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ABSTRACT

This thesis follows the results in the yet unpublished paper of A. Charalambidis, Ch.

Nomikos and P. Rondogiannis namely “The Expressive Power of Higher-order Datalog”.

That paper proposes a proof which shows that Higher-order Datalog is equivalent in

computational power to exponentially time bounded Turing Machines. In other words

that higher-order Datalog captures the complexity class of decision problems EXPkTIME.

This thesis will review the above result in detail while demonstrating and proposing

solutions for the flaws in the programs written in that paper. In addition a working

implementation of the programs in the XSB system will be provided which shows that

the proposed results hold.

SUBJECT AREA: Proof on expressive power equivalency in programming languages

KEYWORDS: Higher-order Datalog, Expressivity, Complexity Theory, Turing machine

simulation



ΠΕΡΙΛΗΨΗ

Η πτυχιακή εργασία ακολουθεί τα αποτελέσματα του μη δημοσιευμένου ακόμα άρθρου

των, Α. Χαραλαμπίδη, Χ. Νομικού και Π. Ροντογιάννη με τίτλο “The Expressive Power of

Higher-order Datalog”. Το άρθρο παρουσιάζει μία απόδειξη ισοδυναμίας σε εκφραστική

ισχύ της Datalog υψηλής-τάξης, με τις χρονικά εκθετικά περιορισμένες μηχανές Turing.

Με άλλα λόγια ότι η Datalog υψηλής-τάξης εκφράζει τις κλάσεις πολυπλοκότητας των

προβλημάτων απόφασης EXPkTIME. Η πτυχιακή εργασία αυτή, θα παρουσιάσει με

λεπτομέρεια τα παραπάνω αποτελέσματα, καθώς και θα υποδείξει κάποια σφάλματα

στα προγράμματα που αναγράφονται στο άρθρο, καθώς και θα προτείνει τρόπους

επίλυσής τους. Επιπλέον θα παρατεθεί μία λειτουργική υλοποίηση των προγραμμάτων

στο σύστημα XSB, με στόχο την τεκμηρίωση των παραπάνω αποτελεσμάτων.

ΘΕΜΑΤΙΚΗΠΕΡΙΟΧΗ: Απόδειξη εκφραστικής ισοδυναμίας γλωσσώνπρογραμματισμού
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The Expressive Power of Higher-order Datalog: An XSB Implementation

1. INTRODUCTION

1.1. Introduction to expressivity

Before proceeding with the developments of the paper we introduce the notion of

expressivity of a programming language. Intuitively, if every program that can be written

in a language X can also be written in a language Y using only local transformations,

while there are programs written in language Y that cannot be written in language X

without changing their entire structure (i.e. not purely through local transformations),

then we can say that language Y is more expressive than language X.One might argue

that the above definition admits the possibility that there are pairs of languages where

there are programs in X which cannot be expressed in Y and programs in Y which cannot

be expressed in X, thus neither language is more expressive than the other and we

cannot compare them. This is true in a sense and it justifies our real-world experience

where one language is better at some things that the other and vice versa.

As stated in [1], comparing the set of computable functions that a language can rep-

resent is useless because the languages in question are usually universal and no

other measures exist. Thus the need for developing a formal framework for comparing

programming languages arises.

As a result it is a common practice when studying expressivity to use complexity theory

as a means to characterize the expressive power of a programming language through

complexity classes of decision problems. In [2] complexity theory is used to determine the

expressive power of functional programming. In that paper expressivity is distinguished

in ”absolute expressivity” and ”relative expressivity”. An ”absolute expressivity” question

on a programming language feature X is: ”Do there exist problems that can be solved

by programs with feature X, and cannot be solved without feature X?”. A ”relative

expressivity” question is: ”Is there a problem that can be solved both with and without

feature X, but such that any solution without feature X is necessarily less efficient

than some solution using X?”.

It is difficult to answer a ”relative expressivity” question as there exist many different

efficient simulations of one programming language feature by others. This leads to very

small complexity differences. ”Relative expressivity” is a field with many conceptualized

ideas but very few proven results.

Additionally there exists an issue when studying ”absolute expressivity” (which is the

expressivity we discuss in this thesis. From this point forward we will refer to ”absolute

expressivity” simply as expressivity). Studying expressivity in a strong language (i.e.

Turing complete) is futile. The reason is that any Turing complete language can compute

all µ-recursive functions (i.e. partial recursive) and thus in an absolute sense are all

equally expressive. A solution to this problem is to restrict a language of features until a

Turing-incomplete language is obtained. Then it is possible to use complexity theory to

study the expressivity of different language features.

In [2] a particularly interesting class of functional programs are studied. Those without

the CONS feature. This essentially means that no construction of new data is allowed.

This instance of functional programs are very similar to the logic programs that we are

E. Protopapas 7
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studying in this thesis. A Higher-order Datalog program is in reality a program of a more

powerful Higher-order Logic Programming Language without the ability to construct new

data due to the lack of function symbols. As expected this class of functional programs

is proven to solve all decision problems in EXPkTIME where k is the order of the input to

the program. Which is the same result that the paper of A. Charalambidis, Ch. Nomikos

and P. Rondogiannis demonstrates.

Complexity theory focuses on classifying computational problems in complexity classes

according to their solution’s difficulty. To be able to capture this inherent difficulty to solve

a problem, the need for a model of computation arises to study these problems and

quantify their complexity. The most commonly used model of computation in complexity

theory is the Turing machine. There exists a belief in the field of theoretical computer

science which states that every physically realizable computational device can be

simulated by a Turing machine. This belief is known as the Church-Turing (CT) thesis.

Though it is not proven, the CT thesis is a belief about the nature of the world as we

currently understand it and no realized computational system available today has been

able to falsify this belief.

The most common type of problems studied in complexity theory are decision problems.

A decision problem is informally defined as a problem whose answer is either yes or no

(i.e. either 1 or 0). A decision problem can also be viewed as a formal language where

instances of inputs whose output is yes are members of the language. As expected the

complexity classes of these problems are defined using Turing machines. Complexity

classes can be defined in terms of a resource of computation consumed such as time

or space. In the following chapter we will be discussing Turing machines and complexity

classes in detail.

At this point it may have become obvious that in order to prove that some Turing-

incomplete programming language captures some complexity class defined in terms of

some Turing machine it may suffice to show that the language can simulate the Turing

machine. In reality this is only part of the proof. The other part requires that any program

in the language can be simulated by an algorithm that meets the resource requirements

of the complexity class.

For example in [3] Papadimitriou demonstrated that the class of languages decided

by (first-order) Datalog is the class computable by polynomial-time bounded Turing

machines, or in other words equivalent to the well-known class P . The proof consists of

the following:

• Showing that there exists an algorithm that runs in O((n+ c)2d)
(which is clearly a polynomial of n) which simulates a Datalog program.

• Designing a Datalog program that simulates a Turing machine that runs in time nd.

