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Abstract 
 

Predictive Regressions: Variable Selection and the Complete Subset 
Approach 

 
This dissertation is concerned with the problem of controlling the estimation error in 

forecasting, having many potential predictor variables. While having to deal with a 

limited number of independent variables permits any strategy that includes and 
analyzes all of them, when this number gets higher (or equivalently the data sample 

is relatively short), it is important to limit the number of parameters or in other ways 
reduce the effect of the parameter estimation error. Otherwise, analysis can become 

from time intensive to impossible. 

 
Complete Subset Regression is a simple and powerful method/technique for 

combining forecasts, first introduced by Elliott et al. (2013). In particular, for a given 
set of potential predictor variables, forecasts from all possible linear regression 

models that keep the number of predictors fixed are combined. This method is akin 

to a complex version of shrinkage which, in general, does not reduce to shrinking the 
Ordinary Least Squares estimates coefficient by coefficient. 

 
Apart from the apparent savings in terms of computational effort, combinations of 

subset regressions can produce accurate forecasts compared to other conventional, 
still very well established, approaches. 
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Περίληψη 

Η παρούσα διπλωματική εργασία πραγματεύεται το θέμα του περιορισμού του 

σφάλματος εκτίμησης για τις περιπτώσεις προβλέψεων όπου εμπλέκονται πολλές 
επεξηγηματικές μεταβλητές. Ενώ στις περιπτώσεις όπου οι ανεξάρτητες μεταβλητές 

είναι λίγες σε αριθμό είναι δυνατή η εφαρμογή οποιασδήποτε στρατηγικής που 
λαμβάνει υπόψη το σύνολο των μεταβλητών, όταν αυτός ο αριθμός μεγαλώσει (ή 

ισοδύναμα το μέγεθος του δείγματος είναι σχετικά μικρό), καθίσταται σημαντικός ο 

περιορισμός του αριθμού των παραμέτρων, ώστε να μειωθεί η επίδραση του 
εκτιμητικού σφάλματος. Σε αντίθετη περίπτωση, η ανάλυση μπορεί να καταστεί 

από χρονοβόρα έως και αδύνατη. 
 

Η μέθοδος Complete Subset Regression είναι μία απλή και ισχυρή μέθοδος/τεχνική 

συνδυασμού προβλέψεων, που πρώτοι παρουσίασαν οι Elliott et al. (2013).  
Συγκεκριμένα, διαθέτοντας ένα δεδομένο σύνολο πιθανών επεξηγηματικών 

μεταβλητών, συνδυάζονται οι προβλέψεις από κάθε υποσύνολο μοντέλων 
γραμμικής παλινδρόμησης το οποίο έχει σταθερό αριθμό μεταβλητών. Αυτή η 

μέθοδος προσιδιάζει σε μία περίπλοκη εκδοχή συρρίκνωσης, η οποία όμως εν γένει 

δεν περιορίζεται στη συρρίκνωση των εκτιμητών ελαχίστων τετραγώνων, 
συντελεστή προς συντελεστή. 

  
Πέρα από την προφανή εξοικονόμηση υπολογιστικού φόρτου, οι συνδυασμοί των 

πλήρων υποσυνόλων παλινδρόμησης μπορούν να οδηγήσουν σε ακριβείς 
προβλέψεις, συγκρίσιμες με άλλες καθιερωμένες μεθόδους. 
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Introduction 
The Complete Subset Regression is a simple and powerful method/technique for 

combining forecasts. For a given set of potential predictor variables, forecasts from 
all possible linear regression models that keep the number of predictors fixed are 

combined. In cases where the number of independent variables is limited this may 

not seem so useful. However, when the number of potential predictors gets larger, 
this method offers a computationally efficient technique that can produce accurate 

forecasts compared to other conventional, still very well established, approaches. 
 

This dissertation examines the main theoretical features, as well as the performance 

of this method, and is organized as follows. 
 

Chapter 1 starts with a general description of statistical inference and linear 
regression analysis, then provides a brief outline of the multiple linear model, the 

ordinary least squares and maximum likelihood methods for coefficients’ estimation, 

and concludes with the concept of prediction and the predictive distribution. 
 

Chapter 2 describes (some of) the classical methods and criteria for model selection, 
such as the coefficient of determination, the residual mean square, the Akaike 

Information Criterion and the stepwise regression. 
 

Chapter 3 is about the Bayesian methods for model selection. Briefly covering the 

basic concepts of Bayesian analysis, such as the prior and posterior distributions, it 
deals with the Bayesian linear model, to conclude with Bayesian Model Averaging. 

 
Chapter 4 is where the Complete Subset Regression is presented, including its 

theoretical review and its aspects of implementation. 

 
Chapter 5 starts with the evaluation of forecasting accuracy in general and then 

facilitates the simulation study held in order to assess the performance of the 
Complete Subset Regression and compare it with several other widely known and 

used methods. 

 
Finally, chapter 6 presents an application to a data set from Goyal and Welch (2008), 

serving the very same means of evaluation as chapter 5. 
 

 
 



 
 

Chapter 1: Statistical inference, linear regression and prediction  

1.1 Statistical inference: classical and Bayesian approach 
Probability and statistics can be characterized as the study of variability. Statistics is 

profoundly concerned with the collection of data and with their analysis and 

interpretation. Statistical inference, in particular, is the science of inferring 
properties and making conclusions about a “population” from “sample”, including 

testing hypotheses and deriving estimates. Taking the data as given, the answer of 
what they have to tell us depends not only on what is being observed, but also on 

background knowledge of the situation, which is formalized in the assumptions with 
which the analysis is entered. Leaving aside the data analysis, where data are 

analyzed on their own terms, essentially without extraneous assumptions, there 

have been typically two principal lines of approach: classical inference and Bayesian 
analysis. 

 
Classical inference and decision theory: the observations are postulated to be the 

values taken on by random variables which are assumed to follow a joint probability 
distribution, P, belonging to some known class P. Frequently, the distributions are 

indexed by a parameter, say θ, taking values in a set, so that P = {P , θ ∈ Ω}. The 

aim of the analysis is then to specify a plausible value for θ (the problem of point 
estimation) or to determine a subset of Ω of which we can plausibly assert that it 

does, or does not, contain θ (estimation by confidence sets or hypothesis testing). 
Such a statement about θ can be viewed as a summary of the information provided 

by the data and may be used as a guide to action. The most fundamental point of 
this classical approach (actually the cornerstone of classical theory) is that the 

parameter θ, whilst not known, is being treated as constant rather than random. 

Unfortunately, this leads to problems of interpretation, since statistical procedures 
receive a long-term meaning, like an infinite repetition of the same experiment. 

 
Bayesian analysis: in this approach, it is assumed (in addition) that θ is itself a 
random variable (though unobservable) with a known distribution. This distribution, 

called the prior, is specified according to the problem and is modified in light of the 

data to determine a posterior distribution (the conditional distribution of θ given the 
data), which summarizes what can be said about θ on the basis of the assumptions 

made and the data. In essence, inference is based on f( θ|x) rather than f( x|θ); that 
is the probability distribution of the parameter given the data, rather than the data 

given the parameter. In many ways this leads to much more natural inferences (since 

mere use of the rules of probabilities is needed), but the specification of the prior 
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probability distribution is a prerequisite, which represents beliefs about the 

distribution of θ prior to having any information about the data. This is the core of 
Bayesian thinking and as so, is considered either its primary advantage over classical 

theory or its biggest pitfall. Putting together the aforementioned aspects of the 
Bayesian approach we get the following key steps: 

 Specification of a likelihood model 𝑓( 𝑥|𝜃) 

 Determination of a prior distribution 𝑓(𝜃) 

 Calculation of posterior distribution 𝑓( 𝜃|𝑥) from Bayes’ theorem. That is, 

𝑓( 𝜃|𝑥) =
( ) (  | )

∫ ( ) (  | )
, stated in terms of random variables with densities 

denoted generically by f 

 Drawing inferences from this posterior information. 

1.2 Regression analysis: simple and multiple linear regression 
Regression analysis is a statistical technique for investigating and modeling the 

relationship between variables. In linear regression the relationships are modeled 
using linear predictor functions; thus, a linear regression analysis yields a 

mathematical equation—a linear model—that estimates a dependent variable Y 
from a set of predictor/explanatory variables (regressors) X. Each regressor in a 

linear model is given a numerical weight called its regression coefficient, regression 

slope, or simply its regression weight that determines how much the equation uses 
values on that variable to produce an estimate of Y. These regression weights are 

derived by an algorithm that produces a mathematical equation or model for Y that 
“best” fits the data, using some kind of criterion for defining “best.”  

 
The simplest linear model involves only one independent variable, the regressor X 

and states that the relationship with the response Y is a straight line.  This simple 
linear regression model, for the i-th sample unit, is: 

 
𝑌 = 𝛽 + 𝛽 𝑋 + 𝜀 , 

 
where the intercept β  and the slope β  are unknown constants and ε   is a random 

error component. The Y  and X  are paired observations, both measured on every 
observational unit. For the random errors we make the following assumptions: 

 
𝐸(𝜀 ) = 0, ∀𝑖, 

 
𝑉𝑎𝑟(𝜀 ) = 𝜎 , ∀𝑖, 

 
𝐶𝑜𝑣 𝜀 , 𝜀 = 0, ∀𝑖 ≠ 𝑗, 
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that is, they are assumed to have zero mean, unknown constant variance σ  (the 

homoscedasticity assumption) and additionally we assume that they are 
uncorrelated. 

 
It is convenient to view the regressor X as controlled by the data analyst and 
measured with negligible error, while the response Y is a random variable. That is, 

there is a probability distribution for Y at each possible value for X. The mean of this 

distribution is: 

 
𝐸( 𝑌 |𝑋 ) = 𝛽 + 𝛽 𝑋 , 

 
and the variance is: 
 

𝑉𝑎𝑟( 𝑌 |𝑋 ) = 𝑉𝑎𝑟(𝛽 + 𝛽 𝑋 + 𝜀 ) = 𝜎 . 
 
Thus, the mean of Y is a linear function of X although the variance of Y does not 

depend on the value of X. The aforementioned assumptions imply that the Y  also 
have common variance and are pairwise independent. Furthermore, for purposes of 

making tests of significance, the random errors are assumed to be normally 
distributed, which again implies that the Y  are also normally distributed. 

 
Now, let X , X , … , X  be a set of k predictors believed to be related to a response 

variable Y. In the multiple linear regression model, the expected value of the 
response variable is assumed to be a linear function of these k regressors. The linear 

regression model has now the form: 

 
𝑌 = 𝛽 + 𝛽 𝑋 + 𝛽 𝑋 + ⋯ + 𝛽 𝑋 + 𝜀 , 

 
where we now have p = k + 1 unknown parameters (the β , i = 0,1, … , k regressor 
coefficients), and the rest of the assumptions are still applicable, as in the simple 

regression model. Under these assumptions the coefficient β , j = 1, … , k measures 

the change in the expected value of Y when X  increases by one unit, the other 

regressors being held fixed. 
Denoting the sample size with n, the linear model can be written in matrices form as: 

 
𝒀 = 𝑿𝜷 + 𝜺, 

 
or 
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𝒀 =

𝑌

𝑌
⋮

𝑌

=  

⎝

⎜
⎛

1 𝑋 𝑋 … 𝑋

1
⋮
1

𝑋
⋮

𝑋

𝑋 … 𝑋

⋮ … ⋮
𝑋 … 𝑋 ⎠

⎟
⎞

𝛽

𝛽
⋮

𝛽

+  

𝜀

𝜀
⋮

𝜀

 

 
Each column of X contains the values for a particular independent variable. The 
elements of a particular row of X, say row r, are the coefficients on the 

corresponding parameters in β that give E(Y ). The vectors Y and ε are random 

vectors; the matrix X is considered to be a matrix of known constants. 

 
The variance-covariance matrix for the random errors is: Cov(𝛆) = Ε(𝛆 𝛆) = σ 𝐈𝐧, 

following the assumption of homoscedasticity and uncorellation, and hence for Y we 

obtain E(Y) = 𝐗𝛃 and Cov(𝐘) = σ 𝐈𝐧.  

 
Letting β be an estimator of the vector β of the regression coefficients, then the 

predicted regression is Y = Xβ, which allow us to calculate the fitted value Y  for 
each Y . 

 
The difference ε =  Y − Y , ∀i = 1, … , n  is called residual and measures the 

discrepancy between the data and the fitted model. In matrix form, 𝛆 = 𝚼 − 𝚼.  

1.3 Regression coefficients estimation: the least square method 
As stated, a criterion must be set, for the regression weights to be estimated. The 

least squares estimation procedure uses the criterion that the solution must give the 
smallest possible sum of squared deviations of the observed Y  from the estimates of 

their true means provided by the solution. In terms of linear regression the sum of 
squared residuals is:  

𝑆𝑆𝐸 = 𝜀 = 𝜺′𝜺 = 𝒀 − 𝑿𝜷 𝒀 − 𝑿𝜷 , 

 
and so, for the vector of least squares estimators β that minimizes the SSE can easily 

be shown that the least squares normal equations hold: 

 
𝑿 𝑿𝜷 = 𝑿 𝒀. 

 
Provided that the inverse matrix (X X)  exists, which is always the case if the 
regressors are linearly independent, the least squares estimator of β is: 

 
𝜷 = (𝑿 𝑿) 𝑿 𝒀. 
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This estimator is linear to Y, unbiased, since E β = β, and can be shown that has 

the least variance among all the linear and unbiased estimators of β; thus known us 
BLUE (Best Linear Unbiased Estimator), based on the Gauss-Markov theorem. Its 

variance is: Var β = σ (X X) .  Moreover, Var Y = Var Xβ = ΧVar β Χ =

σ Χ(X X) Χ′. 

1.4 Maximum likelihood estimation 
The method of least squares can be used to estimate the parameters in a linear 
regression model regardless of the form of the distribution of the random errors. 

Other statistical procedures, such as hypothesis testing and construction of 
confidence intervals, assume that the errors are normally distributed. If the form of 

the random errors’ distribution is known, the maximum likelihood estimators are 

derived using the criterion of finding those values of the parameters that would have 
maximized the probability of obtaining the particular sample, called the likelihood 

function. As already established, if 𝛆~N(0, σ 𝐈𝐧),  then 𝐘~N (𝐗𝛃, σ 𝐈𝐧) . The 

likelihood function for the unknown parameters β and σ  is: 

 

𝐿(𝜷, 𝜎 ) = (2𝜋) (𝜎 ) 𝑒𝑥𝑝 −
1

2𝜎
𝜺′𝜺 , 

 
and thus the log-likelihood is: 
 

𝑙(𝜷, 𝜎 ) = −
𝑛

2
log(2𝜋) −

𝑛

2
log(𝜎 ) −

1

2𝜎
𝜺 𝜺, 

 
Then, we obtain the MLE for β and σ  as follows: 
 

𝜷 = (𝑿 𝑿) 𝑿 𝒀, 
 

𝜎 =
𝜺′𝜺

𝑛
. 

 
The MLE and the least squares estimator for β, coincide. This is not the case for σ . 

An unbiased estimator used along with the least squares method is σ =
𝛆 𝛆 , 

which takes into account the degrees of freedom (the number of parameters 

estimated subtracted from the number of available observations). While 𝛃 and σ  

are unbiased estimators for β and σ , σ  has Bias(σ ) = σ . Obviously, 

σ  is an asymptotically unbiased estimator confirming the general fact that the 

MLE have better statistical properties (they are unbiased, consistent and sufficient 
and have minimum variance when compared to all other unbiased estimators). 
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1.5 Prediction 
Usually the purpose of formulating a statistical model is to make predictions about 

future values of the process. The essential point in this is that there are two sources 
of uncertainty: uncertainty in the parameter values which have been estimated on 

the basis of past data and uncertainty due to the fact that any future value is itself a 
random event. 

 

Consider the problem of predicting some future observation Y = X β + ε , at a 

specific value X  of X, where it is assumed that ε ~N(0, σ I ) independent of the 

current observations. Since Y = X β is used as an estimate of the mean X β of Y , 

and the best prediction for ε  is its mean zero, Y  is also used as the predictor of Y . 

The variance for prediction must take into account that the quantity being predicted 
is itself a random variable. Thus, the success of the prediction will depend on how 

small the difference is between Y  and the future observation Y . The difference 

Y − Y   is called the prediction error. The average squared difference  E(Y − Y )  

is called the mean squared error of prediction. It can be shown that Y   is an 

unbiased estimator of  Y  and that Var Y − Y = σ [Χ (Χ Χ) Χ + 1] . Thus, 

under the same assumptions for the random errors, the prediction error is normally 
distributed, with zero mean and the aforegiven variance. 

 

Comparing the variance of the prediction error and the variance for estimation of 
the mean, we observe that the first is the sum of the latter plus the variance of the 

quantity being predicted. The derived variances are the true variances and depend 

on knowledge of σ .  Estimated variances are obtained by replacing σ  in the 

variance equations with an estimate of it. The residual mean square from the 

analysis provides an estimate of σ  if the correct model has been fitted. 

Under the assumption ε ~N(0, σ I ), we have (Y − Y )~N 0, Var Y − Y , and 

thus ( )
~N(0,1). Having to deal with unknown σ , we use the fact that 

( )

[ ( ) ]

~t  and the confidence interval established at the α 

significance level is Y ± t , SE(Y − Y ). 

 

So, in classical statistics it is usual to fit a model to the past data, and then make 
predictions of future values on the assumption that the model is correct, the so 

called estimative approach. That is, only the second source of uncertainty is included 
in the analysis, leading to estimates which are believed to be more precise than they 
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really are. Since parameters are not thought as being random, there is no efficient 

way to go around this problem in the classical framework. Within Bayesian inference 
on the other hand, it is straightforward to allow both sources of uncertainty by 

simply averaging over the uncertainty in the parameter estimates, the information of 
which is completely contained in the posterior distribution. 
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Chapter 2: Classical methods and criteria for model selection 

2.1 Model development and variable selection 
Modeling refers to the development of mathematical expressions that describe in 
some sense the behavior of a random variable of interest. Statistical models help us 

to understand the random process by which observed data have been generated, 
which may be of interest in itself, but also allows us to make predictions and 

decisions contingent on our inferences concerning the process. In order to identify 

“good” statistical models some principles are required on which the modeling 
procedures are based. In general, there are three requirements for a statistical 

model: plausibility, parsimony and goodness of fit. While the first one is not of 
statistical consideration, the latter two involve a tradeoff between optimal fit and 

parsimony, seeking the best model in terms of goodness of fit at the minimum cost 

of degrees of freedom. 
 
The process of statistical analysis might be simplistically displayed as follows: 

 

In Chapter 1, it has been assumed that the independent variables to be used in the 
model as well as the form in which they would be expressed were known. Moreover, 

the properties of the least squares estimators were based on the assumption that 
the model was correct. Most regression problems, however, require decisions about 

which variables must be included in the model, the form that the variables should 

take, and the functional form of the model. It is assumed that there is a set 
presumably including all relevant variables, from which a subset of variables is to be 

chosen for the regression equation. The candidate variables may include different 

Specify models

Estimate model parameters

Compare models

Assess chosen model

Base prediction on chosen model
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forms of the same basic variable, and the selection process may include constraints 

on which variables are to be included. For example, X may be forced into the model 

if X  is in the selected subset.  

