Mobile phones may store different types of multimedia 
content such as videos, photos, and music. Shazam is a music identification 
service for mobile phones, that searches for similar songs in a central database, 
in the context of the mobile Cloud, the searching could be executed on the 
contents of nearby phones. 

 Social networking: Since sharing user content is a popular way we interact with 
friends on social networks such as Facebook, integrating a Mobile Cloud into 
social networking infrastructure could open up automatic sharing and p2p 
multimedia access and this will also reduce the need to back up and serve all of 
this data on huge servers. [13], [6] 
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3. Cloudlets and Cooperative Caching 

In this chapter we are going to describe the Cloudlet’s architecture and its usefulness if 
it is integrated in Mobile Cloud Computing architecture. Also we are going to define 
what is cooperative caching and how this can be used best in order to make Mobile 
Cloud Computing more efficient. 

3.1 Cloudlet’s Architecture  

Despite a lot of achievements that MCC provides, there are still issues like low 
bandwidth, high latency, service availability, quality of service (QoS) and service cost to 
be addressed. These concerns arise mostly from rapid growth in the number of mobile 
users and their expectations of MCC services. Bandwidth is limited in wireless networks 
compared to normal wired networks. Users need more availability despite mobile 
devices lack of connectivity and they demand higher QoS with less service cost. Also 
network latency is a big burden in improving QoS and user experience while using a 
distant Cloud. These problems are more tangible in applications that offer cognition or 
virtual reality services which demand low latency and high bandwidth. 

Considering these problems, researchers realized utilizing resources and services with 
more locality is more cost efficient with better availability, faster connectivity and less 
latency. This has led to the concept of the Cloudlet. A Cloudlet is a computer or a 
cluster of computers connected at the edge of the network to provide low-latency 
access to Computing resources for mobile devices. The mission of Cloudlets is to 
alleviate resource constraints of mobile devices and also to reach better network 
latency. Speech recognition, natural language processing, computer vision and 
graphics, machine learning, augmented reality and other computation-intensive 
applications would benefit the most from the Cloudlet approach. 

Cloudlet is considered as the middle tier of a 3-tier hierarchy: mobile device, Cloudlet 
and Cloud. A Cloudlet can also be viewed as a resource rich center at the proximity of 
users. 

Cloudlet Architecture taken from [15]: 

 

Figure 4: Cloudlet Architecture 
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In the Cloudlet concept, mobile device offloads its workload to a resource-rich, local 
Cloudlet. Cloudlets would be situated in common areas such as coffee shops, libraries 
or university halls, so that mobile devices can connect and function as a thin client to 
the Cloudlet. A Cloudlet could be any first hop element at the edge of network while it 
has four key attributes. It has only soft state, it should be resource rich and well-
connected, with low end-to-end latency and also it follows a certain standard for 
offloading (e.g. Virtual machine migration). In other words, a Cloudlet’s failure is not 
critical, it has strong internal connectivity and high bandwidth wireless LAN and it should 
be in logical and physical proximity of user to reduce the network latency. 

There are two main approaches to implement Cloudlet infrastructure using Virtual 
Machine (VM) technology. In both of these architectures it is important that Cloudlet 
could go back to its beginning state after being used (e.g. by post-use clean up). A VM 
based approach is broadly used since it can cleanly encapsulate and separate the 
transient guest software environment from the Cloudlet infrastructure’s permanent host 
software and it’s less brittle than other approaches like process migration or software 
virtualization. 

Cloudlets utilize rapidly deployed VMs which the client can customize freely upon their 
need to make the VM image or VM overlay which has the application and all necessary 
requirements to run properly. In both types of implementations, the VM image or overlay 
is created at runtime by user which is quite flexible for offloading the workload to the 
Cloudlet. Nevertheless, despite this flexibility, the procedure of creating an image or a 
VM overlay and also application status encapsulation could be quite time taking. At the 
end, it is totally dependent on application design, needs and environment whether to 
choose using Cloudlets as resource rich sources or not. [15] 

 

Figure 5: Cloudlet VM Synthesis 

In this architecture a mobile user exploits virtual machine (VM) technology to rapidly 
instantiate customized service software on a nearby Cloudlet and then uses that service 
over a wireless LAN, the mobile device typically functions as a thin client with respect to 
the service. A Cloudlet is a trusted, resource-rich computer or cluster of computers 
that’s well-connected to the Internet and available for use by nearby mobile devices. 

Using a Cloudlet also simplifies the challenge of meeting the peak bandwidth demand of 
multiple users interactively generating and receiving media such as high-definition video 
and high-resolution images. 
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Cloudlets are decentralized and widely dispersed Internet infrastructure components 
whose compute cycles and storage resources can be leveraged by nearby mobile 
computers. Essentially, a Cloudlet resembles a “data center in a box”: it’s self-
managing, requiring little more than power, Internet connectivity, and access control for 
setup. This simplicity of management corresponds to an appliance model of Computing 
resources and makes it trivial to deploy on a business premises such as a coffee shop 
or a doctor’s office. Internally, a Cloudlet resembles a cluster of multicore computers, 
with gigabit internal connectivity and a high-bandwidth wireless LAN. For safe 
deployment in unmonitored areas, the Cloudlet can contain a tamper-resistant or 
tamper-evident enclosure with third-party remote monitoring of hardware integrity.  

A future in which Cloudlet infrastructure is deployed much like Wi- Fi access points 
today is something that is achievable ambition. Indeed, it would be relatively 
straightforward to integrate Cloudlet and Wi-Fi access point hardware into a single, 
easily deployable entity. A key challenge is to simplify Cloudlet management. 
Widespread deployment of Cloudlet infrastructure won’t happen unless software 
management of that infrastructure is trivial— ideally, it should be totally self-managing. 
Tightly restricting software on Cloudlets to simplify management is unattractive because 
it constrains application innovation and evolution. Instead, an ideal Cloudlet would 
support the widest possible range of mobile users, with minimal constraints on their 
software.  

The proposal is transient customization of Cloudlet infrastructure using hardware VM 
technology. The emphasis on “transient” is important: pre-use customization and post-
use cleanup ensures that Cloudlet infrastructure is restored to its pristine software state 
after each use, without manual intervention. A VM cleanly encapsulates and separates 
the transient guest software environment from the Cloudlet infrastructure’s permanent 
host software environment. The interface between the host and guest environments is 
narrow, stable, and ubiquitous, which ensures the longevity of Cloudlet investments and 
greatly increases the chances of a mobile user finding compatible Cloudlets anywhere 
in the world.  

This Cloudlet’s physical proximity is essential: the end-to-end response time of 
applications executing within it must be fast (a few milliseconds) and predictable. If no 
Cloudlet is available nearby, the mobile device can gracefully degrade to a fallback 
mode that involves a distant Cloud or, in the worst case, solely its own resources. Full 
functionality and performance can return later, when the device discovers a nearby 
Cloudlet. A VM-based approach is less brittle than alternatives such as process 
migration or software virtualization.6 It’s also less restrictive and more general than 
language-based virtualization approaches that require applications to be written in a 
specific language such as Java or C#. 

The other approach is called dynamic VM synthesis. A mobile device delivers a small 
VM overlay to the Cloudlet infrastructure that already possesses the base VM from 
which this overlay was derived. The infrastructure applies the overlay to the base to 
derive the launch VM, which starts executing in the precise state in which it was 
suspended. To appreciate its unique attributes, it’s useful to contrast dynamic VM 
synthesis with the alternative approach of assembling a large file from hash-addressed 
chunks. Researchers have used variants of this alternative in systems such as LBFS, 
Casper, Shark, the Internet Suspend/Resume system, the Collective and KeyChain. All 
these variants have a probabilistic character to them: chunks that aren’t available 
nearby (in the local cache, on portable storage, and so on, depending on the specific 
variant) must be obtained from the Cloud. Thus, bandwidth to the Cloud and the hit ratio 
on chunks are the dominant factors affecting assembly speed. Dynamic VM synthesis 
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differs in two key ways. First, its performance is determined solely by local resources: 
bandwidth to Cloudlet and the Cloudlet’s compute power. Local hardware upgrades can 
thus translate directly to faster VM synthesis. Second, WAN failures don’t affect 
synthesis. Even a Cloudlet that’s totally isolated from the Internet is usable because the 
mobile device delivers the overlay. In this case, provisioning the Cloudlet with base VMs 
could be done via physical storage media. [8] 

There are two types of Cloudlets: the ad hoc Cloudlet and the elastic Cloudlet. The ad 
hoc Cloudlet consists of dynamically discovered nodes in the LAN network. These 
nodes run a Node Agent that can spawn Execution Environments to deploy components 
in. When nodes join or leave the Cloudlet, the Cloudlet Agent will recalculate the 
deployments, migrating components if needed. The elastic Cloudlet runs on a 
virtualized infrastructure, where nodes run in virtual machines. Here, the Cloudlet Agent 
can spawn new nodes when more resources are needed, or stop nodes when too much 
resources are allocated. This type of Cloudlet comes close to the VM based Cloudlet 
envisioned by Satyanarayanan, but with extra middleware in the VM (NA and EE) that 
manages the application. [9] 

 

Figure 6: Cloudlet Types 

We read that in Cloudlet architecture mobile users can access Cloudlet one hop away, 
thus reduces bandwidth utilization and efficiency. Computation and data storage mostly 
happens outside the mobile device, to a remote server which will complete the 
computation task and send the results back to the client. Offloading techniques currently 
available are client server communication, virtualization and mobile agents.  

