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Abstract

Vasileios Katsianos

Likelihood-Based Inference and Model Selection for
Discrete-Time Finite State-Space Hidden Markov Models

Hidden Markov Μodels (HMMs) are one of the most fruitful statistical modelling
concepts that have appeared in the last fifty years. The use of latent states makes
HMMs generic enough to handle a wide array of complex real-world time series, while
the relatively straightforward dependence structure still allows for the use of efficient
computational procedures. This dissertation concerns itself with the presentation of
frequentist and Bayesian methods for statistical inference and model selection in the
context of HMMs. These methods are, then, applied on real and simulated data in
order to gauge their accuracy and efficiency.

HMMs belong in a general class of models referred to as missing data problems. In
the context of frequentist statistics, the Expectation-Maximisation (EM) algorithm
approximates the maximum likelihood estimator (MLE) of the parameter vector in
a missing data problem, whereas, in the framework of Bayesian statistics, Markov
Chain Monte Carlo (MCMC) methods, especially the full-conditional Gibbs sampler,
are applicable to approximate the posterior distribution of the parameter vector.
These methods are first applied for parameter estimation in finite mixture models,
which may be regarded as special cases of HMMs, where no dependence is allowed
whatsoever between subsequent observations.

In the case of HMMs some form of forward-backward recursion is additionally re-
quired in order to compute the conditional distribution of the hidden variables, given
the observations. This so called Forward-Backward algorithm may be combined either
with the EM algorithm or some MCMC method for parameter estimation. Lastly,
we examine methods for selecting the number of hidden states in an HMM. The
frequentist approach usually entails the approximation of the generalised likelihood-
ratio (LR) statistics through some bootstrap technique, while the Bayesian approach
relies either on trans-dimensional MCMC methods, which incorporate moves between
different models along with parameter estimation, or on simulation methods to ap-
proximate the marginal likelihoods of the competing models.
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Περίληψη

Βασίλειος Κ

Συμπερασματολογία Βασισμένη στην Πιθανοφάνεια
και Επιλογή Μοντέλου για Κρυμμένα Μαρκοβιανά
Μοντέλα Διακριτού Χρόνου και Πεπερασμένου Χώρου
Καταστάσεων

Τα Κρυμμένα Μαρκοβιανά Μοντέλα (ΚΜΜ) είναι μία από τις πιο καρποφό-
ρες ιδέες στατιστικής μοντελοποίησης που έχει αναπτυχθεί τα τελευταία πε-
νήντα χρόνια. Η χρήση λανθανουσών καταστάσεων καθιστά τα ΚΜΜ αρκετά
γενικού χαρακτήρα για να διαχειριστούν ένα ευρύ φάσμα πολύπλοκων πραγ-
ματικών χρονοσειρών, ενώ η σχετικά απλή δομή εξάρτησής τους επιτρέπει τη
χρήση αποτελεσματικών υπολογιστικών διαδικασιών. Αυτή η διπλωματική ερ-
γασία ασχολείται με την παρουσίαση Κλασικών και Μπεϋζιανών μεθόδων συ-
μπερασματολογίας και επιλογής μοντέλου για ΚΜΜ. Στη συνέχεια, αυτές οι
μέθοδοι εφαρμόζονται σε πραγματικά και προσομοιωμένα δεδομένα με στόχο να
διαπιστωθεί η ακρίβεια και η αποτελεσματικότητά τους.

Τα ΚΜΜ ανήκουν σε μια γενικότερη κλάση μοντέλων που αναφέρονται ως
προβλήματα ελλιπών δεδομένων. Στο πλαίσιο της κλασικής στατιστικής, ο αλ-
γόριθμος Expectation-Maximisation (EM) προσεγγίζει την εκτιμήτρια μέγιστης
πιθανοφάνειας (ΕΜΠ) του διανύσματος των παραμέτρων, ενώ, στο πλαίσιο της
Μπεϋζιανής στατιστικής, οι μέθοδοι Markov Chain Monte Carlo (MCMC) και συ-
γκεκριμένα ο πλήρως δεσμευμένος δειγματολήπτης Gibbs, εφαρμόζονται για την
προσέγγιση της εκ των υστέρων κατανομής του διανύσματος των παραμέτρων.
Αυτές οι μέθοδοι εφαρμόζονται πρώτα για την εκτίμηση παραμέτρων σε μοντέλα
πεπερασμένων μίξεων κατανομών, τα οποία μπορούν να θεωρηθούν ως ειδικές
περιπτώσεις ΚΜΜ, όπου δεν επιτρέπεται καμία εξάρτηση μεταξύ διαδοχικών
παρατηρήσεων.

Στην περίπτωση των ΚΜΜ μια μορφή αμφίδρομης αναδρομικής διαδικα-
σίας είναι επιπλέον απαραίτητη για τον υπολογισμό της δεσμευμένης κατανομής
των κρυφών μεταβλητών, δεδομένων των παρατηρήσεων. Αυτός ο αλγόριθμος
Forward-Backward μπορεί να συνδυαστεί είτε με τον αλγόριθμο EM είτε με
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κάποια μέθοδο MCMC για εκτίμηση παραμέτρων. Τέλος, εξετάζουμε μεθόδους
για επιλογή του αριθμού των κρυφών καταστάσεων σε ένα ΚΜΜ. Η κλασική
προσέγγιση συνήθως περιλαμβάνει την προσέγγιση των γενικευμένων λόγων πι-
θανοφανειών μέσω κάποιας τεχνικής bootstrap, ενώ η Μπεϋζιανή προσέγγιση
στηρίζεται είτε σε δια-διαστατικές μεθόδους MCMC, οι οποίες περιλαμβάνουν
κινήσεις μεταξύ διαφορετικών μοντέλων μαζί με εκτίμηση παραμέτρων, είτε σε
μεθόδους προσομοίωσης για την προσέγγιση των περιθωρίων πιθανοφανειών
των συγκρινόμενων μοντέλων.
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Chapter 1

Introduction

Statistical inference and decision making hinge on the availability of data from
which valuable information may be extracted. Most scientific conjectures and deduc-
tions are predominately related to the quantity and quality of information available
at the time an experiment is formulated or a research is conducted.

One of the grave problems that presents itself, when considering statistical com-
puting, is that, in reality, a part of the data which should be available to us is missing.
In practice, missing data occur in a wide array of applications and for a wide variety
of reasons. In a clinical study, a subject may drop out during its course or fail to
follow up with the doctor responsible for the study, resulting in missing observations
at subsequent time points for that particular subject. In various experiments, the
data vector may become partially corrupted. In surveys, participants may decline to
provide certain answers.

Obviously, the most straightforward way to handle missing data is to ignore them
completely and base our inference solely on those records which have been fully ob-
served. When there is no discernible pattern in the missing data and it can be safely
assumed that data points are missing completely at random, the above can be viewed
as a valid approach to handling the problem at hand. Nevertheless, in every other
case, simply ignoring the parts of the data which are incomplete is not a viable al-
ternative, as it can lead to systematically biased results in statistical modelling.

This thesis is concerned with presenting several parameter estimation and model
selection methods, in the framework of both classical and Bayesian statistics, espe-
cially designed for handling missing data problems. In particular, we are going to
implement these methods in order to draw inference on a special class of missing
data problems, referred to as Hidden Markov Models (HMMs). For the purposes of
this thesis, we are going to limit ourselves to HMMs for which the observations are
made in discrete-time and the latent Markov chain has a finite state-space, namely
the discrete-time, finite state-space HMMs.
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The use of an unobservable sequence of states makes the model generic enough to
handle a variety of complex, real-world time series, while the relatively simple Markov
dependence structure still permits the use of efficient computational procedures. Our
goal is to present a reasonably complete picture of statistical inference for discrete-
time, finite state-space HMMs, illustrated with relevant running examples.

In Chapter 2, we present the general idea behind statistical modelling of a missing
data problem. We illustrate this by explicating several known classes of missing
data problems often used in statistical modelling of non-homogeneous data sets. We
start by exploring the class of finite mixture models. Then, we present the basic
structure of a hidden Markov model, which, as will be discussed, can be viewed as
a generalisation of a finite mixture model. Lastly, we add for further consideration
several generalisations of HMMs.

In Chapter 3, we develop the basic algorithm, used within the classical framework,
to make inferences on finite mixture models, that is, the Expectation-Maximisation
(EM) algorithm. On the other hand, in Chapter 4 we analyse the Bayesian counter-
part for parameter estimation of finite mixture models, which is the Gibbs sampling
algorithm with Data Augmentation.

In Chapter 5, we begin by dissecting the various methods required in the context
of HMMs, in order to additionally draw inferences on the latent Markov chain. We
combine these methods, with the methods explained previously in the context of
finite mixture models, so as to formulate several methods for parameter estimation
of HMMs, both in a classical and a Bayesian framework.

In Chapter 6, we confront the more difficult task of selecting the appropriate hid-
den Markov model to fit to a given data set. More precisely, within the framework of
frequentist statistics, we combine the EM algorithm, utilised for parameter estima-
tion of a hidden Markov model, with bootstrapping procedures, in order to implement
the generalised likelihood ratio (LR) tests required for model selection. On the other
hand, from the perspective of Bayesian statistics, we present several methods which
combine model selection with parameter estimation, in order to infer the posterior
probability of each of the predetermined competing models.

Lastly, in Chapter 7, we assess the adequacy of all the methods discussed for
model selection and parameter estimation of HMMs, by implementing them on a
time series of count data analysed originally in Nhu D. Le et al. (1992), as well as on
two simulated data sets.



3

Chapter 2

Missing Data Problems

2.1 Introduction

In statistical modelling, often the relationship between the parameter θ and the
observed variables Y is defined in terms of some unobservable variables X. In other
words, the observed data Y is a subset of some partially observable data Z = (X,Y).
Models as such are called missing data problems, latent variable models or, also,
models with incomplete data. In what follows, we assume that the joint distribution
of X and Y, for a given parameter value θ, admits a joint probability density func-
tion f(x,y;θ), which is also referred to as the complete-data likelihood L(θ|x,y).
Obviously for a given value of y and considered as a function of x only, f is simply
a positive integrable function and not a probability density function.

The actual likelihood of the observations, also referred to as the observed likeli-
hood, is defined as the probability density function of Y and obtained by marginal-
isation as

L(θ|y) =
∫
f(x,y;θ)dx. (2.1)

Inference on θ must obviously be based on the observed-data likelihood, where the
missing variables have been integrated out. In practice, however, this is frequently
difficult, if not impossible to do, owing to the integration involved in the above cal-
culation. In Chapters 3 and 4, we are going to present methods designed to deal with
the above issue, in both the Classical and the Bayesian framework.

2.2 Finite Mixture Models

Finite mixture models are commonly used for modelling densities which exhibit
multi-modality, skewness or excess kurtosis and for making inference about classific-
ation problems. A finite mixture distribution arises in a natural way as described
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below.

We assume that the population under study comprises K subgroups, with relative
group sizes p1, p2, . . . , pK and that interest lies in some random observation Y, which
is heterogeneous across all different subgroups. Thus, Y has a different probability
distribution within each group, usually assumed to originate from the same parametric
family f(y;θ), however, with the parameter θ differing between the groups. The
groups may be labelled through a discrete indicator variable S taking values in the
set {1, 2, . . . ,K}.

If we are in a position to record the group indicator S, in addition to the ran-
dom variable Y, when sampling from such a population, then conditional on having
observed from group s, Y is a random variable following the distribution f(y;θs),
with θs being the parameter in group s. The probability of sampling from the group
labelled s is, evidently, equal to ps, therefore the joint density of (y, s) is given by

f(y, s;ϑ) = f(s;p)f(y|s;θ) = psf(y;θs). (2.2)

However, in many cases it is impossible to record the group indicator S and so,
we arrive at a finite mixture distribution. Indeed, having observed only the random
variable Y, the marginal density is given by the law of total probability, as the
following mixture density

f(y;ϑ) =
K∑
k=1

pkf(y;θk). (2.3)

In statistical terms, the densities f(y;θk) are referred to as the component dens-
ities, K is called the number of components, the parameters p1, p2, . . . , pK are called
the component weights and the vector p = (p1, p2, . . . , pK) is called the weight distri-
bution, which takes values in the unit simplex EK , defined by the constraints pk ⩾ 0

and p1+p2+ · · ·+pK = 1. The mixture density function is indexed by the parameter
ϑ = (θ1,θ2, . . . ,θK ,p), taking values in the parameter space ΘK = ΘK × EK .

Here, the specification is such that the likelihood of the missing variables S and
the conditional likelihood of y, given s, are both known. Consequently, if the com-
plete data (y, s) were available, then the complete-data likelihood function would be
calculated as follows

L(ϑ|y, s) =
N∏
i=1

psif(yi;θsi). (2.4)

On the other hand, the mixture likelihood function f(y;ϑ) of ϑ, given N random
observations y = (y1,y2, . . . ,yN ) from the above mixture density, assuming that the



2.3. Hidden Markov Models (HMMs) 5

data have been sampled independently and, again, that no information concerning
the allocation of yi to a certain component is available, takes the form

L(ϑ|y) =
N∏
i=1

[
K∑
k=1

pkf(yi;θk)

]
, (2.5)

which is impossible to either maximise to derive the MLE of ϑ or to handle in a
conjugate Bayesian setting for K ⩾ 2, due to the summation involved over all possible
components.

2.3 Hidden Markov Models (HMMs)

Hidden Markov Models comprise another well-known category of latent variable
models, where the values of a stochastic process, observed at discrete times, depend on
some unobserved mechanism. This mechanism is nothing else but a Markov chain,
denoted by {Xk}k⩾0, which is not available to the observer. This hidden Markov
chain governs the distribution of the observable process {Yk}k⩾0, that is to say, the
distribution of Yk is defined through the value of Xk. For instance, Yk may have a
Gaussian distribution, whose mean and variance is determined by Xk.

More formally, an HMM is a bivariate discrete-time process {Xk,Yk}k⩾0, where
{Xk}k⩾0 is a Markov chain, {Yk}k⩾0 is a sequence of independent random variables
conditional on {Xk}k⩾0 and the conditional distribution of Yk depends solely on Xk.
The underlying Markov chain is sometimes called the regime or state process. It
is clear at this point that all statistical inference on the parameters of the model,
even on the Markov chain itself, must be done in terms of {Yk}k⩾0 only. Figure 2.1
summarises the dependence structure of an HMM.

X0 X1 XkHidden

Y0 Y1 YkObserved

· · · · · ·

· · · · · ·

Figure 2.1: Hidden Markov Model - Graphical Representation of the
Dependence Structure

More precisely, the underlying process obviously has the Markov property. The
distribution of Xk+1 conditional on the past values of the chain, X0,X1, . . . ,Xk, is
determined by Xk only. Likewise, the distribution of Yk conditional on the past
observations Y0,Y1, . . . ,Yk−1 and the history of the chain X0,X1, . . . ,Xk depends
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solely on the value of Xk. However, even though the variables Yk are conditionally
independent given {Xk}k⩾0, {Yk}k⩾0 is not an independent sequence, due to the
dependence on {Xk}k⩾0.

The Markov chain is often assumed to be homogeneous and to take values in a
finite set, identified by S = {1, 2, . . . , r}. Hence, {Xk}k⩾0 comes to be a homogen-
eous, discrete-time Markov chain on a finite state-space, with transition probability
matrix P = [pij ], where pij = P (Xk+1 = j|Xk = i) for i, j = 1, 2, . . . , r, initial
distribution ν = (ν1, ν2, . . . , νr) and, if also ergodic, unique stationary distribution
π = (π1, π2, . . . , πr).

A notable example of this is a Normal HMM, where (Yk|Xk = i) ∼ N (µi, σ
2
i ).

In this model, the conditional distributions of Yk, given Xk, all belong to the same
parametric family, with parameters governed, as mentioned above, by Xk. One may
remark at this point, that the marginal distribution of Yk is a mixture of r Gaussian
distributions, much like the case of a finite mixture of Normal distributions. Thus,
one way to view HMMs is as an extension of independent mixture models, in which
we allow for dependence between subsequent observations through a latent Markov
chain.

For the sake of conciseness, in what follows, we will utilise the notation Yl:m to
denote the collection of consecutively indexed variables Yl,Yl+1, . . . ,Ym. We also
denote by fi the conditional distribution of Yk given that Xk = i, which we assume
to be parametrised by θi, and by ϑ = (P,ν,θ1,θ2, . . . ,θr) the vector of all unknown
parameters. Then, the complete-data likelihood of this model is given as

L(ϑ|x0:n,y0:n) = ν(x0;P) ·
n−1∏
k=0

p(xk, xk+1) ·
n∏

k=0

f(yk;θxk
). (2.6)

However, compared to finite mixture models, where computation of the observed
likelihood through the complete-data likelihood simply involves adding over all pos-
sible components for each observation yi, the dependence structure of HMMs leads
to some additional computational complexity, owing to the fact that {Yk}k⩾0 is not
an independent sequence. Using the chain rule and then applying the law of total
probability to condition on every possible state for each observation yi, we obtain the
following expression for the observed likelihood

Ln(ϑ) =
n∏

k=0

f(yk|y0:k−1;ϑ) =
n∏

k=0

[
r∑

i=1

P (Xk = i|y0:k−1;P,ν)f(yk;θi)

]
. (2.7)

Calculation of the probabilities P (Xk = i|y0:k−1;P,ν), involved in the above expres-
sion, is not straightforward, but requires some form of forward recursion, which will
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be discussed at length in Chapter 5.

Another way to view HMMs is, as an extension of Markov chains, where the ob-
servation Yk of the state Xk, which is itself unavailable to the observer, is distorted
through some additional, independent source of randomness. Returning to the pre-
vious example, we can verify this notion, by writing the model as Yk = µXk

+ σXk
Vk,

where {Vk}k⩾0 is an i.i.d. sequence of N (0, 1) variables. Moreover, we can easily
obtain a similar functional representation for the Markov chain

Xk+1 = min
{
j = 1, 2, . . . , r : Uk <

j∑
ℓ=1

pXkℓ

}
,

where {Uk}k⩾0 is similarly defined as an i.i.d. sequence of Uniform random variables
on the interval (0, 1).

It is noteworthy that the example presented above is not merely a singular case,
but, in great generality, any HMM can be equivalently defined through the following
functional representation, known as a general state-space model

Xk+1 = a(Xk,Uk), (2.8)

Yk = b(Xk,Vk), (2.9)

where {Uk}k⩾0 and {Vk}k⩾0 are mutually independent i.i.d. sequences of random
variables, which are independent of X0, and a, b are measurable functions. The
former is called the state or dynamics equation, while the latter is referred to as the
observation equation.

Hidden Markov Models generally boast a wide array of applications, including
economics, speech recognition, image analysis, biology and genetics. In some applic-
ations, the underlying process has a clear interpretation, while in others it is just a
figment to represent heterogeneity.

Most examples given throughout this thesis are based on HMMs for which the
underlying Markov chain is ergodic, that is to say irreducible with a unique stationary
distribution. Such models can produce an infinitely long sequence of output for
observation and have a typically small number of states. For this reason, inference
on ergodic HMMs is usually based on a single long observed sequence of output.

However, HMMs applied in fields such as speech recognition correspond to a
different class of models, referred to as left-to-right HMMs. The Markov chain in
such models begins in a particular initial state and, when traversing the intermediate
states, may not go backwards, toward the initial state, but only forwards, toward the
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final state. Because they generally have a considerable number of states, compared
to ergodic HMMs, inference on them requires many independent sequences of output.

Example 2.1 (Stochastic Volatility Models) Let Sk be the price of a financial
asset, such as a share price or stock index, at time k. Instead of the prices, it is more
customary to consider the relative returns, Sk−Sk−1

Sk−1
, or the log-returns, log

(
Sk

Sk−1

)
,

which both describe the relative change over time of the price process.

Data from financial markets clearly indicate that the distribution of returns usu-
ally has tails which are heavier than those of a Normal distribution. In addition, even
though the returns are approximately uncorrelated over times, they are not independ-
ent. Lastly, the variance of returns tends to change over time. Large changes tend to
be followed by large changes and small changes tend to be followed by small changes,
a phenomenon often referred to as volatility clustering.

Most models assume that the process {σk}k⩾0, where σk represents the volatility
(standard deviation) of the returns at time k, is a function of past values. The simplest
model assumes that σk is a function of the squares of previous observations. This
leads to the celebrated Autoregressive Conditional Heteroscedasticity (ARCH) model
developed by Engle (1982).

An alternative to the ARCH/GARCH framework is a model in which the variance
is specified to follow some latent stochastic process. Such models are referred to as
Stochastic Volatility (SV) models. In contrast to GARCH models, there is no direct
dependence on past returns. The canonical SV model for discrete-time data is

Xk+1 = ϕXk + σUk, Uk ∼ N (0, 1), (2.10)

Yk = β exp
{
Xk

2

}
Vk, Vk ∼ N (0, 1), (2.11)

where the observations {Yk}k⩾0 are the log-returns, {Xk}k⩾0 is the log-volatility pro-
cess, which is assumed to follow a stationary AR(1) model, and {Uk}k⩾0, {Vk}k⩾0 are
i.i.d. sequences. ■

2.3.1 Gaussian Linear State-Space Models (GLSSMs)

As a case of Hidden Markov Models with non-finite state-space, we consider the
following general state-space model

Xk+1 = AXk + RUk, (2.12)

Yk = BXk + SVk, (2.13)
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where

• {Uk}k⩾0, {Vk}k⩾0 are i.i.d. sequences of multivariate Normal random variables.
The former is called the state or process noise, while the latter is referred to as
the measurement noise.

• A is the state transition matrix, B is the measurement transition matrix, R
is the square-root of the state noise covariance and S is the square-root of the
measurement noise covariance.

• X0 is Gaussian with mean vector µa and covariance matrix Σa and is inde-
pendent of the processes {Uk}k⩾0, {Vk}k⩾0.

The above model, is very popular both in engineering and in time series literature.
In addition to its practical importance, this model is a rare example of a non-finite
state-space HMM for which exact and reasonably efficient numerical procedures are
available to compute the distribution of the underlying chain given the observations.

Example 2.2 (Noisy Autoregressive Process) We define a pth order autore-
gressive process {Zk}k⩾0 through the equation

Zk+1 = ϕ1Zk + · · ·+ ϕpZk−p+1 + Uk,

where {Uk}k⩾0 is standard Gaussian white noise, i.e. Uk ∼ N (0, 1) independent for
k ⩾ 0. We also assume that the autoregressive process is observable only through
Yk = Zk +SVk, where {Vk}k⩾0 is the measurement noise and S the square-root of the
corresponding covariance.

Define the lag-vector Xk = (Zk, . . . , Zk−p+1)
T , R = (1, 0, . . . , 0)T ∈ Rp×1 and the

so-called companion matrix of the autoregressive coefficients ϕ = (ϕ1, ϕ2, . . . , ϕd)

A =



ϕ1 ϕ2 · · · ϕp−1 ϕp

1 0 · · · 0 0

0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0


.

Then, the noisy autoregressive process can be equivalently written in state-space form

Xk+1 = AXk + RUk, (2.14)

Yk = RTXk + SVk. (2.15)
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It is sensible to assume that the state and measurement noises are independent, so
the above noisy auto-regression corresponds to the form of a general Gaussian linear
state-space model. ■

2.3.2 Conditionally Gaussian Linear State-Space Models
(CGLSSMs)

In the case of conditionally Gaussian linear state-space models, the state Xk is
comprised of two components, Ck and Wk, where the former is finite-valued, whereas
the latter is a continuous, possibly vector-valued, variable. We generally refer to the
variables Ck as the indicator or latent variables and to Wk as the state variables.

The term ”conditionally Gaussian linear state-space models” signifies the fact
that, when conditioned on the finite-valued process {Ck}k⩾0, the CGLSSM reduces
to a GLSSM. It is also common to refer to such models as jump Markov models,
where the term jump refers to the instants k, at which the value of Ck differs from
that of Ck−1.

CGLSSMs belong to a class of models, referred to as hierarchical hidden Markov
models. This means that the variable Ck, which is the highest in the hierarchy,
influences not only the value of Yk, but also the transition from Wk−1 to Wk, as
demonstrated in Figure 2.2.

Ck Ck+1

Wk Wk+1

Yk Yk+1Observed

Hidden

· · · · · ·

· · · · · ·

· · · · · ·

Figure 2.2: Conditionally Gaussian Linear State-Space Model -
Graphical Representation of the Dependence Structure

It is often advantageous to treat the intermediate sequence {Wk}k⩾0 as a nuisance
parameter, which means integrating out the influence of {Wk}k⩾0, given {Ck}k⩾0.

Example 2.3 (Change Point Detection) In a GLSSM, the dynamics of the state
depend on the state transition matrix and on the noise covariance. These quantities
may change over time and, if they do so randomly and at unknown time points, then
the problem that arises is referred to as a change point problem.
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In the simplest change point problems, the state variable represents the level of a
quantity of interest, which is modelled as a step function. To model this situation,
we put Ck = 0, if there is no change point at time index k and Ck = 1, if a jump has
occurred at time index k. The resulting state-space model is

Wk+1 = ACk+1
Wk + RCk+1

Uk, (2.16)

Yk = BWk + SVk, (2.17)

where A0 = I, R0 = 0, A1 = 0 and R1 = R.

The simplest way to visualise this is assuming that {Ck}k⩾0 is an i.i.d. sequence
of Bernoulli(p) random variables. The time between two subsequent change points is,
thus, distributed as a Geometric random variable with mean value 1/p, while

Wk+1 =

Wk with probability p

Uk with probability 1− p
.

It is also possible to allow for a more general distribution of the time between
consequent jumps by introducing some form of dependence among the variables Ck.■

Example 2.4 (Observational Outliers and Heavy-Tailed Noise) Another in-
teresting application of CGLSSMs pertains to the field of robust statistics. In the
course of model building, statisticians are often confronted with the presence of out-
liers. Routinely ignoring outlying observations is obviously not statistically sound, as
they may contain valuable information about measurement errors, system character-
istics that have been left out of the model and so forth.

For example, if we confirm the presence of outliers in the data, we can account
for them, by utilising the following model

Wk+1 = ACk+1,1
Wk +RCk+1,1

Uk, Uk ∼ N (0, 1), (2.18)

Yk = µCk,2
+BCk,2

Wk + SCk,2
Vk, Vk ∼ N (0, 1), (2.19)

where Ck,1, Ck,2 ∈ {0, 1} are indicators of a change point and of the presence of
outliers respectively.

