

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

MSc THESIS

An Intelligent scheme for Outliers’ detection on a Cloudlet

Dimitrios S. Milios

Supervisors: Efstathios Hadjiefthymiades, Associate Professor
NKUA
Kostas Kolomvatsos, Phd, Researcher NKUA

ATHENS

JULY 2018

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ένα έξυπνο σχήμα για ανίχνευση ακραίων τιμών σε ένα
Cloudlet

Δημήτριος Σ. Μήλιος

Επιβλέποντες: Ευστάθιος Χατζηευθυμιάδης, Αναπληρωτής Καθηγητής ΕΚΠΑ
Κώστας Κολομβάτσος, Διδάκτωρ, Ερευνητής ΕΚΠΑ

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2018

MSc THESIS

An intelligent scheme for Outliers’ detection on a Cloudlet

Dimitrios S. Milios
S.N.: M1384

SUPERVISORS: Efstathios Hadjiefthymiades, Associate Professor NKUA
Kostas Kolomvatsos, Phd , Researcher NKUA

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ένα έξυπνο σχήμα για ανίχνευση ακραίων τιμών σε ένα Cloudlet

Δημήτριος Σ.Μήλιος
Α.Μ.: M1384

ΕΠΙΒΛΕΠΟΝΤΕΣ: Ευστάθιος Χατζηευθυμιάδης, Αναπληρωτής Καθηγητής ΕΚΠΑ
Κώστας Κολομβάτσος, Διδάκτωρ, Ερευνητής ΕΚΠΑ

ABSTRACT

A Cloudlet is a computer or a cluster of computers connected at the edge of the network
to provide low-latency access to Computing resources for IoT devices. The main aim of
this Thesis is to provide an intelligent scheme for detection of Outliers in a Cloudlet
simulation environment. For this purpose, Hilout algorithm is used, modified to use, in
addition, a temporal approach. The experiments that took place focus on different
configurations’ values of the input data, data-vectors with multiple dimensions coming
from IoT devices. The results are examined by the scope of how the different
configurations affect the number of Outliers that are detected by the scheme. The
environment that is used, is provided by the CloudSim framework.

SUBJECT AREA: Cloud, Cloudlet, IoT, Cloud Computing, Mobile Cloud Computing

KEYWORDS: IoT, Cloud, Cloudlet, Hilout, Exponential, Gaussian, Variance, PCA,

Outliers

ΠΕΡΙΛΗΨΗ

Ένα Cloudlet είναι ένας υπολογιστής ή ένα σύμπλεγμα υπολογιστών που συνδέονται
στην άκρη του δικτύου για να παρέχει πρόσβαση χαμηλής καθυστέρησης σε
υπολογιστικούς πόρους για συσκευές IoT. Ο κύριος στόχος της παρούσας εργασίας
είναι να παράσχει ένα έξυπνο σχέδιο για την ανίχνευση ακραίων τιμών σε περιβάλλον
προσομοίωσης Cloudlet. Για το σκοπό αυτό, χρησιμοποιείται ο αλγόριθμος Hilout,
τροποποιημένος για να χρησιμοποιήσει επιπρόσθετα μια χρονική προσέγγιση. Τα
πειράματα που πραγματοποιήθηκαν επικεντρώνονται στις διαφορετικές τιμές των
συνθέσεων των δεδομένων εισόδου, των φορέων δεδομένων με πολλαπλές διαστάσεις
που προέρχονται από συσκευές IoT. Τα αποτελέσματα εξετάζονται από το πεδίο
εφαρμογής του τρόπου με τον οποίο οι διαφορετικές διαμορφώσεις επηρεάζουν τον
αριθμό των ακραίων τιμών που ανιχνεύονται από το σχήμα. Το περιβάλλον που
χρησιμοποιείται, παρέχεται από το framework CloudSim.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Cloud, Cloudlet, IoT, Cloud Computing, Mobile Cloud

Computing

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: IoT, Cloud, Cloudlet, Hilout, Εκθετική, Gaussian, Διακύμανση, PCA,

Ακραίες Τιμές

Αφιερώνω αυτή την εργασία σε όλα τα φιλικά και συγγενικά άτομα που με στήριξαν και

με στηρίζουν σε όλη την φοιτητική μου σταδιοδρομία.

ΕΥΧΑΡΙΣΤΙΕΣ

Ευχαριστώ από τα βάθη της καρδιάς μου τον κ.Κολομβάτσο για την στήριξη και την
υπομονή που υπέδειξε προς το πρόσωπο μου καθ’όλη την διαδικασία εκπόνησης της
εργασίας.

CONTENTS

PREFACE ... 14

1. INTRODUCTION .. 15

2. MOBILE CLOUD COMPUTING ... 16

2.1 Cloud Computing Definition ... 16

2.2 Cloud Computing Classification .. 16

2.3 Cloud Computing Deployment Models ... 18

2.4 Cloud Computing Features ... 19

2.5 Mobile Cloud Computing Definition .. 19

2.6 Mobile Cloud Computing Architecture ... 20

2.7 Mobile Cloud Computing Models ... 21

2.8 Mobile Cloud Computing Features and Challenges ... 21

2.8.1 Features –Advantages .. 21

2.8.2 Challenges and strategies to solve them .. 23

2.9 Mobile Cloud Computing Applications ... 26

3. CLOUDLETS AND COOPERATIVE CACHING .. 29

3.1 Cloudlet’s Architecture .. 29

3.2 Cloudlet’s Challenges .. 32

3.3 Cooperative Caching Definition ... 33

4. CLOUDLET SCENARIO WITH HILOUT ALGORITHM ... 34

4.1 Cloudlet Scenario ... 34

4.2 Hilout Algorithm .. 35

4.2.1 Hilout Application Example ... 37

4.3 Input Data ... 39

4.3.1 Gaussian Distribution ...39

4.3.2 Exponential Distribution .. 40

4.4 PCA dimension reduction ... 42

4.4.1 Principal Component Analysis .. 42

4.4.2 Hilout Algorithm with PCA ... 43

4.4.3 Hilout Application Example with PCA ... 45

4.5 Variance per dimension ... 47

4.5.1 Variance of a Data Set: Definition ... 47

4.5.2 Variance: Example .. 47

4.6 Goals of the scenario ... 48

4.7 Why we adopt this scenario .. 48

5. CLOUDSIM FRAMEWORK AND HILOUT’S EXPERIMENTAL RESULTS 50

5.1 CloudSim framework .. 50

5.1.1 ClouSim framework’s features .. 50

5.1.2 Presentation of major CloudSim classes .. 51

5.1.3 CloudSim Configuration for our experiments .. 52

5.2 Experiments and results .. 52

5.2.1 Results for case without PCA.. 53

5.2.2 Results for case with PCA ... 55

5.2.3 Comparison between PCA and No PCA cases .. 58

5.2.4 Variance per Dimension .. 58

6. CONCLUSIONS ... 61

ABBREVIATIONS - ACRONYMS ... 62

REFERENCES .. 63

LIST OF FIGURES

Figure 1: Cloud Layers .. 17

Figure 2: Cloud Models ... 18

Figure 3: Mobile Cloud Architecture .. 20

Figure 4: Cloudlet Architecture .. 29

Figure 5: Cloudlet VM Synthesis ... 30

Figure 6: Cloudlet Types ... 32

Figure 7: Cloudlet .. 35

Figure 8: Normal Distribution ... 39

Figure 9: Exponential distribution .. 41

Figure 10: Cumulative distribution ... 42

Figure 11: ClouSim Architecture .. 50

Figure 12: deviation:25,lambda:0.2 configuration .. 53

Figure 13: deviation:25,lambda:5 configuration ... 54

Figure 14: deviation:50,lambda:0.2 configuration .. 54

Figure 15: deviation:50,lambda:5 configuration ... 55

Figure 16: deviation:25,lambda:0.2 configuration .. 56

Figure 17: deviation:25,lambda:5 configuration ... 56

Figure 18: deviation:50,lambda:0.2 configuration .. 57

Figure 19: deviation:50,lambda:5 configuration ... 57

LIST OF EQUATIONS

Equation 1: weight ... 36

Equation 2: density function ... 40

Equation 3: denominator ... 40

Equation 4: Probability Density Function ... 41

Equation 5: Cumulative distribution function .. 42

Equation 6: Quantile function ... 42

LIST OF TABLES

Table 1: Hilout Example with 5 vectors .. 37

Table 2: Hilout Example with PCA , with 5 vectors .. 45

Table 3: Variance example .. 47

Table 4: Experiments per case .. 52

Table 5:Variance per dimension ,deviation:5,lambda:0.2 .. 58

Table 6: Variance per dimension,deviation:5,lambda:5 ... 58

Table 7: Variance per dimension,deviation;25,lambda:0.2 .. 59

Table 8: Variance per dimension,deviation:25,lambda:5 ... 59

Table 9: Variance per dimension,deviation:50,lambda:0.2 .. 59

Table 10: Variance per dimension,deviation;50,lambda:5 ... 60

PREFACE

This master Thesis was carried out in the postgraduate studies program of "Computer
Systems Technology" of the Department of Informatics and Telecommunications of the
National and Kapodistrian University of Athens. The goal of my research is to study the
CloudSim framework and the concept of a Cloudlet in order to provide an intelligent
scheme for detection of Outliers on a Cloudlet simulation environment with the use of
the Hilout algorithm with a temporal approach.

I would like at this point to express my warmest thanks to my Thesis supervisor,
Assistant Prof. Efstathios Hadjiefthymiades, for guidance and valuable contributions
during my study of the master Thesis. I would also like to thank Kostas Kolomvatsos,
Ph.D. and Researcher of Department of Informatics and Telecommunications, for his
helpful guidance and advice throughout the preparation of this work. Their continuous
monitoring of the progress of the master Thesis, their meaningful remarks and their help
for resolving any problem have contributed in the final formation of this Thesis.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 15

1. INTRODUCTION

Our days are dominated by the rapidly evolution and progress of technology, and this
has affected our everyday life. New devices such as smartphones and tablets have
entered in users’ lives by helping them to improve their lives, to monitor remotely their
home devices, to inform about the traffic or the pollution of a city and a lot of other
applications. The next think was to connect all these devices, in order to exchange data
and operate more automated, without requiring human-to-human or human-to-computer
interaction. This is called Internet of Things (IoT).

The IoT devices can be connected to a Cloud. A Cloud or Cloud Computing is a
framework for sharing resources, information and software capabilities to different
mobile/IoT devices. The resources will be available on the Cloud and can be shared by
the devices on demand. It is actually a model for enabling convenient, on-demand
network access to Computing resources that can be rapidly provisioned and released
with minimal management effort. A very similar concept that enhances the “bond”
between the client and the Cloud is the concept of Mobile Cloud Computing. Mobile
Cloud Computing at its simplest, refers to an infrastructure where both the data storage
and data processing happen outside of the mobile device. Mobile Cloud applications
move the Computing power and data storage away from mobile phones and into the
Cloud, bringing applications and MCC to not just smartphone users but a much broader
range of mobile subscribers.

Nowadays, the concept of Cloudlet appeared. In the Cloudlet concept, mobile device
offloads its workload to a resource-rich, local Cloudlet. Cloudlets would be situated in
common areas such as coffee shops, libraries or university halls, so that mobile devices
can connect and function as a thin client to the Cloudlet. A Cloudlet could be any first
hop element at the edge of network.

In this Thesis we use an intelligent scheme for detection of Outliers on a Cloudlet
simulation environment with the use of Hilout Algorithm, a bit modified to support a
temporal approach. For this purpose, we use the CloudSim simulation framework in
order to run our experiments and to make our conclusions regarding the effectiveness
of the scheme.

The Thesis is organized as follows: In Chapter 2 we give the definition of the Cloud
Computing and of the Mobile Cloud Computing and we explain their architectures and
their features. In Chapter 3 we give the definition of a Cloudlet and we explain its
architecture and we mention few information regarding the Cooperative Caching
concept. In Chapter 4 we explain our Hilout approach, we give some information
regarding PCA dimension reduction, which we are using in some of our experiments
and we give some information regarding the Variance of dataset, which we also use in
our experiments. Last but not least for this chapter, we explain why we use this
approach. In Chapter 5 we give few information regarding the CloudSim framework but
most important we give the results of the experiments we had. In the last Chapter, we
give some conclusions regarding the work we did.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 16

2. Mobile Cloud Computing

In this chapter we are going to give the definition of Cloud Computing, Mobile Cloud
Computing, their architectures, advantages-disadvantages and the areas of usage.

2.1 Cloud Computing Definition

Cloud Computing is a framework for sharing resources, information and software
capabilities to different mobile devices. The resources will be available on the Cloud and
can be shared by the devices on demand. It is actually a model for enabling convenient,
on-demand network access to Computing resources that can be rapidly provisioned and
released with minimal management effort. [11]

Cloud Computing is described also as a range of services which are provided by an
Internet-based cluster system. Such cluster systems consist of a group of low-cost
servers or Personal Computers (PCs), organizing the various resources of the
computers according to a certain management strategy, and offering safe, reliable, fast,
convenient and transparent services such as data storage, accessing and Computing to
clients. [1]

The concept behind Cloud Computing is to offload computation to remote resource
providers. [13] The main objective behind the Cloud Computing is the delivery of
different services, software and processing capacity over the Internet, increasing
storage, reducing cost, automating systems and decoupling of service delivery from
underlying technology, and providing flexibility and mobility of information in different
purposes. [1]

2.2 Cloud Computing Classification

Cloud Computing can be viewed as a collection of services, which can be represented
as a layered Cloud Computing architecture. In the upper layers of this paradigm,
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service
(SaaS) are stacked:

 Data centers layer: This layer provides the hardware facility and infrastructure for
Clouds. In data center layer, a number of servers are linked with high-speed
networks to provide services for customers. Typically, data centers are built in
less populated places, with a high power supply stability and a low risk of
disaster.

