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ABSTRACT

Semantic Web has been designed for processing tasks without human intervention. In
this context, the term machine processable information has been introduced. In most
Semantic Web tasks, we come across information incompleteness issues, aka uncertainty
and vagueness. For this reason, a method that represents uncertainty and vagueness
under a common framework has to be defined. Semantic Web technologies are defined
through a Semantic Web Stack and are based on a clear formal foundation. Therefore,
any representation scheme should be aligned with these technologies and be formally
defined. As the concept of ontologies is significant in the Semantic Web for representing
knowledge, any framework is desirable to be built upon it.

In our work, we have defined an approach for representing uncertainty and vagueness
under a common framework. Uncertainty is represented through Dempster-Shafer model,
whereas vagueness has been represented through Fuzzy Logic and Fuzzy Sets. For this
reason, we have defined our theoretical framework, aimed at a combination of the classical
crisp DL ALC with a Dempster-Shafer module. As a next step, we added fuzziness to this
model. Throughout our work, we have implemented metaontologies in order to represent
uncertain and vague concepts and, next, we have tested our methodology in real-world
applications.

SUBJECT AREA: Uncertainty handling

KEYWORDS: Uncertainty, Vagueness, Dempster-Shafer Model, Description Logics,
Semantic Web





ΠΕΡΙΛΗΨΗ

ΟΣημασιολογικός Ιστός στοχεύει στην διεκπεραίωση εργασιών σε υπολογιστικά συστήμα-
τα χωρίς την ανθρώπινη παρέμβαση. Προκειμένου να επιτευχθεί ο στόχος αυτός, εισάγεται
η έννοια της πληροφορίας που είναι επεξεργάσιμη από μηχανές. Στα περισσότεραπροβλή-
ματα, η έννοια της πληροφορίας είναι συνυφασμένη με την έννοια της αβεβαιότητας και της
ασάφειας. Και οι δύο έννοιες περιγράφονται με την κοινή ονομασία ατελής πληροφορία.
Δεδομένου ότι ο Σημασιολογικός Ιστός απαρτίζεται από ένα σύνολο τεχνολογιών και των
θεωριών που τις διέπουν, οποιαδήποτε μέθοδος αναπαράστασης θα πρέπει να βρίσκεται
σε συμφωνία με άλλες υπάρχουσες. Συγκεκριμένα, το θεωρητικό πλαίσιο πρέπει να
εντάσσεται ομαλά στη θεωρία που εφαρμόζεται στο Σημασιολογικό Ιστό. Η δε υλοποίησή
του, ιδανικό είναι, να υποστηριχθεί με χρήση μεθόδων του Σημασιολογικού Ιστού, στις
οποίες κυριαρχεί εκείνη των οντολογιών.

Στη διατριβή μας, ορίσαμε μία μέθοδο αναπαράστασης της αβεβαιότητας και της ασάφειας
μέσω ενός ενιαίου πλαισίου. Το μοντέλοDempster-Shafer χρησιμοποιήθηκε για την αναπα-
ράσταση της αβεβαιότητας και το μοντέλο Ασαφούς Λογικής και Ασαφών Συνόλων για την
αναπαράσταση της ασάφειας. Για το λόγο αυτό, ορίσαμε το θεωρητικό πλαίσιο, στοχεύο-
ντας σε ένα συνδυασμό ALC Λογικών Περιγραφών (Description Logics) με το μοντέλο
Dempster-Shafer. Κατά τη διάρκεια της έρευνάς μας υλοποιήσαμε μετα-οντολογίες για
την αναπαράσταση της αβεβαιότητας και της ασάφειας και στη συνέχεια μελετήσαμε την
συμπεριφορά τους σε πραγματικές εφαρμογές.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Χειρισμός αβεβαιότητας

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: Αβεβαιότητα, Ασάφεια, Dempster-Shafer Model, Λογικές Περιγραφών,
Σημασιολογικός Ιστός





ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Το πλαίσιο του Σημασιολογικού Ιστού (Semantic Web) υποβάλλει τη διεκπεραίωση
εργασιών σε υπολογιστικά συστήματα χωρίς την ανθρώπινη παρέμβαση. Όλες οι
τεχνολογίες του Σημασιολογικού περιγράφονται μέσω της Στοίβας Σημασιολογικού Ιστού
(Semantic Web Stack). Η έννοια της οντολογίας είναι μία απο τις βασικές τεχνολογίες
που περιγράφονται στη Στοίβα Σημασιολογικού Ιστού. Ο ρόλος του πράκτορα (agent)
έχει κεντρικό ρόλο στο περιβάλλον του Σημασιολογικού Ιστού. Ένας πράκτορας
μπορεί να οριστεί σαν ένας μηχανισμός αναζήτησης πληροφορίας. Ένας τέτοιος
μηχανισμός προϋποθέτει ένα πλαίσιο αποφασισιμότητας (decisionmaking) και ανάκτησης
πληροφορίας (information extraction). Η πληροφορία πολλές φορές χαρακτηρίζεται από
αβεβαιότητα και ασάφεια, κάτι το οποίο πρέπει να ληφθεί υπόψη στο πλαίσιο αυτό.

Η οντολογία αποτελεί μία βασική έννοια του Σημασιολογικού Ιστού. Σε ένα περιβάλλον
Σημασιολογικού Ιστού μία οντολογία ορίζεται μέσω της Web Ontology Language (OWL).
Η πιο διαδεδομένη διάλεκτος της OWL βασίζεται στις Λογικές Περιγραφών (Description
Logics). Οι Λογικές Περιγραφών ουσιαστικά επιτρέπουν την αναπαράσταση ενός πεδίου
γνώσης. Η αναπαράσταση ουσιαστικά ανάγεται στην ανάθεση μίας τιμής αληθές / ψευδές,
η οποία αποδίδεται μέσω μίας ερμηνείας (interpretation). Οι Λογικές Περιγραφών ορίζουν
μία Βάση Γνώσης (Knowledge Base) μέσω:

• Ενός συνόλου αξιωμάτων εννοιών (TBox)

• Ενός συνόλου αξιωμάτων σχέσεων (RBox)

• Ενός συνόλου αξιωμάτων αναθέσεων τιμών (ABox)

Μία ερμηνεία ορίζεται ως I = (∆I , ·I), όπου το ∆I είναι ο τομέας ερμηνείας και το ·I είναι
η συνάρτηση ερμηνείας.

Τα περισσότερα προβλήματα στο Σημασιολογικό Ιστό χαρακτηρίζονται από την έννοια της
αβεβαιότητας και της ασάφειας. Η αβεβαιότητα ουσιαστικά αναφέρεται σε περιπτώσεις
ελλιπούς πληροφορίας, ενώ η ασάφεια περιγράφει πληροφορία που δεν είναι σαφώς
ορισμένη. Ένα πλαίσιο το οποίο θα ενσωματώνει αβέβαιη και ασαφή πληροφορία σε ένα
περιβάλλον Σημασιολογικού Ιστού θα συμβάλλει στην αποτελεσματικότερη αναπαράσταση
και διαχείριση της πληροφορίας. Για μία τέτοια προσέγγιση απαιτείται η επέκταση μίας
Λογικής Περιγραφών με έναν τέτοιο τρόπο ώστε να επιτρέπεται η ανάθεση μίας τιμής
αλήθειας στο διάστημα [0,1]. Στην δική μας προσέγγιση ουσιαστικά επεκτείναμε τη Λογική
Περιγραφών ALC με βαθμίδες αβεβαιότητας και ασάφειας.

Σαν παράδειγμα για την ανάγκη των παραπάνω, ας θεωρήσουμε ένα σύστημα συστάσεων
(recommender system) το οποίο αφορά ξενοδοχεία. Έστω ότι έχουμε την πρόταση ”το
ξενοδοχείο h1 έχει ένα κόστος ανάμεσα σε 50 και 100 EURO”. Αυτό πρακτικά σημαίνει
ότι δεν γνωρίζουμε το ακριβές κόστος, αλλά ένα εύρος κόστους. Επιπλέον, θεωρούμε



το ερώτημα ”Αναζητώ ένα ξενοδοχείο χαμηλού κόστους”. Στο συγκεκριμένο πρόβλημα
πρέπει να λάβουμε υπόψη:

• Αβεβαιότητα, λόγω ελλιπούς πληροφορίας όσον αφορά την ακριβή τιμή του κόστους

• Ασάφεια, λόγω του μη συγκεκριμένου ορισμού ”χαμηλό κόστος”

Στην προσέγγισή μας, για την αναπαράσταση της αβεβαιότητας εφαρμόσαμε το μοντέλο
Dempster-Shafer, μία μέθοδο η οποία παραδοσιακά χρησιμοποιείται στην αναπαράσταση
ελλιπούς πληροφορίας. Οι βασικές συναρτήσεις σε αυτό το μοντέλο είναι η βασική ανάθεση
πιθανότητας (basic probability assignment), η συνάρτηση Bεβαιότητας (Belief function)
και η συνάρτηση Αληθοφάνειας (Plausibility function). Επιπλέον, θεωρούμε ένα σύνολο
διακριτών γεγονότων (frame of discernment). Μέσω των συναρτήσεων μπορούμε να
αναπαραστήσουμε ένα σύνολο από ”πεποιθήσεις” (beliefs) όσον αφορά στοιχεία του δυνα-
μοσυνόλου του συνόλου διακριτών γεγονότων. Επιπρόσθετα, ο κανόνας συνδυασμού
του Dempster (Dempster’s rule of Combination) επιτρέπει το συνδυασμό ανεξάρτητων
”πεποιθήσεων”.

Για την αναπαράσταση της ασάφειας χρησιμοποιείται η θεωρία των Ασαφών Συνόλων και
της Ασαφούς Λογικής. Στον τομέα των Λογικών Περιγραφών υπάρχουν διάφορα πλαίσια
που επεκτείνονται με Ασαφή Λογική. Αυτά τα πλαίσια ουσιαστικά αναθέτουν στα διάφορα
αξιώματα ένα βαθμό συμμετοχής (membership degree) στο διάστημα [0,1].

Αρχικά, μελετήσαμε το πρόβλημα της αβεβαιότητας και της ασάφειας μεμονωμένα. Στην
κατεύθυνση αυτή αρχικά η έρευνα εστίασε σε μία προσέγγιση για την ανάπτυξη μίας
οντολογίας, η οποία βασίζεται στο μοντέλο Dempster-Shafer. Στην εν λόγω προσέγγιση,
στοχεύσαμε στην αναπαράσταση της αβεβαιότητας της πληροφορίας, μέσω της μεθόδου
Dempster-Shafer. Για το σκοπό αυτό, προσαρμόσαμε το μοντέλο Dempster-Shafer σε
ένα περιβάλλον οντολογίας.

Στη συνέχεια, η έρευνά μας επικεντρώθηκε στην περιγραφή μίας οντολογίας
αβεβαιότητας, καθώς επίσης και μίας μεθόδου συλλογιστικής για δεδομένα που
χαρακτηρίζονται από αβεβαιότητα και ασάφεια. Η μέθοδος κάνει χρήση της έννοιας
των ομότιμων (peers), οι οποίοι ορίζονται σαν μηχανές επεξεργασίας. Σε κάθε ομότιμο
αντιστοιχεί ένα μέρος της πληροφορίας με τη μορφή κανόνων και γεγονότων, π.χ. «Όλα
τα ξενοδοχεία 5 αστέρων έχουν πισίνα». Όσον αφορά το Σημασιολογικό Ιστό, η γλώσσα
των οντολογιών είναι η OWL. Στο πλαίσιο αυτό, έγινε ο ορισμός μίας ασαφούς οντολογίας
(fuzzy ontology) με επέκταση των Λογικών Περιγραφών (Fuzzy DL SROIQ(D) ) στις
οποίες αυτή βασίζεται. Οι πιθανοθεωρητικές βάσεις γνώσης (probabilistic knowledge
bases) χρησιμοποιούνται για να αναπαρασταθεί τόσο η αβέβαιη όσο και η ασαφής
πληροφορία έχοντας σαν δεδομένο τη δυνατότητα αναπαράστασης της κάθε μιας με το
φορμαλισμό της άλλης.

Δεδομένου του όγκου της πληροφορίας που ενδέχεται να διαχειρίζεται ο σημασιολογικός
ιστός, η μελέτη μας συμπεριελαβε και περιβάλλοντα μεγάλων δεδομένων (big data). Η
έννοια των μεγάλων δεδομένων αναπτύχθηκε τα τελευταία χρόνια σαν αποτέλεσμα της
ραγδαίας αύξησης του όγκου των δεδομένων (data boom). Όσον αφορά τις οντολογίες,



το πρόβλημα εντοπίζεται στον τρόπο με τον οποίο θα αποθηκεύσουμε την πληροφορία,
καθώς και στον τρόπο με τον οποίο θα την επεξεργαστούμε. Από την άλλη, οι μέθοδοι
αναπαράστασης αβέβαιης και ασαφούς πληροφορίας δεν μπορούν να εφαρμοστούν σε
περιβάλλοντα μεγάλου όγκου δεδομένων. Για την διαχείριση τέτοιου όγκου δεδομένων, η
διαίρεση της πληροφορίας σε ένα σύνολο από ομότιμους (peers) είναι εκμεταλλεύσιμη.

Η βασική συμβολή της διατριβής είναι στην θεωρητική προσέγγιση (Dempster-Shafer
Fuzzy Description Logics). Όπως αναφέραμε προηγουμένως, στοχεύσαμε στην ενοποίηση
της αβεβαιότητας και της ασάφειας σε ένα ενιαίο πλαίσιο. Για την ανάπτυξη ενός πλαισίου
αναπαράστασης ατελούς πληροφορίας (imperfect information), έγινε η ενοποίηση τριών
διαφορετικών μοντέλων – θεωριών:

1. Μοντέλο Dempster-Shafer

2. Μοντέλο Ασαφούς Λογικής

3. Μοντέλο Λογικής Περιγραφών

Ο στόχος της ενοποίησης αποτελεί την δυνατότητα ορισμού ενός συνόλου αξιωμάτων τα
οποία θα έχουν βαθμούς αλήθειας (truthness degree) τόσο όσον αφορά την ασάφεια όσο
και την αβεβαιότητα.

Το πλαίσιο αυτό, ουσιαστικά επεκτείνει ένα μοντέλο Fuzzy Description Logics με ένα
μοντέλο Dempster-Shafer. Στη διατριβή μας έγινε ορισμός του συντακτικού (syn-
tax) και της σημασιο-λογίας (semantics) του μοντέλου αυτού. Επίσης, διευρενήθηκαν
θέματα αποφασισιμότητας και πολυπλοκότητας. Πιο συγκεκριμένα, σαν πρώτο βήμα
ασχοληθήκαμε με την ανα-παράσταση της αβεβαιότητας, χωρίς να λάβουμε υπόψη
θέματα ασάφειας. Προς αυτή την κατεύθυνση, θεωρήσαμε την Λογική Περιγραφών ALC
την οποία επεκτείναμε με συνθήκες βεβαιότητας (belief degree conditions) και συνθήκες
αληθοφάνειας (plausibility degree conditions). Για τον ορισμό της σημασιολογίας του
πλαισίου, εισάγαμε την έννοια του πιθανού κόσμου (possible world) σαν ένα σύνολο
αξιωμάτων που είναι αληθή στον εν λόγω πιθανό κόσμο. Το σύνολο των πιθανών κόσμων
το διαχειριζόμαστε σαν ένα διακριτό σύνολο που αντιστοιχεί στο πλαίσιο αναφοράς.
Επιπλέον, ορίζουμε μία ερμηνεία πιθανού κόσμου σαν μία βασική ανάθεση πιθανότητας
με πεδίο ορισμού το δυναμοσύνολο του διακριτού συνόλου και πεδίο τιμών το διάστημα
[0,1]. Επίσης, βασιζόμενοι στο κανόνα συνδυασμού του Dempster, ορίσαμε την
Συνδυασμένη Dempster-Shafer συνεπαγωγή (Combined Dempster-Shafer entailment).
Για να την εφαρμόσουμε, θεωρούμε δύο ανεξάρτητες βάσεις γνώσης και συνδυάζουμε
γεγονότα που συνεπάγονται από τις δύο βάσεις.

Έπειτα, για την αναπαράσταση της ασάφειας, επεκτείναμε την ασαφή Λογική Περιγραφών
ALC (Fuzzy ALC), θεωρώντας τις ασαφείς ερμηνείες σαν πιθανούς κόσμους. Το σύνολο
αυτό των πιθανών κόσμων εκφράζει το σύνολο διακριτών γεγονότων σε ένα πλαίσιο De-
mpster-Shafer. Ορίσαμε την Dempster-Shafer Fuzzy ερμηνεία (Dempster-Shafer Fuzzy
Interpretation) η οποία βασίζεται πάνω στο δυναμοσύνολο του συνόλου των πιθανών
κόσμων. Στη προσέγγισή μας κληθήκαμε να ορίσουμε βαθμούς πεποίθησης σε ασαφή
σύνολα. Για να το πετύχουμε αυτό έπρεπε να λάβουμε υπόψη συναρτήσεις συμμετοχής



(membership functions). Για παράδειγμα η πρόταση < LowCost(hotel) 0.8 : 0.9 >
δηλώνει ένα ξενοδοχείο χαμηλού κόστους με ”πίστη” τουλάχιστον 0.9 και ”βαθμό συμμετο-
χής” τουλάχιστον 0.8.

Προκειμένου να εξεταστεί η χρήση του πλαισίου σε εφαρμογές, εστιάσαμε σε δύο διαφορε-
τικά πεδία. Το πρώτο αναφερόταν στα περιβάλλοντα ταύτισης (matchmaking environ-
ments). Ένα πρόβλημα ταύτισης βασίζεται στα λεγόμενα ”κριτήρια” (constraints). Ένα
παράδειγμα ενός τέτοιου πλαισίου είναι μία εφαρμογή ανεύρεσης εργασίας, όπου τόσο
ο αναζητών εργασία όσο και ο προσφέρων εργασία θέτουν ένα σύνολο από κριτήρια. Ο
στόχος είναι να ελεγθεί αν με βάση τα κριτήρια τα δύο μέρη μπορούν να ”ταιριάξουν”. Το
πρόβλημα γίνεται ακόμηπιο περίπλοκο όταν αναφερόμεστε σε περιβάλλον Σημασιολογικού
Ιστού, όπου ο όγκος της πληροφορίας είναι αρκετά μεγάλος. Τότε απαιτείται μία επιλογή
των διαθεσίμων πηγών πληροφορίας, κάτι το οποίο οδηγεί σε αβεβαιότητα. Επίσης,
όταν τα κριτήρια δεν είναι συγκεκριμένα, δηλαδή όταν χαρακτηρίζονται από ασάφεια, το
πρόβλημα γίνεται ακόμη πιο έντονο. Σε ένα περιβάλλον Σημασιολογικού Ιστού η ανα-
παράσταση της πληροφορίας γίνεται μέσω μίας οντολογίας. Για το σκοπό αυτό δημιουργή-
θηκε μία οντολογία και ένα σύνολο κανόνων (rules) οι οποίοι έχουν σαν στόχο την εξαγωγή
ενός παράγοντα ταύτισης(matchmaking degree). Για την εξαγωγή του συγκεκριμένου
παράγοντα λάβαμε υπόψη τόσο έναν βαθμό συμμετοχής όσο και έναν βαθμό αβεβαιότητας
(uncertainty degree). Η αναπαράσταση του βαθμού αβεβαιότητας έγινε μέσω ενός μοντέ-
λου Dempster-Shafer. Στη μελέτη της περίπτωσής μας θεωρήσαμε τα παρακάτω στοιχεία:

• Ζητών εργασία (Job seeker)

• Προσφέρων εργασία (Job advertisement)

• Ασαφής Οντολογία (Fuzzy Ontology Repository)

Τα κριτήρια είναι ένα σύνολο από περιορισμούς που τίθενται από τον Ζητούντα και τον
Προσφέροντα εργασία. Για κάθε κριτήριο υπάρχει μία ”ιδανική τιμή”. Όταν η τιμή αυτή
μειώνεται ο βαθμός ικανοποίησης (satisfaction degree) επίσης μειώνεται. Μέσω αυτής
της αναπαράστασης ορίζουμε τον ασαφή βαθμό ικανοποίησης (Fuzzy constraint degree)
για τα δύο μέρη, το ”Ζητών εργασία” και το ”Προσφέρων εργασία”. Επιπλέον, ορίσαμε ένα
σύνολο βαρών (weights) για όλα τα κριτήρια και συσχετίσαμε μία συνάρτηση ανάθεσης
πιθανότητας με αυτά τα βάρη. Στο τέλος ορίσαμε το βαθμό ταύτισης για τα δύο μέρη ως
εξής: Matchmaking ≡ JobSeeker ⊓ JobAdvertisement.

Το δεύτερο πεδίο εφαρμογών ήταν τα συστήματα συστάσεων, όπως για παράδειγμα ένα
σύστημα όπουπροτείνει ένα συγκεκριμένο ξενοδοχείο σε κάποιον χρήστη. Αρχικά, θεωρή-
σαμε μόνο περιπτώσεις αβεβαιότητας. Στην κατεύθυνση αυτή, ορίσαμε μία οντολογία
αβεβαιότητας (uncertainty ontology) η οποία βασίστηκε στο μοντέλο Dempster-Shafer. Η
οντολογία μας αποτελείται από ένα σύνολο από έννοιες όπως:

• Έννοια πιθανού κόσμου (Possible world concept)

• Έννοια δυναμοσυνόλου (Power set concept)



καθώς και ένα σύνολο σχέσεων όπως:

• ”έχει τιμή πεποίθησης” (hasBel)

• ”έχει τιμή βασικής ανάθεσης πιθανότητας” (hasBpa)

Σε επόμενο βήμα θεωρήσαμε την ένταξη ασαφών κριτηρίων. Ο χρήστης αναζητά ένα
ξενοδοχείο, θέτοντας ασαφή κριτήρια, π.χ ξενοδοχείο χαμηλού κόστους, κοντά στο μετρό
κλπ. Στην εφαρμογή αυτή θεωρήσαμε την πλήρη επέκταση της Γλώσσας Οντολογίας της
διατριβής, ούτως ώστε να γίνεται αναπαράσταση της αβεβαιότητας και της ασάφειας. Για
τον συνδυασμό των Dempster-Shafer Fuzzy OWL αξιωμάτων (OWL axioms) εφαρμόσαμε
την τεχνική Μοντελοποίησης Ασαφών Συστημάτων (Fuzzy Systems Modelling Technique
- FSM). Αυτή η τεχνική επιτρέπει τον ορισμό ενός συνόλου κανόνων, όπου τόσο το μέρος
της συνθήκης όσο και το συμπέρασμα περιγράφονται μέσω ασαφών γλωσσικών όρων
που συνοδεύονται από ένα βαθμό συμμετοχής. Η εφαρμογή αυτή που αποτελεί ένα
πρόβλημα πραγματικής κλίμακας, αξιολογήθηκε από πλευράς ακρίβειας (precision) και
ανάκλησης (recall) και αποδείχθηκε πολύ ικανοποιητική, αναδεικνύοντας την εφαρμοσιμό-
τητα του πλαισίου.





To my daughter.



CONTENTS

1 INTRODUCTION 27
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.1 Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2 Thesis steps - Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 BACKGROUND AND RELATED WORK 31
2.1 Semantic Web Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Semantic Web Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.3 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Description Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 The most well-known DLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.2 DLs and OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Uncertainty and Vagueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Fuzzy Logic and Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Uncertainty Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Dempster-Shafer Model and Dempster’s rule of Combination . . . . . . . . . . . . . . 43

2.6.1 Computing combined beliefs - Monte Carlo Algorithms . . . . . . . . . . . . . . . . 46
2.6.2 Evidential operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.3 Generalizing Dempster-Shafer theory for Fuzzy Sets . . . . . . . . . . . . . . . . . 47

2.7 Probabilistic Knowledge Bases - Probabilistic Description Logics - Probabilistic Ontolo-
gies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7.1 Entailment approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8 Possibilistic Knowledge Bases Possibilistic Description Logics and Possibi-

listic Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.9 Fuzzy Description Logics - Fuzzy Ontologies . . . . . . . . . . . . . . . . . . . . . . 54
2.10 Probability Theory - Possibility Theory - Dempster Shafer Theory - Fuzzy Logic . . . . 56

3 THE INFRASTRUCTURE: DEMPSTER-SHAFERONTOLOGICALREPRESEN-
TATION 59

3.1 Uncertain knowledge representation and Ontologies . . . . . . . . . . . . . . . . . . 59
3.1.1 Entailment method for interval . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.2 Entailment method for a set of values . . . . . . . . . . . . . . . . . . . . . . . . 63



3.1.3 Dempster-Shafer ontology and Uncertainty - A Hotel Metaclassifier case
study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Imperfect knowledge representation and Ontologies . . . . . . . . . . . . . . . . . . 65
3.2.1 Semantic Web and Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Fuzzy DLs and Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.3 Information Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Fuzzy knowledge representation and Ontologies - A Matchmaking case study . . . . . 75
3.3.1 Fuzzy Dempster-Shafer Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.2 Fuzzy Dempster-Shafer Ontology and Matchmaking . . . . . . . . . . . . . . . . . 77
3.3.3 Matching Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 TOWARDS THE DEFINITION OF THE FRAMEWORK 81
4.1 Dempster-Shafer Theory and Logical Extensions . . . . . . . . . . . . . . . . . . . . 82
4.2 Dempster-Shafer Description Logics . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 The Description Logic ALC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Syntax of DS −ALC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 Semantics of DS −ALC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Semantics and Soundness . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.3 Combined Dempster-Shafer entailment . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Decidability and Reasoning in Dempster-Shafer Description Logics . . . . . . . . . . 90

5 DEMPSTER-SHAFER FUZZY DESCRIPTION LOGIC 95
5.1 Basics Adapted from Fuzzy ALC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Syntax of Dempster-Shafer Fuzzy DL . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2 Combination of Dempster-Shafer Fuzzy Assertions . . . . . . . . . . . . . . . . . 101

5.4 Decidability and Reasoning in Dempster-Shafer Fuzzy Description Logics . . . . . . . 102
5.4.1 Complexity issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 A Dempster-Shafer Fuzzy Meta-Ontology . . . . . . . . . . . . . . . . . . . . . . . . 107

6 APPLICABILITY AND EVALUATION 109
6.1 Dempster-Shafer Fuzzy Metaontology - An application . . . . . . . . . . . . . . . . . 109
6.2 Big Data Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 A Matchmaking Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 CONCLUSIONS AND FUTURE WORK 125

ABBREVIATIONS - ACRONYMS 129

APPENDICES 129

REFERENCES 138





LIST OF FIGURES

Figure 1: Semantic Web Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2: Ontology Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 3: System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 4: Score Membership Functions . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 5: Hotel Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 6: Matchmaking Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . 122





LIST OF TABLES

Table 1: DL Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 2: OWL Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 3: OWL Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 4: The Family of Fuzzy Logics . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 5: DL Syntax and Semantics: Concepts . . . . . . . . . . . . . . . . . . 69
Table 6: DL Syntax and Semantics: Roles . . . . . . . . . . . . . . . . . . . . . 69
Table 7: DL Syntax and Semantics: Assertions . . . . . . . . . . . . . . . . . . 70

Table 8: Dempster-Shafer Interpretation . . . . . . . . . . . . . . . . . . . . . . 90

Table 9: Hotel Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 10: Recall and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112





Managing Uncertainty and Vagueness in Semantic Web

1. INTRODUCTION

1.1 Problem statement

The Internet has paved the way for the evolution of alternative methods of communication.
E-commerce, e-banking and online stores are some of them. Traditionally, computers
were designed for performing numerical calculations. In addition, the content of Web
information has been designed for human consumption, i.e. it is human oriented. The
evolution of search engines gave a boost at the popularity of WWW, but at the same time
made it necessary for the existence of a Web (or Web information) suitable for machines
(or agents).

Towards this concept, Semantic Web was the vision of Tim Berners-Lee who stated: ”Ma-
chines become capable of analyzing all the data on the Web - the content, links, and
transactions between people and computers. ”A Semantic Web”, which should make
this possible, has yet to emerge, but when it does, the day-to-day mechanisms of trade,
bureaucracy and our daily lives will be handled by machines talking to machines, leav-
ing humans to provide the inspiration and intuition. The ”intelligent agents” people have
touted for ages will finally materialize” [15].