 
The problem of determining an appropriate equation based on a subset of the 
original set of variables contains three basic ingredients, namely, the computational 

technique used to provide the information for the analysis, the criterion used to 
analyze the variables and select a subset, if that is appropriate, and the estimation of 

the coefficients in the final equation. Typically, a procedure might embody all three 

ideas without clearly identifying them. Moreover, regression equations with fewer 
variables have the appeal of simplicity, as well as an economic advantage in terms of 

obtaining the necessary information to use the equations. In addition, there is a 
theoretical advantage of eliminating irrelevant variables and, in some cases, even 

variables that contain some predictive information about the response variable. The 

motivation to eliminate variables is tempered by the biases and loss of predictability 
that are introduced when relevant variables are eliminated. The objective is to reach 

a compromise where the final equation satisfies the purpose of the study. 

 
The purpose of how the regression equation is to be used influences the manner in 

which the model is constructed. Simplistically, the regression might be used for one 

of the following purposes (or a combination of them): 

 Providing a good description of the behavior of the response variable 

 Prediction of future responses and estimation of mean responses 

 Extrapolation, or prediction of responses outside the range of the data 

 Estimation of parameters 

 Control of a process by varying levels of input 

 Developing realistic models of the process. 

 
Each objective has different implications on how much emphasis is placed on 

eliminating variables from the model, on how important it is that the retained 
variables be causally related to the response variable, and on the amount of effort 

devoted to making the model realistic.  

 
Of the uses of regression, prediction and estimation of mean responses are the most 

tolerant toward eliminating variables. At the same time, it is relatively unimportant 

whether the variables are causally related or the model is realistic. It is tacitly 
assumed that prediction and estimation are to be within the X-space of the data and 

that the system continues to operate as it did when the data were collected. Thus, 
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any variables that contain predictive information on the dependent variable, and for 

which information can be obtained at a reasonable cost, are useful variables. Of 
course, more faith could be placed in predictions and estimates based on established 

causal relationships, because of the protection such models provide against 
inadvertent extrapolations and unrecognized changes in the correlational structure 

of the system. 

 
On the other hand, one should also be conservative in eliminating variables when 

estimation of parameters is the objective. This is to avoid the bias introduced when a 
relevant variable is dropped. There is an advantage in terms of reduced variance of 

the estimates if variables truly unrelated to the dependent variable are dropped. 
 

By all means, the results from any variable selection procedure, and particularly 

those that are automated, need to be studied carefully to make sure the models 
suggested are consistent with the state of knowledge of the process being modeled. 

No variable selection procedure can substitute for the insight of the researcher. 
 

To briefly state the implications of improper model selection, assume that the 

variable selection is not based on information from the current data. In addition, the 
correct model involves t independent variables, but only a subset of p variables 

(chosen randomly or on the basis of external information) is used in the regression 
equation. Let 𝐗𝐩 and 𝛃𝐩 denote submatrices of X and β that relate to the p selected 

variables. 𝛃𝐩 denotes the least squares estimate of 𝛃𝐩 obtained from the p-variate 

subset model. Similarly, Y  , Y ,  and MS(Res)  denote the estimated mean for 

the i-th observation, the prediction for the i-th observation and the mean squared 

residual, respectively, obtained from the p-variate subset model. It can be shown 
(Hocking, 1976) that: 

 
 𝑀𝑆(𝑅𝑒𝑠)  is a positively biased estimate of 𝜎  unless the true regression 

coefficients for all deleted variables are zero 

 𝜷𝒑 is a biased estimate of 𝜷𝒑  and 𝑌   is a biased estimate of 𝛦(𝛶) unless the 

true regression coefficient for each deleted variable is zero or, in the case of 

𝜷𝒑, each deleted variable is orthogonal to the p retained variables 

 𝜷𝒑, 𝑌  , 𝑌 ,  are generally less variable than the corresponding statistics 

obtained from the t-variate model 
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 There are conditions under which the mean squared errors (variance plus 

squared bias) of 𝜷𝒑, 𝑌  , 𝑌 ,  are smaller than the variances of the 

estimates obtained from the t-variate model. 

 
Thus, a bias penalty is paid whenever relevant variables, those with β ≠ 0, are 

omitted from the model. On the other hand, there is an advantage in terms of 
decreased variance for both estimation and prediction if variables are deleted from 

the model. Furthermore, there may be cases in which there is a gain in terms of 

mean squared error of estimation and prediction from omitting variables whose true 
regression coefficients are not zero. 

 
These results provide motivation for selecting subsets of variables, but they do not 

apply directly to the usual case where variable selection is based on analysis of the 

current data. The general nature of these effects may be expected to persist, but 
selection of variables based on their performance in the sample data introduces 

another class of biases that confound these results. The process of searching through 
a large number of potential subset models for the one that best fits the data 

capitalizes on the random variation in the sample to “overfit” the data. That is to say, 

the chosen subset model can be expected to show a higher degree of agreement 
with the sample data than the true equation would show with the population data. 

Another problem of sample-based selection is that relative importance of variables 
as manifested in the sample will not necessarily reflect relative importance in the 

population. The best subset in the sample, by whatever criterion, need not be the 
best subset in the population. Important variables in the population may appear 

unimportant in the sample and consequently be omitted from the model, and vice 

versa. 
 

Many criteria for choice of subset size have been proposed, based on the principle of 
parsimony which suggests selecting a model with small residual sum of squares with 

as few parameters as possible. Most of the criteria are monotone functions of the 

residual sum of squares for a given subset size and, consequently, give identical 
rankings of the subset models within each subset size. However, the choice of 

criteria may lead to different choices of subset size, and they may give different 
impressions of the magnitude of the differences among subset models. 

 

Moreover, the reduction in the predictive accuracy of a sample-derived regression 
model when applied to new data, what is called validity shrinkage, can be managed 

in part by a number of variable selection methods. Methods such as forward and 
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backward stepwise regression and all subsets regression attempt to maximize the 

correlation between Y and Y, while minimizing the number of predictors. The fewer 
predictors that are used in a regression model applied to future cases, the less 

validity shrinkage tends to be. These variable selection methods have documented 
problems, however, in that they tend to overfit the data. But they can be useful in 

some contexts if their limits are understood and it is recognized that none of them is 
likely to be selecting the best or correct model by some objective standard. 

 

Some of the most commonly used criteria for evaluating and comparing subset 
regression models are presented briefly. 

2.2 Coefficient of determination 
The total variability in the response variable Y can be partitioned into variability due 

to change in expectations and variability due to random errors. The sum of squares 
decomposition is: 

 

(𝑦 − 𝑦) = (𝑦 − 𝑦) + (𝑦 − 𝑦 ) , 

 
that is, the corrected sum of squares of the observations, SST, which measures the 

total variability in the observations, equals to the amount of variability in the 
observations accounted for by the regression line, SSR, plus the residual variation 

left unexplained by the regression line, SSE. This is the fundamental analysis of 
variance identity for a regression model, symbolically written as: 

 
𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸. 

 
The coefficient of determination R  is based on this analysis and equals to the 

proportion of the total (corrected) sum of squares of the dependent variable 
explained by the independent variables in the model. That is: 

 

𝑅 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
. 

 
Because 0 ≤ SSE ≤ SST, it follows that 0 ≤ R ≤ 1. Values of R  that are close to 1 
imply that most of the variability in the response variable is explained by the 

regression model. Naturally, the interpretation of R  reflects its significant role in 
model fitting. 
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Note that, as new explanatory variables are added into the model, the coefficient of 

determination increases in value. This happens even if the added variable(s) have no 

relation to the response variable, indicating that a model with increased R  is not a 

priori superior to the old one. In particular, unless the SSE in the new model is 
reduced by an amount equal to the original error mean square, the new model will 

have a larger error mean square than the old one because of the loss of one degree 
of freedom for error. Thus, the new model will actually be worse than the old one. 

 

Moreover, the magnitude of R  also depends on the range of variability in the 

regressor variable. Generally R  will increase as the spread of the Xs increases, and 
decrease as the spread of the Xs decreases, provided the assumed model form is 

correct. 

 

Further on misconceptions about R , it should be noted that it does not measure the 

appropriateness of the linear model, for R  will often be large even though Y and X 
are nonlinearly related. 

 

So, R  cannot be used directly for model comparison. Furthermore, the coefficient of 

determination is not comparable for models where the functional form of the 
response variable is different. 

2.3 Residual mean square 
The residual mean square MS(Res) is an estimate of σ  if the model contains all 

relevant independent variables. If relevant independent variables have been 
omitted, the MS(Res) is biased upward. On the other hand, including an unimportant 

independent variable will have little impact on the MS(Res). Thus, the expected 

behavior is for it to decrease toward σ  as important independent variables are 

added to the model and to fluctuate around  σ  once all relevant variables have 
been included. The aforementioned describe the expected behavior of MS(Res) 

when the variable selection is not based on sample data. As will be established 

below, this criterion is essentially equivalent with the R .  

2.4 𝐑𝟐 adjusted 
The adjusted R , which is labeled as R , is a rescaling of R  by degrees of freedom 

so that it involves a ratio of mean squares rather than sums of squares and thus 

taking into account the number of the variables included in the model: 

 

𝑅 = 1 −
𝑀𝑆(𝑅𝑒𝑠)

𝑀𝑆(𝑇𝑜𝑡𝑎𝑙)
= 1 −

𝑛 − 1

𝑛 − 𝑘 − 1

𝑆𝑆𝐸

𝑆𝑆𝑇
< 𝑅 . 
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The primary attractiveness of R  is that it imposes a penalty for adding additional 

regressors to a model. If a regressor is added to the model, then SSR increases. As a 

consequence R  can fluctuate when a new regressor is added to the model. Its 

value will tend to stabilize around some upper limit as variables are added. The 

simplest model with R   near this upper limit can be chosen as the “best” model. 

Moreover, it is more comparable than R  over models involving different number of 
parameters. However, its interpretation is less clear, and it can even take negative 

values. 
 

R   is by definition closely related to MS(Res) and these two will lead to the same 

conclusions. In particular, the subset regression model that minimizes MS(Res) will 

also maximize R . 

2.5 Mallows’ 𝐂𝐩 statistic 
Another technique/criterion to assess fit when models, whose number of 
parameters differs are being compared, is the C  statistic (Mallows, 1973), which is 

an estimate of the standardized total MS(Res) for the current set of data: 
 

𝐶 =
𝑆𝑆𝐸

𝜎
− 𝑛 + 2𝑝, 

 
where p is the number of parameters in the model and n is the sample size. When 
the model is correct, the residual sum of squares is an unbiased estimate of 

(n − p)σ  and in this case, C  is approximately equal to p. When important 

independent variables have been omitted from the model, the residual sum of 

squares is an estimate of (n − p)σ  plus a positive quantity reflecting the 
contribution of the omitted variables; in this case, C  is expected to be greater than 

p. The most preferable model (with, say, p parameters) will have a  C  value which 

tends to be close to or smaller than p. Note that this is the criterion defined by 
Hocking (1976) when the model is primarily intended for prediction (while for 
parameter estimation the criterion C ≤ 2p − t has been suggested).  We may 

consider choosing the smallest model for which this is true (to reduce 
intercorrelation). The C  plot presents C  as a function of p for the better subset 

models and provides a convenient method of selecting the subset size and judging 
the competitor subsets. The ”best” model is the one whose coordinates (C , p) fall 

nearest the line C = p in the plot. A  C  value that is close to the number p of 

predictors indicates that the model produces relatively precise and unbiased 
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estimates, while a C  value that is greater than the number p of predictors indicates 

that the model is biased and does not fit the data well. An advantage of C  is that it 

can be used to select model size (a good model can be obtained that contains as few 
variables as possible). However, the C  criterion suffers from limitations too, such as 

that the C  approximation is only valid for large sample sizes. 

2.6 The Akaike Information Criterion (AIC) 
Akaike (Akaike, 1974) proposed an information criterion, based on maximizing the 
expected entropy of the model. Entropy is simply a measure of the expected 

information, in this case the Kullback-Leibler information measure. Essentially, the 

AIC is a penalized log-likelihood measure. Letting L be the likelihood function for a 
specific model, then AIC is: 

 

𝐴𝐼𝐶 = −2 ln(𝐿) + 2𝑝, 

where p is the number of the parameters in the model. In the case of OLS regression: 

 

𝐴𝐼𝐶 = 𝑛𝑙𝑛
𝑆𝑆𝐸

𝑛
+ 2𝑝. 

The key insight to the AIC is similar to R   and Mallows’ C .  As we add regressors 

to the model, SSE cannot increase. The issue becomes whether the decrease in SSE 
justifies the inclusion of the extra terms. A graph of AIC against p will, in general, 

show a minimum value, and the appropriate value of the subset size is determined 
by the value of p at which AIC attains its minimum value. That is, once again the 

preferred model is the one with the fewest parameters that still provides an 
adequate fit to the data. The AIC criterion is widely used, despite the fact that it has 

a tendency to select models with larger subset sizes than the true model. 

2.7 Bayesian extension of AIC 
There are several Bayesian extensions of the AIC, Schwartz (1978) and Sawa (1978) 

being two of the most popular ones. The Schwartz Bayesian Information Criterion 
(BIC) is defined as: 

 

𝐵𝐼𝐶 = −2𝑙𝑛𝐿 + 𝑝𝑙𝑛(𝑛). 

This criterion uses the multiplier ln(n) (instead of 2 in AIC), thus placing a greater 
penalty on adding regressors as the sample size increases. More precisely, this 

happens for sample size greater than 7, since 2p < 𝑝𝑙𝑛(n), for n > 7. For OLS 
regression, this criterion is: 
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𝐵𝐼𝐶 = 𝑛𝑙𝑛
𝑆𝑆𝐸

𝑛
+ 𝑝𝑙𝑛(𝑛). 

Again, the appropriate value of the subset size is determined by the value of p at 

which BIC attains its minimum value. 

 
It’s worth noting that: 

 
 In the special case of linear regression AIC and BIC are not bounded (unlike 

𝑅 ). 

 AIC and BIC can be implied to statistical models without linearity. 

 Both AIC and BIC are not relative measures as 𝑅  and therefore their 

magnitude offers no information. 

2.8 Computational techniques for variable selection 
Conceptually, the only way of ensuring that the best model for each subset size has 

been found is to compute all possible subset regressions. This is feasible when the 
total number of variables is relatively small, but rapidly becomes a major computing 

problem even for moderate numbers of independent variables. A lot of attention has 
been focused on identifying the best subsets within each subset size without 

computing all possible subsets. These methods utilize the basic least squares 

property that the residual sums of squares cannot decrease when a variable is 
dropped from a model. Thus, comparison of residual sums of squares from different 

subset models is used to eliminate the need to compute other subsets. 
 

These methods are referred to as stepwise regression methods and identify good 

(although not necessarily the best) subset models, with considerably less computing 
than is required for all possible regressions. The subset models are identified 

sequentially by adding or deleting, depending on the method, the one variable that 
has the greatest impact on the residual sum of squares. These stepwise methods are 

not guaranteed to find the “best” subset for each subset size, and the results 
produced by different methods may not agree with each other. 

 

The aforementioned methods can be classified into three broad categories, as 
follows. 

2.9 Forward selection 
Forward selection begins with the assumption that there are no regressors in the 

model other than the intercept. The procedure is to find an optimal subset by 
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inserting regressors into the model one at a time. The first regressor selected for 

entry into the equation is the one that has the largest simple correlation with the 
response variable Y. This happens to be the regressor that will produce the largest 

value of the F statistic for testing significance of regression. This regressor is entered 
if the F statistic exceeds a preselected F value, say F  (or F to enter). Equivalently 

this can be performed using the p-values. The second regressor chosen for entry is 

the one that now has the largest correlation with Y after adjusting for the effect of 
the first regressor entered on Y. Thus, at each successive step, the variable in the 

subset of variables not already in the model that causes the largest decrease in the 
residual sum of squares is added to the subset. Without a termination rule, forward 

selection continues until all variables are in the model. The F  criterion should be 
viewed as a stopping rule rather than a classical test of significance. 

As an algorithm representation we have: 

1. Start with a model including just the intercept 

2. For each of the predictors not in the model, calculate their F statistics as if 
they are added to the model 

3. For those F statistics that are greater than 𝐹 , choose the one with the 
biggest value and include the corresponding predictor in the model 

4. Iterate until no new predictors can be added. 

2.10 Backward elimination 
Forward selection has a serious drawback: each time a new regressor is added in the 
model, one or more already included may become non-significant. Backward 

elimination attempts to find a good model by working in the opposite direction. It 

chooses the subset models by starting with the full model (that is, the model which 
includes all candidate/available regressors) and then eliminating at each step the 

one variable whose deletion will cause the residual sum of squares to increase the 
least. This will be the variable in the current subset model that has the smallest 

partial sum of squares. At each step, this is performed by calculation of the partial F 

statistic for each regressor as if it were the last variable to enter the model. The 
smallest of these F statistics is compared with a preselected value, say F  and if the 

smallest partial F value is less than F , that regressor is removed from the model. 
This procedure continues by successively re-fitting reduced models and applying the 

same rule, until all remaining variables are statistically significant. Without a 

termination rule, backward elimination continues until the subset model contains 
only one variable. The F  criterion should be viewed as a stopping rule rather than 

a classical test of significance. 
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Backward elimination is often a very good variable selection procedure. It is 

particularly favored by analysts who like to see the effect of including all the 
candidate regressors, just so that nothing “obvious ” will be missed. 

As an algorithm representation we have: 

1. Start with a model including all the predictors 
2. For each predictor in the model, calculate their F statistics as if each one was 

the last one added in the model 
3. For those F statistics that are smaller than 𝐹 , choose the one with the 

smallest value and remove the corresponding predictor from the model 

4. Iterate until no new predictors can be removed. 

2.11 Stepwise regression 
Neither forward selection nor backward elimination takes into account the effect 
that the addition or deletion of a variable can have on the contributions of other 

variables to the model. A variable added early to the model in forward selection can 
become unimportant after addition of other variables (because of the relationships 

between it and the rest ones included), or variables previously dropped in backward 

elimination can become important after other variables are dropped from the model 
(for the very same reason). The variable selection method commonly labeled 

stepwise regression is a forward selection process that rechecks at each step the 
importance of all previously included variables. If the partial sums of squares for any 

previously included variables do not meet a minimum criterion to stay in the model, 
the selection procedure changes to backward elimination and variables are dropped 

one at a time until all remaining variables meet the minimum criterion. Then, 

forward selection resumes. 
 

The stopping rule for stepwise selection of variables uses both the forward and 
backward elimination criteria. The variable selection process terminates when all 

variables in the model meet the criterion to stay and no variables outside the model 

meet the criterion to enter (except, perhaps, for the variable that was just 
eliminated). The criterion for a variable to enter the model need not be the same as 

the criterion for the variable to stay. There is some advantage in using a more 
relaxed criterion for entry (that is F > F ) to force the selection process to 

consider a larger number of subsets of variables. 

 
Stepwise selection of variables requires more computing than forward or backward 

selection but has an advantage in terms of the number of potential subset models 
checked before the model for each subset size is decided. It is reasonable to expect 
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stepwise selection to have a greater chance of choosing the best subsets in the 

sample data, but selection of the best subset for each subset size is again not 
guaranteed. 