Cloudlet architecture reduces the gap between mobile devices and remote servers by 
offloading workload to a local Cloudlet with connectivity to remote servers. It uses VM 
technology. It uses dynamic VM synthesis. The mobile device transmits a small VM 
overlay to the Cloudlet and applies it to a compatible base VM to generate the launch 
VM-temporarily created for a mobile client to execute the task and then restored to its 
previous state after each execution. [11] 

3.2 Cloudlet’s Challenges 

Although Cloudlets may solve the issue of latency, there are still two important 
drawbacks of the VM based Cloudlet approach. First, one remains dependent on 
service providers to actually deploy such Cloudlet infrastructure in LAN networks. To 
alleviate this constraint, the authors of [9] propose a more dynamic Cloudlet concept, 
where all devices in the LAN network can cooperate in the Cloudlet. A second drawback 
of VM based Cloudlets is the coarse granularity of VMs as unit of distribution. Instead of 
executing the whole application remotely in the VM and using a thin client protocol, 
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better performance can be achieved by dynamically partitioning the application in 
components. As resources in the Cloudlet will still be limited, chances are that even the 
Cloudlet runs out of resources when many users execute their VM simultaneously on 
the Cloudlet infrastructure. With component offloading, a more flexible allocation of the 
Cloudlet resources is possible, so that priority is given for latency-critical parts of the 
application, while non real-time parts can be offloaded to a more distant Cloud. [9] 

In Satyanarayanan's architecture a mobile user exploits VMs to rapidly instantiate 
customized service software on a nearby Cloudlet and uses the service over WLAN. A 
Cloudlet is a trusted, resource-rich computer or a cluster of computers well connected to 
the Internet and available for use by nearby mobile devices. Rather relying on a distant 
Cloud, the Cloudlets eliminate the long latency introduced by wide-area networks for 
accessing the Cloud resources. Cloudlets allow high abstraction and personalization of 
the Computing environment by using VMs, but lack from fine-grained execution 
adaptation. [13] 

3.3 Cooperative Caching Definition 

The concept of cooperative caching is based on the idea of demanding the necessary 
data from a neighbor node in the network instead of the original resource. Different 
approaches have been proposed for cooperative caching, such as, caching on mobile 
nodes, caching on intermediate or proxy nodes or caching on the edge of network. 

By technological improvements in smart phones and other mobile devices, mobile 
clients are capable of sharing data between themselves as peers. In this way they can 
stay independent from the origin server where the data comes from. Mobile Cooperative 
Caching is an aggregation of this alternative with the concept of caching for mobile 
devices. In Mobile Cooperative Caching, mobile devices try to form an ad hoc network 
with other mobile nodes in the proximity to share the relevant data. To develop this kind 
of network, one should consider proper policies and select efficient algorithms regarding 
cache records invalidation, consistency level, cache record placing and searching. [15] 

Cooperative caching improves the response time by reducing VM synthesis time by 
caching the previous state. Cooperative caching consists of multiple distributive caches 
to improve system response time. [14] 

Having distributed caches permits a system to deal with concurrent client request as 
well as sharing contents. With cache different VM synthesis states the users can get the 
service from cache otherwise request is given to the base layer to get the corresponding 
launch VM. If the corresponding base VM is not present we have to contact distant 
Cloud for the service. Data caching increases battery life in mobile devices by reducing 
wireless communication. [11] 
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4. Cloudlet Scenario with Hilout Algorithm 

In this chapter we are going to give the description of the Cloudlet scenario that is 
implemented in this Thesis as long as the way that Hilout algorithm logic is embedded 
to it in order to make the decision which data vectors are considered as Outliers and 
can't be handled by the Cloudlet. 

4.1 Cloudlet Scenario 

As we saw in the previous chapter, Cloudlet is defined as a computer or a cluster of 
computers connected at the edge of the network to provide low-latency access to 
Computing resources for mobile devices. Cloudlet is considered as the middle tier of a 
3-tier hierarchy: mobile device, Cloudlet and Cloud. A Cloudlet can also be viewed as a 
resource rich center at the proximity of users. 

In this Thesis, we are using a Cloudlet simulation framework, which is called CloudSim 
and it is going to be described in the next chapter, in order to implement and evaluate a 
specific Cloudlet scenario. In this scenario the Cloudlet is considered as a repository, 
practically a MySQL schema table, in which data vectors, data from IoT devices, arrive 
with multi-dimensions’ values sequentially. At this point Hilout Algorithm takes place. 
Each time that a data vector wants to be processed by the Cloudlet, the algorithm 
decides if it can be processed or not. In case that it can't be processed, it is marked as 
an outlier and stored in the repository. 

A simplistic overview of the scenario is given below. The details are going to be 
explained in the next sections of this chapter. 

Scenario: 

   We have a Cloudlet where m (maximum 500) devices are connected. In this 
Cloudlet, data are stored in a repository R. We consider that the selected data 
should be in accordance with the current data that devices report. We should 
decide which data will be stored. These multivariate data (n variables) should be 
‘similar’ with the data present in the Cloudlet otherwise they are transferred in the 
Cloud for storage and further processing (practically they stored in the repository 
as Outliers). 

   Vectors arrive in the Cloudlet accompanied by a timestamp. 

   The Cloudlet processor (a component responsible to manage the incoming 
vectors) decides if each vector is similar with the dataset. 

   We execute the Hilout algorithm to identify if the incoming vector is an outlier 
compared to the stored vectors. 

   Each vector gets a weight which is the sum of the distance with its k-neighbors. 

   The weight of the k-neighbors is updated only if the incoming vector is not an 
outlier. 

   Based on the timestamps, we extend the Hilout algorithm to take into 
consideration a window W where the stored vectors are considered for the 
calculations (details about this in the Hilout algorithm section) 

   When a stored vector is out of the window, its weight is penalized and reduced. 
The higher the difference with W the higher the penalty becomes. 

   The final weight of the neighbors-stored vectors is taken into consideration for 
deciding if the incoming vector will be stored or sent to the Cloud. 



An Intelligent scheme for Outliers’ detection on a Cloudlet 

D. Milios   35 

    Below it is a picture that gives a snapshot of how the Cloudlet is conceived in 
this scenario: 

 

 

 

Figure 7: Cloudlet 

Each data vector that is stored in the Cloudlet(repository) has the below attributes: 

1.   nodeID: the ID of the IoT device of the data vector. The ID can be within the 
range 0-500. 

2.   recordID: the ID of the vector that it stored in the repository. This number is 
unique for each record. 

3.   dimensions(a-j): each time the simulation runs the program decides with a 
randomized way how many dimensions the data vectors have. The range of the 
dimensions can be from 1 to 10. The names of the dimensions follow the 
alphabet sequence (a, b, c, ...) 

4.   time: it is the timestamp of a data vector when this is stored in the repository. 

5.   weight: the weight that is stored for an arriving data vector is actually the sum of 
the distances between the dimensions of the data vector and its neighbors' 
dimensions, data vectors that are already stored in the repository. The logic with 
which the neighbors are selected is going to be explained in the section of Hilout 
Algorithm. 

6.   marked: This boolean attribute is true for a data vector when it is stored as an 
outlier and false when it is not. 