The Semantic Web will contribute in the evolution of many web applications [5], such as:

• Knowledge Management

• Business-to-Computer

• Electronic Commerce

• Wikis

To sum up, the Semantic Web vision introduces the notion of machine-oriented informa-
tion. This information comes as a result of data existing in various web sources. In-
formation extraction from these sources can be very difficult in many cases. Reliability,
ambiguity or incompleteness issues are usual problems considering Web information, re-
sulting in deficient knowledge. Any method that represents machine-oriented information
should provide a well-defined description of imprecise knowledge [90, 77].

Imprecise knowledge is usually divided into:

• Uncertainty

• Vagueness

Uncertainty refers to situations of information incompleteness whereas vagueness de-
scribes imprecise information, i.e concepts with not well-defined meaning. Generally,
uncertainty and vagueness are considered two different notions and as such different
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theories have been defined for representing them. Probability theory, Dempster-Shafer
theory and Possibility theory are some frameworks designed for uncertainty representa-
tion [42, 113]. On the other hand, Fuzzy Logic and Fuzzy Sets [142] is the theory that
lies behind vagueness representation. In many cases, we come across situations where
both uncertainty and vagueness coexist. Thus, we need a common framework in order to
represent uncertainty and vagueness concepts. Both notions can be defined as imperfect
information.

Regarding Semantic Web, ontologies is the core concept for knowledge representation.
Ontologies are represented through theWeb Ontology Language (OWL) with OWL2 being
the current version [129]. Description Logics (DLs) [9] have been employed extensively in
Semantic Web, as they are the logics behind the most widely used version of OWL, OWL-
DL. DLs allow for the representation of a domain of knowledge, by providing Concepts,
along with Roles. The necessity to capture uncertain and vague knowledge in Semantic
Web has been employed in extensions of DLs, resulting in Probabilistic [83], Possibilistic
[103] and Fuzzy extensions [118, 121]. These extensions capture the problem of uncer-
tainty and vagueness separately and not as a common framework.

1.2 Objectives

1.2.1 Main Idea

The main goal of this dissertation is to define a framework for representing imperfect infor-
mation, by extending crisp knowledge representation methods. By ”imperfect”, we refer
either to uncertain or vague concepts. The general idea is to define a knowledge rep-
resentation scheme, that allows for statements with uncertainty and vagueness degree
conditions. This representation assigns a truth degree in the interval [0, 1] rather than a
true/false value. Our framework is aligned with semantic web knowledge representation
frameworks and it is defined based on these theories. Thus, our approach can be defined
as a ”semantic web knowledge representation approach for representing uncertain and
vague concepts”.

1.2.2 Thesis steps - Achievements

More precisely, throughout our dissertation we have proceeded through the following
steps. For each step the reached achievements are also presented:

• Propose a definition of an ”imperfect” Description Logic along with an ”imperfect”
Ontology, that captures both uncertain and vague concepts. Towards this concept
the following sub-goals have been achieved:

– Define ontologies that capture uncertain and vague concepts: An uncertainty
ontology and an entailment method which is based on Dempster-Shafer model
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are described and implemented.
– Define an extension of a crisp DL with Belief - Plausibility Degrees:
We propose a framework that employs Dempster-Shafer theory in a Descrip-
tion Logic Knowledge Base environment. More precisely, we have defined a
Dempster-Shafer DL Knowledge Base, in order to represent uncertainty in a
Description Logics framework. In addition, a combination method of indepen-
dent Dempster-Shafer DL Knowledge Bases has been proposed, based on
Dempster’s rule of Combination.

– Define an extension of a fuzzy DL with Belief Degrees: Vague information has
been emerged as a main issue in Semantic Web community. Vagueness is
traditionally represented by Fuzzy Set theory. Besides vagueness, Semantic
Web queries often have to deal with information incompleteness, aka uncer-
tainty. This kind of information can be represented through Dempster-Shafer
theory, that also enables distributed information fusion. Imperfect information,
i.e uncertainty and vagueness, should be represented and manipulated under
a common framework. We propose such a framework by defining a fuzzy De-
scription Logic extended with Dempster-Shafer theory. Furthermore, we regard
our method as a DL extension and we implemented it by a meta-ontology that
captures Dempster-Shafer Fuzzy statements.

• Testing and evaluating our framework in real-world case studies: In order to test
our methodology in real-world environments, we have tested two application areas,
recommender systems and matchmaking environments. We have collected a set of
data, detect uncertain and vague pieces of evidence and proceeded by employing
suitable applications for manipulating them.

Consequently, for defining a unified framework for representing uncertainty and vague-
ness, we decided to combine the following theories:

• Fuzzy Logic

• Dempster-Shafer Theory

• Description Logics
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2. BACKGROUND AND RELATED WORK

2.1 Semantic Web Concepts

At first, web data were designed taking into account human readers, with HTML being the
most used language. The problem is that HTML does not provide for metadata, i.e. data
about data. Metadata capture the semantic regarding Semantic Web data. Towards this
concept, XML language have been employed.

In general, information processing within the Semantic Web is done by “agents”. As it
is referred in [5], a semantic web agent “will receive some tasks and preferences from
a person, seek information from web sources, communicate with other agents, compare
information about user requirements and preferences, select certain choices, and give
answers to the users”. It seems that the role of an agent actually demands a decision
making mechanism, which in turn presupposes a method for handling uncertainty and
vagueness tasks. They are generally characterized as pieces of software that operate
autonomously and proactively. In Semantic Web, an agent usually employs the following
technologies:

• Metadata

• Ontologies

• Logic

In the following of this section we overview the notions of Ontologies and Logic in the
Semantic Web environment, starting by presenting the SW stack layer architecture.

2.1.1 Semantic Web Layers

Generally, the Semantic Web is regarded as a set of layers that form a stack, with each
layer being built on top of another. In order to build this stack, two principles are followed
[5]:

• Downward compatibility: An agent that knows a layer, necessarily knows lower lay-
ers

• Upward partial understanding: Awareness of a layer means that partial knows higher
levels

At the bottom of the stack resides XML, which is a language that allows for structured
web data with a user-defined vocabulary. Next, there is RDF and RDF Schema. For an
overview of XML, RDF and RDF Schema see [34]. RDF is a data model that is employed
for writing simple statements about Web objects (resources). In addition, RDF Schema

31 L. Karanikola



Managing Uncertainty and Vagueness in Semantic Web

provides for organizing Web objects into hierarchies. Though tools for writing ontologies
are provided, there is a need for more advanced ontology languages. Thus, the next level
is the ontology languages, that allow for representations of more complex relationships,
through a variety of dialects. The Logic layer provides with the means for writing declara-
tive knowledge. The Proof layer is the deductive process, along with the representation
of proofs and proof validation. Finally, the Trust layer considers digital signatures and in
general knowledge based on recommendations by trusted agents. Fig 1 summarizes the
Semantic Web stack.

Figure 1: Semantic Web Stack

2.1.2 Ontologies

As previously mentioned, there is a need for web information to be represented in a way
that is understandable by machines. To achieve this, the Semantic Web incorporates a
lot of technologies, which are described in what we call a semantic web stack. In addition,
in [60], the semantic web architecture is regarded as “two-towers” rather than a stack .
Ontologies and rules are the most significant among these technologies. Generally, an
ontology ”is an explicit and formal specification of a conceptualization” [5]. That means
that it is a conceptualization of a domain and provides a shared understanding of the
domain. This term originates from philosophy and is the literal translation of the Greek
word οντολογία. As it is referred in [62] definitions for objects as well as types of objects
should be provided. We can consider that an ontology consists of:

1. Types of entities that describe a specific domain

2. Properties of those entities

L. Karanikola 32



Managing Uncertainty and Vagueness in Semantic Web

These are expressed as:

• A finite list of terms: They denote important concepts (classes) of a domain

• Relationships between terms: They denote hierarchies of classes

In Semantic Web, ontologies are defined through the OWL (Web Ontology Language)
family [129, 58], the ontology language recommended by W3C. There exist three dialects
of OWL: OWL-Full, OWL-DL and OWL-Lite. OWL-DL and OWL-Lite are based on de-
scription logics, which is a logic-based knowledge representation formalism for modeling
a domain in terms of concepts (classes), roles (properties / relations) and individuals [58],
[128]. Ontologies represent the semantics of the domain (in the case of SW the semantics
of the source).

The following are terms usually employed in Semantic Web ontologies [74]:

1. Class: It is a term employed to represent general qualities and properties of a group
of objects

2. Subclass: It is a term employed to represent a part of the object group

3. Individual: It is called an object and represents a single item of our world

4. Property: It describes qualities common to all the individuals of the class and repre-
sents relationships in ontologies

5. Property restriction: They are employed in order to ”shape” properties (e.g cardinality
restrictions)

2.1.3 Logic

As it is referred in [5] logic is the ”foundation of knowledge representation”. One of the
main characteristics of logic is the proof systems that exist that provide a way to reason in
order to inference new knowledge. In Semantic Web frameworks, logic aims at inferring
new ontological knowledge and even better serves as a decision making mechanism.
However, reasoning methods, usually, are suitable for crisp logic, i.e statements that are
true/false. As we will see next, in cases where uncertainty and vagueness exist, these
methods are not applicable.

Logic is described by the following properties:

• Formal languages aim at expressing knowledge

• Well-understood formal semantics

• Automated reasoners for inferring conclusions
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When we refer to Logic, we usually mean predicate logic (or first-order logic). Predicate
logic provides a set of rule systems. A subset of predicate logic with efficient proof systems
is called Horn logic. In this case, a rule has the form:

C1, . . . , Cn → D

where Ci, i = 1, . . . , n and D are atomic formulas. Moreover, rules are divided in two
categories:

• Deductive rules: If Ci, i = 1, . . . , n is true, then D is true

• Reactive rules: If Ci, i = 1, . . . , n is true, then actions is D

Another characteristic of predicate logic is that it is monotonic. This means that if a con-
clusion is drawn, then the validity of this conclusion is preserved, even if new knowledge
is added.

Another fragment of predicate logic is Description Logics [9]. There is a strong connection
between Description Logics and the Semantic Web. More precisely, as we will see next,
the most widely used dialect of the OWL language, OWL-DL, is based on Description
Logics.

2.2 Description Logics

Description Logics is a family of knowledge representation languages and provide a way
to ”represent knowledge in a structured and formally well-understood way” [9]. They be-
long to a more general category called description languages. These languages allow
the description of worlds providing constructors for building them [97, 9]. Generally, DLs
support expressions that are built from atomic concepts and atomic roles. Each DL offers
a specific level of expressiveness. DLs are a fragment First Order Logic (FOL), achieving
lower complexity in expense of limited expressivity.

At first, DLs were employed in order to define semantics for semantic networks and frames
[96]. The history of DLs can be summarized in five phases, as follows [96, 10]:

• Phase 0: This phase is characterized by the definition of semantic networks and
frames, aimed at representing structured knowledge [1965-1980].

• Phase 1 - [1980-1990]: The first DL system has been defined in this phase [23].

• Phase 2 - [1990-1995]: In this phase, tableau algorithms have been defined [109].

• Phase 3 - [1995-2000]: A set of optimized reasoners has been defined in this phase
[50]. In addition, the first approaches of fuzzy DLs have been emerged [118].

• Phase 4 - [2000 - Today]: A set of commercial implementation of reasoners has
been defined in this phase [57].
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Generally, DLs provide a way to ”represent knowledge in a structured and formally well-
understood way” [9].

The basic alphabets of a DL language (or alphabet) are the following:

• Concept names to name Atomic concepts - C, which can be regarded as unary
predicates

• Role names to name Atomic roles - R, which can be regarded as binary predicates

• Individual names to name Individuals - I

DLs use a set of axioms, for describing a state of the world. These axioms are divided
into the following categories:

• ABox, which represents knowledge about Named Individuals

• TBox, which represents knowledge between Concepts

• RBox, which represents knowledge between Roles

In general, a DL Knowledge Base is composed by the following items:

• Extensive knowledge, which is stored as ABox

• Intensive knowledge, which is stored as TBox and RBox

In addition, DLs come with a set of inference capabilities. Generally, the basic inference
problems regarding DLs are the following [10]:

• Consistency:
It aims at determining whether the knowledge base is non-contradictory.

• Subsumption:
It aims at determining subconcept - superconcept relationships. More precisely, a
concept C is subsumed by a concept D if all instances of C, are necessarily in-
stances of D.

• Instantiation:
It aims at determining instance relationships. More precisely, an individual i is an
instance of a concept C.

A DL Knowledge Base KB is defined as a triple:

KB =< A, T ,R >,

where A stands for ABox, T stands for TBox and R stands for RBox. A DL knowledge
base is often referred to as a DL ontology.
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As already mentioned, DLs are expressed by a family of languages. The simplest of them
is called ALC, an acronym for Attribute Language with Complement - DLs apply naming
convention, in order to describe the characteristics of the language-. The syntax of the DL
ALC considers a set of concept names, denoted as NC and a set of role names, denoted
as NR. According to [10], the sets of ALC concept descriptions is the smallest sets such
that:

• ⊤,⊥ and every concept name A ∈ NC is an ALC concept

• If C and D are ALC concepts and r ∈ NR, then C ⊓ D, C ⊔ D, ¬ C, ∀ r.C and ∃ r.C
are ALC concepts.

The semantics of description languages (and hence description logics) is related to inter-
pretations (and interpretation functions), which actually give semantics for concept and
role descriptions.

Definition 1. A DL interpretation is defined as I = (∆I , ·I), where ∆I is an interpretation
domain and ·I is an interpretation function.

An interpretation I = (∆I , ·I) maps every ALC concept to a subset of ∆I and every role
name to a subset of ∆I × ∆I . More precisely:

⊤I = ∆I , ⊥I = 0

(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI

¬ CI = ∆I \ CI

(∃ r.C)I = {x ∈ ∆I | There is some y ∈ ∆I with < x, y >∈ rI and y ∈ CI}
(∀ r.C)I = {x ∈ ∆I | For all y ∈ ∆I if < x, y >∈ rI , then y ∈ CI}

The TBox of a DL KB contains a set of axioms, divided in two categories:

1. Inclusions: These are axioms of the form C ⊑ D, where C, D are ALC concepts

2. Equalities: These are axioms of the form C ≡ D, where C, D are ALC concepts

The RBox of a DL KB contains a set of role inclusion axioms, of the form R1 ⊑ R2, where
R1, R2 are ALC roles.

Definition 2. An interpretation I is a model of an inclusion axiom C ⊑ D if CI ⊆ DI .
An interpretation I is a model of an equality axiom C ≡ D if CI = DI .

Definition 3. An axiom α is a consequence of a set of axioms O = {τ1, . . . , τn} or
O = {τ1, . . . , τn} entails α, written as O |= α if α holds in every model of O.

The ABox of a DL KB contains a set of axioms, divided in two categories:
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• Individual assertion: It states that an individual is an instance of a given concept. It
has the form x : C, where x is an individual name and C is a concept name.

• Pair of individuals assertion: It states that a pair of individuals in an instance of given
role. It has the form (x, y) : r, where x, y are individual names and r is a role name.

Definition 4. An interpretation I is a model an assertional axiom x : C if xI ∈ CI . In
addition, an interpretation I is a model an assertional axiom (x, y) : r if (xI , yI) ∈ rI .

Definition 5. It is stated that an interpretation I is a model of a TBox (or an ABox) if it
satisfies every TBox (or ABox) axiom.

As is described in [9], Description Logics offer a structured and formally well-understood
way to describe specific knowledge in a certain application domain. Using the atomic
concepts (or concept names) and atomic roles (or role names), as well as the Boolean
constructors conjunction ⊓, negation ¬, existential restriction ∃R.C, universal restriction
∀R.C etc., complex concepts or complex descriptions can be built. The set of constructors
provided each time defines the description logics’ language that is used. A description can
be defined as an equality axiom, whose left-hand side is an atomic concept.

As an example the concept ”Human and not Female” in a DL syntax is represented as:

Human ⊓ ¬ Female

As we see in this example, in order to define the description, the Boolean constructors
conjunction (⊓) and (¬) are employed. Other constructors are disjunction (⊔), existential
restriction (∃ r.C) and value restriction (∀ r.C). The descriptions are employed in order to
build ABox, TBox and RBox axioms of the KB. For example, the description

Working ⊓ Female ⊓ ∃ parent.Naughty

denotes the concept of an exhausted woman.

ABox axioms are employed in order to describe knowledge about individuals. For exam-
ple, a concept assertion has the form:

loukia :Mother

This assertion actually states that ”Loukia is an instance of the concept Mother”.

2.2.1 The most well-known DLs

In this subsection we will overview some of the most well-known DLs. As we have stated,
each DL follows a naming convention as a string of capital letters. AL(Attributive Langu-
age) is the most simplified DL. AL provides the following concept constructors:
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Table 1: DL Constructors

Label Constructor
U Concept Union
E Unrestricted Existential Restriction
C Complement, Concept Negation
R+ Transitive Roles
H Role Hierarchies
O Nominals
I Inverse Roles
F Functional Roles
N Number Restrictions
(D) Datatypes
R Additional Role Constructors
(o) Role Composition
Q Qualified Number Restrictions

1. Top and bottom concepts

2. Atomic concepts

3. Negation of atomic concepts

4. Concept intersection

5. Universal quantifications

6. Existential restrictions, restricted to the top concept

In addition, AL can be extended with the constructors summarized in Table 1, resulting in
various DLs. Some well known DLs are ALC FL− [22] EL [75] EL + + [8] DL-Lite [6] S,
which is an equivalent to ALIF [6] SHIF(D) [65] SHOIN (D) [63] SROIQ(D) [59]

2.2.2 DLs and OWL

DLs have gained their popularity due to their applicability in ontology languages. As it is
referred in paragraph 2.1.2 OWL is the language provided for defining Semantic Web on-
tologies. The building blocks of OWL resemble DLs ones. More precisely, OWL employs
classes (instead of concepts) and properties (instead of roles). OWL classes can either
be simple classes or defined based on other classes through a set of constructors (Table
2).

There exist a set of OWL axioms summarized in Table 3. In addition, in this table the
equivalence between OWL axioms and DL syntax is outlined.

OWL comes in three sublanguages:
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Table 2: OWL Constructors

Constructor DL syntax
intersectionOf C1 ⊓ · · · ⊓ Cn

unionOf C1 ⊔ · · · ⊔ Cn

complementOf ¬ C
oneOf {x1, . . . , xn}
allV aluesFrom ∀ p.C
someV aluesFrom ∃ r.C
hasV alue ∃ r.{x}
minCardinality (≥ n r)
maxCardinality (≤ n r)
inverseOf (r−)

Table 3: OWL Axioms

OWL Axiom DL syntax
subClassOf C1 ⊑ C2

equivalentClass C1 ≡ C2

subPropertyOf P1 ⊑ P2

equivalentProperty P1 ≡ P2

disjointWith C1 ⊑ ¬ C2

sameAs {x1} ≡ {x2}
differentFrom {x1} ⊑ ¬ {x2}
TransitiveProperty P transitive role
FunctionalProperty ⊤ ⊑ (≤ 1P )
InverseFunctionalProperty ⊤ ⊑ (≤ 1P−)
SymmetricProperty P ≡ P−
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• OWL Full: It employs all the OWL language primitives and it equivalent to first-order
logic.

• OWL DL: It is defined as a sublanguage of OWL Full, providing a restricted set of
constructors. It is named due to its correspondence with DLs and allows for efficient
reasoning support.

• OWL Lite: It is defined as a subset of OWLDL, providing a limited set of constructors.
Although it is easy to be implemented, the disadvantage is its restricted expressivity.

As we have stated previously, DLs are a fragment of First-Order-Logic (FOL). As such,
DLs preserve the following properties:

• Open-world assumption: It states that we cannot conclude a statement to be false
because we cannot show that it is true. The opposite is called closed-world assump-
tion.

• Non-unique-name assumption: It states that when two individuals are known by
different names, then they are not necessarily different ones.

When dealing with ontologies, we may come across situations when it is required to em-
ploy closed-world assumption, along with unique-name assumption. Towards this de-
mand, OWL DLP [48] has been defined, where DLP is an acronym for Description Logic
Programming. This fragment of OWL is defined as the largest fragment where the choice
between open/closed-world assumption and unique-name assumption makes no differ-
ence.

2.3 Uncertainty and Vagueness

Imperfect information includes uncertainty and vagueness concepts, which are described
as follows:

• Uncertainty: It refers to situations when information incompleteness exist in order to
decide about the truthness of a fact.

• Vagueness: It describes imprecise concepts, or concepts lacking clarity of definition

A good example of uncertainty and vagueness is given in [84], where the word “degree”
is used to describe both uncertainty and vagueness measurements, but with different
meaning. For example,

1. ”To some degree birds fly” (uncertainty)

2. ”To some degree Jim is blond and young” (vagueness)
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Table 4: The Family of Fuzzy Logics

Family t-norm α
⊗

β t-conorm α
⊕

β complement ⊖α implication α⇒ β
Zadeh min{α, β} max{α, β} 1− α max{1− α, β}

Gödel min{α, β} max{α, β}
{

1, α = 0
0, α > 0

} {
1, α ≤ β
β, α > β

}
Lukasiewicz max{α + β − 1, 0} min{α + β, 1} 1− α min{1− α + β, 1}

Product α× β α + β − α× β
{

1, α = 0
0, α > 0

} {
1, α ≤ β
β/α, α > β

}

3. ”Tomorrow, it will be a nice day” (uncertainty and vagueness)

The need for representing imperfect information in Semantic Web environments resulted
in the definition of ontologies with uncertain and vague concepts [84].

2.4 Fuzzy Logic and Fuzzy Sets

In this section, we overview the basics of Fuzzy Logic and Fuzzy Sets [150, 145, 11]. Fuzzy
logic [142] is the logic of imprecision and approximate reasoning [150]. It is the framework
for describing vagueness, by assigning truth values to linguistic variables [144] and aims
at representing the human way of thinking. The general idea is that Fuzzy Sets’ elements
can belong to some degree to the set. More precisely, vagueness actually considers
statements that are true to a certain degree, taken in the truth space [0,1]. In other words,
statements are graded. Vagueness is associated with a set of vague concepts, e.g low
cost. What is more is that vagueness is the result of ambiguity that describes information.
For example a $100 ticket can be considered expensive for some people and low cost
for others. The intuition behind the degree of membership is that the higher it is the more
related is the object to the vague concept.

A characteristic of vague statements is that they are truth functional. There are four cat-
egories of fuzzy logic [19], and actually we talk about ”families or fuzzy logics” (Table 4).

In [142], a fuzzy set is defined as ”a class of objects with a continuum of degrees of
membership”. In order to define a fuzzy set, a space of points, X, is determined first.
The space of points constitutes the vague concept. For example, if we are looking for low
cost tickets, then X represents all the tickets that are considered low cost. The degree of
membership for each object that belongs toX is assigned through a membership function
fA(x) where A is a fuzzy subset of X. This degree of membership is a number between
0 and 1 that is assigned to each class object.

Membership functions are mathematical tools for indicating flexible membership to a set,
modeling and quantifying the meaning of symbols. In order to represent a fuzzy set, one
way is to employ a set of membership functions. Some of them are:
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1. Trapezoidal

2. Triangular

3. Left-shoulder

4. Right-shoulder

Another characteristic of fuzzy sets are the fuzzy modifiers [16]. When applying to a fuzzy
set, this modifier actually changes the membership function. Formally, it is represented
as a function:

fm : [0, 1]→ [0, 1]

For example, the modifier very is usually defined as fvery(x) = x2.

To sum up, Fuzzy Logic can be defined as a logic of imprecise reasoning. It is a multiple-
valued logic with a continuum of truth values. As we will see in following sections, Fuzzy
Logic is employed in Description Logics environment allowing for knowledge representa-
tion and reasoning.

2.5 Uncertainty Modelling

Uncertainty can be modelled through various methods [156, 107, 35, 130]. Generally,
uncertainty can be divided into [111, 53]:

1. Aleatory Uncertainty: It results from the fact that a system can behave in random
ways. In that case, uncertainty is represented by relative frequencies.

2. Epistemic Uncertainty: It results from the lack of knowledge about a system. In that
case, uncertainty reflects subjective assessments of likelihood.

The main idea of the aforementioned notions is that, generally, people do not use the
probability measure to describe ignorance. This is the most usual cause of uncertainty on
the Semantic Web [51].

Generally, uncertainty is modelled through the notion of possible worlds often called states
or elementary outcomes. More precisely, an uncertainty framework, or an agent that op-
erates on an uncertainty environment, is defined over the following concepts [51]:

• W: Set of possible worlds

• U ⊆ W: A subset ofW

• A ⊆ W: Subset that the agent considers possible, i.e. a qualitative measure of
uncertainty
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• U
∩
A ̸= ∅: U is possible

• A ⊆ U : The agent knows U

A possible world I is defined as:

I :W → {0, 1}

If we consider an elementary outcome ϕ ∈ W and a world I then, I(ϕ) = 1means that ϕ is
true in I, denoted as I |= ϕ. When dealing with uncertainty, we do not know which possi-
ble world prevails. Towards this, many approaches exist. One may consider a probability
distribution onW. As we will see later, in cases of epistemic uncertainty Dempster-Shafer
theory is the most usual representation framework. As such, in our approach, we con-
sider this theory for modelling uncertainty as it is considered more suitable for the SW
environment.

2.6 Dempster-Shafer Model and Dempster’s rule of Combination

In the Semantic Web environment, usually, uncertainty comes as a result of ignorance,
which in turn, is due to incomplete information. In other words, we talk about epistemic un-
certainty. In those cases, the classical notion of probability cannot be considered suitable
for the following reasons [51]:

1. Probability is not as good at representing ignorance.

2. An agent cannot always define probabilities for all sets of possible worlds.

3. In some cases, the computational effort demanded for probability definition, might
be prohibitive.

Dempster-Shafer theory [113, 114, 79] is considered a mathematical theory of evidence,
that quantifies uncertainty in cases of ignorance and comes as a generalization of the
Bayesian theory of subjective probability judgement. This theory is also known as The-
ory of Belief Functions or Evidence Theory. Bayesian theory quantifies judgements by
assigning probabilities to the set of possible answers. Dempster-Shafer theory allows for
deriving degrees of belief for a specific question based on probabilities for another related
question.

Dempster-Shafer theory is defined over two main ideas:

• Obtaining degrees of belief for one question from subjective probabilities for a related
question

• Dempster’s rule of Combination, for combining such degrees of belief in cases of
independent pieces of evidence
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The basic notion of Dempster-Shafer theory is the belief function, or support function.
This theory attaches likelihood to events. It can be regarded as a generalization of prob-
ability theory in the sense that probabilities are assigned to sets rather than singletons.
The strength of this model resides on the fact that it allows for levels of precision. In lit-
erature there exist some approaches that employ Dempster-Shafer theory in real-world
applications, e.g. [55, 1, 14, 91].

Dempster-Shafer theory employs a set of functions, namely:

• Basic probability assignment

• Belief function

• Plausibility function

The belief function can be described as a measure of evidence that supports an event.
Dempster-Shafer theory considers a frame of discernment, which is defined as the set of
different andmutually exclusive events. Another characteristic of the frame of discernment
is that the propositions contained are exhaustive [131].

Dempster-Shafer theory considers the following [148]:

• Combination of evidence

• Data fusion

Dempster-Shafer model provides us with the ability to ”assess belief on some space Y on
which the existence of probability measure is acknowledged, but not precisely known in
that the probability is known for some of its subsets, not for all of them”[111]. This theory
has been evolved as a method for representing incomplete information, by employing
the concept of the basic probability assignment. More precisely, Dempster-Shafer theory
considers two spaces, X, Y . On these spaces, a compatibility relation C is defined, as
true/false statement, in the following way:

x ∈ X compatible to y ∈ Y , denoted as xCy, if it is possible x is an answer to X and y
to Y in the same time

The compatibility relation is used in order to define the granule of an element x ∈ X:

G(x) = {y | y ∈ Y, xCy}

Given a probability distribution on space X, the basic probability assignment of a subset
A of Y , where Y is called the Frame of Discernment, in Dempster-Shafer theory is defined
as following:

m(A) =

∑
G(xi)=A p(xi)

1−
∑

G(xi)=∅ p(xi)
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In the definition above A is called a focal element. Basic probability assignment is used
in order to define belief and plausibility functions, which constitute lower and upper prob-
ability measures, given a probability distribution on Y , respectively:

Bel(B) =
∑
A⊆ B

m(A)

Pl(B) =
∑

A
∩

B ̸=∅

m(A)

From the definition of Belief and Plausibility formulas, it follows that:
Pl(B) = 1−Bel(B)

where B is the complement of B.