2.12 General comments on stepwise-type procedures 
The stepwise regression algorithms have been criticized on various grounds, the 
most common being that none of the procedures generally guarantees that the best 

subset regression model of any size will be identified. Furthermore, since all the 

stepwise-type procedures terminate with one final equation, it may be concluded 
that this is the optimal, in some sense, model. Part of the problem is that it is likely, 

not that there is one best subset model, but that there are several equally good 
ones. 

 

Moreover, the order in which the regressors enter or leave the model does not 
necessarily imply an order of importance to the regressors. It is not unusual to find 

that a regressor inserted into the model early in the procedure becomes negligible at 
a subsequent step. This is in fact a general problem with the forward selection 

procedure, since, once a regressor has been added, it cannot be removed at a later 
step. 

 

Note again that forward selection, backward elimination, and stepwise regression do 
not necessarily lead to the same choice of final model. The intercorrelation between 

the regressors affects the order of entry and removal. 
 

With any variable selection method, it is important to keep in mind that model 

selection cannot be separated from the underlying purpose of the investigation. 
Variable selection tends to amplify the statistical significance of the variables that 

stay in the model. Variables that are dropped can still be correlated with the 
response. It would be wrong to consider that these variables are unrelated to the 

response; it’s just that they provide no additional explanatory effect beyond those 

variables already included in the model. 
 

Finally, stepwise variable selection tends to pick models that are smaller than 
desirable for prediction purposes. To give a simple (and extreme) example, consider 

the simple regression with just one predictor variable and suppose that the slope for 
this predictor is not quite statistically significant. We might not have enough 

evidence to say that it is related to Y but it still might be better to use it for 

predictive purposes. 
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Finally, it’s worth noting that the various stepwise procedures, while originated for 
regression models, they can also be applied in settings that extend the basic linear 

model, such as GLMs, having the residual sum of squares replaced by deviance or 
other relevant measures. 
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Chapter 3: Bayesian methods for model selection 

3.1 Motivation for the Bayesian approach to model selection 
Despite the plethora of classical methods available in order to select a model, there 
are certain reasons for the Bayesian methods to be favored. Among the most 

famous ones, is the fact that their conclusions are easier to understand. The direct 
probability interpretation of posterior model probabilities and the interpretation of 

Bayes factors support this claim. 

 
Moreover, the Bayesian approach to model selection is consistent. This means that if 

one of the entertained models is actually the true model, then Bayesian model 
selection will, under mild conditions, guarantee its selection if enough data is 

observed. This is not always the case with use of most classical model selection tools. 

At the same time, since none of the candidate models may be the true one, this 
advantage is tempered. 

 
Overfitting is a continual problem, since more complex models will always provide a 

somewhat better fit. In classical methods a lot of effort is dedicated to choose the 

best penalizing criterion, while the Bayesian procedures naturally penalize model 
complexity through the prior, and need no introduction of a penalty term. Simpler 

models will be favored over more complex ones when the data provides roughly 
comparable fits for the models. 

Moreover, the Bayesian approach is conceptually the same, regardless of the 

number of models under consideration, while the classical framework distinguishes 
when two or more models are to be compared. Additionally, nested models, 

standard distributions or regular asymptotics are not a prerequisite. 

At last, one of the most significant reasons is that the Bayesian approach can account 
for model uncertainty. While the classical framework will complete the model 

selection procedure and then base predictions on the assumption that the selected 

model is correct, in the Bayesian framework all models may be left in the analysis 
with prediction being performed using a weighted average of the predictive 

distributions from each model, the weights being determined from the posterior 
probabilities of each model. 

3.2 The Bayesian linear regression 
Bayesian linear regression is an approach to linear regression in which the statistical 

analysis is undertaken within the context of Bayesian inference. Following the 

notation of Chapter 1 concerning linear regression, which is 𝑌 = 𝑋𝛽 + 𝜀,  and 
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assuming that the errors are normally distributed, it has been established that 

Y~N(Xβ, σ I), while the likelihood function for the unknown parameters 𝛽 and σ  
is: 

 

𝐿(𝛽, 𝜎 ) = (2𝜋) (𝜎 ) 𝑒𝑥𝑝 −
1

2𝜎
(𝑌 − 𝑋𝛽) (𝑌 − 𝑋𝛽) . 

 
Under the MLE approach, estimators for 𝛽 and σ  are obtained by maximizing this 
likelihood function. Under the Bayesian approach, instead of maximizing the 

likelihood function alone, we assume prior distributions for the parameters and use 
Bayes’ theorem to obtain their joint posterior distribution: 

 
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑝𝑟𝑖𝑜𝑟 × 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

 
Thus, we first need to decide on our prior. The prior distribution reflects the 

information about the (unknown) parameters and combined with the probability 
distribution of the data yields the posterior distribution. Therefore, information that 

the prior should capture, as well as the properties of the resulting posterior 

distribution must be taken into account. We will focus on prior specification, since 
this piece is uniquely Bayesian. 

3.3 Prior distribution of θ 
Computational difficulties arise in using Bayes’ theorem when it is necessary to 

evaluate the normalizing constant in the denominator: 
 

𝑓(𝜃)𝑓( 𝑥|𝜃)𝑑𝜃. 

 
However, judicious choices of prior can lead to posterior calculations which require 

no integration. In these cases we can identify a prior distribution 𝑓(𝜃) for which the 

posterior distribution 𝑓( 𝜃|𝑥) is in the same family of distributions as the prior. Such 
priors are called conjugate priors. The richness of the conjugate family is great 

enough for a prior to be found that is close enough to the analyst’s beliefs, providing 
a convenient and useful mathematical technique. In particular, it emerges that 

conjugates can be obtained for data models within the exponential family of 

distributions. That is: 
 

𝑓( 𝑥|𝜃) = ℎ(𝑥)𝑔(𝜃) exp{𝑡(𝑥)𝑐(𝜃)}, 
 

for functions h, g, t and c such that: 
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𝑓( 𝑥|𝜃)𝑑𝜃 = 𝑔(𝜃) ℎ(𝑥) exp{𝑡(𝑥)𝑐(𝜃)}𝑑𝑥 = 1. 

 
To see why this stands, given a random sample 𝑥 = (𝑥 , 𝑥 , … , 𝑥 ) from this general 

distribution, the likelihood for θ is: 
 

𝑓( 𝑥|𝜃) = {ℎ(𝑥 )}𝑔(𝜃) exp { 𝑡(𝑥 )𝑐(𝜃)} ∝ 𝑔(𝜃) exp { 𝑡(𝑥 )𝑐(𝜃)}. 

 

Thus if a prior of the form  

 

𝑓(𝜃) ∝ 𝑔(𝜃) exp{𝑏𝑐(𝜃)}, 
 

is chosen, we obtain: 
 

𝑓( 𝜃|𝑥) ∝ 𝑓(𝜃)𝑓( 𝑥|𝜃) ∝ 𝑔(𝜃) exp {𝑏𝑐(𝜃)} × 𝑔(𝜃) exp { 𝑡(𝑥 )𝑐(𝜃)} = 

𝑔(𝜃) exp {[𝑏 + 𝑡(𝑥 )]𝑐(𝜃)} = 𝑔(𝜃) exp{𝐵𝑐(𝜃)}, 

 
where 𝐷 = 𝑛 + 𝑑 and 𝐵 = 𝑏 + ∑ 𝑡(𝑥 ). So, the result is a posterior in the same 

family as the prior, with its parameters modified. 
 

The other essential point into formulating a prior distribution is the information it 

includes. If we have no prior information about θ, then a, so called, non-informative 
prior should be suitable. A uniform distribution could be an obvious choice, letting all 

possible outcomes of θ being equally probable. However, for non-compact 
parameter spaces such a flat prior (𝑓(𝜃) = 𝑐) is not a proper distribution, meaning it 

does not integrate to one. Nevertheless, it is considered to be acceptable using 

improper priors (to reflect vague knowledge) in the case where ∫ 𝑓( 𝑥|𝜃)𝑑𝜃 = 𝐾 <

∞. In short, the posterior needs (and offers this way a sufficient condition) to be 

verified as a proper distribution. 
 

Further on representations of ignorance, it is reasonable (and desirable) for a prior 

to be consistent across 1-1 parameter transformations. This can be accomplished 
with use of the Jeffreys’ prior (Jeffreys, 1946), which is defined as: 
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𝐽 (𝜃) ∝ |𝐼(𝜃)| , 
 

where the quantity 𝐼(𝜃) is the Fisher information: 

 

𝐼(𝜃) = −𝐸
𝑑 𝑙(𝜃)

𝑑𝜃
= 𝛦

𝑑𝑙(𝜃)

𝑑𝜃
 

 
and 𝑙(𝜃) = 𝑙𝑜𝑔𝑓( 𝑥|𝜃), is the log likelihood. 

 
Another substantial flexibility that the Bayesian framework offers, concerning prior 

elicitation, is the use of multimodal prior distribution, in order to express fluctuating 

prior beliefs. Let f (θ), … , f (θ) be conjugate distributions for θ, leading to posterior 
distributions f ( θ|x), … , f ( θ|x) and consider the family of mixture distributions: 

f(θ) = ∑ p f (θ), where 0 ≤ p ≤ 1, i = 1, … , k and ∑ p = 1.  Then,  
 

𝑓( 𝜃|𝑥) ∝ 𝑓(𝜃)𝑓( 𝑥|𝜃) = 𝑝 𝑓 (𝜃) 𝑓( 𝑥|𝜃) = 𝑝 𝑓 (𝑥) 𝑓( 𝜃|𝑥) = p ∗f ( θ|x) 

 

where p ∗ ∝ p f (x), yielding that the posterior is in the same mixture-family (though 
with mixture proportions in the posterior generally different from those in the prior). 

 

The aforementioned scheme of obtaining the posterior distribution by updating our 
beliefs on the context of observed data, can be accomplished either using the entire 

information the data provide at once, or sequentially. In the latter case each time we 
update our beliefs we use interim posterior information as our next prior, in a 

sequential updating mode that concludes to the very same results. To see why, 

consider the simple case where the independent variables 𝑋 , 𝑋  have density 
𝑓( 𝑥|𝜃) . Suppose we observe 𝑥  and update with use of Bayes’ theorem to 

𝑓( 𝜃|𝑥 ) ∝ 𝑓(𝜃)𝑓( 𝑥 |𝜃). This is considered to be our new prior before observing 𝑥  
and we then have: 𝑓( 𝜃|𝑥 , 𝑥 ) ∝ 𝑓(𝜃)𝑓( 𝑥 |𝜃)𝑓( 𝑥 |𝜃) = 𝑓(𝜃)𝑓( 𝑥 , 𝑥 |𝜃), which 

equals to the result obtained by updating on the basis of the entire information 

(𝑥 , 𝑥 ) at once. Of course, as stated, the data must be conditionally independent. 

3.4 The Bayesian linear model 
As stated, for the Bayesian analysis we first need to specify priors for the unknown 

regression parameters 𝛽 and 𝜎 . Two of the most widely used cases of prior setup 

will be discussed. 



38 
 

3.4.1 Non-informative priors 
First we will use non-informative priors, the case where Bayesian analysis resembles 

most the classical approach. That is, selecting flat priors on β and 𝜎 , or equivalently 

𝑓(𝛽) ∝ 1, 𝑓(𝜎 ) ∝ ⇔ 𝑓(𝛽, 𝜎 ) ∝ . This is an improper prior, however yielding a 

valid posterior. 
 

The joint posterior distribution of (𝛽, 𝜎 ) is given by: 
 

𝑓( 𝛽, 𝜎 |𝛶) ∝ 𝑓( 𝛶|𝛽, 𝜎 )𝑓(𝛽)𝑓(𝜎 ) ≡ 𝐿(𝛽, 𝜎 )𝑓(𝛽, 𝜎 ), 
 

where 

 

𝐿(𝛽, 𝜎 ) = (2𝜋) (𝜎 ) 𝑒𝑥𝑝 −
1

2𝜎
(𝑌 − 𝑋𝛽) (𝑌 − 𝑋𝛽) , 

 

thus yielding: 
 

𝑓( 𝛽, 𝜎 |𝛶) ∝ (𝜎 ) 𝑒𝑥𝑝 −
1

2𝜎
(𝑌 − 𝑋𝛽) (𝑌 − 𝑋𝛽) . 

 

The conditional posterior distribution of β given 𝜎 , 𝑓( 𝛽|𝜎 , 𝛶) is simply 𝑓( 𝛽, 𝜎 |𝛶), 
seen as a function of β. Thus:  

 

 𝛽|𝜎 , 𝛶~𝑁((X X) Χ Y, σ (X X) ) ≡ 𝛮 β, Var β . 

 

That is, the posterior distribution of  𝛽|𝜎 , 𝛶  has mean β = (X X) Χ Y  which 

coincides with the MLE and OLS estimator of 𝛽. 
 

The above conditional posterior distribution of β would have been the desired 

distribution had 𝜎  been known. Since this is not the case, we have to find the 

marginal posterior distribution of 𝛽, by integrating out 𝜎  as: 
 

𝑓( 𝛽|𝛶) = 𝑓( 𝛽, 𝜎 |𝛶)𝑓( 𝜎 |𝛶)𝑑𝜎 . 

 

Thus, specification of the marginal posterior distribution of 𝜎 , 𝑓( 𝜎 |𝛶)  arises. 

Assuming β is fixed, and then the conjugate prior for 𝜎  is an inverse Gamma 



39 
 

distribution and so we get for the marginal posterior distribution of 𝜎  another 
inverse Gamma: 

 

𝑓( 𝜎 |𝛶) ∝
1

(𝜎 )
exp −

(𝑛 − 𝑘)𝑠

2𝜎
~𝐼𝐺

𝑛 − 𝑘

2
,
(𝑛 − 𝑘)𝑠

2
, 

 

where 𝑠 = 𝜎 = 𝑌 − 𝑋𝛽 (𝑌 − 𝑋𝛽), the unbiased estimate of 𝜎  in the linear 

regression model. 
 

Revisiting now the marginal posterior distribution of 𝛽, by integrating out 𝜎  we get 
that 𝑓( 𝛽|𝛶) is a non-central multivariate t distribution with n-k degrees of freedom 

and non-centrality parameter 𝛽. 

 
The above distribution is quite complicated. In order to carry out a non-informative 

Bayesian analysis, we use a simpler sampling based mechanism. For each 𝑖 =

1, … , 𝑀 we first draw 𝜎 ( )~[𝜎 |𝑦]   which is inverse Gamma, followed by 

𝛽( )~Ν((X X) Χ Y, 𝜎 ( )(X X) ). The resulting samples 𝛽( ), 𝜎 ( ) , 𝑖 = 1, … , 𝑀 

are precisely samples from the joint marginal posterior distribution 𝑓( 𝛽, 𝜎 |𝛶). 

Automatically the samples 𝛽( ) , 𝑖 = 1, … , 𝑀 are samples from marginal posterior 

distributions 𝑓( 𝛽|𝛶), while the samples 𝜎 ( ) , 𝑖 = 1, … , 𝑀 are from the marginal 

posterior 𝑓( 𝜎 |𝛶). 
 

Next we want to apply our regression analysis to a new set of data, where we have 

observed the new covariate matrix 𝑋 and we wish to predict the corresponding 

outcome 𝑦. If β and 𝜎  were known, then 𝑦 would have a 𝑁(𝑋𝛽, 𝜎 𝛪) distribution. In 
reality, where parameters are unknown, all predictors for the data must follow from 

the posterior predictive distribution: 
 

𝑓(𝑦|𝑦 ) = 𝑓(𝑦|𝛽, 𝜎 ) 𝑓( 𝛽, 𝜎 |𝛶)𝑑𝛽𝑑𝜎 . 

 
Therefore, predictions are carried out by sampling from the posterior predictive 

distribution: for each posterior we draw 𝛽( ), 𝜎 ( ) , 𝑖 = 1, … , 𝑀, and then draw 𝑦( ) 

from 𝑁(𝑋𝛽( ), 𝜎 ( )𝛪) . The resulting sample 𝑦( ), 𝑖 = 1, … , 𝑀  represents the 

predictive distribution. The theoretical mean and variance, conditional upon 𝜎  is:  
 

𝐸(𝑦|𝜎 , 𝑦) = 𝐸[𝐸(𝑦 𝛽, 𝜎 , 𝑦) 𝜎 , 𝑦] = 𝛦[𝑋𝛽|𝛽, 𝜎 ]   = 𝑋𝛽, 
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𝑣𝑎𝑟(𝑦|𝜎 , 𝑦) = 𝛦[𝑣𝑎𝑟(𝑦|𝛽, 𝜎 , 𝑦)|𝜎 , 𝑦]  +  𝑣𝑎𝑟[𝐸 = 𝑦|𝛽, 𝜎 , 𝑦)|𝜎 , 𝑦]   = 

𝐸(𝜎 𝛪) + 𝑣𝑎𝑟[𝑋𝛽|𝜎 , 𝑦] =  𝐼 + 𝑋(𝑋 𝑋) 𝑋 𝜎 . 

 

Thus, conditional on 𝜎 , the posterior predictive variance has two components: 𝜎 𝐼, 

representing sampling variation and 𝑋(𝑋 𝑋) 𝑋 𝜎 , due to uncertainty about 𝛽. 
 

To obtain the theoretical unconditional predictive distribution 𝑓(𝑦|𝑦 )  we 

marginalize over 𝜎  and conclude to a multivariate t distribution, 𝑡 (𝑋𝛽, 𝑠 (𝐼 +

𝑋(𝑋 𝑋) 𝑋 ). 

3.4.2 Normal-inverse Gamma prior 
One of the most commonly used priors is the Normal-inverse Gamma distribution, 

which is the conjugate prior for the normal linear model. To see why, we first use the 

fact that: 
 

(𝑌 − 𝑋𝛽) (𝑌 − 𝑋𝛽) = 𝑌 − 𝑋𝛽 𝑌 − 𝑋𝛽 + 𝛽 − 𝛽 (𝛸 𝛸) 𝛽 − 𝛽 , 

 

to rewrite the likelihood as: 

 

  

𝐿(𝛽, 𝜎 ) ∝ (𝜎 ) 𝑒𝑥𝑝 −
𝑢𝑠

2𝜎
(𝜎 ) 𝑒𝑥𝑝 −

1

2𝜎
𝛽 − 𝛽 (𝛸 𝛸)(𝛽 − 𝛽) , 

 

where 𝑢 = 𝑛 − 𝑘 and 𝑠 = . 
 

Recognizing the kernels, this notation suggests for the prior a form of: 

 

𝑓(𝛽, 𝜎 ) = 𝑓(𝜎 )𝑓(𝛽|𝜎  ), 
  

 where 𝑓(𝜎 ) is an inverse Gamma distribution: 

  

𝑓(𝜎 ) ∝ (𝜎 ) 𝑒𝑥𝑝 −
𝑢𝑠

2𝜎
≡ 𝐼𝐺

𝑢

2
,
𝑢𝑠

2
. 

 

The conditional prior density 𝑓(𝛽|𝜎  ) is a multinomial Normal distribution: 
 

𝑓(𝛽|𝜎  ) ∝  (𝜎 ) 𝑒𝑥𝑝 −
1

2𝜎
𝛽 − 𝛽 (𝛸 𝛸) 𝛽 − 𝛽 ≡ 𝑁 𝛽, 𝜎 𝑉 , 
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where 𝛽 is a k-vector containing the prior means for the k regression coefficients 

𝛽 , … , 𝛽 and 𝑉 is a 𝑘 × 𝑘 positive definite prior covariate matrix. Note that if 𝑉 is a 

priori large, expressing ignorance, this leads to a non-informative prior. 