4.2 Hilout Algorithm 

In this section we are going to describe the logic of the Hilout algorithm that is applied 
every time a data vector wants to enter the Cloudlet. Before we do, we need to say few 
words about the Hilout algorithm itself. 
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Hilout finds distance-based Outliers, but uses the ranks of distance instead of the 
absolute distance in outlier detection. Specifically, for each object, o, Hilout finds the k-
nearest neighbors of o, denoted by nn1(o), ... nnk(o), where k is an application-
dependent parameter. The weight of object o is defined as: 

 

Equation 1: weight 

All objects are ranked in weight-descending order. The top-l objects in weight are output 
as Outliers, where l is another user-specified parameter. Computing the k-nearest 
neighbors for every object is costly and does not scale up when the dimensionality is 
high and the database is large. To address the scalability issue, Hilout employs space-
filling curves to achieve an approximation algorithm, which is scalable in both running 
time and space with respect to database size and dimensionality. 

In our scenario Hilout is a little bit differentiated because in the process of detecting if 
the incoming vector is an outlier it takes into consideration also the temporal factor. Not 
only the spatial proximity with the neighbors is taken into account for the decision but 
also the temporal proximity. If the neighbors' timestamps are not within a time window 
W, it is defined from the timestamp of the incoming vector minus a fixed interval, an 
extra penalty is added to the weight of each of the neighbors-vectors accordingly, which 
is taken into consideration for the decision for the incoming vector. The higher the 
difference with W the higher the penalty becomes. 

In order to see how Hilout algorithm works for the scenario, we describe the algorithm in 
physical steps below: 

   the number of the dimensions(d) can be between 2-10 and the number of the 
data vectors(v) can be between 1-1000.The data vectors try to enter the Cloudlet 
sequentially. 

   Incoming vector's data follow the Gaussian distribution, which means that every 
dimension's value for each vector follows this distribution. The mean of the 
distribution is initially 100 but every 10 vectors that are inserted it deviates from 
this value left or right (- or +) according to a deviation that is given by the 
exponential distribution. Deviation of the Gaussian distribution is set to the value 
from the {5,25,50}. Details about the creation of the input data is given to the 
Input Data section. 

   A decision of how many neighbors(k) we are going to look into for the incoming 
vector is taken. The number of the neighbors(k) is randomized between the half 
and the total number of vectors of the current dataset that is stored in the 
repository. 

   After the neighbors' number is set we find the neighbors according to the 
proximity of them comparing to the input vector's position, as the Hilout algorithm 
defines. This means that the k stored vectors with the lowest relative distance to 
the incoming vector are considered as neighbors. 

   The decision if the incoming vector is an outlier or not is taken comparing the 
weights of the neighbors with the weight of it. If the weight of the incoming vector 
is the highest, then it is marked as an outlier and is stored in the repository with 
weight 0. If it is not an outlier, then the weights of the neighbors are updated 
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(plus the relative distance with the incoming vector) and the incoming vector is 
stored. 

   At this point we need to clarify how the weight of the neighbors is calculated each 
time and how the incoming vector's. When the incoming vector arrives to the 
Cloudlet, the timestamp of it minus 1 millisecond becomes the time window (W) 
we mentioned in the beginning of this section. If the timestamp of each neighbor 
is out of range of the W, then a penalty is added to its weight. This penalty is set 
as the absolute difference of one of the W's edges and the neighbor's timestamp. 
On the other side there is no penalty for the incoming vector because its 
timestamp is one of the edges of the W. Summarizing the weight of the incoming 
vector is only the sum of the relative distance with its neighbors but the weight of 
the neighbors is the sum, relative distance with the incoming vector is not taken 
into account, plus the possible penalty due to the time window. Last but not least, 
the penalty is taken into account for each neighbor every time an incoming vector 
wants to enter the Cloudlet but is not added in the weight value which is stored 
for every vector in the repository. 

4.2.1 Hilout Application Example   

In this section we are going to see an example of Hilout applied on the Cloudlet 
repository for a very small dataset. 

Input’s information: number of vectors =5, number of dimensions = 3, Gaussian’s mean 
= 100.0, variance = 50. 

Results and Analysis of them: 

Table 1: Hilout Example with 5 vectors 

vectorID Dimension    
a 

Dimension    
b 

Dimension    
c 

Timestamp(long 
value) 

weight outlier 

299 152.6 179.78 100.53 1529156644964 402.94 false 

487 64.04 175.69 120.45 1529156645011 0 true 

440 106.63 144.1 195.46 1529156645089 369.18 false 

465 135.1 32.26 206.7 1529156645264 298.55 false 

150 72.11 118.28 60.29 1529156645509 250.87 false 

 

Iteration 1: 

The first vector (vectorID: 299) will be stored without any check because the Cloudlet 
repository is empty. The weight of the vector is 0. 

Iteration 2: 

For the second vector (vectorID:487) the number of neighbors that is randomly 
generated is 1, so the Hilout takes place: 

   Find 1 neighbor, there is only one stored vector anyway, distance487,299 = 90.86 

   Timestamps of the W at this point is edge1: 1529156645011 and edge2: 
1529156645010 (long values), weightvectorID:487 = distance487,299 + penalty. The 
penalty for the vector with vectorID 487 is 0 because its timestamp is one of the 
edges of the W so weightvectorID:487 = distance299,487 = 90.86. For vector with 



An Intelligent scheme for Outliers’ detection on a Cloudlet 

D. Milios   38 

vectorID 299: weightvectorID:299 = 0 + penalty = 0 + (edge2 – timestampvectorID:299) = 
(1529156645010-1529156644964) = 46. weightvectorID:487 > weightvectorID:299. This 
means that the current vector is an outlier and it will be stored with weight=0 and 
marked as outlier. 

Iteration 3: 

For the fourth vector (vectorID:440) the number of neighbors that is randomly generated 
is 1, so the Hilout takes place: 

    Find 1 neighbor, there is only one stored vector, not outlier, anyway. 
distance440,299 = 111.34. 

    Timestamps of the W at this point is edge1: 1529156645089 and edge2: 
1529156645088 (long values), weightvectorID:440 = distance440,299 + penalty. The 
penalty for the vector with vectorID 440 is 0 because its timestamp is one of the 
edges of the W so weightvectorID:440 = distance440,299 = 111.34. For vector with 
vectorID 299: weightvectorID:299 = 0 + penalty = 0 + (edge2 – timestampvectorID:299) = 
(1529156645088-1529156644964) = 124, weightvectorID:440<weightvectorID:299. This 
means that the current vector enters the Cloudlet and it is not an outlier. The 
weight of the vector is 111.34 and of the vector with vectorID 299 the same. 

Iteration 4: 

For the fourth vector (vectorID:465) the number of neighbors that is randomly generated 
is 2, so the Hilout takes place: 

    Find 2 neighbors, there are only two stored vectors, not Outliers, anyway. 
distance465,299 = 182.59, distance465,440 = 115.95. 

   Timestamps of the W at this point is edge1: 1529156645264 and edge2: 
1529156645263 (long values), weightvectorID:465 = distance465,299 + 
distance465,299+penalty. The penalty for the vector with vectorID 465 is 0 because 
its timestamp is one of the edges of the W so weightvectorID:465 = 182.59+115.95 = 
298.55. For the vector with vectorID 299: weightvectorID:299 = 111.34 + penalty = 
111.34 + (edge2 – timestampvectorID:299) = 111.34 + (1529156645263 – 
1529156644964) = 111.34+299 = 410.34, weightvectorID:440 = 111.34 + penalty = 
111.34 + (edge2 – timestampvectorID:440) =111.34 + (1529156645263 – 
1529156645089) = 111.34 + 174 = 285.34. weightvectorID:440 < weightvectorID:465 < 
weightvectorID:299, this means that the current vector enters the Cloudlet and it is 
not an outlier. The weight of the vector is 298.55, of the vector with vectorID 299 
is 293.94 and of the vector with vectorID 440 is 227.3. 

Iteration 5: 

For the fifth vector (vectorID:150) the number of neighbors that is randomly generated is 
2, so the Hilout takes place: 

   Find 2 neighbors between the 3 stored-not Outliers- vectors. distance150,299 = 109, 
distance150,440 = 141.87, distance150,465 =181.11. So neighbors are the vectors 
with vectorID 299 and 440. 