The proof in A. Charalambidis, Ch. Nomikos and P. Rondogiannis proceeds in a similar

way. In this thesis we will be particularly interested in studying the Higher-order Datalog

program that simulates an exponentially-time bounded Turing machine.

E. Protopapas 8
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1.2. Structure of thesis

This thesis consists of six chapters. The Introduction, Background, A Higher-order

Datalog language, Simulating in Higher-order Datalog, Corrections and Conclusion

chapters.

Introduction introduces some basic ideas regarding complexity theory that will be needed

in the rest of this thesis. A brief explanation of the structure of this thesis is also included.

Background introduces the reader to knowledge necessary to the understanding of the

paper. Complexity classes and Turing machines are among the topics discussed in this

chapter.

A Higher-order Datalog language defines a basic language suited for the needs of the

proof.

Simulating in Higher-order Datalog discusses what we need and how we can represent

that in Higher-order Datalog in order to simulate a Turing machine. Then the program

will be presented.

Corrections discusses minor faults that appear in the program of the original paper and

proposes some possible solutions.

Conclusion sums up the topics discussed in this thesis and explains intuitively why the

proof is valid.

In the Appendix instructions on where to find the program implemented in the XSB

system will be given.

E. Protopapas 9
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2. BACKGROUND

This chapter introduces some basic concepts and definitions that are necessary to follow

the proof that is reviewed in chapter 4.

2.1. Languages

The definitions in this section are from [4].

A word over an alphabet can be any finite sequence of letters. The set of all words over

an alphabet Σ is usually denoted by Σ∗.

Definition 2.1. Suppose an alphabet Σ and a function f : Σ∗ → {0, 1}. We shall identify

such a function f with the set Lf = {x | f(x) = 1} and call such sets languages or

decision problems.

The problem of deciding the language Lf (i.e., given x decide whether x ∈ Lf ) is

equivalent to computing the function f (i.e., given x compute f(x)).

2.2. Turing machines

The definitions in this section are mostly from [5].

The Turing machine, first proposed by Alan Turing in 1936, is a powerful model of

computation with an unlimited and unrestricted memory. ATuring machine is an accurate

formalization of a general purpose computer, in the sense that it can do everything a

real computer can do. Of course even a Turing machine cannot solve some problems.

These are the problems that are beyond the theoretical limits of computation.

The machine uses an infinite tape as its memory. It has a tape head that can move

around the tape, read or write symbols. Initially the tape contains the input string followed

my empty symbols. The machine continues computing until certain conditions are met

and the machine enters an accept or reject state. In every other case the machine never

halts.

A formal definition of a Turing machine follows.

Definition 2.2. A Turing machine is a 7-tuple, (Q,Σ,Γ, δ, q0, qaccept, qreject), where Q, Σ,
Γ, are all finite sets and

• Q is the set of states,

• Σ is the input alphabet not containing the blank symbol t,

• Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,

• δ : Q× Γ −→ Q× Γ× {L,S,R} is the transition function,

• q0 ∈ Q is the start state,

E. Protopapas 10
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• qaccept ∈ Q is the accept state, and

• qreject ∈ Q is the reject state, where qreject 6= qaccept.

in [5] the transition function is defined as δ : Q × Γ −→ Q × Γ × {L,R}. S means the

head stays in place, L means the head moves to the left, R means the head moves to

the right. The original definition allows for two types of transitions:

• The rule “if the head is in symbol σ and in state q then write symbol σ′, go to state

q′ and move the head left” translates to δ(q, σ) = (q′, σ′,L).

• The rule “if the head is in symbol σ and in state q then write symbol σ′, go to state

q′ and move the head right” translates to δ(q, σ) = (q′, σ′,R)

The altered definition allows the additional transition rule “if the head is in symbol σ and

in state q then write symbol σ′ and go to state q′” which translates to δ(q, σ) = (q′, σ′,S).
It is easy to see that adding S to the set of possible moves does not alter the functionality

of the machine. If the additional transition rule is used the original transition rules can be

simulated as follows. The two rules δ(q, σ) = (q′′, σ′,S), δ(q, σ′) = (q′, σ′,L) are equivalent
to δ(q, σ) = (q′, σ′,L). Symmetrically for R. Even though one rule is now defined using

two rules the computational complexity of the machine is not affected as there are only

finitely many rules used.

Now let’s see how a Turing machine M computes. Suppose w is the input string with

length n.M is initialized with the leftmost n tape squares containing w and the rest blank.

The head starts on the leftmost symbol on the tape (i.e the first symbol of s).M proceeds

computing in steps according to the transition function δ. AsM computes changes occur

in the current state, the current tape contents and the current head location. These three

items compose a configuration of M defined as follows.

Definition 2.3. A configuration of a Turing machine is a tuple, 〈q, w〉, where q ∈ Q and

w ∈ Γ∗. q denotes the current state. w denotes the current tape contents (finite string). A

dotted σ̇ ∈ w denotes the symbol pointed to by the head.

The intuitive understanding of a step of computation is captured through configurations.

Suppose two configurations

C1 = 〈qi, σ1σ2 . . . σ̇k . . . σn〉 and C2 = 〈qj, σ1σ2 . . . σk ˙σk+1 . . . σn〉.

We say that

if δ(qi, σk) = (qj, σk,R) then C1 yields C2.

The configuration 〈q0, σ̇1σ2 . . . σn〉 is a start configuration, 〈qaccept, . . . σ̇i . . . 〉 is an accepting
configuration and 〈qreject, . . . σ̇j . . . 〉 is a rejecting configuration.

Definition 2.4. A Turing machine M accepts input w if a sequence of configurations

C1, C2, . . . , Ck exists, where

• C1 is the start configuration of M on input w,

E. Protopapas 11
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• each Ci yields Ci+1 and

• Ck is an accepting configuration.

The set of strings that M accepts is the language of M , or the language recognized by

M and is denoted L(M).

In order to better comprehend the aforementioned definitions we continue with a Turing

machine example.

Example. In this example we define a Turing machineM that decides L = {02n | n ≥ 0}
(i.e. the language consisting of all strings of 0’s whose length is a power of 2). In other

words L(M) = {02n | n ≥ 0}.

Informally the Turing machine sweeps across the tape keeping track of whether the

number of 0’s is even or odd. If that number is odd and greater than 1, the input cannot

be a power of 2. Therefore, the machine rejects. Otherwise if the number is exactly 1,
the machine accepts.

Formally we define M = (Q,Σ,Γ, δ, q1, qaccept, qreject) where
Q = {q1, q2, q3, q4, q5, qaccept, qreject}, Σ = {0}, Γ = {0, x,t} and δ is described in the

following state diagram.

Figure 1: State diagram for M .

Running the machine with input 0000 gives the following sequence of configurations.