 Infrastructure as a Service (IaaS): IaaS is built on top of the data center layer. It
is the delivery of computer infrastructure (typically a platform virtualization
environment) as a service. IaaS enables the provision of storage, hardware,
servers and networking components. The capability provided to the end users is
to provision processing, storage, networks, and other fundamental Computing
resources where the end user is able to deploy and run arbitrary software, which
can include operating systems and applications. The user does not manage or
control the underlying Cloud infrastructure but it has control over operating
systems, storage, deployed applications, and possibly limited control of select
networking components. The end-user typically pays on a per-use basis. Thus,
end-user can save cost as the payment is only based on how much resource
they really use. Infrastructure can be expanded or shrunk dynamically as
needed. The examples of IaaS are Amazon EC2 (Elastic Cloud Computing) and
S3 (Simple Storage Service).

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 17

 Platform as a Service (PaaS): It is the delivery of Computing platform and
solution stack as a service. The capability provided to the end users is to deploy
onto the Cloud infrastructure user created or acquired applications created using
programming languages and tools supported by the provider. PaaS offers an
advanced integrated environment for building, testing and deploying custom
applications. PaaS providers offer a predefined combination of OS and
application servers, such as WAMP platform (Windows, Apache, MySQL and
PHP), LAMP platform (Linux, Apache, MySQL and PHP), and XAMP (X-cross
platform) limited to J2EE, and Ruby etc. The examples of PaaS are Google App
Engine, Microsoft Azure, and Amazon Map Reduce/Simple Storage Service.

 Software as a Service (Saas): SaaS supports a software distribution with specific
requirements. In this layer, the users can access an application and information
remotely via the Internet and pay only for that they use. Sales force is one of the
pioneers in providing this service model. Saas is actually a model of software
deployment whereby the provider licenses an application to the customers for
use as a service on demand. The capability provided to the end users is to use
the provider’s applications running on a cloud infrastructure. The applications are
accessible from various client devices through a thin client interface such as a
web browser (e.g., web enabled e-mail). The end users does not manage or
control the underlying cloud infrastructure including network, servers, operating
systems, storage, or even individual application capabilities, with the possible
exception of limited user specific application configuration settings. Today SaaS
is offered by companies such as Google, Salesforce, Microsoft, Zoho, etc.

Figure 1: Cloud Layers

 There is also an extra layer, Monitoring-as-a-Service (MaaS): It is the
outsourced provisioning of security, primarily on business platforms that
leverages the Internet to conduct business. MaaS has become increasingly
popular over the last decade. Since the advent of Cloud Computing, its popularity
has grown even more. Security monitoring involves protecting an enterprise or
government client from cyber threats. A security team plays a crucial role in
securing and maintaining the confidentiality, integrity, and availability of IT
assets. The major functionality of MaaS is to monitor the working of the top three
layers SaaS, PaaS and IaaS. [5]

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 18

2.3 Cloud Computing Deployment Models

There are three types of Cloud Computing deployment models:

1. Private Cloud (or Internal Cloud): A type of Cloud in which the Cloud services
are delivered over a network which is open for public usage. It refers to Cloud
Computing on private networks. Private Clouds are built for the exclusive use of
one client, providing full control over data, security, and quality of service. Private
Clouds can be built and managed by a company’s own IT organization or by a
Cloud provider.

2. Public Cloud (or External Cloud): A type of Cloud that is implemented on a
Cloud-based secure environment that is safeguarded by a firewall. Private Cloud
as it permits only the authorized users can use the data. In this model,
Computing resources are dynamically provisioned over the Internet via Web
applications or Web services from an off-site third party provider. Public Clouds
are run by third parties, and applications from different customers are likely to be
mixed together on the Cloud’s servers, storage systems, and networks.

3. Hybrid Cloud (or Mixed Cloud): A type of Cloud which is integrated. It can be an
arrangement of two or more Cloud servers, i.e. private, public or community
Cloud that is bound together but remain individual entities. This environment
intersects and combines multiple public and private Cloud models. Hybrid Clouds
introduce the complexity of determining how to distribute applications across both
a public and private Cloud. [5]

Figure 2: Cloud Models

4. There is an extra type of deployment model, Community Cloud: A type of Cloud
in which the setup is mutually shared between many organizations that belong to
a particular community. [14]

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 19

2.4 Cloud Computing Features

Below are the Cloud Computing features:

 Scalability and On-Demand Services: Cloud Computing provides resources
and services for users on demand. The resources are scalable over several data
centers.

 Quality of Service (QoS): Cloud Computing can guarantee QoS for users in
terms of hardware or CPU performance, bandwidth, and memory capacity.

 User-Centric Interface: Cloud interfaces are location independent and they can
be accessed by well-established interfaces such as Web services and Web
browsers.

 Autonomous System: Cloud Computing systems are autonomous systems
managed transparently to users. However, software and data inside Clouds can
be automatically reconfigured and consolidated to a simple platform depending
on user’s needs.

 Pricing – Cloud: Computing does not require up-front investment. No capital
expenditure is required. Users may pay and use or pay for services and capacity
as they need them. [5]

2.5 Mobile Cloud Computing Definition

There are several existing definitions for Mobile Cloud Computing. In general, it is a
running service on a resource rich Cloud server which is used by a thin mobile client. It
can also be referred when mobile nodes play as a resource provider role in a peer-to-
peer network. MCC can be considered as a network with certain characteristics. The
need for adaptability, scalability, availability and self-awareness in Cloud Computing
concept is taken and is expanded to Mobile Cloud Computing. [15]

Alternatively, MCC could be defined in a more comprehensive way as it is quoted as
follows: “Mobile Cloud Computing at its simplest, refers to an infrastructure where both
the data storage and data processing happen outside of the mobile device. Mobile
Cloud applications move the Computing power and data storage away from mobile
phones and into the Cloud, bringing applications and MCC to not just smartphone users
but a much broader range of mobile subscribers”. [5]

Mobile Cloud Computing at its simplest refers to an infrastructure where both the data
storage and data processing happen outside of the mobility devices (e.g., tablet PC,
smart-phone). Mobile Cloud apps move the Computing power and data storage
capacity away from mobile phones and into the Cloud power, bringing applications and
MC to not just smartphone users but a much broader range of mobile subscribers. [2]

Mobile Cloud Computing is a paradigm where data processing and storage are moved
from mobile device to powerful and centralized Computing platforms located in Clouds
over the internet. All these centralized applications are then accessed over the wireless
connection based on a thin native client or web browser on the mobile devices.
Alternatively, Mobile Cloud Computing can be defined as a combination of mobile web
and Cloud Computing, which is the most popular tool for mobile users to access
applications and services on the Internet. [6]

Mobile Cloud Computing has three different definitions:

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 20

1. The term Mobile Cloud Computing means to run an application for mobile on a
remote resource rich server as displayed in while the mobile device acts like a
thin client connecting over to the remote server through 3G.

2. Consider other mobile devices themselves too as resource providers of the Cloud
making up a mobile peer-to-peer network. This approach supports user mobility,
and recognizes the potential of Mobile Clouds to do collective sensing as well.

3. The Cloudlet concept proposed by Satyanarayanan is another approach to Mobile
Cloud Computing. The mobile device offloads its workload to a local Cloudlet
comprised of several multi-core computers with connectivity to the remote Cloud
servers. PlugComputers can be considered good candidates for Cloudlet servers
because of their form factor, diversity and low power consumption. They have the
same general architecture as a normal computer, but are less powerful, smaller,
and less expensive, making them ideal for role small scale servers installed in
the public infrastructure. [13]

2.6 Mobile Cloud Computing Architecture

The general architecture of MCC proposed can be shown in the picture below:

Figure 3: Mobile Cloud Architecture

Mobile devices are connected to the mobile networks via base stations (e.g., base
transceiver station (BTS), access point, or satellite) that establish and control the
connections (air links) and functional interfaces between the networks and mobile
devices. Mobile user’s requests and information (e.g., ID and location) are transmitted
to the central processors that are connected to servers providing mobile network
services. Here, Mobile network operators can provide services to mobile users as AAA
(Authentication, Authorization and Accounting) based on the home agent (HA) and
subscriber’s data stored in databases. After that, the subscriber’s requests are delivered
to a Cloud through the Internet. In Cloud, the Cloud controllers process the requests to
provide mobile users with the corresponding Cloud services. These services are
developed with the concepts of utility Computing, virtualization, and service oriented
architecture (e.g. web application, and database servers). [5]

Mobile Cloud Computing has three components, mobile device, wireless communication
channel and Cloud. Mobile devices have resource constraint in terms of battery power,

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 21

memory, processing power and have different types of hardware, operating system, and
input -output interface. Wireless communication channel has different radio access
technologies such as GPRS, 3G, WLAN and WiMAX with variable network conditions in
terms of limited and unstable bandwidth. [7]

There are two types of Architecture in Mobile Cloud Computing:

1. Non Cloudlet Architecture: there are three components Mobile client,
Transmission channel and Cloud. Mobile client requests desired service from
Cloud and Cloud provides the service. Cloud is owned by an organization or
Cloud provider and services thousands of users at time. In this architecture, main
disadvantage is communication latency for getting service from distant Cloud.

2. Cloudlet Architecture: a local Cloudlet contains cached copy of data. It is
installed between client and Cloud. The cost of installation is less as compared to
Cloud as it is only a data center at business premises. A Cloudlet services only a
few users and has less communication latency as compared to Cloud. Cloudlet is
owned by local business. [8]

2.7 Mobile Cloud Computing Models

There are three Mobile Cloud Models:

1. Client Model: In this model, mobile device act as client and mobile user access
service is offered by Cloud by thin layer of interface web browser. Cloud charges
for services till the duration client is connected. Client model depicts Software as
a Service model of Cloud Computing.

2. Client / Cloud Model: In client /Cloud model, the concept of task partitioning
comes in which mobile users give a part of task to Cloud for processing.

3. Cloud Model: In Cloud model, mobile device itself is the part of Cloud. One or
more mobile devices create the structure of Cloud. [7]

2.8 Mobile Cloud Computing Features and Challenges

2.8.1 Features –Advantages

The main objective of Mobile Cloud Computing is to provide a convenient and rapid
method for users to access and receive data from the Cloud, such convenient and rapid
method means accessing Cloud Computing resources effectively by using mobile
devices. Below there are enlisted the advantages of Mobile Cloud Computing:

 Extending battery lifetime: Battery is one of the main concerns for mobile
devices. Several solutions have been proposed to enhance the CPU
performance, and to manage the disk and screen in an intelligent manner, to
reduce power consumption. However, these solutions require changes in the
structure of mobile devices, or they require a new hardware that results in an
increase of cost and may not be feasible for all mobile devices.

 Improving data storage capacity and processing power: Storage capacity is
also a constraint for mobile devices. MCC is developed to enable mobile users to
store/access the large data on the Cloud through wireless networks.

 Improving reliability: Storing data or running applications on Clouds is an
effective way to improve the reliability since the data and application are stored

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 22

and backed up on a number of computers. This reduces the chance of data and
application lost on the mobile devices. In addition, MCC can be designed as a
comprehensive data security model for both service providers and users.

 Dynamic provisioning: Dynamic on-demand provisioning of resources on a fine-
grained, self-service basis is a flexible way for service providers and mobile
users to run their applications without advanced reservation of resources.

 Scalability: The deployment of mobile applications can be performed and scaled
to meet the unpredictable user demands due to flexible resource provisioning.
Service providers can easily add and expand an application and service without
or with little constraint on the resource usage.

 Multi-tenancy: Service providers (e.g., network operator and data center owner)
can share the resources and costs to support a variety of applications and large
number of users.

 Ease of Integration: Multiple services from different service providers can be
integrated easily through the Cloud and the Internet to meet the users’ demands.
[1]

The advantages of Mobile Cloud Computing are:

 Mobile devices allow users access to Cloud services anywhere and anytime.

 Mobile Cloud services can give information about a user’s location, context, and
requested services to improve user experience.

 Each mobile device has storage, Computing, sensing, and power resources which
are advantageous.

 Mobile Computing can help to overcome some problem of Cloud Computing such
as solving the problem of WAN latencies by using Cloudlet.

 Major problems faced by MCC are discussed such as stability of wireless
connectivity, tackling the unnecessary battery usage etc. Certain barriers such as
network availability and bandwidth are focused. Two aspects of security issues
such as mobile device security and Cloud security are addressed. [4]

The major characteristics of Mobile Cloud Computing are listed below:

 Flexibility/Elasticity: Users can rapidly access provision Computing resources
without human interaction. User Capabilities can be rapidly and elastically
provisioned, in some cases dynamically, to quickly scale out or up.

 Scalability of Infrastructure: In the physical servers, new nodes can be added or
dropped from the network with limited modifications to infrastructure set up and
software. According to demand mobile Cloud architecture can scale horizontally
or vertically easily.

 Broad Network Access: User capabilities and ability are available over the
network and can be accessed through standard mechanisms that promote use
by heterogeneous platforms like mobile phones, laptops, and PDAs etc.