Taking into account an A ⊆ Y and a mapping Bel : 2Y → [0, 1], then Bel is a Belief
function if and only if the following hold:

• Axiom 1: Bel(∅) = 0

• Axiom 2: Bel(Y ) = 1

• Axiom 3:
For A1, A2, . . . , An ⊂ Y , Bel(∪ni=1Ai) ≥

∑
I⊂{A1,A2,...,An},I≠∅(−1)|I|+1Bel(∩i∈IAi)

In cases of n = 2, axiom 3 can be written as: Bel(A1 ∪ A2) ≥ Bel(A1) +Bel(A2). As we
see, a belief function in non-additive, as opposed to a probability function.

In addition, for any proposition, the plausibility degree cannot be less that its belief degree,
i.e:

Bel(A) ≤ Pl(A), A ∈ Y

Given a belief function for A ⊆ Y , the basic probability assignment is constructed as
follows:

m(A) =
∑
{(−1)|A−B|Bel(B)|B⊆ A}

where |A−B| is the cardinality of A−B.

Dempster’s rule of Combination is defined on two basic probability assignments m1, m2,
derived from independent sources:

m1

⊕
m2(B) =

∑
Ai

∩
Aj=Bm1(Ai)m2(Aj)

1−
∑

Ai
∩

Aj=∅m1(Ai)m2(Aj)

Dempster’s rule can be employed in cases of statistically independent evidence. The
factor 1 −

∑
Ai

∩
Aj=∅m1(Ai)m2(Aj) which describes conflicting evidence is called a nor-

malization factor. A discussion on the validity of normalization can be found in [141].
Dempster’s rule of combination has gained more and more popularity in cases of informa-
tion combination. Such an application is described in [2], where two different classifiers
are combined through Dempster-Shafer model. In addition, in [134], another approach
that aims on sensor fusion is described.
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2.6.1 Computing combined beliefs - Monte Carlo Algorithms

When dealing with Dempster-Shafer theory, an important issue we have to tackle is the
complexity of Dempster’s rule of Combination, since the straightforward application of
the rule is exponential. For calculating Dempster-Shafer combined belief, Monte Carlo
algorithms are employed [88, 131, 132].

These algorithms aim at providing an approximate value of the combined belief. An
algorithm considers a frame of discernment Θ and a source triple over Θ = (Ω, P,Γ),
where Ω is a finite set, P is a probability function on Ω and Γ is a function from Ω to 2Θ,
such that ∀ω ∈ Ω, Γ(ω) ̸= ∅ and P (ω) ̸= ∅. In addition, a mass function (and a be-
lief function) is associated with a source triple, defined as m(X) =

∑
ω:Γ(ω)=X P (ω) and

Bel(X) =
∑

ω:Γ(ω)⊆ X P (ω), where X ⊆ Θ. Each belief function represents an indepen-
dent piece of evidence. For calculating combined evidence through Dempster’s rule, a
mapping of a set of source triples (Ωi, Pi,Γi), i = 1, . . . ,m to a single triple (Ω, PDS,Γ)
is defined as follows: Let Ω = (Ω1 × Ω2 × Ωm). Following, if ω ∈ Ω, then ωi is its ith
component and ω is written as ω = (ω1, . . . , ωm). In addition, Γ′ : Ω → 2Θ is defined by
Γ′(ω) = ∩mi=1Γi(ωi) and probability function P ′ on Ω by P ′(ω) = Πm

i=1Pi(ωi), ω ∈ Ω. Let Ω a
set defined as {ω ∈ Ω : Γ′(ω) ̸= ∅}, let Γ be Γ′ restricted to Ω and let probability function
PDS on Ω be P ′ conditioned on Ω, i.e PDS(ω) = P ′(ω)/P ′(Ω), ω ∈ Ω. Then, the combined
belief measure over Θ is defined as Bel(X) = PDS({ω ∈ Ω : Γ(ω) ⊆ X}), X ∈ Θ. As Θ is
getting larger, and taking into account that there are exponentially subsets of Θ, it is not
feasible to calculate belief measure in all of these subsets.

A simple Monte Carlo algorithm considers a large set of trials. In each trial, a random
ω ∈ Ω with chance PDS(ω) is selected. Then, if Γ(ω) ⊆ X,X ∈ Θ, the value of the
trial equals 1, otherwise equals 0. Following, Bel(X) is estimated through the average
value of the trials. The time demanded is roughly proportional to |Θ|m/P ′(Ω). However,
in cases of strongly conflicting evidence, the algorithm in inefficient. An alternative to this
simple algorithm is the Markov-Chain Monte-Carlo Algorithm [88]. In this case, trials are
not independent, but form a Markov Chain. This allows for each trial result to depend on
the result of the previous trial. Another method for efficiently calculating belief degrees is
outlined in [132]. This algorithm is almost linear in the size of the frame of discernment.
In [115], an algorithm for computing combined belief in cases of hierarchical evidence is
described. In [152], a combination method based on rule-based systems is outlined.

2.6.2 Evidential operations

In [55, 1, 126, 140], approaches based on evidential operations are outlined. These ap-
proaches represent relationships between a set of network nodes for propagating belief
distributions in order to infer activities. For this reason, a discounted mass function is
defined as:

mr(A) =

{
(1− r)m(A), A ⊂ W
r + (1− r)m(W), A =W

}
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where W is a frame of discernment, A is an element of the power set, m(A) is the mass
function of A and r is a discounting rate, taking values in [0, 1]. We distinguish among the
following values of r:

• r = 0: The source is absolutely reliable

• r = 1: The source is completely unreliable

• 0 < r < 1: The source is reliable with a rate reduction r

In addition, a multivalued mapping, Γ serves as a way to represent the relationship be-
tween two sources (frames of discernment), ΘA,ΘB. These sources represent evidence
for the same problem. Γ is defined as a function mapping, as follows:

Γ : ΘA ← 2ΘB

The mapping function assigns to each element ei, i = 1, . . . , n of ΘA a subset Γ(ei) of ΘB.

When the relationship between an element ei ∈ ΘA and a subset Γ(ei) ⊆ ΘB is uncertain,
then an evidential mapping Γ∗ is employed. The evidential mapping assigns probabilities
to an element ei ∈ ΘA. Then, belief distributions of ΘA are propagated to ΘB, using
evidential mapping. More precisely, the evidential mapping is defined as:

Γ∗(ei) = {(Hij, f(ei → Hij)), . . . , (Him, f(ei → Him))}

where ei ∈ ΘA, Hij ⊆ ΘB, i = 1, . . . , n and j = 1, . . . ,m, satisfying:

Hij ̸= ∅, j = 1, . . . ,m

f(ei → Hij) > 0, j = 1, . . . ,m
m∑
j=1

f(ei → Hij) = 1

Γ∗(ΘA) = {(ΘB, 1)}

Finally, the propagation is defined as:

m′(Hj) =
∑
i

m(ei)f(ei → Hj)

where Hj ∈ {Hi1, . . . , Him} and Γ∗(ei) = {(Hij, f(ei → Hij)), . . . , (Him, f(ei → Him))}.

2.6.3 Generalizing Dempster-Shafer theory for Fuzzy Sets

In [139], a generalization of Dempster-Shafer framework for fuzzy sets, along with Demp-
ster’s rule of combination, is outlined. More precisely, the compatibility relation is not
defined as a yes/no answer, but it is defined as a joint possibility distribution, between two
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spaces, X and Y , i.e. C(x, y) = ΠΨ,Ω(x, y), x ∈ X, y ∈ Y , where Ψ,Ω are variables
that take values from spaces X and Y respectively. Yen assumes a frame of discernment
W = {x1, . . . , xk} and n subsets of W, denoted as A1, . . . , An. An Aj is called a focal
element of a function: m :W → [0, 1], iff m(Aj) > 0, j = 1, . . . , n.

Then, Belief and Plausibility of a subset B ⊆ W are considered as lower and upper proba-
bilities of this subset. The Belief function is regarded as an optimization problem [137, 89]
which is to find min

∑
xi∈ B

∑n
j=1m(xi : Aj). This optimization problem has to be aligned

to the following constraints:

m(xi : Aj) ≥ 0, i = 1, . . . , k

m(xi : Aj) = 0,∀xi ̸∈ Aj∑
i

m(xi : Aj) = m(Aj), j = 1, . . . , n

where m(xi : Aj) is a variable that denotes the probability mass assigned to xi due to the
basic probability assignment of focal Aj. The formula

∑
xi∈ B

∑n
j=1m(xi : Aj) corresponds

to the probability of subset B. The key-point in the optimization procedure considers that
focals’ masses do not interact with one another. This means that the optimization can be
proceeded independently. The optimal value is defined as the sum of a set of subprob-
lems, each one defined as min

∑
xi∈Bm(xi : Aj).

Considering Plausibility degree,min is replaced bymax in the above formulae, thus giving
the following formula: max

∑
xi∈Bm(xi : Aj). The optimal solutions to the above subprob-

lems are denoted as m∗(B : Aj) and m∗(B : Aj) for Belief and Plausibility, respectively.

The core idea of this method resides on the fact that Belief and Plausibility measures are
assigned to fuzzy subsets. A similar framework is defined in [154], where fuzzy sets are
generalized in a way that a value in [0, 1] is assigned to a set of elements, rather than a
single element.

In [73], a formalism for representing probabilistic knowledge and fuzzy knowledge through
Dempster-Shafer theory is outlined. Since both types of knowledge are representing
through Dempster-Shafer model, then Dempster’s rule of Combination is employed for
combining these two types of knowledge.

2.7 Probabilistic Knowledge Bases - Probabilistic Description Logics - Probabilis-
tic Ontologies

A Knowledge Base is a part of a Knowledge Based System, which constitutes a mech-
anism for solving complex problems. Ontologies have been emerged as a way to tackle
information sharing among different knowledge bases. In this context, uncertainty issues
are represented through a probabilistic knowledge base [84, 82] and probabilistic logic
[45, 92]. More precisely, a probabilistic knowledge base consists of the following:

• A finite non-empty set of basic events Φ = {p1, p2, . . . , pn}
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• An event ϕ is a boolean combination of basic events

• A set of constraints

– Logical Constraints, denoted as ν ⇐ µ, interpreted as µ implies ν, where ν, µ
are events

– Conditional Constraints, denoted as (ν | µ)[k,m], interpreted as the conditional
probability of ν given µ is in the interval [k,m], k,m ∈ [0, 1]. Conditional con-
straints (also called interval restrictions for conditional probabilities) are divided
into strict, i.e. statements that always hold, and defeasible, i.e. constraints that
represent weaker conditions.

• The strict and defeasible constraints are defined as (µ|ν)[k,m] and (µ ∥ ν)[k,m],
[k,m] ∈ [0, 1] respectively.

• A probabilistic default theory is defined as T = (P,D), where P is a finite set of strict
conditional constraints and D is a finite set of defeasible conditional constraints.

• Set of strict probabilistic formulas: It is defined as the closure of the set of all strict
conditional statements under the Boolean operators ∧ and ¬.

• Set of probabilistic formulas: It is defined as the closure of the set of all conditional
statements under the Boolean operators ∧ and ¬.

• A possible world is a truth assignment I : Φ→ {true, false}

• IΦ denotes the set of all possible worlds

• Probabilistic interpretation - Pr: It is a probability function that assigns to each pos-
sible world I a number [0,1]. The probabilistic interpretation suggests a probability
ordering among possible worlds.

• Satisfaction of probabilistic formula: A probabilistic interpretation Pr satisfies (or Pr
is a model of) a probabilistic formula (strict or defeasible) iff Pr(ν | µ)ϵ[k,m].

• Verification of a default: A Pr verifies a default Pr(ν ∥ µ)ϵ[k,m] if Pr(µ) = 1 and Pr
satisfies Pr(ν ∥ µ)ϵ[k,m]. In addition, a set of defaults D tolerates a default d under
a set of strict conditional constraints P iff P

∪
D has a model, i.e. a Pr that satisfies

it, that also satisfies d. If such model does not exist, it is stated that D is in conflict
with d.

• Default ranking σ: It is defined on a set of defaults D as: σ : d → {0...1}, for each
d ∈ D. It is admissible with T = (P,D) iff each D′ ⊆ D that is under P in conflict
with a default d, has a d′ : σ(d′) < σ(d). If such an admissible default ranking exists,
then T is σ -consistent.
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• Probability ranking κ : It is a mapping that assigns a ranking number to each prob-
ability interpretation, i.e κ : Pr → {0...1}

∪
∞, where κ(Pr) = 0 for at least one

Pr. Also for any satisfiable formula F , κ(F ) = min(κ(Pr) | Pr |= F ). If F is
not satisfiable, then κ(F ) = ∞. Also, if κ(¬ F ) = ∞ then κ is admissible with F .
Considering a default formula D, then κ is admissible with D iff κ((µ | ⊤)[1, 1]) and
κ((µ | ⊤) ∧ [1, 1](ν | µ)[k,m]) < κ((ν | ⊤)[1, 1] ∧ ¬(µ | ν)[k,m])

A set of logical constraints L and a set of conditional constraints C define a probabilistic
Knowledge Base as KB = (L, C).

The semantics of a probabilistic knowledge base considers a set of all possible worlds I,
where each possible world I ∈ I assigns a true/false value in each pi ∈ Φ, i = 1, . . . , n. If
an event ϕ is true in I, it is denoted as I |= ϕ. A probabilistic knowledge base assigns a
probability interpretation P on I. The probability of an event ϕ is defined as:

P(ϕ) =
∑
I|=ϕ

P(I)

The conditional probability P(ν | µ) is defined as:

P(ν | µ) = P(ν ∧ µ)
P(µ)

Based on the conditional probability definition, the assignment of a truth/false value of a
logical ν ⇐ µ and conditional (ν | µ)[k,m] constraint, where P(µ) > 0 is defined as:

P |= ν ⇐ µ, iff P(ν ∧ µ) = P(µ)
P |= ν | µ[k,m], iff P(ν | µ) ∈ [k,m]

A probabilistic interpretation P is a model of a probabilistic knowledge base KB = (L, C)
iff:

P |= K,∀K ∈ L ∪ C

A conditional constraint (ν | µ)[k,m] is a logical consequence of a probabilistic KB, de-
noted as KB ||= (ν | µ)[k,m], iff every model of KB is also a model of (ν | µ)[k,m].

Extensions of DLs with probabilistic framework are described in [52, 47, 49]. In [86], a
probabilistic DL that applies a probability distribution on a set of possible worlds is defined.
More precisely, a probabilistic interpretation I is defined as follows:

I = (∆I ,W , (Iw)w∈W , µ)

In the definition above, ∆I is a DL interpretation domain, W is the set of possible worlds
and µ is a probability distribution onW. In addition Iw is a classical DL interpretation with
domain ∆I .

Probabilistic ontologies [27, 84] are defined through a probabilistic knowledge base. In
[84], a probabilistic ontology is defined as a twofold notion:
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• Considering terminological knowledge, i.e concepts and roles, this is extended into
terminological probabilistic knowledge

• Considering assertional knowledge, i.e. instances of concepts and roles, this is
extended into assertional probabilistic knowledge

These probabilistic ontologies are called into existence in order to fulfil the following tasks:

• Representation of terminological and assertional probabilistic knowledge

• Information retrieval

• Ontology matching

• Probabilistic data integration

In [27], another approach that aims at probabilistic ontological mapping is outlined. For
this reason, a suitable logic-based representation formalism is employed, allowing for rea-
soning, uncertainty representation and inconsistency handling.

In [32], a probabilistic ontology is defined as an explicit, formal knowledge representation
that expresses knowledge about a domain of application. The extension of OWL is defined
as PR-OWL that allows for the representation of complex Bayesian probabilistic models.
In addition, the semantics of OWL is extended in order to be aligned with the semantics
of first-order Bayesian logic. In [36], Bayesian networks, a graphic model for knowledge
representation under uncertainty is employed in OWL environment. For this reason, at
first, OWL is extended with probabilistic markups. Practically, this means that probability
measures annotate individual OWL properties and concepts. In addition, a set of rules is
defined in order to map these annotation in a Bayesian network. Other approaches for
representing uncertainty in Semantic Web are described in [27, 26].

2.7.1 Entailment approaches

In [82], a set of techniques for probabilistic reasoning based on statistical knowledge and
degrees of belief is outlined. More precisely, three entailment methods are described:

z-entailment This method considers a σ − consistent probabilistic default theory T =
(P,D). Following, the notions of the ordered partition D, the default ranking z and prob-
ability ranking κz are considered. The z-partition of D is defined as (D0, ..., Dn), where
each Di, i = 1, . . . , n is the set of defaults in D − ∪{Dj | 0 ≤ j < 1} that are tolerated
under P by D − ∪{Dj | 0 ≤ j < 1}. Following, the the default ranking z is defined as:
For j = 0, . . . , k each d ∈ Dj is assigned the value j under z. In addition, the probability
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ranking κz is defined as:

κz(Pr) =


∞, if Pr ̸|= P
0, if Pr |= P ∪ D
1 +maxd∈ D:Pr ̸|= dz(d), otherwise


In [82], it is showed that z is a default ranking admissible with T and κz is a probability
ranking admissible with T . κz suggests an ordering on Pr, and it is stated that Pr is z-
preferable to Pr′ iff z(Pr) < z(Pr′). In addition, a model Pr of a set of probabilistic formulas
F is a z−minimal model of F iff no model of F is z-preferable to Pr. A strict probabilistic
formula F is a z − consequence of a knowledge base KB iff each z − minimal model
of P ∪ {KB} satisfies F . In addition, a strict conditional constraint (ψ | ϕ)[l, u] where
l, u ∈ [0, 1] is a tight z− consequence of KB iff l (resp. u) is the infimum (resp. supremum)
of Pr(ψ | ϕ) subject to all z −minimal models Pr of P ∪ {KB} with Pr(ϕ) > 0.

Lexicographic entailment Let T = (P,D) a σ-consistent probabilistic default theory.
As in the previous case, a z-partition D is defined, denoted as (D0, ..., Dn). Each Di, i =
1, . . . , n contains a set of defaults that are tolerated under P . A probabilistic interpre-
tation Pr is lexicographically preferable to P ′

r iff there exists i ∈ {0, . . . , n} such that
| {d ∈ Di|Pr |= d} |>| {d ∈ Di|P ′

r |= d} | and | {d ∈ Dj|Pr |= d} |=| {d ∈ Dj|P ′
r |= d} |,

∀ i < j ≤ n. A model Pr of a set of probabilistic formulas F is a lexicographically mini-
mal model of F iff no model of F is lexicographically preferable to Pr. In addition, a strict
probabilistic formula F is a lexicographic consequence of KB iff each lexicographically
minimal model of P ∪ {KB} satisfies F . A strict conditional constraint (ψ | ϕ)[l, u] is a
tight lexicographic consequence of KB iff l (resp. u is the infimum (resp. supremum) of
Pr(ψ | ϕ) subject to all lexicographically minimal models Pr of P ∪ {KB} with Pr(ϕ) > 0.

Conditional entailment Let T = (P,D) a probabilistic default theory. A priority ordering
on D is defined, denoted as ≺, as an irreflexive and binary relation on D. Following, it
is stated that ≺ is admissible with T iff each set of defaults D′ ⊆ D that is under T in
conflict with some default d ∈ D contains a default d′ such that d′ ≺ d. In addition, T
is ≺-consistent iff a priority ordering on D exists that is admissible with T . Let Pr, P

′
r two

probabilistic interpretation and ≺ a priority ordering on D. Then, it is stated that Pr is ≺-
preferable to P ′

r iff {d ∈ D|Pr ̸|= d} ̸= {d ∈ D|P ′
r ̸|= d} and for each d ∈ D such that

Pr ̸= d and P ′
r |= d a default d′ ∈ D exists such that d ≺ d′, Pr |= d′ and P ′

r ̸= d′.
Following, a model Pr of a set of probabilistic formulas F is a prec-minimal model of F
iff no model of F is ≺-preferable to Pr. In addition, a model Pr is a conditional minimal
model of F iff Pr is a ≺-minimal model for some priority ordering ≺ admissible with T .
Finally, it is stated that a strict probabilistic formula is a conditional consequence of KB
iff each conditional minimal model P ∪ {KB} satisfies this formula. A strict conditional
constraint (ψ|ϕ)[l, u] is a tight conditional constraint of KB iff l (resp. u) is the infimum
(resp. supremum) of Pr(ψ|ϕ) subject to all conditionally minimal models Pr of P ∪ {KB}
with Pr(ϕ) > 0.
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For performing entailment, these methods incorporate generic knowledge, i.e. statisti-
cal knowledge, which comes under the term ”objective knowledge”, and evidence, which
comes under the term ”subjective knowledge”. The concept of these methods is the fol-
lowing:

• A Probabilistic default theory - T as defined above is considered.

• Some evidence is also given, which constitutes a “knowledge base - KB”.

• The set of strict conditional constraints, as well as the evidence, should always be
satisfied, i.e. there should be a probabilistic interpretation Pr model of them, while
performing any entailment method.

• The above probabilistic interpretation should also be a model of a subset of the set of
defaults in a way that any member of this set is not in conflict with any other member
under the set of strict conditional constraints and the evidence.

• Also, they ignore irrelevant information, show property inheritance to globally nonex-
ceptional subclasses, and respect the principle of specificity.

Considering inconsistency handling, those methods do not always entail ”intuitively” ex-
pected conclusions. There are situations where some methods have better performance
than the others. Moreover, z-entailment and lexicographic entailment consider the prin-
ciple of specificity and conditional entailment entails ignorance. Another characteristic
of these approaches is that in order to perform reasoning, they entail conclusions from
subjective knowledge using objective knowledge.

2.8 Possibilistic Knowledge Bases Possibilistic Description Logics and Possibi-
listic Ontologies

Another framework for representing uncertainty resides in Possibility theory [44]. This
theory employs a pair if dual set functions, denoted as possibility and necessity measures.

Towards this, a possibilistic knowledge base, [84], based on Possibility theory [44] and
possibilistic logic [39, 43, 38], annotates an event ϕ with possibility and necessity mea-
sures. Like in the probabilistic approach a set of possible worlds I is defined, along with
a possibilistic interpretation on it:

π : I → [0, 1]

The possibility and necessity measures of an event ϕ, under a possibilistic interpretation
π are defined as:

Poss(ϕ) = sup{π(I), I ∈ I, I |= ϕ}
Necc(ϕ) = 1− Poss(¬ϕ)
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where I |= ϕ means that ϕ is true in I.

The truthness of an event ϕ is twofold:

π |= P (ϕ), ϕ ≥ m, iff Poss(ϕ) ≥ m

π |= N(ϕ), ϕ ≥ m, iff Necc(ϕ) ≥ m

The reasoning process in a possibilistic knowledge base, can be performed by a reduction
to classical entailment, in the following way [54].

Let KB be a possibilistic knowledge base
Let: KBε = {ϕ|Nϕ ≥ ι ∈ KB, ι ≥ ε}

KBε = {ϕ|Nϕ ≥ ι ∈ KB, ι > ε}

Then, the following entailments exist:

KB |= Nϕ ≥ ε iff KBε |= ϕ

KB |= Pϕ ≥ ε iff KB0 |= ϕ or

∃ Pψ ≥ ι ∈ KB, with ι ≥ ε and KB1−ι
∪
{ψ} |= ϕ

A possibilistic DL is based on a possibilistic interpretation. Such an extension is described
in [103, 102, 127, 40].

In [103], the syntax of a possibilistic DL is defined based on the syntax of a classical DL.
A possibilistic axiom is defined as a pair (ϕ, α), where ϕ is a DL axiom and α ∈ (0, 1].
Then, a possibilistic TBox (resp. ABox and RBox) is defined as a finite set of possibilistic
axioms (ϕ, α), where ϕ is a TBox axiom. In addition, a possibilistic DL Knowledge Base
B = (R, T ,A) consists of a possibilistic RBoxR, TBox T and ABox A. The semantics of
a possibilistic DL is defined by a possibility distribution π over the set I of all classical DL
interpretations, i.e: π : I → [0, 1]. Then, π(I), I ∈ I represents the degree of compatibility
of I with the information available.

2.9 Fuzzy Description Logics - Fuzzy Ontologies

The need for representing vague statements, resulted in the extension of classical DLs,
with Fuzzy Set Theory and Fuzzy Logic. In [122], an overview regarding managing vague-
ness in Semantic Web is presented. In addition, fuzzy ontologies have been defined
[25, 116, 61, 153, 21, 94]. In Semantic Web, there exist a lot of cases where vague state-
ments are engaged, such as:

• Matchmaking

• Distributed information retrieval
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• Ontology alignment

Fuzzy Description Logics [118], [84], [96], [121], [119],[120] have been defined towards
this direction. Practically, this means that the DL axioms hold with a degree α ∈ [0, 1].
For example, CheapHotel ≥ 0.7 states that the hotel is cheap with a degree at least 0.7.
Rough Description Logics [20] are also considered an alternative suitable only for vague
knowledge representation, whereas uncertainty issues are not considered.

In [118], a fuzzy DL has been introduced by considering formulas of the form:

< a n >, n ∈ [0, 1]

where a is classical crisp DL formula. This statement means that a is true with degree at
least n.

In order to define semantics for a fuzzy DL, the family of fuzzy logics is employed (Table 4).
This means that semantics can be defined based on a certain fuzzy logic. For example,
in [118], Zadeh’s fuzzy logic is used for this reason.

For the fuzzy DL semantics, fuzzy interpretations [121], [118] are introduced as an exten-
sion of a crisp DL. A fuzzy interpretation I = (∆I , ·I) assumes a domain interpretation ∆I

and an in interpretation function ·I . In the crisp case, each individual (or pair of individu-
als) can belong on a concept C (or role R), or not. The fuzzy extension actually assigns a
membership degree in [0, 1] for individuals (or pair of individuals). More precisely, a fuzzy
axiom τ ≥ µ or τ ≤ ν holds in a fuzzy interpretation I iff I(τ) ≥ µ or I(τ) ≤ ν.

As we will see later, in our framework, we apply the fuzzy ALC defined in [118].

Another issue that we have to note here, is the methodology for constructing fuzzy sets.
As stated in [123], fuzzy sets are, usually, constructed by:

• Employing some well-known predefined membership functions, e.g a trapezoidal or
triangular function.

• Employing fuzzy clustering. Fuzzy C-Means is a well known fuzzy clustering algo-
rithm. Such a method applied in a semantic web ontology can be found in [78]. In
addition, Genetic Algorithms (GAs) [112] are a framework for fuzzy clustering proce-
dures. In [112], a set of fuzzy rules are constructed using Genetic Algorithms (GA) to
learn both the antecedent and the consequent part of a rule. A two-stage approach
is defined, firstly, by considering fuzzy clustering for deriving an initial rule-based
model and after by optimizing this model by a GA subject to a set of constraints.

As we have mentioned in 2.1, ontologies and logic are the most significant technologies
(layers) of the semantic web stack. In order to combine ontologies and rules, Description
Logic Programs can be employed. In [85], such a method is presented. This approach
tackles uncertainty and vagueness in ”rules layer”. In [117], OWL is extended with Fuzzy
Set theory, resulted in fuzzy-OWL (f-OWL). The extension is based onOWL facts, resulting
in fuzzy facts. The semantics is provided by a fuzzy interpretation. In [124, 125], the state
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of the art of fuzzy knowledge representation and reasoning in Semantic Web languages
(RDF/RDFS and OWL) is summarized. In [81], a fuzzy ontology is defined suitable for
representing imprecise knowledge. The method combines different frameworks, such as
ontology-based intelligent fuzzy agents and Fuzzy Markup Language. Finally, the method
is applied in the field of medical data, by providing suitable semantic decision making
systems.

2.10 Probability Theory - Possibility Theory - Dempster Shafer Theory - Fuzzy
Logic

Probability Theory, Possibility Theory, Dempster-Shafer Theory and Fuzzy Logic are some
well known frameworks for representing imperfect information [41, 113, 106, 46, 149].
Though they are designed for representing different kinds of imperfect information, a re-
lation among them can sometimes be detected. In addition, Zadeh’s z-numbers [151] can
be considered as a framework for representing imperfect knowledge. A z-number is de-
fined as Z = (A,B), where A a restriction on the values of a real-valued uncertain variable
and B is a measure of reliability of the first component.