Similarly to the previous example, we set A0 = 1, R0 = 0, A1 = 0 and R1 = σU .
When there is no outlier, we assume that the level is observed in additive Gaussian
noise, therefore µ0 = 0, B0 = 1 and S0 = σV,0. In the presence of an outlier, however,
the measurement does no longer carry information about the current value of the
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level, that is B1 = 0, and the measurement noise is assumed to follow a Gaussian
distribution with negative mean µ1 = µ and large standard deviation S1 = σV,1.

The simplest model for Ck,2 would be a Bernoulli model, in which we would include
information about the ratio of outliers/non-outliers in the success probability. ■

2.4 Markov Switching Models

Perhaps the most significant generalisation of HMMs are the so-called Markov
Switching Models. In these models, the conditional distribution of Yk+1, given all
past variables, depends not only on Xk+1, but also on Yk. Hence, conditional on
the state process {Xk}k⩾0, the sequence {Yk}k⩾0 forms a non-homogeneous Markov
process. Figure 2.3 summarises the dependence structure of a Markov Switching
Model.

X0 X1 XkHidden

Y0 Y1 YkObserved

· · · · · ·

· · · · · ·· · ·

Figure 2.3: Markov Switching Model - Graphical Representation of
the Dependence Structure

In state space form, a Markov Switching Model may be given as

Xk+1 = a(Xk,Uk), (2.20)

Yk+1 = b(Xk+1,Yk,Vk). (2.21)

Markov switching models have much in common with basic HMMs and virtually
identical computational machinery may be used for both classes of models. However,
their statistical analysis is much more intricate, owing to the fact that the properties of
the observed process are not fully controlled by the underlying process. Specifically,
{Yk}k⩾0 is an infinite memory process, whose dependence structure may be even
stronger than that of the hidden Markov chain.

Example 2.5 (Switching Linear Auto-regression) Similarly to the noisy autore-
gressive process, a switching linear auto-regression is a model of the form

Yk = µXk
+

d∑
i=1

ai,Xk
(Yk−i − µXk−i

) + σXk
Vk, k ⩾ 1, (2.22)
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where {Xk}k⩾0 is a finite state-space Markov chain, {Vk}k⩾0 is white noise independ-
ent of {Xk}k⩾0 and the functions µ, ai, σ describe the dependence of the parameters
upon the current state Xk.

Obviously, the conditional distribution of Yk does not only depend on Xk and
Yk−1, but also on other lagged variables. By stacking them in groups of d elements,
we can obtain a process, whose conditional distribution depends on just one lagged
variable at a time. Define the companion matrix Ai associated with the autoregressive
coefficients of state i

Ai =



a1,i a2,i · · · ad−1,i ad,i

1 0 · · · 0 0

0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0


and the vectors

Yk = (Yk, Yk−1, . . . , Yk−d+1)
T ,

Xk = (Xk, Xk−1, . . . , Xk−d+1)
T ,

µXk
= (µXk

, µXk−1
, . . . , µXk−d+1

)T ,

Vk = (Vk, 0, . . . , 0)
T .

Hence, the stacked observation vector Yk satisfies the equation

Yk = µXk
+ AXk

(Yk−1 − µXk−1
) + σXk

Vk. (2.23)

This class of auto-regression models finds many uses in econometrics, as it provides
a formal statistical representation of the idea that expansion and contraction constitute
two distinct economic phases. ■
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Chapter 3

Maximum Likelihood Estimation
for Missing Data Problems

3.1 Introduction

As is always the case in statistics, the models described in Chapter 2 cannot
be fully specified beforehand, in most situations, and so, some of their parameters
have to be estimated based on observed data. Except for very simplistic instances,
the structures of these models are sufficiently complex to prevent the use of direct
estimation methods, hence, exact inference is not possible. Instead, we need to resort
to computationally intensive methods to deal with such models.

Specifically, in classical statistics, we cannot rely on estimators provided by mo-
ment or least squares methods, but, instead, need to focus on ways to estimate the
MLE of the parameter under study. For many of these models, the likelihood function
is known or, at least, can be numerically approximated, thus, our main objective is to
optimise a possibly quite complex function utilising numerical optimisation methods.

3.2 The Expectation-Maximisation (EM) Algorithm

Under the prism of classical statistics, the task under consideration for missing
data problems is the maximisation of the observed likelihood with respect to the
parameter ϑ. The most popular method for solving this optimisation problem is
the Expectation-Maximisation (EM) algorithm, which is a deterministic algorithm
designed to find maximum likelihood estimates in models where there is incomplete
data. In many situations, the EM algorithm is very easy to implement from scratch,
thus making it a more attractive option than gradient-based methods, such as the
Newton-Raphson or Fisher Scoring algorithms.
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A first step towards implementing the EM algorithm is defining the following
probability density function

f(x|y;θ) = f(x,y;θ)
f(y;θ) =

L(θ|x,y)
L(θ|y) , (3.1)

which, in the case of missing data problems, can be easily identified as the conditional
probability density function of X given Y . In what follows, we will also denote by
ℓ(θ) the logarithm of the likelihood function L(θ).

Next, we introduce the so-called intermediate quantity of EM as a function indexed
by two separate parameter vectors, θ and θ′, and defined by

Q(θ;θ′) =

∫
ℓ(θ|x,y)f(x|y;θ′)dx = Eθ′ [ℓ(θ|X,y)|y]. (3.2)

In order to realise exactly how the intermediate quantity of EM relates to the
observed likelihood function, which is the target of our optimisation process, we also
need to define the following quantity

H(θ;θ′) = −Eθ′ [log f(X|y;θ)|y] = −
∫

log f(x|y;θ)f(x|y;θ′)dx, (3.3)

where H(θ′;θ′) can be recognised as the entropy of the probability density function
f(x|y;θ′). Now, utilising equation (3.1), one may rewrite the observed log-likelihood
as follows

ℓ(θ) = ℓ(θ|y) = Q(θ;θ′) +H(θ;θ′). (3.4)

Whereas, in most cases, the intermediate quantity of EM can be calculated in
closed form or at least approximated through some form of Monte Carlo simulation,
the function H(θ;θ′) is generally intractable. The quantity H(θ;θ′) −H(θ′;θ′) can
be recognised as the relative entropy between the probability density function f(x|y),
indexed by θ and θ′ respectively. Utilising the fact that the logarithm function is
concave along with Jensen’s inequality yields us the following result

H(θ;θ′)−H(θ′;θ′) = −Eθ′

[
log f(X|y;θ)

f(X|y;θ′)

∣∣∣∣y]
⩾ − logEθ′

[
f(X|y;θ)
f(X|y;θ′)

∣∣∣∣y]
= − log

∫
f(x|y;θ)dx = 0,

(3.5)

which is widely known as the Fundamental Inequality of EM.

The strength of the EM algorithm lies on the fact that the term H(θ;θ′) can be
completely ignored during the optimisation process, while the intermediate quantity
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of EM acts as a surrogate for the observed log-likelihood. Indeed, in view of the
fundamental inequality of EM, if θ′ represents the current estimate of the MLE,
then simply choosing any value of θ, such that Q(θ;θ′) is increased over its baseline
Q(θ′;θ′), guarantees an increase to the observed log-likelihood ℓ(θ).

The EM algorithm takes its name by the iteration of its two main steps: the
E-step, where the conditional expectation of the complete-data log-likelihood given
y is calculated, and the M-step, where its maximisation is performed. It consists of
iteratively building a sequence

{
θ(ℓ)
}
ℓ⩾1

of parameter estimates given an initial guess
θ(0). More precisely, each iteration is performed as follows

E-step: Calculate the intermediate quantity Q
(
θ;θ(ℓ)

)
.

M-step: Choose θ(ℓ+1) to be any value of θ ∈ Θ, that maximises Q
(
θ;θ(ℓ)

)
.

It is not obvious at this point that the M-step of the algorithm may in practice
be easier to perform than the direct maximisation of the function of interest, which is
the observed log-likelihood. However, it is easy to see the decisive argument behind
the algorithm. By the very definition of the sequence

{
θ(ℓ)
}
ℓ⩾1

, the correspond-
ing sequence

{
ℓ
(
θ(ℓ)
)}

ℓ⩾1
is non-decreasing, hence EM is a monotone optimisation

algorithm.

Moreover, if the algorithm ever converges and the iterations stop at a point θ∗,
then that is with certainty a stationary point of the likelihood function, although
not necessarily a global maximum. To determine whether the algorithm has found
a global, rather than simply a local, maximum it is recommended to use a set of
different starting values scattered around the state-space of θ.

The rate of convergence depends on what is known as the fraction of missing
information. Informally, this fraction measures the amount of information about θ

which is lost by failing to observe X. Thus, if the complete data is much more
informative about θ than the observed data, then, loosely speaking, the fraction of
missing information is large and the EM algorithm converges slowly. Several methods
have been proposed in order to accelerate the convergence of the algorithm. Many
of them are based on incorporating information about the gradient of the likelihood
function into the algorithm.

EM in Exponential Families

In the context of HMMs, the main limitation of the EM algorithm appears in cases
where the E-step is not feasible, especially in models for which the state-space is not
finite. The basic EM algorithm, as described in the previous section, will generally
only be helpful in situations where the following conditions hold
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E-step: It is possible to calculate the intermediate quantity Q(θ;θ′) given a value
of θ′ at a reasonable computational cost.

M-step: Considered as a function of θ, Q(θ;θ′) is sufficiently simple, to allow for
closed-form maximisation.

A rather general context in which both of these requirements are satisfied is when
the joint probability density function of the observed and the latent variables belongs
to the exponential family of distributions, that is, if it can be expressed in the form

f(x,y;θ) = exp
{
[ψ(θ)]T T (x,y;θ)− c(θ)

}
h(x,y), (3.6)

where T (x,y;θ) is referred to as the vector of natural sufficient statistics and ψ(θ)

as the natural parametrisation. In this particular case, the intermediate quantity of
EM reduces to

Q(θ;θ′) = [ψ(θ)]T
∫
T (x,y;θ)f(x|y;θ′)dx−c(θ)+

∫
logh(x,y)f(x|y;θ′)dx. (3.7)

Note that the right-most term does not depend on θ and so, it might as well be
ignored in the maximisation process. Apart from this term, the intermediate quantity
takes an explicit form as long as it is possible to evaluate the conditional expectation
of the vector of sufficient statistics, given y. The EM algorithm, thus, reduces to

E-step: Calculate Q
(
θ;θ(ℓ)

)
= Eθ(ℓ) [T (X,y;θ)|y].

M-step: Maximise [ψ(θ)]T Q
(
θ;θ(ℓ)

)
−c(θ) with respect to θ ∈ Θ, in order to obtain

the updated estimate θ(ℓ+1).

3.3 Application to Finite Mixture Models

With the widespread availability of powerful computers and elaborate numerical
algorithms, maximum likelihood estimation became the preferred approach to para-
meter estimation for finite mixture models for many decades. In early papers, the
maximum likelihood estimator ϑ̂ is obtained by maximising the mixture likelihood
function f(y|ϑ) with respect to ϑ, using some direct maximisation method such as
the Newton-Rhaphson algorithm. Nowadays, the EM algorithm is the most com-
monly applied method to find the maximum likelihood estimator for a finite mixture
model.

To implement the EM algorithm for the estimation of the parameters of a finite
mixture model, we first need to rewrite the complete-data likelihood function, given
in equation (2.4), in a way that makes it more convenient for us, to calculate the
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intermediate quantity of EM. More precisely, we write

L(ϑ|y, s) =
N∏
i=1

K∏
k=1

[pkf(yi;θk)]
1{si=k} . (3.8)

Taking the logarithm of the above function and calculating the conditional ex-
pectation given y, yields the following result for the intermediate quantity

Q
(
ϑ;ϑ(ℓ)

)
=

N∑
i=1

K∑
k=1

P
(
Si = k

∣∣∣yi;ϑ
(ℓ)
)
[log pk + log f(yi;θk)] . (3.9)

As it turns out, in order to carry out the calculation required for the E-step of
the algorithm, we are first required to calculate the conditional allocation probabil-
ity P

(
Si = k

∣∣yi;ϑ
(ℓ)
)

of each observation yi for all possible components. In what
follows, we are going to utilise the notation D

(ℓ)
ik for these probabilities, which are

calculated using Bayes’ theorem and the law of total probability as follows

D
(ℓ)
ik = P

(
Si = k

∣∣∣yi;ϑ
(ℓ)
)
=

p
(ℓ)
k f

(
yi;θ

(ℓ)
k

)
K∑
j=1

p
(ℓ)
j f

(
yi;θ

(ℓ)
j

) , i = 1, 2, . . . , N,

k = 1, 2, . . . ,K.
(3.10)

Indirectly, these classification probabilities permit us to make inference on the
hidden allocations of the observations, for example, by assigning each observation to
the component that maximises the respective probability.

For an arbitrary mixture model, it is fairly straightforward to maximise the inter-
mediate quantity with respect to the weight distribution. For example, introducing
the Lagrange multiplier λ, which corresponds to the constraint p1+p2+ · · ·+pK = 1,
and deriving the Lagrangian with respect to the weights, yields the following set of
equations

p
(ℓ+1)
k =

1

λ

N∑
i=1

D
(ℓ)
ik , k = 1, 2, . . . ,K.

Additionally, one may easily calculate the multiplier λ as follows

1 =
K∑
k=1

p
(ℓ+1)
k =

1

λ

N∑
i=1

K∑
k=1

D
(ℓ)
ik =

N

λ

and so, we obtain the following renewed estimate of the weight distribution

p
(ℓ+1)
k =

1

N

N∑
i=1

D
(ℓ)
ik , k = 1, 2, . . . ,K. (3.11)
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The EM algorithm for finite mixture models consists of iterating the following
steps, given an initial guess ϑ(0) for the model parameters

E-step: Calculate the allocation probabilities D(ℓ)
ik according to equation (3.10).

M-step: Calculate p(ℓ+1) according to (3.11) and θ(ℓ+1) = arg max
θ∈Θ

Q
(
ϑ;ϑ(ℓ)

)
.

The above procedure is usually repeated while the values of the intermediate
quantity calculated during successive iterations are not sufficiently close. That is,
the algorithm is terminated when ℓ

(
ϑ(L+1)

)
− ℓ

(
ϑ(L)

)
< ϵ holds for a certain index

L, where ϵ is the predetermined precision of the estimation. Afterwards, one may
compute the maximum a posteriori component allocations as ŝi = arg max

k=1,2,...,K
D

(L)
ik .

A disadvantage of the EM algorithm compared to the direct maximisation of the
likelihood function is much slower convergence. Several authors use hybrid algorithms
for mixture estimation, combining the EM algorithm with Newton’s method.

Maximum likelihood estimation may encounter various practical difficulties. First,
it may be difficult to find the global maximum of the likelihood function numerically.
Several studies report convergence failures, particularly when the sample size is small
or the components are not well separated. Recently, more attention has been paid to
choosing starting values which increase the chance of convergence.

In particular, for finite mixture models it is common knowledge that the sample
size has to be very large for the asymptotic theory of maximum likelihood estimation
to apply. The regularity conditions are often violated, including cases of great prac-
tical concern, including small data sets, mixtures with small component weights and
over-fitting mixtures with too many components.

3.3.1 Finite Mixtures of Poisson Distributions

Over-dispersion occurs for a Poisson random variable if the variance is greater than
the mean, since the Poisson distribution is theoretically obligated to have identical
mean and variance. One possible reason for over-dispersion is unobserved heterogen-
eity in the sample, causing the mean to be different among the observed subjects.

A commonly used model in this context is the Poisson mixture model. Applica-
tions of mixtures of Poisson distributions appear, in particular, in biology and medi-
cine. The probability mass function of a mixture of Poisson distributions is given
as

f(y;ϑ) =
K∑
k=1

pke
−λk

λyk
y!
, (3.12)
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where
K∑
k=1

pk = 1, λk > 0 and 0 < pk < 1 for k = 1, 2, . . . ,K.

We have already seen how the EM algorithm updates the estimates of the weight
distribution at every iteration, so, now, we formulate the intermediate quantity of
EM specifically for a mixture of Poisson distributions, in order to make inference on
the component parameters λk. We have

Q
(
ϑ;ϑ(ℓ)

)
=

N∑
i=1

K∑
k=1

D
(ℓ)
ik [log pk − λk + yi logλk − log(yi!)] . (3.13)

As it can be seen, deriving the intermediate quantity with respect to λk delivers the
following set of equations

N∑
i=1

D
(ℓ)
ik

(
yi
λk

− 1

)
= 0 k = 1, 2, . . . ,K.

Finally, solving the above K equations with respect to λk for k = 1, 2, . . . ,K provides
the following updated estimates of the parameters

λ
(ℓ+1)
k =

1

n
(ℓ)
k

N∑
i=1

D
(ℓ)
ik yi, k = 1, 2, . . . ,K, (3.14)

where n(ℓ)k =
N∑
i=1

D
(ℓ)
ik .

One could notice that the above updated estimates bear a striking resemblance to
the MLE we would obtain from direct maximisation of the complete-data likelihood,
in the case where the allocations of each observation to a particular component were
known to us. To be precise, the functions 1{Xi = k} in the complete-data maximum
likelihood estimates are, in this case, replaced by their conditional expectations, given
the actual observations and the available parameter estimate ϑ(ℓ).

3.3.2 Finite Mixtures of Univariate Normal Distributions

A frequently used model for univariate continuous data displaying some kind of
heterogeneity is to assume that the observations are i.i.d. realisations from a mixture
of K univariate Normal distributions. The density of this distribution is given as

f(y;ϑ) =
K∑
k=1

pk
1√
2πσ2k

exp
{
−(y − µk)

2

2σ2k

}
. (3.15)

where
∑K

k=1 pk = 1, pk > 0, µk ∈ R and σ2k > 0 for k = 1, 2, . . . ,K.
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The intermediate quantity of EM can be easily calculated in the case of a univari-
ate Normal mixture distribution as follows

Q
(
ϑ;ϑ(ℓ)

)
=

N∑
i=1

K∑
k=1

D
(ℓ)
ik

[
log pk −

log(2π)
2

−
logσ2k
2

− (yi − µk)
2

2σ2k

]
. (3.16)

Deriving with respect to µk and then with respect to σ2k produces the following two
sets of equations

N∑
i=1

D
(ℓ)
ik (yi − µk) = 0, k = 1, 2, . . . ,K,

N∑
i=1

D
(ℓ)
ik

[
(yi − µk)

2

σ2k
− 1

]
= 0, k = 1, 2, . . . ,K

Again, solving the above 2K equations with respect to µk and σ2k respectively provides
the following updated estimates of the parameters

µ
(ℓ+1)
k =

1

n
(ℓ)
k

N∑
i=1

D
(ℓ)
ik yi, k = 1, 2, . . . ,K, (3.17)

(
σ2k
)(ℓ+1)

=
1

n
(ℓ)
k

N∑
i=1

D
(ℓ)
ik

(
yi − µ

(ℓ+1)
k

)2
, k = 1, 2, . . . ,K. (3.18)

A certain difficulty with the EM algorithm is that it stops working whenever
(σ2k)

(ℓ) is numerically close to zero, which happens when D
(ℓ)
ik is close to zero for

many observations yi. Then, the computation of D(ℓ+1)
ik at the next iteration is no

longer possible. Such difficulties arise in particular if the EM algorithm is applied to
a mixture of Normals over-fitting the true number of components.

A further difficulty with ML estimation for univariate mixtures of Normal distri-
butions is that the mixture likelihood function is generally unbounded and has many
spurious local modes. Thus, the ML estimator as a global maximiser of the mixture
likelihood does not exist. Nevertheless, statistical theory guarantees that a particular
local maximiser is consistent, efficient and asymptotically Normal, if the mixture is
not over-fitting the true number of components.

3.3.3 Finite Mixtures of Multivariate Normal Distributions

Mixtures of Normals can be easily extended to deal with multivariate observations,
which consist of d-dimensional vectors. In this case, the various observations typically
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measure d distinct features of a unit i. Such a mixture density is given as

f(y;ϑ) =
K∑
k=1

pk |2πΣk|−
1
2 exp

{
−
(y − µk)

TΣ−1
k (y − µk)

2

}
. (3.19)

One has to take into consideration the fact that a multivariate mixture of Nor-
mal distributions with general variance-covariance matrices is highly parametrised in
terms of K

[
d+ d(d+1)

2 + 1
]
− 1 distinct model parameters. Hence, an unconstrained

multivariate mixture may turn out to be too general to handle in various situations.

Other interesting multivariate finite mixture models are obtained by putting cer-
tain constraints on the variance-covariance matrices. For example, in a homoscedastic
mixture, the variance-covariance matrices are restricted to be the same in each com-
ponent, whereas in a spherical mixture, we have Σk = σ2kId for all components.
Furthermore, similar issues, as in the univariate case, may present themselves, if the
matrix Σ

(ℓ)
k is singular, or at least nearly singular, at a certain iteration.

Now, we take the intermediate quantity of EM for a mixture of multivariate
Normal distributions in the same way as before

Q
(
ϑ;ϑ(ℓ)

)
=

N∑
i=1

K∑
k=1

D
(ℓ)
ik

[
log pk −

d log(2π)
2

+
log
∣∣Σ−1

k

∣∣
2

−
(yi − µk)

TΣ−1
k (yi − µk)

2

]
. (3.20)

Derivation with respect to µk and then with respect to Σ−1
k produces the following

two sets of equations

Σ−1
k

N∑
i=1

D
(ℓ)
ik (yi − µk) = 0, k = 1, 2, . . . ,K,

N∑
i=1

D
(ℓ)
ik

[
Σk − (yi − µk)(yi − µk)

T
]
= 0, k = 1, 2, . . . ,K.

And so, the updated estimates we obtain from the above sets of equations perfectly
mirror the corresponding estimates given in the univariate case, i.e.

µ
(ℓ+1)
k =

1

n
(ℓ)
k

N∑
i=1

D
(ℓ)
ik yi, k = 1, 2, . . . ,K, (3.21)

Σ
(ℓ+1)
k =

1

n
(ℓ)
k

N∑
i=1

D
(ℓ)
ik

(
yi − µ

(ℓ+1)
k

)(
yi − µ

(ℓ+1)
k

)T
, k = 1, 2, . . . ,K. (3.22)
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Chapter 4

Bayesian Inference for Missing
Data Problems

4.1 Introduction

The spirit of this chapter is different, in that it covers the fully Bayesian ap-
proaches to missing data problems, which means that, besides the latent variables
and their conditional, parametrised distributions, the model parameters are assigned
probability distributions, called prior distributions. Moreover, inferences on these
parameters are of Bayesian nature, that is, based on the posterior distributions of the
parameters, given the observations.

We remark that the distinction between data and parameters is somewhat blurred
in a Bayesian setting, since both are essentially treated as random variables. For this
reason, inference on the parameters of the model, as well as on the latent variables, as
discussed in the previous section, must be based on the respective marginal posterior
distributions, given the observations y.

In Bayesian problems where there is a single unknown parameter, the notion of
conjugacy allows the effect of the data on our prior beliefs to be summarised in terms
of a simple, well-known and easy to handle distribution. When dealing specifically
with missing data problems in a Bayesian setting, however, three issues have to be
considered.

First, in the presence of missing data, the observed likelihood function is difficult
to handle, or even impossible to calculate analytically, if we want to compute the
posterior distribution of the parameters. One way to solve this problem is to aug-
ment the observed data with the latent variables and work with the complete-data
likelihood instead.

Secondly, in multi-parameter Bayesian problems, it is necessary to estimate the
quantities of interest, such as posterior means or posterior probabilities, using a Monte
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Carlo approach. However, simulating from an arbitrary high dimensional distribu-
tion is usually difficult, if not impossible, to do directly. Instead, Markov Chain
Monte Carlo (MCMC) methods are used to simulate a Markov chain, whose station-
ary or limiting distribution is the posterior distribution of interest. These sampling
algorithms are implemented in Bayesian statistics in order to provide random draws
from the posterior distribution of the parameters, which can then in turn be used to
approximate any quantity of interest.

Lastly, although in many problems with a single unknown parameter it is usually
possible to find useful conjugate priors, in higher dimensional situations, the con-
jugate families end up being highly complex and difficult to summarise. However,
many Bayesian problems, including several missing data problems, exhibit condi-
tional conjugacy. That is, the conditional posterior distributions of the parameters
belong to the same families of distributions as the priors. The concept of conditional
conjugacy is crucial in the construction of one of the most basic forms of MCMC,
the Gibbs sampler, which samples from the conditional posterior distributions of the
parameters.

4.2 Gibbs Sampling with Data Augmentation

Data augmentation is a statistical technique which adds further random variables
to the model. These can be viewed as data or parameters, depending on the context,
but the interpretation is not really relevant for the workings of the method. In
missing data problems, the hidden data x are naturally the additional variables to be
included in the model. So, we move from the likelihood f(y|θ), which is intractable,
to f(y,x|θ), which is easy to handle. After assigning a prior π(θ) to the original
parameter vector θ, the joint posterior distribution of (θ,x) is proportional to

π(θ,x|y) ∝ f(y,x|θ)π(θ) = f(y|x,θ)f(x|θ)π(θ). (4.1)

The technique proceeds, by carrying out Gibbs sampling, to sample successively
from θ and x and produce a sample from this joint posterior distribution. The Gibbs
sampler obtains a sample from π(θ,x|y) by successively and iteratively simulating
from the conditional posterior distributions of each parameter, given the others. Un-
der conditional conjugacy, this simulation step is usually straightforward. Given
initial values

(
θ(0),x(0)

)
, the algorithm iterates the following steps

• Simulate θ(ℓ+1) from the conditional posterior distribution π
(
θ
∣∣x(ℓ),y

)
.

• Simulate x(ℓ+1) from the conditional posterior distribution π
(
x
∣∣θ(ℓ+1),y

)
.
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Of course, since both θ and x are generally vector-valued quantities in missing
data problems, the above steps can be broken down so that each parameter θi of
the vector θ = (θ1, θ1, . . . , θd) is sampled from its conditional posterior distribution,
π
(
θi

∣∣∣θ(ℓ+1)
1:i−1 ,θ

(ℓ)
i+1:d,x(ℓ),y

)
, and the same applies to the latent variables x.

