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Abstract

Survival analysis consists of a set of statistical methods in the field of biostatistics, whose main

aim is to study the time until the occurrence of a specified event, such as death. For the majority

of these methods it is assumed that all the individuals taking part in the study are subject to the

event of interest. However, there are situations where this assumption is unrealistic, since there

are observations not susceptible to the event of interest or cured. For this reason, there have

been developed some survival models which allow for patients that may never experience the

event, usually called long-term survivors. These models, called Cure Rate Models, assume

that, as time increases, the survival function tends to a value p ∈ (0, 1), representing the cure

rate, instead of tending to zero as in standard survival analysis.

Recently, Rocha (2016) proposed a new approach to modelling the situations in which there

are long-term survivors in survival studies. His methodology was based on the use of defective

distributions to model cure rates. In contrast to the standard distributions, the defective ones

are characterized by having probability density functions which integrate to values less than one

for certain choices of the domain of some of their parameters. The aim of the present thesis is

to provide new Bayesian estimates for the parameters of the defective models used for cure rate

modelling under the assumption of right censoring. We will develop Markov chain Monte Carlo

(MCMC) algorithms for inferring the parameters of a broad class of defective models, both for

the baseline distributions (Gompertz & Inverse Gaussian), as well as, for their extension under

the Marshall-Olkin family of distributions. The Bayesian estimates of the distributions’ param-

eters, as well as their associated credible intervals, will be obtained from the samples drawn

from their joint posterior distribution.
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In addition, Bayesian estimates’ behaviour will be evaluated and compared with the maximum

likelihood estimates obtained by Rocha (2016) through simulation experiments. Finally, we will

apply the competing models and approaches to real datasets and we will compare them through

various statistical measures. This work will be the first attempt to explore the advantages of

the Bayesian approach to inference for defective cure rate models under the assumption of right

censoring mechanism, as well as the first presentation of new Bayesian estimates for several

defective distributions, but without incorporating covariate information.

Keywords: Defective distributions, Cure fraction, Bayesian Inference, Maximum likelihood,

Right censoring, Survival Analysis, Gompertz distribution, Inverse Gaussian distribution, Marshall-

Olkin family.
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Περίληψη

Η ανάλυση επιβίωσης αποτελείται από ένα σύνολο στατιστικών μεθόδων που στοχεύει στη μελέτη

του χρόνου μέχρι την εμφάνιση ενός συγκεκριμένου γεγονότος όπως ο θάνατος. Για την πλειονότητα

των μεθόδων αυτών, θεωρείται πως όλα τα άτομα που συμμετέχουν υπόκεινται στο γεγονός που

μας ενδιαφέρει. Ωστόσο, υπάρχουν περιπτώσεις όπου η υπόθεση αυτή δεν είναι ρεαλιστική, καθώς

υπάρχουν ασθενείς που δεν θα βιώσουν το γεγονός αυτό στη διάρκεια της μελέτης. Για αυτό το

λόγο, έχουν αναπτυχθεί ορισμένα μοντέλα επιβίωσης που επιτρέπουν την ύπαρξη ασθενών οι οποίοι

δε βιώνουν το συμβάν και ονομάζονται μακροχρόνια επιζώντες. Τα μοντέλα αυτά ονομάζονται

μοντέλα ρυθμού θεραπείας και υποθέτουν ότι, καθώς ο χρόνος αυξάνεται, η συνάρτηση επιβίωσης

τείνει σε μια τιμή p ∈ (0, 1), που αντιπροσωπεύει το ποσοστό των μακροχρόνια επιζώντων, αντί να

τείνει στο μηδέν όπως στην κλασική ανάλυση επιβίωσης.