 Location Independence: Location independence is another characteristic of
Mobile Cloud Computing. There is a sense of different location independence
where customer generally has no control or knowledge over the exact location of
the provided resources. But it may be able to specify location at a higher level of
abstraction from country, state, or datacenter.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 23

 Reliability: Through the use of multiple redundant site reliability can be improved
and this makes Cloud Computing more worthy for disaster recovery applications
and business continuity. [6]

2.8.2 Challenges and strategies to solve them

2.8.2.1 Challenges

The major challenge of Mobile Cloud Computing comes from the characters of mobile
devices and wireless networks, as well as their own restriction and limitation, and such
challenge makes application designing, programming and deploying on mobile and
distributed devices more complicated than on the fixed Cloud devices. The important
factors that affect assessing from Cloud Computing are below:

 Limitations of mobile devices: While discussing mobile devices in Cloud the first
thing is resource constrain. Though smart phones have been improved obviously
in various aspects such as capability of CPU and memory, storage, size of
screen, wireless communication, sensing technology, and operation systems, still
have serious limitations such as limited Computing capability and energy
resource, to deploy complicated applications. By contrast with PCs and Laptops
in a given condition, these smart phones like iPhone 4S, Android serials,
Windows Mobile serials decrease 3 times in processing capacity, 8 times in
memory, 5 to 10 times in storage capacity and 10 times in network bandwidth.

 Quality of communication: In contrast with wired network uses physical
connection to ensure bandwidth consistency, the data transfer rate in Mobile
Cloud Computing environment is constantly changing and the connection is
discontinuous due to the existing clearance in network overlay. Furthermore,
data center in large enterprise and resource in Internet service provider normally
is far away to end users, especially to mobile device users. In wireless network,
the network latency delay may 200 ms in ’last mile’ but only 50 ms in traditional
wired network.

 Division of application services: In Mobile Cloud Computing environment, due
to the issue of limited resources, some applications of compute-intensive and
data-intensive cannot be deployed in mobile devices, or they may consume
massive energy resources. Therefore, we have to divide the applications and use
the capacity of Cloud Computing to achieve those purposes, which is: the core
Computing task is processed by Cloud, and those mobile devices are
responsible for some simple tasks only. In this processing, the major issues
affecting performance of Mobile Cloud Computing are: data processing in data
center and mobile device, network handover delay, and data delivery time. The
following strategies can be used to response to the above challenges:

 Upgrade bandwidth for wireless connection, make the web content more
suitable for mobile network using regional data centers.

 Deploy the application processing node at the ’edge’ of the Cloud in order
to reduce data delivery time.

 Duplicate mobile devices to Cloud using virtualization and image
technologies, to process Data-Intensive Computing (DIC) and Energy-
Intensive Computing, such as virus scanning in mobile devices.
Dynamically optimize application push in Cloud and the division with
mobile terminals. [1]

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 24

There are several challenges in the process of consuming Web Services (WS) from
mobile clients. The following are enlisted:

 Loss of connection: The interaction between clients and service requires a
steady connection. However, due to the mobility of the clients and the wireless
network setup, mobile clients can be temporarily removed from the previous
connected network and later may enter to another network. In such occurrences,
either service requests or responses may fail to be delivered to their destination.

 Bandwidth/Latency: Cell networks have limited bandwidth and are often billed
based on the amount of data transferred. However, even a simple SOAP
message often contains a large amount of XML data/information, which
consumes a lots of bandwidth and the transmission can cause major network-
latency. In addition, the SOAP messages contain mostly XML tags that are not all
necessary for the mobile clients.

 Limited resources: Mobile clients are “thin clients” with limited processing power.
The boundaries are essential to mobility and not just the failings of current
technology. For example, a service mash up involves parsing and combining
different WS results requires a lot of computation. The challenges are minimizing
the data processing on mobile clients and extending processing power beyond
mobile clients. In addition, several mobile platforms do not include necessary
libraries for SOAP Web Services.

Most of the challenge of Mobile Cloud Computing comes from the characters of mobile
devices and wireless networks and their own restriction and limitation. All these
challenge makes application more complicated than on the fixed Cloud devices. The
entire limitations of mobile devices, quality of wireless communication and support from
Cloud Computing to mobile are all important factors that affect accessing from Cloud
Computing. [2]

Major limitations and solutions of Mobile Cloud Computing is listed below:

 Low Bandwidth: Since mobile network resource is much smaller compared with
the traditional networks bandwidth is the one of major important issues in Mobile
Cloud environment. Therefore, P2P Media Streaming for distributing small
bandwidth among the subscriber who are located nearby in the same area for the
similar content such as the same video. Using this procedure, each user can
transmit or exchanges parts of the same content with second users, which is
resulted in improvement of content quality, especially for videos transmission.

 Security and Privacy in the Cloud: In Mobile Cloud Computing security and
privacy has become the biggest concern. When establishing a remote Cloud
base infrastructure certainly any organization will give away private data and
information which might be sensitive and confidential. Then it gives to the Cloud
service provider to manage, protect and retain them. The existence of the
company might be jeopardous, so before taking any decision all the possible
alternatives should be explored. Therefore, users might feel uncomfortable
surrendering their data to a third party.

 Prone to Attack: It is more vulnerable to external hack attacks and threats to
store information in the Cloud. Nothing on the internet is completely protected.
Sensitive data and information may be stealth on the internet as many hackers
and malicious users always lurk for the chances.

 Dependency and Vendor Lock-In: One of the major disadvantages of Mobile
Cloud Computing is the implicit dependency on the internet service provider. It is

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 25

really painful and cumbersome if one user wants to switch from one provider to
some other provider as he has to transfer large number of data from the previous
provider to the new one. This is another main reason why have to carefully and
thoroughly contemplate in all options when picking a vendor.

 Limited Control and Flexibility: Since all the applications and services run on
remote or third party virtual environments, users have limited control over the
whole function and execution of the hardware and software. In addition, since
remote software is being used for Mobile Cloud Computing, it usually lacks the
features of an application running locally.

 Increased Vulnerability: Privacy and security related Cloud based solutions is
more vulnerable target for hackers and malicious users as all Cloud based
solutions are exposed on the public internet. Many biggest players suffer from
serious attack and security breakage in the internet. Nothing on the internet is
fully secured.

2.8.2.2 Strategies

The following strategies can be used to reduce to the challenges in Mobile Cloud
Computing: for wireless connection upgrade bandwidth and make the web content more
usable for mobile network using regional data centers. In order to reduce data delivery
time, deploy the application processing node at the ’edge’ of Cloud. Duplicate mobile
devices to Cloud using virtualization and image technologies, to process Data-Intensive
Computing (DIC) and Energy-Intensive Computing, such as virus scanning in mobile
devices. Optimize application push in Cloud dynamically and the division with mobile
terminals. [6]

There are some Data Security Issues concerning the Mobile Cloud:

 Privacy and Confidentiality: Once the client host data to the Cloud there should
be some guarantee that access to that data will only be limited to the authorized
access. Inappropriate access to customer sensitive data by Cloud personnel is
another risk that can pose potential threat to Cloud data. Assurances should be
provided to the clients and proper practices and privacy policies and procedures
should be in place to assure the Cloud users of the data safety. The Cloud
seeker should be assured that data hosted on the Cloud will be confidential.

 Data Integrity: With providing the security of data, Cloud service providers should
implement mechanisms to ensure data integrity and be able to tell what
happened to a certain data set and at what point. The Cloud provider should
make the client aware of what particular data is hosted on the Cloud, the origin
and the integrity mechanisms put in place.

 Data Location and Relocation: Cloud Computing offers a high degree of data
mobility. Consumers do not always know the location of their data. However,
when an enterprise has some sensitive data that is kept on a storage device in
the Cloud, they may want to know the location of it. They may also wish to
specify a preferred location (e.g. data to be kept in India). This, then, requires a
contractual agreement, between the Cloud provider and the consumer that data
should stay in a particular location or reside on a given known server. Also,
Cloud providers should take responsibility to ensure the security of systems
(including data) and provide robust authentication to safeguard customers’
information. Another issue is the movement of data from one location to another.
Data is initially stored at an appropriate location decide by the Cloud provider.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 26

However, it is often moved from one place to another. Cloud providers have
contracts with each other and they use each other’s resources.

 Data Availability: Customer data is normally stored in chunk on different servers
often residing in different locations or in different Clouds. In this case, data
availability becomes a major legitimate issue as the availability of uninterruptible
and seamless provision becomes relatively difficult. [7]

The following issues have not been sufficiently solved:

 Supporting continuous mobility while ensuring connectivity to the Cloud:
Even if the reception is sufficient, data costs and latency has a huge impact on
these kinds of Mobile Cloud Computing apps. When supporting mobility and
connectivity, some of the questions we need to contemplate are; How can a user
device know of impending dis-connectivity? In what ways can the most ‘stable’
and ‘efficient’ surrogates be chosen so as to ensure seamless connectivity?
What fault-tolerance mechanisms can be employed to minimize potential
failures?

 Security in Mobile Clouds: Although an issue of paramount importance, little
research has been carried out in this regard. Although many of the reviewed
frameworks mention the need for security and trust, very few of them have
actually implemented it and have left the implementation for future directions.

 Incentives for surrogates: If users are to be persuaded to collaborate and share
their resources with others, there needs to be motivation either through monetary
or social incentives to do so. An interesting method is using common goals, but
in the absence of common activities this will not prevail. In the case of monetary
incentives, several questions need to be answered such as: how is credit
represented in a Mobile Cloud? how will monetary transactions proceed in a
secure method? how will the price of resources be decided? Using social
incentives such as suggested in also raises challenges such as preventing free
riding and enforcing standards. [13]

The research challenges are defined as the issues that include how to abstract the
complex heterogeneous underlying technology, how to model all the different
parameters that influence the performance and interactivity of the application, how to
achieve optimal adaptation under different constraints, how to integrate computation
and storage with the Cloud while preserving privacy and security.

The full potential of Mobile Cloud applications can only be unleashed, if computation
and storage is offloaded into the Cloud, but without hurting user interactivity, introducing
latency or limiting application possibilities. The applications should benefit from the rich
built-in sensors which open new doorways to more smart mobile applications. As the
mobile environments change, the application has to shift computation between device
and Cloud without operation interruptions, considering many external and internal
parameters. [12]

2.9 Mobile Cloud Computing Applications

Various applications based on Mobile Cloud Computing have been developed and
served to users, such as Google's Gmail drive, Maps and Navigation systems for
Mobile, I- Cloud from Apple Moto Blur from Motorola (with a special feature called
remote wipe) Amazon ‘s new "Cloud-accelerated" Web browser Silk. Silk is a "split
browser whose software resides both on Kindle Fire and EC2. The applications
reinforced by mobile Cloud Computing include mobile commerce, mobile learning, and

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 27

mobile healthcare and other areas. Mobile applications extended extensive share in a
global mobile market. Various mobile applications have engaged the recompenses of
Mobile Cloud Computing. The following are the few inferences:

 m-Commerce: Mobile commerce (m-commerce) is a buying and selling of
products using mobile devices. The m-commerce applications normally used to
achieve some tasks that necessitate mobility (e.g., mobile transactions and
payments, mobile messaging, and mobile ticketing). The m-commerce
applications have to face various complications (e.g., low network bandwidth,
high complexity of mobile device configurations, and security). Subsequently, m-
commerce applications are integrated into Cloud Computing environment to
solve these issues (X. Yang et al,2010).

 m-Learning: Mobile learning (m-learning) is an electronic learning (e-learning)
and mobility. However, traditional m-learning applications have limitations in
terms of high cost of devices and network, low network transmission rate, and
limited educational resources (X. Chen et al, 2010; H. Gao et al, 2010; Jian Li,
2010). Cloud based m-learning applications are presented to solve these
limitations, for example utilizing a Cloud with the large storage capacity and
powerful processing ability, the applications offer learners with much comfortable
services in terms of information size, processing speed.

 m-HealthCare: MCC in medical applications is used to minimize the limitations of
traditional medical treatment [e.g., small physical storage, security and privacy,
and medical errors (D. Kopec et al, 2013)]. Mobile healthcare (m-healthcare)
offers mobile users with appropriate help to access resources easily. m-
Healthcare provides healthcare organizations a diversity of on-demand services
on Clouds rather than standalone applications on local servers.

 m-Banking: M-Banking is an uprising in traditional banking services, where user
can avail the bank services provided to them through their mobile despite of
location and time (Z. Li et al, 2001). Transaction can be done even if user is busy
in his routine work via SMS or the mobile Internet but can also use special
programs, called mobile applications, downloaded to the mobile device.

 m-Game: Mobile game (m-game) is a prospective market producing incomes for
service providers. M-game can completely offload game engine requiring large
Computing resource (e.g., graphic rendering) to the server in the Cloud, and
gamers only interact with the screen interface on their devices (Jasleen et al,
2013) demonstrates that offloading (multimedia code) can save energy for mobile
devices, thereby increasing game playing time on mobile devices. [7]

Applications of Mobile Cloud Computing:

 Image processing: If user/subscriber visit foreign museum, he can’t perceive the
language written in each object of the museum. He can take picture of the object
and using Mobile Cloud Computing can understand the language written over the
object. An optical character recognition (OCR) program on a collection of mobile
devices can give this ability to users.

 Natural language processing: Language translation is one possible application
for Mobile Cloud Computing. Translation is a viable candidate for language
processing since different sentences and paragraphs can be translated
independently, and this is experimentally explored in using Pangloss-Lite.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 28

 Crowd Computing: Video recordings from multiple mobile devices can be spliced
to construct a single video that covers the entire event from different angles, and
perspectives.