Under mild regularity conditions, convergence of the Markov chain to the sta-
tionary distribution π(θ,x|y) is guaranteed. So, after a burn-in period L0, that is,
a starting number of iterations for which the draws are discarded, the subsequent
draws

(
θ(1),x(1)

)
,
(
θ(2),x(2)

)
, . . . ,

(
θ(L),x(L)

)
can be regarded as realisations from

this posterior distribution. Furthermore, it is really important to understand at this
point that the ith component of each of the draws θ(ℓ) constitutes a sample from
the marginal posterior distribution π(θi|y) and not from the conditional posterior
distribution π(θi|θ−i,x,y).

Once we obtain a sample from π(θ,x|y), we can approximate any feature of the
posterior distribution using its empirical counterpart from the simulated draws. For
example, we can approximately compute

E (g(θ)|y)) ≈ 1

L

L∑
ℓ=1

g(θ(ℓ)), (4.2)

for any function g(θ), whose posterior expectation exists.

4.3 Bayesian Inference for a Finite Mixture Model

For a finite mixture model three kinds of statistical inference problems have to
be taken into consideration. First, modelling of the data by a finite mixture model
requires some specification of the number of components K. Statistical inference for
unspecified number of components is a delicate matter, so, for the time being, we
are going to assume that K is fixed and known. Second, the component parameters
θ1,θ2, . . . ,θK and the weight distribution p should be estimated from the observed
data. Finally, each observation yi needs to be assigned to a certain component, in
order to make inference on the hidden discrete indicators S.

There are various reasons why one might be interested in adopting a Bayesian
approach for finite mixture models. First, the inclusion of a proper prior within a
Bayesian approach will generally introduce a smoothing effect on the mixture likeli-
hood function and reduce the risk of obtaining spurious modes, in cases where the EM
algorithm leads to degenerate solutions. Secondly, as the whole posterior distribution
π(ϑ|y) is available, it is much easier to address the issue of parameter uncertainty.
Finally, Bayesian estimation does not rely on asymptotic Normality and yields valid
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inference even in cases where some regularity conditions are violated, such as small
data sets and mixtures with negligible component weights.

Once again, we begin our analysis by rewriting the complete-data likelihood in a
way that makes it more convenient to combine it with a suitable prior distribution
on the parameter vector ϑ. That is

f(y, s|ϑ) = f(s|p)f(y|s,θ) =
K∏
k=1

p
Nk(s)
k ·

K∏
k=1

∏
i:si=k

f(yi|θk), (4.3)

where Nk(s) =
N∑
i=1

1{si = k} is counting the number of observations allocated to

component k.

When regarded as a function of ϑ, the complete-data likelihood exhibits a rather
convenient structure that highly facilitates parameter estimation. It reduces to the
product of K + 1 factors, with the first depending only on the weight distribution p,
whereas the last K factors depend on a certain component parameter θk. Hence, if
the weight distribution and the component parameters are assumed to be independent
a priori, then Bayesian estimation can be carried out separately for each of them.

4.3.1 Complete-Data Estimation of the Weight Distribution

For complete-data Bayesian estimation of the weights, the complete-data likeli-
hood f(s|p) is combined with a prior distribution π(p), to obtain the posterior dis-
tribution of the weights. Due to the constraint p1+p2+ · · ·+pK = 1, the component
weights are not independent.

The complete-data likelihood f(s|p), when regarded as a function of s, is propor-
tional to the probability mass function of a Multinomial distribution. The conjugate
family for the multinomial likelihood is the Dirichlet family of distributions. We
assume p ∼ Dir(a1, a2, . . . , aK), where

π(p) ∝
K∏
k=1

pak−1
k , (4.4)

leading to the following posterior distribution

π(p|s) ∝
K∏
k=1

p
Nk(s)+ak−1
k . (4.5)
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Of course, equation 4.5 corresponds to the density of a Dirichlet distribution,
i.e. p|s ∼ Dir (N1(s) + a1, N2(s) + a2, . . . , NK(s) + aK). Simulation from this dis-
tribution can be easily carried out by drawing q1, q2, . . . , qK independently, with qk

from a Gamma (Nk(s) + ak, 1) distribution, and setting q =
K∑
k=1

qk. Then, the vector(
q1
q ,

q2
q , . . . ,

qK
q

)
has a Dir (N1(s) + a1, N2(s) + a2, . . . , NK(s) + aK) distribution.

Under this Dirichlet prior, the marginal posterior of pk is easily obtained from the
joint posterior as follows

pk|s ∼ Beta

Nk(s) + ak, N −Nk(s) +
∑
j ̸=k

aj

 , k = 1, 2, . . . ,K. (4.6)

Hence, even if category k is not directly observed and Nk(s) = 0, the total number
of observations in the other categories is highly informative about pk.

Prior distributions which are common for a Bayesian analysis of latent binary
data, where the Dirichlet distribution reduces to a Beta distribution, may be applied,
such as the Uniform prior p1 ∼ Beta(1, 1) ≡ U(0, 1), Jeffreys’ prior p1 ∼ Beta

(
1
2 ,

1
2

)
or a prior that is uniform in the natural parameter of the exponential family rep-
resentation, which corresponds to the improper prior p1 ∼ Beta(0, 0). Dealing with
latent multinomial data, one could equivalently utilise the prior p ∼ Dir(1, 1, . . . , 1),
which is uniform over the unit Simplex EK , the prior p ∼ Dir

(
1
2 ,

1
2 , . . . ,

1
2

)
or the

improper prior p ∼ Dir(0, 0, . . . , 0).

Generally speaking, reference priors are prior distributions which hold a minimal
effect on the final inference, relative to the data. For a mixture of two known densities,
the reference prior for p1 is virtually Jeffreys’ prior, when the two densities are well
separated, whereas the uniform prior would approximate the reference prior, when
the densities are very close. For a mixture of more than two known densities, a
Dirichlet distribution with parameters ranging in the interval

[
1
2 , 1
]

is a reasonable
approximation to the reference prior.

4.3.2 Complete-Data Estimation of the Component-Specific
Parameters

The precise prior on the component parameters depends on the distribution family
underlying the mixture distribution. Whereas it is not possible to choose simple
conjugate priors for the mixture likelihood, f(y|ϑ), a conjugate analysis is possible
for the complete-data likelihood, f(y|s,ϑ), if the component densities in the mixture
come from the exponential family.
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To formulate a joint prior for θ1,θ2, . . . ,θK , the component parameters are as-
sumed a priori independent, given a fixed hyper-parameter δ. We have

π(θ) =
K∏
k=1

π(θk). (4.7)

Then, the conditional posterior π(θk|y, s) is given by

π(θk|y, s) ∝ π(θk)
∏

i:si=k

f(yi|θk), k = 1, 2, . . . ,K. (4.8)

In our case studies, we often make use of improper priors as uninformative priors.
Special care has to be given in such cases, in order to ensure that the posterior
obtained is, indeed, a proper distribution.

Results from a Bayesian analysis of finite mixture models are often highly de-
pendent on particular choices of hyper-parameters. In particular for mixtures with
components of small sizes, the posterior distribution of the parameters may be sens-
itive to specific choices of the hyper-parameter δ. To reduce prior sensitivity, it is
common practice to use hierarchical priors, which treat δ as an unknown quantity
with a prior π(δ) of its own. As a result θ1,θ2, . . . ,θK are dependent a priori, with

π(θ, δ) = π(δ)π(θ|δ) = π(δ)
K∏
k=1

π(θk|δ). (4.9)

Of course, conditional on δ, the component parameters are a priori independent, so
Gibbs sampling may be carried out independently for each component parameter. If
we combine the above prior distribution with f(y|s,θ), we obtain the same conditional
posterior distribution for the component parameters

π(θk|y, s, δ) ∝ π(θk|δ)
∏

i:si=k

f(yi|θk), k = 1, 2, . . . ,K. (4.10)

Additionally, the conditional posterior distribution of the hyper-parameter δ, given
θ, is calculated as

π(δ|θ) ∝ π(δ)

K∏
k=1

π(θk|δ). (4.11)

Partially proper priors are hierarchical priors where the prior π(δ) of the hyper-
parameter is improper. Although, marginally, the prior π(θk) is improper, the pos-
terior distribution is proper.
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4.3.3 Classification for Known Component Parameters

It is common to assume that the allocations, like the data, are independent,
given the component parameters. Thus, the joint posterior classification distribution
π(s|ϑ,y) is decomposed as

π(s|y,ϑ) ∝ f(s|p)f(y|s,θ) =
N∏
i=1

f(si|p)f(yi|θsi).

As a result, joint allocation of all observations may be carried out independently for
each individual observation.

Classification of a single observation yi aims at deriving the conditional probab-
ility, P (Si = k|yi,ϑ), for all possible values of k. According to Bayes’ theorem, this
probability is computed as

P (Si = k|yi,ϑ) =
pkf(yi|θk)
f(yi|ϑ)

∝ pkf(yi|θk),
i = 1, 2, . . . , N,

k = 1, 2, . . . ,K.
(4.12)

A common classification rule, also called the naive Bayes’ classifier, assigns each
observation to the component with highest posterior probability, since this minim-
ises the expected misclassification risk. The performance of this classification rule
depends on the difference between the true parameter values in the various mixture
components.

Rearranging the above equation and substituting it into (3.8), allows us to once
again rewrite the complete-data likelihood, as

f(y, s|ϑ) =
N∏
i=1

f(yi;ϑ) ·
N∏
i=1

K∏
k=1

P (Si = k|yi,ϑ)
1{Si=k}.

Taking the logarithm of both sides yields the following relation between the mixture
likelihood and the complete-data likelihood functions

log f(y|ϑ) = log f(y, s|ϑ)−
N∑
i=1

K∑
k=1

1{Si = k} logP (Si = k|yi,ϑ).

The second right-hand term is a measure of loss of information in the mixture likeli-
hood, compared to the complete-data likelihood function, which becomes zero, when
the mixture model enables perfect allocation.

A general way of assessing the quality of the classification based on Bayes’ rule,
is to consider the entropy H(S|y,ϑ) of f(S|y,ϑ), which is the expectation of the
aforementioned term with respect to the classification distribution f(S|y,ϑ). It is
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defined as

H(S|y,ϑ) = −
N∑
i=1

K∑
k=1

P (Si = k|yi,ϑ) logP (Si = k|yi,ϑ) ≥ 0. (4.13)

For a fixed value of ϑ, the entropy is a measure of how well the data are classified
given a mixture distribution defined by ϑ. The entropy is 0 for a perfect classification,
where for all observations P (Si = ki|yi,ϑ) = 1 for a certain value of ki, otherwise the
entropy may be considerably larger.

4.4 Application to Finite Mixture Models

We have already discussed the factorisation of the complete-data likelihood and,
as seen in the previous section, a similar structure has been assumed for the prior
density π(ϑ, δ)

π(ϑ, δ) = π(p)π(δ)π(θ|δ) ∝ π(δ)

K∏
k=1

π(θk|δ)pak−1
k . (4.14)

Under this prior choice, the complete-data posterior π(ϑ, δ, s|y) factorises in the same
convenient way

π(ϑ, δ, s|y) ∝ f(s|p)f(y|s,θ)π(p)π(δ)π(θ|δ)

∝ π(δ) ·
K∏
k=1

p
Nk(s)+ak−1
k ·

K∏
k=1

π(θk|δ) ∏
i:si=k

f(yi|θk)

 . (4.15)

Sampling from this posterior distribution is most commonly implemented by the
following Gibbs sampling scheme, where the conditional posterior distributions re-
quired are calculated exactly as discussed in the previous section. In other words,
the component parameters ϑ are sampled conditional on knowing the allocations s,
whereas the allocations are sampled conditional on knowing the component paramet-
ers. Starting with some initial values

(
δ(0), s(0)

)
, we iterate the following steps

• Sample the weight distribution p(ℓ+1) from the complete-data posterior distri-
bution Dir

(
N1

(
s(ℓ)
)
+ a1, N2

(
s(ℓ)
)
+ a2, . . . , NK

(
s(ℓ)
)
+ aK

)
, given by (4.5).

• Sample the component parameters θ(ℓ+1)
1 ,θ

(ℓ+1)
2 , . . . ,θ

(ℓ+1)
K independently from

the conditional posteriors π
(
θk
∣∣y, s(ℓ), δ(ℓ) ), given by (4.10).

• Sample the hyper-parameter δ(ℓ+1) from the conditional posterior π
(
δ
∣∣θ(ℓ+1)

)
,

given by (4.11).
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• Sample the allocations s(ℓ+1)
1 , s

(ℓ+1)
2 , . . . , s

(ℓ+1)
N independently from the discrete

distribution π
(
Si
∣∣yi,ϑ

(ℓ+1)
)
, given by (4.12).

4.4.1 Finite Mixtures of Poisson Distributions

For mixtures of Poisson distributions, Bayesian inference for the complete data
problem leads to the conditionally conjugate prior λk|B ∼ Gamma(b,B), where both
b and B have to be positive to obtain a proper posterior distribution. A hierarchical
prior is obtained by assuming that B is a random parameter with a prior of its own,
that is, B ∼ Gamma(g,G).

Each of the conditional posteriors π(λk|y, s, B) can be handled within this con-
jugate setting. From Bayes’ theorem we obtain

π(λk|y, s, B) ∝ λ
Sk(y,s)+b−1
k e−(Nk(s)+B)λk , k = 1, 2, . . . ,K, (4.16)

which is a Gamma (Sk(y, s) + b,Nk(s) +B) distribution. Notice that we have intro-
duced the notation Sk(y, s) =

∑
i:si=k

yi.

Under this hierarchical prior, B has to be sampled from the conditional posterior
distribution π(B|λ), also given by Bayes’ theorem as

π(B|λ) ∝ BKb+g−1 exp
{
−

(
K∑
k=1

λk +G

)
B

}
, (4.17)

which is a Gamma
(
Kb+ g,

K∑
k=1

λk +G

)
distribution.

Estimation is rather insensitive to the choice of the parameter g, so it could be
chosen as g = 0.5. Additionally, fixing b around 1, one could choose G = gȳ

b . Full-
conditional Gibbs sampling proceeds along the lines indicated by the algorithm for
general mixtures of distributions, where the results of this section are used to sample
the parameter in each group. Hence, MCMC estimation of a mixture of Poisson
distributions, with initial values

(
B(0), s(0)

)
, consists of iterating the following steps

• Sample the weight distribution p(ℓ+1) from the complete-data posterior distri-
bution Dir

(
N1

(
s(ℓ)
)
+ a1, N2

(
s(ℓ)
)
+ a2, . . . , NK

(
s(ℓ)
)
+ aK

)
.

• Sample the component parameters λ(ℓ+1)
1 , λ

(ℓ+1)
2 , . . . , λ

(ℓ+1)
K independently from

the posteriors π
(
λk
∣∣y, s(ℓ), B(ℓ)

)
, given by (4.16).

• Sample the hyper-parameter B(ℓ+1) from the posterior π
(
B
∣∣λ(ℓ+1)

)
, given by

(4.17).
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• Sample s(ℓ+1)
1 , s

(ℓ+1)
2 , . . . , s

(ℓ+1)
N independently according to the posterior prob-

abilities P
(
Si = k

∣∣yi,ϑ(ℓ+1)
)
∝ p

(ℓ+1)
k e−λ

(ℓ+1)
k

(
λ
(ℓ+1)
k

)yi
for i = 1, 2, . . . , N and

k = 1, 2, . . . ,K.

4.4.2 Finite Mixtures of Univariate Normal Distributions

In mixtures of univariate Normal distributions, when holding the variance σ2k fixed,
the complete-data likelihood function, regarded as a function of µk, is the kernel of
a univariate Normal distribution. Under the conjugate prior µk|b ∼ N (b,B), the
conditional posterior density of µk is

π
(
µk
∣∣y, s, σ2k, b) ∝ exp

{
−
BNk(s) + σ2k

2Bσ2k
µ2k +

BSk(y, s) + bσ2k
Bσ2k

µk

}
, (4.18)

for k = 1, 2, . . . ,K, which corresponds to a N
(
BSk(y, s) + bσ2k
BNk(s) + σ2k

,
Bσ2k

BNk(s) + σ2k

)
dis-

tribution.

On the other hand, when holding the mean µk fixed, the complete-data likelihood,
regarded as a function of σ2k, is the kernel of an inverse Gamma density. Under the
conjugate prior σ2k

∣∣C ∼ Inv-Gamma(c, C), the posterior density of σ2k is

π
(
σ2k
∣∣y, s, µk, C) ∝ (σ2k)−Nk(s)

2
−c−1 exp

{
−
(
Vk(y, s)

2
+ C

)
1

σ2k

}
, (4.19)

for k = 1, 2, . . . ,K which is an Inv-Gamma
(
Nk(s)

2
+ c,

Vk(y, s)
2

+ C

)
distribution

with Vk(y, s) =
∑

i:si=k

(yi − µk)
2.

The hyper-parameter C can be treated as unknown with a prior of its own, that
is, C ∼ Gamma(g,G). For this hierarchical prior, sampling has to be carried out
from the conditional posterior density π

(
C
∣∣σ2

)
, given by Bayes’ theorem as

π
(
C
∣∣σ2

)
∝ CKc+g−1 exp

{
−

(
K∑
k=1

1

σ2k
+G

)
C

}
, (4.20)

which is obviously the kernel of a Gamma
(
Kc+ g,

K∑
k=1

1

σ2k
+G

)
distribution.

A partly proper prior for the variances arises for g = G = 0, which leads to
the standard improper prior π(C) ∝ C−1 for the scale parameter. Even though the
marginal prior distribution of each σ2k also ends up with the usual improper reference
prior, π

(
σ2k
)
∝ σ−2

k , the posterior distribution is proven to be proper.
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Similarly, if b is an unknown hyper-parameter with improper prior π(b) ∝ 1, then
b is sampled from π(b|µ), given by

π(b|µ) ∝ exp
{
− K

2B
b2 +

b

B

K∑
k=1

µk

}
, (4.21)

which corresponds to a N
(

1

K

K∑
k=1

µk,
B

K

)
distribution.

For our studies, we select c = 2, g = 0.2, fix B to the square of the range
of the observation interval and set G = 100g

cB . Starting with some initial values((
σ2
)(0)

, C(0), b(0), s(0)
)

, we iterate the following steps

• Sample the weight distribution p(ℓ+1) from the complete-data posterior distri-
bution Dir

(
N1

(
s(ℓ)
)
+ a1, N2

(
s(ℓ)
)
+ a2, . . . , NK

(
s(ℓ)
)
+ aK

)
.

• Sample the component means µ(ℓ+1)
1 , µ

(ℓ+1)
2 , . . . , µ

(ℓ+1)
K independently from the

posteriors π
(
µk

∣∣∣y, s(ℓ), (σ2k)(ℓ) , b(ℓ)), given by (4.18).

• Sample the component variances
(
σ21
)(ℓ+1)

,
(
σ22
)(ℓ+1)

, . . . ,
(
σ2K
)(ℓ+1) independ-

ently from the posteriors π
(
σ2k

∣∣∣y, s(ℓ), µ(ℓ+1)
k , C(ℓ)

)
, given by (4.19).

• Sample the variance scale hyper-parameter C(ℓ+1) from the conditional posterior
π
(
C
∣∣∣(σ2

)(ℓ+1)
)

, given by (4.20).

• Sample the mean position hyper-parameter b(ℓ+1) from the conditional posterior
π
(
b
∣∣µ(ℓ+1)

)
, given by (4.21).

• Sample the allocations s(ℓ+1)
1 , s

(ℓ+1)
2 , . . . , s

(ℓ+1)
N independently according to

P
(
Si = k

∣∣∣yi,ϑ(ℓ+1)
)
∝
p
(ℓ+1)
k

σ
(ℓ+1)
k

exp

−

(
yi − µ

(ℓ+1)
k

)2
2
(
σ2k
)(ℓ+1)

 ,
i = 1, 2, . . . , N,

k = 1, 2, . . . ,K.

4.4.3 Finite Mixtures of Multivariate Normal Distributions

Similarly to the univariate case, the complete-data likelihood function of a mul-
tivariate Normal mixture, regarded as a function of µk, when holding the variance-
covariance matrix Σk fixed, is the kernel of a multivariate Normal distribution. Under
the conjugate prior µk ∼ Nd(b,B), the conditional posterior density of µk is

π(µk|y, s,Σk) ∝ exp
{
−
µT
k

(
Nk(s)Σ−1

k + B−1
)
µk

2
+ µT

k

(
Σ−1

k Sk(y, s) + B−1b
)}

,

(4.22)
for k = 1, 2, . . . ,K, which is a Nd

(
Bk(s,Σk)

(
Σ−1

k Sk(y, s) + B−1b
)
,Bk(s,Σk)

)
dis-

tribution with Bk(s,Σk) =
(
Nk(s)Σ−1

k + B−1
)−1.
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On the other hand, when holding the mean µk fixed, the complete-data likelihood,
regarded as a function of Σk, is the kernel of an inverse Wishart density. Under the
conjugate inverse Wishart prior, Σk|C ∼ W−1

d (C, c), the posterior density of Σk is

π (Σk|y, s,µk,C) ∝ |Σk|−
Nk(s)+c+d+1

2 exp
{
−1

2
tr
[
(Vk(y, s) + C)Σ−1

k

]}
, (4.23)

for k = 1, 2, . . . ,K, which is also an inverse Wishart W−1
d (Vk(y, s) + C, Nk(s) + c)

distribution with Vk(y, s) =
∑

i:si=k

(yi − µk)(yi − µk)
T .

Again, the hyper-parameter C can be treated as unknown with a Wishart prior
C ∼ Wd(G, g). The conditional posterior density π(C|Σ) is given by

π(C|Σ) ∝ |C|
Kc+g−d−1

2 exp
{
−1

2
tr
[(

K∑
k=1

Σ−1
k + G−1

)
C
]}

, (4.24)

which is obviously equal to the kernel of a Wishart Wd (G(Σ),Kc+ g) distribution

with G(Σ) =

(
K∑
k=1

Σ−1
k + G−1

)−1

.

We select c = 2.5 + d−1
2 , g = 0.1 · c, fix each element of b to the midpoint of the

observation interval of the corresponding component of y, each diagonal element of B
to the square of the range of the observation interval of the corresponding component
of y and set G = 10 · B−1. Finally, to implement the Gibbs sampler, we begin with
some initial values

(
Σ(0),C(0), s(0)

)
and iterate the following steps

• Sample the weight distribution p(ℓ+1) from the complete-data posterior distri-
bution Dir

(
N1

(
s(ℓ)
)
+ a1, N2

(
s(ℓ)
)
+ a2, . . . , NK

(
s(ℓ)
)
+ aK

)
.

• Sample the component means µ
(ℓ+1)
1 ,µ

(ℓ+1)
2 , . . . ,µ

(ℓ+1)
K independently from the

posteriors π
(
µk

∣∣∣y, s(ℓ),Σ(ℓ)
k

)
, given by (4.22).

• Sample the covariance matrices Σ
(ℓ+1)
1 ,Σ

(ℓ+1)
2 , . . . ,Σ

(ℓ+1)
K independently from

the posteriors π
(
Σk

∣∣∣y, s(ℓ),µ(ℓ+1)
k ,C(ℓ)

)
, given by (4.23).

• Sample the hyper-parameter C(ℓ+1) from the posterior π
(

C
∣∣∣Σ(ℓ+1)

)
, given by

(4.24).

• Sample the allocations s(ℓ+1)
1 , s

(ℓ+1)
2 , . . . , s

(ℓ+1)
N independently according to

P
(
Si = k

∣∣∣yi,ϑ
(ℓ+1) s

)
∝

p
(ℓ+1)
k

∣∣∣Σ(ℓ+1)
k

∣∣∣−1/2
exp

−

(
yi − µ

(ℓ+1)
k

)T (
Σ

(ℓ+1)
k

)−1 (
yi − µ

(ℓ+1)
k

)
2

 ,

for i = 1, 2, . . . , N and k = 1, 2, . . . ,K.
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4.5 Identifiability Issues

Now, we have to broach the more formal issue of identifiability of a mixture dis-
tribution, which is essential for parameter estimation. For mixtures of probability
distributions, one has to distinguish among three types of non-identifiability. Non-
identifiability due to invariance to relabelling the components of the mixture distribu-
tion and due to potential over-fitting may be ruled out through formal identifiability
constraints. The last type of non-identifiability is a generic property of certain classes
of mixture distributions.

4.5.1 Label Switching

Figure 4.1: MCMC Draws Displaying Label Switching

The term label switching refers to the invariance of the mixture distribution to re-
labelling the components of the mixture. For a general finite mixture distribution with
K components, there exist K! equivalent ways of arranging these components. Each
of them may be described in terms of a permutation σ : {1, 2, . . . ,K} → {1, 2, . . . ,K},
where the value σ(k) is assigned to each value k ∈ {1, 2, . . . ,K}.

Let ϑ = (θ1, . . . ,θK , p1, . . . , p,) be an arbitrary point in the parameter space
ΘK = ΘK × EK . Any point ϑ∗ =

(
θσ(1), . . . ,θσ(K), pσ(1), . . . , pσ(K)

)
generates the

same mixture density as ϑ, which is easily seen by rearranging the components of the
mixture density according to the permutation σ

f(y|ϑ) = p1f(y|θ1) + · · ·+ pKf(y|θK)

= pσ(1)f
(
y|θσ(1)

)
+ · · ·+ pσ(K)f

(
y|θσ(K)

)
= f(y|ϑ∗).
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There exist K! such different parameters ϑ∗, if and only if all K component
parameters θ1, . . . ,θK are distinct points in Θ. The set contains only K!

L! distinct
parameters ϑ∗, if L among the K component parameters θ1, . . . ,θK of ϑ are identical.
Thus, for each ϑ with at east two distinct component parameters θk and θj , the
corresponding mixture distribution is non-identifiable.

Because the components in a mixture density may be arbitrarily arranged, it
is usual to choose priors which reflect this attribute by being themselves invariant
to relabelling the components. A prior density π(ϑ) is invariant to relabelling the
components of the mixture model if the identity π(ϑ∗) = π(ϑ) holds for all ϑ and for
any of the K! permutations σ of {1, 2, . . . ,K}.

Label switching is of no concern for maximum likelihood estimation, where the
goal is to find one of the equivalent modes of the likelihood function. In the context
of Bayesian estimation, however, label switching has to be addressed explicitly, as, in
the course of sampling from the mixture posterior distribution, the labelling of the
unobserved categories may potentially change.