Πρόσφατα, ο Rocha (2016) πρότεινε μία νέα προσέγγιση των προβλημάτων επιβίωσης με μακροχρόνια

επιζώντες. Η μεθοδολογία του για τη μοντελοποίηση του ποσοστού των μακροχρόνια επιζώντων

βασίστηκε στη χρήση των «ελαττωματικών» (defective) κατανομών, οι οποίες χαρακτηρίζονται

από το γεγονός ότι το ολοκλήρωμα της συνάρτησης πιθανότητάς τους δεν ισούται με τη μονάδα

για ορισμένες επιλογές του πεδίου ορισμού κάποιων παραμέτρων τους. Σκοπός της παρούσας

διπλωματικής εργασίας, είναι να παράσχει νέους Μπεϋζιανούς εκτιμητές των παραμέτρων των

«ελαττωματικών» μοντέλων κάτω από την υπόθέση της δεξιάς λογοκρισίας. Επίσης, θα αναπ-

τυχθούν αλγόριθμοι Markov chain Monte Carlo (MCMC) για τη συμπερασματολογία σχετικά με

τις παραμέτρους μιας ευρείας κατηγορίας μοντέλων ρυθμού θεραπείας βασισμένων στις «ελατ-

τωματικές» αυτές κατανομές, ενώ οι Μπεϋζιανοί εκτιμητές και τα αντίστοιχα διαστήματα αξ-

ιοπιστίας θα ληφθούν από τα δείγματα της από κοινού εκ των υστέρων κατανομής. Επιπλέον,
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η συμπεριφορά των Μπεϋζιανών εκτιμητών θα αξιολογηθεί και θα συγκριθεί με αυτή των εκ-

τιμητών μεγίστης πιθανοφάνειας του Rocha (2016) μέσω πειραμάτων προσομοίωσης. Ακόμη, τα

προτεινόμενα αυτά μοντέλα-κατανομές θα εφαρμοσθούν σε πραγματικά σετ δεδομένων, όπου και θα

συγκριθούν μεταξύ τους μέσω κατάλληλων στατιστικών μεγεθών. Τέλος, αξίζει να σημειωθεί πως

η παρούσα διπλωματική εργασία αποτελεί την πρώτη προσπάθεια διερεύνησης των πλεονεκτημάτων

της Μπεϋζιανής προσέγγισης στη συμπερασματολογία για τις παραμέτρους αρκετών μοντέλων ρυ-

θμού θεραπείας, κάτω από την υπόθεση της δεξιάς λογοκρισίας, καθώς και της απόκτησης νέων

Μπεϋζιανών εκτιμητών, χωρίς όμως τη συμπερίληψη της πληροφορίας από συν μεταβλητές.

Λέξεις κλειδιά: Ελλατωματικές κατανομές, Μακροχρόνια επιζώντες, Μπεϋζιανή συμπερασ-

ματολογία, Μέγιστη πιθανοφάνεια, Δεξιά λογοκρισία, Ανάλυση Επιβίωσης, Κατανομή Gompertz,

Κατανομή Inverse Gaussian, Οικογένεια κατανομών Marshall-Olkin.
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Chapter 1

General Principles of Survival

Analysis

1.1 Introduction

Survival analysis consists of statistical techniques whose aim is to describe and quantify time

to event data. These types of datasets arise when some subjects are being followed for a long

time period (e.g. years) or even a shorter time interval (e.g. days/ months) under controlled

conditions, in order to study whether an event of interest happens or not. In medical research,

such an event could be death from a disease that we are interested in, such as breast or lung

cancer. For that reason, survival data are also being referred to as time-to-event data or failure-

time data. We should mention here that the term failure is used to refer to the occurrence of

the event of interest which could be also a success such as a recovery from a therapy or a surgery.

In the majority of studies whose aim is to collect survival data, there is missing or partial

information about either the initiating or the terminating event or both, which should be taken

into account in the whole analysis procedure. For example, in retrospective studies, ascertain-

ment of the initiating event may not be possible, whereas in prospective studies the terminating

event may not be observed for some subjects of the study. Finally, in cross-sectional studies

with follow up, both of the above mentioned cases can happen. Such complications fall into two

14
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general categories, which are called censoring and truncation, respectively. Censoring is gen-

erally reserved for a situation where only partial information on some subjects under study is

available, while truncation refers to cases where some subjects in the population have no chance

to be recruited to the study. Hence, all of this information should be included in a study with

time-to-event data. These two notions, as well as other very basic notions met in survival anal-

ysis, will be presented more in detail later in this chapter. Before the basic aspects of censoring

and truncation are introduced, we should also mention some basic aspects of survival analysis,

such as death density, survival and hazard functions.