 Sharing GPS/Internet data: It is more efficient to share data among a group of
mobile devices that are near each other, through local-area or peer-to-peer
networks. It is not only cheaper, but also faster.

 Sensor data applications: Now-a-days almost every mobile device is built with
sensors which are used to read data. Some sensors such as GPS,
accelerometer, thermo sensor, light sensor, clock and compass may be time
stamped and associated with other phone readings. In order to gather precious
information in different situation different queries can be executed.

 Multimedia search: Mobile phones may store different types of multimedia
content such as videos, photos, and music. Shazam is a music identification
service for mobile phones, that searches for similar songs in a central database,
in the context of the mobile Cloud, the searching could be executed on the
contents of nearby phones.

 Social networking: Since sharing user content is a popular way we interact with
friends on social networks such as Facebook, integrating a Mobile Cloud into
social networking infrastructure could open up automatic sharing and p2p
multimedia access and this will also reduce the need to back up and serve all of
this data on huge servers. [13], [6]

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 29

3. Cloudlets and Cooperative Caching

In this chapter we are going to describe the Cloudlet’s architecture and its usefulness if
it is integrated in Mobile Cloud Computing architecture. Also we are going to define
what is cooperative caching and how this can be used best in order to make Mobile
Cloud Computing more efficient.

3.1 Cloudlet’s Architecture

Despite a lot of achievements that MCC provides, there are still issues like low
bandwidth, high latency, service availability, quality of service (QoS) and service cost to
be addressed. These concerns arise mostly from rapid growth in the number of mobile
users and their expectations of MCC services. Bandwidth is limited in wireless networks
compared to normal wired networks. Users need more availability despite mobile
devices lack of connectivity and they demand higher QoS with less service cost. Also
network latency is a big burden in improving QoS and user experience while using a
distant Cloud. These problems are more tangible in applications that offer cognition or
virtual reality services which demand low latency and high bandwidth.

Considering these problems, researchers realized utilizing resources and services with
more locality is more cost efficient with better availability, faster connectivity and less
latency. This has led to the concept of the Cloudlet. A Cloudlet is a computer or a
cluster of computers connected at the edge of the network to provide low-latency
access to Computing resources for mobile devices. The mission of Cloudlets is to
alleviate resource constraints of mobile devices and also to reach better network
latency. Speech recognition, natural language processing, computer vision and
graphics, machine learning, augmented reality and other computation-intensive
applications would benefit the most from the Cloudlet approach.

Cloudlet is considered as the middle tier of a 3-tier hierarchy: mobile device, Cloudlet
and Cloud. A Cloudlet can also be viewed as a resource rich center at the proximity of
users.

Cloudlet Architecture taken from [15]:

Figure 4: Cloudlet Architecture

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 30

In the Cloudlet concept, mobile device offloads its workload to a resource-rich, local
Cloudlet. Cloudlets would be situated in common areas such as coffee shops, libraries
or university halls, so that mobile devices can connect and function as a thin client to
the Cloudlet. A Cloudlet could be any first hop element at the edge of network while it
has four key attributes. It has only soft state, it should be resource rich and well-
connected, with low end-to-end latency and also it follows a certain standard for
offloading (e.g. Virtual machine migration). In other words, a Cloudlet’s failure is not
critical, it has strong internal connectivity and high bandwidth wireless LAN and it should
be in logical and physical proximity of user to reduce the network latency.

There are two main approaches to implement Cloudlet infrastructure using Virtual
Machine (VM) technology. In both of these architectures it is important that Cloudlet
could go back to its beginning state after being used (e.g. by post-use clean up). A VM
based approach is broadly used since it can cleanly encapsulate and separate the
transient guest software environment from the Cloudlet infrastructure’s permanent host
software and it’s less brittle than other approaches like process migration or software
virtualization.

Cloudlets utilize rapidly deployed VMs which the client can customize freely upon their
need to make the VM image or VM overlay which has the application and all necessary
requirements to run properly. In both types of implementations, the VM image or overlay
is created at runtime by user which is quite flexible for offloading the workload to the
Cloudlet. Nevertheless, despite this flexibility, the procedure of creating an image or a
VM overlay and also application status encapsulation could be quite time taking. At the
end, it is totally dependent on application design, needs and environment whether to
choose using Cloudlets as resource rich sources or not. [15]

Figure 5: Cloudlet VM Synthesis

In this architecture a mobile user exploits virtual machine (VM) technology to rapidly
instantiate customized service software on a nearby Cloudlet and then uses that service
over a wireless LAN, the mobile device typically functions as a thin client with respect to
the service. A Cloudlet is a trusted, resource-rich computer or cluster of computers
that’s well-connected to the Internet and available for use by nearby mobile devices.

Using a Cloudlet also simplifies the challenge of meeting the peak bandwidth demand of
multiple users interactively generating and receiving media such as high-definition video
and high-resolution images.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 31

Cloudlets are decentralized and widely dispersed Internet infrastructure components
whose compute cycles and storage resources can be leveraged by nearby mobile
computers. Essentially, a Cloudlet resembles a “data center in a box”: it’s self-
managing, requiring little more than power, Internet connectivity, and access control for
setup. This simplicity of management corresponds to an appliance model of Computing
resources and makes it trivial to deploy on a business premises such as a coffee shop
or a doctor’s office. Internally, a Cloudlet resembles a cluster of multicore computers,
with gigabit internal connectivity and a high-bandwidth wireless LAN. For safe
deployment in unmonitored areas, the Cloudlet can contain a tamper-resistant or
tamper-evident enclosure with third-party remote monitoring of hardware integrity.

A future in which Cloudlet infrastructure is deployed much like Wi- Fi access points
today is something that is achievable ambition. Indeed, it would be relatively
straightforward to integrate Cloudlet and Wi-Fi access point hardware into a single,
easily deployable entity. A key challenge is to simplify Cloudlet management.
Widespread deployment of Cloudlet infrastructure won’t happen unless software
management of that infrastructure is trivial— ideally, it should be totally self-managing.
Tightly restricting software on Cloudlets to simplify management is unattractive because
it constrains application innovation and evolution. Instead, an ideal Cloudlet would
support the widest possible range of mobile users, with minimal constraints on their
software.

The proposal is transient customization of Cloudlet infrastructure using hardware VM
technology. The emphasis on “transient” is important: pre-use customization and post-
use cleanup ensures that Cloudlet infrastructure is restored to its pristine software state
after each use, without manual intervention. A VM cleanly encapsulates and separates
the transient guest software environment from the Cloudlet infrastructure’s permanent
host software environment. The interface between the host and guest environments is
narrow, stable, and ubiquitous, which ensures the longevity of Cloudlet investments and
greatly increases the chances of a mobile user finding compatible Cloudlets anywhere
in the world.

This Cloudlet’s physical proximity is essential: the end-to-end response time of
applications executing within it must be fast (a few milliseconds) and predictable. If no
Cloudlet is available nearby, the mobile device can gracefully degrade to a fallback
mode that involves a distant Cloud or, in the worst case, solely its own resources. Full
functionality and performance can return later, when the device discovers a nearby
Cloudlet. A VM-based approach is less brittle than alternatives such as process
migration or software virtualization.6 It’s also less restrictive and more general than
language-based virtualization approaches that require applications to be written in a
specific language such as Java or C#.

The other approach is called dynamic VM synthesis. A mobile device delivers a small
VM overlay to the Cloudlet infrastructure that already possesses the base VM from
which this overlay was derived. The infrastructure applies the overlay to the base to
derive the launch VM, which starts executing in the precise state in which it was
suspended. To appreciate its unique attributes, it’s useful to contrast dynamic VM
synthesis with the alternative approach of assembling a large file from hash-addressed
chunks. Researchers have used variants of this alternative in systems such as LBFS,
Casper, Shark, the Internet Suspend/Resume system, the Collective and KeyChain. All
these variants have a probabilistic character to them: chunks that aren’t available
nearby (in the local cache, on portable storage, and so on, depending on the specific
variant) must be obtained from the Cloud. Thus, bandwidth to the Cloud and the hit ratio
on chunks are the dominant factors affecting assembly speed. Dynamic VM synthesis

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 32

differs in two key ways. First, its performance is determined solely by local resources:
bandwidth to Cloudlet and the Cloudlet’s compute power. Local hardware upgrades can
thus translate directly to faster VM synthesis. Second, WAN failures don’t affect
synthesis. Even a Cloudlet that’s totally isolated from the Internet is usable because the
mobile device delivers the overlay. In this case, provisioning the Cloudlet with base VMs
could be done via physical storage media. [8]

There are two types of Cloudlets: the ad hoc Cloudlet and the elastic Cloudlet. The ad
hoc Cloudlet consists of dynamically discovered nodes in the LAN network. These
nodes run a Node Agent that can spawn Execution Environments to deploy components
in. When nodes join or leave the Cloudlet, the Cloudlet Agent will recalculate the
deployments, migrating components if needed. The elastic Cloudlet runs on a
virtualized infrastructure, where nodes run in virtual machines. Here, the Cloudlet Agent
can spawn new nodes when more resources are needed, or stop nodes when too much
resources are allocated. This type of Cloudlet comes close to the VM based Cloudlet
envisioned by Satyanarayanan, but with extra middleware in the VM (NA and EE) that
manages the application. [9]

Figure 6: Cloudlet Types

We read that in Cloudlet architecture mobile users can access Cloudlet one hop away,
thus reduces bandwidth utilization and efficiency. Computation and data storage mostly
happens outside the mobile device, to a remote server which will complete the
computation task and send the results back to the client. Offloading techniques currently
available are client server communication, virtualization and mobile agents.

Cloudlet architecture reduces the gap between mobile devices and remote servers by
offloading workload to a local Cloudlet with connectivity to remote servers. It uses VM
technology. It uses dynamic VM synthesis. The mobile device transmits a small VM
overlay to the Cloudlet and applies it to a compatible base VM to generate the launch
VM-temporarily created for a mobile client to execute the task and then restored to its
previous state after each execution. [11]

3.2 Cloudlet’s Challenges

Although Cloudlets may solve the issue of latency, there are still two important
drawbacks of the VM based Cloudlet approach. First, one remains dependent on
service providers to actually deploy such Cloudlet infrastructure in LAN networks. To
alleviate this constraint, the authors of [9] propose a more dynamic Cloudlet concept,
where all devices in the LAN network can cooperate in the Cloudlet. A second drawback
of VM based Cloudlets is the coarse granularity of VMs as unit of distribution. Instead of
executing the whole application remotely in the VM and using a thin client protocol,

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 33

better performance can be achieved by dynamically partitioning the application in
components. As resources in the Cloudlet will still be limited, chances are that even the
Cloudlet runs out of resources when many users execute their VM simultaneously on
the Cloudlet infrastructure. With component offloading, a more flexible allocation of the
Cloudlet resources is possible, so that priority is given for latency-critical parts of the
application, while non real-time parts can be offloaded to a more distant Cloud. [9]

In Satyanarayanan's architecture a mobile user exploits VMs to rapidly instantiate
customized service software on a nearby Cloudlet and uses the service over WLAN. A
Cloudlet is a trusted, resource-rich computer or a cluster of computers well connected to
the Internet and available for use by nearby mobile devices. Rather relying on a distant
Cloud, the Cloudlets eliminate the long latency introduced by wide-area networks for
accessing the Cloud resources. Cloudlets allow high abstraction and personalization of
the Computing environment by using VMs, but lack from fine-grained execution
adaptation. [13]

3.3 Cooperative Caching Definition

The concept of cooperative caching is based on the idea of demanding the necessary
data from a neighbor node in the network instead of the original resource. Different
approaches have been proposed for cooperative caching, such as, caching on mobile
nodes, caching on intermediate or proxy nodes or caching on the edge of network.

By technological improvements in smart phones and other mobile devices, mobile
clients are capable of sharing data between themselves as peers. In this way they can
stay independent from the origin server where the data comes from. Mobile Cooperative
Caching is an aggregation of this alternative with the concept of caching for mobile
devices. In Mobile Cooperative Caching, mobile devices try to form an ad hoc network
with other mobile nodes in the proximity to share the relevant data. To develop this kind
of network, one should consider proper policies and select efficient algorithms regarding
cache records invalidation, consistency level, cache record placing and searching. [15]

Cooperative caching improves the response time by reducing VM synthesis time by
caching the previous state. Cooperative caching consists of multiple distributive caches
to improve system response time. [14]

Having distributed caches permits a system to deal with concurrent client request as
well as sharing contents. With cache different VM synthesis states the users can get the
service from cache otherwise request is given to the base layer to get the corresponding
launch VM. If the corresponding base VM is not present we have to contact distant
Cloud for the service. Data caching increases battery life in mobile devices by reducing
wireless communication. [11]

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 34

4. Cloudlet Scenario with Hilout Algorithm

In this chapter we are going to give the description of the Cloudlet scenario that is
implemented in this Thesis as long as the way that Hilout algorithm logic is embedded
to it in order to make the decision which data vectors are considered as Outliers and
can't be handled by the Cloudlet.

4.1 Cloudlet Scenario

As we saw in the previous chapter, Cloudlet is defined as a computer or a cluster of
computers connected at the edge of the network to provide low-latency access to
Computing resources for mobile devices. Cloudlet is considered as the middle tier of a
3-tier hierarchy: mobile device, Cloudlet and Cloud. A Cloudlet can also be viewed as a
resource rich center at the proximity of users.