In [80, 146, 104], relations between Probability - Possibility theory and Fuzzy Logic is
outlined. More precisely, it is stated that the membership function of a fuzzy set may be
interpreted as a conditional probability. In the simple case, suppose there exist a fuzzy
set A in a universe of discourse U . Then, from a Fuzzy Logic point of view, µA(u) is the
degree of membership of u in A, where u ∈ U . In the world of Probabilities, let X be a
random variable taking two values A and A′, where A′ stands for not A. Then, µA(u) is
the conditional probability Pr(A | u), where Pr is a probability function. As a more formal
definition, if V = {V1, V2, ..., Vn} is a collection of voters and each Vi, i = 1, . . . , n constitutes
a vote for classifying u as A or A′, then Pr(A | u) can be seen as the probability that a
random voter would classify u as A. Through this equivalence of the membership function
of fuzzy logic and the conditional probability, we can consider a common term, or in other
words, an imperfection factor, that covers both uncertainty and vagueness.

In [12], the method introduced in [80] is employed for defined a probabilistic alternative to
Fuzzy Logic Controllers. Another approach is introduced in [143]. More precisely, let Ω
denote the set of all possible outcomes. Let F denote a set whose members are subsets
of Ω, i.e. a family of sets. In addition, a subset A of Ω is called an event. The uncertainty
of the event A is described by a number P(A), taking values in [0, 1]. Then, a probability
measure space is defined as a triple (Ω,F ,P). Based on this triple, Zadeh considered
fuzzy subsets A, denoted as fuzzy events and defined the probability measure of these
subsets.

In [148], the correlation between Dempster-Shafer model and the theory of Possibility
is outlined. More precisely, the Belief and Plausibility measures, which constitute lower
and upper probability measures, respectively, are interpreted as certainty and possibility
measures, respectively. In [14], an ontology for representing uncertainty is outlined.
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Finally, in [64], the relation between possibility theory and fuzzy sets is described. More
precisely, it is stated that a possibility distribution can be interpreted as a membership
function.
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3. THE INFRASTRUCTURE: DEMPSTER-SHAFER ONTOLOGICAL
REPRESENTATION

As we have stated in the introduction, the Semantic Web vision introduces the concept of
machine-processable information. In cases of imperfect information, i.e uncertainty and
vagueness, the classical concept of ontology should be extended for capturing imperfect
knowledge. Towards this concept, in this chapter we aim at representing imperfect knowl-
edge in an ontological environment.

In [71], an ontology for manipulating uncertainty, based on Dempster-Shafer theory, is
described. The basic concepts of Dempster-Shafer model are represented through a Se-
mantic Web ontology. Following, a set of entailment methods as described in 2.7.1, is
combined through a method based on Dempster’s rule of Combination.

In [72], an approach for representing uncertainty and vagueness is outlined. This ap-
proach considers vague knowledge represented through a fuzzy DL. In addition, an on-
tology is employed for representing information in a rule/event form, in order to perform
reasoning.

In [68], an approach suitable for imperfect knowledge in a matchmaking case study is out-
lined. Matchmaking problems [67] can be considered as a case study of Semantic Web
applications. In general, a matchmaking application considers a set of criteria, set by two
parts. Towards this, we propose a matchmaking method of web data based on fuzzy crite-
ria. Our method employs Dempster-Shafer theory and Dempster’s rule of Combination in
order to derive a combined constraint degree that represents the degree of matchmaking
between the two parts (the seeker and the offer).

In the following of this section, we describe the aforementioned approaches.

3.1 Uncertain knowledge representation and Ontologies

In [71], a method that performs on probabilistic knowledge bases and employs Dempster’s
rule of Combination is outlined. As we have stated in 2.7, a probabilistic knowledge base is
defined as KB = (L, C), where L is a set of logical constraints and C is a set of conditional
constraints. These constraints are defined as:

1. Strict conditional constraint: They have the form (ϕ|ψ)[l, u] and represent generic
knowledge that always hold, where ϕ, ψ are events and l, u ∈ [0, 1].

2. Defeasible (default) conditional constraint: They have the form (ϕ ∥ ψ)[l, u] and
represent weaker generic knowledge that can be defeated, where ϕ, ψ are events
and l, u ∈ [0, 1].

In addition, a probabilistic default theory, T , is defined as T = (P,D), where P is a finite set
of strict conditional constraints and D is a finite set of defeasible conditional constraints.
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Following, in 2.7.1, a set of entailment methods for reasoning upon probabilistic knowl-
edge bases is outlined. These are z-entailment, lexicographic entailment and conditional
entailment. In our approach, these methods are combined in order to define a new (com-
bined) entailment method. For this reason, Dempster’s rule of Combination is employed.

Our method performs by considering the following:

1. Ignores irrelevant information

2. Applies property inheritance to globally nonexceptional subclasses

3. Applies the principle of specificity

The entailment methods defined in 2.7 derive a conclusion as a strict probabilistic formula
(ϕ|⊤)[l, u], where ϕ is an event and l, u ∈ [0, 1]. In order to combine these conclusions
through Dempster’s rule of Combination, a frame of discernment,W of mutually exclusive
events should be defined. In our framework, we are interested in deciding on the truthness
of the event ϕ. Thus, we consider our frame of discernment as:

W = {ϕ,¬ϕ}

In addition, subsets of W are associated with a basic probability assignment, bpa. In our
case, there are four subsets ofW, i.e:

2W = {{∅}, {ϕ}, {¬ϕ}, {ϕ,¬ϕ}}

The third element of the power set has a zero bpa value, since we have no information
about the truthness of ¬ϕ. In addition, the {∅} element has, by definition, a zero bpa value.
Taking this into account, we regard two focal elements, {ϕ} and {ϕ,¬ϕ}.

The next step is about assigning values for these focal elements. Based on the information
given, we decide on three ways for representing the bpa:

1. Pessimistic approach

bpa({ϕ}) = l

bpa({ϕ,¬ϕ}) = 1− l

2. Optimistic approach

bpa({ϕ}) = u

bpa({ϕ,¬ϕ}) = 1− u

3. Middle approach

bpa({ϕ}) = (l + u)

2

bpa(({ϕ,¬ϕ}) = 1− (l + u)

2
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Based on these bpa values, the belief values of the subsets ofW are defined as:

1. Pessimistic approach

Bel({∅} = 0

Bel({ϕ}) = l

Bel({¬ϕ} = 0

Bel({ϕ,¬ϕ}) = 1

2. Optimistic approach

Bel({∅} = 0

Bel({ϕ}) = u

Bel({¬ϕ} = 0

Bel({ϕ,¬ϕ}) = 1

3. Middle approach

Bel({∅} = 0

Bel({ϕ}) = (l + u)

2
Bel({¬ϕ} = 0

Bel({ϕ,¬ϕ}) = 1

Having defined the representation scheme, in the following we describe the entailment
method of our approach.

3.1.1 Entailment method for interval

Taking into account the strict probabilistic formulas, (ϕ|⊤)[l, u], derived from the entailment
methods, we propose an entailment method, based on Dempster’s rule of Combination,
More precisely, as we will show next, our method combines, through Dempster’s rule
of Combination, two of the entailment methods described in 2.7.1 in order to derive a
combined entailment.

The steps for deriving a combined entailment result are the following:

1. Select two of the entailment methods for probabilistic knowledge bases, i.e. z, lexi-
cographic and conditional entailment

2. Perform entailment for each method and derive a separate result as a strict proba-
bilistic formula (ϕ|⊤)[l, u]
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3. Select an approach for assigning bpa values, i.e pessimistic, optimistic and middle
approach

4. Combine the results based on Dempster’s rule of Combination, by consider the com-
mon frame of discernment, W = {ϕ,¬ϕ}, along with the bpa assignments, denoted
as bpa1 (for the first entailment method) and bpa2 (for the second entailment method):

bpacombined(ϕ) =

∑
x,y∈W:x∩y=ϕ bpa1(x)× bpa2(y)

1−
∑

x,y∈W:x∩y=∅ bpa1(x)× bpa2(y)

5. Repeat, if necessary, steps 1-3 for adding another entailment result, by considering
the new basic probability assignment, bpa3 (for the third entailment method) and the
combined bpacombined

6. Assign Belcombined({ϕ}) = bpacombined({ϕ})

Since the entailment methods derive conclusions separately, we regard them as ”indepen-
dent pieces of evidence”. The independence is a necessary precondition for employing
Dempster’s rule of Combination. In addition, since we are interested in subsets of the
frame of discernment with a single item, i.e. {ϕ}, the belief measure equals the bpa mea-
sure. Next, we overview our method through an example.

Example We consider the following probabilistic default theory:
P = {(bird|penguin)[1, 1]}
D = {(fly ∥ bird)[0.95, 1], (fly ∥ penguin)[0, 0.05],
(easy_to_see ∥ yellow)[0.95, 1.0]}
We also have the following evidence:
KB = {(penguin∧ yellow|⊤)[1, 1]}. The entailment methods described in 2.7.1 derive the
following conclusions:

• z-entailment: easy_to_see | ⊤[0, 1]

• lexicographic entailment: easy_to_see | ⊤[0.95, 1]

• conditional entailment: easy_to_see | ⊤[0.95, 1]

Our goal is to derive a combined conclusion for two (or more) of the entailment methods. In
our example, we choose the first and the last conclusion, i.e. z and conditional entailment.
We consider the following frame of discernment: X = {easy_to_see,¬easy_to_see}. Then:
2X={∅, {easy_to_see}, {¬easy_to_see}, {easy_to_see,¬easy_to_see}}. For employing the
Rule of Combination, the basic probability assignments are defined as follows:

• bpaz(∅) = 0, bpaz({easy_to_see}) = 0+1
2

= 0.5
bpaz({easy_to_see,¬easy_to_see}) = 1− 0.5 = 0.5
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• bpacond(∅) = 0
bpacond({easy_to_see}) = 0.95+1

2
= 0.975

bpacond({easy_to_see,¬easy_to_see}) = 1− 0.975 = 0.025

In addition, Dempster’s Rule of Combination produces the following result:
bpacomb({easy_to_see}) = 0.9875. Hence, Belcomb({easy_to_see}) = 0.9875.
As we observe, our belief about easy to see is greater than the initial beliefs, which is
intuitively correct, since Belz increases initial Belcond (and vice versa).

3.1.2 Entailment method for a set of values

The approaches described above can be applied in situations where we have an interval
estimation, i.e. lower and higher value. Besides that, there are case studies where we
have more values than a higher and lower ones. Let us consider, for example, a hotel
recommendation web site. A list of ratings describes each hotel entry. In that case, we
have to take into account all the information given, i.e. all the list values. For this reason,
the pessimistic and optimistic approaches are not suitable as they take into account only
lower/upper bounds. A generalization of the middle approach considers the mean value
of the set of values l1, l2, . . . , ln, n > 0, as follows:

bpa({ϕ}) = (l1 + l2 + . . . ln)

n

bpa(({ϕ,¬ϕ}) = 1− (l1 + l2 + . . . ln)

n

So, the mean value can constitute a bpa in cases where there exist a set of values rather
than an interval. Next, we overview a case study that operates on a set of values.

3.1.3 Dempster-Shafer ontology and Uncertainty - A Hotel Metaclassifier case
study

Following, we consider the representation of Dempster-Shafer modules through an on-
tological framework. Our uncertainty ontology is represented through a list of classes
(concepts) (Fig 2):

1. Possible World: It represents the set of possible states and is regarded as a frame
of discernment

2. PowerSet: It is the power set of the set of possible states

3. Agent: It represents a semantic web agent

4. Result: It represents the combined belief degree, based on Dempster’s rule of Com-
bination
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5. HasFor : It serves as a ”referee” concept for joining an Agent concept with a Power-
Set concept

Figure 2: Ontology Hierarchy

In addition, our ontology contains relations among concepts:

1. hasBel: It represents the belief function defined over the elements of the power set

2. hasBpa: It represents the basic probability assignment that is defined over the ele-
ments of the power set

3. hasPl: It represents the plausibility function defined over the elements of the power
set

4. hasfor: It connects an Agent individual with a PowerSet individual along with a bpa
value, through a HasFor individual

Classification of web data is a representative area where uncertainty prevails. Our method
can be employed in cases of combination of two (or more) web classifiers, i.e. it can be
considered as a metaclassifier approach.

Let us consider two well-known hotel classifiers, for example www.booking.com and
www.tripadvisor.co.uk. Each classifier assigns each hotel a rating value. Our applica-
tion takes as input the two classifiers considering hotel estimations. There exist a number
of estimations for each hotel entry. Our method takes as input these estimations of the
two classifiers and returns a belief number about how much proposed the hotel is.

The following steps are implemented:
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• The ratings are mapped into a number [0, 1]

• A frame of discernment,W, is defined asW = {p,¬ p}, where p stands for proposed
hotel

• Assign bpa values, based on the general middle approach described in 3.1.2

• Perform the combination, based on Dempster’s rule

Our approach has been implemented in Protégé [56], for defining andmanipulating ontolo-
gies. In Chapter 6, we overview in detail applications in hotel recommendation systems.

3.2 Imperfect knowledge representation and Ontologies

The approach described in 3.1, takes into account cases described by uncertainty. Be-
sides uncertainty, vagueness is another factor that describes information. In the previous
section, we presented an ontology that classifies a hotel as being (or not) proposed, based
on a set of hotel ratings. When dealing with recommendation sites, users usually employ
criteria such as:

I’m looking for a low-cost hotel

These criteria are described by vagueness, since they do not have clear-cut meaning. In
addition, there are cases where sources of information are described by uncertainty. Let
us consider the following statements:

80% of 3-star hotels provide a swimming pool
Hotel A is a 3-star hotel

Based on the two statements, we can say that:

It is 80% likely that hotel A provides a swimming pool

In this section, we present a methodology to reason upon imprecise and uncertain in-
formation. Towards this, we built an ontology suitable for representing and processing
imperfect information, that it is distributed among a number of peers, a concept employed
in Big Data environments. As we address a distributed environment, such as the Web and
Semantic Web ones, we consider information distributed in a number of processing able
sites (peers). In addition, we present an application of our method using as an example
a hotel recommendation task as it is stated above. Since our method also considers Big
Data issues, next, we overview some of them.
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3.2.1 Semantic Web and Big Data

The data boom of the last years, i.e. the exponential growth of the amount of data avail-
able, resulted in the evolution of Big Data concept. The term Big Data is associated with
methods for handling large amounts of data. As a concept it was created in the database
world but it applies in Web as well, in order to index and query its content. In WWWworld,
Big Data methods can be used in situations when vast amount of data exists, for example:

• Historical content in web pages

• Social networks

• Sensor information

When dealing with Big Data, we have to master the 3 V’s [76]:

• Volume: this refers to the amount of Web Data

• Velocity: this refers to the high speed that data appears

• Variety: this refers to data heterogeneity

In a Semantic web environment, Big-Data issues affect the semantic web stack. Consid-
ering ontologies, the problem is how to store the ontological content and how to reason
with it [133]. So, the problem can be divided in the following sub-problems:

1. Big semantic data ontology representation

2. Reasoning methods suitable for large scale data

For this reason, suitable methods for reasoning over big-data environments exist, e.g.
[4]. In this situation, a partitioning of information into a set of machines is necessary.
Then, the processing can be achieved by each machine independently, using classical
logic concepts. The problem here is that data that reside in each machine may not always
derive a conclusion. The method used in these situations is the following:

1. The initial set of data is sent randomly to machines

2. The set of data that reside in each machine is combined in order to produce new
data (if possible).

Suppose, for example, that we have the following data:

1. parent(Argy,Lucy), which means that Argy is Lucy’s parent

2. female(Argy), which means that Argy is female
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3. male(Pit), which means that Pit is male

In addition, let us consider a set of machines (or agents) that have a reasoning engine
that contains the following rule:
parent(X,Y ) ∧ female(X)→ mother(X,Y ).
If the statements 1 and 2 coexist in the same machine, then the conclusion Argy is the
mother of Lucy can be derived. On the other hand if statements 1 and 3 or statements 2
and 3 coexist, then new knowledge cannot be derived.

The current methods for handling imperfect information, i.e. uncertainty and vagueness as
well the reasoning techniques used, cannot be employed in situations where large volume
of data is considered. In addition, as it is referred in [29], large scale information is usually
characterized by inconsistency, incoherence and heterogeneity.

3.2.2 Fuzzy DLs and Uncertainty

Following, we propose a method for representing imperfect information, taking into ac-
count Big Data environments [72]. For representing vagueness, we employ fuzzy DL
SROIQ(D) [17]. Following, we overview syntax and semantics of this fuzzy DL.

Syntax The fuzzy DL SROIQ(D) employs three alphabets of symbols:

• Concepts

• Roles

• Individuals

The following notations are used:

• Fuzzy Atomic concept - A: It describes concepts not constructed of other concepts,
e.g. Human.

• Fuzzy Concept - C, D: It is constructed of atomic concepts, using logical construc-
tors, e.g Father≡Male⊓Parent, or it can be a fuzzy atomic concept.

• Abstract individuals a,b ∈ ∆I

• Concrete individual v∈ ∆D

• Atomic fuzzy role - RA

• Abstract fuzzy role - R: As it is referred in [116], a role is abstract if it connects two
abstract individuals, e.g mother(Argie,Lucy). It can be either atomic or complex.

67 L. Karanikola



Managing Uncertainty and Vagueness in Semantic Web

• Simple fuzzy role - S: As it is referred in [116], a role is simple if it is neither transitive
nor it has any transitive sub-role.

• Concrete role - T : As it is referred in [116], a role is concrete if it connects an abstract
individual with a concrete individual, e.g. hasAge(Lucy,”29”).

• Fuzzy concrete predicate d: A fuzzy concrete predicate is defined over [k1, k2] ⊆
Q+ ∪ {0} through the following membership functions:

1. Triangular membership function
2. Trapezoidal membership function
3. Left shoulder function
4. Right shoulder function

For example, a low cost value can be described as a function lowCost : N → [0, 1],
as a right membership function, as follows: lowCost(x) = R(50, 100).

• Natural numbers n, m, n ≥ 0, m > 0

• Fuzzy modifier mod: A fuzzy modifier is a function fm : [0, 1] → [0, 1] and is applied
to a fuzzy set to change its membership function. For example, very(x) = x2.

A Fuzzy Knowledge Base is defined as a finite set of axioms. These axioms, called fuzzy
axioms, are DL axioms annotated with a degree of truth in [0, 1].

Semantics The semantics of this fuzzy DL, given as a fuzzy interpretation I with respect
to a fuzzy concrete domain ∆D, is a pair (∆I ,.I ), where ∆I is the interpretation domain
that is disjoint with ∆D and .I is the interpretation function. In addition, the semantics, as
given in [18], considers the following mappings:

1. fuzzy abstract individual α onto an element αI ⊆ ∆I

2. fuzzy concrete individual d onto an element vd ⊆ ∆D

3. fuzzy concept C onto a function CI : ∆I → [0, 1]

4. fuzzy abstract role R onto a function RI :∆I ×∆I → [0, 1]

5. fuzzy concrete role T onto a function T I : ∆I ×∆D → [0, 1]

6. n-ary fuzzy concrete domain d onto a function dI : ∆n
D → [0, 1]

7. fuzzy modifier mod onto a function fmod : [0, 1]→ [0, 1]

The syntax and semantics of fuzzy concepts, roles and axioms are summarized in Tables
5,6 and 7.
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Table 5: DL Syntax and Semantics: Concepts

Syntax - Concept(C) Semantics - CI(x)

⊤ 1
⊥ 0
A AI(x)
C ⊓ D CI(x)⊗ DI(x)
C ⊔ D CI(x)⊕ DI(x)
¬ C ⊖ CI(x)
∀ R.C infy∈∆I{RI(x, y)⇒ CI(y)}
∃ R.C supy∈∆I{RI(x, y)⊗ CI(y)}
∀ T.d infv∈∆D{T I(x, v)⇒ dD(v)}
∃ T.d supv∈∆D{T I(x, v)⊗ dD(v)}
{α1/o1, ..., αn/on} sup{i | x = oIi }αi

≥ mS.C supy1,...,ym∈∆I(minm
i=1{SI(x, yi)

⊗ CIyi)})⊗ ((⊗)1≤ j<k≤ m{yj ̸= yk})
≤ nS.C infy1,...,yn+1∈∆I(minm

i=1{SI(x, yi)
⊗ CI(yi)})⇒ ((⊕)1≤ j<k≤ n+q{yj = yk})

≥ mT.d supv1,...,vm∈∆D(min
m
i=1{T I(x, vi)

⊗ dI(vi)})⊗ ((⊗)j<k{vj ̸= vdk})
≤ nT.d infv1,...,vn+1∈∆D(min

m
i=1{T I(x, vi)

⊗ dI(vi)})⇒ ((⊕)j<k{vj = vk})
∃ S.Self SI(x, x)
mod(C) fmod(C

I(x))
[C ≥ α] 1 if CI(x) ≥ α, 0 otherwise
[C ≤ β] 1 if CI(x) ≤ β, 0 otherwise
α1C1 + ...+ αkCk α1C

I
1 (x) + ...+ αkC

I
k(x)

C → D CI(x)⇒ DI(x)

Table 6: DL Syntax and Semantics: Roles

Syntax - Role (R) Semantics - RI(x, y)

RA RAI(x,y)

U 1
R− RI(y, x)
mod(R) fmod(R

I(x, y)
[R ≥ α] 1 if RI(x, y) ≥ α, 0 otherwise
T T I(x, v)
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Table 7: DL Syntax and Semantics: Assertions

Syntax - axiom τ Semantics - τ I

a : C CI(aI)
(a, b) : R RI(aI , bI)
(a, b) : ¬ R ⊖ RI(aI , bI)
(a, v) : T T I(aI , vD)
(a, v) : ¬ T ⊖ T I(aI , vD)
C ⊑ D infx∈∆ICI(x)⇒ DI(x)
R1...Rm ⊑ R infx1,xn+1supx2,xn(R

I
1 (x1, x2)⊗

...⊗ RI
n(xn, xn+1))⇒ RI(x1, xn+1)

where x1, xn+1 ∈ ∆I

T1 ⊑ T2 infx∈∆I ,v∈∆DT
I
1 (x, v)⇒ T I

2 (x, v)

Fuzzy inverse concrete predicate In our approach, we introduce the notion of fuzzy
inverse concrete predicate, denoted as invp. It operates in a way similar to a fuzzy modi-
fier, i.e. it changes the membership function of a fuzzy set. More precisely, it is a function
finvp : [0, 1] → [0, 1] and denotes the inverse notion of a fuzzy concrete predicate. It is
defined as:

invp(x) = 1− f(x), x ∈ ∆D

where f(x) can be one of triangular, left, right, triangular and trapezoidal membership
functions. Based on the definition of invp, we have the following equivalences:

invp(x) = R(k1, k2), if f(x) = L(k1, k2)

invp(x) = L(k1, k2), if f(x) = R(k1, k2)

In addition, fuzzy modifiers can also be applied to fuzzy inverse predicates as well.

Example Let us consider the concept Hotel⊓∃hasCost.L(50, 100) that denotes the set of
low cost hotels. The cost is described by the left membership function L(50, 100). Then,
Hotel ⊓ invp(∃hasCost.L(50, 100)) denotes the set of high cost hotels.

For representing fuzzy statements in an ontology environment, we map the fuzzy DL ax-
ioms into fuzzy facts. As fuzzy extensions of OWL bare a close connection to the fuzzy
DL SROIQ(D), we employ the DL notation instead of the OWL one, a method suggested
in [19].

Apart from vagueness, uncertainty is another issue we should take into account. Fuzzy
DL axioms allow for representation of statements α is true with a factor ff , ff ∈ [0, 1]. In
cases of uncertainty, we allow for statements of the form α is true with a factor fu, fu ∈
[0, 1]. In both cases, fu, ff represent degrees of factor. More precisely, fu represents an
uncertainty factor whereas ff represents a fuzzy factor. In our approach, we consider
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these factors under the common term imperfection factor. In order to do this, we consider
the equivalence between fuzzy logic and probabilities, as described in 2.10. This equiv-
alence also serves as a way to use probabilistic knowledge bases in order to represent
both uncertain and vague concepts.

For representing statements annotated with an imperfection factor, we consider a proba-
bilistic knowledge base as described in 2.7. Then, we consider the following:

• Concept Generic Rule: It represents generic knowledge that always hold. It has the
form (b|a)[l, l], where a, b are events and l ∈ [0, 1].

• Concept Event: It represents evidence. It has the form (e|⊤)[l, l], where e is an event
and l ∈ [0, 1].

In general, probabilistic knowledge bases annotate constraints with an interval [l, u]. In
our method, we consider a single value, denoted as l. The reason for this is that fyzzy DL
axioms are described with a single fuzzy factor. Since we consider a single value rather
than an interval, generic rules and events have the following form:

• Rule:(b | a[fr]), meaning that if a holds then b generally holds with imperfection
factor fr, where fr ∈ [0, 1].

• Event:(e | ⊤[fe]), meaning that the event is true with imperfection factor fe, where
fe ∈ [0, 1].
The imperfection factor can be either an uncertainty or fuzzy factor.

The scope of defining rules and events is to detect new knowledge. More precisely, let us
consider the following:

a | ⊤[fe]

Then, we aim at defining an imperfection factor for:

b | ⊤[fc], where fc ∈ [0, 1]

In order to do this, we employ the propagation formula, described in 2.6.2. More precisely,
we consider a frame of discernment ΘA = {a, a′}, where a′ stands for ¬ a. In addition,
we consider a frame of discernment ΘB = {b, b′}, where b′ stands for ¬ b. Then, the
propagation formula for b is defined as:

m′(b) = fefr

This propagation formula actually constitutes the imperfection factor for b, i.e fc.
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3.2.3 Information Distribution

The Big-Data era introduces the distributed reasoning approach. In an environment de-
scribed by uncertainty, the problem is how to extend the probabilistic knowledge base into
a distributed probabilistic knowledge base. In order to address this complexity, the set of
rules as well as evidence could be distributed in a set of peers. In addition, the selection
of the initial set of data automatically results in uncertainty as a result of incomplete infor-
mation. For example, in order to perform a recommendation about a three star hotel, we
can use all the services provided (pool, restaurant, etc.) or, instead, we can use only the
partial information ”three star” along with a list of services that three star hotels usually
provide and draw a conclusion with some uncertainty. This step may increase the imper-
fection factor in information, as the step is characterized by uncertainty and vagueness.
So, our problem can be summarized as follows:

1. How the choice of the subset of data is made?

2. How the distribution of data is made?

The main problem with step 2 is that the coexistence of some events with some rules will
never come up to a conclusion, as they may be unrelated. For example, if we have generic
knowledge about five star hotels, e.g. All five star hotels have a restaurant, then we are
interested only in events that have references to 5 star hotels. Thus, the distribution of
rules and events among peers should be done in a way that statements that are correlated
should (if possible) coexist in the same peer.

If an entity is associated with another entity it is stated that there exist a correlation. As
we have previously stated, correlated entities should be processed by the same peer. For
this reason, we annotate generic rules and events with a key value concept, as follows:

1. b | a[f1], k, meaning that if a holds then b generally holds with imperfection factor f1,
where f1 ∈ [0, 1] and key value k, k ∈ N.

2. a | ⊤[f2], where f2 ∈ [0, 1], meaning a is true with imperfection factor f2 and key
value k, k ∈ N.

The key value k serves as a peer descriptor, i.e it is unique number that serves as the
peer identity.

Having defined the key value for each entity, the correlation for two entities is defined as
follows:

If e1 and e2 are entities, then they are correlated iff they have the same key value

So, the first step in our method is to distribute the events and rules among peers according
to their key value. For example, if we have rules about hotels that describe different hotel
categories (e.g ”all five star hotel have a swimming pool”), then the key here is the hotel
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rating, and hence hotels can be distributed into peers according to their category. The
algorithm is the following:

Define number of peers equal to the number of key values
for i=1 to number of entities do

Associate entity with peer having the same number as entity’s key value;
end
for i=1 to number of peers do

Find a conclusion considering events and rules in those peer;
end

Algorithm 1: Peer distribution
After peer distribution, each peer contains a number of events and rules. The next step
is the reasoning process. This process is executed independently in each peer, without
taking into consideration the other peers. This permits peer processing to be done in
parallel. The problem here is that conflicts may arise in situations when two rules result in
the same conclusion with different imperfection factors. For example:

1. Three star hotels have a swimming pool with factor 0.5

2. A resort hotel always has a swimming pool

If we have a resort hotel in our data, then the second rule should be applied instead of
the first. In general, those conflicts may arise in situations where there exist exceptional
classes (as resort hotel) and exceptional rules, and hence the exceptional class is pre-
ferred as opposed to the general class. The reasoning algorithm, i.e the last step in the
first algorithm, in each peer is the following:

Assign the priority 2 to each exceptional rule;
Assign the priority 1 to rules without exceptions;
Run the rule engine from higher to lower priority;
Retract the facts when the rule ”fires”;

Algorithm 2: Peer reasoning algorithm

The fact retraction serves as a way to stop rule firing in lower priorities, so if the rule that
fires has priority 2, then by retracting the fact that caused firing, the rule with priority 1
won’t fire.