(read column wise)

〈q1, 0̇000〉 → 〈q5,tẋ0xt〉 → 〈q5,txẋxt〉 → 〈qaccept,txxx t ṫ〉
〈q2,t0̇00〉 → 〈q5, ṫx0xt〉 → 〈q5,tẋxxt〉 →
〈q3,tx0̇0〉 → 〈q2,tẋ0xt〉 → 〈q5, ṫxxxt〉 →
〈q4,tx00̇〉 → 〈q2,tx0̇xt〉 → 〈q2,tẋxxt〉 →
〈q3,tx0xṫ〉 → 〈q3,txxẋt〉 → 〈q2,txẋxt〉 →
〈q5,tx0ẋt〉 → 〈q3,txxxṫ〉 → 〈q2,txxẋt〉 →
〈q5,tx0̇xt〉 → 〈q5,txxẋt〉 → 〈q2,txxxṫ〉 →

E. Protopapas 12
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2.3. Complexity Classes

The definitions in this section are mostly from [5].

As already stated, a complexity class is a set of functions that can be computed with

respect to a given resource. Throughout this thesis we restrict our attention to the type

of functions defined in Section 2.1 which represent decision problems.

We first define the notion of a time bounded deterministic Turing machine.

Definition 2.5. Let M be a deterministic Turing machine that halts on all inputs. The

running time or time complexity of M is the function f : N → N, where f(n) is the

maximum number of steps that M uses on any input of length n. If f(n) is the running

time of M , we say that M runs in time f(n) and that M is an f(n) time Turing machine.

The first complexity class that we define is the following.

Definition 2.6. Let t : N → R+ be a function. TIME(t(n)) = {L | L is a language

decided by an O(t(n)) time deterministic Turing machine}

Now we can define the classes needed to follow the proof that will be demonstrated

later in this thesis.

Definition 2.7. Suppose T0(n)(d) = nd and Tk(n)(d) = 2Tk−1(n)(d) for k, d ≥ 0. We define

the complexity classes EXPkTIME as

EXPkTIME =
⋃
d∈N

TIME(Tk(n)(d)) for k ≥ 0.

Additionally

EXP0TIME ( EXP1TIME ( EXP2TIME ( · · · ( EXPkTIME . . .

proven from the classical time hierarchy theorem.

In simple words EXP0TIME is the set of all decision problems that are solvable by

a deterministic Turing machine in time O(nd) where d ≥ 0, EXP1TIME in time O(2n
d
),

EXP2TIME in timeO(22
nd

) and so on and so forth. The class EXP0TIME is the well-known

class P.

This concludes the background knowledge required regarding computability and com-

plexity theory, to sufficiently comprehend the proof that follows in chapter 4.

E. Protopapas 13
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3. A HIGHER-ORDER DATALOG LANGUAGE

Unlike functional programming which is a programming paradigm that heavily promotes

Higher-order programming, logic programming is traditionally restricted to first-order

logic theories. This convention is largely based on the fact that even second-order logic

theories are in general undecidable and extensional semantics (i.e. semantics in which

predicates are represented as sets of arguments for which they hold) for a language

implementation cannot be established. In an extensional language, two predicates that

succeed for the same instances are considered equal.

The first attempts at defining Higher-order logic systems where made by [6] with HiLog

and [7] with λ-Prolog. While very useful, the issue with these systems is that they are

intensional. In general an intensional system classifies its objects based on their name

without regard for their representation as a set. Thus in an intentional system equality

between predicates may only be based on the names of the predicates. This leads to

context sensitive systems which essentially means that a given program that is written

for a specific task may not behave in the expected way when present in a different

context.

One of the first works (to my knowledge) to propose an extensional higher order Horn

logic was Wadge in [8]. Wadge identified a subset of Higher-order Horn logic that

accepts extensional semantics that in a way extend the classical first-order semantics.

The first work to propose a purely extensional theoretical framework for higher-order

logic programming was [9]. That paper extended the work in [8] and proposed minimum

model semantics for the higher-order case in a way that naturally extend the classical

first-order minimum model semantics.

Informally, by higher-order, logicians mean a language in which variables are allowed

to appear in places where normally predicates or function symbols do. In a higher-

order Logic Programming languages we can define atoms like R(X, Y), where R will

be instantiated with a predicate. Additionally we can pass predicates as arguments to

higher-order predicates. For example p(R, X) where R is a predicate.

Classical Datalog is extended to the higher-order case in the same manner. A Higher-

order Datalog language can be defined as the subset of some Higher-order Logic

Programming language in which function symbols do not exist.

3.1. Syntax

We begin by defining the alphabet of HD.

Definition 3.1. The alphabet of the Higher-order Datalog language HD consists of the

disjoint sets, PV of predicate variables, PC of predicate constants, NV of non-predicate

variables, C of non-predicate constants, the symbols “←”, “=”, “(”, “)”, “,” and the unique

predicate not/1. Additionally we define V = PV ∪ NV and call it the set of argument

variables.

Usually we denote predicate variables with P,Q,R . . . , predicate constants with p, q, r . . . ,

E. Protopapas 14
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non-predicate variables with X,Y, Z . . . and non-predicate constants with a, b, c . . . .

Definition 3.2. Suppose a program Program of HD. The syntax of Program is given

by the following grammar:

〈Program〉 ::= 〈Clause〉 | 〈Clause〉 〈Program〉
〈Clause〉 ::= 〈Head〉 ← ( 〈Atom〉 ) , . . . , ( 〈Atom〉 ). | 〈Head〉.
〈Atom〉 ::= 〈Posatom〉 | 〈Negatom〉
〈Head〉 ::= {PC} 〈Argumenthead〉 . . . 〈Argumenthead〉
〈Posatom〉 ::= 〈Name〉 〈Argumentpos〉 . . . 〈Argumentpos〉

| 〈Argumentfo〉 = 〈Argumentfo〉
〈Negatom〉 ::= not ({PC} 〈Argumentfo〉 . . . 〈Argumentfo〉)

| 〈Argumentfo〉 = 〈Argumentfo〉
〈Argumentpos〉 ::= ( 〈Posatom〉 ) | {V} | {PC} | {C}
〈Argumenthead〉 ::= {V} | {C}
〈Argumentfo〉 ::= {NV} | {C}

〈Name〉 ::= {PC} | {PV}

The notation {X} means an item from any set X . In the rule for “〈Clause〉” the amount of

atoms may vary. The same holds for “〈Head〉”, “〈Posatom〉” and “〈NegAtom〉”. Additionally
only first-order predicates can be negated.

The syntax proposed in definition 3.2 imposes the following restrictions to our clauses.

Arguments in the head of a clause are only allowed to contain predicate variables and not

predicate constants. We will additionally restrict our clauses to contain distinct predicate

variables in the head and that these variables are the only predicate variables present

in the body. Then as proposed in [8] our clauses are definitional.

Definition 3.3. A higher-order Horn clause is definitional iff

• in the head of the clause each argument that is a predicate is a predicate variable

local to the clause,

• the predicate variables are all distinct,

• they are the only predicate variables local to the clause.