In this Thesis, we are using a Cloudlet simulation framework, which is called CloudSim
and it is going to be described in the next chapter, in order to implement and evaluate a
specific Cloudlet scenario. In this scenario the Cloudlet is considered as a repository,
practically a MySQL schema table, in which data vectors, data from IoT devices, arrive
with multi-dimensions’ values sequentially. At this point Hilout Algorithm takes place.
Each time that a data vector wants to be processed by the Cloudlet, the algorithm
decides if it can be processed or not. In case that it can't be processed, it is marked as
an outlier and stored in the repository.

A simplistic overview of the scenario is given below. The details are going to be
explained in the next sections of this chapter.

Scenario:

 We have a Cloudlet where m (maximum 500) devices are connected. In this
Cloudlet, data are stored in a repository R. We consider that the selected data
should be in accordance with the current data that devices report. We should
decide which data will be stored. These multivariate data (n variables) should be
‘similar’ with the data present in the Cloudlet otherwise they are transferred in the
Cloud for storage and further processing (practically they stored in the repository
as Outliers).

 Vectors arrive in the Cloudlet accompanied by a timestamp.

 The Cloudlet processor (a component responsible to manage the incoming
vectors) decides if each vector is similar with the dataset.

 We execute the Hilout algorithm to identify if the incoming vector is an outlier
compared to the stored vectors.

 Each vector gets a weight which is the sum of the distance with its k-neighbors.

 The weight of the k-neighbors is updated only if the incoming vector is not an
outlier.

 Based on the timestamps, we extend the Hilout algorithm to take into
consideration a window W where the stored vectors are considered for the
calculations (details about this in the Hilout algorithm section)

 When a stored vector is out of the window, its weight is penalized and reduced.
The higher the difference with W the higher the penalty becomes.

 The final weight of the neighbors-stored vectors is taken into consideration for
deciding if the incoming vector will be stored or sent to the Cloud.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 35

 Below it is a picture that gives a snapshot of how the Cloudlet is conceived in
this scenario:

Figure 7: Cloudlet

Each data vector that is stored in the Cloudlet(repository) has the below attributes:

1. nodeID: the ID of the IoT device of the data vector. The ID can be within the
range 0-500.

2. recordID: the ID of the vector that it stored in the repository. This number is
unique for each record.

3. dimensions(a-j): each time the simulation runs the program decides with a
randomized way how many dimensions the data vectors have. The range of the
dimensions can be from 1 to 10. The names of the dimensions follow the
alphabet sequence (a, b, c, ...)

4. time: it is the timestamp of a data vector when this is stored in the repository.

5. weight: the weight that is stored for an arriving data vector is actually the sum of
the distances between the dimensions of the data vector and its neighbors'
dimensions, data vectors that are already stored in the repository. The logic with
which the neighbors are selected is going to be explained in the section of Hilout
Algorithm.

6. marked: This boolean attribute is true for a data vector when it is stored as an
outlier and false when it is not.

4.2 Hilout Algorithm

In this section we are going to describe the logic of the Hilout algorithm that is applied
every time a data vector wants to enter the Cloudlet. Before we do, we need to say few
words about the Hilout algorithm itself.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 36

Hilout finds distance-based Outliers, but uses the ranks of distance instead of the
absolute distance in outlier detection. Specifically, for each object, o, Hilout finds the k-
nearest neighbors of o, denoted by nn1(o), ... nnk(o), where k is an application-
dependent parameter. The weight of object o is defined as:

Equation 1: weight

All objects are ranked in weight-descending order. The top-l objects in weight are output
as Outliers, where l is another user-specified parameter. Computing the k-nearest
neighbors for every object is costly and does not scale up when the dimensionality is
high and the database is large. To address the scalability issue, Hilout employs space-
filling curves to achieve an approximation algorithm, which is scalable in both running
time and space with respect to database size and dimensionality.

In our scenario Hilout is a little bit differentiated because in the process of detecting if
the incoming vector is an outlier it takes into consideration also the temporal factor. Not
only the spatial proximity with the neighbors is taken into account for the decision but
also the temporal proximity. If the neighbors' timestamps are not within a time window
W, it is defined from the timestamp of the incoming vector minus a fixed interval, an
extra penalty is added to the weight of each of the neighbors-vectors accordingly, which
is taken into consideration for the decision for the incoming vector. The higher the
difference with W the higher the penalty becomes.

In order to see how Hilout algorithm works for the scenario, we describe the algorithm in
physical steps below:

 the number of the dimensions(d) can be between 2-10 and the number of the
data vectors(v) can be between 1-1000.The data vectors try to enter the Cloudlet
sequentially.

 Incoming vector's data follow the Gaussian distribution, which means that every
dimension's value for each vector follows this distribution. The mean of the
distribution is initially 100 but every 10 vectors that are inserted it deviates from
this value left or right (- or +) according to a deviation that is given by the
exponential distribution. Deviation of the Gaussian distribution is set to the value
from the {5,25,50}. Details about the creation of the input data is given to the
Input Data section.

 A decision of how many neighbors(k) we are going to look into for the incoming
vector is taken. The number of the neighbors(k) is randomized between the half
and the total number of vectors of the current dataset that is stored in the
repository.

 After the neighbors' number is set we find the neighbors according to the
proximity of them comparing to the input vector's position, as the Hilout algorithm
defines. This means that the k stored vectors with the lowest relative distance to
the incoming vector are considered as neighbors.

 The decision if the incoming vector is an outlier or not is taken comparing the
weights of the neighbors with the weight of it. If the weight of the incoming vector
is the highest, then it is marked as an outlier and is stored in the repository with
weight 0. If it is not an outlier, then the weights of the neighbors are updated

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 37

(plus the relative distance with the incoming vector) and the incoming vector is
stored.

 At this point we need to clarify how the weight of the neighbors is calculated each
time and how the incoming vector's. When the incoming vector arrives to the
Cloudlet, the timestamp of it minus 1 millisecond becomes the time window (W)
we mentioned in the beginning of this section. If the timestamp of each neighbor
is out of range of the W, then a penalty is added to its weight. This penalty is set
as the absolute difference of one of the W's edges and the neighbor's timestamp.
On the other side there is no penalty for the incoming vector because its
timestamp is one of the edges of the W. Summarizing the weight of the incoming
vector is only the sum of the relative distance with its neighbors but the weight of
the neighbors is the sum, relative distance with the incoming vector is not taken
into account, plus the possible penalty due to the time window. Last but not least,
the penalty is taken into account for each neighbor every time an incoming vector
wants to enter the Cloudlet but is not added in the weight value which is stored
for every vector in the repository.

4.2.1 Hilout Application Example

In this section we are going to see an example of Hilout applied on the Cloudlet
repository for a very small dataset.

Input’s information: number of vectors =5, number of dimensions = 3, Gaussian’s mean
= 100.0, variance = 50.

Results and Analysis of them:

Table 1: Hilout Example with 5 vectors

vectorID Dimension
a

Dimension
b

Dimension
c

Timestamp(long
value)

weight outlier

299 152.6 179.78 100.53 1529156644964 402.94 false

487 64.04 175.69 120.45 1529156645011 0 true

440 106.63 144.1 195.46 1529156645089 369.18 false

465 135.1 32.26 206.7 1529156645264 298.55 false

150 72.11 118.28 60.29 1529156645509 250.87 false

Iteration 1:

The first vector (vectorID: 299) will be stored without any check because the Cloudlet
repository is empty. The weight of the vector is 0.

Iteration 2:

For the second vector (vectorID:487) the number of neighbors that is randomly
generated is 1, so the Hilout takes place:

 Find 1 neighbor, there is only one stored vector anyway, distance487,299 = 90.86

 Timestamps of the W at this point is edge1: 1529156645011 and edge2:
1529156645010 (long values), weightvectorID:487 = distance487,299 + penalty. The
penalty for the vector with vectorID 487 is 0 because its timestamp is one of the
edges of the W so weightvectorID:487 = distance299,487 = 90.86. For vector with

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 38

vectorID 299: weightvectorID:299 = 0 + penalty = 0 + (edge2 – timestampvectorID:299) =
(1529156645010-1529156644964) = 46. weightvectorID:487 > weightvectorID:299. This
means that the current vector is an outlier and it will be stored with weight=0 and
marked as outlier.

Iteration 3:

For the fourth vector (vectorID:440) the number of neighbors that is randomly generated
is 1, so the Hilout takes place:

 Find 1 neighbor, there is only one stored vector, not outlier, anyway.
distance440,299 = 111.34.

 Timestamps of the W at this point is edge1: 1529156645089 and edge2:
1529156645088 (long values), weightvectorID:440 = distance440,299 + penalty. The
penalty for the vector with vectorID 440 is 0 because its timestamp is one of the
edges of the W so weightvectorID:440 = distance440,299 = 111.34. For vector with
vectorID 299: weightvectorID:299 = 0 + penalty = 0 + (edge2 – timestampvectorID:299) =
(1529156645088-1529156644964) = 124, weightvectorID:440<weightvectorID:299. This
means that the current vector enters the Cloudlet and it is not an outlier. The
weight of the vector is 111.34 and of the vector with vectorID 299 the same.

Iteration 4:

For the fourth vector (vectorID:465) the number of neighbors that is randomly generated
is 2, so the Hilout takes place:

 Find 2 neighbors, there are only two stored vectors, not Outliers, anyway.
distance465,299 = 182.59, distance465,440 = 115.95.

 Timestamps of the W at this point is edge1: 1529156645264 and edge2:
1529156645263 (long values), weightvectorID:465 = distance465,299 +
distance465,299+penalty. The penalty for the vector with vectorID 465 is 0 because
its timestamp is one of the edges of the W so weightvectorID:465 = 182.59+115.95 =
298.55. For the vector with vectorID 299: weightvectorID:299 = 111.34 + penalty =
111.34 + (edge2 – timestampvectorID:299) = 111.34 + (1529156645263 –
1529156644964) = 111.34+299 = 410.34, weightvectorID:440 = 111.34 + penalty =
111.34 + (edge2 – timestampvectorID:440) =111.34 + (1529156645263 –
1529156645089) = 111.34 + 174 = 285.34. weightvectorID:440 < weightvectorID:465 <
weightvectorID:299, this means that the current vector enters the Cloudlet and it is
not an outlier. The weight of the vector is 298.55, of the vector with vectorID 299
is 293.94 and of the vector with vectorID 440 is 227.3.

Iteration 5:

For the fifth vector (vectorID:150) the number of neighbors that is randomly generated is
2, so the Hilout takes place:

 Find 2 neighbors between the 3 stored-not Outliers- vectors. distance150,299 = 109,
distance150,440 = 141.87, distance150,465 =181.11. So neighbors are the vectors
with vectorID 299 and 440.

 Timestamps of the W at this point is edge1: 1529156645509 and edge2:
1529156645508 (long values), weightvectorID:150 = distance150,299 +
distance150,440+penalty. The penalty for the vector with vectorID 150 is 0 because
its timestamp is one of the edges of the W so weightvectorID:150 = 109+141.87 =
250.87. For the vector with vectorID 299: weightvectorID:299 = 293.94 + penalty =
293.94 + (edge2 – timestampvectorID:299) = 293.94 + (1529156645508 –
1529156644964) = 293.94+ 544 = 837.94, weightvectorID:440 = 227.3 + penalty =

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 39

227.3 + (edge2 – timestampvectorID:440) =227.3 + (1529156645508 –
1529156645509) = 227.3+ 419 = 646.3. weightvectorID:150 < weightvectorID:440 <
weightvectorID:299, this means that the current vector enters the Cloudlet and it is
not an outlier. The weight of the vector is 250.87, of the vector with vectorID 299
is 402.94 and of the vector with vectorID 440 is 369.18.

4.3 Input Data

The input data, the values of the dimensions for each data vector, are not completely
randomized. They follow the Gaussian distribution. Each dimension's value is given, in
the code, by the formula: mean * randomNumber * deviation. The deviation is set
from the set {5,25,50}, the randomNumber is given by the Random number generator of
Java and the mean is not a fixed value all the times. For every 10 data vectors that are
inserted, Outliers or not, the mean deviates by a value that is given by the Exponential
distribution, see section 4.3.2 about the Exponential distribution. This deviation can be
positive or negative (+ or -). Initially the mean's value is 100. The deviation's is given, in
the code, by the formula: (log (1- randomNumber)) / (-lambda). The lambda is set
from the set {0.2,5}, the randomNumber is given by the Random number generator of
Java and it must be double type and the log is the logarithm with base e.

We apply this input logic in order to see if this phenomenon, the deviation of the mean
in the Gaussian distribution, affects the number of the Outliers that are detected.

At this point it should be useful to mention some basic characteristics of the Gaussian
distribution and Exponential distribution in a theoretical perspective.

4.3.1 Gaussian Distribution

Normal distribution, also called Gaussian distribution, is the most common distribution
function for independent, randomly generated variables. Its familiar bell-shaped curve is
ubiquitous in statistical reports, from survey analysis and quality control to resource
allocation.

 The graph of the normal distribution is characterized by two parameters: the mean,
or average, which is the maximum of the graph and about which the graph is always
symmetric and the standard, which determines the amount of dispersion away from the
mean. A small standard deviation (compared with the mean) produces a steep graph,
whereas a large standard deviation (again compared with the mean) produces a flat
graph.