For representing the concepts above, we consider an ”imperfect” ontology, that employs
the following concepts:

• Knowledge: It represents the entities information, i.e. rules and events

– Rule: It represents all the rules, i.e. the generic knowledge individuals
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– Event: It represents all the events individuals

• Peer : It represents all the peers individuals

• Condition: It is the condition part of the rule

• Conclusion: It is the conclusion part of the rule

In addition, our ontology employs the following object properties:

• if : It is an object property that connects a Rule individual to a Condition individual

• then: It is an object property that connects a Rule individual to a Conclusion individ-
ual

Finally, our ontology employs the following data properties:

• hasFactor : It represents the imperfection (regarding information) for each entity, i.e.
rules and events

• hasPeer : It represents the peer number associated with each entity, or in other
words the key value

In order to perform reasoning our ontology needs to be provided with the key value, that
determines the number of peers, as well as the set of generic rules and events. Let us
consider a hotel recommendation site, along with the query I’m looking for a hotel around,
not expensive, having a gym. Our goal is to propose a set of hotels, based on this query.
In addition, let us consider that the information available is hotel’s rating, i.e 3-star, 4-star,
etc. We have ignorance regarding cost or services,i.e. in our problem uncertainty is a
result of incomplete information. In addition, the user provides us with vague information
about cost, since expensive does not have a clear meaning. For example, in Greece an
expensive hotel is around 100 Euros. In our example, the fuzzy concrete predicate expen-
sive is defined as expensive(x) = L(70, 130), where L is the Left− function. Following, if
we want to represent not expensive, we define the invp(expensive) = R(70, 130) where R
stands for Right − function. We also have a set of generic knowledge about hotels, for
example, 4-star hotels have spa services with factor 0.40. Here, we have to notice that
exceptions may arise in some situations, for example the hotel ”Habtoor Grand Beach
Resort & Spa” definitely has a spa centre since the word Spa exists in its name. In this
case, the rule 4-star hotels have spa services with factor 0.40 cannot and shouldn’t be
applied.

After data insertion, i.e. the set of hotels as well as the set of statistics considering the
star category, our ontology has a set of event individuals and rule individuals. The next
step is the distribution among peers. The key value here is the rating of the hotels, i.e.
their stars. So, we have 6 peer individuals, one for each rating. All hotels that have the
same rating belong to the same peer. The total number of events and rules that exist in

L. Karanikola 74



Managing Uncertainty and Vagueness in Semantic Web

all peers, are only those that we are interested in. For example, if we look only for 2 and
3-star hotels that have some characteristics, then rules having a condition considering
one, four or five star are omitted. This leads into the reduction of the number of peers as
well. In our example, we look for a hotel that costs around 50 to 100 euro and has spa and
gym services. The only information we have is some statistics considering the hotel’s star
category, e.g. 80 per cent of 3-star hotels cost around 50 euros and provide restaurant
services. After peer distribution, we have a set of events and rules, as well as their peer
number. The final step in our method is the reasoning process. Each peer proceeds into
reasoning independently, without taking into consideration rules and events that exist in
other peers.

In this approach, we have studied situations where uncertainty and vagueness coexist, by
considering an ”imperfect” ontology and employing our method in a hotel recommendation
system. Our approach has been implemented in a Protégé plugin for Java language. In
Chapter 6, we will present a more detailed case-study of hotel recommendation systems
along with evaluation results.

3.3 Fuzzy knowledge representation and Ontologies - A Matchmaking case study

Matchmaking problems [67] can be considered as a case study of Semantic Web, as
uncertainty and vagueness often describe them. A matchmaking method always takes
into account a set of constraints. A typical matchmaking problem consists of two groups,
denoted as ”sellers” and ”buyers”. The point is to create pairs of sellers and buyers with an
optimal way, for example by their maximum similarity. A commonmatchmaking application
can be found in e-Commerce environments. The critical issue in a matchmaking task is
knowledge representation. Another issue considers sellers’ and buyers’ constraints. In
general, constraints can be divided into hard and soft constraints, based on the flexibility
regarding the fulfilment of the constraint.

Let’s take the example of a job recruitment problem. In order to perform a recruitment,
some criteria should be provided from both the recruiter and the seeker. Let us consider
the following example:

• A seeker that searches for a job with salary around 3, 000

• A recruiter that can pay around 2, 000 and also requires applicants to have enough
experience

As we see, in our problem, the constraints are not explicitly defined, in other words, a
notion of vagueness describe them. If we consider a semantic web agent that automates
the whole process, then the steps would be the following:

• The agent should select a set of sources relevant to the query

• The agent should execute the query and classify the results, by ordering them from
most to less proposed
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The selection of sources results in information incompleteness, which is described by un-
certainty theory. In addition, the theory for representing vagueness is Fuzzy Logic. More-
over, the Semantic Web employs ontologies for representing knowledge. So, an exten-
sion of OWL with fuzziness and uncertainty, or an ontology that functions with ”imperfect”
information, suitable for matchmaking environments, is necessary in order to represent
meaningful and machine processable web information.

Coming back to our introductory example, in a DL formalism, the constraints should have
the following formalism:

Seeker ≡ ∃ hasSalary.Around 3.000

Recruiter ≡ ∃ hasSalary.Around 2.000 ⊓ hasExperience.EnoughExperience

In the rest of this section, we describe a matchmaking case study, outlined in [68], that
operates with fuzzy constraints. In addition, Dempster’s rule of Combination is employed
for combining different matchmaking degrees.

3.3.1 Fuzzy Dempster-Shafer Ontology

For representing a fuzzy matchmaking case study, first we consider the fuzzy DL
SHOIN (D) as described in [121]. The crisp version, SHOIN (D), allows for reason-
ing with concrete datatypes, called concrete domains. A concrete domain, D, is defined
as a pair < ∆D,ΦD >, where ∆D is an interpretation domain and ΦD is the set of concrete
domain predicates d with arity n, n ∈ N and interpretation dD ⊆ ∆n

D. As an example, we
may considerHotel⊓∃ cost. ≥ 100, which denotes hotels with a cost greater than 100. The
semantics of the crisp DL SHOIN (D) is defined through an interpretation I = (∆I , ·I).

The fuzzy DL SHOIN (D) allows for reasoning with concrete datatypes and concrete
domains based on fuzzy sets. A core concept in this approach is the concrete fuzzy
domain, which is defined as a pair <∆D,ΦD>, where∆D is an interpretation domain andΦD

is a set of concrete fuzzy predicates dwith arity n, n ∈ N and interpretation dD : ∆n
D → [0, 1]

. These predicates are used in order to represent concepts like Young Person, Fast Car
etc. For example, Hotel ⊓ ∃ cost.Low, denotes low cost hotels.

Regarding semantics, the core concept is that the fuzzy extension allows for the interpre-
tation of concepts and roles as fuzzy subsets of the interpretation domain. This allows for
the annotation of axioms with a degree of truth in [0, 1]. More precisely, a fuzzy interpre-
tation is defined as a pair I = (∆I , ·I), where ∆I is the interpretation domain and ·I is an
interpretation function. This interpretation performs the following mappings, considering
a fuzzy Concept, C, a fuzzy Role, R and a concrete fuzzy predicate, d:

C ⊆ ∆I ,withµC(x) : ∆
I → [0, 1], x ∈ ∆I

R ⊆ ∆I ×∆I ,withµR(x, y) : ∆
I ×∆I → [0, 1], x, y ∈ ∆I
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dD : ∆n
D → [0, 1]

In our approach, we introduce the notion of the fuzzy focal domain, denoted as

W : < ∆W ,ΦW >

,where ∆W is a frame of discernment and ΦW is a set of fuzzy focal elements Ai, i =
1, 2, . . . , n, with basic probability assignmentm(Ai) : 2

∆W → [0, 1]. The set ∆W represents
mutually exclusive events, whereas the elements of ΦW are fuzzy subsets over W. For
example, if we want to represent the fuzzy datatype lowCost, then ∆W = N and ΦW are
all the fuzzy subsets of ∆W .

For defining Belief and Plausibility degrees on fuzzy subsets ofB ⊆ ∆W , with membership
function µB we employ the formulas described in [139]. More precisely:

Bel(B) =
∑
A

m(A)
∑
ai

[ai − ai−1]× infx∈ Aai
µB(x)

Pl(B) =
∑
A

m(A)
∑
ai

[ai − ai−1]× supx∈ Aai
µB(x)

where A ∈ ΦW , ai, i = 1, . . . , n are α-level sets of A and x ∈ ∆W .

3.3.2 Fuzzy Dempster-Shafer Ontology and Matchmaking

As we have stated in the introduction of this section, the matchmaking job recruitment
process requires two entities, job seeker and job advertisement. Thus, a selection of
job advertisements is necessary, in order to perform the matchmaking process. More
precisely, for the job recruitment problem, themethod considers the following components:

• Job Seeker, who searches for a specific position, based on a set of criteria, like
salary, working hours etc.

• Job Advertisement, who publishes a certain job, stating the necessary and optional
qualifications

• FuzzyOntology Repository, which represents all the knowledge, about the problem’s
domain

• Fuzzy Matchmaking Engine, which proceeds in the matchmaking process based on
a set of vague criteria, related to the problem

The domain of knowledge is represented through a job search ontology. The following
concepts are defined:

JobSeeker ≡ Person ⊓≥ 1 hasCV.CV ⊓ SeekerRequirements ⊓ SeekerPreferences

JobAdvertisement ≡ Person ⊓ ∃=1hasJobOffer.JobOffer ⊓ SkillRequirements

⊓ SkillPreferences

77 L. Karanikola



Managing Uncertainty and Vagueness in Semantic Web

In addition, the concept JobOffer has the following form:

JobOffer ≡ ∃=1hasSalary.Integer ⊓ ∃≥1hasWorkingHours.WorkingHours

A CV concept has two subclasses, Degree and Experience, defined as follows:

Degree ≡ CV ⊓ ∃=1hasDegreeRate.Double

Experience ≡ CV ⊓ ∃=1hasCompany.Company

⊓ ∃=1hasJobType.JobType ⊓ ∃=1yearsOfExperience.Integer

The JobType and WorkingHours are enumerated classes of the following form:

JobType ≡ ComputerProgrammer,DatabaseAdministrator,DataAnalyst

WorkingHours ≡ FullT ime, PartT ime

Seeker and Offer requirements are defined based on a set of membership functions. In
our example, for the Salary constraint, these are stated as follows:

µSeekerSalary
(x) =


0, for 0 ≤ x ≤ 2000
x−2000
1000

, for 2000 ≤ x ≤ 3000
1, for 3000 ≤ x



µOfferSalary
(x) =


1, for 0 ≤ x ≤ 2000
3000−x
1000

, for 2000 ≤ x ≤ 3000
0, for 3000 ≤ x


where x ∈ N.

In addition, for the Experience constraint, we have:

µOfferExperience
(x) =


0, for 0 ≤ x ≤ 5
x−5
5
, for 5 ≤ x ≤ 10

1, for 10 ≤ x


where x ∈ N.

Each Seeker and Offer preference is assigned a membership degree, based on the prede-
fined membership function. For defining the total membership degree of Seeker’s (Offer’s)
preferences, we employ any fuzzy logic defined in Table (4). This membership degree
represents the degree of satisfaction, based on the input data values, i.e salary and ex-
perience. These are denoted as mSeeker and mOffer for Seeker and Offer, respectively.

Example Let us consider the membership functions:

µSeekerSalary
, µOfferSalary

and µOfferExperience
,
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as previously defined. In addition, we consider the input values:

xsalary = 2500 and xexperience = 8

According to the membership functions, we get the following assignments:

µSeekerSalary
(xsalary) = 0.5

µOfferSalary
(xsalary) = 0.5

µOfferExperience
(xexperience) = 0.6

In addition, according to Zadeh’s Fuzzy Logic (Table 4), we have the following degrees of
satisfaction for Seeker and Offer:

mSeeker = µSeekerSalary
(xsalary) = 0.5

mOffer = µOfferSalary
(xsalary)⊗ µOfferExperience

(xexperience) = min{0.5, 0.6} = 0.5

Having defined the representation scheme of Seeker and Offer concepts, in the following,
we present the matching process, i.e. the reasoning method.

3.3.3 Matching Process

The Matching Process is the reasoning method of our system. The method attempts to
match Seeker’s Preferences along with Offer’s Preferences. As it is not always possible to
match exactly Seeker’s andOffer’s preferences, we try to find the best agreement between
them.

Formally, this is defined as follows:

BestAgreement ≡ SeekerPreferences ⊓ OfferPreferences

The interpretation of the fuzzy intersection SeekerPreferences ⊓ OfferPreferences can
be resolved using Dempster’s rule of Combination. The reason for employing Dempster-
Shafer framework and Dempster’s rule of Combination is because this theory is ideal
for preference fusion situations. Seeker Preferences as well as Offer Preferences are
associated with a degree of satisfaction, as previously defined.

In order to to compute the combined degree of BestAgreement, we consider Seeker and
Offer as independent sources of information. In addition, a frame of discernment, W, is
defined as W = {α,¬α}, where α stands for ”has degree of satisfaction”. Following this
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convention, the basic probability assignment is defined as follows:

bpaSeeker(∅) = 0

bpaSeeker({α}) = mSeeker

bpaSeeker({¬α}) = 0

bpaSeeker({α,¬α}) = 1−mSeeker

bpaOffer(∅) = 0

bpaOffer({α}) = mOffer

bpaOffer({¬α}) = 0

bpaOffer({α,¬α}) = 1−mOffer

Finally, we define the combined constraint degree through Dempster’s rule of Combina-
tion:

combinedSeeker,Offer =

({α}) = mSeeker × Offer +mSeeker × (1−mOffer) +mOffer × (1−mSeeker)

Our approach has been implemented in a Protégé tool along with the rules plugin provided.
In Chapter 6, we will present a real-world case study of a matchmaking approach.
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4. TOWARDS THE DEFINITION OF THE FRAMEWORK

In this Chapter, we propose a framework that employs Dempster-Shafer theory in a De-
scription Logic Knowledge Base environment. We name our model a Dempster-Shafer
DL Knowledge Base.

As we have stated in the introduction, while developing Semantic Web applications, we
often come across information incompleteness issues. As an example, let us consider
a data source that contains information about hotels. We assume each hotel h to be
assigned an interval cost per night rather than a crisp value, e.g:

h : [50− 150]

In this case, if we want to make a reservation, we do not know exactly what the cost is but
we know a lower-upper bound of the cost value. Moreover, consider the following query:

I’m looking for a hotel with cost no greater than 100

In a crisp logic framework, where each hotel has a unique value cost, the query could be
answered with a yes/no statement. In our case, where we have to deal with interval value
form, a yes/no statement cannot fully answer this query. The introduction of a degree
notion seems to be more suitable to describe this kind of information.

More precisely, in a Description Logics environment, if we consider a concept DesiredHo-
tel, defined as:

DesiredHotel ≡ Hotel ⊓ ∃cost. ≤100

then, the answer to our query is to decide whether a hotel individual is a member of the
Class DesiredHotel.

Information incompleteness can be classified as an uncertainty problem. Other uncer-
tainty problems consider information randomness and data inconsistency [37]. Dempster-
Shafer theory, along with Dempster’s rule of Combination [111], is a framework for dealing
with information incompleteness, allowing integration of information from different inde-
pendent sources. In our approach, we propose an adaptation of Dempster-Shafer theory
in a logic context.

In this chapter, we define an extension of crisp Knowledge Bases with Dempster-Shafer
modules. The concept of Dempster-Shafer DL Knowledge Base is introduced and it is
served as a way to tackle information incompleteness. Dempster-Shafer Theory is more
well-suited in modelling beliefs regarding the truthness of an event. Our method is an
extension of the crisp DL ALC. In our framework, we consider crisp DL axioms annotated
with Dempster-Shafer belief and plausibility degree conditions.
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4.1 Dempster-Shafer Theory and Logical Extensions

A Logical representation of Dempster-Shafer theory has been examined extensively in
literature [101, 100, 108, 98, 155]. The key-point in all representations is the annotation
of statements or formulas with belief and plausibility measures.

In [108], the Dempster-Shafer logical model is defined as a set of bf-formulas, denoted
as:

F : [a, b], a, b ∈ [0, 1]

where F is a classical first-order sentence and [a, b] constitutes a Belief-Plausibility in-
terval, in a Dempster-Shafer framework. The logic defined, denoted as BFL, constitutes
a method for representing uncertain knowledge. More precisely, a belief measure is as-
signed to classical first-order logic formulas. In the formula above, a, b constitute belief and
plausibility degrees respectively, i.e aBFL formula is classical FOL formula, annotated with
an interval constraint. In addition, the concept of hyper-interpretation is introduced, as a
set of interpretations. Then, the entailment relation is extended for hyper-interpretations.
If an I is a hyper-interpretation, then a bf-interpretation,M, is defined as:

M : 2I → [0, 1]

Such an interpretation should be aligned with the following:

(1) BelM(2I) = 1

(2) if X ∪ Y ̸= 2I , then BelM(X ∩ Y ) ≥ BelM(X)×BelM(Y )

The notions of validity, satisfaction and entailment are defined over BFL formulas.

Another approach is defined in [101, 100]. The notion of provability is employed, by defin-
ing a set of focal propositions, Θ, along with its corresponding literals x. A set of clauses
X denotes provability relations considering 2×.

4.2 Dempster-Shafer Description Logics

An approach which introduces the concept of the Dempster-Shafer DL Knowledge Base,
based on the logic defined in [108], is defined in [69]. This approach is denoted as
DS −ALC, as an extension to crisp ALC. In this approach, we extend classical DL ax-
ioms with Belief degree conditions and Plausibility degree conditions. Then, we interpret
these axioms to hold with a Belief degree lower bound or Plausibility degree lower bound.

Following, we define our DS −ALC syntax and semantics.

L. Karanikola 82



Managing Uncertainty and Vagueness in Semantic Web

4.3 The Description Logic ALC

In this Section, we overview the DL ALC. ALC is considered the basic DL language. Its
syntax uses the following sets: NC (the set of concept names), NR (the set of role names)
and NI (the set of individuals). In order to build complex rules, we apply a set of syntax
rules. More precisely, ALC concepts are the following:

• ⊤,⊥, A, where A is a primitive concept

• If C,D are ALC concepts, then C ⊓D, C ⊔D, ¬C, ∀r.C and ∃r.C, where r is a DL
Role, are ALC concepts.

An interpretation I = (∆I , ·I) performs the following mapping:
⊤I = ∆I ,⊥I = ∅, CI ⊆ ∆I , rI ⊆ ∆I ×∆I

(C ⊓D)I = CI ∩DI , (C ⊔D)I = CI ∪DI

(¬C)I = ∆I\CI

(∀r.C)I = {d ∈ ∆I : ∀d′, (d, d′) ∈ rI implies d′ ∈ CI}
(∃r.C)I = {d ∈ ∆I : ∃d′, (d, d′) ∈ rI and d′ ∈ CI}

In addition, ALC considers two kinds of assertions for an individual α: C(α), meaning
that α is an instance of C (concept assertion) and r(α, β), meaning that there is a re-
lation r between α, β (role assertion). A set of concept assertions {C(α1), . . . , C(αn)}
is satisfied in an interpretation I, iff αI

i ∈ CI , i = 1, . . . , n. A set of role assertions
{r(α1, β1), . . . , r(αn, βn)} is satisfied in an interpretation I, iff (αI

i , β
I
i ) ∈ rI , i = 1, . . . , n.

4.3.1 Syntax of DS −ALC

A Dempster-Shafer DL knowledge base is described by the following:

• A set Φ = {p1, p2, . . . , pn}, where pi, i = 1, . . . , n is a basic crisp DL ALC assertional
axiom.

• Any assertion ϕ is an atomic assertion, or a boolean combination of assertions.

• A set of constraints:

– Belief Constraints: They have the form ϕ B ≥ α, and interpreted as ϕ is true
with Belief degree at least α.

– Plausibility Constraints: They have the form ϕ P ≥ α, and interpreted as ϕ is
true with Plausibility degree at least α.

Definition 1. A Dempster-Shafer DL Knowledge Base is defined as a set of Belief Con-
straints B and a set of Plausibility Constraints P, as:

KB = (B,P)
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4.3.2 Semantics of DS −ALC

Before defining the semantics of our framework, we introduce the concept of a possible
world I to be a subset of the set of basic crisp DL assertions Φ. In that sense, a possible
world I specifies the set of assertions that are true in that world. We denote as W the
set of possible worlds I, i.e W = 2Φ. Since Φ is finite, W is also finite. Given a crisp DL
Knowledge Base, KBcrisp, and a possible world I, the satisfaction of KBcrisp is defined as:

Definition 2. A possible world I satisfies (or it is a model of) KBcrisp iff:

{p | p ∈ I} ∪ KBcrisp

is satisfiable.

Next, we will prove that the satisfaction (entailment) of a KBcrisp is a necessary and suffi-
cient condition for the existence of a model I of this Knowledge Base. Our proof is based
on the one defined in [83], adapted in our DL.

Proposition 1. Let Φ be a finite set of DL assertions and let KBcrisp be a crisp ALC
Knowledge Base out of Φ. ThenKBcrisp has a model I = (∆I , ·I) iff there exists a possible
world I that satisfies KBcrisp.

Proof (⇒)Suppose that KBcrisp has a model. This means that an interpretation I =
(∆I , ·I) exists. Then, the set of DL assertions that are satisfiable under I constitutes a
subset of Φ, i.e a possible world I. This means that KBcrisp has also a model I.
(⇐)Now, suppose that there exists an I model of KBcrisp. This means that KBcrisp is
satisfiable, so a model I exists. �

The set of possible worldsW can be considered as a Dempster-Shafer frame of discern-
ment, since the elements ofW are mutually exclusive. We define a Dempster-Shafer in-
terpretationm, as a basic probability assignment function on subsets of the setW. Based
on this assignment, we define belief and plausibility degrees, induced from bpa’s on sets
T ⊆ W. In addition, the power set of W, denoted as PW is defined over the following
function:

PW = 2W

In this context, we consider that a crisp ALC axiom can be true in a subset of W. We
define this subset as a set-interpretation, i.e:

Definition 3. Let us consider the set of all possible worlds (or interpretations) W, with
power-set 2W . AnyK ∈ 2W is called a set-interpretation. Our set-interpretation is defined

in an analogous way to a hyper-interpretation [108].
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The entailment of an axiom ϕ under a set-interpretation is defined as:

Definition 4. An entailment of an axiom ϕ from a set-interpretation K, where K ∈ 2I is
defined as:

K |= ϕ iff ,∀ I ∈ K, I |=DL ϕ

K ̸|= ϕ iff ,∃ I ∈ K, I ̸|=DL ϕ

K |= ¬ϕ iff ,∀ I ∈ K, I ̸|=DL ϕ

In the definition above, |=DL denotes classical crisp DL entailment.

Definition 5. A Dempster-Shafer interpretation m is defined as a basic probability
assignment, as follows:

m : 2W → [0, 1]

As we operate on a Dempster-Shafer framework, a constraint that we have to preserve is
the following: ∑

T∈ 2W

m(T ) = 1

Our Dempster-Shafer DL knowledge base assumes a set of possible worlds W and as-
signs a Dempster-Shafer interpretation to subsets of this set. Any A ⊆ W such that
m(A) > 0 constitutes a focal set-interpretation. Following, we define Belief and Plausibil-
ity Degrees of assertions ϕ from these focal interpretations, based on entailment notion
related to PW.

Definition 6. The Belief Degree of an axiom ϕ under a Dempster-Shafer interpretation
m is defined as:

Belm(ϕ) =
∑

PW |=ϕ

m(PW ), PW ∈ PW

Definition 7. The Belief Degree of an axiom ¬ϕ under a Dempster-Shafer interpretation
m is defined as:

Belm(¬ϕ) =
∑

PW ̸|=ϕ

m(PW ), PW ∈ PW
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In a Dempster-Shafer framework, the following relation holds for an axiom ϕ:

Plm(ϕ) = 1−Belm(¬ϕ)

Proposition 2. A Plausibility Degree for an axiom ϕ is equal to:

Plm(ϕ) = 1−
∑

PW ̸|=ϕ

m(PW ), PW ∈ PW

Proof Based on the relation Plm(ϕ) = 1−Belm(¬ϕ), we have the following:

Plm(ϕ) = 1−Belm(¬ϕ)⇒

Plm(ϕ) = 1−
∑

PW ̸|=ϕ

m(PW ), PW ∈ PW

�

Definition 8. The truthness of a Dempster-Shafer axiom ϕDS, where ϕDS ≡ ϕ B ≥ α or
ϕDS ≡ ϕ P ≥ α, under a Dempster-Shafer interpretation m is defined as:

m |= ϕ B ≥ α iff Bel(ϕ) ≥ α

m |= ϕ P ≥ α iff Pl(ϕ) ≥ α

Definition 9. A Dempster-Shafer interpretation m is a model of a Dempster-Shafer DL
Knowledge Base KB = (B,P) iff m |= U , ∀U ∈ B ∪ P.

Definition 10. A Dempster-Shafer axiom ϕDS is a logical consequence of a Dempster-
Shafer DL Knowledge Base KB, denoted as KB |= ϕDS, iff every model of KB is also a
model of ϕDS.

In addition, a Dempster-Shafer DL Knowledge Base is consistent if a model exists for KB.

An important issue considers consistency checking. Knowledge Base consistency par-
tially stems from the relation between Belief and Plausibility degrees, i.e:

Bel(ϕ) = 1− Pl(ϕ)

Consistency checking refers to the Belief - Plausibility Degrees of a formula ϕ and its
negation ¬ϕ.

L. Karanikola 86



Managing Uncertainty and Vagueness in Semantic Web

Syntactic Consistency: Let us consider a Dempster-Shafer DL Knowledge Base KB
with the following Belief and Plausibility constraints:

ϕ B ≥ α, ϕ P ≥ β

¬ϕ B ≥ γ, ¬ϕ P ≥ δ

where α, β, γ, δ ∈ [0, 1].

Then, based on the Belief-Plausibility relation, we conclude that a consistent Knowledge
Base should be aligned with the following:

β ≤ (1− γ) δ ≤ (1− α)

Semantic Consistency: From a semantics point of view, if m a model of KB, i.e:

m |= ϕ B ≥ α, m |= ϕ P ≥ β

m |= ¬ϕ B ≥ γ, m |= ¬ϕ P ≥ δ

Then, following our semantics definition, we conclude that:

Bel(ϕ) ≥ α, Bel(ϕ) ≥ β, P l(¬ϕ) ≥ γ, P l(¬ϕ) ≥ δ

For KB being a consistent Knowledge Base, we have to preserve the following:

Bel(ϕ) + Pl(¬ϕ) = 1

Example In order to illustrate our method, let us consider the following Dempster-Shafer
DL Knowledge Base:

< h1 : Hotel ⊓ ∃cost. ≤100> B ≥ 0.5

< h1 : Hotel ⊓ ∃cost. ≤100> P ≥ 0.7

Our knowledge base is consistent, based on our consistency checking formulas. Now, let
us suppose that we add the following axiom:

¬ < h1 : Hotel ⊓ ∃cost. ≤100> B ≥ 0.9

Based on the consistency checking, we must have 0.7 ≤ 0.1, which makes our knowledge
base inconsistent.

Semantics and Soundness

As a final issue we consider soundness of the semantics. In the following, we will prove
that our DS −ALC is sound with respect to crisp ALC semantics. We will follow the nota-
tion described in [119]. More precisely, we consider the transformation ♯(·) which takes as
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input a Belief or a Plausibility constraint and outputs the crisp part of this constraint. More
precisely,

♯(ϕ B ≥ α) 7→ ϕ

♯(ϕ P ≥ α) 7→ ϕ

In addition, if KB = (B,P) a Dempster-Shafer DL Knowledge Base then:

♯KB = {♯ϕDS : ϕDS ∈ B ∪ P}

Then, the following proposition holds:

Proposition 3. Let KB = (B,P) a Dempster-Shafer DL Knowledge Base and ϕ B ≥ α,
ϕ P ≥ β, α, β ∈ [0, 1] DS axioms. If KB |= ϕ B ≥ α (ϕ P ≥ β), then ♯(KB) |=DL

♯(ϕ B ≥ α) (♯(KB) |=DL ♯(ϕ P ≥ β)).