 

Based on the above the prior is: 
 

𝑓(𝛽, 𝜎 ) = 𝑓(𝜎 )𝑓(𝛽|𝜎  ) = 𝑁 𝛽, 𝜎 𝑉 × 𝐼𝐺
𝑢

2
,
𝑢𝑠

2
∝ 

(𝜎 ) 𝑒𝑥𝑝 −
1

2𝜎
𝛽 − 𝛽 (𝛸 𝛸) 𝛽 − 𝛽 (𝜎 ) 𝑒𝑥𝑝 −

𝑢𝑠

2𝜎
∝ 

(𝜎 ) 𝑒𝑥𝑝 −
1

2𝜎
[𝑢𝑠 + 𝛽 − 𝛽 (𝛸 𝛸) 𝛽 − 𝛽 ] ≡ 𝑁𝐼𝐺 𝛽, 𝜎 𝑉,

𝑢

2
,
𝑢𝑠

2
. 

 
The NIG probability distribution is a joint probability distribution of a vector 𝛽 and a 

scalar 𝜎 . Upon multiplication with the likelihood, we get the conjugate posterior 

distribution of 𝛽, 𝜎 |𝑦  which is: 

 

𝑓(𝛽, 𝜎 |𝑦 ) ∝  (𝜎 ) 𝑒𝑥𝑝 −
1

𝜎
𝑏∗ +

1

2
(𝛽 − 𝜇∗) 𝑉∗ (𝛽 − 𝜇∗)

≡ 𝑁𝐼𝐺(𝜇∗, 𝑉∗, 𝛼∗, 𝑏∗), 
 

where  
 

𝜇∗ = 𝜎 𝑉 + 𝑋 𝑋 𝜎 𝑉 𝛽 + 𝛸 𝑋𝛽 , 

𝑉∗ = (𝑉 + 𝑋 𝑋) , 

𝛼∗ =
𝑢 + 𝑛

2
, 

𝑏∗ =
𝑢𝑠

2
+

1

2
𝛽 𝜎 𝑉 𝛽 + 𝑌 𝑌 − 𝜇∗

∗ ∗

. 

 

Note that the marginal posterior distribution of 𝜎  is immediately recognized to be 
an 𝐼𝐺(𝛼∗, 𝑏∗). 

 

The marginal posterior distribution of 𝛽 is obtained by integrating out 𝜎  from the 

NIG joint posterior: 
 

𝑓(𝛽|𝑦 ) = 𝑓(𝛽, 𝜎 |𝑦 )𝑑𝜎 = 𝑁𝐼𝐺(𝜇∗, 𝑉∗, 𝛼∗, 𝑏∗)𝑑𝜎 ∝ 



42 
 

1

𝜎

∗

exp −
1

𝜎
𝑏∗ +

1

2
(𝛽 − 𝜇∗) 𝑉∗ (𝛽 − 𝜇∗) 𝑑𝜎 ∝ 

[1 +
(𝛽 − 𝜇∗) 𝑉∗ (𝛽 − 𝜇∗)

2𝑏∗
] ( ∗ ). 

 

This is a multivariate t density: 
 

𝑡 ∗(𝜇∗, 𝛴∗) =
𝛤(

𝜈∗ + 𝑘
2

)

𝛤(
𝜈∗

2
)𝜋 |𝜈∗𝛴∗|

[1 +
(𝛽 − 𝜇∗) 𝛴∗ (𝛽 − 𝜇∗)

𝜈∗
]

∗

 

 

where 𝜈∗ = 2𝛼∗ and 𝛴∗ = (
∗

∗
)𝑉∗. 

 
Thus we have:  

 

𝐸(𝛽|𝑦 ) = 𝜇∗ 

𝑣𝑎𝑟(𝛽|𝑦 ) =
𝜈∗

𝜈∗ − 2
𝛴∗ =

𝑏∗

𝑎∗ − 1
𝑉∗. 

 

Next we want to apply our regression analysis to a new set of data, where we have 

observed the new covariate matrix 𝑋 and we wish to predict the corresponding 

outcome 𝑦. Once again, if 𝛽 and 𝜎  were known, then 𝑦 would have a 𝑁(𝑋𝛽, 𝜎 𝛪) 
distribution and would be independent of y. However, these parameters are 

unknown and summarized through their posterior samples. Therefore, all 
predictions for the data must follow from the posterior predictive distribution: 

 

𝑓(𝑦|𝑦 ) = 𝑓(𝑦|𝛽, 𝜎 ) 𝑓( 𝛽, 𝜎 |𝛶)𝑑𝛽𝑑𝜎 = 

= 𝑁(𝑋𝛽, 𝜎 𝛪) × 𝑁𝐼𝐺(𝜇∗, 𝑉∗, 𝛼∗, 𝑏∗)𝑑𝛽𝑑𝜎 = 𝑡 ∗ 𝑋𝜇∗,
𝑏∗

𝛼∗
(𝐼 + 𝑋𝑉∗𝑋′) . 

 
There are two sources of uncertainty in the posterior predictive distribution: the 

fundamental source of variability in the model due to 𝜎 , unaccounted for by 𝑋𝛽 

and the posterior uncertainty in 𝛽 and 𝜎  as a result of their estimation from a finite 

sample y. As the sample size gets larger (𝑛 → ∞) the variance due to posterior 
uncertainty disappears, but the predictive uncertainty remains. 
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Once again, we can use a simple sampling based mechanism. For each posterior 

draw 𝛽( ), 𝜎 ( ) , 𝑖 = 1, … , 𝑀  we draw 𝑦( )  from 𝑁(𝑋𝛽( ), 𝜎 ( )𝐼) . The resulting 

sample 𝑦( ) , 𝑖 = 1, … , 𝑀 represents the predictive distribution. 

 

A great variety of other priors have been suggested and extensively used. Briefly 
stated, two of them are: 

Zellner’s g-prior (Zellner, 1986) where 𝛽~Ν(0, (X X) ) . This prior is proper 

assuming X is full rank and yields a posterior mean of β  , shrinking the least 

estimate towards zero and controlling the amount of shrinkage via g. That is, we 

assume a conservative prior mean of zero for the coefficients to reflect that not 

much is known about them, and that their variance-covariance structure is broadly 
in line with that of the data. The hyperparameter g embodies how certain we are 

that coefficients are indeed zero: a small g means few prior coefficient variance and 
therefore implies that we are quite certain that the coefficients are indeed zero. 

The double exponential or Bayesian LASSO prior, which favors settings where there 

are many 𝛽  near zero and a few large 𝛽  (due to the distribution’s thicker tales). 

3.5 The (Bayesian) predictive distribution 
Suppose we have past observations (X , … , X ) of a variable with likelihood function 

f( x|θ) and we wish to make inferences about the distribution of a future value of a 
random variable Y from this same model. With a prior distribution f(θ), Bayes’ 

theorem leads to a posterior distribution f( θ|x)  and we want to specify the 

predictive density function of y given x. 
 

Supposing θ to be known, we assume that Y is independent of x. The joint density of 
y, x and θ is: 

 

𝑓(𝑦, 𝑥, 𝜃) = f( y, 𝑥|θ)f(𝜃) = f( y|θ)f( 𝑥|θ)𝑓(𝜃). 
 

Then we have: 
 

f( y, 𝜃|𝑥) =
𝑓(𝑦, 𝑥, 𝜃)

𝑓(𝑥)
=

f( y|θ)f( 𝑥|θ)𝑓(𝜃)

𝑓(𝑥)
= f( y|θ)f( 𝜃|𝑥), 

 

and integrating out θ we get the predictive density function of y given x: 

 

f( y|x) = f( y|θ)f( θ|x)dθ.  
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Thus the predictive density, evaluated at a particular value of y, is the integral of the 
likelihood of y times the posterior. The result can also be written as the expectation 

of the predictive density with respect to the posterior distribution of θ: 
 

𝑓( 𝑦|𝑥) = 𝛦[ 𝑓( 𝑦|𝜃)|𝑥]. 

Under the classical approach we would obtain a maximum likelihood estimate θ of θ, 

plug it into the likelihood and base inference on the distribution f  y|θ , the 

estimative distribution. This makes no allowance for the variability incurred as a 

result of estimating θ, giving a false sense of precision, while the predictive density 
f( y|x) is more variable by averaging across the posterior distribution for θ. 

 

3.6 Model evidence 
The marginal likelihood or evidence 𝑓(𝑥) of a given model 𝑓( 𝑥|𝜃) is the marginal 

distribution of the data under that model. It is obtained by integrating the product of 
the likelihood times a prior distribution 𝑓(𝜃) on the model parameters θ over θ: 

 

𝑓(𝑥) = 𝑓( 𝑥|𝜃)𝑓(𝜃)𝑑𝜃. 

That is, 𝑓(𝑥) is the normalizing constant of the posterior distribution of θ, given by: 
 

𝑓( 𝜃|𝑥) =
𝑓( 𝑥|𝜃)𝑓(𝜃)

𝑓(𝑥)
 

and an analytic solution is available whenever conjugate priors are used. This means 
that there exist formulas for posterior mean and variance, marginal likelihood, 

predictive. Equivalently, the marginal likelihood is defined as the expectation of the 

likelihood with respect to the prior distribution 𝑓(𝜃). In order to be able to evaluate 
the integral(s) involved in the calculation of 𝑓(𝑥) we need to choose carefully a 

proper (preferably conjugate) prior on θ. 
 

Marginal likelihoods play an important role in Bayesian model comparison. While the 

model is defined by the likelihood function 𝐿(𝛽, 𝜎 ) and the parameters’ prior 

distribution 𝑓(𝛽, 𝜎 ), the model evidence captures in a single number how well such 
a model explains the data.  Under the Bayesian linear regression analysis, the model 

evidence can be used to compare competing linear models, which may differ in the 

number and values of the predictor variables, as well as in their priors on the model 
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parameters. Model complexity is already taken into account by the model evidence, 

since it marginalizes out the parameters by integrating 𝑓(𝑌, 𝛽, 𝜎 ) over all possible 

values of 𝛽, 𝜎 . 
 

The model evidence, or marginal likelihood, 𝑓(𝑦|𝑚 ) for a given model m is the 

probability of the data given the model m and can be expressed as: 
 

𝑓(𝑦|𝑚 ) = 𝐿(𝛽, 𝜎 )𝑓(𝛽, 𝜎 )𝑑𝛽𝑑𝜎 . 

3.7 Bayesian inference and hypothesis testing 
The posterior distribution derived from Bayes’ theorem is itself the inference, since it 

provides a complete description of the unknown parameter θ. In that sense, there is 
no real meaning into constructing a confidence interval, similarly to classical 

statistics. However, since point estimates give no measure of accuracy, credibility 

intervals come into play, having a direct interpretation which derives from the fact 
that parameters are regarded as random. Thus, there is a probability of 1-a, based 

on the posterior distribution, that θ lies in a region 𝐶 (𝑥), which is called the 
100(1 − 𝑎)% credible region for θ, and for which: 

 

𝑓( 𝜃|𝑥)𝑑𝜃
( )

= 1 − 𝛼. 

 

The credible intervals are not uniquely identified, as any region with probability 1-a 

will suffice. For a fixed value of a, we additionally seek for the shortest interval 
possible, which has a form of 𝐶 (𝑥) = {𝜃: 𝑓( 𝜃|𝑥) ≥ 𝛾}, where γ is chosen to ensure 

that ∫ 𝑓( 𝜃|𝑥)𝑑𝜃
( )

= 1 − 𝛼. Such regions are called highest posterior density 

regions and in general have to be found numerically. 

 
Hypothesis tests serve as a means of choosing between two different hypotheses. 

That is 𝐻 : 𝜃 ∈ 𝛺  𝑣𝑠 𝐻 : 𝜃 ∈ 𝛺 , or in the case of simple point sets 𝐻 : 𝜃 =

𝜃  𝑣𝑠 𝐻 : 𝜃 = 𝜃 . The classical approach makes use of the likelihood ratio 𝜆 =
(  | )

(  | )
 

which takes large values when observed data is more likely to have occurred if 𝜃  is 
the true value of θ (compared with 𝜃 ). In the Bayesian framework, the posterior 

probabilities of 𝜃  and 𝜃  can be computed and then base the test on the relative 
posterior probabilities of the hypothesized values, using the posterior odds: 
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𝜆 =
(  | )

(  | )
=

( ) (  | )

( ) (  | )
. 

 

The concept of the test is the same, since large values of λ  would favor H . Notable 
is the fact that there is no requirement to calculate normalizing factors, since the 

same factor would appear on the numerator and the denominator. 

 
The above equation can be viewed as the product of the prior odds times the 

likelihood ratio, yielding the posterior odds. In this context, the likelihood ratio is 
termed the Bayes factor: 

𝐵𝐹 =
𝑓( 𝑥|𝜃 )

𝑓( 𝑥|𝜃 )
=

𝑓( 𝜃 |𝑥) 𝑓( 𝜃 |𝑥)⁄

𝑓(𝜃 ) 𝑓(𝜃 )⁄
. 

 

Thus we have the following scheme: 
 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 = 𝐵𝑎𝑦𝑒𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑃𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 

The Bayes factor is a measure of the weight of information in the observed data in 

favor of 𝐻  over 𝐻 (or the odds provided by the data for 𝐻  versus 𝐻 ). If it is 
sufficiently large, it will overcome any prior preference for 𝐻  so that our posterior 

preference may be for 𝐻 .  

 
Generalization of the above testing approach for more than two hypotheses is 
straightforward. 

3.8 Bayesian model comparison 
The framework of Bayesian model comparison evaluates probabilistic models based 

on the marginal likelihood, or the probability they assign a dataset with all the 

parameters marginalized out. Essentially, the Bayesian model selection rule consists 
of choosing the model which is a posteriori most probable for the data, as compared 

to another or various other alternative models. 
 

Consider a number of competing models 𝑀 , … , 𝑀  parameterized respectively by 
𝜃 , … , 𝜃  for an observed data set. In the presence of uncertainty about the correct 

model, Bayesian inference involves the evaluation of the posterior probability 

𝑓( 𝑀 𝑥) of each model 𝑀 , 𝑗 = 1, … , 𝑘 as well as the evaluation of the posterior 

distribution 𝑓( 𝜃 𝑥, 𝑀 )  of the parameters 𝜃 of model 𝑀 , 𝑗 = 1, … , 𝑘.  After 

specifying prior model probabilities 𝑓(𝑀 ) for all competing models and carefully 

choosing prior distributions for the model specific parameters 𝑓  𝜃 𝑀 , 𝑗 = 1, … , 𝑘, 
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posterior inferences can be obtained. Specifically, the posterior probability of model 

𝑀  is calculated using Bayes’ theorem as: 

 

𝑓( 𝑀 𝑥) =
𝑓(𝑀 )𝑓( 𝑥|𝑀 )

∑ 𝑓(𝑀 )𝑓( 𝑥|𝑀 )
, 𝑗 = 1, … , 𝑘, 

 

where 𝑓( 𝑥|𝑀 ) is the marginal likelihood of the vector of observations x under 

model 𝑀 . That is: 

 

𝑓  𝑥|𝑀 = 𝐿 𝑥 𝜃 , 𝑀   𝑓 𝜃 𝑀   𝑑𝜃 . 

 

It can be easily seen that this marginal likelihood is just the likelihood function 
integrated over the specified prior distribution for that model, provided that the 

integration is feasible. These marginal densities 𝑓  𝑥|𝑀  are in general difficult to 

calculate. However, if the prior specification is conjugate to the likelihood function, 

some of the model parameters can be integrated out of the posterior distribution 
analytically. 

 
Moreover, the posterior distribution of the parameters 𝜃  of model 𝑀 , 𝑗 = 1, … , 𝑘, is 

also given by Bayes’ theorem as: 

 

𝑓  𝜃 𝑥, 𝑀 =
𝑓  𝜃 𝑀 𝑓( 𝑥|𝜃 , 𝑀 )

𝑓( 𝑥|𝑀 )
, 𝑗 = 1, … , 𝑘. 

 

The Bayes factor is in this case a measure of the weight of information in the 
observed data in favor of model  M  over M  (or the odds provided by the data for M  

versus M ) and is given by: 

 

B =
∫ f  x|θ f θ dθ

∫ f ( x|θ )f (θ )dθ
=

f  x|θ

f ( x|θ )
=

𝑓( 𝑀 𝑥)

𝑓( 𝑀 |𝑥)

𝑓(𝑀 )

𝑓(𝑀 )
. 

 

Alternatively, B  is called the weighted likelihood ratio of M  to M , with the priors 

being the weighting functions. 
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Thus in the case we have two competing models, which are regression models with 

different explanatory variables, we can use the posterior odds ratio which is: 
 

PO = B
𝑓(𝑀 )

𝑓(𝑀 )
=

f  x|θ

f ( x|θ )

𝑓(𝑀 )

𝑓(𝑀 )
 

 
With a non-informative choice of prior chances for the models (𝑓(𝑀 ) = 𝑓(𝑀 ) =

1/2) the posterior odds ratio equals to the Bayes factor. 

 
Despite its popularity, Bayes factor is relevant only in limited circumstances, since it 

is required to choose one particular model and there must be a zero-one loss on that 
decision. That is, if we make the wrong decision it doesn’t matter how far the choice 

is, which is in contrast to the way statisticians think about most problems. 

3.9 Bayesian model averaging 
Bayesian model averaging is based on probability calculus and naturally emanates 
from the Bayesian paradigm by treating the model index as unknown. Generally, one 

important and potentially dangerous consequence of neglecting model uncertainty is 

that we assign more precision to our inference than is warranted by the data, and 
this leads to overly confident decisions and predictions. In addition, our inference 

can be severely biased. Standard statistical practice ignores model uncertainty. In 
model selection, we typically select a single "best" model from a set of candidate 

models and then use this model for prediction. That is, we proceed as if the selected 

model had generated the data, ignoring with this approach the uncertainty in model 
selection. In line with probability theory, the standard Bayesian response to dealing 

with uncertainty is to average. When dealing with parameter uncertainty, this 
involves averaging over parameter values with the posterior distribution of that 

parameter in order to get the predictive distribution. Analogously, model uncertainty 
is also resolved through averaging, but this time over models with the (discrete) 

posterior model distribution. This latter procedure is known as Bayesian model 

averaging and provides a coherent mechanism for accounting for this model 
uncertainty. So, instead of selecting a single "best" model and using it for prediction, 

Bayesian model averaging uses a weighted average of each model's individual 
prediction for the final predicted value, where the weight is the posterior probability 

of the model given the data. 

 
Bayesian model averaging is best introduced by considering the concept of the 

predictive distribution. Assume we are interested in predicting the unobserved 
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quantity 𝑦 on the basis of the observations y. We denote the sampling model for 𝑦 

and y jointly by 𝑓 𝑦 𝑦, 𝜃 , 𝑀   𝑓(𝑦 𝜃 , 𝑀  ), where 𝑀  is the model selected from a set 

of K possible models. Moreover, we assign a prior 𝑓(𝜃 𝑀  ) for the parameters and a 

discrete prior 𝑓(𝑀 ) defined on the model space. Then the predictive distribution 

(the sequence of one step ahead predictive densities) is: 

 

𝑓(𝑦|𝑦 ) = 𝑓 𝑦 𝑦, 𝜃 , 𝑀   𝑓 𝜃 𝑦, 𝑀   𝑑𝜃 𝑓 𝑀 |𝑦  . 