   Timestamps of the W at this point is edge1: 1529156645509 and edge2: 
1529156645508 (long values), weightvectorID:150 = distance150,299 + 
distance150,440+penalty. The penalty for the vector with vectorID 150 is 0 because 
its timestamp is one of the edges of the W so weightvectorID:150 = 109+141.87 = 
250.87. For the vector with vectorID 299: weightvectorID:299 = 293.94 + penalty = 
293.94 + (edge2 – timestampvectorID:299) = 293.94 + (1529156645508 – 
1529156644964) = 293.94+ 544 = 837.94, weightvectorID:440 = 227.3 + penalty = 
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227.3 + (edge2 – timestampvectorID:440) =227.3 + (1529156645508 – 
1529156645509) = 227.3+ 419 = 646.3. weightvectorID:150 < weightvectorID:440 < 
weightvectorID:299, this means that the current vector enters the Cloudlet and it is 
not an outlier. The weight of the vector is 250.87, of the vector with vectorID 299 
is 402.94 and of the vector with vectorID 440 is 369.18. 

4.3 Input Data 

The input data, the values of the dimensions for each data vector, are not completely 
randomized. They follow the Gaussian distribution. Each dimension's value is given, in 
the code, by the formula: mean * randomNumber * deviation. The deviation is set 
from the set {5,25,50}, the randomNumber is given by the Random number generator of 
Java and the mean is not a fixed value all the times. For every 10 data vectors that are 
inserted, Outliers or not, the mean deviates by a value that is given by the Exponential 
distribution, see section 4.3.2 about the Exponential distribution. This deviation can be 
positive or negative (+ or -). Initially the mean's value is 100. The deviation's is given, in 
the code, by the formula: (log (1- randomNumber)) / (-lambda). The lambda is set 
from the set {0.2,5}, the randomNumber is given by the Random number generator of 
Java and it must be double type and the log is the logarithm with base e. 

We apply this input logic in order to see if this phenomenon, the deviation of the mean 
in the Gaussian distribution, affects the number of the Outliers that are detected. 

At this point it should be useful to mention some basic characteristics of the Gaussian 
distribution and Exponential distribution in a theoretical perspective. 

4.3.1 Gaussian Distribution 

Normal distribution, also called Gaussian distribution, is the most common distribution 
function for independent, randomly generated variables. Its familiar bell-shaped curve is 
ubiquitous in statistical reports, from survey analysis and quality control to resource 
allocation. 

 The graph of the normal distribution is characterized by two parameters: the mean, 
or average, which is the maximum of the graph and about which the graph is always 
symmetric and the standard, which determines the amount of dispersion away from the 
mean. A small standard deviation (compared with the mean) produces a steep graph, 
whereas a large standard deviation (again compared with the mean) produces a flat 
graph. 

 

 

Figure 8: Normal Distribution 

The normal distribution is produced by the normal density, the function is shown below: 
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Equation 2: density function 

In this exponential e is the constant 2.71828…, is the mean, and σ is the standard 
deviation. The probability of a random variable falling within any given range of values is 
equal to the proportion of the area enclosed under the function’s graph between the 
given values and above the x-axis. Because the denominator, the denominator is shown 
below: 

 

Equation 3: denominator 

, known as the normalizing coefficient, causes the total area enclosed by the graph to 
be exactly equal to unity, probabilities can be obtained directly from the corresponding 
area—i.e., an area of 0.5 corresponds to a probability of 0.5. Although these areas can 
be determined with calculus, tables were generated in the 19th century for the special 
case of = 0 and σ = 1, known as the standard normal distribution, and these tables can 
be used for any normal distribution after the variables are suitably rescaled by 
subtracting their mean and dividing by their standard deviation, (x − μ)/σ. Calculators 
have now all but eliminated the use of such tables. 

The term “Gaussian distribution” refers to the German mathematician Carl Friedrich 
Gauss, who first developed a two-parameter exponential function in 1809 in connection 
with studies of astronomical observation errors. This study led Gauss to formulate his 
law of observational error and to advance the theory of the method of least squares 
approximation. Another famous early application of the normal distribution was by the 
British physicist James Clerk Maxwell, who in 1859 formulated his law of distribution of 
molecular velocities—later generalized as the Maxwell-Boltzmann distribution law. 

A this point we have to mention that the most real-world data are NOT normally 
distributed. A paper by Micceri (1989) called "The unicorn, the normal curve and other 
improbable creatures" examined 440 large-scale achievement and psychometric 
measures. He found a lot of variability in distributions w.r.t. their moments and not much 
evidence for (even approximate) normality. In a 1977 paper by Steven Stigler called "Do 
Robust Estimators Work with Real Data" he used 24 data sets collected from famous 
18th century attempts to measure the distance from the earth to the sun and 19th 
century attempts to measure the speed of light. He reported sample skewness and 
kurtosis. The data are heavy-tailed. On the contrary, in statistics, we assume normality 
oftentimes because it makes maximum likelihood convenient. This is what we do also in 
this Thesis. Although, convenience is not the only reason, the other reason we chose 
Gaussian distribution is to investigate the behavior of the data under a controlled range 
of values because a completely randomized input would be chaotic and not safe 
conclusions could be made of it. 

4.3.2 Exponential Distribution 

The exponential distribution (also called the negative exponential distribution) is a 
probability distribution that describes time between events in a Poisson Process. A 
Poisson process gives you a way to find probabilities for random points in time for a 
process. A “process” could be almost anything: 
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 Accidents at an interchange. 

 File requests on a server. 

 Customers arriving at a store. 

 Battery failure and replacement. 

The Poisson process can tell you when one of these random points in time will likely 
happen. For example, when customers will arrive at a store, or when a battery might 
need to be replaced. It’s basically a counting process; it counts the number of times an 
event has occurred since a given point in time, like 1210 customers since 1 p.m., or 543 
files since noon. An assumption for the process is that it is only used for independent 
events. 

There is a strong relationship between the Poisson distribution and the Exponential 
distribution are intertwined. For example, let’s say a Poisson distribution models the 
number of births in a given time period. The time in between each birth can be modeled 
with an exponential distribution (Young & Young, 1998). 

The most common form of the pdf (Probability Density Function): 

 

Equation 4: Probability Density Function 

Where: 

• e = the natural number e, 

• λ = mean time between events, 

• x = a random time. 

For x less than 0, F (x; λ) = 0 

 

Figure 9: Exponential distribution 

 The formula for the cumulative distribution of the exponential distribution is: 

 



An Intelligent scheme for Outliers’ detection on a Cloudlet 

D. Milios   42 

Equation 5: Cumulative distribution function 

 x ≥ 0; λ > 0 

 

Figure 10: Cumulative distribution 

In our case we use the quantile function for the Exponential distribution. 

The quantile function for Exponential(λ) is derived by finding the value of Q for which 1-
e-λQ = p: 

 

Equation 6: Quantile function 

for 0 ≤ p < 1. 

The quantile function is one way of prescribing a probability distribution, and it is an 
alternative to the probability distribution (pdf) or the cumulative distribution function. The 
quantile function, Q, of a probability distribution is the inverse of its cumulative 
distribution function F. The derivative of the quantile function, namely the quantile 
density function, is yet another way of prescribing a probability distribution. It is the 
reciprocal of the pdf composed with the quantile function. 

We chose quantile function in order to provide the quantity of how much is the variance 
of the mean each time we decide to change it and if this movement of the range of 
values affects somehow the Outliers' detection. 

4.4 PCA dimension reduction 

4.4.1 Principal Component Analysis 

Except the logic we described in the Hilout Algorithm section above, we thought that it 
could be also intriguing to add another factor that can be taken into account for the 
Outliers’ detection. We thought to use PCA dimension reduction. Before we explain 
more how we added this feature in the algorithm it could be useful to say few words 
about what PCA is. 
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Principal component analysis (PCA) does what it says, finds the principal components 
of data. It is often useful to measure data in terms of its principal components rather 
than on a normal x-y axis. So what are principal components then? They’re the 
underlying structure in the data. They are the directions where there is the most 
variance, the directions where the data is most spread out. 

Principal component analysis (PCA) is the main linear technique for dimension 
reduction. Performs a linear mapping of the data to a lower-dimensional space in such a 
way that the variance of the data in the low-dimensional representation is maximized. 

Dimension reduction is analogous to being philosophically reductionist: It reduces the 
data down into its basic components, stripping away any unnecessary parts. 