Figure 8: Normal Distribution

The normal distribution is produced by the normal density, the function is shown below:

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 40

Equation 2: density function

In this exponential e is the constant 2.71828…, is the mean, and σ is the standard
deviation. The probability of a random variable falling within any given range of values is
equal to the proportion of the area enclosed under the function’s graph between the
given values and above the x-axis. Because the denominator, the denominator is shown
below:

Equation 3: denominator

, known as the normalizing coefficient, causes the total area enclosed by the graph to
be exactly equal to unity, probabilities can be obtained directly from the corresponding
area—i.e., an area of 0.5 corresponds to a probability of 0.5. Although these areas can
be determined with calculus, tables were generated in the 19th century for the special
case of = 0 and σ = 1, known as the standard normal distribution, and these tables can
be used for any normal distribution after the variables are suitably rescaled by
subtracting their mean and dividing by their standard deviation, (x − μ)/σ. Calculators
have now all but eliminated the use of such tables.

The term “Gaussian distribution” refers to the German mathematician Carl Friedrich
Gauss, who first developed a two-parameter exponential function in 1809 in connection
with studies of astronomical observation errors. This study led Gauss to formulate his
law of observational error and to advance the theory of the method of least squares
approximation. Another famous early application of the normal distribution was by the
British physicist James Clerk Maxwell, who in 1859 formulated his law of distribution of
molecular velocities—later generalized as the Maxwell-Boltzmann distribution law.

A this point we have to mention that the most real-world data are NOT normally
distributed. A paper by Micceri (1989) called "The unicorn, the normal curve and other
improbable creatures" examined 440 large-scale achievement and psychometric
measures. He found a lot of variability in distributions w.r.t. their moments and not much
evidence for (even approximate) normality. In a 1977 paper by Steven Stigler called "Do
Robust Estimators Work with Real Data" he used 24 data sets collected from famous
18th century attempts to measure the distance from the earth to the sun and 19th
century attempts to measure the speed of light. He reported sample skewness and
kurtosis. The data are heavy-tailed. On the contrary, in statistics, we assume normality
oftentimes because it makes maximum likelihood convenient. This is what we do also in
this Thesis. Although, convenience is not the only reason, the other reason we chose
Gaussian distribution is to investigate the behavior of the data under a controlled range
of values because a completely randomized input would be chaotic and not safe
conclusions could be made of it.

4.3.2 Exponential Distribution

The exponential distribution (also called the negative exponential distribution) is a
probability distribution that describes time between events in a Poisson Process. A
Poisson process gives you a way to find probabilities for random points in time for a
process. A “process” could be almost anything:

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 41

 Accidents at an interchange.

 File requests on a server.

 Customers arriving at a store.

 Battery failure and replacement.

The Poisson process can tell you when one of these random points in time will likely
happen. For example, when customers will arrive at a store, or when a battery might
need to be replaced. It’s basically a counting process; it counts the number of times an
event has occurred since a given point in time, like 1210 customers since 1 p.m., or 543
files since noon. An assumption for the process is that it is only used for independent
events.

There is a strong relationship between the Poisson distribution and the Exponential
distribution are intertwined. For example, let’s say a Poisson distribution models the
number of births in a given time period. The time in between each birth can be modeled
with an exponential distribution (Young & Young, 1998).

The most common form of the pdf (Probability Density Function):

Equation 4: Probability Density Function

Where:

• e = the natural number e,

• λ = mean time between events,

• x = a random time.

For x less than 0, F (x; λ) = 0

Figure 9: Exponential distribution

 The formula for the cumulative distribution of the exponential distribution is:

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 42

Equation 5: Cumulative distribution function

 x ≥ 0; λ > 0

Figure 10: Cumulative distribution

In our case we use the quantile function for the Exponential distribution.

The quantile function for Exponential(λ) is derived by finding the value of Q for which 1-
e-λQ = p:

Equation 6: Quantile function

for 0 ≤ p < 1.

The quantile function is one way of prescribing a probability distribution, and it is an
alternative to the probability distribution (pdf) or the cumulative distribution function. The
quantile function, Q, of a probability distribution is the inverse of its cumulative
distribution function F. The derivative of the quantile function, namely the quantile
density function, is yet another way of prescribing a probability distribution. It is the
reciprocal of the pdf composed with the quantile function.

We chose quantile function in order to provide the quantity of how much is the variance
of the mean each time we decide to change it and if this movement of the range of
values affects somehow the Outliers' detection.

4.4 PCA dimension reduction

4.4.1 Principal Component Analysis

Except the logic we described in the Hilout Algorithm section above, we thought that it
could be also intriguing to add another factor that can be taken into account for the
Outliers’ detection. We thought to use PCA dimension reduction. Before we explain
more how we added this feature in the algorithm it could be useful to say few words
about what PCA is.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 43

Principal component analysis (PCA) does what it says, finds the principal components
of data. It is often useful to measure data in terms of its principal components rather
than on a normal x-y axis. So what are principal components then? They’re the
underlying structure in the data. They are the directions where there is the most
variance, the directions where the data is most spread out.

Principal component analysis (PCA) is the main linear technique for dimension
reduction. Performs a linear mapping of the data to a lower-dimensional space in such a
way that the variance of the data in the low-dimensional representation is maximized.

Dimension reduction is analogous to being philosophically reductionist: It reduces the
data down into its basic components, stripping away any unnecessary parts.

When we get a set of data points, we can deconstruct the set into eigenvectors and
eigenvalues. Eigenvectors and values exist in pairs: every eigenvector has a
corresponding eigenvalue. An eigenvector is a direction. An eigenvalue is a number,
telling you how much variance there is in the data in that direction, in the example
above the eigenvalue is a number telling us how spread out the data is on the line. The
eigenvector with the highest eigenvalue is therefore the principal component.

4.4.2 Hilout Algorithm with PCA

We saw in the above subsection a short description of what PCA is. Now we are going
to explain how we applied this method in Hilout logic. We apply this method on each
incoming vector's dimensions in order to see if this method, the dimension reduction,
affects the percentage of the Outliers that are detected.

At this point we have to clarify that Hilout has been implemented as it is described in the
Hilout Algorithm section and also with the addition of PCA dimension reduction method.
Therefore, in the next chapter we show results for both the implementations of Hilout.

In order to see how Hilout algorithm with PCA works for the scenario, we describe the
algorithm in physical steps below:

 the number of the dimensions(d) can be between 2-10 and the number of the
data vectors(v) can be between 1-1000.The data vectors try to enter the Cloudlet
sequentially.

 Incoming vector's data follow the Gaussian distribution, which means that every
dimension's value for each vector follows this distribution. The mean of the
distribution is initially 100 but every 10 vectors that are inserted it deviates from
this value left or right (- or +) according to a deviation that is given by the
exponential distribution. Deviation of the Gaussian distribution is set to the value
from the {5,25,50}. Details about the creation of the input data is given to the
Input Data section.

 A decision of how many neighbors(k) we are going to look into for the incoming
vector is taken. The number of the neighbors(k) is randomized between the half
and the total number of vectors of the current dataset that is stored in the
repository.

 After the neighbors' number is set we find the neighbors according to the
proximity of them comparing to the input vector's position, as the Hilout algorithm
defines. The difference this time is that we apply the PCA method on all the
records, which are not Outliers, of the dataset, expect the incoming vector, and
we find the principal components of the dataset. These components define the
correlation between the dimensions. The way we choose to decide which

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 44

dimensions we keep is simple. We check the first principal component and for
the dimensions that have value > 0.4 we keep them. If the first component
doesn't have such values, we move to the next one. If none of them has for at
least one of their dimension values > 0.4 then we keep all of the dimensions and
no dimension reduction is applied. In the end, the k stored vectors with the lowest
relative distance to the incoming vector are considered as neighbors. Relative
distance after the dimension reduction is considered only for the dimensions we
chose.

 At this point we need to clarify how the weight of the neighbors is calculated each
time and how the incoming vector's. When the incoming vector arrives to the
Cloudlet, the timestamp of it minus 1 millisecond becomes the time window (W)
we mentioned in the beginning of this section. If the timestamp of each neighbor
is out of range of the W, then a penalty is added to its weight. This penalty is set
as the absolute difference of one of the W's edges and the neighbor's timestamp.
On the other side there is no penalty for the incoming vector because its
timestamp is one of the edges of the W. Summarizing the weight of the incoming
vector is only the sum of the relative distance with its neighbors, relative distance
after the dimension reduction is considered only for the dimensions we chose
through the PCA method , but the weight of the neighbors is the sum ,relative
distance with the incoming vector is not taken into account, plus the possible
penalty due to the time window. Last but not least, the penalty is taken into
account for each neighbor every time an incoming vector wants to enter the
Cloudlet but is not added in the weight value which is stored for every vector in
the repository.

Just to make it more clear about the PCA logic we apply, we can give an example: Let's
say we have 4 data vectors stored already in the repository and a 5th one arrives. We
have 4 dimensions for each vector. The dataset of the repository for the example is the
below:

 1st record: {96.93,95.04,96.15,99.04}

 2nd record: {93.94,106.34,101.99,94.39}

 3rd record: {92.98,96.68,101.29,103.75}

 4th record: {108.43,92.9,94.11,92.56}

When we apply the PCA we take the below PCA components with order from the
highest (PCA1) to the lowest (PCA4):

 PCA1 PCA2 PCA3 PCA4

 dim1: [[-0.50, -0.50, -0.50, -0.50],

 dim2: [0.86, -0.36, -0.29, -0.21],

 dim3: [0.09, 0.64, 0.04, -0.77],

 dim4: [-0.01, -0.47, 0.81, -0.35]]

According to the logic we described in the Hilout algorithm with PCA physical steps we
scan the PCA1 and we check for values > 0.4. We see that dim2 has value that follows
this criteria, so we choose the dim2 and we stop the procedure. If PCA1 didn't have
such a value, we should move and check PCA2 etc.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 45

4.4.3 Hilout Application Example with PCA

In this subsection we are going to see an example of Hilout with PCA applied on the
Cloudlet repository for a very small dataset.

Input’s information: number of vectors =5, number of dimensions = 3, Gaussian’s mean
= 100.0, variance = 50.

Results and Analysis of them:

Table 2: Hilout Example with PCA , with 5 vectors

vectorID Dimension
a

Dimension
b

Dimension

c

Timestamp(long
value)

weight outlier

225 40.36 87.93 71.34 1529234110627 191.36 false

107 132.78 150.17 119.84 1529234110686 0 true

378 140.08 40.1 50.77 1529234110745 287.02 false

279 59.83 144.73 29.09 1529234110989 196.16 false

477 59.97 110 142.69 1529234115804 126.7 false

Iteration 1:

The first vector (vectorID: 225) will be stored without any check because the Cloudlet
repository is empty. The weight of the vector is 0.

Iteration 2:

For the second vector (vectorID:107) the number of neighbors that is randomly
generated is 1, so the Hilout takes place:

 Find 1 neighbor, there is only one stored vector anyway. PCA is not applicable in
this case because PCA requires at least 2 components, so in this case Hilout
without PCA is applied. distance107,225 = 121.52

 Timestamps of the W at this point is edge1: 1529234110686 and edge2:
1529234110685 (long values), weightvectorID:107 = distance107,225 + penalty. The
penalty for the vector with vectorID 107 is 0 because its timestamp is one of the
edges of the W so weightvectorID:107 = distance107,225 = 121.52. For vector with
vectorID 225: weightvectorID:225 = 0 + penalty = 0 + (edge2 – timestampvectorID:225) =
(1529234110685-1529234110627) = 58. weightvectorID:107 > weightvectorID:225. This
means that the current vector is an outlier and it will be stored with weight=0 and
marked as outlier.

Iteration 3:

For the second vector (vectorID:378) the number of neighbors that is randomly
generated is 1, so the Hilout takes place:

 Find 1 neighbor, there is only one stored vector, not outlier, anyway. PCA is not
applicable in this case because PCA requires at least 2 components, so in this
case Hilout without PCA is applied. distance378,225 = 112.49

 Timestamps of the W at this point is edge1: 1529234110745 and edge2:
1529234110744 (long values), weightvectorID:378 = distance378,225 + penalty. The
penalty for the vector with vectorID 378 is 0 because its timestamp is one of the

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 46

edges of the W so weightvectorID:378 = distance378,225 = 112.49. For vector with
vectorID 225: weightvectorID:225 = 0 + penalty = 0 + (edge2 –
timestampvectorID:225) = (1529234110744-1529234110627) = 117. weightvectorID:378

< weightvectorID:225. This means that the current vector is an outlier and it will be
stored with weight=0 and marked as outlier. This means that the current vector
enters the Cloudlet and it is not an outlier. The weight of the vector is 112.49 and
of the vector with vectorID 299 the same.

Iteration 4:

For the fourth vector (vectorID:279) the number of neighbors that is randomly generated
is 2, so the Hilout takes place:

 Find 2 neighbors, there are only two stored vectors, not Outliers, anyway. The
PCA is applied and the reduced dimensions’ number is 1 and is the second
dimension (b) that is returned, so the distance with the neighbors will be based
on the second dimension. distance279,225 = 56.8, distance279,378 = 104.63.

 Timestamps of the W at this point is edge1: 1529234110989 and edge2:
1529234110988(long values), weightvectorID:225 = distance279,225 +
distance279,378+penalty. The penalty for the vector with vectorID 279 is 0 because
its timestamp is one of the edges of the W so weightvectorID:279 = 56.8+104.63 =
161.43. For the vector with vectorID 225: weightvectorID:225 = 112.49 + penalty =
112.49 + (edge2 – timestampvectorID:225) = 112.49 + (1529234110988 –
1529234110627) = 112.49+361 = 473.49, weightvectorID:378 = 112.49 + penalty =
112.49 + (edge2 – timestampvectorID:378) =104.63 + (1529234110988 –
1529234110745) = 104.63 + 243 = 347.63. weightvectorID:279 < weightvectorID:378 <
weightvectorID:225, this means that the current vector enters the Cloudlet and it is
not an outlier. The weight of the vector is 161.43, of the vector with vectorID 225
is 169.29 and of the vector with vectorID 378 is 217.12.