3.2. Semantics

By restricting our language to contain only definitional clauses, we could devise exten-

sional higher-order semantics for our language similarly to [9] or [10]. Since this is not

the subject of this thesis, we avoid the implications of defining extensional semantics

and choose to define intensional semantics based on [6].

In [6] it is shown that there exists an encoding of Hilog programs into classical first-order

Prolog programs. This encoding allows Hilog to be a powerful Higher-order language

while having simple First-order semantics.
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For our language we shall define a translation of HD to Hilog and the use Hilog’s

encoding to Prolog.

Definition 3.4. A clause in HD can be translated to HiLog with the following set of rules:

THD(H ← A1, . . . , An) = THD(H) ← THD(A1), . . . , THD(An)

THD(σpred σarg . . . σarg) = THD(σpred)(THD(σarg)) . . . (THD(σarg))

THD((σpred σarg . . . σarg)) = THD(σpred)(THD(σarg)) . . . (THD(σarg))

THD((σarg = σarg)) = THD(σarg) = THD(σarg)

THD({X}) = {X}

Again {X} means an item from any set X .

Using Hilog’s encoding to Prolog, our language can be interpreted using the classical

first-order semantics, such as the well-founded semantics. Additionally the system XSB

implements HiLog using an encoding to Prolog, combined with SLG resolution which is

equivalent to the well-founded semantics. This means that our language has the same

semantics as the programs we practically implement using XSB. For detailed information

on HiLog’s encoding, the well-founded semantics and SLG resolution the interested

reader is redirected to [6], [11], [12].

For example a valid program in our language

closure R X Y ← (R X Y).
closure R X Y ← (R X Z), (closure R Z Y).

Translates to

closure(R)(X)(Y) ← R(X)(Y).
closure(R)(X)(Y) ← R(X)(Z), closure(R)(Z)(Y).

Which is a valid HiLog program using general predicates. Notice that we chose to

translate to general predicates like closure(R)(X)(Y) instead of the common closure(R,
X, Y). General predicates can be used for partial applicationwhich is a desirable property
for our language to possess.

Intuitively partial application allows us to represent objects through relations, meaning

that closure(R)(X)(Y) is not interpreted as a 3-ary predicate. Instead closure(R)
represents the transitive closure of the relation R, closure(R)(X) represents the the

transitive closure of the relation R on item X and only when closure(R)(X)(Y) is called,

which represents the the transitive closure of the relation R on items X,Y, the code

executes.
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4. SIMULATING IN HIGHER-ORDER DATALOG

This chapter reviews the simulation present in A. Charalambidis, Ch. Nomikos and P.

Rondogiannis.

The logic programming paradigm differs drastically from the computational model of

Turing machines. On one hand, Turing machines represent more of an imperative style of

execution. An input stream is represented through the tape, while the transition function

defines a clear set of instructions that can be followed imperatively to execute the

machine.

On the other hand, logic programming represents a declarative style of programming.

Logic programs express facts and rules to prove truth or falsity of objects in some domain.

The resolution used in logic programming systems incorporates backward reasoning

constructing trees that constitute the search space for solving a goal.

4.1. Representation

Therefore is it clear that in order to simulate a Turing machine using Higher-order Datalog

we first need to develop a way to bridge the gaps between these two styles of execution.

4.1.1. Input / Acceptance

The most straightforward way to encode a string of length n in Higher-order Datalog is by

using a relation. Suppose an input stringw = σ1σ2 . . . σn ∈ Σ∗. The first idea that comes to

mind is a relation of the form {σ1, σ2, . . . , σn}. However this format would not allow us to

pick out an arbitrary symbol based on its position (recall that sets are unordered). Amore

suitable representation would be the relation {(0, σ1, 1), (1, σ2, 2), . . . , (n − 1, σn, n)}.
Notice that each symbol is paired with its position along with the position of the next

symbol on the tape. We call this relation the input relation.

Acceptance can be simply represented as a 0-ary predicate. Proving truth or falsity for

the predicate is equivalent to accepting or rejecting the input on a Turing machine. We

call this predicate accept.

We shall say that the program decides a language L ⊆ Σ∗ if for any w ∈ Σ∗ : w ∈ L iff

the program, when given w encoded through the input relation, has accept as a logical

consequence.

4.1.2. Transition Rules

The transition rules of δ can be expressed very naturally as logical rules. Recall that

an instance of δ is of the form δ(q, σ) = (q′, σ′,S) which means “if the head is in symbol

σ and in state q then write symbol σ′ and go to state q′”. Therefore the left side of the

equation states facts that are true at the current step of computation, while the right side
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states facts that should be true at the next step of computation if the facts stated on the

left hold at the current step.

As a result we can describe the above transition with the following informal logical

clauses

(at step T )(symbol σ is in position X ∧
head is in position X ∧
in state q) → (at step T + 1)(symbol σ′ is in position X).

(at step T )(symbol σ is in position X ∧
head is in position X ∧
in state q) → (at step T + 1)(in state q′).

(at step T )(symbol σ is in position X ∧
head is in position X ∧
in state q) → (at step T + 1)(head is in position X).

A set of clauses in the above form can represent the δ function of any deterministic

Turing machine. Since logic programming systems use backward reasoning the logical

consequence of accept will be proven by simulating the Turing machine backwards.

The following example demonstrates this idea.

Example. Consider a Turing machine that only accepts the string ab. The transition

function δ is defined as follows:

δ(q0, a) = (q1, a,R)

δ(q1, b) = (q2, b,R)

δ(q2,t) = (qaccept,t,S)

A forward execution of the Turing machine would be:

step 0: read a in state q0, go to state q1, move head right.
step 1: read b in state q1, go to state q2, move head right.
step 2: read t in state q2, go to state qaccept.

step 3: in state qaccept so accept.

A backward reasoning proof of accept:

step 3: To prove accept, prove in step 2 that state is q2,

head does not move from q2 to qaccept,

reading t .

step 2: Prove in step 1 that state is q1,

head comes by moving right from q1 to q2,

reading b.
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step 1: Prove in step 0 that state is q0,

head comes by moving right from q0 to q1,

reading a.

step 0: Since machine is in q0 in step 0, accept.

This simplified explanation captures the way that the simulating program executes the

Turing machine.

4.1.3. Numbering

First note that our Higher-order Datalog language does not have any built-in numerical

system. Using such a system defeats the purpose of the proof as it is possible to encode

data using numbers and in a sense it is the same as including function symbols in our

language. Thus our language would not be a Datalog language and more than likely

we would obtain a Turing complete language that studying its expressivity would be

pointless.

Finally in order to simulate an exponentially time bounded Turing machine we need to

be able to count the steps of computation. In other words we need to devise a way to

represent numbers and count using Higher-order Datalog relations.