When we get a set of data points, we can deconstruct the set into eigenvectors and 
eigenvalues. Eigenvectors and values exist in pairs: every eigenvector has a 
corresponding eigenvalue. An eigenvector is a direction. An eigenvalue is a number, 
telling you how much variance there is in the data in that direction, in the example 
above the eigenvalue is a number telling us how spread out the data is on the line. The 
eigenvector with the highest eigenvalue is therefore the principal component. 

4.4.2 Hilout Algorithm with PCA 

We saw in the above subsection a short description of what PCA is. Now we are going 
to explain how we applied this method in Hilout logic. We apply this method on each 
incoming vector's dimensions in order to see if this method, the dimension reduction, 
affects the percentage of the Outliers that are detected. 

At this point we have to clarify that Hilout has been implemented as it is described in the 
Hilout Algorithm section and also with the addition of PCA dimension reduction method. 
Therefore, in the next chapter we show results for both the implementations of Hilout. 

In order to see how Hilout algorithm with PCA works for the scenario, we describe the 
algorithm in physical steps below: 

   the number of the dimensions(d) can be between 2-10 and the number of the 
data vectors(v) can be between 1-1000.The data vectors try to enter the Cloudlet 
sequentially. 

   Incoming vector's data follow the Gaussian distribution, which means that every 
dimension's value for each vector follows this distribution. The mean of the 
distribution is initially 100 but every 10 vectors that are inserted it deviates from 
this value left or right (- or +) according to a deviation that is given by the 
exponential distribution. Deviation of the Gaussian distribution is set to the value 
from the {5,25,50}. Details about the creation of the input data is given to the 
Input Data section. 

   A decision of how many neighbors(k) we are going to look into for the incoming 
vector is taken. The number of the neighbors(k) is randomized between the half 
and the total number of vectors of the current dataset that is stored in the 
repository. 

   After the neighbors' number is set we find the neighbors according to the 
proximity of them comparing to the input vector's position, as the Hilout algorithm 
defines. The difference this time is that we apply the PCA method on all the 
records, which are not Outliers, of the dataset, expect the incoming vector, and 
we find the principal components of the dataset. These components define the 
correlation between the dimensions. The way we choose to decide which 
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dimensions we keep is simple. We check the first principal component and for 
the dimensions that have value > 0.4 we keep them. If the first component 
doesn't have such values, we move to the next one. If none of them has for at 
least one of their dimension values > 0.4 then we keep all of the dimensions and 
no dimension reduction is applied. In the end, the k stored vectors with the lowest 
relative distance to the incoming vector are considered as neighbors. Relative 
distance after the dimension reduction is considered only for the dimensions we 
chose. 

   At this point we need to clarify how the weight of the neighbors is calculated each 
time and how the incoming vector's. When the incoming vector arrives to the 
Cloudlet, the timestamp of it minus 1 millisecond becomes the time window (W) 
we mentioned in the beginning of this section. If the timestamp of each neighbor 
is out of range of the W, then a penalty is added to its weight. This penalty is set 
as the absolute difference of one of the W's edges and the neighbor's timestamp. 
On the other side there is no penalty for the incoming vector because its 
timestamp is one of the edges of the W. Summarizing the weight of the incoming 
vector is only the sum of the relative distance with its neighbors, relative distance 
after the dimension reduction is considered only for the dimensions we chose 
through the PCA method , but the weight of the neighbors is the sum ,relative 
distance with the incoming vector is not taken into account, plus the possible 
penalty due to the time window. Last but not least, the penalty is taken into 
account for each neighbor every time an incoming vector wants to enter the 
Cloudlet but is not added in the weight value which is stored for every vector in 
the repository. 

Just to make it more clear about the PCA logic we apply, we can give an example: Let's 
say we have 4 data vectors stored already in the repository and a 5th one arrives. We 
have 4 dimensions for each vector. The dataset of the repository for the example is the 
below: 

      1st record: {96.93,95.04,96.15,99.04} 

      2nd record: {93.94,106.34,101.99,94.39} 

       3rd record: {92.98,96.68,101.29,103.75} 

      4th record: {108.43,92.9,94.11,92.56} 

When we apply the PCA we take the below PCA components with order from the 
highest (PCA1) to the lowest (PCA4): 

       PCA1   PCA2   PCA3   PCA4 

   dim1: [[-0.50, -0.50, -0.50, -0.50],   

    dim2: [0.86, -0.36, -0.29, -0.21],   

    dim3: [0.09, 0.64, 0.04, -0.77],   

    dim4: [-0.01, -0.47, 0.81, -0.35]] 

According to the logic we described in the Hilout algorithm with PCA physical steps we 
scan the PCA1 and we check for values > 0.4. We see that dim2 has value that follows 
this criteria, so we choose the dim2 and we stop the procedure. If PCA1 didn't have 
such a value, we should move and check PCA2 etc. 
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4.4.3 Hilout Application Example with PCA 

In this subsection we are going to see an example of Hilout with PCA applied on the 
Cloudlet repository for a very small dataset. 

Input’s information: number of vectors =5, number of dimensions = 3, Gaussian’s mean 
= 100.0, variance = 50. 

Results and Analysis of them: 

Table 2: Hilout Example with PCA , with 5 vectors 

vectorID Dimension 
a 

Dimension 
b 

Dimension 

c 

Timestamp(long 
value) 

weight outlier 

225 40.36 87.93 71.34 1529234110627 191.36 false 

107 132.78 150.17 119.84 1529234110686 0 true 

378 140.08 40.1 50.77 1529234110745 287.02 false 

279 59.83 144.73 29.09 1529234110989 196.16 false 

477 59.97 110 142.69 1529234115804 126.7 false 

 

Iteration 1: 

The first vector (vectorID: 225) will be stored without any check because the Cloudlet 
repository is empty. The weight of the vector is 0. 

Iteration 2: 

For the second vector (vectorID:107) the number of neighbors that is randomly 
generated is 1, so the Hilout takes place: 

   Find 1 neighbor, there is only one stored vector anyway. PCA is not applicable in 
this case because PCA requires at least 2 components, so in this case Hilout 
without PCA is applied. distance107,225 = 121.52 

   Timestamps of the W at this point is edge1: 1529234110686 and edge2: 
1529234110685 (long values), weightvectorID:107 = distance107,225 + penalty. The 
penalty for the vector with vectorID 107 is 0 because its timestamp is one of the 
edges of the W so weightvectorID:107 = distance107,225 = 121.52. For vector with 
vectorID 225: weightvectorID:225 = 0 + penalty = 0 + (edge2 – timestampvectorID:225) = 
(1529234110685-1529234110627) = 58. weightvectorID:107 > weightvectorID:225. This 
means that the current vector is an outlier and it will be stored with weight=0 and 
marked as outlier. 

Iteration 3: 

For the second vector (vectorID:378) the number of neighbors that is randomly 
generated is 1, so the Hilout takes place: 

   Find 1 neighbor, there is only one stored vector, not outlier, anyway. PCA is not 
applicable in this case because PCA requires at least 2 components, so in this 
case Hilout without PCA is applied. distance378,225 = 112.49 

   Timestamps of the W at this point is edge1: 1529234110745 and edge2: 
1529234110744 (long values), weightvectorID:378 = distance378,225 + penalty. The 
penalty for the vector with vectorID 378 is 0 because its timestamp is one of the 
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edges of the W so weightvectorID:378 = distance378,225 = 112.49. For vector with 
vectorID 225: weightvectorID:225 = 0 + penalty = 0 + (edge2 – 
timestampvectorID:225) = (1529234110744-1529234110627) = 117. weightvectorID:378 

< weightvectorID:225. This means that the current vector is an outlier and it will be 
stored with weight=0 and marked as outlier. This means that the current vector 
enters the Cloudlet and it is not an outlier. The weight of the vector is 112.49 and 
of the vector with vectorID 299 the same. 

Iteration 4: 

For the fourth vector (vectorID:279) the number of neighbors that is randomly generated 
is 2, so the Hilout takes place: 

   Find 2 neighbors, there are only two stored vectors, not Outliers, anyway. The 
PCA is applied and the reduced dimensions’ number is 1 and is the second 
dimension (b) that is returned, so the distance with the neighbors will be based 
on the second dimension. distance279,225 = 56.8, distance279,378 = 104.63. 