Iteration 5:

For the fifth vector (vectorID:477) the number of neighbors that is randomly generated is
3, so the Hilout takes place:

 Find 3 neighbors, there are only three stored vectors, not Outliers, anyway. The
PCA is applied and the reduced dimensions’ number is 1 and is the second
dimension (b) that is returned, so the distance with the neighbors will be based
on the second dimension. distance477,225 = 22.07, distance477,378 = 69.9,
distance477,279 = 34.73.

 Timestamps of the W at this point is edge1: 1529234115804 and edge2:
1529234115803 (long values), weightvectorID:477 = distance477,225 +
distance477,378+distance477,279+penalty. The penalty for the vector with vectorID
477 is 0 because its timestamp is one of the edges of the W so weightvectorID:477 =
22.07+69.9+34.73 = 126.7. For the vector with vectorID 225: weightvectorID:225 =
169.29 + penalty = 169.29 + (edge2–timestampvectorID:225) = 169.29 +
(1529234115803–1529234110627) =169.29+5176 = 5345.29, weightvectorID:378 =
217.12 + penalty = 217.12 + (edge2 – timestampvectorID:378) =217.12 +
(1529234115803–1529234110745) = 217.12 + 5058 = 5275.12, weightvectorID:279

=161.43+4814=4975.43. weightvectorID:477 <weightvectorID:279 < weightvectorID:378 <
weightvectorID:225, this means that the current vector enters the Cloudlet and it is
not an outlier. The weight of the vector is 126.7, of the vector with vectorID 225 is
191.36, of the vector with vectorID 378 is 287.02 and of the vector with vectorID
279 is 196.16.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 47

4.5 Variance per dimension

Another characteristic we study in this Thesis is the Variance per dimension. The results
per case will be shown analytically in the next Chapter. In this section we see the
definition of the variance of a data set and a simple example in which we see how it is
calculated.

4.5.1 Variance of a Data Set: Definition

Variance (commonly denoted σ2) is a very useful measure of the relative amount of
‘scattering’ of a given set. In other words, knowing the Variance can give you an idea of
how closely the values in a set cluster around the mean. The greater the Variance, the
more the data values in the set are spread out away from the mean.

Variance is an important calculation to become familiar with because, like the arithmetic
mean, Variance is used in many other more complex statistical evaluations. The
calculation of Variance is slightly different depending on whether you are working with a
population (you do not intend to generalize the results back to a larger group) or a
sample (you do intend to use the sample results to predict the results of a larger
population). The difference is really only at the end of the process, so let’s start with the
calculation of the population.

To calculate the Variance of a population:

1. First, identify the arithmetic mean of your data by finding the sum of the values
and dividing it by the number of values.

2. Next, subtract each value from the mean and record the result. This value is
called the deviation of each score from the mean.

3. For each value, square the deviation.

4. Finally, divide the sum of the squared deviations by the number of values in the
set. The resulting quotient is the Variance (σ2) of the set.

4.5.2 Variance: Example

Let’s calculate the Variance of set x:

x= {12,7,6,3,10,5,18,15}

We follow the steps from above:

 1) First, calculate the arithmetic mean:

 μ= (12+7+6+3+10+5+18+15) /8=9.5

 2,3) Subtract each value from the mean to get the deviation of each value,
square the deviation of each value:

Table 3: Variance example

Value−Mean=Deviation Deviation2

12−9.5=2.5 6.25

7−9.5=−2.5 6.25

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 48

6−9.5=−3.5 12.25

3−9.5=−6.5 42.25

10−9.5=0.5 0.25

5−9.5=−4.5 20.25

18−9.5=8.5 72.25

15−9.5=5.5 30.25

TOTAL (sum of deviation2): 190.00

 4) Finally, divide the sum of the squared deviations by the count of values in the
data set:190/8 = 23.75. The Variance of set x is 23.75

In our case the set x is each dimension. More analysis will be given, with practical
results per case, in the next Chapter.

4.6 Goals of the scenario

After the analysis we did on the Cloudlet scenario with the Hilout detection of Outliers, in
the above sections, we can now define the goals of the simulations we ran and their
results are shown in the next chapter. The goals are:

 see how the number of the data vectors affects the number of Outliers that are
detected

 see how the number of the dimensions affects the number of Outliers that are
detected

 see how the deviation of the mean in the Gaussian distribution affects the number
of Outliers that are detected

 see how the lambda parameter in the Exponential distribution affects the number
of Outliers that are detected

 see how the PCA dimension reduction affects the number of Outliers that are
detected

Of course these goals are not independent with each other. In the different simulation
cases we followed all these factors are combined.

4.7 Why we adopt this scenario

The answer to the question: “Why we adopt this scenario?” is a combination of two
parameters:

1. The first parameter is the Hilout algorithm. Hilout algorithm has been designed to
efficiently detect the top n Outliers, in our case 1 per time a data-vector wants to
enter into the Cloudlet, of a large and high-dimensional data set. This is a

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 49

feature that really fits our use cases because we take into account not only 2-d
and 3-d set of dimensions but a multi-dimensional set, until 10 maximum, for
Outliers' detection.

2. The second parameter is the centralized nature of the Cloudlet repository. The
advantages of a centralized system are:

 Data Integrity: The single greatest benefit of centralizing and
management of data is data integrity. One of the cardinal rules of
database design is that no redundancy is allowed. That is, no piece of
data should ever be repeated within the database. This aids in the
maintaining of data as accurate and as consistent as possible and
enhances data reliability.

 Cost effectiveness: More cost effective than other types of database
systems. By controlling data in a central repository, redundancy and its
associated costs are eliminated and productivity is increased.

 Increased Efficiency: With a central repository, all data is integrated and
maintained centrally so that manual data processing is eliminated and the
resources devoted to multiple data management can be redirected to
other business needs.

 Enhanced data Quality: Having parallel databases and transferring data
among them can result in data loss or poor-quality data too. Integrating all
your data in a central repository improves data quality and consistency to
make better assessments.

 Changeability: Data kept in the same location is easier to be changed,
re-organized, mirrored, or analyzed.

 Accessibility: All the information can be accessed at the same time from
the same location. Updates to any given set of data are immediately
received by every end-user.

In our case we care about the data integrity and cost effectiveness because the proper
application of Hilout bases a lot on the consistency and not redundancy of data that are
kept in the repository. We care about the increased efficiency because manual data
processing is not needed at all and this is eliminated by the existence of this feature.
Enhanced data quality is crucial to the application of the algorithm. Changeability is a
very useful feature because Hilout applies changes very often in the repository. Last but
not least accessibility provides immediate notification of the end-users regarding any
update on the repository which is really useful especially in the case a user is detected
as outlier.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 50

5. CloudSim framework and Hilout’s experimental results

In this chapter we give some basic information regarding CloudSim framework and we
provide the experimental results of the different cases that we ran and the analysis of
these results.

5.1 CloudSim framework

5.1.1 ClouSim framework’s features

CloudSim framework is a programming tool designed to normalize and accelerate the
process of conducting experimental studies using Cloud Computing environments.
Conducting experimental studies using real Cloud infrastructure can be excellent time-
consuming due to their size and complexity as well as high cost of access to these
infrastructures.

The primary objective of CloudSim is to provide a generalized, and extensible
simulation framework that enables seamless modeling, simulation, and experimentation
of emerging Cloud Computing infrastructures and application services. By using
CloudSim, researchers and industry-based developers can focus on specific system
design issues that they want to investigate, without getting concerned about the low
level details related to Cloud-based infrastructures and services.

CloudSim follows multi-layered design and consists of many architectural components.

Figure 11: ClouSim Architecture

The CloudSim simulation level provides support for modeling and simulating Cloud-
based virtualization environments including special management interfaces for virtual
machines, memory, storage, and bandwidth. Fundamental issues such as virtual
machine feed, implementation execution management, and dynamic system status

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 51

monitoring are implemented in this layer. In addition, a Cloud service provider who
wants to study the effectiveness of the various policies for sharing virtual machines in
hosting systems should focus on this level. This level also reveals the functions in which
a Cloud application developer can be expanded to look at complex workload profiles
combined with application performance.

CloudSim's top layer level is the user code that defines and customizes the basic
entities for hosting systems such as the number of machines, specifications,
applications (the number of tasks and their requirements), the number of users and
types of implementation, and the policies of the intermediate system.

5.1.2 Presentation of major CloudSim classes

1. BwProvisioner: This is an abstract class that implements the system bandwidth
allocation policy for virtual machines. The primary role of this class is to allocate
the range of the network to all competing virtual machines to each hosting
system, having as a minimum the requirements of the virtual machine and as a
limit the available range of the hosting system.

2. CloudCoordinator: This abstract class has every data center created in the
Cloud system. It is responsible for the periodic monitoring and control of
resources that bind and release data centers

3. Cloudlet: This class models Cloud-based application services. CloudSim
manages the complexity of an application in the form of Computing resource
requirements. Each application has pre-set requirements in order to perform
indefinitely throughout its existence.

4. CloudletScheduler: This abstract class uses different policies to share the
computational power each Cloudlet requires on each virtual machine. The main
policies implemented are shared space and time sharing.

5. Datacenter: This class implements the core of hardware at the infrastructure
level as it is currently offered by Cloud service providers. It contains a set of
computerized hosting systems built on the available hardware in each data
center such as memory, cores, storage, and storage units.

6. Datacenter Broker / Cloud Broker: It is the class that acts as the intermediary
for communicating between the requirements of the SaaS model and Cloud
service providers. These requirements relate to the quality of the service but also
to the SLA. The intermediate system therefore assigns the SaaS model to a
Cloud service provider and binds this provider with the necessary infrastructure
to ensure compliance with QoS and SLA. The difference between the
intermediate system and the CloudCoordinator is that the first represents the
client of the system while the second one works on behalf of the data center.

7. Host: This class models a physical resource such as server-oriented processing
or storage. It contains important information such as the amount of memory, the
number and type of processing unit kernels, and the policy of allocating
resources to virtual machines.

8. Vm: This class models a virtual machine that is handled and hosted by a Cloud-
based hosting system. Each virtual machine consists of features such as
memory, processor, capacity, and prediction policy as defined by
CloudScheduler.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 52

9. VmAllocationPolicy: This abstract class represents the policy used to commit
virtual machines to their respective hosting systems. The main function that it
performs is to commit virtual machines to hosting systems that have sufficient
memory, capacity and computational power for the operation of each virtual
machine.

10. VmScheduler: This abstract class is implemented by the hosting systems to
select the binding policy of processing kernels in virtual machines. Policies that
are used are shared space, time-sharing, and matching policies for specific
applications with particular kernels.

11. CloudSim: This is the main class that is responsible for managing the queues
with the events to be executed and the step-by-step execution of the simulation.
Each event created at runtime enters the queue with future events to execute.
Then the events scheduled to run in the next steps of the run go out of the future
list and are placed in the list of events to be executed. Each time the events that
are going to run come out of the last list and dynamic Cloud simulation processes
are performed such as disabling resources, increasing customer requirements,
creating new clients, and extreme scenarios such as service failure resulting in
resumption of simulation.

5.1.3 CloudSim Configuration for our experiments

In our experiments we have only one configuration: a datacenter with one host and run
one Cloudlet on it. We take a simple case because our focus is not on the CloudSim
framework’s different configurations but on the application of Hilout algorithm on a
Cloudlet.

5.2 Experiments and results

In our experiments we try to see how some factors affects the number of Outliers that
are detected by the version of the Hilout algorithm we apply and we described its logic
in Chapter 4. These factors are:

 Number of data vectors, 4 configurations: 50, 100, 500 ,1000

 Number of dimensions, 10 configurations: 2,3,4,5,6,7,8,9,10

 Deviation of mean for Gaussian distribution, 3 configurations: 5,25,50

 Lambda parameter for Exponential distribution, 2 configurations: 0.2,5

 PCA dimension reduction

We tried to examine the 5 above factors with 2 main cases:

 Case without PCA dimension reduction

 Case with PCA dimension reduction

For both of the cases the experiments we ran are summarized in the below table:

Table 4: Experiments per case

Vectors Dimensions Deviation Lambda

50,100,500,1000 2 - 10 5 0.2

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 53

50,100,500,1000 2 - 10 5 5

50,100,500,1000 2 - 10 25 0.2

50,100,500,1000 2 - 10 25 5

50,100,500,1000 2 - 10 50 0.2

50,100,500,1000 2 - 10 50 5

5.2.1 Results for case without PCA

In the charts that are shown below we can see the average number of Outliers that was
detected for each case. For example: for vectors:100, dimensions:3, deviation of the
mean in the Gaussian distribution: 25, lambda parameter of the Exponential distribution:
5, the average number of Outliers that are detected is 1. Average in this case is
considered the number of Outliers that appears most frequently. If we consider that we
ran the above example 5 times, then the 3 of them 1 outlier is detected.

The display of the charts follows for each of the 4 configurations that are shown in the
Table 4 except 2 configurations: 1) deviation:5, lambda:0.2,2) deviation:5, lambda:5.
These 2 configurations detect 0 Outliers on average, therefore there is no point to
display them in a chart.