Invariance of the Mixture Posterior Distribution

The mixture posterior density π(ϑ|y) is, to a large extent, dominated by the
mixture likelihood function f(y|ϑ). Under an invariant prior distribution, the mixture
posterior distribution inherits the invariance of the mixture likelihood and it holds
that π(ϑ∗|y) = π(ϑ|y).

The invariance property of the mixture posterior density causes state independ-
ence of many functionals derived from the posterior distribution, which at first sight
appear to be component-specific. Consider, as an example, the marginal distribution
of the component parameter θk, which is defined as

π(θk|y) =
∫
ΘK−1×EK

π(ϑ|y)dpdθ1 · · · dθk−1dθk+1 · · · dθK

=

∫
ΘK−1×EK

π(ϑ∗|y)dpdθσ(1) · · · dθσ(k−1)dθσ(k+1) · · · dθσ(K) = π(θσ(k)|y).

Because this applies for all permutations σ of {1, 2, . . . ,K}, the marginal posterior
densities π(θk|y) are actually state-independent and the identity π(θk|y) = π(θj |y)
holds for all k, j ∈ {1, 2, . . . ,K}. It could be proven, in a similar way, that the
marginal posterior density of the component weight pk is state-independent and that
the identity π(pk|y) = π(pj |y) is valid for all k, j ∈ {1, 2, . . . ,K}.

The posterior mean is a commonly used point estimator, which is optimal with
respect to a quadratic loss function. It follows, from the previous discussion, that the
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seemingly component-specific means of θk and pk are also actually state-independent,
i.e. E(θk|y) = E(θj |y) and E(pk|y) = E(pj |y) for any k, j ∈ {1, 2, . . . ,K}. As a
result, the mean E(ϑ|y) of the mixture posterior is not a sensible point estimator for
the component parameters and the weight distribution.

State invariance occurs also for the seemingly component-dependent allocations
S. The marginal posterior distribution π(s|y) is defined as

π(s|y) =
∫
ΘK

π(s,ϑ|y)dϑ =

∫
ΘK

π(s∗,ϑ∗|y)dϑ∗ = π(s∗|y),

where s∗ = (σ(s1), σ(s2), . . . , σ(sK)). Consequently, it turns out that the marginal
posterior probability P (Si = k|y) is state-independent and equal to 1

K regardless of
the data.

Model Identification

Inference on functionals of ϑ which are not invariant to relabelling the components
of the finite mixture is sensible only if the posterior draws come from a unique labelling
subspace of the unconstrained parameter space. Gibbs sampling may lead to implicit
model identification if the K! modal regions of the mixture posterior density are well-
separated and the sampler is trapped in one of them. Nevertheless, this is not always
the case.

To achieve model identification, one strategy is to relabel the posterior draws ϑℓ in
such a way that draws from a unique labelling subspace result. A common reaction to
the label switching problem is to impose some formal identifiability constraint within
sampling-based Bayesian estimation.

An inequality constraint on the component parameters forces a unique labelling.
For mixtures with a univariate component parameter θk, this condition evidently
reads θ1 < θ2 < · · · < θK . For mixtures with a multivariate component parameter,
one could require only that any two parameters θk and θj differ in at least one element,
which does not need be the same for all components. Naturally, the identification of
a valid constraint in higher dimensions may be somewhat of a challenge.

A straightforward method to impose a constraint on the posterior draws is to
post-process the MCMC draws which were generated from the mixture posterior.
Whenever a draw does not satisfy the constraint, one permutes the labelling of the
components in such a way that the constraint is fulfilled. It can be proven that this
method actually delivers a sample from the constrained posterior.
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As a more automatic procedure, it is suggested to permute the MCMC draws ob-
tained from unconstrained sampling by utilising a clustering procedure. For example,
a k-means clustering algorithm with K! clusters, which is initialised from the first
100 draws, after reaching burn-in, by defining K! reference centres from these draws,
could be used. For each MCMC draw θℓ, the distance to each of the K! centres is
computed, which is then used to permute the labels.

4.5.2 Potential Over-Fitting

A further identifiability problem is non-identifiability due to potential over-fitting.
Any mixture with K − 1 components defines a non-identifiability subset in the larger
parameter space ΘK , where either one component is empty or two components are
equal.

Indeed, any mixture of K − 1 distributions may be written as a mixture of K
distributions by adding another component with weight pK = 0 as evidenced below

f(y|ϑ) = p1f(y|θ1) + · · ·+ pK−1f(y|θK−1)

= p1f(y|θ1) + · · ·+ pK−1f(y|θK−1) + 0 · f(y|θK).

In the parameter space ΘK , the parameter ϑ corresponding to this mixture lies in a
non-identifiability set, as the density f(y|ϑ) is the same for arbitrary values of θK .

The same non-identifiability set results if a mixture of K distributions is generated
by splitting one component of a mixture of K − 1 distributions into two as follows

f(y|ϑ) = p1f(y|θ1) + · · ·+ pK−1f(y|θK−1)

= p1f(y|θ1) + · · ·+ (pk − pK)f(y|θk) + · · ·+ pK−1f(y|θK−1) + pKf(y|θk).

Again, the parameter vector ϑ lies in a non-identifiability set, as the density f(y|ϑ) is
the same for arbitrary values of pK with 0 ⩽ pK ⩽ pk. Furthermore, this is the same
non-identifiability set as the above. A positivity constraint on the weights avoids
non-identifiability due to empty components, whereas an inequality condition on the
component parameters avoids non-identifiability due to equal components.

Unfortunately, label switching is unavoidable for a model which is over-fitting the
number of components. Consequently, it is not sensible to try model identification
for such a mixture. Rather, it may be desirable to apply a prior which is informative
enough to bound the posterior away from the non-identifiability sets.

To avoid sampling mixtures with empty components, it is sensible to select a
Dir(a1, a2, . . . , ak) prior for the weight distribution with ak > 1 for k = 1, 2, . . . ,K.
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Consequently, two of the component parameters will be pulled together to capture
over-fitting and observations are then allocated more or less randomly between these
components. Therefore, sampling of component parameters from the prior is avoided,
which increases the stability of the sampler.

To avoid sampling mixtures with two identical components, it often helps to
modify the prior on the component parameters, by increasing prior shrinkage for
elements of the component parameter θk which are not extremely distinctive between
the components. Simultaneously, too strong a shrinkage for elements of the compon-
ent parameter θk which differ between the components should be avoided.

4.5.3 Generic Identifiability

Generic identifiability of a certain family of finite mixture distributions is a class
property, which does not respond to formal identifiability constraints. It has been
shown that a family of mixture distributions is generically identifiable if and only if the
members of the underlying distribution are linearly independent over the field of real
numbers. However, it is often easier to verify identifiability through some transform
of the underlying distribution, such as the characteristic or the moment-generating
function.

As an example, for a mixture of Normal distributions with common variance, the
identity

K∑
k=1

pke
iµkze−σ2z2/2 = 0,

pertaining to the characteristic function of the component densities, is possible for
all z ∈ R if and only if p1 = p2 = · · · = pk = 0.

Many mixtures of univariate continuous densities, such as mixtures of Normal
or Gamma distributions, are generically identifiable. These results may be extended
to multivariate families, such as multivariate mixtures of Normal distributions. On
the other hand, not all mixtures of discrete distributions are identifiable, as can be
demonstrated for a mixture of Bin(n, p) distributions with n < 2K − 1. Mixtures of
Poisson or Negative Binomial distributions though are, indeed, identifiable.
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Chapter 5

Applications to Hidden Markov
Models

5.1 Introduction

We now turn to the application of the algorithms discussed in Chapters 3 and
4 on the class of discrete-time, finite state-space hidden Markov models. A funda-
mental issue in hidden Markov modelling, is drawing inference on the unobserved
state sequence X. As already glimpsed in Chapter 2, calculation of the conditional
distribution of a state Xk given the observations y, which is generally referred to as
a smoothing distribution, may prove to be a considerable task.

There exist a variety of smoothing approaches with computational cost that only
increases linearly with the number of observations. This is only made possible by
the fact that, conditional on the observations y, the state sequence still constitutes a
Markov chain, albeit a non-homogeneous one.

Of course exact numerical evaluation of the quantities involved in the smoothing
recursions discussed in this chapter is only feasible in particular classes of HMMS, like
the class of finite state-space HMMs and the Gaussian linear state-space models. In
all other cases, one must consider approximate smoothing methods based on Monte
Carlo simulations.

Smoothing is crucial in the implementation of all the algorithms discussed in the
previous chapters to make inferences on HMMs. Having calculated and stored the
aforementioned conditional distributions of each state Xk, one may then utilise them
to calculate the intermediate quantity of EM for implementation of the EM algorithm
or propose a sampling scheme for the realisations of the underlying Markov chain
within a Gibbs sampler.
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5.2 State Inference

In what follows, we denote by ϕk:ℓ|m the conditional distribution of Xk:ℓ given
y0:m for any positive indices k, ℓ and m with ℓ ⩾ k. Specific choices of k, ℓ and m

give rise to particular quantities of interest, such as

• Joint Smoothing: ϕ0:n|n for n ⩾ 0.

• Marginal Smoothing: ϕk|n for n ⩾ k ⩾ 0.

• Prediction: ϕk|k−1 for k ⩾ 1. It is convenient to extend this notation, to use
ϕ0|−1 as a synonym for the initial distribution ν.

• Filtering: ϕk|k for k ⩾ 0. Because the use of filtering will be prominent in the
following, this notation will be abbreviated to ϕk.

Now, for example, the conditional probabilities involved in equation (2.7) for
the calculation of the observed likelihood of an HMM can easily be recognised as
predictive probabilities.

5.2.1 The Forward-Backward Algorithm

The structure of an HMM is straightforward enough in its design that efficient
instances of this smoothing approach can all be decomposed into two systematic
phases: one in which the graph of the HMM is scanned systematically from left to
right, referred to as the forward pass, and one in which the graph is scanned in reverse
order, called the backward pass.

Forward Filtering

The objective of the forward pass is to calculate the forward filtering probabilities,
ϕk(i) = P (Xk = i|y0:k), for k = 0, 1, . . . , n, through the use of a recursive scheme.
These probabilities can be expressed through Bayes’ theorem in the following way

ϕk(i) =
P (Xk = i|y0:k−1)f(yk|Xk = i)

f(yk|y0:k−1)
=
ϕk|k−1(i)fi(yk)

ck
,
k = 0, 1, . . . , n,

i = 1, 2, . . . , r,
(5.1)

where ck = f(yk|y0:k−1) =
r∑

j=i
ϕk|k−1(j)fj(yk).

As it can be seen, in order to actually calculate the forward filtering probabilities,
we first need to calculate the predictive probabilities, ϕk|k−1(i) = P (Xk = i|y0:k−1),
for k = 1, 2, . . . , n, always keeping in mind that ϕ0|−1(i) = νi. This is achieved
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through the law of total probability

ϕk|k−1(i) =
r∑

j=1

P (Xk−1 = j|y0:k−1)P (Xk = i|Xk−1 = j) =
r∑

j=1

ϕk−1(j)pji, (5.2)

for k = 1, 2, . . . , n and i = 1, 2, . . . , r.

Hence, by utilising the initial distribution ν, one may first initialise the filtering
probabilities, ϕ0(i), for i = 1, 2, . . . , r. Afterwards, for k = 1, 2, . . . , n, one can calcu-
late the predictive probabilities, based on the filtering probabilities stored from the
previous iteration, and, then, calculate and store the next set of filtering probabilities,
using the newly calculated predictive probabilities. This is the essence of the so-called
forward filtering algorithm, described in detail below

• Initialisation: Calculate

– The normalisation constant c0 =
r∑

j=i
νjfj(y0);

– The filtering probabilities ϕ0(i) = νifi(y0)
c0

for i = 1, 2, . . . , r.

• Forward Recursion: For k = 1, 2, . . . , n, calculate

– The predictive probabilities ϕk|k−1(i) for i = 1, 2, . . . , r according to (5.2);

– The normalisation constant ck =
r∑

j=i
ϕk|k−1(j)fj(yk);

– The filtering probabilities ϕk(i) for i = 1, 2, . . . , r according to (5.1).

The computational cost of this filtering method is thus proportional to the num-
ber of observations n, and scales like r2, because of the r vector-matrix products
corresponding to equation (5.1).

Of course, having calculated and stored the aforementioned normalisation con-
stants, ck, for k = 0, 1, . . . , n, one may immediately evaluate the observed likelihood,
by rewriting equation (2.7) as Ln = L(ϑ|y0:n) =

n∏
k=0

ck. However, one should sys-

tematically opt to calculate the observed likelihood on the log scale, according to
ℓn = logLn =

n∑
k=0

log ck, rather than on a linear scale, as this form is robust to

numerical under or over-flow.

Markovian Backward Smoothing

On the other hand, the backward pass aims at calculating the marginal smooth-
ing probabilities ϕk|n(i) = P (Xk = i|y0:n) and bivariate smoothing probabilities
ϕk:k+1|n(i, j) = P (Xk = i,Xk+1 = j|y0:n) by relying exclusively on the filtering prob-
abilities calculated from the forward pass. More precisely, the bivariate smoothing
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distribution can easily be obtained using of the chain rule

ϕk:k+1|n(i, j) = P (Xk+1 = j|y0:n)P (Xk = i|Xk+1 = j,y0:k) = ϕk+1|n(j)Bk(j, i),

(5.3)
for k = 0, 1, . . . , n−1, i = 1, 2, . . . , r and j = 1, 2, . . . , r, with the probabilities denoted
by Bk(j, i) = P (Xk = i|Xk+1 = j,y0:k) constituting the backward transition kernel
of the underlying Markov chain.

From there, it is straightforward to compute the marginal smoothing probabilities
through the law of total probability as follows

ϕk|n(i) =

r∑
j=1

ϕk:k+1|n(i, j),
k = 0, 1, . . . , n,

i = 1, 2, . . . , r.
(5.4)

The backward transition probabilities Bk(j, i) can also be proven to depend solely
on the filtering distributions themselves and not on the actual data. Specifically,
applying Bayes’ theorem one may obtain

Bk(j, i) =
P (Xk = i|y0:k)P (Xk+1 = j|Xk = i)

P (Xk+1 = j|y0:k)
=

ϕk(i)pij
r∑

ℓ=1

ϕk(ℓ)pℓj

, (5.5)

for k = 0, 1, . . . , n− 1 and i, j = 1, 2, . . . , r.

In particular cases where the above denominator happens to be equal to zero for
a certain index j, then, it can be shown that the smoothing probability ϕk+1|n(j)

will also be equal to zero, so, for the purposes of this algorithm, the corresponding
probabilities Bk(j, i) can be set to arbitrary values for this particular value of j. The
Markovian backward smoothing algorithm generally proceeds as follows

• Initialisation: For i = 1, 2, . . . , r, set ϕn|n(i) = ϕn(i).

• Backward Recursion: For k = n− 1, n− 2, . . . , 0, calculate

– The backward transition probabilities Bk(j, i) for i, j = 1, 2, . . . , r accord-
ing to equation (5.5);

– The bivariate smoothing probabilities ϕk:k+1|n(i, j) for i, j = 1, 2, . . . , r

according to equation (5.3);

– The marginal smoothing probabilities ϕk|n(i) for i = 1, 2, . . . , r according
to equation (5.4).

Of course the Forward-Backward algorithm may easily be replaced by an equival-
ent Backward-Forward algorithm, where the filtering distributions are first computed
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via a backward recursion and, then, a forward Markovian decomposition is utilised
to compute the forward transition kernel.

Finally, according to the Markov property, the joint smoothing distribution can
be written as a product of the form

ϕ0:n|n(x0:n) = P (Xn = xn|y0:n)

n−1∏
k=0

P (Xk = xk|Xk+1 = xk+1,y0:k)

= ϕn(xn)

n−1∏
k=0

Bk(xk+1, xk).

(5.6)

5.2.2 The Viterbi Algorithm

In the case of finite state-space HMMs, it turns out that one may possibly achieve
a different kind of inference concerning the underlying sequence of states. This kind
of inference is non-probabilistic, in the sense that it does not provide a distributional
statement concerning the unobservable states. The result obtained is, rather, the
jointly optimal, in terms of maximal conditional probability, sequence of unknown
states, given the corresponding observations, which, in some sense, is much stronger
a result than just the marginally optimal sequence of states, given by the Forward-
Backward algorithm. It may even be that a transition xk → xk+1 of the marginally
optimal sequence is disallowed, in the sense that p(xk, xk+1) = 0.

The algorithm that makes it possible to efficiently compute the a posteriori most
likely sequence of states is known as the Viterbi algorithm. It is based on the widely
known dynamic programming principle. The key observation is the following recursive
equation for the complete-data likelihood of an HMM, which we immediately present
in log form

ℓ(ϑ|x0:k+1,y0:k+1) = ℓ(ϑ|x0:k,y0:k) + log p(xk, xk + 1) + log fxk+1
(yk+1).

Making use of the observed likelihood, ℓk, and the joint smoothing distribution, ϕ0:k|k,
discussed beforehand, we receive the following equation

ℓk+1+ logϕ0:k+1|k+1(x0:k+1) = ℓk+ logϕ0:k|k(x0:k)+ log p(xk, xk+1)+ log fxk+1
(yk+1).

The pre-eminent feature of this recursive equation is that, ignoring the observed
log-likelihoods, since they do not depend on the state sequence, the posterior log-
probability of the subsequence x0:k+1 is equal to that of x0:k up to terms that solely



48 Chapter 5. Applications to Hidden Markov Models

involve the pair (xk, xk+1). Hence, one may define

Tk(i) = ℓk + max
x0:k−1∈Xk

logϕ0:k|k(x0, x1, . . . , xk−1, i),
k = 0, 1, . . . , n,

i = 1, 2, . . . , r,

that is, up to a number independent of the state sequence, the maximal conditional
log-probability of a sequence up to time k and ending with state i. We also define
Bk(i) = arg max

xk−1∈X
Tk(i), that is, the second final state in an optimal state sequence of

length k + 1 and ending with state i. Substituting Tk(i) into the previous equation,
results in the simple recursive equation

Tk+1(j) = max
i=1,2,...,r

[Tk(i) + log pij ] + log fj(yk+1),
k = 0, 1, . . . , n− 1,

j = 1, 2, . . . , r,
(5.7)

where Bk+1(j) is the index i for which the maximum Tk(i) + log pij is achieved.

The above observations immediately lead us to formulate the Viterbi algorithm
for the computation of the a posteriori most likely sequence of states as follows

• Forward Recursion: Computation of the optimal conditional probabilities.

– For i = 1, 2, . . . , r, let T0(i) = log νi + log fi(y0).

– For k = 0, 1, . . . , n− 1, compute Tk+1(j) for all possible states j according
to equation (5.7).

• Backward Recursion: Computation of the optimal sequence of states.

– Let x̂n be the state j for which Tn(j) is maximised.

– For k = n− 1, n− 2, . . . , 0, let x̂k = Bk+1(x̂k+1).

In other words, the backward recursion first identifies the final state of the optimal
state sequence. Then, the next to final one can be determined as the state that
maximises the probability of sequences ending with the the now known final state,
and so forth. Hence, the algorithm requires storage of all the Tk(j) computed during
the forward recursion.

In cases where there is no unique optimal state i, there may be no unique optimal
state sequence either and Bk+1(x̂k+1) can, then, be taken arbitrarily within the set
of maximising indices i.
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5.3 Maximum Likelihood Estimation

Estimation of the weight distribution, as discussed for finite mixture models, is
substituted in HMMs by estimation of the transition probability matrix and the
initial distribution of the underlying Markov chain. While inference on the transition
probabilities pij presents no challenge, there are several choices to be considered
concerning the estimation of the initial distribution, in particular. The first option is
to simply consider that ν is fixed and known with no need to be estimated whatsoever.

A second choice would be to consider that ν is fully determined by the para-
meter ϑ = (P,θ). A typical example of this is assuming that ν is the stationary
distribution associated with the transition matrix P, if it exists. Obviously, this is a
particularly attractive alternative in the case of ergodic HMMs, in which the Markov
chain generally admits a unique stationary distribution. However, this option is gen-
erally practicable only in the simplest of models, because of the lack of analytical
expressions relating the stationary distribution to the transition matrix for general
parametrised underlying Markov chains.

The last alternative would be to consider ν as an independent parameter inside
the vector ϑ and aim to estimate it separately from the other parameters of the model.
However, because we mainly consider estimation of the HMM parameter vector from
a single long sequence of observations, there is no hope to estimate ν consistently,
since there is only one random variable X0 drawn from this density and it is not even
observed. As a result, this option is much more appealing in left-to-right HMMs,
where the model is estimated from several independent sequences of observations and
the initial distribution is often a key parameter. Furthermore, handling the case of
multiple observational sequences is straightforward, since the quantities corresponding
to different sequences simply need to be added together, thanks to the independence
assumption.

5.3.1 The Baum-Welch Algorithm

In the following, we are going to assume the last alternative and consider the initial
distribution as an independent parameter to be estimated. For the finite state-space
HMM under consideration, the complete-data likelihood in (2.6) may be rewritten as

L(ϑ|y,x) =
r∏

i=1

ν
1{x0=i}
i ·

r∏
i=1

r∏
j=1

n−1∏
k=0

p
1{xk=i,xk+1=j}
ij ·

r∏
i=1

n∏
k=0

f(yk;θi)
1{xk=i}.

Evaluation of the intermediate quantity of EM demonstrates that, in great gen-
erality, the only quantities required for the algorithm are the marginal and bivariate



50 Chapter 5. Applications to Hidden Markov Models

smoothing distributions, given the parameter vector ϑ(ℓ), which may be computed
using the Forward-Backward approach presented in the previous section. Moreover,
estimation of the initial distribution, the transition probabilities and the state-specific
parameters θ can all be carried out separately within the M-step. Indeed, the inter-
mediate quantity of EM assumes the following additive structure

Q
(
ϑ;ϑ(ℓ)

)
=

r∑
i=1

ϕ0|n

(
i;ϑ(ℓ)

)
log νi +

r∑
i=1

r∑
j=1

n−1∑
k=0

ϕk:k+1|n

(
i, j;ϑ(ℓ)

)
log pij

+

r∑
i=1

n∑
k=0

ϕk|n

(
i;ϑ(ℓ)

)
log f(yk;θi).

(5.8)

In order to maximise the intermediate quantity with respect to ν, we have to take
into consideration the constraint ν1 + ν2 + · · · + νr = 1 and introduce the Lagrange
multiplier λ. Then, we derive the Lagrangian to obtain

ν
(ℓ+1)
i =

ϕ0|n
(
i;ϑ(ℓ)

)
λ

, i = 1, 2, . . . , r.

Normalisation of these probabilities leads to λ = 1 and so the updated estimates for
the initial distribution are

ν
(ℓ+1)
i = ϕ0|n

(
i;ϑ(ℓ)

)
, i = 1, 2, . . . , r. (5.9)

Quite similarly, we introduce the Lagrange multipliers λ1, λ2, . . . , λr which cor-
respond to the equality constraints pi1 + pi2 + · · · + pir = 1 for i = 1, 2, . . . , r. This
time, derivation of the Lagrangian yields

p
(ℓ+1)
ij =

1

λi

n−1∑
k=0

ϕk:k+1|n

(
i, j;ϑ(ℓ)

)
, i, j = 1, 2, . . . , r.

Summation over all possible states j leads to the computation of the Lagrange mul-
tipliers in the following way

1 =
r∑

j=1

p
(ℓ+1)
ij =

1

λi

n−1∑
k=0

r∑
j=1

ϕk:k+1|n

(
i, j;ϑ(ℓ)

)
=

1

λi

n−1∑
k=0

ϕk|n

(
i;ϑ(ℓ)

)
, i = 1, 2, . . . , r,

which in turn lead to the updated estimates for the transition probabilities

p
(ℓ+1)
ij =

n−1∑
k=0

ϕk:k+1|n
(
i, j;ϑ(ℓ)

)
n−1∑
k=0

ϕk|n
(
i;ϑ(ℓ)

) , i, j = 1, 2, . . . , r. (5.10)
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These equations are emblematic of the intuitive form taken by the parameter
update formulas derived through the EM strategy. These equations are indeed the
maximum likelihood equations for the complete model, except that the functions
1{Xk = i} and 1{Xk = i,Xk+1 = j} are replaced by their conditional expectations,
given the actual observations and the available parameter estimate ϑ(ℓ). Of course,
this behaviour fundamentally displays itself in cases where the probability density
functions associated with the complete model form an exponential family.

The Baum-Welch algorithm essenitally consists of iterating the following steps,
given an initial guess ϑ(0) for the model parameters

E-step: Run a Forward-Backward algorithm to calculate the marginal, ϕk|n
(
i;ϑ(ℓ)

)
,

and bivariate, ϕk:k+1|n
(
i, j;ϑ(ℓ)

)
, smoothing distributions for all possible

values of i, j, k.

M-step: Calculate ν(ℓ+1) according to equation (5.9), P(ℓ+1) according to equation
(5.10) and θ(ℓ+1) = arg max

θ∈Θ
Q
(
ϑ;ϑ(ℓ)

)
.

The algorithm is terminated, when ℓ
(
θ(L+1)

)
− ℓ

(
θ(L)

)
< ϵ for a certain index

L, where ϵ is the predetermined precision of the estimation. After the termination of
the algorithm, one may implement the Viterbi algorithm to calculate the maximum
a posteriori state sequence x̂, given parameter vector ϑ(L+1).

Example 5.1 (Baum-Welch for Normal Hidden Markov Models) In the Nor-
mal HMM, the additive term of the intermediate quantity which corresponds to the
probability density function of each observation takes the form

−
r∑

i=1

n∑
k=0

ϕk|n

(
i;ϑ(ℓ)

)[ log(2π)
2

+
logσ2i
2

+
(yk − µi)

2

2σ2i

]
.