1.2 Basic Functions in Survival Analysis

First of all, we shall assume that T is a continuous random variable unless it is specified oth-

erwise. The probability density function (pdf) and cumulative distribution function (cdf) are

most commonly used to characterize the distribution of any random variable, and we shall de-

note these by f(.) and F (.), respectively with F (t) = P (T ≤ t).

However, since T is a non-negative random variable and it usually denotes the elapsed time

until an event, it is commonly characterized by some other functions, such as the survival func-

tion, the hazard function and the cumulative hazard function.

Survival function S(t)

The survival function is a function that gives the probability that a patient who participates

in our study will survive beyond any given specific time. For example, if T denotes the time

until death, then S(t) denotes the probability of the patient to survive beyond time t. From this

definition, we can understand that there is a relationship between the survival function and the

cumulative distribution function which is:

S(t) = 1− F (t) = Pr(T > t).

(1.1)

©Thomas Tsiampalis, 2018 @ MSc Biostatistics, NKUA
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Besides, the different values that T can take have a probability distribution with underlying

probability density function f(t). Then the cumulative distribution function is denoted as

F (t) = Pr(T ≤ t) =

∫ t

0

f(u)du

(1.2)

and according to the above equation, the survival function equals to

S(t) = 1−
∫ t

0

f(u)du =

∫ ∞
t

f(u)du.

(1.3)

Hazard function h(t)

Another useful function to characterize the distribution of the random variable T , is the hazard

function, which is defined as:

h(t) = lim
dt→0

Pr[t ≤ T < t+ dt|T ≥ t]
dt

.

(1.4)

The numerator of this expression is the conditional probability that the event will occur in the

interval [t, t + dt) given that it has not occurred before, and the denominator is the width of

the interval. Graphically, the hazard function can have several forms. The cases most studied is

where the hazard function is increasing, decreasing, constant, uni-modal and bathtub shaped.

Checking the hazard behaviour is important when someone has to choose between parametric

models. Finally, based on the relationship that follows, it is seen that there is an one-to-one

correspondence between S(t) and h(t), which usually makes the algebraic manipulations easier,

S(t) = exp[−
∫ t

0

h(u)du].

(1.5)

Cause-specific hazard

The cause-specific hazard represents the instantaneous risk of dying of cause j and is given by

the following relation:

λj(t, x) = lim
dt→0

Pr[t ≤ T < t+ dt, J = j|T ≥ t, x]

dt
.

In practice, we calculate the conditional probability that a subject with covariates x dies in the

interval [t, t+ dt) and the cause of death is the j-th cause, given that the subject was alive just
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before time t. Then the overall hazard rate is given by the following equation:

λ(t, x) =

m∑
j=1

λj(t, x),

since the overall hazard must be due to one of the m causes.

Cumulative Hazard function H(t)

We may think of H(t) as the sum of the risks that we face going from time 0 to t. Specifically,

the cumulative hazard function is defined as:

H(t) =

∫ t

0

h(u)du.

(1.6)

So given the hazard rate, we can always integrate to obtain the cumulative hazard and then

exponentiate to obtain the survival function using Equation (1.5). Finally, it would be our

omission if we did not mention the relationship between the survival function and the cumulative

hazard function, which is:

S(t) = exp[−H(t)].

(1.7)

1.3 Censoring and truncation

In this section we will describe all the possible types of censoring and truncation which can occur

in the analysis of survival data. Censoring and truncation are two well established features of

time-to event data and there are various types for both of them. The knowledge about the ver-

sion of censoring or truncation that exists in the dataset is very important because of its major

impact on the way that the likelihood of the observed data is being computed. Each version

leads to a different way of calculating the likelihood function, which is the basis for making

statistical inference especially in the world of frequentist statisticians.

Except for that, censoring and truncation are connected directly with the presence of bias

in the results of the analysis. Specifically, censoring should be non-informative, which means

that participants who drop out of the study should do so due to reasons unrelated to the study.