 
The quantity in the brackets is the predictive distribution given M  obtained using the 

posterior of θ  given M , which is computed as: 

 

𝑓 𝜃 𝑦, 𝑀   =
𝑓 𝑦 𝜃 , 𝑀   𝑓 𝜃 𝑀  

∫ 𝑓 𝑦 𝜃 , 𝑀   𝑓 𝜃 𝑀   𝑑𝜃
≡

𝑓 𝑦 𝜃 , 𝑀   𝑓 𝜃 𝑀  

𝑓(𝑦 𝑀  )
, 

 

with the second equality defining 𝑓(𝑦 𝑀  ), which is used in computing the posterior 

probability assigned to 𝑀  as follows: 

 

𝑓 𝑀 |𝑦  =
𝑓 𝑦 𝑀   𝑓(𝑀 )

∑ 𝑓(𝑦|𝑀  )𝑓(𝑀 )
≡

𝑓 𝑦 𝑀   𝑓(𝑀 )

𝑓(𝑦)
 

 

Clearly, the evaluation of the predictive distribution involves averaging at two levels: 

over (continuous) parameter values, given each possible model, and discrete 
averaging over all possible models. 

 
The marginal likelihood of 𝑀  is simply the likelihood integrated with the prior on 

parameters of 𝑀  denoted here by 𝑓 𝜃 𝑀   . Thus, 

 

𝐿 𝑀 = 𝑓(𝑦 𝜃 , 𝑀  ) 𝑓 𝜃 𝑀   𝑑𝜃 . 

 

Formally (Hoeting et al, 1999), the posterior distribution of any quantity of interest, 

say Δ, which has a common interpretation across models, is a mixture of the model-
specific posteriors with the posterior model probabilities as weights: 
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𝑓 |   = 𝑓 ,  𝑓 𝑀 |𝑦  . 

 
In the above context, when posterior probability is spread widely among many 

models, using model averaging (than choosing a single model) seems natural. 

Empirical evidence of superior Bayesian model averaging predictive performance can 
be found in, e.g. Fernandez et al. (2001a) and Ley and Steel (2009). 

 
Moreover, even within the standard Bayesian model averaging context, there are 

different approaches in the literature, mainly focused on different prior 

assumptions. Herein, we will focus on the application of standard Bayesian model 
averaging in the context of a linear regression model with uncertainty regarding the 

selection of explanatory variables. That is, the model uncertainty relates to the 
choice of which covariates should be included in the model. 

 
Consider a normal linear regression model for n observations of some response 

variable, grouped in a vector y, using an intercept a, and explanatory variables from 

a set of k possible regressors in Z. We allow for any subset of the variables in Z to 

appear in the model, resulting in 2  possible models, which will be characterized by 
the selection of regressors. Model 𝑀  will be the model with 0 ≤ 𝑘 ≤ 𝑘 regressors 

grouped in 𝑍 , leading to: 

 

𝑦 𝑎, 𝛽 , 𝜎 ~𝛮(𝛼𝜄 + 𝑍 𝛽 , 𝜎 𝛪) 

 

where 𝜄  is a vector of n ones, and 𝛽 ∈ ℝ  groups the relevant regression 

coefficients. 

 
For the parameters in a given model 𝑀 , Fernandez et al. (2001a) propose a 

combination of a non-informative prior on the common intercept and scale and the 

aforementioned g-prior on the regression coefficients, leading to the prior density: 
 

𝑓 𝑎, 𝛽 , 𝜎 𝑀   ∝ 𝜎 𝑓 𝛽 |0, 𝜎   𝑔𝑍 𝑍 , 

 

where 𝑓 (𝑤|𝑚, 𝑉 )  denotes the density function of a q-dimensional normal 

distribution on w with mean m and covariance matrix V. The regression coefficients 
not appearing in 𝑀  are exactly zero, represented by a prior point mass at zero. The 



51 
 

amount of prior information requested from the analyst is limited to a single scalar 

g, which can either be fixed or assigned a hyper-prior distribution. 
 

Consider the indicator variable 𝛾  which takes the value 1 if covariate 𝑖 is included in 
the regression and 0 otherwise, 𝑖 = 1, … , 𝑘. Given the probability of inclusion, say θ, 

𝛾  will then have a Bernoulli distribution, and if the inclusion of each covariate is 

independent then the model size W will have a binomial distribution: 
 

𝑊 = 𝛾 ~𝐵𝑖𝑛(𝑘, 𝜃). 

 

This implies that if we consider θ fixed and prespecified, as is typically done in most 
of the literature, the prior model will have mean θk and variance θ(1-θ)k. For 

𝜃 = 0,5 , which reflects complete prior ignorance, all models have equal prior 

probability . 

 
Making θ random (increasing that way the flexibility of the prior and reducing the 

dependence of posterior and predictive results on prior assumptions), we can 
choose a Beta prior for θ, with hyperparameters 𝑎, 𝑏 > 0, that is 𝜃~𝐵𝑒(𝑎, 𝑏) and 

then the prior mean model size is 𝐸(𝑊) = 𝑘, while the prior distribution on 

model size is a binomial-beta distribution. In the special case where 𝑎 = 𝑏 = 1 we 

obtain a discrete uniform prior for model size with 𝑃(𝑊 = 𝑤) = , 𝑤 = 0, … , 𝑘. 

 
It has been proposed (Ley and Steel, 2009) to facilitate prior elicitation by fixing 

𝑎 = 1. This still permits a flexible set of prior behavior and makes it attractive to 
elicit the prior in terms of the prior mean model size m. The choice of 𝑚 ∈ (0, 𝑘) will 

then determine b through 𝑏 = . Following this scheme, only a prior mean model 

size has to be specified, which is practically the same information one needs to 

specify for the case with fixed θ, which should then equal 𝜃 = . With this binomial-

beta prior, the prior mode for W will be at zero for 𝑚 <  and will be at k for 𝑚 > . 

Generally, the difference between the fixed and random θ cases is striking. In 
particular, prior model size distributions for fixed θ are quite concentrated, while 

treating θ as random will typically imply more prior uncertainty for model size. 

 
The posterior odds between any two models 𝑀 , 𝑀  are given by: 
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𝑓(𝑀 |𝑦 )

𝑓(𝑀 |𝑦 )
=

𝑓(𝑀 )

𝑓(𝑀 )

𝐿 (𝑀 )

𝐿 (𝑀 )
, 

 
where 𝐿 (𝑀 ) is the marginal likelihood of model 𝑀 . Thus, the prior distribution on 

model space only affects posterior model inference through the prior odds ratio. If 

we fix θ and express things in terms of the prior mean model size m, these prior odds 
are: 

 
𝑓(𝑀 )

𝑓(𝑀 )
= (

𝑚

𝑘 − 𝑚
) . 

 

From this expression we get that if 𝑚 >  then the prior favors larger models. In the 

case of the 𝐵𝑒(𝑎, 𝑏) prior on θ, with 𝑎 = 1 and the prior elicitation in terms of m we 
obtain the prior odds: 

 

𝑓(𝑀 )

𝑓(𝑀 )
=

𝛤(1 + 𝑘 )

𝛤(1 + 𝑘 )

𝛤(
𝑘 − 𝑚

𝑚
+ 𝑘 − 𝑘 )

𝛤(
𝑘 − 𝑚

𝑚
+ 𝑘 − 𝑘 )

. 

  

For the aforementioned prior density scheme of: 
 

𝑓(𝑎, 𝛽 , 𝜎 𝑀  ) ∝ 𝜎 𝑓 (𝛽 |0, 𝜎   𝑔𝑍 𝑍 ), 

 
if we consider g fixed and independent of the model size 𝑘 , then the Bayes factor 

for any two models becomes: 

 

𝐿 (𝑀 )

𝐿 (𝑀 )
= (1 + 𝑔) (

1 + 𝑔 1 − 𝑅

1 + 𝑔 1 − 𝑅
) , 

 

where 𝑅  is the coefficient of determination for model 𝑀 , expressing the relative 

weight that the data assign to the corresponding models, and depends on sample 

size n, the factor g and the size and fit of both models. 
 

Among the number of suggestions for the choice of fixed values for g, one of the 
most popular ones is the unit information prior (Kass and Wasserman, 1996) which 

corresponds to the amount of information contained in one observation. Since for 
regular parametric families the amount of information is defined via Fisher 
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information, we get 𝑔 = 1/𝑛 , leading to log Bayes factors that behave 

asymptotically like the BIC (Fernandez et al., 2001b). Another one is the benchmark 
prior of Fernandez et al. (2001a) where after examination of various choices of g 

depending on the sample size n or the model dimension k, it concludes to 

𝑔 = 1/max {𝑛, 𝑘 }. 

 
Summarizing, it has been theoretically stated and empirically confirmed, that 

averaging over all the models in this fashion provides better predictive ability, as 

measured by various schemes proposed, such as a logarithmic scoring rule (Madigan 
et al., 1995), than using any single model M  conditional on 𝑀. 

 

Despite the attractiveness of this method as a solution to the problem of accounting 

for model uncertainty, its implementation presents several difficulties. Apart from 
the challenging prior elicitation, one of the most significant is that the number of 

terms can be enormous, rendering exhaustive summation infeasible. One way to 
tackle this problem is an algorithmic approach, drastically reducing the number of 

models that need to be considered in the average, based on two common sense 

principles: if a model predicts the data much worse than the best model it should be 
dropped from further consideration; and models that predict the data less well than 

any of their nested sub models should be discarded. Moreover, the integrals can be 
hard to compute which is overcome with the use of Markov Chain Monte Carlo 

method. 

 
After these difficulties are overcome, choosing the class of models over which to 

average becomes the fundamental modeling task. 
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Chapter 4: Complete subset regression 

4.1 Complete subset regression 
Complete subset regression is a simple and powerful method/technique for 
combining forecasts, introduced by Elliott et al. (2013). In particular, for a given set 

of potential predictor variables, forecasts from all possible linear regression models 
that keep the number of predictors fixed are combined. For the case where we have 

K candidate predictors, there are K univariate models and n , =
!

( )! !
  different k-

variate models for k ≤ K. The set of models for a fixed value of k is referred to as a 
complete subset. Within these subsets indexed by k equal weighted combinations of 

the forecasts from all models are to be used. Moreover, the covariance matrix of the 

candidate regressors can be used to reach an optimal value of k. 
 

While stating that several subset regression combinations have been proposed, such 
as equal weighted combinations of all possible univariate models, as well as equal 

weighted combinations of forecasts from all possible 2  models, a general 

consideration would categorize the subject proposal into the wider group of forecast 

methods that try to reduce the effect of parameter estimation error (or equivalently 
limit the number of parameters). Other such methods, accomplishing the same task 

in different ways, are: shrinkage or ridge regression, model averaging, bagging and 
the Lasso. 

 
Complete subset regression applies differential (as opposed to zero-one) shrinkage 

weights to each coefficient. Other approaches that share the same philosophy are: 

bagging, the adaptive Lasso, the Elastic Net and the adaptive Monte Carlo. 
Moreover, unlike ridge estimator and conventional Bayesian estimators, this method 

does not impose the same amount of shrinkage on each coefficient. 
 

Complete subset regression is, by definition, a distinct procedure that should not be 

mistaken for the one known as best subset regression, sometimes found as full 
subset regression in the literature. The latter considers all possible models and for a 

given model size selects the best in terms of fit (lowest sum of squared residuals). Of 
the resulting set of optimal models for a given dimension, the procedure then 

chooses the one with the smallest value of some criterion, such as Mallows 𝐶 , 

leading finally to one “best” model, which is obviously different in philosophy 
compared to the complete subset regression. 
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Naturally, if in each problem we could estimate models for all possible combinations 

of variables, it would be a great option. However, with only 20 variables the number 
of regressions would be over 1 million. The complete subset regression serves as a 

solution between using only one subset and all possible subsets. 

4.2 Setup, symbolism and theoretical review 
The symbolism herein will focus into predicting a variable 𝑦  using a linear 

regression model based on a set of K predictors 𝑥 ∈ ℝ  and a set of data, 

{(𝑦 , 𝑥 ), 𝑡 = 0, … , 𝑇 − 1}. For all t, we let 𝐸(𝑥 𝑥 ) = 𝛴  and moreover it can be 
assumed that 𝐸(𝑥 ) = 0. The regressions including only a subset of predictors can be 

distinguished defining β to be a 𝐾 × 1 vector with slope coefficients in the rows 

representing included regressors and zeros in the rows of the excluded variables. 
The “true” value of β (the population value of the projection of y on X) is 

represented as 𝛽 , where y is a 𝑇 × 1 vector and 𝑋 = (𝑥 , 𝑥 , … , 𝑥 )′ stacks the x 
observations into a 𝑇 × 𝐾  matrix. Moreover, 𝑆 is a 𝐾 × 𝐾  matrix with zeros 

everywhere except for ones in the diagonal cells corresponding to the included 

variables, so that if its [𝑗, 𝑗] element is one, the j-th regressor is included, while if this 
is a zero, the j-th regressor is excluded. Apparently, sums over 𝑖 are sums over all 

permutations of 𝑆 .  
 

The subject method uses equal weighted combinations of forecasts based on all 
possible models that include a particular subset of the predictor variables. Each 

subset is defined by the set of regression models that include a fixed number of 

regressors 𝑘 ≤ 𝐾. First, the regression of 𝑦  on a particular subset of the regressors 
is run and then we average the results across all k-dimensional subsets of the 

regressors to provide an estimator, say 𝛽, for forecasting. With K regressors in the 
full model and k regressors chosen for each of the “short” models, there will be 

subset regressions to average over. In turn, each regressor gets included a total of 

𝑛 ,  times. 

 

For the simple case where 𝑘 = 1, and thus there are 𝑛 , = 𝐾 short, single variable 

regressions, 𝛽  has all its elements zero, except for the least squares estimate of 𝑦  
on 𝑥  in the i-th row. Then, the equal weighted combination of forecasts from the 

individual models is 𝑦 = ∑ 𝑥′ 𝛽 . 

 

The main theoretical feature of this method is the fact that the subset regression 

coefficients can be computed as averages over least squares estimates of the subset 
regressions. When correlation between the covariates exists, the individual 
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regressions will be affected by omitted variable bias. However, the subset regression 

estimators are themselves approximately a weighted average of the components of 

the full regression OLS estimator, 𝛽 . 

 
Elliott et al. (2013) formalized the above into the next theorem: assume that as the 

sample size gets large 𝛽 → 𝛽  for some 𝛽  and 𝑇 𝑋 𝑋 → 𝛴 . Then, for fixed K, 

the estimator for the complete subset regression 𝛽 ,  can be written as: 

 

𝛽 , = 𝛬 , 𝛽 + 𝑂 (1), 

 

where  
 

𝛬 , =
1

𝑛 ,

(𝑆 𝛴 𝑆 ) (

,

𝑆 𝛴 ). 

 

From the above equation it is obvious that 𝛬 ,  is not diagonal in general and hence 

the coefficients 𝛽 ,  are not simple regressor by regressor shrinkages of the OLS 

estimates. Instead, they are functions (a weighted sum) of all the OLS coefficients in 
the regression. The weights depend not only on k and K, but on all elements 𝛴  in 

𝛴 . As an illustration, for the simple case where 𝐾 = 2, 𝑘 = 1 we have: 

 

𝛬 , =
1

2

⎝

⎛
1

𝛴

𝛴
𝛴

𝛴
1

⎠

⎞. 

 

Each row of 𝛬 ,  reflects inclusion of a particular subset regression in the average. To 

see this, the first row gives the first element of 𝛽 ,  as a weighted sum of the 𝛽 . 

Its own coefficient is given a relative weight of one, while the remaining 

coefficient(s) are those expected from omitted variable bias formulas. Obviously, the 

effect of dividing by 𝑛 , = 2 is to shrink all coefficients towards zero. 

 

Generally, for 𝑘 > 1 each regressor appears with an increased frequency in the 
regressions. This way, its effect on 𝛬 ,  gets larger, but at the same time tempered 

through the omitted variable bias. Since the first effect is greater than the latter, an 

increased k will generally reduce the amount of shrinkage, till the limit 𝑘 = 𝐾, where 
no shrinkage is accomplished and the method coincides with the OLS. 
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For the special case where the covariates are orthonormal, 𝛽 = 𝑋′𝑦 and so we 
have: 

 

𝛽 , =
1

𝑛 ,
𝛽

,

=
1

𝑛 ,
𝑆 𝑋′𝑦

,

=
1

𝑛 ,
𝑆

,

𝛽 . 

 

The elements of ∑ 𝑆,  are zero for the off diagonal terms, and equal the number 

of times a regressor is included in the subset regressions for the diagonal terms. At 
the same time, the diagonal terms equal 𝑛 ,  minus the number of the times a 

regressor is excluded. Thus, ∑ 𝑆, = 𝑛 , − 𝑛 ,  and so we get, for this 

orthonormal special case, that: 

 

𝛽 , =
𝑛 , − 𝑛 ,

𝑛 ,
𝛽 = 𝜆 , 𝛽 , 

 

where 𝜆 , = , ,

,
, which is a scalar. 

 

It is obvious that 𝜆 ,  is a function of k and K. For any value of K, it is a linear function 

of k that increases to the value of one, corresponding to the case where we run OLS 
with all variables included. It can easily be shown, that for smaller K, the slope of 

𝜆 ,  gets larger, and thus the amount of shrinkage is larger for any fixed k, the 

smaller K is. Essentially, the smaller k is relatively to K, the greater the amount of 

shrinkage. 

4.3 Associated risk 
Forecasting is an estimation task and risk is the expected loss as a function of the 

true, still unknown, model parameters. Under MSE loss, risk amounts to the 
expected loss. For any estimator we have: 

 

𝐸 𝑦 − 𝛽′ 𝑥 = 𝐸 𝑦 − 𝛽 𝑥 + (𝛽 − 𝛽 )′𝑥 = 

𝐸 𝜀 + (𝛽 − 𝛽 )′𝑥 = 𝜎 1 + 𝛵 𝜎 𝛦 𝛵 𝛽 − 𝛽 𝑥 𝑥 ′(𝛽 − 𝛽 )  

 

where ε  is the residual from the population projection of y  on x  and σ  is its 

variance. Since the first term does not depend on β, the term σ Ε Τ β −

β ) (β − β )  becomes of interest. 
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As in all biased methods, for values of 𝛽  that lie far from zero, the associated risk 
when shrinking the coefficients towards zero is generally large. Thus, complete 

subset regression is recommended when 𝛽  is local to zero. In order to ensure such a 

state, we assume that for some fixed vector b, 𝛽 =
√

𝑏. Elliott et al. (2013), 

assuming that {𝑦 , 𝑥 }  are i.i.d., 𝐸 𝛽 − 𝛽 |𝑥   = 𝐸 𝛽 − 𝛽  and 

√
→ 𝑁 0, 𝛴 , proved that in large samples: 

 

𝜎 𝛦 𝛵 𝛽 − 𝛽 ′𝛴 𝛽 − 𝛽 ≈ 𝜁 + 𝑏′ 𝛬 , − 𝛪 ′𝛴 𝛬 , − 𝛪 𝑏 

 

where 𝜁  are the eigenvalues of 𝛬′ , 𝛴 𝛬 , 𝛴 . 

 

Based on the above, we see that the expected loss is a function of k,K, the elements 
of b and of the variance covariance matrix. Naturally, different trade-offs can be 

explored by varying these parameters. 