Proof If KB |= ϕ B ≥ α, it follows that any model of KB is also a model of ϕ B ≥ α. In
other words, ϕ B ≥ α can be considered as a part of KB. Hence, ♯(ϕ B ≥ α) is also a
part of ♯(KB). Let I a model of ♯(KB, then if ϕ ∈ ♯KB, then I |= ϕ. �

The opposite of this proposition does not, generally, hold.

4.3.3 Combined Dempster-Shafer entailment

In this Section, a new notion of entailment, named Combined Dempster-Shafer entail-
ment and denoted as |=DScombined

is defined. The Combined Dempster-Shafer entailment
is applied on two different independent Knowledge Bases, named KB1 = (B1,P1) and
KB2 = (B2,P2) and combine assertions that are entailed (with a Belief-Plausibility degree)
by both Knowledge Bases.

Let us suppose that the following hold:

KB1 |= ϕ : B ≥ γ

KB2 |= ϕ : B ≥ δ

where γ, δ ∈ [0, 1].

This means that, if m1 is a model of KB1 and m2 is a model of KB2, then we have the
following:

Bel1(ϕ) ≥ γ

Bel2(ϕ) ≥ δ
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In addition, we consider Ti, i = 1, . . . , n the focal set-interpretations of KB1 and Tj, j =
1, . . . ,m, the focal set-interpretations of KB2.

In our framework, Dempster’s rule of Combination is applied in order to define a Combined
Belief Degree. This rule provides for combination of a set of bpa’s m1, . . . ,mn. In our
approach, the Belief Degree of ϕ equals its bpa value, as subsets of ϕ are not feasible
to be defined, i.e. Bel(ϕ) = m(ϕ). Belief and Plausibility degrees can be defined as a
combination of m1,m2. For defining a Combined Belief Degree we take into account the
definition of the Belief Degree of a formula, defined previously and consider intersections
of the form Ti ∩ Tj, as in the case of Dempster’s rule of Combination. Then, we introduce
the following definition:

Definition 11. The Combined Belief Degree Bel1,2 over models m1 and m2, is defined
as:

Bel1,2(ϕ) =

∑
Ti∩Tj |=ϕm1(Ti)×m2(Tj)

1−
∑

Ti∩Tj=∅m1(Ti)×m2(Tj)

The Combined Plausibility Degree Pl1,2 over models m1 and m2, is derived from the fol-
lowing formula:

Pl1,2(ϕ) = 1−Bel1,2(¬ϕ)

Let us consider KB1 with model m1 and KB2 with model m2. Then, the Dempster-Shafer
Combined entailment is defined as follows:

Definition 12. An axiom ϕ B ≥ ε, ε ∈ [0, 1] is Dempster-Shafer Combined entailed,
under KB1 and KB2, denoted as KB1 ⊕ KB2 |=DScombined

ϕ B ≥ ε, iff ε ≥ Bel1,2(ϕ).

Definition 13. An axiom ϕ P ≥ ε, ε ∈ [0, 1] is Dempster-Shafer Combined entailed,
under KB1 and KB2, denoted as KB1 ⊕ KB2 |=DScombined

ϕ P ≥ ε, iff ε ≥ Pl1,2(ϕ).

Example Continuing the previous example, let us suppose, that we have two Dempster-
Shafer DL Knowledge Bases, KB1 and KB2 consisting of the following axioms:

KB1 : < h1 : Hotel ⊓ ∃cost. ≤100> B ≥ 0.5

KB2 : < h1 : Hotel ⊓ ∃cost. ≤100> B ≥ 0.7

We considerW = {I1, I2}, two possible worlds, where < h1 : Hotel ⊓∃cost. ≤100> is false
in I1 and true in I2, i.e, there exist two DL interpretations, I1 and I2 such that:

I1 ̸|=< h1 : Hotel ⊓ ∃cost. ≤100>

I2 |=< h1 : Hotel ⊓ ∃cost. ≤100>
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Table 8: Dempster-Shafer Interpretation

PW |= ϕ m1 m2

{I1} 0 0.3 0.2
{I2} 1 0.5 0.7
{I1, I2} 0 0.2 0.1

We consider two Dempster-Shafer interpretations, m1,m2 as described in Table 8. In
addition, we consider m1 a model of KB1 and m2 a model of KB2. For our convenience
we name < h1 : Hotel ⊓ ∃cost. ≤100> as ϕ.

By applying the Combination, based on our formula defined in the previous section, we
derive a result of Belcombined(ϕ) of 0.78.

Based on the Dempster-Shafer Combined entailment, the following holds:

KB1 ⊕KB2 |=DScombined

< h1 : Hotel ⊓ ∃cost. ≤100> B ≥ 0.78

4.4 Decidability and Reasoning in Dempster-Shafer Description Logics

In this Section, we provide a method for reasoning over a Dempster-Shafer DL Knowledge
Base, KBDS, which actually contains ABox. Reasoning in DLs is usually accomplished
through tableaux procedures [24]. The decidability problem in our framework can be re-
duced in finding a method for deciding whether KBDS |= τ , where τ is a Dempster-Shafer
assertion axiom. Deciding satisfiability in a Dempster-Shafer DL Knowledge Base should
take into account a basic probability assignment on subsets of interpretations (or possi-
ble worlds). It has to be noted that our axioms are described by Belief and Plausibility
conditions in a similar way to axioms defined in [118] where axioms are annotated with
membership degree conditions. Having taken this into consideration, we adapt themethod
described in [118] and extend it in order to capture Belief and Plausibility conditions.

More precisely, we considerO as an alphabet of symbols (DL individuals) in the same way
as it is referred in [24]. Moreover, we consider an alphabet of variable symbols V along
with an ordering ≺ on V. In addition, the common term object is employed for describing
either a DL individual or a variable, in other words an object is an element of O ∪ V. The
symbols s, t are used to denote an object element. A constraint σ is defined as one of the
following:

s : C

sPt

where C is a DL concept and P is a DL role. Following, a constraint system is defined as
a finite nonempty set of constraints. Also, by ¬σ, we denote s : ¬C or s¬Pt.
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Based on these concepts, we define a Belief constraint as follows:

Definition 14. A Belief constraint is defined as:

σ B ◃▹ n

where ◃▹ is one of <,>,≤,≥.

In addition, we defined a Plausibility constraint as follows:

Definition 15. A Plausibility constraint is defined as:

σ P ◃▹ n

where ◃▹ is one of <,>,≤,≥.

Definition 16. A Dempster-Shafer constraint system is defined as a set of Belief and
Plausibility constraints.

Definition 17. An interpretation m satisfies a Belief Constraint

s : C B ◃▹ n (sP t B ◃▹ n)

iff Belm(C(s)) ◃▹ n (Resp. Belm(P (s, t)) ◃▹ n).

Definition 18. An interpretation m satisfies a Plausibility Constraint

s : C P ◃▹ n (sP t P ◃▹ n)

iff Plm(C(s)) ◃▹ n (Resp. Plm(P (s, t)) ◃▹ n).

In addition, m satisfies a constraint system SKB iff m satisfies every Dempster-Shafer
constraint in it.

A Dempster-Shafer DL Knowledge Base KBDS can be mapped into a Dempster-Shafer
constraint system SKB, defined as:

SKB = {a : C B ≥ n | C(a) B ≥ n} ∪
{a : C P ≥ n | C(a) P ≥ n} ∪
{aPb B ≥ n | P (a, b) B ≥ n} ∪
{aPb P ≥ n | P (a, b) P ≥ n}

Then we have the following:

KBDS |= C(a) B ≥ n iff SKB ∪ a : C B < n is not satisfiable
KBDS |= C(a) P ≥ n iff SKB ∪ a : C P < n is not satisfiable
KBDS |= P (a, b) B ≥ n iff SKB ∪ (aPb) B < n is not satisfiable
KBDS |= P (a, b) P ≥ n iff SKB ∪ (aPb) P < n is not satisfiable
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In order to examine constraint satisfiability of SKB, we consider a set of constraint prop-
agation rules. These rules actually add constraints to SKB until a contradiction (or clash)
happens or the current constraint system is complete (i.e anm that satisfies a constraint to
be added can be obtained from the current constraint system). Any complete set SKBcomp

derived from an initial set SKBinit
, by applying a set of propagation rules, is called a com-

pletion of SKBinit
.

A set of Dempster-Shafer constraints S contains a contradiction iff it contains one of the
following:

1. ⊤,⊥ contradictions:

s : ⊥B ≥ n, s : ⊥P ≥ n, s : ⊥B > n, n > 0

s : ⊥P > n, s : ⊥B < 0, s : ⊥P < 0, n > 0

s : ⊤B ≤ n, n < 1, s : ⊤P ≤ n, n < 1, s : ⊤B < n

s : ⊤P < n, s : ⊤B > 1, s : ⊤P > 1

2. <,>,≤,≥ relationships contradictions:

σ B ≥ n and σ B < m and n ≥ m

σ B ≥ n and σ B ≤ m and n > m

σ B > n and σ B < m and n ≥ m

σ B > n and σ B ≤ m and n ≥ m

σ P ≥ n and σ P < m and n ≥ m

σ P ≥ n and σ P ≤ m and n > m

σ P > n and σ P < m and n ≥ m

σ P > n and σ P ≤ m and n ≥ m

In [119], the propagation rules have the following form:

Φ→ Ψ if Γ

where Φ, Ψ are sequences of Dempster-Shafer constraints and Γ is a condition. A rule
fires if the following hold:

1. The condition Γ holds

2. The current set of Dempster-Shafer constraints contains a set of constrains that
match Φ

After firing the constraints of Ψ are added to S.

In our rules, though, the condition Γ is part of the rule left hand side. The rules are the
following:
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1.(¬ ≥) < ¬σ B ≥ k >→< σ P ≤ (1− k) >
2.(¬ ≥) < ¬σ P ≥ k >→< σ B ≤ (1− k) >
3.(¬ ≤) < ¬σ B ≤ k >→< σ P ≥ (1− k) >
4.(¬ ≤) < ¬σ P ≤ k >→< σ B ≥ (1− k) >
5.(⊓ ≥) < σ1 ⊓ σ2 B ≥ k >→< σ1 B ≥ k and σ2 B ≥ k >

6.(⊓ ≥) < σ1 ⊓ σ2 P ≥ k >→< σ1 P ≥ k and σ2 P ≥ k >

7.(⊓ ≤) < σ1 ⊓ σ2 B ≤ k >→< σ1 B ≤ k or σ2 B ≤ k >

8.(⊓ ≤) < σ1 ⊓ σ2 P ≤ k >→< σ1 P ≤ k or σ2 P ≤ k >

9.(⊔ ≥) < σ1 ⊔ σ2 B ≥ k >→< σ1 B ≥ k or σ2 B ≥ k >

10.(⊔ ≥) < σ1 ⊔ σ2 P ≥ k >→< σ1 P ≥ k or σ2 P ≥ k >

11.(⊔ ≤) < σ1 ⊔ σ2 B ≤ k >→< σ1 B ≤ k and σ2 B ≤ k >

12.(⊔ ≤) < σ1 ⊔ σ2 P ≤ k >→< σ1 P ≤ k and σ2 P ≤ k >

13.(¬ >) < ¬σ B > k >→< σ P < (1− k) >
14.(¬ >) < ¬σ P > k >→< σ B < (1− k) >
15.(¬ <) < ¬σ B < k >→< σ P > (1− k) >
16.(¬ <) < ¬σ P < k >→< σ B > (1− k) >
17.(⊓ >) < σ1 ⊓ σ2 B > k >→< σ1 B > k and σ2 B > k >

18.(⊓ >) < σ1 ⊓ σ2 P > k >→< σ1 P > k and σ2 P > k >

19.(⊓ <) < σ1 ⊓ σ2 B < k >→< σ1 B < k or σ2 B < k >

20.(⊓ <) < σ1 ⊓ σ2 P < k >→< σ1 P < k or σ2 P < k >

21.(⊔ >) < σ1 ⊔ σ2 B > k >→< σ1 B > k or σ2 B > k >

22.(⊔ >) < σ1 ⊔ σ2 P > k >→< σ1 P > k or σ2 P > k >

23.(⊔ <) < σ1 ⊔ σ2 B < k >→< σ1 B < k and σ2 B < k >

24.(⊔ <) < σ1 ⊔ σ2 P < k >→< σ1 P < k and σ2 P < k >

25.(∀ ≥) < s : ∀ R.C B ≥ k >, < sRt B > (1− k) >→ < t : C B ≥ k >

26.(∀ >) < s : ∀ R.C B > k >, < sRt B > (1− k) >→ < t : C B > k >

27.(∀ ≤) < s : ∀ R.C B ≤ k >→ < sRt B ≥ (1− k) >,< t : C B ≤ k >

28.(∀ <) < s : ∀ R.C B < k >→ < sRt B > (1− k) >,< t : C B < k >

29.(∃ ≤) < s : ∃ R.C B ≤ k >, < sRt B > k >→ < t : C B ≤ k >

30.(∃ <) < s : ∃ R.C B < k >, < sRt B > k >→ < t : C B < k >

31.(∃ ≥) < s : ∃ R.C B ≥ k >→ < sRt B ≥ k >< t : C B ≥ k >

32.(∃ >) < s : ∃ R.C B > k >→ < sRt B > k >< t : C B > k >

33.(∀ ≥) < s : ∀ R.C P ≥ k >, < sRt P > (1− k) >→ < t : C P ≥ k >

34.(∀ >) < s : ∀ R.C P > k >, < sRt P > (1− k) >→ < t : C P > k >

35.(∀ ≤) < s : ∀ R.C P ≤ k >→ < sRt P ≥ (1− k) >,< t : C P ≤ k >

36.(∀ <) < s : ∀ R.C P < k >→ < sRt P > (1− k) >,< t : C P < k >
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37.(∃ ≤) < s : ∃ R.C P ≤ k >, < sRt P > k >→ < t : C P ≤ k >

38.(∃ <) < s : ∃ R.C P < k >, < sRt P > k >→ < t : C P < k >

39.(∃ ≥) < s : ∃ R.C P ≥ k >→ < sRt P ≥ k >< t : C P ≥ k >

40.(∃ >) < s : ∃ R.C P > k >→ < sRt P > k >< t : C P > k >

Example Let us consider the following Knowledge Base:

KB = {a : C B ≥ 0.7, ¬a : D P ≥ 0.9}

In addition we consider the following assertions:

γ1 : a : C B ≥ 0.5

γ2 : ¬a : D P ≥ 0.8

We will show that KB |= γ1 and KB |= γ2.

In the first case, we have to derive a clash for the SKB ∪ {a : CB < 0.5}. Based on the
relationships contradictions and assigning n = 0.7 andm = 0.5, we derive a clash. Hence,
KB |= γ1.

In the second case, we have to derive a clash for the SKB ∪ {¬a : D P < 0.8}. We apply
the following substitutions, based on the ¬ ≥ rule defined previously:

¬a : D P ≥ 0.9→ a : D B ≤ 0.1 (4.1)
¬a : D P < 0.8→ a : D B > 0.2 (4.2)

Hence, we have clash, i.e KB |= γ2.

Proposition 4. A finite set of Belief and Plausibility constraints SKB is satisfiable iff there
exists a contradiction-free completion of SKB.

Proof (⇒) Based on [119], given the termination property, which actually states that any
completion of a finite set of constraints SKB can be obtained after a finite number of rule
applications, we have that the propagation rules are sound, i.e. if we consider a satisfiable
set Sinit, then there is a satisfiable completion Scomp of Sinit.
(⇐) Suppose we have a contradiction-free completion Scomp of Sinit. Then, an interpre-
tation IDS can be defined that satisfies Scomp. As Sinit ⊆ Scomp it follows that IDS also
satisfies Sinit.�

In the following chapter, we adapt a Dempster-Shafer framework in a fuzzy DL environ-
ment.
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5. DEMPSTER-SHAFER FUZZY DESCRIPTION LOGIC

As it is referred in the introduction, there is a need for representing uncertainty and vague-
ness through a common framework, especially in web-application areas. In the previous
chapter, we have defined a DL extended with Dempster-Shafer concepts, in order to rep-
resent ignorance in Semantic Web environments. As a final step, we consider a theory for
representing a fuzzy DL extended with a Dempster-Shafer framework. This framework
is described in [70]. In this chapter, we describe our Dempster-Shafer Fuzzy Descrip-
tion Logic. Our framework constitutes a generalization scheme of a crisp DL with fuzzy
conditions along with a Dempster-Shafer module.

Taking into account the fuzzy DL interpretations introduced in [118], our framework con-
siders any such interpretation as a possible world. The set of possible worlds is regarded
as a frame of discernment. Thus, a basic probability assignment function is assigned on
subsets of this set. This measure constitutes the uncertainty framework of our method.

As we have stated in Chapter 2, a classical DL, assumes a universe X and subsets
A ⊆ X , that constitute a DL Concept. Any element x ∈ X belongs to A or not, which
is interpreted as a true/false value. The fuzzy extension assumes truthness interval on
[0, 1], where A is a Fuzzy subset and it is associated with a membership function µA(x) :
X → [0, 1]. Any DL axiom, either crisp or fuzzy, has a truth value in a fuzzy interpretation
I. Our innovation, called Dempster-Shafer Fuzzy Description Logic, assigns probability
masses into sets of fuzzy interpretations. As already stated, a fuzzy interpretation can be
considered as a possible world.

LetW a set of fuzzy DL interpretations. Let’s denote a basic probability assignment func-
tion, mDS on 2W as mDS : 2W → [0, 1]. Then, the extension of our method employs sets
of fuzzy DL interpretations I ∈ W in order to define Belief Degrees of fuzzy subsets of an
interpretation domain ∆I (or ∆I ×∆I). This means that we assume a Fuzzy Description
Logic and define Belief Degrees Conditions for axioms of this logic. In our case, we have
considered the DL ALC and based on a fuzzy extension of it, we define our Dempster-
Shafer Fuzzy DL. Since we extend fuzzyALC based on Zadeh fuzzy logic, we also employ
this logic in our framework.

5.1 Basics Adapted from Fuzzy ALC

The syntax of our Dempster-Shafer fuzzy DL is an extension of the fuzzy ALC Descrip-
tion Logic [118]. In this approach a fuzzy DL statement is defined as τfuzzy ≡< a n >
, n ∈ [0, 1], where a is a crisp DL assertion. This statement means that a is true with
a membership degree at least n. In our approach, this statement will be called a fuzzy
axiom.

Based on this syntax, a fuzzy DL interpretation, I = (∆I , ·I), considers Concepts as fuzzy
subsets of a domain ∆I and Roles as fuzzy subsets of a domain ∆I ×∆I .
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More precisely, this Fuzzy DL defines a set of symbols, namedPrimitive concepts, denoted
as A, Primitive roles, denoted as R and Individuals, denoted as a, b.

Any crisp ALC Concept C,D is defined as:

C,D →
⊤ | (top concept)
⊥ | (bottom concept)
A | (primitive concept)
C ⊓D | (concept conjunction)
C ⊔D | (concept disjunction)
¬C | (concept negation)
∀R.C | (universal quantification)
∃R.C | (existential quantification)

Then, a fuzzy DL interpretation assigns:

• To each Concept C a function CI : ∆I → [0, 1]

• To each Role R a function RI : ∆I ×∆I → [0, 1]

The assignments defined above, actually constitute membership functions. Each DL in-
dividual a is interpreted as an element aI ∈ ∆I . Following, CI(aI) is the membership
degree of aI being in CI . The same applies for RI(aI , bI).

Zadeh’s fuzzy logic is employed in order to define semantics for fuzzy ALC. More pre-
cisely, a fuzzy interpretation I = (∆I , ·I) assigns the following values to an individual
d:

⊤I(d) = 1, ⊥I(d) = 0

(C ⊓D)I(d) = min{CI(d), DI(d)}
(C ⊔D)I(d) = max{CI(d), DI(d)}

(¬C)I(d) = 1− CI(d)

(∀R.C)I(d) = mind′∈∆Imax{{1−RI(d, d′), CI(d′)}}
(∃R.C)I(d) = maxd′∈∆Imin{{RI(d, d′), CI(d′)}}

5.2 Syntax of Dempster-Shafer Fuzzy DL

Extending the logic above, our Dempster-Shafer Fuzzy DL considers fuzzy ALC axioms,
annotated with belief degree conditions.

Definition 1. A Dempster-Shafer fuzzy assertion, τ , is defined as τ ≡< τfuzzy : k >,
where τfuzzy is a fuzzy ALC axiom and k ∈ [0, 1].
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Definition 2. A Dempster-Shafer Fuzzy ABox is defined as a set of assertion axioms

< C(i) n : k >,< R ( i1 , i2) n : k >

where C is a DL Concept, R is a DL Role, i, i1, i2 are DL individual names and n, k ∈ [0, 1]

As in the crisp DL case, the definition above, actually, sets apart two kinds of assertions,
Concepts and Roles. For example, < CheapHotel(a) 0.8 : 0.9 >, denotes that a is
a CheapHotel with membership degree at least 0.8 (Fuzzy Degree Condition) and Belief
degree at least 0.9 (Belief Degree Condition). Also, < CloseTo(a, b) 0.8 : 0.9 >,
denotes that a is related to b through CloseTo with Fuzzy Degree Condition ”at least 0.8”
and Belief Degree Condition ”at least 0.9”.

Definition 3. A Dempster-Shafer Fuzzy KB K is defined as a set of Dempster-Shafer
fuzzy assertions.

5.3 Semantics

The semantics of any Description Logic is defined through interpretations, satisfiability
and logical consequence.

5.3.1 Interpretation

As in the classical DL, we consider an interpretation, IDS, which defines a domain, named
∆IDS . On this domain, we consider fuzzy subsets regarded as Fuzzy Concepts. Also, on
∆IDS ×∆IDS we define fuzzy subsets regarded as Fuzzy Roles.

Any DL framework is based on an interpretation that is defined for the particular DL. For ex-
ample, a probabilistic DL is based on a probabilistic interpretation. In any case, the notion
of possible world is employed, in order to define an uncertainty environment. Since our
method applies a Dempster-Shafer model in a Fuzzy Logic model, we call it a Dempster-
Shafer Fuzzy interpretation. We define a Dempster-Shafer Fuzzy interpretation over the
power set of the set of possible worlds,W, whereW is the (infinite) set of fuzzy DL inter-
pretations I. The key-point here, is that we have to define Belief Degrees to account for
fuzzy sets. This means that, for computing Belief Degrees, we have to take into consider-
ation the membership function µ that describes any fuzzy set. For example, the statement
< a : CheapHotel > cannot be considered true/false in any interpretation, since this con-
cept is described by fuzziness, and as such a membership degree is always associated
with an individual a.

For applying a Dempster-Shafer framework, a frame of discernment, as well as its power
set, needs to be defined. We consider the frame of discernment, W, as the set of all
possible worlds or interpretations i.e W = {I1, I2, I3, . . . }, where Ii, i = 1, 2, 3, . . . is a
Fuzzy DL interpretation. This means, that the power set is defined as 2W .
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As in the fuzzy ALC [118], we introduce the following definitions:

Definition 4. A fuzzy assertion < C(a) n >, where C is a Concept and a is an individual
name, holds in a fuzzy interpretation Ij ∈ W, denoted as Ij |=< C(a) n >, iff CIj(aIj) ≥
n, where CIj(aIj) is the membership degree of aIj being in CIj .

Definition 5. A fuzzy assertion < R(a, b) n >, where R is a Role and a, b are individ-
ual names, holds in a fuzzy interpretation Ij ∈ W, denoted as Ij |=< R(a, b) n >, iff,
RIj(aIj , bIj) ≥ n, where RIj(aIj , bIj) is the membership degree of (aIj , bIj) being in RIj .

Any fuzzy axiom, τfuzzy, is associated with a membership degree, µτfuzzy . The definition
of µτfuzzy is based on a Fuzzy DL, as described in [121]. For example, (a : CheapHotel)
has a membership degree µCheapHotel(a), where µCheapHotel is the membership function of
the Fuzzy Concept CheapHotel.

Definition 6. A set of possible worlds T = {I1, I2, . . . , Im} satisfies a fuzzy axiom τfuzzy,
denoted as T |= τfuzzy , iff ∀ Ii ∈ T , Ii |= τfuzzy.

Definition 7. A set of possible worlds T = {I1, I2, . . . , Im} does not satisfy a fuzzy axiom
τfuzzy, denoted as T ̸|= τfuzzy , iff ∃ Ii ∈ T , Ii ̸|= τfuzzy.

Definition 8. A Dempster-Shafer fuzzy interpretation, IDS , is defined as

IDS = (∆IDS , ·IDS ,W ,mDS),

where ∆IDS is the interpretation domain, ·IDS is a fuzzy DL interpretation function, W is
the set of possible worlds and mDS is a basic probability assignment on subsets of W.
Any Ij ∈ W, such that mDS(Ij) > 0 is called a focal possible world.

Our Dempster-Shafer Fuzzy interpretation considers an mDS assignment on subsets of
W. In this context, any T ⊆ W with mDS(T ) > 0 can play the role of a non-fuzzy focal
element, to enable us to define a Belief function.

In that sense, we define the Belief degree of a fuzzy assertion τfuzzy, underW, as follows:

Definition 9. The Belief degree of a fuzzy concept assertion τfuzzy, under W is defined
as:

BelmDS
(τfuzzy) =

∑
T |=τfuzzy

mDS(T )× infIj∈T µIj(a)

where µIj(a) is the membership degree of aIj in CIj in possible world Ij.
The Belief degree of a fuzzy role assertion τfuzzy, underW is defined as:

BelmDS
(τfuzzy) =

∑
T |=τfuzzy

mDS(T )× infIj∈T µIj(a, b)
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where µIj(a, b) is the membership degree of (aIj , bIj) ∈ RIj in possible world Ij.

Definition 10. The Plausibility degree of a fuzzy concept assertion τfuzzy, under W is
defined as:

PlmDS
(τfuzzy) =

∑
T |=τfuzzy

mDS(T )× supIj∈T µIj(a)

where µIj(a) is the membership degree of aIj in CIj in possible world Ij.
The Plausibility degree of a fuzzy role assertion τfuzzy, underW is defined as:

PlmDS
(τfuzzy) =

∑
T |=τfuzzy

mDS(T )× supIj∈T µIj(a, b)

where µIj(a, b) is the membership degree of (aIj , bIj) ∈ RIj in possible world Ij.

The definitions of Belief and Plausibility measures are based on the fact that they are lower
and upper probabilities of τfuzzy in a way similar to [139]. In order to define these mea-
sures, we consider Belief and Plausibility degrees of Fuzzy sets derived from non-fuzzy
focal elements. More precisely, we consider subsets of the set of interpretations, as non-
fuzzy subsets. Therefore, a Dempster-Shafer fuzzy interpretation assigns a mass degree
on each subset. Any mass degree value greater than zero, results in a non-fuzzy focal
element, or a focal-set-interpretation. This can be derived by considering a minimization
linear programming problem as it has been defined in [139], and is described in the follow-
ing. Viewing the Belief degree as a minimization problem is justified by the fact that the
Belief degree of anA ⊆ W can be considered as the minimal amount of belief assigned to
A subject to the constraints imposed by mDS [138]. In the same way, the Plausibility de-
gree can be viewed as a maximization problem. Before proceeding into the minimization
(maximization) process, we introduce the sets Wτ and |=τ of a Dempster-Shafer Fuzzy
axiom τ .

Definition 11. TheWτ set of a Dempster-Shafer Fuzzy axiom is defined as a fuzzy set

{µI1/I1, µI2/I2, . . . }

where each µIi , i = 1, 2, . . . is the membership degree of τfuzzy under fuzzy DL interpre-
tation Ii

Definition 12. The |=τ set of a Dempster-Shafer Fuzzy axiom is defined as a fuzzy set

{µIa1/Ia1 , µIa2/Ia2 , . . . }

where each Iai , i = 1, 2, . . . entails τfuzzy, i.e Ii |= τfuzzy.

In addition, we denote the |=τ− set of |=τ as |=τ−≡ {Ia1 , Ia2 , . . . }.

In order to apply this minimization (maximization) process in our Dempster-Shafer Fuzzy
DL, we consider the following associations:
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• The fuzzy set |=τ is regarded as a Fuzzy subset B.

• A focal-set possible world Tj is regarded as a non-fuzzy focal element Ai.

• Tj |= τfuzzy iff Tj ⊆|=τ−, a straightforward conclusion of the definition of |=τ−.