Informative censoring occurs when participants are lost to follow-up due to reasons related to
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the study, e.g. in a study comparing disease-free survival after two treatments for cancer, the

control arm may be ineffective, leading to more recurrences and patients becoming too sick to

follow-up. We continue this section by introducing some of the basic aspects about censoring

and truncation.

However, it should be clear that the concepts of censoring and truncation are totally differ-

ent. More specifically, a censored observation is an incomplete observation containing only

partial information about the event time, which means the patient is followed up for some time,

but the event does not occur during this period. On the other hand, truncation which is a

common problem in register data, means that subjects who fail before the date of registration

are truncated and they are not included in the study population (Klein & Moeschberger (2005)).

1.3.1 Censoring

The possible censoring mechanisms which can be met in a data set are mentioned below.

Right Censoring

In general, right censoring means that the true event time happens after the observation is

seized on a subject. Right censoring is perhaps the most common type of censoring and it has

been extensively studied in the literature. There are several types of right censoring. Below we

describe the most common types of them (Lagakos (1979)).

Type I right censoring: This type of censoring happens when the event occurs after some

pre-specified time. Mathematically, let T1, T2, . . . , Tn be independent, identically distributed

(i.i.d) random variables each with cumulative distribution function F . Assume also that tc is a

pre-assigned fixed censoring time. Instead of observing T1, T2, . . . , Tn, the variables of interest,

we can only observe Y1, Y2, . . . , Yn, where:

Yi = Ti, if Ti ≤ tc and Yi = tc, if Ti > tc.

Type II right censoring: It happens when the starting time of the study is pre-determined
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but the ending time depends on the time when the first r individuals experience the event of

interest, where r is some pre-specified integer. Mathematically, let r < n be fixed , and let

T(1) < . . . < T(n), be the order statistics of T1, T2, . . . , Tn. As we said observation ceases after

the r − th failure, so we can only observe T(1), . . . , T(r).

Random right censoring: This type of censoring occurs when there are some other factors,

except for the event of interest, which could remove some of the individuals from a trial during

the study period, such as various competing events.

Left Censoring

A lifetime X is considered to be left-censored if it is less than a censoring time Cleft, which

means that the event which we are interested in has already occurred for that individual before

that person is observed in the study at time Cleft. The data from a left-censored sampling

mechanism can be represented by pairs of random variables (T, ε), where T = max(X,Cleft)

and ε indicates whether the exact lifetime is observed (ε = 1) or not (ε = 0). Finally, we should

note that this type of censoring is less often than the right censoring sampling mechanism.

Interval Censoring

A more general type of censoring occurs when the lifetime is only known to occur within an

interval. Accordingly, we only know that the true event time is greater than the last observation

time at which the change has not occurred and less than or equal to the first observation time

at which the change has been observed to occur, thus giving an interval which contains the real

(but unobserved) time of occurrence of the change. Finally, we note that the interval censoring

contains right censoring when Ri =∞ and left censoring when Li = 0, where R represents the

right endpoint and L the left one.

1.3.2 Truncation

The confusion of the term truncation with that of censoring is very common in the field of

statistical analysis, however as mentioned above, these two terms are totally different. Trun-

cation occurs due to the process generating the data which is such that it is only possible to
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observe outcomes above (or below) a truncation limit. Moreover, truncation occurs when only

those individuals whose event time lies within a certain observational window (Yleft , Yright) are

observed. If the event time of an individual does not lie in this interval, then the investigator

has no information about that subject. This is in contrast to censoring where there is at least

partial information for each participant. Because we are only aware of individuals with event

times in the observational window, the inference for truncated data is restricted to conditional

estimation (Steelman (2015)).

Left Truncation

When Yright =∞ we talk about left truncation. In this case, we only observe lifetime X if and

only if Yleft < X. In this type of truncation any subjects who experience the event of interest

prior to the truncation time are not observed.

Right Truncation

It occurs when Yleft equals zero. That is, we observe the survival time X only when X ≤ Yright.