Derivation with respect to µi and σi leads to the following update formulas for the
means and the variances

µ
(ℓ+1)
i =

1

N
(ℓ)
i

n∑
k=0

ϕk|n

(
i;ϑ(ℓ)

)
yk, i = 1, 2, . . . , r, (5.11)

(
σ2i
)(ℓ+1)

=
1

N
(ℓ)
i

n∑
k=0

ϕk|n

(
i;ϑ(ℓ)

)(
yk − µ

(ℓ+1)
i

)2
, i = 1, 2, . . . , r, (5.12)

where N (ℓ)
i =

n∑
k=0

ϕk|n
(
i;ϑ(ℓ)

)
. ■
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5.3.2 The Viterbi Training Algorithm

Viterbi training constitutes a fairly popular HMM method, which provides al-
gorithms for parameter estimation. This is primarily due to the fact that Viterbi
training is readily implemented if the Viterbi algorithm is used to generate predic-
tions. Similar to the Baum-Welch algorithm, Viterbi training is an iterative estima-
tion procedure. Unlike the Baum-Welch algorithm, however, which weighs all possible
state paths for a given observational sequence in each iteration, Viterbi training only
considers a single state path, namely the maximum a posteriori state sequence, when
deriving new sets of parameters. In each iteration, a new set of parameter values
is derived from the counts of allocations and transitions of the observations in the
Viterbi path.

Given the current predicted Viterbi path x̂, we revert to complete-data estimation
of the model parameters, by maximising the complete-data log-likelihood ℓ (y, x̂;ϑ)
given by

ℓ (ϑ|y, x̂) =
r∑

i=1

1 {x̂0 = i} log νi +
r∑

i=1

r∑
j=1

n−1∑
k=0

1 {x̂k = i, x̂k+1 = j} log pij

+

r∑
i=1

n∑
k=0

1 {x̂k = i} log f(yk;θi).

(5.13)

As stated beforehand, this complete-data estimation leads to the exact same up-
date formulas as the Baum-Welch algorithm, with the marginal and bivariate smooth-
ing distributions giving place to the corresponding indicator variables. Indeed,

ν
(ℓ+1)
i = 1

{
x̂
(ℓ)
0 = i

}
, i = 1, 2, . . . , r, (5.14)

p
(ℓ+1)
ij =

n−1∑
k=0

1
{
x̂
(ℓ)
k = i, x̂

(ℓ)
k+1 = j

}
n−1∑
k=0

1
{
x̂
(ℓ)
k = i

} , i, j = 1, 2, . . . , r. (5.15)

The Viterbi training algorithm begins with an initial guess ϑ(0) for the model
parameters and iterates the following steps

• Run the Viterbi algorithm, given the parameter vector ϑ(ℓ), to calculate the
maximum a posteriori state sequence, x̂(ℓ).

• Calculate ν(ℓ+1) according to equation (5.14), P(ℓ+1) according to equation
(5.15) and θ(ℓ+1) = arg max

θ∈Θ
ℓ
(
ϑ|y, x̂(ℓ)

)
.



5.4. Fully Bayesian Approaches 53

The iterations are terminated as soon as the Viterbi paths of successive estimations
no longer change. The Viterbi training algorithm sacrifices some of Baum-Welch’s
generality for computational efficiency and so, leads to much faster computation
times. In general, the Baum-Welch algorithm will give parameters that lead to better
performance, although there are examples where this is not the case.

Example 5.2 (Viterbi Training for Normal Hidden Markov Models) The
complete-data estimation of the parameters of the Normal HMM, entailed in the
Viterbi training algorithm, leads to the usual maximum likelihood estimators for the
Normal distribution

µ
(ℓ+1)
i =

1

N
(ℓ)
i

n∑
k:x̂

(ℓ)
k =i

yk, i = 1, 2, . . . , r, (5.16)

(
σ2i
)(ℓ+1)

=
1

N
(ℓ)
i

n∑
k:x̂

(ℓ)
k =i

(
yk − µ

(ℓ+1)
i

)2
, i = 1, 2, . . . , r, (5.17)

where N (ℓ)
i =

n∑
k=0

1
{
x̂
(ℓ)
k = i

}
counts the number of observations allocated to state i.

■

5.4 Fully Bayesian Approaches

This section covers the fully Bayesian processing of HMMs, which means that,
besides the hidden states and their conditional distributions, the model parameters
are also assigned prior distributions.

We begin by rewriting, the complete-data likelihood in a way that makes it more
convenient to combine it with a suitable prior distribution on parameter vector ϑ, as
follows

f(y,x|ϑ) =
r∏

i=1

ν
ni(x0)
i ·

r∏
i=1

r∏
j=1

p
Nij(x)
ij ·

r∏
i=1

∏
k:xk=i

f(yk;θi), (5.18)

where ni(x0) = 1{x0 = i} is counting the number of initial observations allocated to

state i and Nij(x) =
n−1∑
k=0

1{xk = i, xk+1 = j} the number of transitions from state i

to state j.

In the specific set-up of HMMs, there are typically three separate entities within
the parameter vector ϑ. That is, it can be decomposed as ϑ = (P,ν,θ), where P
parametrises the transition distribution, ν parametrises the initial distribution and
θ parametrises the conditional distribution of Y given X. When conditioned on the
latent chain, the parameter vector θ is estimated as in a regular, non-latent model,
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whereas the parameters P,ν only depend on the chain X. Furthermore, given x and
y, P and θ are conditionally independent.

For the time being, we are going to entertain the possibility that X0 is random,
unknown and ν is parametrised by a separate parameter from P. As a result, Bayesian
inference about P, ν and θ can be conducted separately, conditional on the latent
chain, leading to the formulation of a Gibbs sampler for this model.

In the case where the latent variables are finite-valued, the Dirichlet distribution
is a conjugate prior for the rows of the transition probability matrix P of the latent
Markov chain in the following sense. Assuming that each row of P has a prior
distribution that is Dirichlet, i.e. (pi1, pi2, . . . , pir) ∼ Dir(a1, a2, . . . , ar), with the rows
being a priori independent, then, given x, the rows are conditionally independent and

π(pi1, pi2, . . . , pir|x) ∝
r∏

j=1

p
Nij(x)+aj−1
ij , i = 1, 2, . . . , r. (5.19)

Furthermore, the unknown initial distribution ν may also be equipped with a
Dir(e1, e2, . . . , er) prior, usually with all ei equal. Conditional on the initial value x0
of the Markov chain, the conditional posterior distribution of ν is given by

π(ν|x0) ∝
r∏

i=1

ν
ni(x0)+ei−1
i . (5.20)

Of course, the state-specific parameter vector θ is updated by a Gibbs sampler
conditional on the underlying Markov chain and the observations. Consequently,
Bayesian estimation of these state-specific parameters is identical to the case of finite
mixture models, where the hidden allocations are replaced by the hidden states of the
Markov chain. Indeed, we may fit the following hierarchical prior on the parameter
vector θ

π(θ, δ) = π(δ)
r∏

i=1

π(θi|δ), (5.21)

which, upon combination with the complete-data likelihood, f(y,x|ϑ), leads to the
following conditional posterior distributions for the parameters θi and the hyper-
parameter δ

π(θi|y,x, δ) ∝ π(θi|δ)
∏

k:xk=i

f(yk|θi), i = 1, 2, . . . , r, (5.22)

π(δ|θ) ∝ π(δ)
r∏

i=1

π(θi|δ). (5.23)



5.4. Fully Bayesian Approaches 55

Combining all the previously formulated priors on the separate entities of the
parameter vector ϑ, leads to the formulation of the joint prior of (ϑ, δ) as

π(ϑ, δ) ∝ π(δ) ·
r∏

i=1

νei−1
i ·

r∏
i=1

 r∏
j=1

p
aj−1
ij

 ·
r∏

i=1

π(θi|δ). (5.24)

Under this prior choice, the complete-data posterior π(ϑ, δ,x|y) factorises in the
same convenient way as the complete-data likelihood function, i.e.

π(ϑ, δ,x|y) ∝ π(δ) ·
r∏

i=1

ν
ni(x0)+ei−1
i ·

r∏
i=1

 r∏
j=1

p
Nij(x)+aj−1
ij


·

r∏
i=1

π(θi|δ) ∏
k:xk=i

f(yk|θi)

 .
(5.25)

5.4.1 The Gibbs Sampler with Local Updating

An earlier and more rudimentary version of the Gibbs sampler entails the update
of only one hidden variable Xk at a time. This is referred to as local updating of the
hidden chain, because each state xk is updated conditional upon its neighbours only.
The conditional posterior distribution π(xk|y,ϑ,x−k) reduces to

π(x0|y0,ϑ, x1) ∝ ν(x0)p(x0, x1)f(y0;θx0),

π(xk|yk,ϑ, xk−1, xk+1) ∝ p(xk−1, xk)p(xk, xk+1)f(yk;θxk
), k = 1, 2, . . . , n− 1,

π(xn|yn,ϑ, xn−1) ∝ p(xn−1, xn)f(yn;θxn).

(5.26)

The Bayesian analysis conducted in this section, in conjunction with this local
updating of the hidden chain, leads to the formulation of the following Gibbs sampler,
which starts with some initial values

(
x(0), δ(0)

)
and repeats the following

• Sample the rows of P(ℓ+1) from the complete-data conditional posterior distribu-
tions Dir

(
Ni1

(
x(ℓ)
)
+ a1, Ni2

(
x(ℓ)
)
+ a2, . . . , Nir

(
x(ℓ)
)
+ ar

)
, given by (5.19).

• Sample the initial distribution ν(ℓ+1) from the conditional posterior distribution
Dir

(
n1(x

(ℓ)
0 ) + e1, n2(x

(ℓ)
0 ) + e2, . . . , nr(x

(ℓ)
0 ) + er

)
, given by (5.20).

• Sample the parameters θ
(ℓ+1)
1 ,θ

(ℓ+1)
2 , . . . ,θ

(ℓ+1)
r independently from the condi-

tional posterior distributions π
(
θi
∣∣y,x(ℓ), δ(ℓ)

)
, given by (5.22).

• Sample the hyper-parameter δ(ℓ+1) from π
(
δ
∣∣θ(ℓ+1)

)
, given by (5.23).

• Sample the states x(ℓ+1)
0 , x

(ℓ+1)
1 , . . . , x

(ℓ+1)
n from the conditional posterior distri-

butions π
(
xk

∣∣∣y,ϑ(ℓ+1),x(ℓ+1)
0:k−1,x

(ℓ)
k+1:n

)
, given by (5.26).



56 Chapter 5. Applications to Hidden Markov Models

5.4.2 The Gibbs Sampler with Global Updating

The simplest version of the Gibbs sampler, which will be referred to as global
updating of the hidden chain, replaces the last step of the previous algorithm with one
that updates the trajectory of the hidden chain as a whole from its joint conditional
distribution, given by equation (5.6). Obviously, sampling from this distribution
requires a Forward-Backward recursive scheme similar to the one implemented in the
Baum-Welch algorithm.

To be precise, the Forward Filtering remains as it is, whereas the Markovian
Backward Smoothing is replaced by a Backward sampling scheme, as follows

• Forward Recursion: Compute and store the forward filtering distributions
ϕ0,ϕ1, . . . ,ϕn according to the Forward Filtering algorithm.

• Backward Simulation: Sample

– The final state xn from ϕn;

– The rest of the states xk, for k = n − 1, n − 2, . . . , 0, from the backward
transition distribution Bk(xk+1, i), given by (5.5).

The backward simulation pass in this algorithm is much simpler than its smooth-
ing counterpart in the Markovian Backward Smoothing algorithm, as one is not re-
quired to either evaluate Bk(j, i) for all possible states j or compute the marginal and
bivariate smoothing distributions.

The local updating of the Markov chain is simpler and less time-consuming to im-
plement than the Backward Simulation described in this section, due to the necessity
of computing all the filtering distributions. Especially in models where the number of
states is very large, it may be the case that implementing the Backward Simulation
is overwhelming, whereas the local updating of the underlying chain is still feasible.

On the other hand, the Monte Carlo simulations obtained by this algorithm are
independent, which is not the case for those produced by the Gibbs sampler with local
updating. As a result, the Gibbs sampler with local updating should mix and explore
the posterior surface much more slowly than when global updating is implemented.
It is thus difficult to make a firm recommendation on which updating scheme to use.

5.4.3 A Metropolis-Hastings Step for Stationary Markov Chains

For a stationary latent Markov chain, the initial distribution usually is equal to the
stationary distribution and, thus, depends directly on the transition matrix. Gibbs
sampling from the conditional posteriors π(pi1, pi2, . . . , pir|x) is no longer feasible,
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since the rows of P are no longer independent a posteriori, due to the joint dependence
on ν. The joint conditional posterior π(P|x) takes the form

π(P|x) ∝ ν(x0)

r∏
i=1

 r∏
j=1

p
Nij(x)+aj−1
ij

 , i = 1, 2, . . . , r. (5.27)

To sample P, one could replace the first step of the Gibbs sampler by a Metropolis-
Hastings step with Dir

(
Ni1

(
x(ℓ)
)
+ a1, Ni2

(
x(ℓ)
)
+ a2, . . . , Nir

(
x(ℓ)
)
+ ar

)
being the

proposal density for the ith row. Starting from the current transition matrix P(ℓ),
a new transition matrix Pnew is proposed, by drawing all rows from the aforemen-
tioned Dirichlet proposal density, denoted by q(P|x). The acceptance rate for this
Metropolis-Hastings step is equal to min{1, A}, where

A =
π(Pnew|x(ℓ))q(P(ℓ)|x(ℓ))

π(P(ℓ)|x(ℓ))q(Pnew|x(ℓ))
=
νnew(x

(ℓ)
0 )

ν(ℓ)(x
(ℓ)
0 )

. (5.28)

Drawing U ∼ U(0, 1), if U < min{1, A}, we accept Pnew and set P(ℓ+1) = Pnew.
Otherwise, we reject Pnew and set P(ℓ+1) = P(ℓ).

Of course, sampling from the initial distribution, in the second step of the Gibbs
sampler, is, then, also replaced by an analytic computation of the stationary dis-
tribution of the transition matrix Pℓ+1, as the sole normalised eigenvector which
corresponds to the eigenvalue 1.

5.5 Maximum a Posteriori Estimation

Rather than simulating from the posterior distribution of the parameters, we now
consider maximising it to determine the so-called maximum a posteriori point es-
timate. In contrast to the Baum-Welch and Viterbi Training methods, which could
also be used in this context, the techniques to be discussed explicitly use parameter
simulation, in addition to hidden state simulation. The primary objective of these
techniques is not only to compensate for the lack of exact smoothing computations
in many models of interest, but also to perform some form of random search optim-
isation, which is hopefully more robust to the presence of local maxima.

Simulated annealing is a non-homogeneous variant of MCMC algorithms used
to perform global optimisation, that is, convergence to the global maxima of the
function of interest. It is a random search technique, which explores the parameter
space, using a non-homogeneous Markov chain, whose transition kernels are tailored
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to have invariant probability density functions πMℓ
(ϑ|y) ∝ [π(ϑ|y)]Mℓ , with {Mℓ}ℓ⩾1

being a positive increasing sequence tending to infinity.

The intuition behind this technique is that, as Mℓ tends to infinity, [π(ϑ|y)]Mℓ

concentrates itself upon the set of global modes of the posterior distribution. It has
been shown, under various assumptions, that convergence to the set of global maxima
is, indeed, ensured for sequences {Mℓ}ℓ⩾1 growing at a logarithmic rate. The sequence
{Mℓ}ℓ⩾1 is often called a cooling schedule.

For HMMs, the invariant density is only available in closed form in models where
exact smoothing is feasible, such as HMMs with finite state-space. To overcome this
difficulty, a novel approach named State Augmentation for Marginal Estimation has
been developed as a multiple-imputation Metropolis version of the EM algorithm.

5.5.1 The State Augmentation for Marginal Estimation (SAME)
Algorithm

The key argument behind SAME is that, upon restricting Mℓ to be integers, the
probability density function πMℓ

may be viewed as the marginal posterior in an artifi-
cially augmented probability model. Hence, one may use standard MCMC techniques
to draw from this augmented probability model and implement the simulated anneal-
ing strategy for general missing data models. The concentrated distribution πMℓ

is
obtained by artificially replicating the latent variables in the model.

To be precise, consider M artificial copies of the hidden state sequence, denoted
by x(1),x(2), . . . ,x(M). The model postulates that these sequences are independent
with common parameter vector ϑ and observed sequence y, leading to the posterior

πM (ϑ,x(1),x(2), . . . ,x(M)|y) ∝
M∏

m=1

π (ϑ,x(m)|y) . (5.29)

This distribution does not correspond to a real phenomenon, but is a properly defined
density, in that it is positive and the right-hand side can be normalised, so that it
integrates to unity. Now, the marginal posterior distribution of ϑ is obtained by
integration over all replications of x, as

πM (ϑ|y) ∝
M∏

m=1

∫
π (ϑ,x(m)|y) dx(m) = [π(ϑ|y)]M . (5.30)

As a result, an MCMC algorithm in the augmented space with invariant distri-
bution πMℓ

(ϑ,x(1),x(2), . . . ,x(M)|y) is such that the simulated sequence of para-
meters

{
ϑℓ
}
ℓ⩾1

marginally admits πMℓ
(ϑ|y) as invariant distribution.
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An important point here is that, when an MCMC sampler is available for the
density π(ϑ,x|y), it is easy to also construct an MCMC sampler with target density
(5.29), as the replications of x are independent, given ϑ. Indeed,

πM (x(1), . . . ,x(M)|y,ϑ) =
M∏

m=1

π (x(m)|y,ϑ) , (5.31)

πM (ϑ |y,x(1), . . . ,x(M)) ∝
M∏

m=1

π (ϑ |y,x(m)) ∝ [π(ϑ)]M
M∏

m=1

f (y,x(m)|ϑ) .

(5.32)

According to (5.31), the sampling step for x(m) is identical to its counterpart in a
standard data augmentation sampler with target distribution π(x|y,ϑ). Additionally,
if π(ϑ|y,x) belongs to an exponential family of distributions, then (5.32) is also a
member of this exponential family, so sampling from it is straightforward. In other
cases, the vector ϑ can be simulated using a Metropolis-Hastings step.

Assuming the same conjugate Dirichlet priors on the rows of the transition matrix,
as in the previous section, we find that the full-conditional distribution of P is such
that the rows are conditionally independent for i = 1, 2, . . . , r, with

(pi1, pi2, . . . , pir) |x(1),x(2), . . . ,x(M) ∼

Dir
(

M∑
m=1

Ni1(x(m)) +M(a1 − 1) + 1, . . . ,

M∑
m=1

Nir(x(m)) +M(ar − 1) + 1

)
.

(5.33)

For a stationary Markov chain, we could use a Metropolis-Hastings step, with (5.33)
as the proposal density for the ith row and acceptance rate min{1, A}, where

A =

M∏
m=1

νnew(x
(ℓ)
0 (m))

ν(ℓ)(x
(ℓ)
0 (m))

. (5.34)

Example 5.3 (SAME for Normal Hidden Markov Models) Assuming the
same conjugate priors, we find that the full-conditional posterior distributions are

µi
∣∣y, σ2i , b,x(1), . . . ,x(M) ∼ N

(
BSi +Mbσ2i
BNi +Mσ2i

,
Bσ2i

BNi +Mσ2i

)
, (5.35)

with Ni =
M∑

m=1

n∑
k=0

1 {xk(m) = i} and Si =
M∑

m=1

∑
k:xk(m)=i

yk, whereas

σ2i
∣∣y, µi, C,x(1), . . . ,x(M) ∼ Inv-Gamma

(
Ni

2
+M(c+ 1)− 1,

Vi
2

+MC

)
,

(5.36)



60 Chapter 5. Applications to Hidden Markov Models

with Vi =
M∑

m=1

∑
k:xk(m)=i

(yk − µi)
2 for i = 1, 2, . . . , r. Furthermore, the conditional

posterior distributions of the hyper-parameters are given by

C
∣∣σ2 ∼ Gamma

(
M(rc+ g − 1) + 1,

r∑
i=1

M
σ2i

+MG

)
, (5.37)

b|µ ∼ N

(
1

r

r∑
i=1

µi,
B

Mr

)
. (5.38)

We initialise the algorithm with
(

P(0),ν(0),µ(0),
(
σ2
)(0)

, C(0), b(0)
)

and select a
cooling schedule {Mℓ}ℓ⩾1. Then we iterate the following steps

• Sample the Mℓ+1 chain replications x(ℓ+1)(1),x(ℓ+1)(2), . . . ,x(ℓ+1)(Mℓ+1) inde-
pendently using the Forward Filtering-Backward Sampling recursion.

• Sample the rows of P(ℓ+1) independently according to (5.33).

• Sample the means µ(ℓ+1)
1 , µ

(ℓ+1)
2 , . . . , µ

(ℓ+1)
r according to (5.35).

• Sample the variances
(
σ21
)(ℓ+1)

,
(
σ22
)(ℓ+1)

, . . . ,
(
σ2r
)(ℓ+1) according to (5.36).

• Sample the hyper-parameters C(ℓ+1) and b(ℓ+1) according to (5.37) and (5.38)
respectively.

It is of great interest that the above conditional posterior distributions, from which
simulation is carried out in the SAME approach, all have variances that decrease
proportionally to M−1. Hence, the distributions get more and more concentrated
around their modes, as the number of replications increases. ■

5.6 Identifiability Issues

For a hidden Markov model, there exists non-identifiability due to invariance to
relabelling the states of the underlying Markov chain, as well as generic identifiabil-
ity. An inequality constraint similar to the one discussed for finite mixture models,
requiring that the state-specific parameters θi and θj differ in at least one element,
will rule out the first identifiability issue.

One necessary condition for generic identifiability of a hidden Markov model con-
sisting of the distributions gi(θ) is that the corresponding finite mixture of gi(θ)
distributions is generically identifiable. A second necessary condition is that the lat-
ent Markov chain is irreducible and aperiodic. It is, however, not necessary to assume
that X0 was drawn from the stationary distribution of the latent chain.
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Chapter 6

Statistical Inference Under
Model Specification Uncertainty

6.1 Introduction

The decision to fit a hidden Markov model to data will often result from careful
consideration. Sometimes, however, alternatives to hidden Markov models will be
available, which then should be compared with each other. Even if we stay within a
certain family of models, we may face model specification problems, the most import-
ant being the choice of the number of states, r. If it is impossible to assign a value
to r a priori with complete certainty, we are faced with the problem of estimating r
from the data.

In many applications, it is of substantial interest to test hypotheses about r, most
importantly, to test homogeneity (r = 1) against heterogeneity (r > 1). Testing for
the number of states in a hidden Markov model is known to be a difficult problem,
as it involves inference for an over-fitting model, where the true number of states is
less than the number of states in the fitted hidden Markov model.

Many approaches have been proposed to deal with model specification uncer-
tainty. Several informal methods for diagnosing HMMs have been explored, such as
mode hunting in the sample histogram or diagnosing goodness-of-fit through implied
moments or the predictive performance of the model. As far as formal model com-
parison is concerned, likelihood-based methods include, in particular, the likelihood
ratio statistic, as well as the AIC and BIC information criteria.

On the other hand, there are basically two Bayesian approaches to deal with model
specification uncertainty. One approach is to apply trans-dimensional Markov Chain
Monte Carlo methods to obtain draws from the joint posterior density of the model
indicator and the model parameters of all possible models. The second approach is
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to compute the marginal likelihoods of all possible models and to apply Bayes’ rule
to quantify the posterior evidence in favour of each model.

6.2 Likelihood-Based Methods

This section provides a short review of various likelihood-based methods that have
been used to deal with model uncertainty in HMMs. These methods play a central
role in testing parametric models and, among these, likelihood ratio tests are usually
the preferred ones. Calculation of the observed likelihood function, required for all
these methods, is attained through the Forward Filtering algorithm.

6.2.1 The Generalised Likelihood Ratio (LR) Test

Application of the likelihood ratio tests to hidden Markov models creates some
difficulty. Consider two nested hidden Markov model M0 and M1, with M0 being
the simpler one. A standard approach for testing between nested models is to apply
a generalised likelihood ratio test. First, the maximum likelihood estimators ϑ̂0 and
ϑ̂1, as well as the corresponding likelihood functions are determined for both models.
Then, the generalised likelihood ratio test statistic is defined as

LR = −2
(

log f
(

y; ϑ̂0

)
− log f

(
y; ϑ̂1

))
. (6.1)

Under regularity conditions, the generalised likelihood ratio test statistic asymp-
totically follows a χ2

ν distribution, under the assumption that model M0 is correct,
with ν being equal to the number of constraints imposed on M1 to obtain M0. If the
two hidden Markov models differ only in the parameter structure, but both assume
the correct number of states, these regularity conditions typically hold and the LR
statistic may be applied in a straightforward manner.

However, if M0 and M1 are stationary hidden Markov models with r and r + 1

states respectively, then implementing the LR test immediately leads to ambiguity,
because model M0 may be obtained from model M1 in more than one ways. The
number of constraints is equal to 2r+1, when imposing the constraints pi,r+1 = 0 for
i = 1, 2, . . . , r + 1 and pr+1,j = 0 for j = 1, 2, . . . , r + 1 on M1, whereas it is equal to
dim(θ), when imposing the constraints θr = θr+1 on M1.

Asymptotic theory has not lent itself to any practically useful numerical approx-
imations to critical levels or p-values. Instead, the approach usually taken in the liter-
ature is bootstrapping the LR test. This bootstrapping can be either non-parametric
or parametric.
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6.2.2 Information Criteria

Using heuristic arguments on how to account for model complexity, Akaike pro-
posed a general criterion for model selection, which is equivalent to choosing the
model that minimises

AICr = −2 log f
(

y; ϑ̂r

)
+ 2dr, (6.2)

where dr = r dim(θ) + r(r − 1) is equal to the dimension of the stationary hidden
Markov model and acts as a correction term without which, one would simply choose
the model that maximises the likelihood function. This correction term, introduces
a severe penalty for high-dimensional models, which provide little additional fit, in
terms of increasing the likelihood function in comparison to simpler models.

Using asymptotic expansions, rather than heuristics, Schwarz arrived at the con-
clusion to select the model for which

BICr = −2 log f
(

y; ϑ̂r

)
+ dr log(n+ 1) (6.3)

is minimised. Quantitatively, AIC and BIC differ only in the factor by which dr is
multiplied. Qualitatively, both criteria provide a mathematical formulation of the
principle of parsimony in model building, although for large data sets their behaviour
is rather different.

As the first term in both AIC and BIC measures the goodness-of-fit, whereas the
second term penalises model complexity, one selects the model that minimises either
AIC or BIC. For n > e2 − 1, Akaike’s criterion favours more complex models than
Schwarz’s criterion and has been shown to be inconsistent, choosing too complex
models, even asymptotically.