 
A useful insight offers the comparison of the associated risk, against that of models 

estimated by OLS, which in some cases can be accomplished analytically. One 
example is the case where we explore combinations of univariate models, that is 

𝑘 = 1, with a 𝛴  with all its diagonal elements being one and all off-diagonal 

elements being ρ. Then, b is a vector of ones with dimension K, the risk for OLS 
regression is also K and the risk of the subset regression is: 

 

𝐸 𝑦 − 𝛽′ 𝑥 =
1

𝐾
(1 + (𝐾 − 1)𝜌 ) + (𝜌 − 1)

𝛫 − 1

𝛫
(𝛫 + 𝛫(𝛫 − 1)𝜌) 

 

From this, we can compare the risk for several (Κ, ρ) pairs with K. It emerges that for 

small values of K, such as K<6,  (1 + (K − 1)ρ ) + (ρ − 1) (Κ +

Κ(Κ − 1)ρ) < 𝐾 for nearly all possible correlations (Elliott et al., 2013). For K>6, it 
still holds that the subset regression risk is smaller than that of OLS regression, apart 

from a small region with small values of ρ and k = 1. This means that an equal 

weighted average of univariate forecasts can perform better than the conventional 
multivariate model which includes all the predictors. 
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4.4 Computational aspects and variations on implementation 
When K is large enough, 𝑛 ,  can become too large as to allow all models in a given 

subset to be examined. A way to deal with this is to decrease the number of possible 
models considered in each subset. One approach is to randomly draw a smaller 

number of models and average across them, with uniform probability weighting 

within each subset.  Alternatively, one could use some of each model’s information 
to decide on inclusion, which of course is more complicated and computationally 

demanding. 
 

Another variation rises from the weighting mode to be used. While equal weighted 
averages perform well and are the simplest method possible, other options are 

available such as Bayesian model averaging. Moreover, additional/alternative risk 

minimizing criteria could be used, such as Geweke and Amisano (2011) optimal 
prediction pool approach, which relies on maximizing the log predictive scoring rule. 

4.4.1 Markov Chain Monte Carlo Samplers 
With a small number of variables, it is straightforward to enumerate all potential 

variable combinations to obtain posterior results. For a larger number of covariates, 
this becomes from time intensive to impossible. In such a case, MCMC samplers 

gather results on the most important part of the posterior model distribution and 
thus approximate it as closely as possible. In particular, Bayesian Model Averaging 

mostly relies on the Metropolis-Hastings algorithm, which “walks” through the 
model space as follows: at step 𝑖, the sampler stands at a certain “current” model 𝑀  
with posterior model probability 𝑓(𝑀 |𝑦, 𝑋). In step 𝑖 + 1 a candidate model 𝑀  is 

proposed. The sampler switches from the current model to model  𝑀  with 

probability 𝑝 , = min 1,
,

( | , )
. In case model 𝑀  is rejected, the sampler moves 

to the next step and proposes a new model 𝑀  against 𝑀 . In case model 𝑀  is 

accepted, it becomes the current model and has to survive against further candidate 

models in the next step. In this manner, the number of times each model is kept will 
converge to the distribution of posterior model probabilities 𝑓(𝑀 |𝑦, 𝑋). Naturally, 

the quality of an MCMC approximation to the actual posterior distribution depends 
on the number of draws the MCMC sampler runs for. In particular, the sampler has 

to start out from some model that might not be a “good” one, in terms of posterior 

model probability. Hence the first batch of iterations will typically not draw models 
with high posterior probabilities as the sampler will only after a while converge to 

spheres of models with the largest marginal likelihoods. Therefore, this first set of 
iterations (the so called burn-ins) is to be omitted from the computational results. 
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4.5 Bayesian selection of k 
One of the most popular averaging approaches is the simple equal-weighted average 

(Rapach et al., 2010). Under the complete subset regression scheme this idea is 
extended, since the forecast combination is constructed by using equal-weighted 

combinations based on all possible models that keep the number of predictors fixed. 
That is, instead of choosing the weights, in the subset regression combinations we 

have to choose the number of predictors k. Monte Carlo shows that the predictive 

performance of complete subset regressions is sensitive to the choice of k and thus 
the need of a data-driven method for selection of k emerges. A real time algorithm 

of selecting k recursively is presented here, which is likelihood based (Bayesian). 
 

For the one step ahead forecasts approach, at each time point in the out of sample 

period, indexed by 𝑡 + 1, we need to compute the posterior probabilities of all 
values of 𝑘 ∈ {1, … , 𝐾}, based on the data up to time t. Then, the most probable 

value of k is selected and a forecast at time 𝑡 + 1 is produced, based on the selected 
complete subset. In the Bayesian context, uncertainty about any quantity in interest 

is represented by probability distributions. Apart from the value of k, another 
quantity of interest is the model specification, representing the set of predictors 

included in the j-th model and denoted by 𝑚 , 𝑗 = 1, … , 𝑀, where 𝑀 = ∑ 𝑛 , . 

The last quantity of interest is the totality of the model parameters denoted by 𝜃 .  

After specifying appropriate prior distribution for these three quantities, that is 

𝑓 𝑚 , 𝑓 𝑘 𝑚  and 𝑓 𝜃 𝑚 , 𝑘 , their joint posterior distribution is given by: 

 

𝑓 𝑚 , 𝑘, 𝜃 𝑦 : ∝  𝑓 𝑚 𝑓 𝑘 𝑚 𝑓 𝜃 𝑚 , 𝑘 𝐿 𝑦 : 𝑚 , 𝑘, 𝜃 , 

 

where 𝐿 𝑦 : 𝑚 , 𝑘, 𝜃  is the likelihood of the data up to time t. Consequently, the 

marginal posterior distribution of k is obtained as: 
 

𝑓(𝑘|𝑦 : ) ∝ 𝑓 𝜃 𝑚 , 𝑘 𝐿 𝑦 : 𝑚 , 𝑘, 𝜃 𝑑𝜃 𝑓 𝑚 𝑓 𝑘 𝑚 . 

 

The quantity (integral) in the brackets is the marginal likelihood of the data with k 

predictors and model specification 𝑚 , i.e. 𝐿 𝑦 : 𝑚 , 𝑘 . 

 
Concerning the prior specification we have the following: consider the indicator 

variable 𝛾  which takes the value 1 if covariate 𝑖 is included in the regression and 0 

otherwise. Given the probability of inclusion, say θ, 𝛾  will then have a Bernoulli 
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distribution, and if the inclusion of each covariate is independent then the model 

size W will have a binomial distribution, that is  𝑊 = ∑ 𝛾 ~𝐵𝑖𝑛(𝑘, 𝜃). Moreover, 
taking θ fixed and prespecified, as is typically done in most of the literature, the prior 

probability of the j-th models is taken to be: 
 

𝑓 𝑚 = 𝜃 (1 − 𝜃) , 

 
where 𝑘  is the number of predictors included in model 𝑚 . The prior probability of k 

given the model specification 𝑚  is apparently 𝑓 𝑘 𝑚 = 1 , if 𝑘 = 𝑘  and 

𝑓 𝑘 𝑚 = 0, otherwise. Thus, the joint prior of 𝑘, 𝑚  is: 

 

𝑓 𝑘, 𝑚 = 𝑓 𝑚 𝑓 𝑘 𝑚 = 𝜃 (1 − 𝜃) 𝐼 𝑘 = 𝑘 , 

 
while the marginal prior on k is the 𝐵𝑖𝑛(𝐾, 𝜃). Based on the above, the marginal 

posterior distribution of k is: 

 

𝑓(𝑘|𝑦 : ) ∝ 𝜃 (1 − 𝜃) 𝐿 𝑦 : 𝑚 , 𝑘 𝐼 𝑘 = 𝑘 . 
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Chapter 5: Forecast accuracy metrics and simulation study 

5.1 Evaluation of forecast accuracy 
Forecasts are widely used in every field of human activity and are of great 
importance since good forecasts (may) lead to good decisions. The importance of 

forecast evaluation follows immediately. Evaluation may refer to examination of 
whether the forecasting method in hand gives good forecasts (absolute 

performance) and/or it is better than any competitor method. There are many ways 

of measuring the accuracy of forecasts, and the answers to these questions depend 
on what is being forecast, what accuracy measure is used, and what data set is 

analyzed. We can measure and average forecast errors in several ways. Although 
interpretability is a major criterion, applicability (no single measure is appropriate in 

most situations) and efficiency must be also taken into account. 

5.1.1 Scale-dependent errors 
Let 𝑦  denote the 𝑖-th observation and 𝑦  denote a forecast of 𝑦 . The forecast error 

is simply 𝑒 = 𝑦 − 𝑦   and is defined on the same scale as the data. Thus, all accuracy 

measures that are based directly on 𝑒  are scale-dependent and cannot be used to 
make comparisons between series that are on different scales. Some of the most 

commonly used scale-dependent measures are based on the absolute errors or 
squared errors: 

 

Mean absolute error (MAE) = mean(|𝑒 |), 
 

Mean Squared Error (MSE) = mean(𝑒 ), 
 

Root Mean Squared Error (RMSE) = mean(𝑒 ). 

 
From the above, MAE is the easiest to understand and compute. Moreover, the use 

of absolute or squared values prevents negative and positive errors from offsetting 
each other. Since all these metrics are on the same scale as the data, none of them 

are meaningful for assessing a method’s accuracy across multiple series. 

5.1.2 Percentage errors 

The percentage error is given by 𝑝 =  and having the advantage of being scale 

independent, can be used to compare forecast performance between different data 

series. The most commonly used metric is: 
 

Mean absolute percentage error (MAPE) = mean(|𝑝 |). 
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Measurements based on percentage errors have the disadvantage of being infinite 
or undefined if 𝑦 = 0 for any i in the period of interest, and having extreme values 

(extremely skewed distribution) when any 𝑦  is close to zero. In the case of 
intermittent-demand data, it is impossible to use MAPE because of the occurrences 

of zero periods of demand. 

 
The MAPE also has the disadvantage of putting a heavier penalty on positive errors 

than on negative ones. This observation has led to the use of the symmetric MAPE 
(sMAPE) proposed by Armstrong (1992), which is defined by: 

 

Symmetric mean absolute percentage error (sMAPE) = mean
| |

. 

 
However, if 𝑦  is close to zero, then 𝑦  is also likely to be close to zero, thus having a 

measurement still involving division by a number close to zero. Moreover, the value 

of sMAPE can be negative, giving it an ambiguous interpretation. 

5.1.3 Relative errors 
An alternative to percentages is to divide each error by the error obtained using 

some benchmark method of forecasting. Let r =
∗
 denote the relative error where 

e ∗ is the forecast error obtained from the benchmark method (usually the so called 
naïve method, where each new forecast equals to the last observation). Then  

several measures can be defined, such as: 
 

Median relative absolute error (MdRAE) = median(|r |). 
 

5.1.4 Scaled errors 
Scaled errors were proposed by Hyndman and Koehler (2006) as an alternative to 

using percentage errors when comparing forecast accuracy across series on different 

scales. A scaled error is given by 𝑞 =  where Q is a scaling statistic computed on 

the training data. For a non-seasonal time series, a useful way to define the scaling 

statistic is the mean absolute difference between consecutive observations:  

 

𝑄 =
1

𝑁 − 1
|𝑦 − 𝑦 |. 
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That is, Q is the MAE for naïve forecasts computed on the training data. Because the 

numerator and denominator both involve values on the scale of the original data, 𝑞  
is independent of the scale of the data. A scaled error is less than one if it arises from 

a better forecast than the average naïve forecast computed on the training data. 
Conversely, it is greater than one if the forecast is worse. The most commonly used 

mean absolute scaled error is simply: 

 
Mean absolute scaled error (MASE) = mean(|𝑞 |). 

 
As a link to the next section of our simulation study, it is necessary to state the 

importance to evaluate forecast accuracy using genuine forecasts. That is, it is invalid 
to look at how well a model fits the historical data; the accuracy of forecasts can only 

be determined by considering how well a model performs on new data that were 

not used when estimating the model. A common practice when choosing models is 
to use a portion of the available data for testing, and use the rest of the data for 

estimating (training) the model. Then the testing data can be used to measure how 
well the model is likely to forecast on new data. 

5.2 Simulation study 
To better understand and illustrate how the complete subset combination approach 

works, Monte Carlo simulations were accomplished, in order to study the absolute 

forecast performance of the subset regression, as well as its performance relative to 
alternative and at the same time well established methods. The main aspects of the 

Monte Carlo design as well as the variations of each simulation held are briefly 
presented in the next paragraph. 

5.2.1 Simulation setup 
We first assume a multiple linear regression model: 

 

𝑌 = 𝛽 𝑥 + 𝜀 , 𝜀 ~𝛮(0, 𝜎 ). 

 
We generally assume a sample size of T=120 observations, resembling monthly 

observations for a 10-year period. The first 96 of them will be considered as in-
sample and the latter 24 of them as out-of-sample, corresponding to a 2-year period 

where predictions are supposed to be made, considering one step ahead forecasts of 

𝑌 . We generate the covariance matrix of the X-variables 𝛴 = 𝐶𝑜𝑣(𝑋 , … , 𝑋 ) and 
we further control the magnitude of the variances of the X-variables (that is the 
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diagonal elements of the covariance matrix) via multiplication with another diagonal 

matrix of our choice. Data are assumed to be normally distributed and i.i.d. which 
means that the explanatory variables are draw from a multivariate normal 

distribution, with the afore-generated covariance matrix. 
 

Several simulation variations were accomplished concerning the number of the 

candidate predictors. Here will be presented the conclusions of taking into account 
4, 6 and 8 predictors (that is 𝐾 = 4, 6 and 8). As an example, in the latter case we 

have 255 possible models, deriving from each 1 ≤ 𝑘 ≤ 8 = 𝐾, (eg for 𝑘 = 1 there 
are 8 univariate candidate models, for 𝑘 = 2 there are 28 models with two variables 

and so on). 
 

Concerning the regression parameter, two approaches were examined: the one is to 

consider a random design, where 𝛽  (that is the pseudo true value of 𝛽) can have 
values far from zero. However, in common with all biased methods, for values of 𝛽  

far from zero, the risk (the expected loss as a function of the true, yet unknown, 
model parameters) is large and so it is appropriate not to shrink coefficients towards 

zero. To capture such a situation, where a shrinkage method is supposed to add 

value, the second approach assumes that 𝛽  is local to zero (either setting 𝛽 =
√

 or 

generating 𝛽  by a random normal distribution having its mean systematically local 

to zero). We report all cases of different number of predictors for the  𝛽  that is local 
to zero and we illustrate the alternative option in the case where 𝐾 =  6. 

 

Further variations were studied in the case where 𝐾 =  6. One of them examines the 
event of having a reduced number of (generated) observations. We assume T=20, 

taking the first 16 of them as in-sample and the latter 4 of them as out-of-sample. 
Another variation consists on changing the probability 𝜃  of inclusion for each 

regressor in the model, during the Bayesian analysis of the regression, as will be 

explained below. 
 

For each iteration of the Monte Carlo simulation, forecasts are calculated based on 
each of the candidate models. Then we combine the forecasts by simple averaging 

for each fixed value of 𝑘. That is, we end up with K (for 𝑘 = 1, … , 𝐾) proposals, so 

that we can first get a forecasting performance for each fixed 𝑘. For this purpose, 
any of the forecasting measures presented in section 5.1 could be used. Here the 

Mean Squared (Forecasting) Error will be presented, being one of the most widely 
used and easy to interpret. 
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In order to compare the fixed 𝑘 proposals with other well established methods, we 

calculate, once again for each iteration, the prediction that is based on: 

1. The model estimated by the OLS method. 
2. The “best” models, identified by the AIC and the BIC criterion. That is, we 

calculate the AIC & BIC for each model (for each iteration), select the best 
models and then make the prediction based on them. 

3. Bayesian Model Averaging. The predictions are obtained by weighting each 
model’s forecast by its posterior probability: 

𝑓(𝑦|𝑦 ) = 𝑦 𝑓 𝑀 |𝑦  , 

 

where 𝑦  is the posterior mean and 𝑓 𝑀 |𝑦   is the posterior probability of 

the j-th model, which follows from Bayes’ theorem: 
 

𝑓 𝑀 |𝑦  =
𝑓 𝑦 𝑀   𝑓(𝑀 )

∑ 𝑓(𝑦|𝑀  )𝑓(𝑀 )
. 

 

We accomplish this method in accordance with the section 3.8, adopting a 
combination of a non informative prior on the common intercept 𝛼 and scale 
𝜎  and a g-prior (Zellner, 1986) on the regression coefficients 𝛽 , leading to 

the prior density: 
 

𝑓(𝑎, 𝛽 , 𝜎 𝑀  ) ∝ 𝜎 𝑓 (𝛽 |0, 𝜎   𝑔𝑍 𝑍 ), 

 
where 𝑍  are the demeaned regressors that are included in the j-th model. 

Under this specification,  𝑦|𝑦, 𝑀  follows a t-distribution with location 

parameter 𝑦 = ∑ 𝑦 + . To sum up, we follow Fernandez et al. 

(2001b) and set 𝑔 = max {1
𝑇 , 1

𝐾 }  and we study two variations 

concerning the probability 𝜃 of inclusion for each regressor in the model: first 

we assume that  𝜃 = 1/2, reflecting complete prior ignorance about the 
model specification. Second, to slightly penalize models with too many 

predictors, we set 𝜃 = 1/3, since it is known from previous studies (Goyal 

and Welch, 2008, Elliott et al., 2013) that the best performing forecasts arise 
from models including fewer predictors. 
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4. The most probable model, as identified by the Bayesian Model Averaging 

calculations. That is, we select the model with the highest posterior 

probability 𝑓 𝑀 |𝑦   for each iteration and then make the prediction based 

on it. 
5. Bayesian Model Sampling and Averaging: with a small number of variables, it 

is straightforward to enumerate all potential variable combinations to obtain 
posterior results. For a larger number of covariates, this becomes from time 

intensive to impossible and MCMC samplers can be used, in order to gather 
results on the most important part of the posterior model distribution, as 

outlined in section 4.4.1. For the simulation case of the current section, 

complete enumeration is feasible and thus accomplished. Moreover, in this 

scheme we set 𝑔 = 1
𝑇 , that is the Unit Information Prior (Kass and 

Wasserman, 1996) for the Zellner’s g-prior,  as opposed to the choice of 

𝑔 = max {1
𝑇 , 1

𝐾 } that was followed in the BMA. 

Summarizing, we have a baseline configuration for the simulation consisting of a 
sample of T=120, a  𝛽  that is local to zero and 𝜃 = 1/2, where we examine the 

cases of 4, 6 and 8 predictors and then we modify the baseline for the case of 6 

predictors to get three more variations/cases. 

5.2.2 Simulation results 
The simulation experiment consisted of 10.000 iterations for each 

combination/variation. We report the averages (over all iterations) of MSE values for 
the OLS, the best AIC & BIC and the most probable model, the Bayesian Model 

Averaging and Bayesian Model Sampling, as well as for each fixed 𝑘 of the Complete 

Subset Regression, serving as the key metric of the efficiency of the complete subset 
approach. Moreover, we capture the frequency of each fixed 𝑘 having the lowest 

MSE, compared to the rest of the 𝑘 = 1, … , 𝐾. 