Papadimitriou in [3] already demonstrated that we can use first-order relations to repre-

sent any number up to nd where n is the length of the input. In the proof we are reviewing

this is achieved by using the positions of each fact in the input relation. The way input
is defined allows us to count from 0 up to n− 1. We extend the range of numbers we

can represent up to nd − 1 by considering tuples of d elements. A number in this range

is represented as d individual numbers in the range {0 . . . n− 1}.

Recall that we want to prove that k+ 1-order Datalog captures EXPkTIME. This means

that we have to extend the range of represented numbers to Tk(n)(d) using the notation

in definition 2.7.

We start with second-order Datalog. The range we have to represent is 2n
d
. Obviously,

we must utilize the ability of our language to define second-order predicates. The idea

is that a function f1 : {0, . . . , nd − 1} → {low, high} can be used to represent a number

in this range. Such a function is equivalent to a string of nd bits, and such a string can

represent any number in the required range.

Suppose for example that we have an input of length 2 and we are only using tuples of 1
element. Then the base numbers that we can represent are {0, 1}. Observe that under

these assumptions the numbers we can represent with f1 as sets are

0 : {(0, low), (1, low)}
1 : {(0, low), (1, high)}
2 : {(0, high), (1, low)}
3 : {(0, high), (1, high)}

E. Protopapas 19



The Expressive Power of Higher-order Datalog: An XSB Implementation

To generalize for k+ 1-order Datalog assume the following set of functions:

{fi : fi−1 → {low, high}} for all 2 ≤ i ≤ k

where f1 : {0, . . . , nd − 1} → {low, high}

Then any number in the range Tk(n)(d) can be represented by fk.

4.2. Simulation

4.2.1. d-tuple and order1 number representations

We now present the program. The input relation as already stated represents an input

tape over a fixed alphabet Σ. Suppose Σ = {a, b}. An input of length n can be encoded

with n facts of the input predicate as follows:

input 0 a 1.
input 1 b 2.
...

input n-2 b n-1.
input n-1 a n.

We proceed by defining predicates base_zero, base_last, base_succ, base_pred to

simulate the numbers in the range {0, . . . , n− 1}. base_zero is true of 0 (i.e. of the left

index of the first tuple in the input relation), base_last is true of n− 1 (i.e. of the left

index of the last tuple in the input relation), base_succ given a number k returns k + 1
and base_pred given a number k + 1 returns k.

base_zero 0.
base_last I ← (input I X J), (not (input J X1 K)).
base_succ I J ← (input I X J).
base_pred I J ← (input J X I).

We proceed by defining tuple_zero, tuple_last, tuple_succ, tuple_pred to extend

the range of numbers to {0, . . . , nd − 1}. As stated before these predicates act on

collections of d arguments to represent a number in tuple notation. We use the notation

X to abbreviate d arguments X1 . . . Xd.

tuple_zero X ← (base_zero X1) , . . . , (base_zero Xd).
tuple_last X ← (base_last X1) , . . . , (base_last Xd).

tuple_zero is true of the d-tuple which represents “0” and tuple_last is true of “nd− 1”.
To define tuple_succ we need d clauses that act on two d-tuples to simulate the way

we find the successor of a number that consists of d digits of base n. tuple_pred
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can be easily defined using tuple_succ. As expected tuple_succ given the d-tuple
representation of “k” returns the d-tuple representation of “k+1” while tuple_pred given

“k + 1” returns “k”.

tuple_succ X Y ← (X1 = Y1) , . . . , (Xd−1 = Yd−1),
(base_succ Xd Yd).

tuple_succ X Y ← (X1 = Y1) , . . . , (Xd−2 = Yd−2),
(base_succ Xd−1 Yd−1),
(base_last Xd), (base_zero Yd).
...

tuple_succ X Y ← (base_succ X1 Y1),
(base_last X2) , . . . , (base_last Xd),
(base_zero Y2) , . . . , (base_zero Yd).

tuple_pred X Y ← (tuple_succ Y X).

Additionally we define the predicates less_than, tuple_non_zero working on d-tuples.
less_than defines the “<” relation on d-tuples and tuple_non_zero succeeds if its

argument is not equal to the d-tuple representing “0”.

less_than X Y ← (tuple_succ X Y).
less_than X Y ← (tuple_succ X Z), (less_than Z Y).

tuple_non_zero X ← (tuple_zero Z), (less_than Z X).

We now proceed to define the predicates necessary to extend the range of numbers to

{0, . . . , 2nd} using the technique we described in subsection 4.1.3. As in the case of f1
we will subscript all predicates related to this range by 1. We shall call these numbers

order1 numbers.

We first define the predicates zero1 and last1 that represent the first and last numbers

in the range (i.e. 0 and 2n
d − 1). zero1 is equivalent to a string of nd bits where all bits

are low, while last1 is equivalent to a string of nd bits where all bits are high. As sets
these numbers are equivalent to:

zero1 : {(0, low), (1, low), . . . , (nd − 1, low)}
last1 : {(0, high), (1, high), . . . , (nd − 1, high)}

We now define the predicates, where the first argument which determines the bit position

is a d-tuple and the second argument which determines the bit value is {low, high}.
Note that we consider the least significant bit position to be that of tuple_zero, while
the most significant bit position to be that of tuple_last.

zero1 X low.
last1 X high.
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The predicate is_zero1 follows, that checks if its argument is equal to zero1. A number

in our current representation is “0” iff every d-tuple bit position has the value low. So
we define an additional predicate, namely all1, to determine if every bit is low. The
syntactically higher-order literal (N X V), applies X and V to the relation passed to the

variable N. Essentially we are asking if the number represented by N at the bit position

denoted by the d-tuple X has value V.

is_zero1 N ← (tuple_last X), (all1 low N X).

all1 V N X ← (tuple_zero X), (N X V).
all1 V N X ← (tuple_non_zero X), (N X V),

(tuple_pred X Y), (all1 V N Y).

In a similar manner we define the predicate non_zero1 that succeeds if its argument is

not equal to zero1. In this case a number in our representation is 6= “0” if at least one
d-tuple bit position has the value high. The predicate exists1 checks whether the above

holds.

non_zero1 N ← (tuple_last X), (exists1 high N X).

exists1 V N X ← (N X V).
exists1 V N X ← (tuple_non_zero X),

(tuple_pred X Y), (exists1 V N Y).

Symmetrically, we define the predicates is_last1, by using all1 to determine whether

all d-tuple bit positions are high, and non_last1, by using exists1 to determine whether

at least one d-tuple bit position has the value low, by reversing the value passed to V.

is_last1 N ← (tuple_last X), (all1 high N X).

non_last1 N ← (tuple_last X), (exists1 low N X).

After sufficiently having defined the way to represent the bounds of {0, . . . , 2nd}, namely

zero1 and last1, we can represent any number in the required range based on these

bounds. We shall define the predicates pred1 and succ1 to respectively capture the

notion of the predecessor and successor of a number.