By using the correspondence above, the Belief degree of |=τ− (in cases of crisp sets) is
defined as a minimization problem as follows:∑

Ii∈|=τ−

∑
j

mDS(Ii : Tj)

where mDS(Ii : Tj) is the probability mass allocated to Ii from a basic probability assign-
ment of Tj, with Tj being a focal-set possible world.

In an analogous way, the Plausibility degree of |=τ− is defined as a maximization problem.

In addition, mDS(Ii : Tj) is constrained by the following:

mDS(Ii : Tj) ≥ 0, j = 1, . . . , l

mDS(Ii : Tj) = 0,∀Ii ̸∈ Tj
mDS(Ii : Tj) = mDS(Tj),∀j = 1, 2, . . . , l

In order to compute the optimal solutions, we divide the initial problem into subproblems,
each one considers the allocation of the mass of a single Tj, j = 1, . . . , l. The optimal
solutions of these aforementioned problems are denoted as, m∗(|=τ : Tj) and m∗(|=τ : Tj).
Hence, the Belief and Plausibility measures are computed by adding the optimal solutions
for all Tj, j = 1, . . . , l, i.e:

Bel(|=τ ) =
∑
Tj⊆W

m∗(|=τ : Tj)

Pl(|=τ ) =
∑
Tj⊆W

m∗(|=τ : Tj)

The optimal solutions of the subproblems are the following [139]:

m∗(|=τ : Tj) =
{
m(Tj), if Tj ⊂|=τ

0, otherwise

}

m∗(|=τ : Tj) =
{
m(Tj), if Tj∩ |=τ ̸= ∅
0, otherwise

}
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In order to account for fuzzy sets the minimization (maximization) process is defined as:∑
Ii∈|=τ−

∑
j

mDS(Ii : Tj)× µ|=τ−(Ii)

The optimal solutions for subproblems are computed by assigning all the mass of Tj to
the element of Tj that has the lowest (or highest) membership degree in |=τ :

m∗(|=τ : Tj) = mDS(Tj)× infx∈TjµI

m∗(|=τ : Tj) = mDS(Tj)× supx∈TjµI

As in the crisp case, by adding these optimal solutions, we get Belief and Plausibility
degree of |=τ :

Bel(|=τ ) =
∑
Tj⊆W

mDS(Tj)× infx∈Tjµx

Pl(|=τ ) =
∑
Tj⊆W

mDS(Tj)× supx∈Tjµx

Finally, if T ⊆ W is a focal element, we make the following assumptions:

• Bel(|=τ ) ≡ Bel(τfuzzy), Pl(|=τ ) ≡ Pl(τfuzzy)

• Tj ⊆ W ≡ T |= τfuzzy, since mDS(Ii : Tj) = 0,∀Ii ̸∈ Tj

By considering the assumptions, we get the formulas of Belief and Plausibility as defined
above.

Definition 13. A Dempster-Shafer Fuzzy interpretation IDS is a model (or satisfies) of a
Dempster-Shafer Fuzzy Assertion Axiom < τfuzzy : k > iff Bel(τfuzzy) ≥ k.

Definition 14. A Dempster-Shafer Fuzzy interpretation IDS is a model of a set of
Dempster-Shafer Fuzzy axioms Ψ iff it satisfies each τ ∈ Ψ.

Definition 15. A Dempster-Shafer Fuzzy axiom τ is a logical consequence of a
Dempster-Shafer Fuzzy Knowledge Base K, denoted as K |= τ iff every model of K sat-
isfies τ .

5.3.2 Combination of Dempster-Shafer Fuzzy Assertions

As a final step of our method, we introduce the concept of Dempster-Shafer Fuzzy Com-
bined entailment, denoted as |=DSFcomb

. In order to perform this kind of entailment, we
consider two Dempster-Shafer Fuzzy assertions:

τ1 :< a n : k1 >

τ2 :< a n : k2 >
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In addition, we consider:

IDS1 = (∆IDS , ·IDS1 ,W ,mDS1), a model of τ1
IDS2 = (∆IDS , ·IDS2 ,W ,mDS2) a model of τ2

with sets |=τ1 and |=τ2, respectively. This means that the two sets contain the focal possible
worlds of mDS1 and mDS2 that entail τ1 and τ2, respectively.

We consider T11, . . . T1n, the focal points of |=τ1− and T21, . . . T2m, the focal points of |=τ2−.
Then, we define the following:

Definition 16. A Dempster Shafer Fuzzy assertion τ ≡ < a n : k > is Dempster-
Shafer Fuzzy Combined entailed under IDS1 and IDS2, denoted as IDS1⊕IDS2 |=DSFcomb

τ ,
iff k ≥ Bel1,2(τfuzzy) ,where Bel1,2(τfuzzy) is the Combined Belief Degree, defined as:

Bel1,2(τfuzzy) =

∑
T1i∩T2j |= τfuzzy

mDS1(T1i)× mDS2(T2j)
1−

∑
T1i∩T2j=∅mDS1(T1i)× mDS2(T2j)

5.4 Decidability and Reasoning in Dempster-Shafer Fuzzy Description Logics

As a final issue of our method, we discuss reasoning procedure. Decidability is a synonym
to the deductive procedure that combines TBox and ABox in order to retrieve new infor-
mation. DL decidability is resolved through tableaux procedures [24]. More precisely, we
aim at deciding on the satisfiability of the formula K |= τ , where K is a Dempster-Shafer
Fuzzy DL Knowledge Base and τ is a Dempster-Shafer Fuzzy axiom. In order to decide
satisfiability, we have to take into account the basic probability assignment on subsets of
fuzzy DL interpretations along with the membership degree conditions.

In our approach, we adapt and extend the decidability procedure described in [118, 119]
defined over fuzzyALC, in order to account for Dempster-Shafer Degree Conditions. This
approach was first introduced in [28] in a propositional logic framework.

Our method is based on a constraint system, first introduced in [93]. To begin with, we
define as O an alphabet of symbols regarded as DL individuals in the same way as the
one defined in [24]. We employ the term object for referring into an element in O. We
employ the symbols s, t for describing an object element. Following, a constraint (crisp) σ
is defined as σ ≡ s : C or σ ≡ sP t, where C is a concept name and P is a role name.
In addition, a Fuzzy Constraint is defined as σf : σ ◃▹ n, where ◃▹ is one of <,>,≤,≥ and
σ is a DL constraint.

A Belief Fuzzy Constraint and a Plausibility Fuzzy Constraint are defined as σf B ◃▹ k
and σf P ◃▹ k, respectively, where ◃▹ is one of <,>,≤,≥ and σf is a fuzzy DL constraint.

A Dempster-Shafer Fuzzy Constraint system is defined as a finite non-empty set of
Dempster-Shafer Fuzzy Belief and Plausibility Constraints.
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We state that an interpretation IDS = (∆IDS , ·IDS ,W ,mDS) satisfies a Belief Fuzzy Con-
straint σf B ◃▹ k iff BelmDS

(σf ) ◃▹ k. In addition, we state that an interpretation IDS =
(∆IDS , ·IDS ,W ,mDS) satisfies a Plausibility Fuzzy Constraint σf P ◃▹ k iff PlmDS

(σf ) ◃▹ k.

We state that an interpretation IDS satisfies a constraint system S iff mDS satisfies every
Dempster-Shafer Fuzzy constraint in it.

Following, we map a Dempster-Shafer Fuzzy DL Knowledge Base, K, into a constraint
system as follows:

SK = {σf B ≥ k | < τf : k >∈ K} ∪
{¬σf P ≤ 1− k | < τf : k >∈ K}

We have that K |= τf : k iff SK ∪ σf B < k is not satisfiable. In addition, σf is the
equivalent fuzzy constraint of τf .

Satisfiability issues are resolved by employing a set of constraint propagation rules. Con-
straints are added progressively to SK until a contradiction (or clash) happens or the cur-
rent constraint system is complete. A constraint system is considered complete if an in-
terpretation IDS that satisfies SK plus a constraint to be added can be obtained from the
current constraint system.

A set of Dempster-Shafer constraints contains a contradiction iff it contains one of the
following:

⊤,⊥ Belief - Plausibility contradictions:

σf⊥ B ≥ k, σf⊥ P ≥ k, k > 0

σf⊥ B > k, σf⊥ P > k, k > 0

σf⊤ B ≤ k, σf⊤ P ≤ k, k < 1,

σf⊤ B < k, σf⊤ P < k, k < 1

σf⊤ B > 1, σf⊤ P > 1, σf⊥ B < 0, σf⊥ P < 0

<,>,≤,≥ Belief relationships contradictions:

σf B ≥ k and σf B < m and k ≥ m

σf B ≥ k and σf B ≤ m and k > m

σf B > k and σf B < m and k ≥ m

σf B > k and σf B ≤ m and k ≥ m

<,>,≤,≥ Plausibility relationships contradictions:
σf P ≥ k and σf P < m and k ≥ m

σf P ≥ k and σf P ≤ m and k > m

σf P > k and σf P < m and k ≥ m

σf P > k and σf P ≤ m and k ≥ m
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As in [119], the propagation rules have the form Φ → Ψ if Γ, where Φ, Ψ are sequences
of Dempster-Shafer Fuzzy constraints and Γ is a precondition. A rule fires if the pre-
condition Γ holds and the current set of Dempster-Shafer Fuzzy constraints contains a
set of constrains that match Φ. After firing the constraints of Ψ are added to the current
set of constraints. Since the constraints can be one of >,<,≥,≤, connectives are one
of ⊓,⊔,¬,∀,∃ and we consider two types of constraints (Belief and Plausibility), then we
have the following rules, taking into account that the condition Γ is part of the rule’s left
hand side.

1.(¬ ≥) < ¬σf B ≥ k >→< σf P ≤ (1− k) >
2.(¬ ≥) < ¬σf P ≥ k >→< σf B ≤ (1− k) >
3.(¬ ≤) < ¬σf B ≤ k >→< σf P ≥ (1− k) >
4.(¬ ≤) < ¬σf P ≤ k >→< σf B ≥ (1− k) >
5.(⊓ ≥) < σ1f ⊓ σ2f B ≥ k >→< σ1f B ≥ k and σ2f B ≥ k >

6.(⊓ ≥) < σ1f ⊓ σ2f P ≥ k >→< σ1f P ≥ k and σ2f P ≥ k >

7.(⊓ ≤) < σ1f ⊓ σ2f B ≤ k >→< σ1f B ≤ k or σ2f B ≤ k >

8.(⊓ ≤) < σ1f ⊓ σ2f P ≤ k >→< σ1f P ≤ k or σ2f P ≤ k >

9.(⊔ ≥) < σ1f ⊔ σ2f B ≥ k >→< σ1f B ≥ k or σ2f B ≥ k >

10.(⊔ ≥) < σ1f ⊔ σ2f P ≥ k >→< σ1f P ≥ k or σ2f P ≥ k >

11.(⊔ ≤) < σ1f ⊔ σ2f B ≤ k >→< σ1f B ≤ k and σ2f B ≤ k >

12.(⊔ ≤) < σ1f ⊔ σ2f P ≤ k >→< σ1f P ≤ k and σ2f P ≤ k >

13.(¬ >) < ¬σf B > k >→< σf P < (1− k) >
14.(¬ >) < ¬σf P > k >→< σf B < (1− k) >
15.(¬ <) < ¬σf B < k >→< σf P > (1− k) >
16.(¬ <) < ¬σf P < k >→< σf B > (1− k) >
17.(⊓ >) < σ1f ⊓ σ2f B > k >→< σ1f B > k and σ2f B > k >

18.(⊓ >) < σ1f ⊓ σ2f P > k >→< σ1f P > k and σ2f P > k >

19.(⊓ <) < σ1f ⊓ σ2f B < k >→< σ1f B < k or σ2f B < k >
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20.(⊓ <) < σ1f ⊓ σ2f P < k >→< σ1f P < k or σ2f P < k >

21.(⊔ >) < σ1f ⊔ σ2f B > k >→< σ1f B > k or σ2f B > k >

22.(⊔ >) < σ1f ⊔ σ2f P > k >→< σ1f P > k or σ2f P > k >

23.(⊔ <) < σ1f ⊔ σ2f B < k >→< σ1f B < k and σ2f B < k >

24.(⊔ <) < σ1f ⊔ σ2f P < k >→< σ1f P < k and σ2f P < k >

25.(∀ ≥) < s : ∀ R.C n B ≥ k >, < sRt n B > (1− k) >→ < t : C n B ≥ k >

26.(∀ >) < s : ∀ R.C n B > k >, < sRt n B > (1− k) >→ < t : C n B > k >

27.(∀ ≤) < s : ∀ R.C n B ≤ k >→ < sRt n B ≥ (1− k) >,< t : C n B ≤ k >

28.(∀ <) < s : ∀ R.C n B < k >→ < sRt n B > (1− k) >,< t : C n B < k >

29.(∃ ≤) < s : ∃ R.C n B ≤ k >, < sRt n B > k >→ < t : C n B ≤ k >

30.(∃ <) < s : ∃ R.C n B < k >, < sRt n B > k >→ < t : C n B < k >

31.(∃ ≥) < s : ∃ R.C n B ≥ k >→ < sRt n B ≥ k >< t : C n B ≥ k >

32.(∃ >) < s : ∃ R.C n B > k >→ < sRt n B > k >< t : C n B > k >

33.(∀ ≥) < s : ∀ R.C n P ≥ k >, < sRt n P > (1− k) >→ < t : C n P ≥ k >

34.(∀ >) < s : ∀ R.C n P > k >, < sRt n P > (1− k) >→ < t : C n P > k >

35.(∀ ≤) < s : ∀ R.C n P ≤ k >→ < sRt n P ≥ (1− k) >,< t : C n P ≤ k >

36.(∀ <) < s : ∀ R.C n P < k >→ < sRt n P > (1− k) >,< t : C n P < k >

37.(∃ ≤) < s : ∃ R.C n P ≤ k >, < sRt n P > k >→ < t : C n P ≤ k >

38.(∃ <) < s : ∃ R.C n P < k >, < sRt n P > k >→ < t : C n P < k >

39.(∃ ≥) < s : ∃ R.C n P ≥ k >→ < sRt n P ≥ k >< t : C n P ≥ k >

40.(∃ >) < s : ∃ R.C n P > k >→ < sRt n P > k >< t : C n P > k >

In addition, since a plausibility value, is always greater than the belief value, we have the
following rule:

(B≤ P ) < σf B ≥ k >→< σf P ≥ k >

As an example, let us consider the following:

Example Let us consider the following Knowledge Base:
K = {R(a, b) n : 1.0, (∀ R.C)(a) n : 0.7}

where n denotes a membership degree condition. In addition, we consider the assertion
γ1 : C(b) n : 0.7.

We will show that K |= γ1.

First, we map our DL statements into a set of constraints, based on our constraint system
definition, i.e:

aRb n B ≥ 1.0, a : ∀ R.C n B ≥ 0.7, b : C n B ≥ 0.7
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In order to prove that K |= γ1, we have to detect a clash for:
{aRb n B ≥ 1.0, a : ∀ R.C n B ≥ 0.7}∪
{b : C n B < 0.7}

Then, we employ our rule contradictions as follows:
a : ∀ R.C n B ≥ 0.7, aRb n B > 1.0(> 0.3)→
b : C n B ≥ 0.7

Then, as we have a clash, it follows that K |= C(b) n : 0.7.

The decidability process operates on a set of Belief and Plausibility (Fuzzy) constraints
in a way analogous to Section 4.4. In addition, the concepts of clash and completion are
defined similarly. As in Section 4.4 the following proposition holds:

Proposition 1. A finite set of Belief and Plausibility Fuzzy constraints SK is satisfiable iff
there exists a contradiction-free completion of SK.

Proof (⇒) Given the termination property, which actually states that any completion of a
finite set of constraints SK can be obtained after a finite number of rule applications, we
have that the propagation rules are sound, i.e. if we consider a satisfiable set Sinit (where
in our case Sinit = SK), then there is a satisfiable completion Scomp of Sinit.
(⇐) Suppose we have a contradiction-free completion Scomp of Sinit (where in our case
Sinit = SK). Then, a Dempster-Shafer fuzzy interpretation, IDS, can be defined that satis-
fies Scomp. As Sinit ⊆ Scomp it follows that IDS also satisfies Sinit.�

5.4.1 Complexity issues

As a final point, we shall make some remarks on complexity issues of our framework.
In [118], the relationship between Fuzzy DL satisfiability and crisp DL satisfiability is dis-
cussed. In our framework, the proofness of this relation is based on the following:

Proposition 2. Let K = {τ1, τ2, . . . , τo} a Dempster-Shafer Fuzzy DL KB. Then, the
crisp counterpart of K is defined as a crisp KB, K = {τ1crisp , τ2crisp , . . . , τocrisp}. Since any
crisp assertion can be considered as a Dempster-Shafer Fuzzy assertion (by assigning
on Belief, Plausibility and membership conditions the value 1), then we have that if K |=
τi, i = 1, . . . , o, then K |=crisp τicrisp , i = 1, . . . , o. In addition, if K = {τ1crisp , τ2crisp , . . . , τocrisp}
a crisp KB, then the fuzzy counterpart of it is denoted as Kfuzzy = {τ ′1, τ ′2, . . . , τ ′o}, where
τ ′i , i = 1, . . . , o is defined as τ ′i ≡ τi 1.0 : 1.0.

This proposition, actually states that any Dempster-Shafer Fuzzy DL entailment, presup-
poses crisp entailment. By employing this proposition, the Dempster-Shafer Fuzzy ALC
satisfiability is restricted into ALC satisfiability. In addition, as the entailment problem in
ALC is PSPACE-complete [110], then, we have that Dempster-Shafer Fuzzy entailment
decidability is PSPACE-complete. This is because we have a PSPACE-hard problem,
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based on our proposition, and additionally our propagation rules can be seen as a set
of trace rules [119] [110]. Thus, our rules ensure polyonomial space and therefore, we
regard our framework as a PSPACE-complete problem.

Another complexity issue considers Dempster’s rule of Combination. Based on [95], the
combination procedure can be regarded as a #P -complete problem. However, in [131]
a set of algorithms is proposed in order to manage better complexity. In addition, ap-
proximation methods for Dempster-Shafer theory are also examined in [13]. Monte Carlo
algorithms [131] are employed as an alternative solution to complexity issues. In those
algorithms, the combined Belief Degree is estimated through a large number trials of a
random algorithm. These algorithms are efficient in cases of non-conflicting evidence.
Non-conflicting evidence can be defined as ABox inconsistencies in a DL environment.
In [91] a method for resolving these inconsistencies is outlined. The algorithm defined is
based on a Belief network construction. Thus, in order to achieve better complexity in our
DL ontologies, one way is to define consistent DL ontologies, based on the steps defined
above, and then employ the Monte-Carlo algorithm. However, this approach, is presented
as an example of possible optimizations and has not been employed in our framework.

5.5 A Dempster-Shafer Fuzzy Meta-Ontology

In this Section, we define a meta-ontology for representing Dempster-Shafer Fuzzy ax-
ioms, along with a set of rules for reasoning upon them, in order to extend DL with our
imprecision support mechanisms. Our ontology is defined by employing classical crisp
ontology concepts, i.e. Classes, Relationships, Attributes, Concrete domains and Individ-
uals. Then, we are able to annotate OWL axioms with Dempster-Shafer Fuzzy Degree
Conditions in a way similar to [117]. As ontologies are defined through the OWL language,
it is straightforward to consider Dempster-Shafer Fuzzy OWL axioms to implement our
Dempster-Shafer Fuzzy DL.

More precisely, the DS Fuzzy axioms, as defined in Paragraph 5.2, are mapped into the
following Dempster-Shafer Fuzzy OWL axioms:

< C(o) n : k > 7→ Individual(o) type(C) : n B ≥ k

< R(o1, o2) n : k > 7→ Individual(o1) value(R, o2) : n B ≥ k

We define a Dempster-Shafer Fuzzy ontologyO, as a set of Dempster-Shafer Fuzzy OWL
axioms. This meta-ontology is based on the meta-ontology defined in [136].

In our metaontology, we combine the axioms with fuzzy rules, in order to perform reason-
ing. These rules serve as a means to classify our data. In order to do this, we incorporate
the Fuzzy Systems [3] and Fuzzy Systems Modelling technique (FSM) [99]. A rule has
the following form:

WHEN U1 IS X1 AND . . . AND Un IS Xn THEN Y IS Z

Here Xi, i = 1, . . . , n denote linguistic terms, e.g Cheap Hotel, Ui, i = 1, . . . , n is a set of
antecedent variables, Y is the output variable and Z is a linguistic term that represents the
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output as vague concept, e.g Proposed Hotel. An example of an FSM rule is the following:
WHEN U1 IS GoodReviewsHotel AND U2 IS CheapHotel

THEN Y IS ProposedHotel

In our example, we consider U1 = U2 = Y . The firing level of each rule is defined as:
fDS = Mini[µXi

(x)× BelXi
(x))], where x represents an individual, µXi

is a membership
degree and BelXi

is a Belief degree regarding x. If we want to classify an individual x as
being Z, then the firing level of the rule serves as a classification score value. In the fDS

definition, we actually consider a reduction of the membership degree by a factor equal to
the belief degree according to the ideas followed in Section 5.3 for computing the Belief
Degree. Next, we combine those reduced membership degrees based on Zadeh’s Fuzzy
Logic t-norm operator. In addition, in [41], the equivalence between belief functions and
probability theory, as well as the equivalence between probability theory and member-
ship functions is outlined. According to that, by interpreting the membership function as
conditional probability, we can consider the firing levels as Belief Degree values.

Let us consider a rule r with two different firing levels, fDS1 and fDS2, respectively. Then,
we can combine the two firing levels, by considering them as Belief Degree values and em-
ploying Dempster’s Rule of Combination. The combination of them is performed through
a Combined Belief Degree formula, by considering a frame of discernmentW = {Z,¬ Z}.
Then, we proceed by employing Dempster’s Rule of Combination. This technique will
allow us to combine classification score values from different sources.

In the following Chapter, we overview some applications related to the frameworks de-
scribed until now.
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6. APPLICABILITY AND EVALUATION

In this Chapter, we present some applications suitable for uncertainty and vagueness
in Semantic Web environments. As we will see next, we operate on two different case
studies:

• Recommender systems

• Matchmaking environments

In both approaches, we consider suitable ontologies that capture vagueness and uncer-
tainty degrees. In addition, the set of statements is represented through a syntax aligned
with the framework defined in Chapter 5.

In cases of recommender systems, we aim at hotel recommendation sites. Towards this
we employ the meta-ontology concept defined in the previous chapter for classifying a set
of hotels from various recommendation sites. Information is represented through a set of
statements of the following form:

< LowCost(h) 0.4 : 1.0 >

The statement above denotes that hotel h is a low cost hotel with fuzzy degree condi-
tion 0.4 and belief degree condition 1.0. As we see in this example, the representation
scheme follows our Dempster-Shafer Description Logic framework defined in Chapter 5.
Following, based on this representation scheme, a reasoning technique suitable for Fuzzy
Systems is performed in order to classify the hotels with a proposed degree value. In ad-
dition, we operate on a Big-Data case study in which case, we consider a set of rules
where conditions are either fuzzy or uncertain statements. The conclusion of the rule is a
proposed degree for each hotel element. An imprecision ontology is employed in order to
serve as a repository for rules and constraints.

In matchmaking case studies, we model the criteria through a set of fuzzy degrees, suit-
able for a job advertisement - seeker case study. The set of criteria is annotated with a
set of weights, represented through a Dempster-Shafer framework. Each job individual
is annotated with a fuzzy degree (based on set of membership functions). In addition,
according to the weights assigned to both matchmaking parts, a belief degree is also
assigned. Thus, our representation scheme is aligned with the framework described in
Chapter 5.

6.1 Dempster-Shafer Fuzzy Metaontology - An application

Recommender systems are proved an ideal framework for applying our Dempster-Shafer
Fuzzy DL approach. Generally, a recommender system can be regarded as a method
for developing strategies in order to perform affordable, personal and high-quality recom-
mendations [66]. A hotel recommender system can be considered as such a system.
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Table 9: Hotel Attributes

Source 1 Source 2 Source 3
cost per night cost per night cost per night
review score review score review score

reviews number reviews number reviews number
distance distance distance

location review demand rating
booking rate cancellation policy

In order to test our methodology in a real-world environment, we considered a dataset of
hotels in London derived from various hotel recommendation sites, namely,
”www.booking.com” (source 1), ”www.airtickets.gr” (source 2) and ”www.priceline.com”
(source 3). Our system has been implemented in Java language. Each recommendation
site provides us with different information that describe a hotel, like cost per night, review
score, etc (see Table 9). These are referred to as hotel attributes.

In addition, we defined a set of queries that employ imprecise properties, e.g I’m looking
for a low cost hotel that has good review score. Our goal is to classify each hotel based
on the query’s criteria as a proposed or not proposed one.

The evaluation data consists of a set of approximately 2,854 hotels gathered from these
recommendation sites. The evaluation method used 254 queries. These queries are actu-
ally formed by the combination of all attributes (and values) that describe a hotel element.

Initially, we perform the hotel classification for each recommendation site, separately. In
order to do this, we detect the fuzzy and uncertainty properties. For example, the cost
per night and review score determine the fuzzy properties cheap and good, whereas the
number of reviews is a belief degree and describes how certain we are regarding the re-
view score. Next, we define a recommendation degree which comes as a combination of
the review score and the number of reviews and it is a Dempster-Shafer fuzzy property.
The recommendation degree is defined based on our Belief degree definition and is com-
puted by multiplying the review score by a belief degree value. The belief degree value is
defined as:

BeliefDegreerecommendationDegree =

number_of_reviews/max_number_of_reviews

Then, the recommendation degree formula is defined as:
recommendationDegree =

review_Score× BeliefDegreerecommendationDegree

For example, a hotel entry from www.booking.com has the following form:

name: ”Melbourne House Hotel”, review score: ”8.2”, cost: ”139”, number of reviews:
”676”
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Then, based on a set of pre-definedmembership functions along with the recommendation
degree formula, our method translates the raw data above into a set of Dempster-Shafer
Fuzzy assertions. These fuzzy assertions are based on the syntax defined in Paragraph
5.2. More precisely, if we map the aforementioned hotel as domain individual h, then the
above statement is translated as:

< GoodReview(h) 0.8 : 0.69 >,< LowCost(h) 0.4 : 1.0 >

These assertions are inserted into our FSM and a new assertion of the form ”Melbourne
House Hotel is proposedHotel with Belief Degree of 0.83”, is generated.

In the implementation, our target is to classify hotels from various sites based on a set
of criteria by assigning each hotel individual a proposed score value. A hotel may exist
in more than one recommendation sites, so the proposed score value comes as a com-
bination result. Thus, we proceed by combining the results of the sources. In case of
missing attributes in one source, in this source we assume ignorance (i.e. Bel ≥ 0). Let’s
consider the combination of sources 1 and 2, as they have a lot of attributes in common,
and, thus, we avoid many occurences of ignorance. Since the two data sources are in-
dependent, a combination of them, based on Dempster’s Rule, can be performed. More
precisely, the combination considers statements such as, τ1 ≡ hotelA proposedHotel k1
and τ2 ≡ hotelA proposedHotel k2, derived from sources 1 and 2, respectively, were
k1, k2 denote Belief Degree conditions. Then, we are able to compute a combined degree
and derive the statement: hotelA proposedHotel k1,2. The combination is computed
by considering a frame of discernment W = {p,¬ p}, where p means ”proposed hotel”.
Based on Dempster’s rule of combination, we get the following (simplified) formula:

Combined1,2 = k1 × k2 + (1− k1)× k2 + k1 × (1− k2)
In the example above, the first source derives the statement ”Melbourne House Hotel is
proposedHotel with Belief Degree of 0.83”, whereas the second derives the statement
”Melbourne House Hotel is proposedHotel with Belief Degree of 0.81”. This means that
we have k1 = 0.83 and k2 = 0.81. The combination of these two statements derives the
new one ”Melbourne House Hotel is proposedHotel with Belief Degree of 0.95”. Although
the Dempster’s rule of combination produces counterintuitive results, in the general case,
this does not occur in our case as we do not expect strongly conflicting evidence among
a set of recommendation sites.

We evaluated our implementation in terms of precision and recall measurements. When
dealing with fuzzy sets, the classical measurements for recall and precision cannot be
employed, since they are designed for crisp sets [87]. In that case, the scalar cardinality
defined in [147] is proposed. Sigma cardinality, denoted as sigma-count, of a fuzzy set
F : X → [0, 1] is defined as sc(F ) =

∑
x∈ X F (x).