5.2.2.1 Case 1: Baseline configuration for 𝑲 = 𝟒 
In this case, the best performing method, producing the lowest out-of-sample MSE 
on average, of the ones used to benchmark the subset regression, is the Bayesian 

Model Averaging and the Bayesian Model Sampling, followed by the best AIC and the 
best BIC model. As shown in table 5.1 and graph 5.1, the best subset, in terms of 

mean MSE, is the one with 𝑘 = 2 and performs better than any other alternative. In 

particular, if we take into account the random noise in the data (that is 𝜎 ) and the 
fact that the predictive capability of a model can (should) not be better than that 

noise, the best subset can be said that performs 36% better than the best 
alternative. Moreover, the subset regressions that include 𝑘 = 3 predictors perform 
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quite as well on average as the BMA and BMS. Univariate subsets perform a bit 

worse on average than the best BIC model, while the poorest performance 
corresponds to 𝑘 = 4. Accomplishing the scheme where 𝛽  is local to zero, the 

above results are confirming the fact that shrinkage adds value. 
 

As shown in table 5.2 the frequency of each fixed 𝑘  having the lowest MSE 

(compared to the rest of the 𝑘 = 1, … , 𝐾) is greater for  𝑘 = 1, followed by 𝑘 = 4. 
This fact, in conjunction with the MSE performance of table 5.1, indicates that the 

least volatile forecasts arise when we use two or three regressors. Finally, the almost 
identical value of MSE for the BMA and BMS, indicates that the difference in the 

selected values of the g-prior cannot produce a remarkable posterior differentiation. 
 

Method MSE 
CSR, k=2 1,008395 

BMS 1,011417 
CSR, k=3 1,011515 

BMA 1,011579 
AIC 1,014205 
BIC 1,016361 

CSR, k=1 1,017228 
CSR, k=4 1,0234592 

Most Probable 1,0280151 
OLS 1,0352370 

 

Table 5.1: MSE performance in ascending order for 𝐾 = 4 
 

 
Graph 5.1: MSE performance for 𝐾 = 4 
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Fixed k 
value Frequency 

1 0,3841 
2 0,1954 
3 0,1492 
4 0,2713 

 

Table 5.2: Frequency of fixed 𝑘 having lowest MSE (among 𝑘 = 1, … , 𝐾) for 𝐾 = 4 

5.2.2.2 Case 2: Baseline configuration for 𝑲 = 𝟔 
In this case, the best performing method of the ones used to benchmark the subset 
regression, is again the Bayesian Model Averaging and the Bayesian Model Sampling, 

followed by the best BIC and the best AIC model. As shown in table 5.3 and graph 
5.2, the best subset, in terms of mean MSE, is the one with 𝑘 = 2, followed by the 

one with 𝑘 = 3.  These subsets perform better than any other alternative. In 

particular, if we try to isolate the random noise in the data, the best subset performs 
8,8% better than the best alternative. Moreover, the subset regressions that include 

𝑘 = 4 and 𝑘 = 1 predictors perform better on average than the best BIC and AIC. 
The poorest performance once again corresponds to 𝑘 = 𝐾 = 6 , which was 

anticipated based on 𝛽  that is local to zero. As shown in table 5.4 the frequency that 

each fixed 𝑘 has the lowest MSE (compared to the rest of the 𝑘 = 1, … , 𝐾) is greater 
for  𝑘 = 1, followed by 𝑘 = 6. The data of this table in conjunction with the MSE 

performance of table 5.3, indicates that the least volatile forecasts arise when we 
use two, three or four regressors. We also note that the model estimated by the OLS 

cannot compete the other methods in terms of out-of-sample MSE (which is also 

documented in cases number one and three as well), and this was expected since 
the poor statistical significance of the regression parameters, deriving from the fact 

that  𝛽  is local to zero, deprives the predictive precision and capability. 
 

Method MSE 
CSR, k=2 1,042793 
CSR, k=3 1,043096 

BMA 1,046583 
BMS 1,048614 

CSR, k=4 1,051551 
CSR, k=1 1,056652 

BIC 1,059409 
CSR, k=5 1,065599 

AIC 1,067713 
CSR, k=6 1,084996 
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Most Probable 1,087676 
OLS 1,095245 

 
Table 5.3: MSE performance in ascending order for 𝐾 = 6 

 

 
Graph 5.2: MSE performance for 𝐾 = 6 

 
Fixed k 
value Frequency 

1 0,3399 
2 0,1542 
3 0,1051 
4 0,1053 
5 0,1004 
6 0,1951 

 
Table 5.4: Frequency of fixed 𝑘 having lowest MSE (among 𝑘 = 1, … , 𝐾) for 𝐾 = 6 

5.2.2.3 Case 3: Baseline configuration for 𝑲 = 𝟖 
In this case, the best performing method, of the ones used to benchmark the subset 

regression, is the Bayesian Model Averaging, followed by the BMS, then the best BIC 
and the best AIC model. As shown in table 5.5 and graph 5.3, the subset regressions 

with 𝑘 = 2, 3, 4 and 5 perform better than any alternative. The best subset, in terms 

of mean MSE, is the one with 𝑘 = 3 and performs 30% better than the best 
alternative. Moreover, the subset regressions that include a large number of 

predictors (that is 𝑘 = 6,7 or 8) have the poorest performance. As shown in table 5.6 
the frequency that each fixed 𝑘 has the lowest MSE (compared to the rest of the 
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𝑘 = 1, … , 𝐾) is greater for  𝑘 = 1, followed by 𝑘 = 8. Cross evaluation of tables 5.5 

and 5.6, yields that the most volatile forecasts arise when we use one, seven or eight 
regressors. 

 

Method MSE 
CSR, k=3 1,032136 
CSR, k=4 1,032752 
CSR, k=5 1,039215 
CSR, k=2 1,040433 

BMA 1,041969 
BMS 1,044305 

CSR, k=6 1,049589 
BIC 1,057633 

CSR, k=1 1,062370 
CSR, k=7 1,063006 

AIC 1,063568 
CSR, k=8 1,080209 

OLS 1,092626 
Most Probable 1,122705 

 

Table 5.5: MSE performance in ascending order for 𝐾 = 8 
 

 
Graph 5.3: MSE performance for 𝐾 = 8 
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Fixed k 
value Frequency 

1 0,2602 
2 0,1193 
3 0,0981 
4 0,0969 
5 0,0892 
6 0,0722 
7 0,084 
8 0,1801 

 

Table 5.6: Frequency of fixed 𝑘 having lowest MSE (among 𝑘 = 1, … , 𝐾) for 𝐾 = 8 

5.2.2.4 Case 4: 𝑲 = 𝟔 and 𝜷𝟎 not local to zero 
In this case, we keep the baseline configuration of the simulation as in section 
5.2.2.2, however modifying 𝛽 , so that it can have values not local to zero. As shown 

in table 5.7 and graph 5.4, the best performing methods of the alternatives to which 

subset regression is being compared, are the Bayesian Model Averaging, followed by 
the best AIC and the OLS model. In fact, these are the best methods on average, 

outperforming the best subset regression. That is the subset with all the predictors, 
followed by the one with models that have 𝑘 = 5 predictors, then 𝑘 = 4 and so on. 

As already stated, in such a scenario where 𝛽  can have values far from zero, it is 
highly expected that no value will be added by shrinking. This prior belief is indeed 

confirmed by two results. The first one is that the complete subset method 

systematically chooses large models, in the sense that large models have better 
predictive performance: 35 percent of the time complete subset regression uses 

models with 𝑘 = 𝐾 predictors and 22 percent of the time models with 𝑘 = 𝐾 − 1 
predictors. Essentially, setting 𝑘 = 𝐾 corresponds to simply running OLS with all 

variables included, which means that there is no shrinkage at all (the method 

includes all predictors and so does not average across multiple models at all). The 
second result confirming the aforementioned prior belief is the very poor 

performance of the complete subsets for small 𝑘 and of course the poor relative 
performance of subset regressions on average, in comparison with the alternatives. 

Extending our remark concerning the OLS in case number two, we now note that the 

model defined by the OLS can in this scenario offer a competitive prediction 
performance. 

 

Method MSE 
BMA 1,028824 
AIC 1,083663 
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OLS 1,087291 
CSR, k=6 1,088433 

BMS 1,089098 
CSR, k=5 1,092738 
CSR, k=4 1,100500 
CSR, k=3 1,112250 
CSR, k=1 1,116449 

BIC 1,120162 
CSR, k=2 1,121686 

Most Probable 1,338101 
 

Table 5.7: MSE performance in ascending order for 𝐾 = 6, 𝛽  not local to zero 

 

 
 

Graph 5.4: MSE performance for 𝐾 = 6, 𝛽  not local to zero 

 
Fixed k 
value Frequency 

1 0,1542 
2 0,0621 
3 0,0723 
4 0,1337 
5 0,2234 
6 0,3543 

 

Table 5.8: Frequency of fixed 𝑘 having lowest MSE (among 𝑘 = 1, … , 𝐾) for 𝐾 = 6, 
𝛽  not local to zero 
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5.2.2.5 Case 5: 𝑲 = 𝟔 and 𝑻 = 𝟐𝟎 
In this case, we keep the baseline configuration of the simulation as in section 
5.2.2.2, however modifying the number of observations, so that we retain 16 in-

sample and 4 out-of-sample observations, in an effort to catch a scheme with a 

limited amount of available observations. Such a case involves a high risk of 
overfitting, in the sense that the fitted model may extract some of the residual 

variation as if it represented underlying model structure. This way, the analysis 
corresponds too closely to the in-sample data, thus failing to built a model that has 

approximately equal in and out-of-sample error. As shown in table 5.9 and graph 5.5, 

the best performing methods of the alternatives to which subset regression are 
being compared for this scenario, are the Bayesian methods (BMA, most probable 

model, BMS). The best subset, in terms of mean MSE, is the one with the univariate 
model, outperforming all the alternatives, followed by the one with 𝑘 = 2, then 

𝑘 = 3 and so on. It is obvious that the predictive performance of subset regressions 
deteriorates as 𝑘 gets larger. This is a natural result, since models with fewer 

variables avoid the aforementioned overfitting pitfall and therefore can produce 

better forecasts, due to restricted estimation error. 
 

Method MSE 
CSR, k=1 1,074185 

BMA 1,078756 
CSR, k=2 1,082716 

Most Probable 1,101380 
CSR, k=3 1,137679 

BMS 1,158955 
CSR, k=4 1,225797 

BIC 1,311514 
CSR, k=5 1,356598 

AIC 1,384287 
CSR, k=6 1,564902 

OLS 1,819851 
 

Table 5.9: MSE performance in ascending order for 𝐾 = 6, 𝛵 = 20 
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Graph 5.5: MSE performance for 𝐾 = 6, 𝛵 = 20 

 
Fixed k 
value Frequency 

1 0,4451 
2 0,0912 
3 0,0721 
4 0,1133 
5 0,0759 
6 0,2024 

 

Table 5.10: Frequency of fixed 𝑘 having lowest MSE (among 𝑘 = 1, … , 𝐾) for 𝐾 = 6, 

𝛵 = 20 

5.2.2.6 Case 6: 𝑲 = 𝟔 and 𝜽 = 𝟏/𝟑 
In this case, we keep the baseline configuration of the simulation as in section 

5.2.2.2, however modifying the probability 𝜃 of inclusion for each regressor in the 
model: to slightly penalize models with too many predictors, we set 𝜃 = 1/3, as 

opposed to 𝜃 = 1/2, that was adopted in all other variations, reflecting complete 
prior ignorance about the model specification. As shown in table 5.11 and graph 5.6, 

the best subset, in terms of mean MSE, is the one with 𝑘 = 3, followed by the one 
with 𝑘 = 2. These subsets perform better than any other alternative, the best of 

which is the BMA. Comparing the results of this scenario to the one of section 

5.2.2.2, it is obvious that the results are quite similar, with a small, though 
observable, increase in the frequency that smaller 𝑘′𝑠  produce lower MSE 

1.
2

1
.4

1
.6

1
.8

Mean Squared Forecast Error

Model Selection Method

m
e

a
nM

S
E

OLS AIC BIC BMS BMA MostProb 1 2 3 4 5 6



76 
 

predictions (as taken from comparison of tables 5.4 and 5.12), thus confirming the 

fact that 𝜃 = 1/3 slightly favors smaller models. 
 

Method MSE 
CSR, k=3 1,047178 
CSR, k=2 1,047769 

BMA 1,052092 
CSR, k=4 1,054230 

BMS 1,055040 
CSR, k=1 1,060947 

BIC 1,061724 
CSR, k=5 1,066647 

AIC 1,072180 
CSR, k=6 1,084179 

Most Probable 1,094852 
OLS 1,098507 

 

Table 5.11: MSE performance in ascending order for 𝐾 = 6, 𝜃 = 1/3 
 

 
Graph 5.6: MSE performance for 𝐾 = 6, 𝜃 = 1/3 
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Fixed k 
value Frequency 

1 0,3534 
2 0,1784 
3 0,1359 
4 0,1018 
5 0,0721 
6 0,1584 

 

Table 5.12: Frequency of fixed 𝑘 having lowest MSE (among 𝑘 = 1, … , 𝐾) for 𝐾 = 6, 

𝜃 = 1/3 
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Chapter 6: Application to real data 

6.1 Data set and main considerations 
In order to illustrate the complete subset regression approach to forecast 
combination and to compare its performance against that of other approaches, this 

chapter houses an empirical application to US stock returns. This application is well 
suited for our analysis because there is a great amount of uncertainty about which, if 

any, predictors help forecast stock returns. The data we consider are taken from 

Goyal and Welch (2008), updated to 2010, and are recorded at the quarterly horizon 
over the period 1947:1 to 2010:4 (Goyal and Welch provide a detailed description of 

transformations and data sources). The dependent variable is always the equity 
premium, that is, the total rate of return on the stock market (S&P 500 index 

returns, including dividends) minus the prevailing short-term interest rate (the 

Treasury-bill rate). 
 

The candidate independent variables can be divided into three sets. The first one 
involves primarily stock characteristic variables: 

 Dividend Price Ratio (D/P) is the difference between the log of dividends 

(paid on the S&P 500 index) and the log of stock prices, where dividends are 

measured using a one-year moving sum. 

 Dividend Yield (D/Y) is the difference between the log of dividends and the 

log of lagged stock prices. 

 Earnings Price Ratio (E/P) is the difference between the log of earnings and 

the log of stock prices, where earnings are measured using a one-year 
moving sum. 

 Dividend Payout Ratio (D/E) is the difference between the log of dividends 

and the log of earnings. 

 Stock Variance (SVAR) is the sum of squared daily returns. 

 Book-to-Market Ratio (B/M) is the ratio of book value to market value for the 

Dow Jones Industrial Average. 

 Net Equity Expansion (NTIS) is the ratio of twelve-month moving sums of net 

issues by NYSE-listed stocks to total end-of-year market capitalization of NYSE 
stocks. 

The second set of candidate independent variables is interest-rate related: 

 Treasury Bill Rate (TBL) is the interest rate on a three-month Treasury bill 

(secondary market). 
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 Long-term Yield (LTY) is the long-term government bond yield. 

 Long-term Return (LTR) is the return on long-term government bonds. 

 Term Spread (TMS) is the difference between the long-term yield and the 

Treasury bill rate. 

 Default Yield Spread (DFY) is the difference between BAA- and AAA- rated 

corporate bond yields. 

 Default Return Spread (DFR) is the difference between long-term corporate 

bond and long-term government bond returns. 

The last set of candidate independent variables involves features of the overall 
macroeconomic environment: 

 Inflation (INFL) is the Consumer Price Index (all urban consumers) from the 

Bureau of Labor Statistics. 

 Investment-to-Capital Ratio (I/K) is the ratio of aggregate (private 

nonresidential fixed) investment to aggregate capital for the entire economy. 

Our forecasting experiment is conducted on a quarterly basis having available a data 

span from 1947:1 to 2010:4, that is, 256 observations for the dependent and the 

candidate independent variables. For any scenario examined, the in-sample as well 
as the out-of-sample data span is always taken to be an integer multiple of four 

quarters (an annual period). We group the data this way, treating the quarter of the 
year as a blocking factor, accounting for the potential variability between the four 

quarters of each year. Thus, we may reduce any unexplained variability that is not of 

our primary interest. 
 

An essential point of interest is the estimation period: it is not always clear how to 
choose the periods over which a regression model is estimated and subsequently 

evaluated. Although any choice is necessarily ad-hoc in the end, the criteria are clear. 

It is important to have enough initial data to get a reliable regression estimate at the 
start of the evaluation period, and it is important to have an evaluation period that is 

long enough to be representative. Using different periods reflects different trade-
offs between the desire to obtain statistical power and the desire to obtain results 

that remain relevant today. The main results herein present an experimental basis of 
an 18-year in-sample period, consisting of 72 observations, and out-of sample 

predictions for a whole year (that is 4 observations/quarters), using a moving 

window scheme. As an alternative scheme, we briefly give the conclusions based on 
an in-sample period of 28 years. It is worth to note that the available dataset has 

already ignored periods where some variables did not have complete data 
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(occurrences documented before 1947), finally providing a set where no such 

peculiarity exists. 
 

As a first step, we examine our initial pool of covariates thoroughly. Checking 
Pearson’s correlation between all pairs of independent variables, and for a variety of 

data spans (mainly focusing in the 18 to 28 year range, which covers our 

experimental basis) we find that there are several cases where the correlation is 
higher than 0,9, and sometimes even closer to 1.  In particular, we come across the 

fact that the variables D/P and D/Y is such a pair and, moreover, that D/E and TMS 
have great linear dependence (they are strongly correlated) with other variables. For 

this reason, the information given by these variables (D/E, TMS and one of D/P or 
D/Y) is already contained in the other twelve variables and is thus redundant, so that 

their coefficients in the regression model cannot be defined. Essentially, we reject 

D/P, D/E and TMS and we proceed with the remaining twelve independent variables. 
Moreover, in the results we include the case where D/Y is rejected in place of D/P. 

 
Furthermore, we take into account Goyal and Welch (2008) who summarize that 

models can be significant only for certain periods of time and that the few models 

that still are, may usually fail simple regression diagnostics. For this reason, we 
explore the (in-sample) statistical significance of the regression covariates, as well as 

the proportion of the variance in the dependent variable that is predictable from the 
independent variables, using for this purpose the 𝑅 . We use a representative 

sample of ten overlapping periods, each one having a range of eighteen years. For 

each period, we fit the full model, that is the model with all thirteen variables, 
however excluding D/E and TMS (the design matrix is not invertible and therefore 

cannot be used to develop a regression model, resulting from linearly dependency 
that these two strongly correlated variables have). We also fit a model with twelve 

variables, further excluding D/P. We then report 𝑅  for these two cases, as well 

as for the model that the stepwise model selection method suggests.  

6.2 Results 
In line with the simulation study of chapter 5, we launch the complete subset 
regression method, getting twelve different values of forecasting performance (for 

𝑘 = 1, … , 𝐾 = 12). Once again, the Mean Squared (Forecasting) Error is used to 

represent this performance. In order to compare the fixed 𝑘 proposals we once 
again, as in the simulation, calculate the predictive performance of: 

1. The model estimated by the OLS method. 
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2. The “best” models, identified by the AIC and the BIC criterion. That is, we 

calculate the AIC & BIC for each model, select the best models and then make 
the prediction based on them. 