   Timestamps of the W at this point is edge1: 1529234110989 and edge2: 
1529234110988(long values), weightvectorID:225 = distance279,225 + 
distance279,378+penalty. The penalty for the vector with vectorID 279 is 0 because 
its timestamp is one of the edges of the W so weightvectorID:279 = 56.8+104.63 = 
161.43. For the vector with vectorID 225: weightvectorID:225 = 112.49 + penalty = 
112.49 + (edge2 – timestampvectorID:225) = 112.49 + (1529234110988 – 
1529234110627) = 112.49+361 = 473.49, weightvectorID:378 = 112.49 + penalty = 
112.49 + (edge2 – timestampvectorID:378) =104.63 + (1529234110988 – 
1529234110745) = 104.63 + 243 = 347.63. weightvectorID:279 < weightvectorID:378 < 
weightvectorID:225, this means that the current vector enters the Cloudlet and it is 
not an outlier. The weight of the vector is 161.43, of the vector with vectorID 225 
is 169.29 and of the vector with vectorID 378 is 217.12. 

Iteration 5: 

For the fifth vector (vectorID:477) the number of neighbors that is randomly generated is 
3, so the Hilout takes place: 

   Find 3 neighbors, there are only three stored vectors, not Outliers, anyway. The 
PCA is applied and the reduced dimensions’ number is 1 and is the second 
dimension (b) that is returned, so the distance with the neighbors will be based 
on the second dimension. distance477,225 = 22.07, distance477,378 = 69.9, 
distance477,279 = 34.73. 

   Timestamps of the W at this point is edge1: 1529234115804 and edge2: 
1529234115803 (long values), weightvectorID:477 = distance477,225 + 
distance477,378+distance477,279+penalty. The penalty for the vector with vectorID 
477 is 0 because its timestamp is one of the edges of the W so weightvectorID:477 = 
22.07+69.9+34.73 = 126.7. For the vector with vectorID 225: weightvectorID:225 = 
169.29 + penalty = 169.29 + (edge2–timestampvectorID:225) = 169.29 + 
(1529234115803–1529234110627) =169.29+5176 = 5345.29, weightvectorID:378 = 
217.12 + penalty = 217.12 + (edge2 – timestampvectorID:378) =217.12 + 
(1529234115803–1529234110745) = 217.12 + 5058 = 5275.12, weightvectorID:279 

=161.43+4814=4975.43. weightvectorID:477 <weightvectorID:279 < weightvectorID:378 < 
weightvectorID:225, this means that the current vector enters the Cloudlet and it is 
not an outlier. The weight of the vector is 126.7, of the vector with vectorID 225 is 
191.36, of the vector with vectorID 378 is 287.02 and of the vector with vectorID 
279 is 196.16. 
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4.5 Variance per dimension 

Another characteristic we study in this Thesis is the Variance per dimension. The results 
per case will be shown analytically in the next Chapter. In this section we see the 
definition of the variance of a data set and a simple example in which we see how it is 
calculated. 

4.5.1 Variance of a Data Set: Definition 

Variance (commonly denoted σ2) is a very useful measure of the relative amount of 
‘scattering’ of a given set. In other words, knowing the Variance can give you an idea of 
how closely the values in a set cluster around the mean. The greater the Variance, the 
more the data values in the set are spread out away from the mean. 

Variance is an important calculation to become familiar with because, like the arithmetic 
mean, Variance is used in many other more complex statistical evaluations. The 
calculation of Variance is slightly different depending on whether you are working with a 
population (you do not intend to generalize the results back to a larger group) or a 
sample (you do intend to use the sample results to predict the results of a larger 
population). The difference is really only at the end of the process, so let’s start with the 
calculation of the population. 

To calculate the Variance of a population: 

1.   First, identify the arithmetic mean of your data by finding the sum of the values 
and dividing it by the number of values. 

2.   Next, subtract each value from the mean and record the result. This value is 
called the deviation of each score from the mean. 

3.   For each value, square the deviation. 

4.   Finally, divide the sum of the squared deviations by the number of values in the 
set. The resulting quotient is the Variance (σ2) of the set. 

4.5.2 Variance: Example 

Let’s calculate the Variance of set x: 

x= {12,7,6,3,10,5,18,15} 

We follow the steps from above: 

   1) First, calculate the arithmetic mean: 

     μ= (12+7+6+3+10+5+18+15) /8=9.5 

   2,3) Subtract each value from the mean to get the deviation of each value, 
square the deviation of each value: 

Table 3: Variance example 

Value−Mean=Deviation Deviation2 

12−9.5=2.5 6.25 

7−9.5=−2.5 6.25 
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6−9.5=−3.5 12.25 

3−9.5=−6.5 42.25 

10−9.5=0.5 0.25 

5−9.5=−4.5 20.25 

18−9.5=8.5 72.25 

15−9.5=5.5 30.25 

TOTAL (sum of deviation2): 190.00 

 

 4) Finally, divide the sum of the squared deviations by the count of values in the   
data set:190/8 = 23.75. The Variance of set x is 23.75 

In our case the set x is each dimension. More analysis will be given, with practical 
results per case, in the next Chapter. 

 

4.6 Goals of the scenario 

After the analysis we did on the Cloudlet scenario with the Hilout detection of Outliers, in 
the above sections, we can now define the goals of the simulations we ran and their 
results are shown in the next chapter. The goals are: 

 see how the number of the data vectors affects the number of Outliers that are 
detected 

 see how the number of the dimensions affects the number of Outliers that are 
detected 

 see how the deviation of the mean in the Gaussian distribution affects the number 
of Outliers that are detected 

 see how the lambda parameter in the Exponential distribution affects the number 
of Outliers that are detected 

 see how the PCA dimension reduction affects the number of Outliers that are 
detected 

Of course these goals are not independent with each other. In the different simulation 
cases we followed all these factors are combined. 

4.7 Why we adopt this scenario 

The answer to the question: “Why we adopt this scenario?”  is a combination of two 
parameters: 

1. The first parameter is the Hilout algorithm. Hilout algorithm has been designed to 
efficiently detect the top n Outliers, in our case 1 per time a data-vector wants to 
enter into the Cloudlet, of a large and high-dimensional data set.  This is a 
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feature that really fits our use cases because we take into account not only 2-d 
and 3-d set of dimensions but a multi-dimensional set, until 10 maximum, for 
Outliers' detection. 

2. The second parameter is the centralized nature of the Cloudlet repository. The 
advantages of a centralized system are:     

 Data Integrity: The single greatest benefit of centralizing and 
management of data is data integrity. One of the cardinal rules of 
database design is that no redundancy is allowed. That is, no piece of 
data should ever be repeated within the database. This aids in the 
maintaining of data as accurate and as consistent as possible and 
enhances data reliability. 

 Cost effectiveness: More cost effective than other types of database 
systems. By controlling data in a central repository, redundancy and its 
associated costs are eliminated and productivity is increased. 

 Increased Efficiency: With a central repository, all data is integrated and 
maintained centrally so that manual data processing is eliminated and the 
resources devoted to multiple data management can be redirected to 
other business needs. 

 Enhanced data Quality: Having parallel databases and transferring data 
among them can result in data loss or poor-quality data too. Integrating all 
your data in a central repository improves data quality and consistency to 
make better assessments. 

 Changeability: Data kept in the same location is easier to be changed, 
re-organized, mirrored, or analyzed. 

 Accessibility: All the information can be accessed at the same time from 
the same location. Updates to any given set of data are immediately 
received by every end-user. 

In our case we care about the data integrity and cost effectiveness because the proper 
application of Hilout bases a lot on the consistency and not redundancy of data that are 
kept in the repository. We care about the increased efficiency because manual data 
processing is not needed at all and this is eliminated by the existence of this feature. 
Enhanced data quality is crucial to the application of the algorithm. Changeability is a 
very useful feature because Hilout applies changes very often in the repository. Last but 
not least accessibility provides immediate notification of the end-users regarding any 
update on the repository which is really useful especially in the case a user is detected 
as outlier.   
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5. CloudSim framework and Hilout’s experimental results 

In this chapter we give some basic information regarding CloudSim framework and we 
provide the experimental results of the different cases that we ran and the analysis of 
these results. 

5.1 CloudSim framework 

5.1.1 ClouSim framework’s features 

CloudSim framework is a programming tool designed to normalize and accelerate the 
process of conducting experimental studies using Cloud Computing environments. 
Conducting experimental studies using real Cloud infrastructure can be excellent time-
consuming due to their size and complexity as well as high cost of access to these 
infrastructures. 