6.3 Trans-Dimensional Markov Chain Monte Carlo

In general, a variable dimension model is, to quote Peter Green, “a model where
one of the things you do not know is the number of things you do not know”. In other
words, it pertains to a statistical model where the dimension of the parameter space
is unknown and must be estimated from the data.

More formally, a variable dimension model is defined as a collection of models
Mr, or equivalently parameter spaces Θr, for r = 1, 2, . . . , R, associated with a
collection of priors πr(ϑr) on these spaces and a prior distribution π(r) on the indices
of these spaces. In the following, we shall consider that a variable dimension model

is associated with a probability distribution on the space Θ =
R∪

r=1
({r} ×Θr). An
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element ϑ of Θ may thus always be written as ϑ = (r,ϑr), where ϑr is an element of
Θr. The prior on Θ will be denoted by π(ϑ) = π(r,ϑr) = π(r)πr(ϑr).

For HMMs, the space Θr is, in general, that of the parameters of HMMs with r

states for the latent Markov chain. In the Bayesian framework, the dimension r of
the model is treated as a usual parameter. The aim is to address the two problems
of deciding which model is best and determining the parameters of the best fitting
model simultaneously. This is achieved by deriving the posterior density π(r,ϑr|y),
using Bayes’ theorem

π(r,ϑr|y) ∝ π(r)πr(ϑr)f(y|ϑr). (6.4)

Interestingly, by integrating out the index part of the model, we simply arrive at
a mixture representation of the observed likelihood and the predictive distribution

f(y|ϑ1,ϑ2, . . . ,ϑR) =

R∑
r=1

π(r)f(y|ϑr),

f(ynew|y) =
R∑

r=1

[
π(r|y)

∫
f(ynew|ϑr)πr(ϑr|y)dϑr

]
.

This mixture representation, referred to as model averaging in the Bayesian literature,
is interesting, because it suggests the use of predictors that are not obtained by
selecting a particular model from the R possible ones, but rather consists of taking
all possible options into account simultaneously, weighting them by their posterior
odds. The variability due to the selection of the model is thus accounted for.

Given a variable dimension model, there is an additional computational difficulty
in simulating the posterior distribution, in that the sampler must move both within
and between models Mr. Although the former pertains to previous developments,
the latter requires a sound measure-theoretic basis to lead to correct MCMC moves.

6.3.1 Reversible Jump Markov Chain Monte Carlo

The reversible jump technique is basically of Metropolis-Hastings type with spe-
cific trans-dimensional proposals, carefully designed to move between different mod-
els in a way that is consistent with the desired stationary distribution of the MCMC
algorithm. The sampler jumps between different models by making moves from a cur-
rent model Mr to a new model Ms, while retaining detailed balance which ensures
the correct limiting distribution, provided that the chain is irreducible and aperiodic.

To capture potential relations between ϑr and ϑs, with r < s, the Metropolis-
Hastings algorithm proposes values for ϑs via a mapping ϑs = g(ϑr,u), that also
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depends on some auxiliary random vector u. The only requirement is that g is
differentiable with an inverse mapping g−1 which is also differentiable.

As a general rule, when moving to the higher dimension model Ms, the auxiliary
random vector needs to be drawn from a non-degenerate proposal density q(u) with
dim(u) = dim(ϑs)−dim(ϑr). This random vector is, then, used to construct ϑs from
ϑr through the mapping g. The reverse move, from Ms to Mr, is deterministic and
simply consists of jumping back to (ϑr,u) = g−1(ϑs). We shall assume that, when
in model Mr, the move to Ms is attempted with probability Pr,s.

For reasons of simplicity, in what follows, we are going to assume that the initial
distribution of the underlying Markov chain is fixed and known. In the case of the
probability transition matrix P, the moves may prove to be quite complex, due to
it being a stochastic matrix. One way to overcome this difficulty would be to re-
parametrise each row (pi1, pi2, . . . , pir) as (qi1, qi2, . . . , qir) with

pij =
qij
r∑

ℓ=1

qiℓ

, i, j = 1, 2, . . . , r, (6.5)

so that the summation constraints on the rows of P do not hinder the move from one
model to another. Obviously, the qij are not identifiable, but, as we are only inter-
ested in the pij , this poses no hindrance. On the opposite, using over-parametrised
representations often helps with the mixing properties of the corresponding MCMC
algorithm, since they are less constrained by the data set.

This re-parametrisation of the model forces us to select a prior distribution on
the qij , rather than on the pij . The choice qij ∼ Gamma(a, 1) is natural, in that
it leads to a Dir(a, a, . . . , a) distribution on the corresponding rows (pi1, pi2, . . . , pir).
It is also noteworthy that, given x, (pi1, pi2, . . . , pir) and

r∑
ℓ=1

qiℓ are conditionally

independent, which means that the re-parametrisation does nothing, but introduce
a new parameter for each row, which is independent of everything else and, hence,
totally irrelevant for inference.

To implement the reversible jump algorithm, a first step is to design a strategy
for moving between models with different number of states. If the current model is
comprised of r ∈ {2, 3, . . . , R − 1} states, then it is usual to reduce the searching
strategy to moves that either preserve the number of states or lead to a model with
r − 1 or r + 1 states. Jumps are achieved by adding new states, deleting existing
states and splitting or combining existing states. The various moves could be scanned
systematically or could be selected randomly. Ideally, the dimension-changing moves
are designed to have high probability of acceptance, so that the sampler explores the
different models adequately.
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For practical implementation in the context of HMMs, it is sufficient to choose a
mapping function ϑr+1 = g(ϑr,u) together with a proposal density q(u) to perform
the move from Mr to Mr+1 and the reverse move (ϑr,u) = g−1(ϑr+1) from Mr+1 to
Mr. Such moves form a reversible pair with acceptance probabilities min {1, Ar,r+1}
and min

{
1, A−1

r,r+1

}
respectively, where

Ar,r+1 =
f(y|ϑr+1)

f(y|ϑr)
· (r + 1)!π(r + 1)πr+1(ϑr+1)

r!π(r)πr(ϑr)
· Pr+1,r

Pr,r+1q(u)
·
∣∣∣∣∂g(ϑr,u)
∂(ϑr,u)

∣∣∣∣ . (6.6)

Here, the first term constitutes the likelihood ratio, the second term constitutes the
prior ratio, the third term represents the proposal ratio and the last term constitutes
the absolute value of the determinant of the Jacobian matrix associated with the
mapping g. The observed likelihood of the two models may be computed on the log
scale via the Forward Filtering algorithm.

The factorials arise from the fact that, as the prior is invariant under permutation
of states, we cannot distinguish between parameters which are identical up to such
permutations. Thus, our effective parameter space of r-state HMMs is that of equival-
ence classes of parameters which are identical up to permutations. The prior of such
an equivalence class is r! times the original prior of one of its representations. This
distinction between a parameter and its equivalence class becomes essential, when r

is allowed to vary, as ignoring it would lead to incorrect acceptance ratios.

Designing Birth and Death Moves

In a birth move, the order of the Markov chain is increased by one, by adding
a new state, and the death move works in the reverse way, by deleting an existing
state. Suppose that the current model is Mr and that we attempt to add a new state,
denoted by i0, to the HMM. We first draw the random variables

qi,i0 ∼ Gamma(a, 1), i = 1, 2, . . . , r + 1, (6.7)

qi0,j ∼ Gamma(a, 1), j = 1, 2, . . . , r + 1, (6.8)

θi0 ∼ π(θ),

all independently. In other words, all the parameters of the new state are drawn
from their respective prior distributions. These parameters constitute the auxiliary
random vector ubirth for the birth move. The remaining parameters are simply copied
to the proposed new model Mr+1. Therefore, the corresponding mapping gbirth is
simply the identity mapping.
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In the death move, the auxiliary random vector of the associated birth move is
trivially recovered, since it just consists of the components of the state i0, which is
proposed to be deleted.

The probability of proposing a birth move, when the current number of states is
r, is denoted by Pb(r), whereas by Pd(r+1) we denote the probability of proposing a
death move, when the current number of states is r+1. So, Pd(r+1)

r+1 is the probability
of proposing to kill the specific state i0 out of the r + 1 possible states.

Because the mapping gbirth is the identity mapping, its Jacobian is the identity
matrix, with determinant Jbirth = 1. The remaining factors of the acceptance ratio
of the birth move become

Abirth =
f(y|ϑr+1)

f(y|ϑr)
· (r + 1)π(r + 1)πr+1(ϑr+1)

π(r)πr(ϑr)
· Pd(r + 1)

(r + 1)Pb(r)q(ubirth)

=
Pd(r + 1)π(r + 1)f(y|ϑr+1)

Pb(r)π(r)f(y|ϑr)
.

(6.9)

Since the proposal densities are identical to the prior distributions of the corres-
ponding new parameters and the rest of the parameters remain unchanged in model
Mr+1, there were cancellations in the acceptance ratio of the birth move, leading to
the above simplified expression.

Obviously, the acceptance ratio of the death move is the inverse of the above,
which completes the description of the birth-death move.

Designing Split and Combine Moves

The split move takes an existing state and splits it in two, whereas the combine
move takes a pair of states and merges them into one. Starting with the split move,
suppose that the current model is Mr and that we attempt to split a random state i0
into two new states i1 and i2. The parameters corresponding to state i0 must, then,
be split. This can be done as follows

• Split column i0 as
qi,i1 = uiqi,i0 ,

qi,i2 = (1− ui)qi,i0 ,
(6.10)

where ui ∼ Beta(a, a) for i = 1, 2, . . . , r with i ̸= i0.

• Split row i0 as
qi1,j = 2vjqi0,j ,

qi2,j = 2(1− vj)qi0,j ,
(6.11)

where vj ∼ Beta(a, a) for j = 1, 2, . . . , r with j ̸= i0.
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• Split qi0,i0 as
qi1,i1 = 2w1w2qi0,i0 ,

qi1,i2 = 2(1− w1)w3qi0,i0 ,

qi2,i1 = 2w1(1− w2)qi0,i0 ,

qi2,i2 = 2(1− w1)(1− w3)qi0,i0 ,

(6.12)

where w1 ∼ Beta(2a, 2a) and w2, w3 ∼ Beta(a, a).

• To satisfy the remaining degrees of freedom, a random vector z of dimension
dim(θ) with non-degenerate proposal density q(z) is chosen. It is then used to
construct θi1 and θi2 from θi0 through θi1 = g1(θi0 , z) and θi2 = g2(θi0 , z).

The auxiliary random vector ubirth is comprised of u = (ui)i ̸=i0 , v = (vi)i ̸=i0 ,
w = (w1, w2, w3) and z. Now, we describe the combine move, which reverses the
above operations. Two distinct states i1 and i2 are selected at random and we attempt
to combine them into a single state i0 as follows

qi,i0 = qi,i1 + qi,i2 , i = 1, 2, . . . , r, i ̸= i0,

qi0,j =
qi1,j + qi2,j

2
, j = 1, 2, . . . , r, j ̸= i0,

qi0,i0 =
qi1,i1 + qi2,i1

2
+
qi1,i2 + qi2,i2

2
.

(6.13)

To compute the acceptance rate of the combine move, the auxiliary random vector
of the associated split move has to be reconstructed. We may obtain θi0 and z by
inverting the mapping functions g1 and g2 defined above, while the remaining auxiliary
variables are given by

ui =
qi,i1

qi,i1 + qi,i2
, i = 1, 2, . . . , r, i ̸= i0,

vj =
qi1,j

qi1,j + qi2,j
, j = 1, 2, . . . , r, j ̸= i0,

w1 =
qi1,i1 + qi2,i1

qi1,i1 + qi1,i2 + qi2,i1 + qi2,i2
,

w2 =
qi1,i1

qi1,i1 + qi2,i1
,

w3 =
qi1,i2

qi1,i2 + qi2,i2
.

(6.14)

Finally, we denote by Ps(r) the probability of proposing a split move, when the
current number of states is r and by Pc(r+1) the probability of proposing a combine
move, when the current number of states is r + 1. Then, Ps(r)

r and 2Pc(r+1)
r(r+1) are the

probabilities to propose to split a specific state out of r and to propose to combine a
specific pair of states out of r(r+1)

2 possible ones respectively.
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Example 6.1 (Reversible Jump for Poisson Hidden Markov Models) For
a Poisson HMM, a single additional auxiliary random variable z is needed to split
λi0. The choice of z, however, is not totally free, as the new parameters λi1 and λi2
are subject to non-negativity constraints. One way to overcome this difficulty is to
propose the same split move as for the rows of the probability transition matrix

λi1 = 2zλi0 ,

λi2 = 2(1− z)λi0 ,
(6.15)

where z ∼ Beta(b, b). On the other hand, the combine move, which reverses the above
operations, yields

λi0 =
λi1 + λi2

2
,

z =
λi1

λi1 + λi2
.

(6.16)

In this transformation, most states, namely all that are not associated with state i0
which is split, remain unaffected and do not affect, in turn, any of the other states of
the new model. In effect, this means that the Jacobian determinant equals the Jacobian
determinant associated with the states actually involved in the split. Analysing this
part, we notice that the Jacobian takes the form of a block-diagonal matrix, since the
sets of parameters and auxiliary variables involved in each of the steps comprising the
split move are disjoint. The determinant of the Jacobian will be the product of the
determinants given below

• The Jacobian is further block-diagonal with respect to each i ̸= i0. For each
such i, the transformation takes (qi,i0 , ui) into (qi,i1 , qi,i2) with Jacobian[

ui qi,i0

1− ui −qi,i0

]

and determinant qi,i0 in absolute value. The overall absolute value of the Jac-
obian determinant of this step is

r∏
i=1
i ̸=i0

qi,i0.

• The Jacobian is also further block-diagonal with respect to each j ̸= i0. For each
such j, the transformation takes (qi0,j , vj) into (qi1,j , qi2,j) with Jacobian

2 ·

[
vj qi0,j

(1− vj) −qi0,j

]

and determinant 4qi0,j in absolute value. The overall absolute value of the
Jacobian determinant of this step is 4r−1

r∏
j=1
j ̸=i0

qi0,j.
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• This step takes (qi0,i0 , w2, w2, w3) into (qi1,i1 , qi1,i2 , qi2,i1 , qi2,i2) with Jacobian

2 ·


w1w2 w2qi0,i0 w1qi0,i0 0

(1− w1)w3 −w3qi0,i0 0 (1− w1)qi0,i0

w1(1− w2) (1− w2)qi0,i0 −w1qi0,i0 0

(1− w1)(1− w3) −(1− w3)qi0,i0 0 −(1− w1)qi0,i0


and determinant 16w1(1− w1)q

3
i0,i0

in absolute value.

• Lastly, this step takes (λi0 , z) into (λi1 , λi2) with Jacobian

2 ·

[
z λi0

1− z −λi0

]

and determinant 4λi0 in absolute value.

Finally, we arrive at the absolute value of the overall Jacobian determinant of the
split move

Jsplit = 4r+2λi0w1(1− w1)qi0,i0

r∏
i=1

qi,i0

r∏
j=1

qi0,j , (6.17)

while the acceptance ratio of the split move is not as easily computed as for the birth
move, since the components of the new state are not drawn from their respective priors

Asplit =
π(r + 1)f(y|ϑr+1)

π(r)f(y|ϑr)
· (r + 1)πr+1(ϑr+1)

πr(ϑr)
· 2rPc(r + 1)

r(r + 1)Ps(r)
· 1

2q(usplit)
· Jsplit

= 4a(r+1)+b · Pc(r + 1)π(r + 1)f(y|ϑr+1)

Ps(r)π(r)f(y|ϑr)
· [Γ(a)]2r−1

Γ(4a) [Γ(2a)]2(r−1)

·

qi0,i0 r∏
i=1

qi,i0

r∏
j=1

qi0,j

a

· exp

−
r∑

j=1

qi0,j

 · Γ(b)

Γ(2b)
· (Bλi0)

b · e−Bλi0 .

(6.18)

Here, the proposal density is initially multiplied by 2, since there are two different
combinations of auxiliary random variables which have equal density and result in
identical parameters after the split. Of course, the acceptance rate for the combine
move is the inverse of the above. ■

Example 6.2 (Reversible Jump for Normal Hidden Markov Models) For a
Normal HMM, two additional auxiliary random variables z1 and z2 are needed to split(
µi0 , σ

2
i0

)
. One possible way to simulate the parameters of the new states is through

simple random walk proposals

• Split µi0 as
µi1 = µi0 − z1,

µi2 = µi0 + z1,
(6.19)
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where z1 ∼ N (0, τµ) and τµ is a parameter which may be adjusted to optimise
the performance of the split move.

• Split σ2i0 through a multiplicative random walk proposal as

σ2i1 = σ2i0z2,

σ2i2 = σ2i0z
−1
2 ,

(6.20)

where z2 ∼ Lognormal(0, τσ) and τσ is a parameter which may also be adjusted.

On the other hand, the move which reverses the above operations, that is, the
combine move, goes as follows

µi0 =
µi1 + µi2

2
,

z1 =
µi2 − µi1

2
,

σ2i0 = σi1σi2 ,

z2 = σi1σ
−1
i2
.

(6.21)

As far as the Jacobian of the transformation is concerned, the only part that differs
is the diagonal block which takes

(
µi0 , z1, σ

2
i0
, z2
)

into
(
µi1 , µi2 , σ

2
i1
, σ2i2

)
, with Jacobian


1 −1 0 0

1 1 0 0

0 0 z2 σ2i0

0 0 1
z2

−
[
σi0
z2

]2


and determinant

4σ2
i0

z2
in absolute value.

The absolute value of the overall Jacobian determinant of the split move is

Jsplit =
4r+2σ2i0w1(1− w1)qi0,i0

z2

r∏
i=1

qi,i0

r∏
j=1

qi0,j , (6.22)

while the acceptance ratio Asplit is given below

Asplit = 4a(r+1)+1 · Pc(r + 1)π(r + 1)f(y|ϑr+1)

Ps(r)π(r)f(y|ϑr)
· Cc

Γ(c)
· σ−2c

i0
· [Γ(a)]2r−1

Γ(4a) [Γ(2a)]2(r−1)

·

qi0,i0 r∏
i=1

qi,i0

r∏
j=1

qi0,j

a

· exp

−
r∑

j=1

qi0,j

 · exp
{
−(µi0 − b)2 + 2z21

2B

}

· exp
{
−
[
z2 − 1 +

1

z2

]
· C
σ2i0

}
·
√

2πτµτσ
B

· exp
{
z21
2τµ

}
· exp

{
[log z2]2

2τσ

}
.

(6.23)
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Of course, the acceptance rate for the combine move of two states is the inverse
of the above. ■

Just as for MCMC algorithms with fixed r, several types of moves are typically
combined into a sweep of the Reversible Jump algorithm. We begin with some initial
values for all possible model-specific parameter vectors ϑ1,ϑ2, . . . ,ϑR and a specific
value for the model index r. For the current algorithm, a sweep may look as follows

• Propose a birth move or a death move, with probabilities Pb(r) and Pd(r)

respectively.

• Propose a split move or a combine move, with probabilities Ps(r) and Pc(r)

respectively.

• Update the current hidden states X through the global updating algorithm.

• Update the model-specific parameter vector ϑr through the Gibbs sampling
algorithm.

Obviously Pb(r)+Pd(r) = 1 and Ps(r)+Pc(r) = 1 must hold for all r. Typically,
all these probabilities are set to 0.5, except for Pb(1) = Ps(1) = Pd(R) = Pc(R) = 1

and Pb(R) = Ps(R) = Pd(1) = Pc(1) = 0. The posterior probability π(r|y) of model
Mr may be estimated from the draws r(1), r(2), . . . , r(L) of the model indices as

π̂RJ(r|y) =
1

L

L∑
ℓ=1

1
{
r(ℓ) = r

}
. (6.24)

Based on these posterior probabilities, the framework of Bayesian decision theory
is used for model selection. In the absence of specific information about the actual loss
incurred by a wrong decision, it is customary to consider the 0−1 loss function, which
leads to selecting the model Mr with the highest posterior probability π̂RJ(r|y).

As a last remark, we note that combining a reference prior, such as the uniform
Dir(1, 1, . . . , 1) prior, on the rows of the transition matrix with a uniform prior on the
number of states, leads to a high risk of selecting too many states, even for quite large
data sets. On the other hand, a truncated Poisson(1) prior, which is proportional to
1
r! , in combination with a Dir(4, 4, . . . , 4) prior on the rows of the transition matrix
seems to be optimal, if the major objective is to avoid over-fitting.

Of course, the reverse is also true. For small data sets, this prior carries some
risk of under-fitting, as opposed to the combination of the uniform priors, which
minimises this risk. Quite generally, prior distributions which appear only weakly
informative for the state-specific parameters of the hidden Markov model may be
highly informative about the number of states of the mixture.
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6.3.2 Birth-Death Markov Chain Monte Carlo

A hidden Markov model may be viewed, in an abstract sense, as a marked point
process in a general space. To sample from the posterior distribution of a hidden
Markov model with an unknown number of states, modified simulation methods,
which regard a spatial point-process as the invariant distribution of a continuous-
time spatial birth and death Markov process, have been developed.

In a birth and death Markov process, births and deaths occur in continuous time.
A birth occurs at a constant rate λb. On the other hand, for each state i = 1, 2, . . . , r,
a death occurs at a rate di, which is low for states that are important for explaining
the data, but high for states that do not help to explain the data. This relevance
is mainly measured in terms of the observed likelihood f(y|ϑ) of the current hidden
Markov model, in relation to the observed likelihood f(y|ϑ−i) of a hidden Markov
model without state i.

For the Birth-Death MCMC, a sweep of the algorithm may look as follows. Select
a Poisson(λr) prior for the number of states r, as well as a fixed time t0 for running
the birth and death process. Begin with a specific value for the model index r and
some initial values for the model-specific parameter vector ϑ of model Mr. Then,
iterate the following steps

• Simulate (r,ϑ) by running a birth and death process for fixed time t0. In other
words, set t = 0 and repeat the following steps while t < t0

– If r > 1, determine the actual death rate di for each possible state as

di =
λbπ(r − 1)f(y|ϑ−i)

rπ(r)f(y|ϑ) =
λbf(y|ϑ−i)

λrf(y|ϑ)
, (6.25)

by utilising the Forward Filtering algorithm, in order to determine the
observed log-likelihood of each model. Also determine the overall death
rate λd =

r∑
i=1

di.

– Simulate the arrival time tnew = t+ Exp(λb + λd) to the next jump.

– If tnew < t0, simulate the type of jump with the appropriate probabilities

P (birth) = λb
λb + λd

, P (death of state i) = di
λb + λd

. (6.26)

– If tnew < t0, also adjust the hidden Markov model to reflect either the
birth of a new state or the death of state i, in the same way as for the
birth-death move in the Reversible Jump algorithm.

– Set t = tnew.
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• Run several steps of full-conditional Gibbs sampling for the current number of
states r.

– Update the hidden states X via the global updating algorithm and the
hyper-parameter δ of the state-specific prior distributions.

– Update the transition probability matrix P and the state-specific para-
meters θ1,θ2, . . . ,θr.

Doubling the birth rate λb is equivalent to doubling t0, thus one is free to choose
t0 = 1. Larger values of λb will result in better mixing properties, but will require
more computation time. To a certain degree, birth and death methods appear to be
more natural and elegant than reversible jump methods, since they avoid calculating
the Jacobian of the transformation.

6.4 Marginal Likelihoods for Hidden Markov Models

The marginal posterior distribution π(r|y), which provides the posterior prob-
ability of the various models Mr given the data, may, alternatively, be calculated
through Bayes’ theorem as

π(r|y) ∝ π(r)f(y|Mr), (6.27)

where the so-called marginal likelihood f(y|Mr) is given by

f(y|Mr) =

∫
Θr

πr(ϑr)f(y|ϑr)dϑr. (6.28)

For hidden Markov models, the marginal likelihood f(y|Mr) is not available in
closed form and obtaining a good numerical approximation to it is quite a challenging
integration problem. Marginal likelihoods have been approximated using a multitude
of simulation-based methods, such as importance sampling, reciprocal importance
sampling and bridge sampling. Although these methods prove to be useful for a wide
range of statistical models, most of them are apt to fail in the case of hidden Markov
models.

If a sampling-based estimator relies on MCMC draws, it is essential to use an
MCMC technique which explores all the modes of the unconstrained posterior, since
the behaviour of the Gibbs sampler is somewhat unpredictable. It may get trapped at
one modal region or otherwise fail to explore the whole posterior distribution, if label
switching took place only from time to time, in an unbalanced manner. Estimating
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the marginal density from the MCMC draws may lead to a poor estimate, when
unbalanced label switching takes place.

A simple but efficient solution to obtain a sampler which explores the full posterior
distribution is to force balanced label switching, by concluding each MCMC draw by
a randomly selected permutation of the labelling. This method is called random
permutation MCMC sampling and is described below

• Run a sweep of the Gibbs sampler with global updating to obtain
(
ϑ(ℓ),x(ℓ)

)
.

• Select randomly one of the r! possible permutations σ of the current labelling.

– Each element p
(ℓ)
ij of the simulated transition matrix is substituted by

p
(ℓ)
σ(i),σ(j) for i, j = 1, 2, . . . , r.

– The state-specific parameter θ
(ℓ)
i is substituted by θ

(ℓ)
σ(i) for i = 1, 2, . . . , r.

– The hidden states x(ℓ)k are substituted by σ(x(ℓ)k ) for k = 0, 1, . . . , n.

For all of these sampling-based techniques, one has to select an importance density
q(ϑr), from which it is easy to sample and which provides a rough approximation to
the marginal posterior density πr(ϑr|y). As manual tuning of the importance density
for each model under consideration is rather tedious, a method for selecting sensible
importance densities in an unsupervised manner is required.