3. Bayesian Model Averaging: we use the same setup as in chapter 5 and the 
predictions are obtained by weighting each model’s forecast by its posterior 

probability. 

4. The most probable model, as identified by the Bayesian Model Averaging 
calculations. That is, we select the model with the highest posterior 

probability 𝑓 𝑀 |𝑦   and then make the prediction based on it solely. 

5. Bayesian Model Sampling and Averaging: we use the same setup as in 

chapter 5. 

The results are summarized in table 6.1 and graph 6.1 and have been calculated as 
follows: for each method (OLS, AIC, BIC, BMA, BMS, Most Probable and for each 

𝑘 = 1, … , 𝐾 = 12) we first get an annual forecast for the year 1955, based on the in-
sample span of 1947:1 to 1954:4 and we calculate the average MSE of the forecasts 

(of its four quarters). We then use the moving window scheme and each time we get 
another annual prediction (and thus a MSE value for each method). We finally 

average across all these years that we have made predictions for, that is from 1955 

to 2010. 
 

As shown in table 6.1 and graph 6.1 the best performing method, producing the 
lowest out-of-sample MSE on average, of the ones used to benchmark the subset 

regression, is the Bayesian Model Sampling, followed by the Most Probable model 

and the Bayesian Model Averaging. The best subset, in terms of mean MSE, is the 
one with 𝑘 = 7 and performs better than any other alternative. In particular, for 

𝑘 = 2, … ,11 the subset regression produces lower out-of-sample MSE on average, 
than any other alternative. The superiority of the subset regression can be 

summarized in the following facts: 

 For most of the fixed 𝑘 values, it provides better forecasts (with lower MSE). 

 The best 𝑘 = 7, provides a substantially smaller MSE (on average) than the 

best alternative. 

 Using the best fixed value, 𝑘 = 7, we only need to combine (average over) 

=792 models, which is a very small fraction compared to the totality of 

the 4.096 models. This is a significant saving in computational terms, 
comparing with any method that would average over all models. 
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Moreover, for 𝑘 ≤ 11  the 𝑘 -variate combinations produce better results than 

models selected by recursively applying information criteria such as the AIC or the 
BIC. This happens despite the fact that these subset combinations may contain the 

same or even larger number of predictors, since, on average, the AIC and the BIC 
criteria select 7,82 and 6,58 predictors, respectively. 

 

Method MSE 
CSR, k=7 0,004269 
CSR, k=6 0,004309 
CSR, k=8 0,004366 
CSR, k=5 0,004476 
CSR, k=9 0,004657 
CSR, k=4 0,004791 

CSR, k=10 0,005224 
CSR, k=3 0,005297 
CSR, k=2 0,006029 

CSR, k=11 0,006157 
BMS 0,006692 

Most Probable 0,006752 
CSR, k=1 0,006853 

BMA 0,006904 
AIC 0,007037 
OLS 0,007472 

CSR, k=12 0,007528 
BIC 0,007545 

 
Table 6.1: MSE performance in ascending order for an 18-year in-sample period 

 
Graph 6.1: MSE performance for an 18-year in-sample period 

 

0
.0

04
5

0
.0

0
5

0
0

.0
05

5
0

.0
0

60
0.

00
6

5
0

.0
0

7
0

0
.0

07
5

Mean Squared Forecast Error

Model Selection Method

m
e

a
n

 M
S

E

OLS AIC BIC BMS BMA mostProb 1 2 3 4 5 6 7 8 9 10 11 12



83 
 

Table 6.2 and graph 6.2 summarize the results of the variation where twelve 

variables are included in the model, however having retained D/P instead of D/Y. In 
this case, for 𝑘 = 5,6,4,7,3,8,9,2 (and with this order) the subset regression is 

superior in forecasting compared to any other alternative, the best ones being the 
BMA, followed by the BMS. The similarity of these results, compared to the ones 

table 6.1 and graph 6.1, concerning the superiority of subset regressions against the 

alternatives, is obvious. 
 

Method MSE 
CSR, k=5 0,00489 
CSR, k=6 0,004941 
CSR, k=4 0,005022 
CSR, k=7 0,005136 
CSR, k=3 0,005389 
CSR, k=8 0,005459 
CSR, k=9 0,00592 
CSR, k=2 0,00604 

BMA 0,006407 
CSR, k=10 0,006563 

BMS 0,006594 
CSR, k=1 0,006847 

Most Probable 0,007322 
BIC 0,007444 

CSR, k=11 0,007466 
AIC 0,007610 
OLS 0,007931 

CSR, k=12 0,008742 
 

Table 6.2: MSE performance in ascending order for an 18-year in-sample period 
(twelve variables, D/P included) 
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Graph 6.2: MSE performance for an 18-year in-sample period (twelve variables, D/P 
included) 

 
Table 6.3 and graph 6.3 summarize the results of the case that we use a 28-year in-

sample period, instead of an 18-year one that was adopted in the main scenario. In 

this case the best performing method, producing the lowest out-of-sample MSE on 
average, of the ones used to benchmark the subset regression, is the Bayesian 

Model Averaging. The best subset, in terms of mean MSE, is the one with 𝑘 = 7 and 
performs better than any other alternative. In particular, for 𝑘 = 2, … ,11 the subset 

regression produces lower out-of-sample MSE on average, than any other 
alternative. The superiority of the subset regression can be summarized into the fact 

that for most of the fixed 𝑘 values it provides better forecasts (with lower MSE) as 

well as to the promising reduction of computational needs, since using the best fixed 

value, 𝑘 = 7, we only need to combine (average over) =792 models, which is a 

very small fraction compared to the totality of the 4.096 models. The similarity of 
these results, compared to the ones presented in table 6.1 and graph 6.1, concerning 

the superiority of subset regressions against the alternatives, is obvious. 

 

Method MSE 
CSR, k=7 0,004776 
CSR, k=6 0,004823 
CSR, k=8 0,004861 
CSR, k=5 0,004980 
CSR, k=9 0,005097 
CSR, k=4 0,005233 

CSR, k=10 0,005493 
CSR, k=3 0,005589 
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CSR, k=11 0,00605 
CSR, k=2 0,006079 

BMA 0,006234 
BMS 0,006667 

CSR, k=1 0,006673 
CSR, k=12 0,006797 

OLS 0,006839 
AIC 0,006965 
BIC 0,007294 

Most Probable 0,008173 
 

Table 6.3: MSE performance in ascending order for a 28-year in-sample period 

 

 
Graph 6.3: MSE performance for a 28-year in-sample period 

 

Table 6.4 houses the results of the considerations stated in section 6.1, concerning 
the (in-sample) statistical significance of the regression covariates, as well as the 

proportion of the variance in the dependent variable that is predictable from the 
independent variables, using for this purpose the 𝑅 . Summarizing, the main 

results are the following two: the proportion of the variance explained by the 

regression is very high, for all the aforementioned cases. At the same time, in-sample 
statistical significance of each covariate fluctuates across the period that the data set 

covers, thus amplifying the value of taking into account all these twelve variables, as 
already stated. 
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Full Model 
(thirteen 
variables) 

Model 
selected by 

stepwise 

Final model 
(twelve 

variables) 

Independent variables (first row for each in-sample period is the p-value when fitting the full model 
and the second row indicates selection of this variable by the stepwise method). Blanks indicate 

insignificance and lack of selection, respectively 
In-sample Period 𝑅  adj 𝑅  adj 𝑅  adj D/P D/Y E/P SVAR B/M NTIS TBL LTY LTR DFY DFR INFL I/K 
1947:1 - 1964:4 99,69 99,72 71,09 0 0     0,02 0,126 0,084             

        x x     x x x             
1952:1 - 1969:4 99,9 99,9 77,08 0 0         0,075   0,027   0,028 0,009 0,733 

        x x         x   x   x x x 
1957:1 - 1974:4 99,96 99,97 77,69 0 0         0   0,01   0,037 0,182 0,201 

        x x         x   x   x   x 
1962:1 - 1979:4 99,98 99,98 78,47 0 0 0,465       0   0,205 0,088 0,062 0,03   

        x x x       x   x   x x   
1967:1 - 1984:4 99,97 99,97 72,02 0 0         0   0   0,068 0,01   

        x x         x   x   x     
1972:1 - 1989:4 99,97 99,97 82,54 0 0         0   0,002   0,06 0,039   

        x x         x   x   x     
1977:1 - 1994:4 99,97 99,96 79,88 0 0   0,076     0   0,001   0,207 0,035   

        x x   x     x   x   x     
1982:1 - 1999:4 99,97 99,97 63,67 0 0       0,074 0 0,144           

        x x       x x x           
1987:1 - 2004:4 99,97 99,97 57,01 0 0 0,007     0,003 0     0,061   0,163 0,305 

        x x x     x x     x     x 
1992:1 - 2009:4 99,96 99,96 57,32 0 0     0,037   0 0,137   0,119 0,001     

        x x     x   x x   x x     
 

Table 6.4: Statistical significance and 𝑅  adj for representative in-sample periods 

 

  



 
 

Chapter 7: Conclusion 
This dissertation has explored the main theoretical features, as well as the 

performance of the complete subset regression, a forecast combination approach 
that averages forecasts across complete subset regressions with the same number of 

predictor variables and thus the same degree of model complexity. 

 
Based on the simulation, as well as the empirical study, we find that the subset 

regression appears to perform quite well when compared to competing approaches 
such as Bayesian Model Averaging, or the models selected based on the OLS, the AIC 

and the BIC criterion. This is more evident in cases where a shrinkage method is 

supposed to add value, that is, where 𝛽  (the pseudo true value of the regression 
coefficients, 𝛽 ) has values local to zero. In many cases subset regression 

combinations amount to a form of shrinkage, but one that is more general than the 
conventional variable-by-variable shrinkage. 

 

Especially for the data set of chapter 6, where most models are unstable or even 
spurious (Goyal and Welch, 2008) and, thus, relying on a single model is not a solid 

option, a method that is based on averaging, with the additional benefit of being 
able to confine the total number of models to average over, seems really promising. 

 
This method could also be adopted in order to reduce the computational effort, or 

even to make an infeasible analysis feasible, in cases where the number of covariates 

prohibits analyzing all of them. 
 

 

  



 

Appendix A: Main distributions

A.1 Normal Distribution
The Normal (or Gaussian) 
density function: 

 

 

on the domain 𝑥 ∈ (−∞,

mode) of the distribution, 

of the probability density function of the Normal 

 and 𝜎  is given in the Figure A.1.

Figure A.1: Normal Probability Density Function

A.2 Multivariate Normal D
The Multivariate Normal 

(univariate) Normal distribution to higher dimensions. A random vector 
(𝑋 , … , 𝑋 ) is said to de 𝑘

 

𝑓(𝑥; 𝜇, 𝛴)

 

where 𝜇 = (𝜇 , … , 𝜇 )  is the mean vector and 

covariance matrix. A graph of the pro

distribution (that is 𝑘 = 2
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istributions 

istribution 
The Normal (or Gaussian) Distribution in a variate 𝑋 is a statistic distribution with 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

( )

, 

+∞), where 𝜇 is the mean (as well as the median and the 

mode) of the distribution, 𝜎 is the standard deviation and 𝜎  is the variance.

of the probability density function of the Normal distribution for several values of 

is given in the Figure A.1. 

 

Figure A.1: Normal Probability Density Function 

Multivariate Normal Distribution 
The Multivariate Normal Distribution is a generalization of the one dimension 

istribution to higher dimensions. A random vector 
−variate normally distributed if it has density function:

) = (2𝜋) |𝛴| exp {(𝑥 − 𝜇) 𝛴 (𝑥 − 𝜇)}, 

is the mean vector and 𝛴 = 𝛦[(𝑥 − 𝜇)(𝑥

A graph of the probability density function of a bivariate Normal 

2) is given in the Figure A.2. 
  

is a statistic distribution with 

is the mean (as well as the median and the 

e variance. A graph 

istribution for several values of 𝜇 

 

istribution is a generalization of the one dimension 

istribution to higher dimensions. A random vector 𝑋 =

ormally distributed if it has density function: 

)  

)(𝑥 − 𝜇)ʹ]  is the 

ivariate Normal 
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Figure A.2: Multi(bi)variate Normal Probability Density Function 

A.3 Gamma Distribution 
The Gamma Distribution is a two-parameter family of continuous distributions, with 

three different parameterizations in common use: 

1. With a shape parameter 𝑘 > 0 and a scale parameter  𝜃 > 0. 

2. With a shape parameter 𝛼 = 𝑘 and an inverse scale parameter 𝛽 = , called 

a rate parameter. 

3. With a shape parameter 𝑘 and a mean parameter 𝜇 = . 

For the second case, the Gamma distribution in a variate 𝑋 is a statistic distribution 

with density function: 
 

𝑓(𝑥; 𝛼, 𝛽) =
𝛽 𝑥 𝑒

𝛤(𝛼)
, 

 
on the domain 𝑥 ∈ [0, +∞), where 𝛤(𝑥) is a complete gamma function. The mean of 

the distribution is 𝐸[𝑥] =  and the variance is 𝑣𝑎𝑟(𝑥) = .  The exponential 

distribution, the Erlang distribution and the chi-squared distribution, are special 

cases of the Gamma distribution. A graph of the probability density function of the 
first parameterization case of a Gamma distribution for several values of 𝑘 and 𝜃 is 

given in the Figure A.3. 
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Figure A.3: Gamma Probability Density Function 

A.4 Inverse Gamma Distribution 
The Inverse Gamma Distribution is a two parameter family of continuous probability 
distributions commonly used in Bayesian statistics. It is the distribution of the 

reciprocal of a variable distributed according to the Gamma distribution. The Inverse 

Gamma distribution in a variate 𝑋, with a shape parameter 𝑎 and a scale parameter  
𝛽  is a statistic distribution with density function: 

 

𝑓(𝑥; 𝛼, 𝛽) =
𝛽 𝑥 𝑒

𝛤(𝛼)
, 

 

on the domain 𝑥 ∈ [0, +∞), where 𝛤(𝑥) is a complete gamma function. The mean of 

the distribution is 𝐸[𝑥] = , for 𝛼 > 1 and the variance is 𝑣𝑎𝑟(𝑥) =
( ) ( )

, 

for 𝑎 > 2.  Note that if 𝑋~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽)  then 𝑋 ~𝐼𝐺(𝛼, 𝛽).  A graph of the 

probability density function of an Inverse Gamma distribution for several values of 𝛼 
and 𝛽 is given in the Figure A.4. 

 
Figure A.4: Inverse Gamma Probability Density Function 



 

A.5 Student’s t Distribution
The student’s t distribution is any member of a family of continuous probability 

distributions that arises when estimating the mean of a normally distributed 
population, for cases where the standard deviation is unknown. T

a variate 𝑋, has a density function:
 

 

on the domain 𝑥 ∈ (−∞,

𝛤(𝑥) is a complete gamma function. The mean of the distribution is zero if 

(otherwise undefined) and the variance is 

1 < 𝜈 ≤ 2 (otherwise undefined).
like the normal distribution, but has heavier tales, being more prone to producing 

values that fall far from its mean and moreover varies based on 

degrees of freedom. A graph of the probability density function of a 
two different values of degrees of freedom, compared to the graph of a normal 

distribution is given in the Figure A.5.

Figure A.

A.6 Multivariate t Distribution
The Multivariate t Distribution is a generalization of the one dimension (univariate) 

student’s t distribution to higher dimensions. A random vector 
said to de 𝑘 −variate t distributed if it has density function:

 

𝑓(𝑥; 𝜇, 𝛴) =
𝛤

91 

Distribution 
distribution is any member of a family of continuous probability 

distributions that arises when estimating the mean of a normally distributed 
where the standard deviation is unknown. The t

function: 

𝑓(𝑥) =
𝛤

𝜈 + 1
2

√𝜈𝜋𝛤(
𝜈
2

)
1 +

𝑥

𝜈
, 

, +∞), where 𝜈 is the number of degrees of freedom and 
is a complete gamma function. The mean of the distribution is zero if 

and the variance is 𝑣𝑎𝑟(𝑥) =
( )

,  for 𝜈

(otherwise undefined). The t distribution is symmetric and bell
like the normal distribution, but has heavier tales, being more prone to producing 

values that fall far from its mean and moreover varies based on 

degrees of freedom. A graph of the probability density function of a t 
two different values of degrees of freedom, compared to the graph of a normal 

distribution is given in the Figure A.5. 

 
.5: Student’s t Probability Density Function 

Distribution 
istribution is a generalization of the one dimension (univariate) 

istribution to higher dimensions. A random vector 𝑋 =

distributed if it has density function: 

𝛤
𝜈 + 𝑘

2

𝛤(
𝜈
2

)(𝜈𝜋) |𝛴|
1 +

1

𝜈
(𝑥 − 𝜇) 𝛴 (𝑥 − 𝜇)

distribution is any member of a family of continuous probability 

distributions that arises when estimating the mean of a normally distributed 
t distribution in 

is the number of degrees of freedom and 
is a complete gamma function. The mean of the distribution is zero if ν> 1 

> 2  and ∞  for 

distribution is symmetric and bell-shaped, 
like the normal distribution, but has heavier tales, being more prone to producing 

values that fall far from its mean and moreover varies based on the number of 

 distribution for 
two different values of degrees of freedom, compared to the graph of a normal 

istribution is a generalization of the one dimension (univariate) 

= (𝑋 , … , 𝑋 ) is 

) , 
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where 𝜇 = (𝜇 , … , 𝜇 ) is the location parameter, 𝛴 is the shape matrix and 𝜈 is the 
number of degrees of freedom. The mean of the distribution (as well as the median 

and the mode) is 𝜇 if ν> 1 (otherwise undefined) and the variance is 𝑣𝑎𝑟(𝑥) =

( )
𝛴 , for 𝜈 > 2 (otherwise undefined). 

 



 
 

Appendix B: Statistical Software 
The statistical analysis conducted in this thesis, including the simulation study, was 

based on free licensed software. Free software means that users of a program have 
the following four essential freedoms: 

1. The freedom to run the program as they wish, for any purpose. 

2. The freedom to study how the program works, and adapt it to their needs. 
Access to the source code is a precondition for this. 

3. The freedom to redistribute copies. 
4. The freedom to improve the program, and release their improvements to the 

public, so that the whole community benefits. Access to the source code is 

again a prerequisite. 

In particular, the R statistical programming language has been used, for data 
manipulation, calculation and graphical display, including some available 

intermediate tools for data analysis, as well packages that extend the main features. 

B.1 The R statistical programming language 
R is a language and environment for statistical computing and graphics. It is a GNU 
project which is similar to the S language and environment which was developed at 

Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and 
colleagues. R can be considered as a different implementation of S. There are some 

important differences, but much code written for S runs unaltered under R. 

R provides a wide variety of statistical and graphical techniques, and is highly 
extensible. The S language is often the vehicle of choice for research in statistical 

methodology, and R provides an Open Source route to participation in that activity. R 
is not solely a statistics system. It is an environment within which statistical 

techniques are implemented. 

R is available as Free Software under the terms of the Free Software 
Foundation’s GNU General Public License in source code form. It compiles and runs 

on a wide variety of UNIX platforms and similar systems (including FreeBSD and 
Linux), Windows and MacOS. Moreover, it can be extended easily via packages. 

There are about eight packages supplied with the R distribution and many more are 
available through the CRAN family of internet sites covering a very wide range of 

modern statistics. All necessary information can be found in https://www.r-

project.org/. 
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