The approach taken to define pred1 and succ1 differs drastically to that of tuple_pred
and tuple_succ. Intuitively the reason for this is that tuple_pred is able to check whether
a d-tuple number is the predecessor of another d-tuple number, and even generate

the predecessor, because a number in d-tuple notation has a specific form that can be

manipulated to produce another number from it. Recall that a d-tuple is a sequence of d
individual variables that take values from the constants used by the input relation. Since

in order1 notation, numbers are relations and the only relations defined are zero1 and

last1 we must find a way to build any other number using zero1 or last1. To achieve this

the predicates pred1 and succ1 have to be defined in a way that their partial application

on a given number N (i.e. (pred1 N) and (succ1 N)) represents the predecessor or
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successor of N respectively. Recall than in section 3.2 of chapter 3 we discussed briefly

that partial application can be used to represent objects. For example the number (succ1

(succ1 (succ1 zero1))) can be defined in terms of (succ1 (succ1 zero1)) which will

recursively lead to zero1 which is fully defined.

We start of with pred1 and then symmetrically define succ1. Suppose a number in the

form of a binary string. The predecessor of the number can be obtained by inverting all

bits to the right of the last 1 including the last 1. We shall define three auxiliary predicates

namely bits1, exists_to_right1 and all_to_right1. bits1 returns the value of the

bit in position X which is inverted if all bits to the right of X are low. exists_to_right1

checks whether there is at least one bit to the right of the given position X with value V.
all_to_right1 checks if all bits to the right of X have value V.

pred1 N X V ← (is_zero1 N), (N X V).
pred1 N X V ← (non_zero1 N), (bits1 N X V).

bits1 N X V ← (exists_to_right1 high N X), (N X V).
bits1 N X V ← (all_to_right1 low N X),

(N X V1), (invert V1 V).

exists_to_right1 V N X ← (tuple_non_zero X),
(tuple_pred X Y), (N Y V).

exists_to_right1 V N X ← (tuple_non_zero X), (tuple_pred X Y),
(exists_to_right1 V N Y).

all_to_right1 V N X ← (tuple_zero X).
all_to_right1 V N X ← (tuple_non_zero X), (tuple_pred X Y),

(N Y V), (all_to_right1 V N Y).

Symmetrically the successor of a number can be obtained by inverting all bits to the

right of the last 0 including the last 0. We define succ1 as follows.

succ1 N X V ← (is_last1 N), (N X V).
succ1 N X V ← (non_last1 N),

(exists_to_right1 low N X), (N X V).
succ1 N X V ← (non_last1 N),

(all_to_right1 high N X),
(N X V1), (invert V1 V).

Invert is easily defined as

invert low high.
invert high low.

Notice that the predicates pred1 and succ1, only give us information about the value V
of a bit at the given position X based on a given number N. As we already pointed out
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we cannot construct a concrete representation of an order1 number, but instead we

can use the representation of another order1 number to determine each bit individually.

Thus we can say that the partial applications of pred1 and succ1 are indeed the numbers

we wish to construct.

We will also need the equality between two numbers. We can easily define the predicate

equal1 with an additional predicate equal_test1 that checks if every d-tuple bit position

has the same value V.

equal1 N M ← (tuple_last X), (equal_test1 N M X).

equal_test1 N M X ← (tuple_zero X), ( N X V), ( M X V).
equal_test1 N M X ← (tuple_non_zero X), ( N X V), ( M X V),

(tuple_pred X Y), (equal_test1 N M Y).

4.2.2. Arbitrary orderk+1 number representation

Now we can easily define any arbitrary orderk+1 number based on orderk numbers.

Using the notation of definition 2.7 the range of numbers that orderk+1 numbers need

to represent is defined recursively as Tk+1(n)(d) = 2Tk(n)(d). The technique we use is

the same as for order1 numbers, the only difference being that now each bit position

is represented by an orderk number instead of the d-tuples we used only for order1

numbers.

First we define zerok+1 and lastk+1.

zerok+1 X low.
lastk+1 X high.

Next we define is_zerok+1 that succeeds if its argument is zerok+1.

is_zerok+1 N ← (allk+1 low N lastk).

allk+1 V N X ← (is_zerok X), (N X V).
allk+1 V N X ← (non_zerok X), (N X V), (allk+1 V N (predk X)).

Next we define non_zerok+1 that succeeds if its argument is not zerok+1.

non_zerok+1 N ← (existsk+1 high N lastk).

existsk+1 V N X ← (N X V).
existsk+1 V N X ← (non_zerok X), (existsk+1 V N (predk X)).

Symmetrically we define is_lastk+1 and non_lastk+1.

is_lastk+1 N ← (allk+1 high N lastk).

non_lastk+1 N ← (existsk+1 low N lastk).
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Next we define predk+1 using the above definitions.

predk+1 N X V ← (is_zerok+1 N), (N X V).
predk+1 N X V ← (non_zerok+1 N), (bitsk+1 N X V).

bitsk+1 N X V ← (exists_to_rightk+1 high N X), (N X V).
bitsk+1 N X V ← (all_to_rightk+1 low N X),

(N X V1), (invert V1 V).

exists_to_rightk+1 V N X ← (non_zerok X), (N (predk X) V).
exists_to_rightk+1 V N X ← (non_zerok X),

(exists_to_rightk+1 V N (predk X)).

all_to_rightk+1 V N X ← (is_zerok X).
all_to_rightk+1 V N X ← (non_zerok X), (N (predk X) V),

(all_to_rightk+1 V N (predk X)).

Symmetrically we define succk+1.

succk+1 N X V ← (is_lastk+1 N), (N X V).
succk+1 N X V ← (non_lastk+1 N),

(exists_to_rightk+1 low N X), (N X V).
succk+1 N X V ← (non_lastk+1 N),

(all_to_rightk+1 high N X),
(N X V1), (invert V1 V).

They equality predicates is defined as follows.

equalk+1 N M ← (equal_testk+1 N M lastk).

equal_testk+1 N M I ← (is_zerok I), ( N I V), ( M I V).
equal_testk+1 N M I ← (non_zerok I), ( N I V), ( M I V),

(equal_testk+1 N M (predk I)).

Finally we will additionally define the predicate less_thank+1 which defines the “<”
relation on orderk+1 numbers. This predicate also applies to order1 numbers. The

predicate recursively passes to itself the predecessors of the given numbers. If the

leftmost number reaches zerok+1 first then the predicate succeeds.

less_thank+1 N M ← (is_zerok+1 N), (non_zerok+1 M).
less_thank+1 N M ← (non_zerok+1 N), (non_zerok+1 M),

(less_thank+1 (predk+1 N) (predk+1 M)).
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4.2.3. Turing machine simulation

Recall that in subsection 4.1.2, we introduced the idea that logical rules can express

any transition rule of the δ function of a Turing machine. The simulation will follow along

those observations. For every transition rule of δ we will define a set of clauses that

utilize the notion of a step of computation. As already discussed these sets of clauses

will express what is true in the current time-step, based on a transition rule and what is

true in the previous time-step.