For hidden Markov models, where the posterior πr(ϑr|y) is multi-modal, a sim-
ilarly multi-modal importance density arises in quite a natural way within the data
augmentation framework. Evidently, this posterior density may be expressed in the
following way

πr(ϑr|y) =
∑
x∈X

[
π(x|y,ϑr)πr(P|x)

r∏
i=1

πr(θi|y,x)
]
. (6.29)

Thus, a random subsequence x(t), t = 1, 2, . . . , T of the MCMC draws of the state
vector x could be used to construct the following importance density

q(ϑr) =
1

T

T∑
t=1

[
πr

(
P|x(t)

) r∏
i=1

πr

(
θi|y,x(t)

)]
. (6.30)

6.4.1 Importance Sampling

A simple Monte Carlo approximation of the marginal likelihood given in (6.28)
may be obtained by

f̂MC(y|Mr) =
1

L

L∑
ℓ=1

f
(

y|ϑ(ℓ)
r

)
, (6.31)
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where ϑ
(1)
r ,ϑ

(2)
r , . . . ,ϑ

(L)
r is a sample from the prior πr(ϑr). The resulting estimator

is rather inefficient, if the likelihood is more informative compared to the prior. Im-
portance sampling may be used to obtain a better approximation to the marginal
likelihood by rewriting the marginal likelihood as

f(y|Mr) =

∫
πr(ϑr)f(y|ϑr)

q(ϑr)
q(ϑr)dϑr, (6.32)

where q(ϑr) is a suitably chosen importance density, such as the one described above.
If a sample ϑ̃

(1)
r , ϑ̃

(2)
r , . . . , ϑ̃

(M)
r from q(ϑr) is available, then the marginal likelihood

is estimated by

f̂IS(y|Mr) =
1

M

M∑
m=1

πr(ϑ̃
(m)
r )f(y|ϑ̃(m)

r )

q(ϑ̃
(m)
r )

. (6.33)

A sufficient but not necessary condition for this estimator to have finite variance,
is that the ratio πr(ϑr)f(y|ϑr)

q(ϑr)
is bounded, which implies that the tails of q(ϑr) should

be fat, when compared to the tails of the posterior density πr(ϑr|y).

6.4.2 Reciprocal Importance Sampling

The marginal likelihood is not directly available as an expectation with respect to
the posterior density, thus straightforward approximations to the marginal likelihood
from the MCMC output are not available. A tricky method which expresses the
marginal likelihood with respect to the posterior is given by

1

f(y|Mr)
=

πr(ϑr|y)
πr(ϑr)f(y|ϑr)

.

By multiplying both sides with the arbitrary density q(ϑr) and integrating with re-
spect to ϑr, one obtains the following identity

1

f(y|Mr)
=

∫
q(ϑr)

πr(ϑr)f(y|ϑr)
πr(ϑr|y)dϑr.

Therefore, the inverse of the marginal likelihood is equal to the posterior expect-
ation of the ratio of an arbitrary importance density q(ϑr) and the non-normalised
posterior density. This yields the following estimator of the marginal likelihood

f̂RIS(y|Mr) =

[
1

L

L∑
ℓ=1

q(ϑ
(ℓ)
r )

πr(ϑ
(ℓ)
r )f(y|ϑ(ℓ)

r )

]−1

, (6.34)

where ϑ
(1)
r ,ϑ

(2)
r , . . . ,ϑ

(L)
r are draws from the posterior πr(ϑr|y). Note that the im-

portance density is only evaluated at the MCMC draws, but no draws from the
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importance density are required. A sufficient but not necessary condition for this
estimator to have finite variance, is that the ratio q(ϑr)

πr(ϑr)f(y|ϑr)
is bounded, which

implies that the tails of q(ϑr) should be thin, when compared to the tails of the
posterior πr(ϑr|y).

6.4.3 Bridge Sampling

Bridge sampling was introduced into statistics as a simulation-based technique for
computing ratios of normalising constants. It generalises the method of importance
sampling and, similarly to importance sampling, it is based on an i.i.d. sample from
an importance density. However, this sample is combined with the MCMC draws
from the posterior density, in an appropriate way. An important advantage of bridge
sampling is that the variance of the resulting estimator depends on a ratio which is
bounded regardless of the tail behaviour of the underlying importance density. This
allows for more flexibility in the construction of the importance density.

Let q(ϑr) be the importance density, as for the simulation-based methods dis-
cussed earlier, and a(ϑr) be an arbitrary function such that∫

a(ϑr)q(ϑr)πr(ϑr|y)dϑr > 0.

Bridge sampling is based on the following result∫
a(ϑr)πr(ϑr|y)q(ϑr)dϑr =

∫
a(ϑr)q(ϑr)πr(ϑr|y)dϑr.

Substituting πr(ϑr|y) =
πr(ϑr)f(y|ϑr)

f(y|Mr)
into the left-hand term yields the key identity

for bridge sampling

f(y|Mr) =

∫
a(ϑr)πr(ϑr)f(y|ϑr)q(ϑr)dϑr∫
a(ϑr)q(ϑr)πr(ϑr|y)dϑr

. (6.35)

To estimate the marginal likelihood for a given function a(ϑr), the integrals at the
right-hand side are substituted by sample averages. The numerator is approximated
using i.i.d. draws ϑ̃(1)

r , ϑ̃
(2)
r , . . . , ϑ̃

(M)
r from q(ϑr), whereas the denominator is approx-

imated using Markov chain Monte Carlo draws ϑ(1)
r ,ϑ

(2)
r , . . . ,ϑ

(L)
r from πr(ϑr|y). The

resulting estimator f̂(y|Mr) is called the general bridge sampling estimator

f̂(y|Mr) =

M−1
M∑

m=1
a(ϑ̃

(m)
r )πr(ϑ̃

(m)
r )f(y|ϑ̃(m)

r )

L−1
L∑

ℓ=1

a(ϑ
(ℓ)
r )q(ϑ

(ℓ)
r )

. (6.36)
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The simulation-based methods discussed earlier result as special cases for appro-
priate choices of a(ϑr), namely the importance sampling estimator for a(ϑr) =

1
q(ϑr)

and the reciprocal importance sampling estimator for a(ϑr) = 1
πr(ϑr)f(y|ϑr)

. An
asymptotically optimal choice for a(ϑr), which minimises the expected relative mean
squared error of the estimator f̂(y|Mr) would be

a(ϑr) ∝
1

Mq(ϑr) + Lπr(ϑr|y)
.

We refer to the corresponding estimator f̂BS(y|Mr) as the bridge sampling estim-
ator. As it turns out, this optimal choice of a(ϑr) depends on the normalised posterior
πr(ϑr|y), which, in turn, depends on the marginal likelihood f(y|Mr). Thus, to es-
timate the marginal likelihood, we first need to know the marginal likelihood.

In order to solve this issue, we may apply an iterative procedure and obtain
f̂BS(y|Mr) as the limit of a sequence f̂

(t)
BS for t → ∞. Based on the most recent

estimate f̂ (t−1)
BS of the marginal likelihood, the posterior πr(ϑr|y) is normalised and a

new estimate f̂ (t)BS is obtained from (6.36). This leads to the recursion given below

• Simulation Step: Select the importance density q(ϑr).

– Run a permutation MCMC sampler to obtain draws ϑ
(1)
r ,ϑ

(2)
r , . . . ,ϑ

(L)
r

from the posterior πr(ϑr|y).

– Obtain independent ϑ̃
(1)
r , ϑ̃

(2)
r , . . . , ϑ̃

(M)
r draws from the importance dens-

ity q(ϑr).

• Evaluation Step: Evaluate both the non-normalised posterior πr(ϑr)f(y|ϑr)

and the importance density q(ϑr) at all draws from the posterior, as well as at
all draws from the importance density.

• Iteration Step: Use the computed values to determine a starting value f̂ (0)BS
and run the following recursion until convergence

f̂
(t)
BS =

M−1
M∑

m=1

πr(ϑ̃
(m)
r )f(y|ϑ̃(m)

r )

Mq(ϑ̃
(m)
r ) + πr(ϑ̃

(m)
r )f(y|ϑ̃(m)

r )/f̂
(t−1)
BS

L−1
L∑

ℓ=1

q(ϑ
(ℓ)
r )

Mq(ϑ
(ℓ)
r ) + Lπr(ϑ

(ℓ)
r )f(y|ϑ(ℓ)

r )/f̂
(t−1)
BS

. (6.37)

This iteration is typically very fast in practice. Either the importance sampling estim-
ator or the reciprocal importance sampling estimator may be used as starting values
f̂
(0)
BS . Since both estimators use the same values as the bridge sampling estimator,

their calculation is possible with practically no additional computational effort.
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Chapter 7

Numerical Results

7.1 Lamb Data

We consider the Lamb Data, a time series of count data analysed originally in
Nhu D. Le et al. (1992) and re-analysed by Früwirth-Schnatter (2004). The data
plotted in Figure 7.1 are the number of movements by a fetal lamb in 240 consecutive
five-second intervals.

Figure 7.1: Time Series Plot of Lamb Data

Assuming that the counts are i.i.d. realisations from a Poisson distribution im-
plies that the mean is equal to the variance. This assumption, however, is violated,
since the sample variance, s2 = 0.6577, is nearly twice the sample mean, ȳ = 0.3583.
To capture over-dispersion, a finite mixture of Poisson distributions could be ap-
plied. However, the plots of the empirical autocorrelation and partial autocorrelation
functions in Figure 7.2 also indicate stochastic dependence between subsequent ob-
servations. In order to capture both over-dispersion and autocorrelation, a Poisson
hidden Markov model, with an unknown number of states, is applied to the data.
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Figure 7.2: Lamb Data - Autocorrelation and Partial Autocorrela-
tion Plots

7.1.1 Model Selection

Classical Inference

As far as likelihood ratio testing is concerned, we employed parametric bootstrap
for testing r vs. r + 1 hidden states. In other words, we computed the MLEs ϑ̂r

and ϑ̂r+1 for the models with r and r+ 1 states, respectively, and the corresponding
observed LR statistic, LRobs. Furthermore, we simulated B bootstrapped samples
of size equal to the original data from the model with parameter vector ϑ̂r. For
each of those, a bootstrapped LR statistic LR(b)

boot, b = 1, 2, . . . , B, was computed
by proceeding exactly as above for the original data. An estimated p-value of the
generalised LR test for r vs. r + 1 hidden states is given by N+1

B+1 , where N is the
number of bootstrapped samples for which LR(b)

boot > LRobs.

We performed this bootstrapping procedure for testing r = 1 vs. r = 2, r = 2 vs.
r = 3 and r = 3 vs. r = 4 hidden states, using B = 200 bootstrapped samples for
each test. For the first two tests, the largest bootstrapped LR statistics were smaller
than the observed ones, thus N = 0 and the estimated p-values were 0.005. In the
last test, the estimated p-value was 0.3632, hence LR testing seems to conclude that
a Poisson HMM with r = 3 hidden states would be suitable to describe the Lamb
Data. It should be noted that we did not attempt to test for r = 4 vs. r = 5 hidden
states.

r = 1 vs. r = 2 r = 2 vs. r = 3 r = 3 vs. r = 4

p-value 0.0050 0.0050 0.3632

Table 7.1: Lamb Data - p-values of LR Tests for r vs. r + 1 Hidden
States
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By utilising the log-likelihoods which were estimated in the course of the above
procedure, we additionally calculated the AIC and BIC of each of the competing
models. The AIC is minimised for the model with r = 3 hidden states, a result which
is in accordance with the results obtained from LR testing. On the other hand, the
BIC, which favours less complex models, is minimised for the model with just r = 2

hidden states.

r = 1 r = 2 r = 3 r = 4

AIC 404.0873 364.3148 351.7248 362.3793
BIC 407.5679 378.2374 383.0505 418.0695

Table 7.2: Lamb Data - AIC and BIC for r = 1 to r = 4 Hidden
States

The main point we want to make here, however, is that the above computations
were slow. As a whole, the above procedure took 5, 874 seconds of CPU time to
run using Matlab on a machine with a quad-core processor, running on 3.50 GHz.
Obviously, these computations would have been must faster if implemented in another
programming language, e.g. C++.

Bayesian Inference

For the Bayesian analysis we employed a reversible jump MCMC sampler. A
uniform prior over {1, 2, . . . , R} with R = 4 was put on r. The transition probab-
ilities were parametrised by qij for i, j = 1, 2, . . . , r, where each qij was given an
independent Exponential prior with unit mean. This implies an independent uniform
Dir(1, 1, . . . , 1) prior over each row of P.

We ran this reversible jump sampler for 100, 000 total sweeps with a burn-in period
of 50, 000 sweeps. Using a Matlab implementation, the total computation time was
554 seconds on the same machine as above, which is not even comparable to the
computation times required for the previous bootstrap analysis.

The mean acceptance probability was 51% for the birth-death move and 40% for
the split-combine move. We remark that obtaining satisfying acceptance rates for
dimension-changing moves in HMMs is generally difficult. The estimated posterior
probabilities are given in Table 7.3. The degree of belief in r = 3 vs. r = 4 is
comparable to what was obtained with the bootstrap analysis, whereas the result for
r = 2 vs. r = 3 is entirely different. Here, r = 2 appears to be a plausible model,
though it was firmly rejected by the generalised LR test.

Next, we ran the birth-death sampler with the same specifications as above, but
with a truncated Poisson(1) prior over {1, 2, 3, 4}, in order to avoid sampling from



82 Chapter 7. Numerical Results

models with too many states. We also selected the birth rate, λb = 1. Again,
using a Matlab implementation, the total computation time was 1, 589 seconds on
the same machine as above, which is three times the computation time required for
the reversible jump approach, but still much faster than the bootstrap analysis.

The estimated posterior probabilities given by the birth-death sampler are also
shown in Table 7.3. We remark that the results obtained by the two different trans-
dimensional MCMC samplers are markedly different. The posterior probabilities
estimated via the birth-death MCMC sampler seem to concur with the results of the
bootstrap analysis. Namely the model with r = 3 is greatly favoured against the
model with r = 2 states, whereas it is slightly favoured against the model with r = 4,
which seems as a viable alternative.

r = 1 r = 2 r = 3 r = 4

Reversible Jump 0.1165 0.3155 0.3792 0.1889

Birth-Death 0.0000 0.0729 0.5845 0.3426

Importance Sampling 0.0000 0.4784 0.5209 0.0007

Reciprocal Importance
Sampling 0.0000 0.7732 0.2268 0.0000

Bridge Sampling 0.0000 0.4394 0.5562 0.0044

Table 7.3: Lamb Data - Posterior Probabilities for r = 1 to r = 4
Hidden States

Lastly, we approximated the marginal likelihoods of models with r = 1 to r = 4

hidden states. A uniform prior over {1, 2, 3, 4} was chosen for r. The posterior
distribution of ϑr was estimated through the permutation sampling algorithm based
on the priors (pi,1, . . . , pi,r) ∼ Dir(1, . . . , 1) and λi ∼ Gamma(b,B) for i = 1, 2, . . . , r,

where b = ȳ2

s2 − ȳ2
and B =

b

ȳ
.

Naturally, the marginal likelihood of the model with r = 1 was computed analyt-
ically, leading to the following expression

f(y|M1) =
Bb

Γ(b)
· Γ(S(y) + b)

(B + n+ 1)S(y)+b
·

n∏
k=0

1

yk!
, (7.1)

where S(y) =
n∑

k=0

yk.

The rest of the marginal likelihoods were estimated given M = L = 10, 000 draws
from the posterior and the importance densities of ϑr respectively. A burn-in of
1, 000 draws was allowed for the permutation sampling algorithm, whereas T = 100

randomly selected MCMC draws of the state sequence x were used to approximate
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the proposal density. The importance sampling estimator was chosen as the starting
value of the bridge sampling algorithm.

Once again, the results are summarised in Table 7.3 and there is clear evidence
against the hypothesis of homogeneity (r = 1). The total computation time for the
estimation of all the marginal likelihoods was just 296 seconds of CPU time, using
the same machine, which is in line with the rest of the Bayesian methods applied for
model selection. Nevertheless, the estimated marginal likelihoods appear to be highly
sensitive to the estimation method and, more importantly, to the choice of a prior
distribution over ϑr.

7.1.2 Parameter Estimation

The EM algorithm was run for the model with r = 3 hidden states. The initial
values of the means were computed as λi = min yk + R(y)

2d + (i−1)R(y)
d for i = 1, 2, 3,

where R(y) = max yk − min yk. Afterwards, we employed parametric bootstrap to
compute 95% confidence intervals for the MLEs, via the percentiles defined by the
empirical distribution of the parameters estimated from B = 1, 000 bootstrapped
samples. The total computation time required for this estimation procedure was
4, 390 seconds on the same machine. The results are available in Table 7.4.

MLE Confidence
Interval MAP Posterior

Mean
Credibility

Interval

λ1 0.0398 [0.0000, 0.2514] 0.0357 0.0741 [0.0037, 0.2159]

λ2 0.4937 [0.0315, 2.4582] 0.4919 0.4537 [0.1813, 0.8056]

λ3 3.4106 [0.4426, 6.4501] 3.0057 2.4549 [1.0890, 4.2023]

p1,1 0.9487 [0.0000, 0.9909] 0.9479 0.8366 [0.1334, 0.9757]

p1,2 0.0409 [0.0000, 0.8479] 0.0422 0.1265 [0.0045, 0.7547]

p1,3 0.0104 [0.0000, 0.5641] 0.0100 0.0369 [0.0016, 0.1477]

p2,1 0.0400 [0.0000, 1.0000] 0.0427 0.1357 [0.0069, 0.6753]

p2,2 0.9600 [0.0000, 0.9931] 0.9573 0.8204 [0.1789, 0.9765]

p2,3 0.0000 [0.0000, 0.9428] 0.0000 0.0439 [0.0010, 0.2126]

p3,1 0.1848 [0.0000, 1.0000] 0.1826 0.2157 [0.0101, 0.5585]

p3,2 0.0000 [0.0000, 1.0000] 0.0012 0.2171 [0.0077, 0.5865]

p3,3 0.8152 [0.0000, 0.9824] 0.8162 0.5673 [0.2323, 0.8597]

Table 7.4: Lamb Data - Parameter Estimation for r = 3 Hidden
States

For the Gibbs sampler, the parameters were initialised as described in Chapters
4 and 5 and the sampler was run for 11, 000 total sweeps, of which the first 1, 000
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were discarded as a burn-in period. Even though the EM algorithm required to
be coupled with a bootstrapping procedure in order to provide confidence intervals
for the estimates, Gibbs sampling naturally gives 95% credibility intervals through
the draws of the posterior distribution. Hence, the computation times were just 26

seconds for the Gibbs sampler with local updating and 37 seconds for the Gibbs
sampler with global updating. A summary of the results obtained from the global
updating algorithm is also available in Table 7.4.

Figure 7.3: Lamb Data - Draws of λ from the Gibbs Sampler

Lastly, we ran the SAME algorithm for L = 10, 000 iterations with a linear cooling
schedule Mℓ = [0.01 ·ℓ+1] for ℓ = 1, 2, . . . , L. The computation time required for this
method was 1, 014 seconds and the resulting maximum a posteriori (MAP) estimates
are available in Table 7.4.

7.2 Simulated Data from a Normal HMM

To further compare the various methods of model selection and parameter estim-
ation developed in previous chapters, we performed the following simulation experi-
ment. We simulated a set of data consisting of 300 observations from a Normal HMM
with r = 3 states and true parameter values µ = (−2, 0, 2), σ2 = (0.25, 2.25, 1) and

P =


0.1 0.6 0.3

0.3 0.2 0.5

0.5 0.4 0.1

 .
The chain is assumed to be stationary. Nevertheless, it is convenient to also include
the initial probabilities as separate parameters in the model and we do so even if these
are implicitly given by the stationarity assumption. Figure 7.4 displays the densities
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of the Normal components, weighted by their stationary probabilities, (dashed lines)
and the marginal density of a single observation from this Normal HMM (solid lines).

Figure 7.4: Weighted Component and Marginal Densities of Normal
HMM

7.2.1 Model Selection

Classical Inference

We performed the same bootstrapping procedure for testing r = 1 vs. r = 2,
r = 2 vs. r = 3 and r = 3 vs. r = 4 hidden states, using B = 200 bootstrapped
samples for each test. This procedure took 4, 732 seconds to run using Matlab. In the
last test, the estimated p-value was 0.8806, hence LR testing strongly suggests that a
Normal HMM with r = 3 hidden states would be suitable to describe the simulated
data.

r = 1 vs. r = 2 r = 2 vs. r = 3 r = 3 vs. r = 4

p-value 0.0050 0.0100 0.8806

Table 7.5: Normal Data - p-values of LR Tests for r vs. r+1 Hidden
States

r = 1 r = 2 r = 3 r = 4

AIC 1, 249 1, 176 1, 157 1, 167
BIC 1, 257 1, 198 1, 202 1, 241

Table 7.6: Normal Data - AIC and BIC for r = 1 to r = 4 Hidden
States

We also calculated the AIC and BIC of each of the competing models. The AIC
is minimised for the model with r = 3 hidden states, a result which is in accordance



86 Chapter 7. Numerical Results

with the results obtained from LR testing. On the other hand, the BIC, which favours
less complex models, is minimised for the model with just r = 2 hidden states.

Bayesian Inference

For the Bayesian analysis we employed a reversible jump MCMC sampler with
the exact same specifications as for the Lamb Data. Using a Matlab implementation,
the total computation time was 414 seconds on the same machine as above. The
mean acceptance probability was 25% for the birth-death move and 24% for the
split-combine move. The estimated posterior probabilities are given in Table 7.3. The
results of the reversible jump algorithm are rather inconclusive, since the models with
r = 2 and r = 3 hidden states are both assigned almost equal posterior probabilities.

Next, we ran the birth-death sampler, again, with the same specifications as
beforehand. Using Matlab, the total computation time was 1, 956 seconds. The
estimated posterior probabilities given by the birth-death sampler are shown in Table
7.7. They seem to concur with the results of the bootstrap analysis. Namely, the
model with r = 3 is greatly favoured against the models with r = 2 and r = 4 states.

r = 1 r = 2 r = 3 r = 4

Reversible Jump 0.0010 0.4275 0.4340 0.1375

Birth-Death 0.0000 0.0112 0.7366 0.2522

Importance Sampling 0.0000 0.0467 0.9532 0.0001

Reciprocal Importance
Sampling 0.0000 0.3124 0.6876 0.0000

Bridge Sampling 0.0000 0.0601 0.9397 0.0002

Table 7.7: Normal Data - Posterior Probabilities for r = 1 to r = 4
Hidden States

Lastly, we estimated the marginal likelihoods of models with r = 1 to r = 4

hidden states. The posterior distribution of ϑr was estimated based on the priors
(pi,1, . . . , pi,r) ∼ Dir(1, . . . , 1), σ2i ∼ Inv-Gamma(c, C) and µi|σ2i ∼ N (b,N−1σ2i ) for
i = 1, 2, . . . , r, where c = 2.5, C = 0.5 · s2, b = ȳ and N = 1.

For this prior specification, the conditional posterior distributions of µi and σ2i

for i = 1, 2, . . . , r are given by

π
(
σ2i
∣∣y,x) ∝ (σ2i )−Ni(x)

2
−c−1 · exp

{
−
[
C +

Vi(y) +Nb2

2
− (Si(y) +Nb)2

2(Ni(x) +N)

]
1

σ2i

}
,

π
(
µi
∣∣y,x, σ2i ) ∝ exp

{
−Ni(x) +N

2σ2i
µ2i +

Si(y) +Nb

σ2i
µi

}
,



7.2. Simulated Data from a Normal HMM 87

where Ni(x) =
n∑

k=0

1{xk = i}, Si(y) =
∑

k:xk=i

yk and Vi(y) =
∑

k:xk=i

y2k, which corres-

pond to σ2i
∣∣y,x ∼ Inv-Gamma

(
Ni(x)
2

+ c, C +
Vi(y) +Nb2

2
− (Si(y) +Nb)2

2(Ni(x) +N)

)
and

µi
∣∣y,x, σ2i ∼ N

(
Si(y) +Nb

Ni(x) +N
,

σ2i
Ni(x) +N

)
for i = 1, 2, . . . , r.

Naturally, the marginal likelihood of the model with r = 1 was computed analyt-
ically, leading to the following expression

f(y|M1) = (2π)−
n+1
2 ·

√
N

N + n+ 1
· Cc

Γ(C)
· Γ
(
c+

n+ 1

2

)
· [C(y)]−c−n+1

2 , (7.2)

where C(y) = C +
V (y) +Nb2

2
− (S(y) +Nb)2

2(N + n+ 1)
, S(y) =

n∑
k=0

yk and V (y) =
n∑

k=0

y2k.

The reciprocal importance sampling estimator was chosen as the starting value of
the bridge sampling algorithm. The total computation time for the estimation of all
the marginal likelihoods was just 366 seconds of CPU time, using the same machine.
Once again, the results are summarised in Table 7.7. All methods for approximating
the marginal likelihoods concur that the best fitting model to describe our simulated
data is the correct one, namely the one with r = 3 hidden states.

7.2.2 Parameter Estimation

We ran the Gibbs sampler for inferring the model with r = 3 hidden states. The
parameters were initialised as described in Chapters 4 and 5 and the sampler was
run for 11, 000 total sweeps, of which the first 1, 000 were discarded as burn-in. The
computation times were just 32 seconds for the Gibbs sampler with local updating and
47 seconds for the Gibbs sampler with global updating. A summary of the obtained
results through the global updating algorithm is also available in Table 7.8.

Figure 7.5: Normal Data - Draws of µ from the Gibbs Sampler
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Figure 7.6: Normal Data - Draws of σ2 from the Gibbs Sampler

MLE Confidence
Interval MAP Posterior

Mean
Credibility

Interval

µ1 −2.0498 [−2.2053,−1.9067] −2.0574 −2.0489 [−2.1918,−1.9064]

µ2 −0.4799 [−1.2849, 0.6544] −0.5847 −0.2963 [−0.9656, 0.4315]

µ3 1.6546 [1.3983, 2.1846] 1.6600 1.7798 [1.4239, 2.2160]

σ21 0.2561 [0.1399, 0.4170] 0.2624 0.3037 [0.1939, 0.4656]

σ22 2.1908 [0.6515, 3.2395] 1.9319 2.2009 [1.3260, 3.2255]

σ23 1.3470 [0.6403, 1.7718] 1.2894 1.2099 [0.7055, 1.7649]

p1,1 0.1202 [0.0000, 0.2899] 0.1159 0.1302 [0.0145, 0.2728]

p1,2 0.5954 [0.3104, 0.8880] 0.6067 0.6071 [0.3438, 0.8496]

p1,3 0.2845 [0.0401, 0.4697] 0.2774 0.2626 [0.0778, 0.4724]

p2,1 0.1176 [0.0000, 0.3140] 0.1327 0.1486 [0.0136, 0.3161]

p2,2 0.0084 [0.0000, 0.4578] 0.0001 0.1775 [0.0085, 0.4626]

p2,3 0.8739 [0.3105, 1.0000] 0.8672 0.6739 [0.3369, 0.9123]

p3,1 0.5413 [0.3706, 0.8284] 0.5217 0.5626 [0.3937, 0.7527]

p3,2 0.2571 [0.0000, 0.4700] 0.2510 0.2699 [0.0938, 0.4603]

p3,3 0.2015 [0.0000, 0.4029] 0.2273 0.1675 [0.0192, 0.3605]

Table 7.8: Normal Data - Parameter Estimation for r = 3 Hidden
States
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The EM algorithm was also run for the model with r = 3 hidden states. The initial
values were computed as µi = min yk+R(y)

2d + (i−1)R(y)
d and σi = s2 for i = 1, 2, 3, where

R(y) = max yk −min yk. Afterwards, we employed parametric bootstrap to compute
95% confidence intervals for the MLEs, using B = 1, 000 bootstrapped samples. The
total computation time required for this estimation procedure was 3, 685 seconds on
the same machine. The results are available in Table 7.8.