In our case, we measure precision and recall as follows:

precisionf =
screl ∩ scretr

scretr
, recallf =

screl ∩ scretr
screl

In the formulae above, screl and scretr denote the sigma-count of relevant and retrieved
fuzzy sets of elements, respectively. In addition, the intersection is interpreted as the
minimum. The classification of fuzzy queries’ output that classifies a hotel as proposed is
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Table 10: Recall and Precision

Source Size Queries Recall Precision Time)
(#) (#) (%) (%) (min)

Sources 1 1100 107 85 97 3.53
Source 2 884 97 86 98 2.12
Source 3 475 107 87 97 3.23
Source 1,2 1706 36 85 96 13.10

another aspect that has to be treated differently. In [7], the concept of linguistic variable
is employed. In our application, this can be defined by considering the set of possible
Belief Degree condition values i, where i ∈ [0, 1], which constitutes the base variable for
the linguistic value proposed (Fuzzy restriction). The fuzzy restriction proposed is defined
as follows:

Fproposed(i) =


0, for 0 ≤ i ≤ a
i−a
b−a

, for a ≤ i ≤ b

1, for b ≤ i ≤ 1


In our case study, after experimentation, we assigned a = 0.7, b = 0.8. This restriction
serves as a way to detect relevant elements, aka compute precision and recall.

The results of our evaluation are summarized in Table 10. In this table, execution time
measurements are also included. The recall, precision and time measurements are the
average of the recall, precision and time of all the executed queries. Regarding precision,
the classification method returns accurate results, where ”accurate” depends on the way
we fuzzify attributes. Regarding recall, we get a lower percentage. This happens because
we came across situations of ignorance (of ”null” attributes). In that case, we are not
able to fuzzify these attributes. More precisely, our recall measures are estimated on
around 85%. Note that the source combination resulted in a much longer execution time.
This is due to the complexity of Dempster’s rule of combination. As stated later, as a
future work we may consider performance efficiency issues of our framework. Taking into
account the performance of the implemented system and the quality of the results, the
feasibility of our method has been proven. The main contribution of our method is in terms
of expressiveness as, to our knowledge, it is the only one that allows for representation of
imperfect information, either vague or uncertain, in a unified semantic web framework.

6.2 Big Data Case Study

In real-world applications, the large scale data demand specific processing methods. Re-
garding reasoning process, interleaving reasoning and selection can be applied in order
to deal with Big Data. Generally, interleaving reasoning is based on the selection of a
meaningful, limited initial dataset. The selection of this consistent dataset becomes more
difficult is cases of web data where information is usually inconsistent. The selection pro-
cedure excludes the unnecessary items from a dataset for achieving better processing.
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In our approach, we consider a reasoning process suitable for Fuzzy Sets and Fuzzy
Logic, denoted as Fuzzy Systems Modelling (FSM). FSM actually allows for the defini-
tion of a set of if then rules, by considering a semantic understanding of fuzzy concepts.
More precisely, an FSM [105] serves as a way to develop semantically rich rule based
representations in order to model complex, nonlinear multiple input-output systems. In
addition, FSMs provide methods for reasoning with fuzziness. As it is referred in [135],
the following characteristics describe an FSM system:

• FSM provide a formal reasoning and manipulation

• FSM provide semantics for human conceptualization

Moreover, one of the basic characteristics of an FSM is its potential to formulate new con-
clusions out of the consequents of a rule. We apply this modelling in uncertain and vague
frameworks. We aim at defining a common degree for representing both uncertainty and
vagueness. Also, we consider a method for combining a set of FSMs rules, by employing
Dempster-Shafer theory along with Dempster’s rule of Combination.

An FSM considers a set of n rules. Each rule i = 1, . . . , n has the following form:
When U1 is Ai1 and U2 is Ai2 and . . . Ur is Air then V is Di

Each Uj, j = 1, . . . r is a variable, whereas each Aij denotes a linguistic variable, rep-
resented as a fuzzy subset over a domain Xj of the variable Uj. In addition, Di is also
represented as a fuzzy subset of a domain Y of V . The antecedent describes a condition
and defines a fuzzy region of the space X1 × X2 × · · · × Xr. Hence, if the input is in this
region, the consequent holds.

Large scale data reasoning has been taken into account. In our method, we consider a
step for data elimination, in order to produce a meaningful set of data. Following, as a
case study, a metaclassifier process is described and tested. As in the previous case, we
aim at classifying a hotel as being (or not) proposed.

At first, we assume a set of n sources, each providing some information about a specific
domain. In our case study, we consider a set of hotel recommendation sites, where each
site represents such a source.

Our goal is to classify a hotel as being (or not) proposed, i.e:
Hotel A is proposed with a degree of 0.8

Throughout the classification procedure, situations of missing information may arise. Let
us consider a recommendation site that provides the following information:

• hotel’s star category

• hotel’s cost per night

• a list of statistics considering a hotel’s star category and its facilities, e.g 40 per cent
of 3-star hotels provide a swimming pool
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In addition, let us consider the following query:
I’m looking for a low cost hotel that provides a swimming pool

The aforementioned query is described by the following:

• Vagueness: A membership function describes the low cost criterion

• Uncertainty: The ”swimming pool” criterion is annotated with an uncertainty degree
(e.g 40%)

Figure 3: System Architecture

In our case study, we employ FSM modelling by considering uncertainty (except from
vagueness) as part of an FSM rule. More precisely, each source (recommendation site)
i, i = {1, 2, . . . , n} is assigned an FSMi, in order to classify the sources of information (i.e
the elements), based on the criteria defined by the user. Each FSM contains the same set
of criteria, with any other FSM. The criteria are formalized in order to take a rule format.
Following this, they are inserted into each FSMi. Each FSMi processes the input from
sourcei based on the user defined criteria. The output of each FSMi is inserted in our
combination module, in order to derive a combined result. The combination is preformed
based on Dempster’s Rule. More precisely, ifD is a fuzzy concept of interest (for example
proposed hotel) and d is the output of each FSM, i.e the degree d to which a hotel is
proposed, then the following frame of discernment is defined:

W = {D,D}
whereD represents not D. Following, a basic probability assignment,m is assigned to the
powerset of the frame of discernment as follows:

m({D}) = d

m({D,D}) = 1− d
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Following, the Combined Firing Level of two FSMswith degrees d1, d2 and basic probability
assignments m1,m2, respectively, is defined through Dempster’s Rule of Combination as
follows:

combined1,2({D}) =
∑

x,y∈W:x∩y=Dm1(x)×m2(y)

1−
∑

x,y∈W:x∩y=∅m1(x)×m2(y)

A key component of the whole approach is the imprecision ontology. Our imprecision on-
tology is composed of a set of terms suitable for representing imprecise information. These
terms actually represent statements of the form a : C = b, where a is a named individual, C
is a Concept name and b is the combined confidence degree of a is C. These statements
can be regarded as a special case of Dempster-Shafer Fuzzy OWL axioms, defined in
5.5, where the condition is always an equality (rather than the general case ≥). Moreover,
our ontology serves as a repository for constraints and rules definition. This ontology con-
tains a class named Element. Each element from the data set is an individual of this class
with a confidence degree value. Moreover, a data property hasConfidenceDegree is de-
fined, having domain the class Element and range in [0, 1]. In addition, there exist a class
named Constraint, that contains the imprecise criteria defined by the user, e.g close to
metro station, expensive etc. Our system architecture is depicted in Fig 3.

When dealing with different sources, before applying our combined degree function, we
have to define the concept of identical individuals. For example, suppose that two sources
contain data about hotels. Each hotel is identified by its name. So, a method for defining
that two hotels are identical should exist, i.e. if hotel with name h1 is the same with hotel
with name h2. This means that a similarity function should be applied. In our method,
the similarity of an individual with another individual, both defined as sets of characters, is
defined as follows:

Element e:it is defined as a set of characters

Element e1 equals e2 iff e1 = e2

or e1 ⊆ e2

or e2 ⊆ e1

As we have previously stated, in our case study, we have considered a set of recommen-
dation sites as different sources and as sources’ elements the set of hotels existing in the
site. Each element is described by a set of attributes. The attribute values come from dif-
ferent sources of information. The attributes may or may not exist in all sources. Our goal
is to define a confidence degree for proposed for each element based on these attributes.
These attributes appear in the FSM criteria. The attributes are defined either as vague
concepts, for example low rating or expensive hotel, or as crisp values, for example 3-star
hotel. A membership function is used to define vagueness factor and uncertainty factor
of each concept. The criteria are used in order to define a hotel score. We have con-
sidered that hotel score can take two values, namely proposed and not proposed, which
actually can be seen a two different vague concepts. In Fig 4, the membership functions
of these two concepts are depicted. Our implementation uses JFuzzyLogic, a Java library
for defining fuzzy inference systems [31].
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Figure 4: Score Membership Functions

In order to test our system we have selected three hotel recommendation sites, namely,
www.booking.com (source1), www.hotelclub.com (source2) and www.easytobook.com
(source3). The initial set for the first source included 2, 381 hotels. Similarly, for the second
source we have a set of 834 hotels, whereas for the third a set of 546. Each site provides
us with different kind of information, more precisely:
www.booking.com:

• Hotel Name: The hotel’s name

• Hotel Review: A numerical value as a result of how proposed the hotel is, based on
a set of reviews

• Hotel Price: The cost per night

• Hotel Likes: The number of people that have added this hotel in a wish list

www.hotelclub.com

• Hotel Name: The hotel’s name

• Hotel Lat: Latitude of the hotel

• Hotel Lng: Longitude of the hotel
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• Hotel Stars:The categorization of the hotel based on stars classification

• Hotel Review:A numerical value as a result of how proposed the hotel is, based on
a set of reviews

• Hotel Price: The cost per night

www.easytobook.com

• Hotel Name: The hotel’s name

• Hotel Review:A numerical value as a result of how proposed the hotel is, based on
a set of reviews

• Hotel Price: The cost per night

In our implementation, we have defined the vague concepts close1, many likes, good
review and cheap by applying a set of membership functions.

Our goal is to test our system with different queries in order to evaluate the results. The
queries defined for the evaluation are the following:

• Query 1→ Hotel that is close to a metro station and is cheap: This query demands
the Hotel Lat and Hotel Lng information, existed in www.hotelclub.com and Hotel
Price.

• Query 2→ Hotel that provides a swimming pool and is cheap: This query demands
the Hotel Stars existed in the second site information and Hotel Price. The Hotel
Stars provided the swimming pool information with a degree of uncertainty.

• Query 3→ Hotel that has been classified as favourite and is cheap: This query
demands the Hotel Likes information existed in www.booking.com and Hotel Price.

• Query 4→ Hotel that has good review score and is cheap: This query demands the
Hotel Review and Hotel Price information existed in both sites.

Our approach adopts an ontology for representing imprecise data. In Fig 5 the classes of
our ontology are depicted. As we can see in this figure our ontology serves as a way to
store and manage the information considering hotel elements as well as the set of queries.

After classifying the hotels using the fuzzy criteria, we reduced this set, as we will see
next, eliminating the hotels that have been assigned confidence degree equal to 0.0. The
reduction of the initial set can be proved to be very useful in Big Data situations, a very

1For calculating distance based on longitude and latitude metrics a distance function has been applied.
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Figure 5: Hotel Ontology

common issue in World Wide Web. This means that our classifier can be used in Big Data
environments, in order to build the consistent set of data, as this is defined in [29] and [30].

The reduced set is derived as follows. At first, the hotels that have been assigned a
degree of 0.0 are excluded immediately. Next, a cutoff value, for example a degree > 7.0
or > 8.0, is used to do a further reduction. The choice is regarded as a tradeoff between
data volume and precision results.

Using the queries described above, we have the following results:

1. Query 1: In this query the first source was reduced into 1, 381 (58% of the initial set)
data elements, the second into 267 (32% of the initial set), and the third derived 251
(45% of the initial set) elements.

2. Query 2: In this query the first and third source derive the same result, as they do
not provide the stars information, whereas the second derives a set of 215 (26% of
the initial set) hotels.

3. Query 3: In this query the first source derives a result of 238 (10% of the initial set)
, whereas the second gives a result of 280 (34% of the initial data set) hotels. The
third derives the same result as in Query 1 and Query 2.

4. Query 4: In this query the first source derives a result of 504 (21% of the initial data
set), the second a result of 263 (31% of the initial data set) hotels and the third a
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result of 335 (61% of the initial data set) hotels.

Following, we proceeded by combining source1 and source2. These two sites can be
considered as independent sources of information and, as such, the Dempster’s rule of
Combination can be applied. The combined confidence degrees, which constitute the
output of this phase, serve as an input to be combined with the values of source3. As we
have stated, we apply Dempster’s rule of Combination, in order to combine the various
confidence degrees. The output of our system, i.e. the combined confidence degrees,
can be regarded as membership values, denoting how much proposed the hotel is.

Our approach provides ameans to classify web data based on user-defined criteria. More-
over, the criteria defined have the flexibility to be vague. We employ well-founded Fuzzy
Logic techniques, through Fuzzy System Modelling, in order to represent vagueness. We
also consider uncertainty as a result of missing information or, in other words, ignorance.
In our method, we tackle uncertainty and vagueness issues under a common framework,
by employing fuzzy sets for this purpose. A necessary precondition of our method is
data independence, when combination through Dempster’s Rule is considered. This is
achieved through the selection of different data sources which we consider as indepen-
dent.

6.3 A Matchmaking Case Study

Matchmaking problems [67] can be considered as ontology applications for the Seman-
tic Web. As already stated in 3.3, in its typical form, a matchmaking problem consists
of two groups, denoted as ”sellers” and ”buyers”. Each seller and buyer defines a set
of constraints, as requirements and preferences. A very common situation in constraint
setting is the vagueness that describe them [19, 68]. As an example let us consider a job
recruitment process, with the following constraints:

• Job Seeker Constraints:

– Job with salary no less than 25, 000 per annum
– Ideal job salary 30, 000 per annum

• Job Advertisement Constraints:

– Job with salary no more than 26, 000 per annum
– Ideal job salary 23, 000 per annum

The constraints are defined in a way that an ideal value exists and as the value increases or
decreases the satisfaction of the seeker/recruiter goes down. In a formal way, as already
stated in 3.3, the constraints are defined through the following membership functions:

µSeeker(x) =


0, for 0 ≤ x ≤ 25000
x−25000
5000

, for 25000 ≤ x ≤ 30000
1, for 30000 ≤ x
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µAdvertisement(x) =


1, for 0 ≤ x ≤ 23000
26000−x
3000

, for 23000 ≤ x ≤ 26000
0, for 26000 ≤ x


The first function is called a right-shoulder membership function, whereas the second is
called a left-shoulder membership function. So, the Job Advertisement salary constraint
is represented through the left-shoulder membership function, with its value denoted as
f1, whereas the the Job Seeker constraint is represented through the right-shoulder mem-
bership function, with its value denoted as f2.

This means that for a job individual, j, we have the following axioms:
τ1fuzzy :< j f1 >

τ2fuzzy < j f2 >

Also, we define a set of weights considering Seeker and Advertisement requirements, in
a way similar to [19], denoting the credibility of the Seeker and Advertisement. This is
defined by regarding the constraints as a set C of the following form:

C = {s1, . . . , sk, a1, . . . , al}
with si denoting a Seeker constraint and ai denoting an Advertisement constraint. Then,
weights are defined through a basic probability assignment mweight:

mweight : 2
C → [0, 1]

In our case study, we have the following set:
C = {s1, a1}

as we have one Seeker and one Advertisement constraint.

The fuzziness describing constraints along with weights definitions pave the way for the
application of our Dempster-Shafer Fuzzy DL in the matchmaking procedure.

If we consider Seeker and Advertisement as two fuzzy interpretations, ISeeker and
IAdverstisement, each of them being a model of τ1fuzzy and τ2fuzzy, as follows:

ISeeker |= τ1fuzzy

IAdvertisement |= τ2fuzzy

Formally, these two interpretations are represented as:
ISeeker = {∆ISeeker , ·ISeeker}
IAdvertisement = {∆IAdvertisement , ·IAdvertisement}

where
∆ISeeker ≡ ∆IAdvertisement ≡ N

and ·ISeeker , ·IAdvertisement are defined based on the membership functions µSeeker and
µAdvertisement. Also, N is the Salary value domain.

Now, let us suppose that we have a job posting, with salary 25, 000. This, in an ontology
context, is represented as an individual j : Job ⊓ (hasSalary.{25000}).
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Also, let have weights of 0.8 for the Seeker and 0.2 for the Advertisement formally repre-
sented asmweight({s1}) = 0.8 andmweight({a1}) = 0.2. These weights have been arbitrarily
chosen in order to describe our case example.

Our goal is to compute a matchmaking degree that depicts the satisfaction value of the
job individual, based on fuzzy constraints and uncertainty. In order to do this, we consider
the following fuzzy axiom:

τfuzzy :< j f >

where f is defined as min{f1, f2}.

Then, ISeeker and IAdverstisement are models of
τfuzzy :< j f >

i.e, ISeeker |= τfuzzy and IAdvertisement |= τfuzzy.

To sum up, each job individual is related to two fuzzy constraint degrees:

• Fuzzy constraint degree of Seeker

• Fuzzy constraint degree of Advertisement

Also, by considering a basic probability assignment modelled as weights on Seeker and
Advertisement constraints, we have each fuzzy degree associated to amass degree. This,
paves the way for the application of our Dempster-Shafer DL.

Following, we overview our matchmaking ontology, depicted in Fig 6. Our ontology is
based on the one defined in [68].

In order to represent our world, we consider the following classes:

• Job Seeker : It is defined as an OWL class and represents the part who searches
for a job position

• Job Advertisement: It is defined as an OWL class and represents the part who posts
a job position

• Job: It is defined as an OWL class and represents the jobs of interest

• Crisp: It is defined as OWL class and relates a Job individual with a salary value and
an uncertainty value

• LeftShoulderConstraint: It is defined as an OWL class and defines a Left-
Shoulder membership function

• RightShoulderConstraint: It is defined as an OWL class and defines a Right-
Shoulder membership function

The constraints are defined in the following way:
JobSeeker ≡ Job⊓
hasSalary.RightShoulderConstraint
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Figure 6: Matchmaking Ontology

JobAdvertisement ≡ Job⊓
hasSalary.LeftShoulderConstraint

Each LeftShoulderConstraint and RightShoulderConstraint is related to a fuzzy degree
through the hasFuzzy data property, whereas each job individual is related to an uncer-
tainty degree through the hasUncertainty data property.

The matchmaking processing derives a matchmaking degree factor, defined as:
Matchmaking ≡ JobSeeker ⊓ JobAdvertisement

This degree factor is a combination of fuzzy constraints and uncertainty of salary crisp
value.

Considering the constraints, we define for each salary crisp value a membership degree
for each constraint. A rule variable is defined by the symbol ?x, where x is a user defined
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variable. The Left Shoulder Constraint is defined through the following set of rules:
LeftShoulderConstraint(?l), hasCrisp(?j, ?c),

hasElement(?f, ?l),

hasFuzzy(?j, ?f), hasIdealV alue(?l, ?i),

hasThresholdV alue(?l, ?t),

hasV alue(?c, ?v), lessThanOrEqual(?v, ?i)

− > hasFuzzyFactor(?f, 1.0)

LeftShoulderConstraint(?l), hasCrisp(?j, ?c),

hasElement(?f, ?l),

hasFuzzy(?j, ?f), hasIdealV alue(?l, ?i),

hasThresholdV alue(?l, ?t),

hasV alue(?c, ?v), greaterThanOrEqual(?v, ?t)

− > hasFuzzyFactor(?f, 0.0)

LeftShoulderConstraint(?l), hasCrisp(?j, ?c),

hasElement(?f, ?l),

hasFuzzy(?j, ?f), hasIdealV alue(?l, ?i),

hasThresholdV alue(?l, ?t),

hasV alue(?c, ?v), divide(?d, ?s1, ?s2),

greaterThan(?v, ?i),

lessThan(?v, ?t), subtract(?s1, ?t, ?v),

subtract(?s2, ?t, ?i)

− > hasFuzzyFactor(?f, ?d)

A Right Shoulder Constraint is defined in an analogous way.
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We model the Belief Degree of the job individual through the following rule:
FuzzyElement(?f1), FuzzyElement(?f2),

LeftShoulderConstraint(?l),

RightShoulderConstraint(?r), hasCrisp(?j, ?c),

hasElement(?f1, ?l),

hasElement(?f2, ?r), hasFuzzy(?j, ?f1),

hasFuzzy(?j, ?f2), hasFuzzyFactor(?f1, ?fa1),

hasFuzzyFactor(?f2, ?fa2), hasWeight(?f1, ?u1),

hasWeight(?f2, ?u2), add(?s, ?m1, ?m2),

multiply(?m1, ?fa1, ?u1),

multiply(?m2, ?fa2, ?u2)− > hasBel(?j, ?s)

In our case example, we derive a matchmaking degree of 0.12 for the job posting. This
value is the belief degree of Job ?j being a job that matches Seeker and Advertisement
constraints. The derivation of the belief degree value comes as a result of our rules defi-
nition.

The matchmaking ontology is implemented in Protégé. In addition, the rules were defined
by employing the rules plugin provided. So,the whole process, i.e ontology representation
and reasoning is performed through an integrated tool, in an efficient way.

In addition, we have developed a matchmaking application for job recruitment, integrating
fuzzy logic, Dempster-Shafer and ontologies, which is presented in [68]. In this application,
the Seeker and Advertisement preferences are represented as concepts and roles in our
ontological model. A set of data (job postings) is considered as a real-world case example
of our method. In order to draw a matchmaking degree, a set of rules has also been
defined.
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7. CONCLUSIONS AND FUTURE WORK

In our thesis, we defined an approach for representing uncertainty and vagueness under
a common framework in a Semantic Web environment. In order to represent uncertainty
we employed Dempster-Shafer model. Vagueness has been represented through Fuzzy
Logic and Fuzzy Sets. At first, we examined our problem though an ontological point of
view. Thus, we implemented suitable semantic web ontologies for capturing imperfect
concepts. Following, for establishing our theoretical framework, we combined the classi-
cal crisp DL ALC with a Dempster-Shafer module. Next, we have proceeded by adding
fuzziness in this model. Throughout our work, we formally defined the syntax and the
semantics and examined decidability and complexity issues. At the same time, the frame-
work has been applied to some case studies and a real-world application of our method,
producing very satisfactory results.

Themain advantage of ourmethod resides on the fact that we do not tackle uncertainty and
vagueness as independent notions. This representation is in accordance with real-world
applications, since very often uncertainty and vagueness coexist. The Dempster-Shafer
model has been proven to be an ideal framework for representing estimations, since it
models a world in a way similar to human thinking, in cases of reasoning.

In addition, our theoretical framework has been built upon ALC, a well-established DL.
Our syntax has been defined as an extension of ALC syntax. Vagueness is represented
through Zadeh’s Fuzzy Logic, by considering membership degree conditions on crispALC
axioms. In addition, we employ Dempster-Shafer theory for representing the uncertainty
part. In order to employ this theory, we have defined belief degree conditions. The no-
tion of possible world has an important role in defining the semantics of our framework.
More precisely, we have regarded the set of possible worlds as a frame of discernment
and defined mass functions on subsets of this set. As a final step, we have considered
the combination of statements from different Knowledge Bases, by employing our Com-
bined Dempster-Shafer entailment, an entailment method based on Dempster’s Rule of
Combination.

More precisely, in 1.2.2 the main achievements of our dissertation are summarized:

• We defined ontologies that capture uncertain and vague concepts: The idea was
employed, firstly, in a methodology that operates on probabilistic knowledge bases
and employs Dempster’s rule of Combination. Dempster-Shafer Theory is an ideal
framework for representing information incompleteness. Towards this, the combi-
nation of various results derived from probabilistic knowledge bases can be repre-
sented through a Dempster-Shafer frame of discernment and next, we proceeded
by performing combination based on Dempster’s rule. In another application of onto-
logical representation, we considered uncertain and vague concepts by representing
them through an imperfection factor. These statements can be either a rule or an
event statement. Next, we proceeded by combining these statements for deriving
a new statement annotated with a combined imperfection factor. The approach has
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also been employed in Big Data environments.

• We defined an extension of a crisp DL with Belief Plausibility Degrees: To delve into
the theoretical framework of our thesis, we considered the simple and widely known
DL ALC. Based on this DL, we extended thoroughly the syntax and semantics in
order to define a DL for representing uncertain information, named Dempster-Shafer
DL (DS −ALC). Since we employed the Dempster-Shafer framework, a set of con-
straints that stem from this theory should be preserved. More precisely, the possible
world concept ensured evidence independency and the set of possible worlds served
as a frame of discernment. Next, we defined a new notion of entailment, based on
Dempster’s rule of Combination, denoted as |=DScombined. In addition, as in the crisp
case, we considered decidability and complexity issues.

• We defined an extension of a fuzzy DL with Belief Degrees: Finally, we defined a
framework that combined Dempster-Shafer and Fuzzy Logic for handling information
imperfection aiming at the Semantic Web. In order to do this, we defined suitable
logic representation formalisms. More precisely, firstly, we defined a Dempster-
Shafer Fuzzy Knowledge Base, in order to represent uncertainty in a fuzzy logical
framework. We extended a crisp Knowledge Base along with Fuzziness, providing
a model for representing vague information annotated with incomplete information.
Our model, denoted as a Dempster-Shafer Fuzzy Description Logic, is actually a
DL for that described uncertainty and vagueness under a common framework. In
order to do this, we considered fuzzy ALC assertions that can be entailed by a set
of DL interpretations, using a basic probability assignment defined on these sets.
Decidability and reasoning issues have also been addressed as a way to show the
practical feasibility of our model.

Regarding applications, we tested our method in two fields:

• Recommender systems: These environments have been proven to be an ideal
framework of our method, since they combine vagueness with uncertainty. In ad-
dition, the various recommendation sites serve as independent sources of informa-
tion. Thus, the Dempster-Shafer framework along with Dempster’s Rule of Combi-
nation were efficiently employed. In order to represent information, we employed
well-founded ontological tools combined with Fuzzy Systems Modelling procedures.
Finally, recall and precision measurements have shown that our method produced
satisfactory results.

• Matchmaking systems: We developed a matchmaking application for job recruit-
ment situations, integrating fuzzy logic, Dempster-Shafer and ontologies,. In this
application, the Seeker and Advertisement preferences were represented as con-
cepts and roles in our ontological model. In order to draw a matchmaking degree, a
set of rules has also been defined
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Future work The Dempster-Shafer framework was proven to be an ideal one for repre-
senting ignorance. Although it has many advantages, the complexity of the rule of Combi-
nation along with conflicts’ modelling remains an issue to be tackled for representing real
world case studies. As a future work, we will consider complexity and decidability issues
more thoroughly, mostly aiming at Dempster’s rule evaluation performance. In [111], other
formulas for combining evidence are outlined. These formulas provide for lower complex-
ity. Thus, the adaptation of these formulas in a DL environment can serve as a way to
gain better complexity.

We shall also consider Big Data environments in a more thorough framework. Although
we examine some Big Data issues through our dissertation, we do not consider some well
known algorithms such as the one defined in [33]. As a future work, we will focus on the
application of our model in a Big Data environment.

Another area of future work resides in the expressiveness level. As our dissertation has
been defined upon DL ALC, we may consider the extension of other DLs. Apart from
fuzzy ALC, other fuzzy extensions are described in [118], [84], [96], [121], [119],[120].
Moreover, although ALC is the basic DL, in cases of Semantic Web, a set of other DLs
is usually employed, namely, SROIQ(D) [59], SHOIN [63] and SHIF [65]. So it will
be useful to extend our framework to these DLs. In addition, for representing vagueness,
we employed Zadeh’s Fuzzy Logic. In future, we will consider other Fuzzy Logics as
described in Table 4.

In cases of strongly conflicting evidence, Dempster’s Rule produces counter-intuitive ex-
amples. Towards this, other rules have been proposed [111]:

• The Discount and Combine method

• Yager’s modified Dempster’s Rule

• Inagaki’s modified Dempster’s Rule

• Zhang’s Center Combination Rule

As a future work, we may consider the combination of evidence based on some of these
rules.

In the area of applicability, case studies other than recommender systems and matchmak-
ing environments can be examined. Some of them are:

• Semantic annotation

• Information extraction

• Ontology alignment

• Representation of background knowledge

These fields are described in [84] as some of the most representative ones of Semantic
Web applications.
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ABBREVIATIONS - ACRONYMS

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

OWL Web Ontology Language
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