The primary objective of CloudSim is to provide a generalized, and extensible 
simulation framework that enables seamless modeling, simulation, and experimentation 
of emerging Cloud Computing infrastructures and application services. By using 
CloudSim, researchers and industry-based developers can focus on specific system 
design issues that they want to investigate, without getting concerned about the low 
level details related to Cloud-based infrastructures and services. 

CloudSim follows multi-layered design and consists of many architectural components. 

 

Figure 11: ClouSim Architecture 

The CloudSim simulation level provides support for modeling and simulating Cloud-
based virtualization environments including special management interfaces for virtual 
machines, memory, storage, and bandwidth. Fundamental issues such as virtual 
machine feed, implementation execution management, and dynamic system status 
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monitoring are implemented in this layer. In addition, a Cloud service provider who 
wants to study the effectiveness of the various policies for sharing virtual machines in 
hosting systems should focus on this level. This level also reveals the functions in which 
a Cloud application developer can be expanded to look at complex workload profiles 
combined with application performance. 

CloudSim's top layer level is the user code that defines and customizes the basic 
entities for hosting systems such as the number of machines, specifications, 
applications (the number of tasks and their requirements), the number of users and 
types of implementation, and the policies of the intermediate system. 

5.1.2 Presentation of major CloudSim classes 

1.   BwProvisioner: This is an abstract class that implements the system bandwidth 
allocation policy for virtual machines. The primary role of this class is to allocate 
the range of the network to all competing virtual machines to each hosting 
system, having as a minimum the requirements of the virtual machine and as a 
limit the available range of the hosting system. 

2.   CloudCoordinator: This abstract class has every data center created in the 
Cloud system. It is responsible for the periodic monitoring and control of 
resources that bind and release data centers 

3.   Cloudlet: This class models Cloud-based application services. CloudSim 
manages the complexity of an application in the form of Computing resource 
requirements. Each application has pre-set requirements in order to perform 
indefinitely throughout its existence. 

4.   CloudletScheduler: This abstract class uses different policies to share the 
computational power each Cloudlet requires on each virtual machine. The main 
policies implemented are shared space and time sharing. 

5.   Datacenter: This class implements the core of hardware at the infrastructure 
level as it is currently offered by Cloud service providers. It contains a set of 
computerized hosting systems built on the available hardware in each data 
center such as memory, cores, storage, and storage units. 

6.   Datacenter Broker / Cloud Broker: It is the class that acts as the intermediary 
for communicating between the requirements of the SaaS model and Cloud 
service providers. These requirements relate to the quality of the service but also 
to the SLA. The intermediate system therefore assigns the SaaS model to a 
Cloud service provider and binds this provider with the necessary infrastructure 
to ensure compliance with QoS and SLA. The difference between the 
intermediate system and the CloudCoordinator is that the first represents the 
client of the system while the second one works on behalf of the data center. 

7.   Host: This class models a physical resource such as server-oriented processing 
or storage. It contains important information such as the amount of memory, the 
number and type of processing unit kernels, and the policy of allocating 
resources to virtual machines. 

8.   Vm: This class models a virtual machine that is handled and hosted by a Cloud-
based hosting system. Each virtual machine consists of features such as 
memory, processor, capacity, and prediction policy as defined by 
CloudScheduler. 
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9.   VmAllocationPolicy: This abstract class represents the policy used to commit 
virtual machines to their respective hosting systems. The main function that it 
performs is to commit virtual machines to hosting systems that have sufficient 
memory, capacity and computational power for the operation of each virtual 
machine. 

10. VmScheduler: This abstract class is implemented by the hosting systems to 
select the binding policy of processing kernels in virtual machines. Policies that 
are used are shared space, time-sharing, and matching policies for specific 
applications with particular kernels. 

11. CloudSim: This is the main class that is responsible for managing the queues 
with the events to be executed and the step-by-step execution of the simulation. 
Each event created at runtime enters the queue with future events to execute. 
Then the events scheduled to run in the next steps of the run go out of the future 
list and are placed in the list of events to be executed. Each time the events that 
are going to run come out of the last list and dynamic Cloud simulation processes 
are performed such as disabling resources, increasing customer requirements, 
creating new clients, and extreme scenarios such as service failure resulting in 
resumption of simulation. 

5.1.3 CloudSim Configuration for our experiments 

In our experiments we have only one configuration: a datacenter with one host and run 
one Cloudlet on it. We take a simple case because our focus is not on the CloudSim 
framework’s different configurations but on the application of Hilout algorithm on a 
Cloudlet. 

5.2 Experiments and results 

In our experiments we try to see how some factors affects the number of Outliers that 
are detected by the version of the Hilout algorithm we apply and we described its logic 
in Chapter 4. These factors are: 

 Number of data vectors, 4 configurations: 50, 100, 500 ,1000 

 Number of dimensions, 10 configurations: 2,3,4,5,6,7,8,9,10 

 Deviation of mean for Gaussian distribution, 3 configurations: 5,25,50 

 Lambda parameter for Exponential distribution, 2 configurations: 0.2,5 

 PCA dimension reduction 

We tried to examine the 5 above factors with 2 main cases: 

 Case without PCA dimension reduction  

 Case with PCA dimension reduction 

For both of the cases the experiments we ran are summarized in the below table: 

Table 4: Experiments per case 

Vectors   Dimensions Deviation  Lambda 

50,100,500,1000 2 - 10 5 0.2 



An Intelligent scheme for Outliers’ detection on a Cloudlet 

D. Milios   53 

50,100,500,1000 2 - 10 5 5 

50,100,500,1000 2 - 10 25 0.2 

50,100,500,1000 2 - 10 25 5 

50,100,500,1000 2 - 10 50 0.2 

50,100,500,1000 2 - 10 50 5 

 

5.2.1 Results for case without PCA 

In the charts that are shown below we can see the average number of Outliers that was 
detected for each case. For example: for vectors:100, dimensions:3, deviation of the 
mean in the Gaussian distribution: 25, lambda parameter of the Exponential distribution: 
5, the average number of Outliers that are detected is 1. Average in this case is 
considered the number of Outliers that appears most frequently. If we consider that we 
ran the above example 5 times, then the 3 of them 1 outlier is detected. 

The display of the charts follows for each of the 4 configurations that are shown in the 
Table 4 except 2 configurations: 1) deviation:5, lambda:0.2,2) deviation:5, lambda:5. 
These 2 configurations detect 0 Outliers on average, therefore there is no point to 
display them in a chart. 

 

 

 

Figure 12: deviation:25,lambda:0.2 configuration 

Deviation=25, lambda=0.2: We see that until 4 dimensions 0 Outliers are detected. 
From 5 to 10 dimensions the Outliers’ number on average is stabilized to 1, except in 
the case of 9 Outliers for 1000 vectors where 2 Outliers are detected on average. 
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Figure 13: deviation:25,lambda:5 configuration 

Deviation=25, lambda=5: The value of lambda has been increased in this case and we 
can see that even from 2 dimensions’ case the Outliers’ number is stabilized to 1 more 
or less. In the case of 9 dimensions for 50 and 1000 vectors 2 Outliers are detected. 

 

Figure 14: deviation:50,lambda:0.2 configuration 

Deviation=50, lambda=0.2: In this case the deviation has been increased from 25 to 
50 and it is clear that because the range of the data values is increased also the 
number of the Outliers has been increased from 1 to 2 on average from the 4 
dimensions’ case. For 8,9,10 dimensions we see also the number 3 appears. 
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Figure 15: deviation:50,lambda:5 configuration 

Deviation=50, lambda=5: In this case the lambda has been increased and we can see 
that the Outliers’ number is similar with the case of lambda=0.2. From 4 dimensions 
until 10 the number is stabilized to 2. For 8,9,10 dimensions we see also the number 3 
appears. 

It’s really important to mention that the Outliers are detected within the first 10 data 
vectors that arrive and this make sense because as long as the time window W is 
getting bigger and bigger the comparison with the timestamps of the stored vectors 
won’t never mark an upcoming vector as an outlier. The factor that affects the number 
of the Outliers of each case is the distance between their dimensions and it seems that 
in this case the deviation’s value is really crucial, the lambda’s value seems to affect 
less. The number of vectors doesn’t seem to affect the number of Outliers so much. 
Interesting detail is that the maximum number of Outliers we detected in all the cases 
was 4. This means that the temporal approach of Hilout actually minimizes the Outliers. 