Lastly, we ran the SAME algorithm for L = 10, 000 iterations with a linear cooling
schedule Mℓ = [0.01 ·ℓ+1] for ℓ = 1, 2, . . . , L. The computation time required for this
method was 1, 270 seconds and the resulting maximum a posteriori (MAP) estimates
are available in Table 7.4.

7.3 Simulated Data from a Multivariate Normal HMM

Lastly, we simulated a set of data consisting of 300 observations from a Multivari-
ate Normal HMM with d = 2 dimensions, r = 2 hidden states and true parameter
values µ1 = (−1, 1), µ2 = (1,−1),

Σ1 =

[
2 1

1 5

]
,Σ2 =

[
4 −1

−1 3

]
and P =

[
0.3 0.7

0.8 0.2

]
.

The chain is assumed to be stationary. Nevertheless, it is convenient to also include
the initial probabilities as separate parameters in the model and we do so even if these
are implicitly given by the stationarity assumption. Figure 7.7 shows the marginal
density of the Multivariate Normal HMM, whereas Figure 7.8 illustrates the contours
of its surface.

Figure 7.7: Marginal Density of Multivariate Normal HMM
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Figure 7.8: Contours of the Marginal Distribution of Multivariate
Normal HMM

7.3.1 Model Selection

Classical Inference

We performed the same bootstrapping procedure for testing r = 1 vs. r = 2

and r = 2 vs. r = 3 hidden states, using B = 200 bootstrapped samples for each
test. This procedure took 7, 895 seconds to run using Matlab. In the last test, the
estimated p-value was 0.4726, hence LR testing seems to conclude that a Normal
HMM with r = 3 hidden states would be suitable to describe the simulated data.

r = 1 vs. r = 2 r = 2 vs. r = 3

p-value 0.0050 0.4726

Table 7.9: Multivariate Normal Data - p-values of LR Tests for r vs.
r + 1 Hidden States

We note that several complications arose in the bootstrap analysis to estimate
the p-value of the LR test for r = 2 vs. r = 3 hidden states. Since the boot-
strapped samples for this test were drawn from a hidden Markov model with r = 2

hidden states and parameter vector ϑ̂2, estimated from the original data, the EM
algorithm was sometimes unable to estimate the over-parametrised model with r = 3

hidden states, based on these samples. The cause for that was that the smoothing
probabilities ϕk|n(3) were close to zero for the majority of observations, leading to the
estimated covariance matrix Σ3 being close to singular. Hence, the EM algorithm was
terminated in those instances, having been unable to properly estimate the required
parameter vector.

By utilising the log-likelihoods which were estimated in the course of the above
parametric procedure, we additionally calculated the AIC and BIC of each of the
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competing models. Both the AIC and the BIC are minimised for the model with r = 3

hidden states, results that both contradict the consensus of the previous bootstrap
analysis. We note, however, that the values of the AIC and the BIC corresponding to
each of the competing models are very close to each other, so no reliable conclusion
can be drawn.

r = 1 r = 2 r = 3

AIC 2, 578 2, 525 2, 511
BIC 2, 596 2, 570 2, 556

Table 7.10: Multivariate Normal Data - AIC and BIC for r = 1 to
r = 3 Hidden States

Bayesian Inference

We ran the birth-death sampler with the exact same specifications as for the Lamb
Data. Again, using a Matlab implementation, the total computation time was 10, 086
seconds. The estimated posterior probabilities given by the birth-death sampler are
shown in Table 7.11. They seem to concur with the results of the bootstrap analysis.
Namely the model with r = 2 is greatly favoured against the model with r = 1 states,
whereas it is slightly less favoured against the model with r = 3.

r = 1 r = 2 r = 3

Birth-Death 0.0000 0.8110 0.1890

Table 7.11: Multivariate Normal Data - Posterior Probabilities for
r = 1 to r = 3 Hidden States

7.3.2 Parameter Estimation

The EM algorithm was run for the model with r = 2 hidden states. The initial
values were computed as µi,ℓ = min

0⩽k⩽n
yℓ,k +

R(yℓ)
2d +

(i−1)R(yℓ)
d and Σi = Cov(y),

where R(yℓ) = max
0⩽k⩽n

yℓ,k − min
0⩽k⩽n

yℓ,k, for i = 1, 2 and ℓ = 1, 2. Afterwards, we
employed parametric bootstrap to compute 95% confidence intervals for the MLEs,
using B = 1, 000 bootstrapped samples. The total computation time required for this
estimation procedure was 4, 536 seconds on the same machine. The results obtained
are available in Table 7.12.

For the Gibbs sampler, the parameters were initialised as described in Chapters 4
and 5 and the sampler was run for 11, 000 total sweeps, of which the first 1, 000 were
discarded as a burn-in period. A summary of the obtained results through the global
updating algorithm is also available in Table 7.12.
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MLE Confidence
Interval

Posterior
Mean

Credibility
Interval

µ1,1 −0.8036 [−1.1508,−0.4871] −0.8068 [−1.0933,−0.5222]

µ1,2 1.1973 [−0.2075, 1.6520] 1.2049 [0.7924, 1.6380]

µ2,1 1.2465 [0.6179, 2.1791] 1.1713 [0.6019, 1.8176]

µ2,2 −1.1709 [−1.7486, 0.8273] −1.0909 [−1.7300,−0.4367]

σ21,1 1.9337 [1.3837, 2.5515] 1.9334 [1.4598, 2.4916]

σ21,2 4.3639 [2.6003, 5.4314] 4.4365 [3.4150, 5.7621]

Cov1 0.8710 [−0.6151, 1.4502] 0.9061 [0.3150, 1.5805]

σ22,1 3.8696 [2.1820, 5.2536] 3.9646 [2.8822, 5.4041]

σ22,2 2.7126 [1.7000, 7.4875] 2.8889 [1.7614, 4.3581]

Cov2 −0.8384 [−3.0423, 0.1434] −0.9144 [−1.9005, 0.0280]

p1,1 0.3925 [0.1150, 0.7504] 0.3556 [0.0501, 0.5995]

p1,2 0.6075 [0.2453, 0.8802] 0.6444 [0.4004, 0.9497]

p2,1 0.8843 [0.4236, 1.0000] 0.8415 [0.6472, 0.9781]

p2,2 0.1157 [0.0000, 0.5755] 0.1585 [0.0219, 0.3525]

Table 7.12: Multivariate Normal Data - Parameter Estimation for
r = 2 Hidden States
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Conclusion

We have, thus, compared inference for hidden Markov models primarily based
on the EM algorithm and parametric bootstrap, on one hand, and on the Gibbs
sampler and other MCMC algorithms, on the other hand. In situations where one
requires only a point estimate of the parameter vector or where it suffices to compare
models only through some information criterion, then the EM algorithm is typically
the quickest and most straightforward way to achieve this. Nevertheless, in the case
where a point estimate is not sufficient, the comparison between the two approaches
is not an elementary task.

In the examples presented in Chapter 7, we saw that the dependent posterior
samples provided by the Gibbs sampling algorithm boast very swift computation
times. On the other hand, while the i.i.d. replicates provided by parametric bootstrap
require much longer run times, no further analyses of autocorrelations are required
in order to assess the precision of the results. The results obtained from all of the
proposed algorithms are very promising so the choice between them is left to the
reader’s taste.

Having said that, it is important to be aware that inference in HMMs, whether
frequentist or Bayesian, is usually a complex and far from automated task. Even
in simple models the multi-modality of the observed likelihood may potentially be
causing the EM algorithm to converge to local, rather than global, maxima and
the MCMC algorithms to have poor mixing properties. A further problem is slow
convergence of the EM algorithm and slow mixing of the Gibbs sampler occurring
when the amount of information carried by the complete data is much greater than
the amount carried by the observed data alone.

Although a Bayesian approach to HMMs may be appealing from several per-
spectives, it is the author’s experience that users of HMMs often consider writing
the computer code necessary to implement such procedures a prohibitive exercise. In
particular reversible jump MCMC algorithms have a somewhat unjustified reputation
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for being difficult to derive and implement. Hence, it is clear that readily available
software packages would be extremely beneficial for making such methods available
to a wider audience of researchers in statistics and other scientific fields. Future
work certainly includes the development of such packages for various programming
languages, including Matlab, R, Python, C and Java.
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Appendix A

Markov Chain Monte Carlo
Methods

A.1 The Metropolis-Hastings Algorithm

Suppose that we want to simulate a sequence of random variables with probabil-
ity mass function πi = B−1bi for i = 1, 2, . . . ,m, where B =

m∑
i=1

bi is the normalising

constant of the distribution. Suppose, also, that m is large and that the norm-
alising constant B is difficult to calculate. One way of simulating a sequence of
identically distributed random variables whose common distribution converges to πi,
i = 1, 2, . . . ,m, is to construct a Markov chain whose limiting distribution coincides
with the distribution we desire to simulate from.

Let P = [pij ] be an irreducible Markov transition probability matrix over the
integers {1, 2, . . . ,m}. The Metropolis-Hastings algorithm defines a discrete-time
stochastic process {Xn}n⩾0 in the following manner. Given that Xn = i, a random
variable X is generated according to the probability distribution given by the ith row
of P, i.e. P (X = j) = pij for j = 1, 2, . . . ,m. If X = j, then

Xn+1 =

X with probability aij

Xn with probability 1− aij

.

It is, thus, easy to verify that {Xn}n⩾0 constitutes a discrete-time Markov chain with
transition probabilities Pij given by

Pij =


pijaij , j ̸= i

pii +
∑
k ̸=i

pik(1− aik), j = i
.
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Now, we demand that {Xn}n⩾0 be time-reversible with unique stationary distri-
bution πi, i = 1, 2, . . . ,m, given by the detailed balance equations πiPij = πjPji for
j ̸= i. It is easy to verify that the detailed balance equations hold if we take

aij = min
{
πjpji
πipij

, 1

}
= min

{
bjpji
bipij

, 1

}
.

Hence, we note that knowledge of B is not required to define the Markov chain, since
the values of bi for i = 1, 2, . . . ,m suffice. Lastly, in order for the limiting distribution
of {Xn}n⩾0 to coincide with its stationary distribution, πi for i = 1, 2, . . . ,m, we
require that {Xn}n⩾0 be aperiodic. A sufficient condition is that Pii > 0 for some
i ∈ {1, 2, . . . ,m}.

The following steps sum up the Metropolis-Hastings algorithm for generating a
sequence of identically distributed random variables from a given distribution with
an intractable normalising constant

1. Choose an irreducible Markov transition probability matrix P = [pij ] over the
integers {1, 2, . . . ,m}.

2. Set X0 = k for some integer k ∈ {1, 2, . . . ,m} and n = 0.

3. Given that Xn = i, generate a random variable X such that P (X = j) = qij .

4. Generate a random variable U ∼ U(0, 1). Given that X = j, then

Xn+1 =


X, if U <

bjpji
bipij

Xn, otherwise
.

5. Set n = n+ 1 and go to step 3.

A.2 The Gibbs Sampler

Suppose that we want to generate a sequence of identically distributed random
vectors {Xn}n⩾0 with common probability mass function q(x) = Cg(x), where C

is an unknown multiplicative constant and x = (x1, x2, . . . , xm). Utilisation of the
Gibbs sampler presupposes that we can generate a random variable X from the
conditional probability distribution P (X = x) = P (Xi = x|Xj = xj , j ̸= i) for
some i ∈ {1, 2, . . . ,m}. It operates by using the Metropolis-Hastings algorithm on a
Markov chain with states x = (x1, x2, . . . , xm) and transition probabilities defined as
below.
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Given a present state x, a coordinate i is chosen out of {1, 2, . . . ,m} and a
random variable X is generated as previously described. Given that X = x, then
y = (x1, . . . , xi−1, x, xi+1, . . . , xm) is considered as the next candidate state. In other
words, the transition probabilities of the Markov chain are given by

p(x,y) = 1

m
· P (Xi = x|Xj = xj , j ̸= i) =

q(y)
m · P (Xj = xj , j ̸= i)

.

Since we desire the limiting distribution of the Markov chain to coincide with
q(x), the vector y is accepted as the new state of the Markov chain with probability

a(x,y) = min
{
q(y)p(y,x)
q(x)p(x,y) , 1

}
= min

{
q(y)q(x)
q(x)q(y) , 1

}
= 1.

Hence, when utilising the Gibbs sampler, the candidate state is always accepted as
the new state of the Markov chain.

The following steps sum up the Gibbs sampling algorithm for generating a se-
quence of identically distributed random vectors from a given probability distribution

1. Select a starting vector X0 and set n = 0.

2. Given that Xn = x = (x1, x2, . . . , xm), generate the next candidate state y =

(y1, y2, . . . , ym) by sampling the components in order, starting from the first
component. For i = 1, 2, . . . ,m, sample yi according to the distribution specified
by P (Xi = x|X1 = y1, . . . , Xi−1 = yi−1, Xi+1 = xi+1, . . . , Xm = xm).

3. Set Xn+1 = y, n = n+ 1 and go to step 2.

A.3 Simulated Annealing

Let A be a finite set of vectors and V : A → [0,∞). Suppose that we are interested
in specifying its maximal value V ∗ = max

x∈A
V (x), as well as at least one vector at which

the maximal value is attained, that is, an element in M = {x ∈ A : V (x) = V ∗}.

Let λ > 0 and consider the following probability mass function on the set of
vectors A

pλ(x) =
eλV (x)∑

y∈A
eλV (y) .

By multiplying both the numerator and the denominator by e−λV ∗ , we see that

pλ(x) =
eλ(V (x)−V ∗)∑

y∈A
eλ(V (y)−V ∗)

=
eλ(V (x)−V ∗)

|M|+
∑

y/∈M
eλ(V (y)−V ∗)

,
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where |M| denotes the cardinality of M. Since V (x) − V ∗ < 0 for x /∈ M, then, as
λ→ ∞, we obtain

lim
λ→∞

pλ(x) =
1{x ∈ M}

|M|
.

Hence, if λ is large enough and we generate a Markov chain whose limiting distri-
bution is pλ(x), then most of the mass of the limiting distribution will be concentrated
on M. An approach that is often useful is to introduce the notion of neighbouring
vectors and utilise a Metropolis-Hastings algorithm to define such a chain. For in-
stance, we could say that two vectors are neighbouring if they differ in only a single
coordinate or if the one can be obtained from the other by interchanging two of its
components. Given that the current state is x, we could designate that the next
state is randomly chosen out of all the neighbouring vectors of x. If the neighbouring
vector y is selected, then that vector becomes the next state with probability

min
{
eλV (y)

eλV (x) ·
|N (x)|
|N (y)| , 1

}
,

where N (x) denotes the set of neighbouring vectors of x.

One weakness of the preceding algorithm is that, since λ was chosen to be suffi-
ciently large, when the chain enters a state x with V (x) > V (y), ∀y ∈ N (x), then it
might take a long time for the chain to move to a different state. Hence, it has been
proven useful to permit the value of λ to vary with time. A popular variation of the
preceding algorithm, referred to as Simulated Annealing, operates in the following
way. If Xn = x and the vector y is chosen out of N (x), then Xn+1 is chosen to be y
with probability

min
{
eλnV (y)

eλnV (x) ·
|N (x)|
|N (y)| , 1

}
,

where {λn}n⩾0 is a predetermined sequence of values, commonly referred to as a
cooling schedule, which start out small, thus initially attaining a large number of
transitions, and gradually grow, thus achieving convergence to the set of global max-
ima.

A computationally useful choice of cooling schedule is to let λn = C log(n + 2)

for n ⩾ 0, where C is any fixed positive constant. If we generate N successive states
X1,X2, . . . ,XN , then we can estimate V ∗ by max

1⩽i⩽N
V (Xi) and an element in M by

Xi∗ , where i∗ = arg max
1⩽i⩽N

V (Xi).
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Appendix B

Common Probability
Distributions

B.1 Discrete Distributions

B.1.1 Poisson Distribution

The Poisson distribution is a discrete probability distribution that expresses the
probability of a given number of events occurring in a fixed interval of time if these
events occur with a constant rate and independently of the time since the last event.

A discrete random variable X is said to have a Poisson distribution with parameter
λ > 0 if the probability mass function of X is given by

f(k;λ) = P (X = k;λ) = e−λ · λ
k

k!
, k = 0, 1, 2, . . . .

Figure B.1: Poisson Distribution - Probability Mass Function
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The positive real number λ is equal to the expected value of X, as well as the
variance of X, i.e. E(X) = Var(X) = λ.

B.2 Continuous Distributions

B.2.1 Beta Distribution

The Beta distribution is a family of continuous probability distributions defined
on the interval [0, 1] and parametrised by two positive shape parameters, denoted
by α and β. In Bayesian inference, it is the conjugate prior probability distribution
for the Bernoulli, Binomial, Negative Binomial and Geometric distributions. For
example, it can be used in Bayesian analysis to describe initial knowledge concerning
probability of success. It is a suitable model for the random behaviour of percentages
and proportions.

The probability density function (pdf) of the Beta distribution is a power function
of the variable x and of its reflection 1−x as follows

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
· xα−1 · (1− x)β−1, 0 ⩽ x ⩽ 1.

Figure B.2: Beta Distribution - Probability Density Function

The mode of a Beta distributed random variable X with α, β > 1 is given by

Mode =
α− 1

α+ β − 2
.

When α, β < 1, this is the anti-mode, i.e. the lowest point of the probability density
curve. Letting α = β, the expression for the mode simplifies to 0.5, showing that for
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α = β > 1 the mode is at the center of the distribution, which is to be expected,
since, in that case, it is symmetric around the point x = 0.5.

The expected value of a Beta distributed random variable X is a function of only
the ratio β/α of the two parameters

E(X) =
1

1 + β/α
=

α

α+ β
.

Letting α = β in the above expression, one obtains E(X) = 0.5.

The variance of a Beta distributed random variable X is

Var(X) =
αβ

(α+ β)2 · (α+ β + 1)
.

Letting α = β in the above expression one obtains Var(X) = 1
4(2α+1) , showing that the

variance decreases monotonically as α increases. Approaching the limit at α = β = 0,
one finds the maximum variance, Var(X) = 0.25.

B.2.2 Gamma Distribution

The Gamma distribution is a two-parameter family of continuous probability dis-
tributions. One common parametrisation is with a shape parameter α and an inverse
scale parameter β, called a rate parameter. The corresponding pdf in the shape-rate
parametrisation is

f(x;α, β) =
βα

Γ(α)
· xα−1 · e−βx, x > 0.

Figure B.3: Gamma Distribution - Probability Density Function
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We summarise some of the properties of the Gamma distribution with α, β > 0

Mode =
α− 1

β
, α ⩾ 1,

E(X) =
α

β
,

Var(X) =
α

β2
.

B.2.3 Inverse Gamma Distribution

The Inverse Gamma distribution is the continuous probability distribution which
acts as the distribution of the reciprocal of a variable distributed according to the
Gamma distribution, i.e. X ∼ Gamma(α, β) ⇒ X−1 ∼ Inv-Gamma(α, β). Per-
haps the chief use of the Inverse Gamma distribution is in Bayesian statistics, where
the distribution arises as the conjugate prior for the unknown variance of a Normal
distribution. The Inverse Gamma distribution’s pdf is defined as

f(x;α, β) =
βα

Γ(α)
· x−α−1 · exp

{
−β
x

}
, x > 0,

with shape parameter α > 0 and scale parameter β > 0.

Figure B.4: Inverse Gamma Distribution - Probability Density Func-
tion

We summarise some of the properties of the Inverse Gamma distribution

Mode =
β

α+ 1
,

E(X) =
β

α− 1
, α > 1,
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Var(X) =
β2

(α− 1)2 · (α− 2)
, α > 2.

B.2.4 Log-Normal Distribution

The Log-Normal distribution is the continuous probability distribution of a ran-
dom variable whose logarithm is Normally distributed, i.e. X ∼ Lognormal(µ, σ2) ⇔
logX ∼ N (µ, σ2). We have

f(x;µ, σ2) =
1

x ·
√
2πσ2

· exp
{
−(logx− µ)2

2σ2

}
, x > 0.

Figure B.5: Log-Normal Distribution - Probability Density Function

We summarise some of the properties of the Log-Normal distribution

Median = eµ, Mode = exp
{
µ− σ2

}
,

E(X) = exp
{
µ+

σ2

2

}
, Var(X) =

[
exp

{
σ2
}
− 1
]
· exp

{
2µ+ σ2

}
.

B.2.5 Normal Distribution

The Normal (Gaussian) distribution is a very common continuous probability
distribution. The pdf of the Normal distribution is

f(x;µ, σ2) =
1√
2πσ2

· exp
{
−(x− µ)2

2σ2

}
, x ∈ R.

It is uni-modal and symmetric around the point x = µ, which is at the same time
the mode, the median and the mean of the distribution.
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Figure B.6: Normal Distribution - Probability Density Function

B.3 Joint Distributions

B.3.1 Dirichlet Distribution

The Dirichlet distribution is a family of continuous multivariate probability dis-
tributions parametrised by a vector α = (a1, . . . , ar) of positive real numbers. It is a
multivariate generalisation of the Beta distribution. In Bayesian statistics, it is the
conjugate prior of the Categorical distribution and Multinomial distributions. The
Dirichlet distribution of order r ⩾ 2 has a pdf given by

f(x;α) =
1

Br(α)
·

r∏
i=1

xai−1
i ,

r∑
i=1

xi = 1, xi ⩾ 0, i = 1, 2, . . . , r,

where x = (x1, . . . , xr) and Br(α) is the multivariate Beta function.

The marginal distributions of X = (X1, X2, . . . , Xr) are Beta distributions. To be
precise, Xi ∼ Beta(ai, a0 − ai) for i = 1, 2, . . . , r, where a0 =

r∑
i=1

ai.

The mode of the distribution is the vector(
a1 − 1

a0 − r
,
a2 − 1

a0 − r
, . . . ,

ar − 1

a0 − r

)
.

B.3.2 Mutlinomial Distribution

The Multinomial distribution is a generalisation of the Binomial distribution. For
n independent trials, each of which leads to a success for exactly one of r categories,
with each category having a given fixed success probability, the Multinomial distri-
bution gives the probability of any particular combination of numbers of successes
for the various categories.
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When r = 2 and n = 1, the Multinomial distribution is the Bernoulli distribution.
When r = 2 and n > 1, it is the Binomial distribution. When r > 2 and n = 1, it is
the Categorical distribution.

Denote the variable which is the number of successes of category i as Xi and
denote as pi the probability of success for category i. The probability mass function
of this Multinomial distribution is

P (X = x;n,p) = n!

x1! · · ·xr!
· px1

1 · · · pxr
r ,

r∑
i=1

xi = n,

where x = (x1, . . . , xr) and p = (p1, . . . , pr). Each of the r components has a Binomial
distribution with parameters n and pi, i.e. Xi ∼ Bin(n, pi) for i = 1, 2, . . . , r.

B.3.3 Multivariate Normal Distribution

The Multivariate Normal distribution is a generalisation of the one-dimensional
Normal distribution. A random vector is said to have a d-dimensional Normal dis-
tribution if every linear combination of its d components has a univariate Normal
distribution.

The Multivariate Normal distribution is said to be ”non-degenerate” when the
symmetric covariance matrix Σ is positive definite. In this case, it has pdf

f(x;µ,Σ) = |2πΣ|−
1
2 · exp

{
−(x − µ)T ·Σ−1 · (x − µ)

2

}
, x ∈ Rd,

where x = (x1, . . . , xd) and µ = (µ1, . . . , µd) is the d-dimensional mean vector.

B.3.4 Wishart Distribution

The Wishart distribution is a generalisation of the Gamma distribution. It is a
probability distribution defined over symmetric, non-negative definite, matrix-valued
random variables. In Bayesian statistics, the Wishart distribution is the conjugate
prior of the inverse covariance matrix (precision matrix) of a Multivariate Normal
random vector.

Let X be a d× d symmetric matrix of random variables that is positive definite.
Let V be a fixed positive definite matrix of size d × d. Given that n ⩾ d, X has a
d-dimensional Wishart distribution with n degrees of freedom if it has a pdf given by

f(X;V, n) = 1

Γd

(
n
2

) · |2V|−
n
2 · |X|

n−d−1
2 · exp

{
−1

2
tr
[
V−1X

]}
,
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where Γd is the d-dimensional Gamma function, defined as

Γd(a) = π
d(d−1)

4

d∏
i=1

Γ

(
a+

1− i

2

)
.

We summarise some of the properties of the Wishart distribution

Mode = (n− d− 1) · V, n ⩾ d+ 1, E(X) = n · V.

B.3.5 Inverse Wishart Distribution

The Inverse Wishart distribution is a probability distribution defined on real-
valued, positive-definite matrices. In Bayesian statistics, it is used as the conjugate
prior for the covariance matrix of a Multivariate Normal distribution.

We say X follows an Inverse Wishart distribution, denoted as X ∼ W−1
d (V, n), if

its inverse, X−1, has a Wishart distribution, i.e. X−1 ∼ Wd(V−1, n). The pdf of the
Inverse Wishart distribution is

f(X;V, n) = 1

Γd

(
n
2

) · ∣∣2V−1
∣∣−n

2 · |X|−
n+d+1

2 · exp
{
−1

2
tr
[
VX−1

]}
.

We summarise some of the properties of the Inverse Wishart distribution

Mode =
1

n+ d+ 1
· V, E(X) =

1

n− d− 1
· V, n > d+ 1.
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