Figure 12: deviation:25,lambda:0.2 configuration

Deviation=25, lambda=0.2: We see that until 4 dimensions 0 Outliers are detected.
From 5 to 10 dimensions the Outliers’ number on average is stabilized to 1, except in
the case of 9 Outliers for 1000 vectors where 2 Outliers are detected on average.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 54

Figure 13: deviation:25,lambda:5 configuration

Deviation=25, lambda=5: The value of lambda has been increased in this case and we
can see that even from 2 dimensions’ case the Outliers’ number is stabilized to 1 more
or less. In the case of 9 dimensions for 50 and 1000 vectors 2 Outliers are detected.

Figure 14: deviation:50,lambda:0.2 configuration

Deviation=50, lambda=0.2: In this case the deviation has been increased from 25 to
50 and it is clear that because the range of the data values is increased also the
number of the Outliers has been increased from 1 to 2 on average from the 4
dimensions’ case. For 8,9,10 dimensions we see also the number 3 appears.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 55

Figure 15: deviation:50,lambda:5 configuration

Deviation=50, lambda=5: In this case the lambda has been increased and we can see
that the Outliers’ number is similar with the case of lambda=0.2. From 4 dimensions
until 10 the number is stabilized to 2. For 8,9,10 dimensions we see also the number 3
appears.

It’s really important to mention that the Outliers are detected within the first 10 data
vectors that arrive and this make sense because as long as the time window W is
getting bigger and bigger the comparison with the timestamps of the stored vectors
won’t never mark an upcoming vector as an outlier. The factor that affects the number
of the Outliers of each case is the distance between their dimensions and it seems that
in this case the deviation’s value is really crucial, the lambda’s value seems to affect
less. The number of vectors doesn’t seem to affect the number of Outliers so much.
Interesting detail is that the maximum number of Outliers we detected in all the cases
was 4. This means that the temporal approach of Hilout actually minimizes the Outliers.

In the next section we see how the PCA affects the Outliers’ detection.

5.2.2 Results for case with PCA

The display of the charts follows for each of the 4 configurations that are shown in the
Table 4 except 2 configurations: 1) deviation:5, lambda:0.2,2) deviation:5, lambda:5.
These 2 configurations detect 0 Outliers on average, therefore there is no point to
display them in a chart, as for the case without PCA.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 56

Figure 16: deviation:25,lambda:0.2 configuration

Deviation=25, lambda=0.2: For 2 and 3 dimensions 0 Outliers are detected on
average, except the case of 100 vectors for 2 dimensions where 1 outlier is detected.
From 4 to 10 dimensions the Outliers’’ number is stabilized to 1, except for 50 vectors
and 8 dimensions where 2 Outliers are detected.

Figure 17: deviation:25,lambda:5 configuration

Deviation=25, lambda=5: The lambda value has been increased and we notice that
even from 2 dimensions’ Outliers are detected. This time the number of Outliers is
stabilized to 1 from 5 dimensions’ case. For 7 and 10 dimensions and 1000 vectors 2
Outliers are detected.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 57

Figure 18: deviation:50,lambda:0.2 configuration

Deviation=50, lambda=0.2: The deviation has been increased from 25 to 50 and we
see again the move from 1 outlier to 2 from 5 to 10 dimensions’ range. From 2 to 4
dimensions the Outliers’ number on average is 1, except the case of 50 vectors for 4
dimensions. For 7 and 8 dimensions, for 100 vectors we see 3 Outliers are detected.
Also for 10 dimensions and 500 vectors 3 Outliers are detected.

Figure 19: deviation:50,lambda:5 configuration

Deviation=50, lambda=5: In this case, lambda has been increased, 2 Outliers are
detected on average from 4 dimensions until 10. For 3 dimensions, for 100 and 1000
vectors, 2 Outliers are detected but for 8 dimensions 3 Outliers are detected on
average, except for 1000 vectors.

It’s really important to mention that the Outliers are detected within the first 10 data
vectors that arrive as in the case without PCA. The number of vectors doesn’t seem to
affect the number of Outliers so much. Interesting detail is that the maximum number of
Outliers we detected in all the cases was 4 as well. In the next section we see the
comparison among the results between PCA case and without PCA case.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 58

5.2.3 Comparison between PCA and No PCA cases

In general, we saw that deviation is the most important factor that differentiates the
number of Outliers that are detected for all the dimensions. The number of vectors
doesn’t seem to affect this phenomenon so much. Also the number of dimensions
doesn’t seem to play an important role. The lambda parameter seems to be affective
only on the fact from how many dimensions and afterwards the number of Outliers is
stabilized to 1 or 2.

Regarding the PCA factor, before the experiments, we should have expected less
Outliers to be detected comparing to the configurations that we ran without PCA. It
seems that this is not the case. More or less the results are similar and in fact the peaks
of Outliers, 3 Outliers, are detected a bit more for the case of PCA. Still this fact can be
interpreted under the next 2 reasons: 1) the PCA runs on the fly along with the Hilout
and it is very possible that a lot of times the number of reduced dimensions is not quite
smaller than the original one, 2) even if the PCA returns a number much smaller than
the number of the actual dimensions each time the range of the values affects the
afterwards application of Hilout on the dataset.

5.2.4 Variance per Dimension

In this section we give some indicative results for each dimension for the 6 different
configurations of the combination of deviation and lambda and for the 4 different
numbers of input data vectors (50,100,500,1000). As average we consider the average
Variance for all the dimensions, therefore we have common results for all the
dimensions because the range of values that is available every time is for all the
dimensions the same. The results are displayed in the tables below:

Table 5: Variance per dimension ,deviation:5,lambda:0.2

Vectors NoPCA PCA

50 56.29 53.79

100 85.81 105.2

500 102.45 98.92

1000 107.08 111.02

Table 6: Variance per dimension,deviation:5,lambda:5

Vectors NoPCA PCA

50 25.31 24.98

100 23.82 23.92

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 59

500 25.71 26.89

1000 25.08 24.96

Table 7: Variance per dimension,deviation;25,lambda:0.2

Vectors NoPCA PCA

50 698.92 683.01

100 696.04 685.15

500 760.02 756.88

1000 768.99 762.26

Table 8: Variance per dimension,deviation:25,lambda:5

Vectors NoPCA PCA

50 627.71 560.74

100 632.78 644.75

500 700.02 709.12

1000 713.04 699.01

Table 9: Variance per dimension,deviation:50,lambda:0.2

Vectors NoPCA PCA

50 2088 2443.45

100 2341 2158.5

500 2224.52 2493.9

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 60

1000 2508.02 2359.09

Table 10: Variance per dimension,deviation;50,lambda:5

Vectors NoPCA PCA

50 2349.79 1982.15

100 2081.22 2269.1

500 2450.22 2230.89

1000 2368.29 2580.14

In general, we can see that on the contrary with Outliers’ numbers, Variance can be
differentiated a bit for the number of the vectors. The deviation seems to affect a lot the
range of the values each time, we see for deviation=5 values ,on average, lower than 5
but for deviation=25 or 50 the values between 600 and 2600.Lambda doesn’t seem to
affect the Variance so much except the case of deviation=5 where the values for
lambda=5 are lower comparing to the ones with lambda=0.2.PCA and no PCA results
are not very different for the same number of vectors and this is normal because PCA
doesn’t affect the calculation of the Variance for each dimension. We could have
excluded the results for PCA but we put them for statistical reasons.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 61

6. Conclusions

In this Thesis we saw in theory the concepts of Cloud Computing, Mobile Computing,
the definitions of a Cloud, of a Cloudlet and the concept of cooperative Caching of the
nodes in a Cloudlet but practically we implemented the Hilout algorithm on data vectors
that try to enter a Cloudlet in a simulation level in order to provide an intelligent scheme
that detect Outliers. For this purpose, we used the CloudSim framework.

In our scenario the input data vectors include coordinates from IoT devices, that can be
within the range of 2 to 10, and the values of these coordinates-dimensions are given by
the Gaussian distribution that every 10 vectors its mean deviates by a factor that is
produced by the Exponential distribution. The scheme we applied for the Outliers’
detection uses the Hilout Algorithm with a temporal approach. Not only the distance
between the stored vectors and the incoming one is taken into account for the decision
to let it enter the Cloudlet but also a shifting time window. Each time the algorithm
compares the timestamps of the vectors that are considered as neighbors with the
timestamps of this window and adds accordingly a weight value that is taken into
consideration plus the distances in order to decide if the incoming vector is an outlier or
not.

In addition, we saw some theoretical information regarding the Gaussian and
Exponential Distribution but also we included in our scenario the case of PCA
dimensions’ reduction. PCA dimension reduction was used in an alternate
implementation of the Hilout in order to diagnose if this feature is going to differentiate
the results comparing to the simple case.

Last but not least, we ran our experiments based on two main cases: Hilout applied
without PCA, Hilout applied with PCA. The configurations of the dataset were: for 2-10
dimensions, for deviation parameter of the formula of Gaussian: 5,25,50 and for lambda
parameter of the formula of Exponential: 0.2,5. The results showed that the most
important factor is the deviation parameter and more Outliers are detected on average
while it increases. The case with PCA gave more or less similar results with the simple
case. In our results we provided also the Variance per dimension in order to provide
some statistical conclusions regarding the different configurations.

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 62

ABBREVIATIONS - ACRONYMS

IaaS Infrastructure as Service

PaaS Platform as Service

SaaS Software as Service

MaaS Monitoring as a service

QoS Quality of Service

MCC Mobile Cloud Computing

AAA Authentication,Authorization,Accounting

SOAP Simple Object Access Protocol

DIC Data Intensive Computing

IoT Internet of Things

OCR Optical Character Recognition

VM Virtual Machine

PCA Principal Component Analysis

An Intelligent scheme for Outliers’ detection on a Cloudlet

D. Milios 63

REFERENCES

[1] Mobile Cloud Computing by Lalit Kumar, Nishant Malik, Gourav Agghi, Ajay Anand
[2] Mobile Cloud Computing: A Tool for Future by Dr. Atul Gonsai and Mr. Rushi Raval
[3] Mobile Cloud Computing - IEEE COMSOC MMTC E-Letter by Dijiang Huang
[4] MOBILE CLOUD COMPUTING AS FUTURE FOR MOBILE APPLICATIONS by C Shravanthi,

H S Guruprasad
[5] Mobile Cloud Computing: Implications and Challenges by M. Rajendra Prasad Jayadev Gyani

 P.R.K. Murti
[6] A Review on Mobile Cloud Computing by S M Shamim, Angona Sarker, Ali Newaz Bahar

and Md. Atiqur Rahman
[7] A Mobile Cloud Computing Architecture with Easy Resource Sharing by Debabrata Sarddar

and Rajesh Bose
[8] The Case for VM-Based Cloudlets in Mobile Computing by Mahadev Satyanarayanan,

Paramvir Bahl, Ramón Cáceres and Nigel Davies
[9] Cloudlets: Bringing the cloud to the mobile user by Tim Verbelen, Pieter Simoens, Filip De Turck

and Bart Dhoedt
[10] Supporting Cooperative Caching in Ad Hoc Networks by Liangzhong Yin and Guohong Cao
[11] Cooperative Caching Framework for Mobile Cloud Computing by Preetha Theresa Joy & K. Poulose

Jacob
[12] Mobile Cloud Computing: A Comparison of Application Models by Dejan Kovachev, Yiwei Cao

and Ralf Klamma
[13] Mobile cloud computing: A survey by Niroshinie Fernando, Seng W. Loke and Wenny Rahayu
[14] Central Controller Framework for Mobile Cloud Computing by Debabrata Sarddar1, Priyajit Sen2

and Manas Kumar Sanyal
[15] Implementation and Evaluation of Mobile-Edge Computing Cooperative Caching – Master Thesis by

Morteza Neishaboori for Aalto University School of Science Master's Programme in ICT Innovation
[16] https://en.wikipedia.org/wiki/Dimensionality_reduction
[17] https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-

eigenvectors-eigenvalues-and-dimension-reduction/
[18] DATA MINING Concepts and Techniques (3rd edition) by Jiawei Han, Micheline Kamber, Jian Pei
[19] https://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
[20] http://hyperphysics.phy-astr.gsu.edu/hbase/Math/gaufcn.html
[21] https://www.britannica.com/topic/normal-distribution
[22] https://stats.stackexchange.com/questions/126351/reasons-for-data-to-be-normally-distributed
[23] http://www.statisticshowto.com/exponential-distribution/#poisson
[24] https://en.wikipedia.org/wiki/Quantile_function
[25] https://en.wikipedia.org/wiki/Exponential_distribution
[26] https://www.ck12.org/statistics/Variance-of-a-Data-Set/lesson/Calculating-Variance-PST/
[27] http://www.cloudbus.org/cloudsim/

https://en.wikipedia.org/wiki/Dimensionality_reduction
https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-eigenvalues-and-dimension-reduction/
https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-eigenvalues-and-dimension-reduction/
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
http://hyperphysics.phy-astr.gsu.edu/hbase/Math/gaufcn.html
https://www.britannica.com/topic/normal-distribution
https://stats.stackexchange.com/questions/126351/reasons-for-data-to-be-normally-distributed
http://www.statisticshowto.com/exponential-distribution/#poisson
https://en.wikipedia.org/wiki/Quantile_function
https://en.wikipedia.org/wiki/Exponential_distribution
https://www.ck12.org/statistics/Variance-of-a-Data-Set/lesson/Calculating-Variance-PST/
http://www.cloudbus.org/cloudsim/