For this purpose we introduce the predicates symbolσ, states and cursor. symbolσ

acts on two arguments T (i.e. the time-step) and X (i.e. the position on the tape). If

the predicate succeeds for given T, X, we interpret the result as symbol σ appears on

position X of the tape at time-step T. states acts on argument T (i.e. the time-step) and is

interpreted as the machine is in state s at time-step T. Finally cursor acts on argument T
and represents an orderk number which indicates the position of the head at time-step

T.

All predicates that follow are defined using orderk numbers, the value of k depends

on the Turing machine that we want to simulate (i.e. the number of steps needed for

termination). We first define the predicate base_to_higherk that succeeds if the two

arguments represent the same number, where the first argument is in base notation (i.e.

constants of input) whereas the second argument is in orderk notation.

base_to_higherk 0 N ← (equalk N zerok).
base_to_higherk M N ← (input J σ M),

(base_to_higherk J (predk N)).

Intuitively the above predicate recursively reduces the base notation number by 1 through

input, and the orderk notation number through predk and succeeds if both numbers

reach zero simultaneously.

We proceed with the initialization rules of the Turing machine. The initialization rules

state that at time-step zerok, the machine starts at the starting state denoted by s0, the
first n tape squares hold the input followed by the empty character t and the head starts

at the first tape square (i.e. at position zerok). We define one predicate for each symbol

σ ∈ Σ.

symbolσ T X ← (is_zerok T), (input Y σ W),
(base_to_higher Y X).

symbolt T X ← (is_zerok T), (base_last Y),
(base_to_higher Y X).

states0 T ← (is_zerok T).

cursor T X low ← (is_zerok T).

Note that cursor returns for every bit position the value low. For T = zerok, (cursor
T) represents the number zerok (i.e. “0”). The set of symbolσ succeed if the position (i.e.

Y) of σ on tape matches with the position given in X.
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Now we can proceed to define the transition rules. In section 4.1.2 we translated a

transition rule into a set of informal logical clauses. Since a transition rules affects the

symbol that is written on the tape, the state and the position of the head in the next

time-step we define clauses for symbolσ, states and cursor.

We start with the rule “if the head is in symbol σ and in state s then write symbol σ′ and

go to state s′”

symbolσ′ T X ← (non_zerok T),
(equalk X (cursor (predk T))),
(states (predk T)),
(symbolσ (predk T) (cursor (predk T))).

states′ T ← (non_zerok T),
(states (predk T)),
(symbolσ (predk T) (cursor (predk T))).

cursor T I V ← (non_zerok T),
(states (predk T)),
(symbolσ (predk T) (cursor (predk T))).
(cursor (prevk T) I V).

The definitions are straightforward. The preconditions are the same for each predicate.

The machine must be in state s in the previous time-step (i.e. (predk T)), and the symbol

σ must be read in the previous time-step, at the position of the head in the previous time-

step (i.e. (cursor (predk T))). In the clause for symbolσ′, (equalk X (cursor (predk

T))) states that the given position X must be the same with the position of the head in

the previous time-step. In the clause for cursor T I V, (cursor (prevk T) I V) states

that the head stays in place (i.e. (cursor T) represents the same number as (cursor
(prevk T))).

Similarly we define clauses for the rule “if the head is in symbol σ and in state s then go

to state s′ and move the head right”.

symbolσ′ T X ← (non_zerok T),
(equalk X (succk (cursor (predk T)))),
(states (predk T)),
(symbolσ (predk T) (cursor (predk T))),
(symbolσ′ (predk T) (succk (cursor (predk T)))).

states′ T ← (non_zerok T),
(states (predk T)),
(symbolσ (predk T) (cursor (predk T))).
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cursor T I V ← (non_zerok T),
(states (predk T)),
(symbolσ (predk T) (cursor (predk T))).
((succk (cursor (prevk T))) I V).

Note that we define a clause for some symbol σ′ even though the transition rule does

not alter any symbols. This can be explained by the fact that no symbol will automatically

be transferred in a sense to the next time-step but instead it must be proven to exist

in the next time-step by some clause. As a result a clause must be defined for every

symbol σ′ that might appear to the right of the head before the rule is applied, in order

to transfer that symbol to the same position at the next time-step. Hence the literals

(equalk X (succk (cursor (predk T)))) and (symbolσ (predk T) (cursor (predk T)))
in the clause for σ′. The same applies for symbol σ. We do not implicitly define a rule for

it here since afterwards we will define a set of general rules that transfer all symbols

to the following time-steps as long as their position is not the same as the head, at the

time-step that is to be proven. Here symbol σ falls into this category since at time-step T
the head points to the position next to the symbol. Additionally in the clause for cursor T
I V, ((succk (cursor (prevk T))) I V) states that the number represented by (cursor
T) is the successor of (cursor (prevk T)) (i.e. the head at time-step T points to the right

of the head at time-step T-1).

Symmetrically we define the last rule “if the head is in symbol σ and in state s then go to

state s′ and move the head left”.

symbolσ′ T X ← (non_zerok T),
(equalk X (predk (cursor (predk T)))),
(states (predk T)),
(symbolσ (predk T) (cursor (predk T))),
(symbolσ′ (predk T) (predk (cursor (predk T)))).

states′ T ← (non_zerok T),
(states (predk T)),
(symbolσ (predk T) (cursor (predk T))).

cursor T I V ← (non_zerok T),
(states (predk T)),
(symbolσ (predk T) (cursor (predk T))).
((predk (cursor (prevk T))) I V).

The general rules that transfer a symbol to following time-steps are called inertia rules

and are defined as follows for all σ ∈ Γ (i.e. including t). Note that the inertia rules apply

only to positions that differ from the one pointed to by the head.

symbolσ T X ← (less_thank X (cursor T)), (symbolσ (predk T) X).
symbolσ T X ← (less_thank (cursor T) X), (symbolσ (predk T) X).
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Finally the following rule concerns acceptance. (state yes equivalent to qaccept in the

formal definition).

accept ← (stateyes lastk).

Thus any Turing machine that accepts or rejects its input after at most Tk(n)(d) steps,
can be simulated by the above Higher-order Datalog program using orderk number

representation based on d-tuples.
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5. CORRECTIONS

In this chapter we discuss some faults that appear in the program reviewed in chapter 4,

and propose solutions where possible.

The first issue arises in the predicates base_succ and base_pred. These predicates are

defined to allow counting from 0 to n − 1 and from n − 1 to 0 respectively. Thus the

predicates

base_succ I J ← (input I X J).
base_pred I J ← (input J X I).

on a input relation

{(0, σ1, 1), (1, σ2, 2), . . . , (n− 1, σn, n)}

will result in the following relations

base_succ: {(0, 1), (1, 2) , . . . , (n− 1, n)}
base_pred: {(1, 0), (2, 1) , . . . , (n, n− 1)}

which means that we can count up to and including n. If we allow negation-as-failure on

first-order defined predicates a solution could be the following which does not hold for

the tuples (n− 1, n) and (n, n− 1).

base_succ I J ← (input I X J), (not (base_last I)).
base_pred I J ← (input J X I), (not (base_last J)).