In the next section we see how the PCA affects the Outliers’ detection. 

5.2.2 Results for case with PCA 

The display of the charts follows for each of the 4 configurations that are shown in the 
Table 4 except 2 configurations: 1) deviation:5, lambda:0.2,2) deviation:5, lambda:5. 
These 2 configurations detect 0 Outliers on average, therefore there is no point to 
display them in a chart, as for the case without PCA. 
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Figure 16: deviation:25,lambda:0.2 configuration 

Deviation=25, lambda=0.2: For 2 and 3 dimensions 0 Outliers are detected on 
average, except the case of 100 vectors for 2 dimensions where 1 outlier is detected. 
From 4 to 10 dimensions the Outliers’’ number is stabilized to 1, except for 50 vectors 
and 8 dimensions where 2 Outliers are detected. 

 

Figure 17: deviation:25,lambda:5 configuration 

Deviation=25, lambda=5: The lambda value has been increased and we notice that 
even from 2 dimensions’ Outliers are detected. This time the number of Outliers is 
stabilized to 1 from 5 dimensions’ case. For 7 and 10 dimensions and 1000 vectors 2 
Outliers are detected. 
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Figure 18: deviation:50,lambda:0.2 configuration 

Deviation=50, lambda=0.2: The deviation has been increased from 25 to 50 and we 
see again the move from 1 outlier to 2 from 5 to 10 dimensions’ range. From 2 to 4 
dimensions the Outliers’ number on average is 1, except the case of 50 vectors for 4 
dimensions. For 7 and 8 dimensions, for 100 vectors we see 3 Outliers are detected. 
Also for 10 dimensions and 500 vectors 3 Outliers are detected. 

 

Figure 19: deviation:50,lambda:5 configuration 

Deviation=50, lambda=5: In this case, lambda has been increased, 2 Outliers are 
detected on average from 4 dimensions until 10. For 3 dimensions, for 100 and 1000 
vectors, 2 Outliers are detected but for 8 dimensions 3 Outliers are detected on 
average, except for 1000 vectors.  

It’s really important to mention that the Outliers are detected within the first 10 data 
vectors that arrive as in the case without PCA. The number of vectors doesn’t seem to 
affect the number of Outliers so much. Interesting detail is that the maximum number of 
Outliers we detected in all the cases was 4 as well. In the next section we see the 
comparison among the results between PCA case and without PCA case. 
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5.2.3 Comparison between PCA and No PCA cases 

In general, we saw that deviation is the most important factor that differentiates the 
number of Outliers that are detected for all the dimensions. The number of vectors 
doesn’t seem to affect this phenomenon so much. Also the number of dimensions 
doesn’t seem to play an important role. The lambda parameter seems to be affective 
only on the fact from how many dimensions and afterwards the number of Outliers is 
stabilized to 1 or 2.  

Regarding the PCA factor, before the experiments, we should have expected less 
Outliers to be detected comparing to the configurations that we ran without PCA. It 
seems that this is not the case. More or less the results are similar and in fact the peaks 
of Outliers, 3 Outliers, are detected a bit more for the case of PCA. Still this fact can be 
interpreted under the next 2 reasons: 1) the PCA runs on the fly along with the Hilout 
and it is very possible that a lot of times the number of reduced dimensions is not quite 
smaller than the original one, 2) even if the PCA returns a number much smaller than 
the number of the actual dimensions each time the range of the values affects the 
afterwards application of Hilout on the dataset. 

5.2.4 Variance per Dimension 

In this section we give some indicative results for each dimension for the 6 different 
configurations of the combination of deviation and lambda and for the 4 different 
numbers of input data vectors (50,100,500,1000). As average we consider the average 
Variance for all the dimensions, therefore we have common results for all the 
dimensions because the range of values that is available every time is for all the 
dimensions the same. The results are displayed in the tables below: 

Table 5: Variance per dimension ,deviation:5,lambda:0.2 

Vectors NoPCA PCA 

50 56.29 53.79 

100 85.81 105.2 

500 102.45 98.92 

1000 107.08 111.02 

 

Table 6: Variance per dimension,deviation:5,lambda:5 

Vectors NoPCA PCA 

50 25.31 24.98 

100 23.82 23.92 
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500 25.71 26.89 

1000 25.08 24.96 

 

Table 7: Variance per dimension,deviation;25,lambda:0.2 

Vectors NoPCA PCA 

50 698.92 683.01 

100 696.04 685.15 

500 760.02 756.88 

1000 768.99 762.26 

 

Table 8: Variance per dimension,deviation:25,lambda:5 

Vectors NoPCA PCA 

50 627.71 560.74 

100 632.78 644.75 

500 700.02 709.12 

1000 713.04 699.01 

 

Table 9: Variance per dimension,deviation:50,lambda:0.2 

Vectors NoPCA PCA 

50 2088 2443.45 

100 2341 2158.5 

500 2224.52 2493.9 
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1000 2508.02 2359.09 

 

Table 10: Variance per dimension,deviation;50,lambda:5 

Vectors NoPCA PCA 

50 2349.79 1982.15 

100 2081.22 2269.1 

500 2450.22 2230.89 

1000 2368.29 2580.14 

 

In general, we can see that on the contrary with Outliers’ numbers, Variance can be 
differentiated a bit for the number of the vectors. The deviation seems to affect a lot the 
range of the values each time, we see for deviation=5 values ,on average, lower than 5 
but for deviation=25 or 50 the values between 600 and 2600.Lambda doesn’t seem to 
affect the Variance so much except the case of deviation=5 where the values for 
lambda=5 are lower comparing to the ones with lambda=0.2.PCA and no PCA results 
are not very different for the same number of vectors and this is normal because PCA 
doesn’t affect the calculation of the Variance for each dimension. We could have 
excluded the results for PCA but we put them for statistical reasons. 
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6. Conclusions 

 

In this Thesis we saw in theory the concepts of Cloud Computing, Mobile Computing, 
the definitions of a Cloud, of a Cloudlet and the concept of cooperative Caching of the 
nodes in a Cloudlet but practically we implemented the Hilout algorithm on data vectors 
that try to enter a Cloudlet in a simulation level in order to provide an intelligent scheme 
that detect Outliers. For this purpose, we used the CloudSim framework. 

In our scenario the input data vectors include coordinates from IoT devices, that can be 
within the range of 2 to 10, and the values of these coordinates-dimensions are given by 
the Gaussian distribution that every 10 vectors its mean deviates by a factor that is 
produced by the Exponential distribution. The scheme we applied for the Outliers’ 
detection uses the Hilout Algorithm with a temporal approach. Not only the distance 
between the stored vectors and the incoming one is taken into account for the decision 
to let it enter the Cloudlet but also a shifting time window. Each time the algorithm 
compares the timestamps of the vectors that are considered as neighbors with the 
timestamps of this window and adds accordingly a weight value that is taken into 
consideration plus the distances in order to decide if the incoming vector is an outlier or 
not. 

In addition, we saw some theoretical information regarding the Gaussian and 
Exponential Distribution but also we included in our scenario the case of PCA 
dimensions’ reduction. PCA dimension reduction was used in an alternate 
implementation of the Hilout in order to diagnose if this feature is going to differentiate 
the results comparing to the simple case. 

Last but not least, we ran our experiments based on two main cases: Hilout applied 
without PCA, Hilout applied with PCA. The configurations of the dataset were: for 2-10 
dimensions, for deviation parameter of the formula of Gaussian: 5,25,50 and for lambda 
parameter of the formula of Exponential: 0.2,5. The results showed that the most 
important factor is the deviation parameter and more Outliers are detected on average 
while it increases. The case with PCA gave more or less similar results with the simple 
case. In our results we provided also the Variance per dimension in order to provide 
some statistical conclusions regarding the different configurations. 
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ABBREVIATIONS - ACRONYMS 

IaaS Infrastructure as Service 

PaaS Platform as Service 

SaaS  Software as Service 

MaaS  Monitoring as a service 

QoS Quality of Service 

MCC Mobile Cloud Computing 

AAA Authentication,Authorization,Accounting 

SOAP Simple Object Access Protocol 

DIC Data Intensive Computing 

IoT Internet of Things 

OCR Optical Character Recognition 

VM Virtual Machine 

PCA Principal Component Analysis 
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