Another issue lies in the definition of base_to_higherk. Recall that the intended purpose

of this predicate is to succeed only if the base notation number equals the orderk

notation number. Thus the predicate

base_to_higherk 0 N ← (equalk N zerok).
base_to_higherk M N ← (input J σ M),

(base_to_higherk J (predk N)).

for a given number in base notation M, succeeds for every number N in orderk notation,

less than or equal to M as by definition (predk zerok) equals zerok. A correct definition

is as follows.

base_to_higherk 0 N ← (equalk N zerok).
base_to_higherk M N ← (non_zerok N), (input J σ M),

(base_to_higherk J (predk N)).

An important issue lies with the initialization rule for symbolt. This predicate is intended

to succeed for every position X to the right of the last position of the input on tape. Recall
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its definition.

symbolt T X ← (is_zerok T), (base_last Y),
(base_to_higher Y X).

Instead the predicate only succeeds if the given position X is the orderk equivalent to

the base number which indicates the position of the last symbol of input on the tape. For

example given input σ1σ2 . . . σn, symbolt succeeds for n in orderk notation. A correct

definition is as follows.

symbolt T X ← (is_zerok T), (base_last Y),
(greater_in_orderk Y X).

where we define an additional predicate greater_in_orderk which succeeds if the input

N in orderk notation represents a greater number than M which is in base notation.

greater_in_orderk 0 N ← (non_zerok N).
greater_in_orderk M N ← (non_zerok N), (input J σ M),

(greater_in_orderk J (predk N)).

Another issue is identified with the inertia rules. While the functionality of this predicate is

correct the case where the time-step T given is zerok, needs to be excluded as intuitively

for time-step T zerok, the position of symbols is fully defined from the initialization rules

and no “transfer” can occur. Operationally this leads to an infinite loop when executed.

Thus the predicate

symbolσ T X ← (less_thank X (cursor T)), (symbolσ (predk T) X).
symbolσ T X ← (less_thank (cursor T) X), (symbolσ (predk T) X).

transforms to

symbolσ T X ← (non_zerok T),
(less_thank X (cursor T)), (symbolσ (predk T) X).

symbolσ T X ← (non_zerok T),
(less_thank (cursor T) X), (symbolσ (predk T) X).

Finally since truth for a state at a given time-step T does not transfer to successor

time-steps, we must define a predicate that, if the accepting state yes is proven true at

least once, this truth is transferred to the last time-step representable in order for accept
to succeed. We define:

stateyes T ← (non_zerok T), (stateyes (predk T)).

With this we conclude the main developments in this thesis.
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6. CONCLUSION

We conclude this thesis with some interesting remarks on the proof we reviewed. The

point of the simulation was to show that Higher-order Datalog is as expressive as

exponentially time-bounded Turing machines. These Turing machines can decide all

problems that lie in EXPkTIME for any k and as a result so does Higher-order Datalog.

However, this does not necessarily imply that the simulation program runs in exponential

time with respect to the input. On the contrary it can easily be seen that the program

runs exponentially slower that the appropriate time bound defined by the complexity

class of a problem it decides. For example consider the definition of predk. To calculate

a bit of (predk N), we need to calculate numerous times, multiple bits of N, and this

process is repeated recursively for N until zerok. Thus predk runs in time exponential to

the size of the number it is representing which in general is already exponential with

respect to the input size.

This result, from a theoretical viewpoint, is valid and the proof is correct. The simulation

program that we presented was never intended to actually run in the appropriate time-

bound. It was intended to show that Higher-order Datalog is rich enough to decide these

problems. While this result may seem paradoxical, it is not since by definition, there

exist algorithms that decide these problems in the appropriate time-bound and it can be

shown that the same holds in Higher-order Datalog.

From a practical viewpoint, this program is very inefficient and, even for order1 numbers,

will almost always take exponential time to run. In [2], a non standard memoization

technique is used to run these programs in the appropriate time-bound and thus the part

of the proof that requires to show that any given program in the language we examine

can be run by an algorithm that respects the resource bounds of the complexity class,

is proven. This technique involves storing already computed subproblems, and using

these stored results to avoid repeated solution of the same subproblems.

The same approach is used in the implementation of the simulation program in XSB.

The XSB system supports a tabling mechanism that is primarily used to implement

the well-founded semantics for logic programs. Another useful property of tabling is

that whenever a predicate is executed and a solution is found, this solution is stored

in a table. Whenever a predicate is called, the table is searched for a solution to the

predicate, if none is found the predicate is executed normally. The interested reader is

referenced to [12] for more information on tabling.

E. Protopapas 32



The Expressive Power of Higher-order Datalog: An XSB Implementation

APPENDIX: XSB & IMPLEMENTATION

The XSB system can be downloaded from:

https://sourceforge.net/projects/xsb/

A very useful technical overview of XSB, including Tabled Resolution and HiLog Compi-

lation can be found in:

http://xsb.sourceforge.net/about.html

For a more in-depth understanding of the system, as well as usage instructions the

manual should be consulted at:

http://xsb.sourceforge.net/manual1/manual1.pdf

Since the program implemented in XSB is quite lengthy, in order to keep this thesis

compact and readable the reader interested in using the programs can follow the links

below to download the files.

Before loading the examples the following file, which contains basic predicate definitions

(numbers etc.) should be loaded first:

http://cgi.di.uoa.gr/~sdi1400169/power.P

The first example decides the language L = {anbn | n ≥ 0}:
http://cgi.di.uoa.gr/~sdi1400169/TManbn.P

The second example decides the 3-SAT problem:

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem#3-satisfiability
http://cgi.di.uoa.gr/~sdi1400169/TMsat.P

The code supports a maximum of three variables used (x, y, z). A sample input is:

input(0, '?', 1). input(6, ')', 7).
input(1, '(', 2). input(7, '#', 8).
input(2, 'x', 3). input(8, 'F', 9).
input(3, ')', 4). input(9, 'F', 10).
input(4, '(', 5). input(10, '#', 11).
input(5, 'y', 6).

Which is equivalent to the CNF formula (x) ∧ (y). The input should always start with the

‘?’ symbol and end with ‘#F…#’ depending on the number of variables used.

A negated variable (¬x) is encoded as such:

input(0, '(', 1).
input(1, '-', 2).
input(2, 'x', 3).
input(3, ')', 4).

As already stated the simulation has very high complexity even with tabling. So the

above program can only be used for small inputs. For any inquiries concerning the

implementation feel free to contact me at: vagelis.protopapas@gmail.com
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