More specifically, right truncation occurs when only subjects who have experienced the event of

interest are included in the sample.

1.4 Likelihood construction

In this section we obtain the likelihood function of survival times under different censoring and

truncation mechanisms.

1.4.1 Right censoring

Let T ∗1 , T
∗
2 , . . . , T

∗
n be i.i.d survival times with cumulative distribution function F and let C1, C2, . . . , Cn

be i.i.d censoring times with cumulative distribution function G. Also, let f and g be the proba-

bility density functions with respect to F and G. We are only able to observe the bivariate data

(T1, δ1), (T2, δ2), . . . , (Tn, δn), where Ti = min(T ∗i , Ci) denotes the observation time for every
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i = 1, 2, . . . , n and

δi =


1, if T ∗i ≤ Ci observed failure-event,

0, if T ∗i > Ci observed censoring.

(1.8)

From the above notation of the observed pairs, we note that each pair consists of a continuous

component (Ti) and a binary component (δi). For that reason the pair (Ti, δi) can take the two

following forms:

(Ti, δi) =


(ti, 1), if Ti is uncensored at time ti,

(ti, 0), if Ti is censored at time ti.

(1.9)

Let K be the distribution function of the observation time T = min(T ∗, C). Then the following

relation holds: K(t) = Pr(min(T ∗, C) ≤ t) = 1−Pr(min(T ∗, C) > t) = 1−Pr(T ∗ > t,C > t).

Assuming independence between the event time T ∗ and censoring time C is very crucial, since it

implies the following simplification: K(t) = 1−Pr(T ∗ > t)Pr(C > t) = 1−(1−F (t))(1−G(t)).

Based on the above, the probability density function of the survival data (T, δ) is:

f(t, δ) = (f(t)(1−G(t)))δ(g(t)(1− F (t)))1−δ; Wienke (2010).

In addition to the independence between the censoring and event times we also assume non

informative censoring. That means that the censoring distribution must not depend on the

same parameter as the event distribution. For that reason, the terms g(t) and G(t) in the pre-

vious relation become constants with respect to the parameter of interest. As a consequence,

the contribution of right censored survival data (ti, δi), i = 1, 2, . . . , n, to the likelihood function

is the following:

Li((ti, δi)|θ) ∝ [f(ti|θ)]δi [S(ti|θ)]1−δi .

If any of the two assumptions changes, then the final relation does not hold and some transfor-

mations should take place.
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1.4.2 General censoring

Consider at this point that we could have any type of the censoring mechanisms which were

mentioned above (Wienke (2010)). Then the likelihood function would be as follows:

L((ti, δ)|θ) =
∏
d∈D

f(td)×
∏
r∈R

S(tr)×
∏
l∈L

[1− S(tl)]×
∏
i∈I

[S(Ui)− S(Vi)],

where D is the set of death times, R is the set of right censored times, L is the set of left censored

observations and I is the set of interval censored observations with the only knowledge that the

real survival time Ti is in the interval [Ui, Vi]. Furthermore we should note that S(Ui)−S(Vi) =

Pr[Ui ≤ Ti ≤ Vi], which is the probability that the real survival time Ti ∈ [Ui, Vi].

1.4.3 Left truncation

As mentioned above, sometimes we may have datasets in which there are left truncated data. In

such cases, suppose that the real survival time Ti is left truncated at some time point Yi (Wienke

(2010)). Then we have to consider the conditional distribution of Ti given that Ti ≥ Yi:

g(t|Ti ≥ Yi) =
f(t)

Pr(Ti ≥ Yi)
=

f(t)

S(Yi)
.

So the probability to observe an event at td is proportional to:

g(td|Td ≥ Yd) =
f(td)

S(Yd)
.

Furthermore, the probability that the real survival time Tr is right censored at tr is:

Pr[Tr ≥ tr|Tr ≥ Yr] =
S(tr)

S(Yr)
.

The probability that the real survival time Tl is left censored at tl is:

Pr[Tl ≤ tl|Tl ≥ Yl] =
S(Yl)− S(tl)

S(Yl)
,

and the probability that the real survival time Ti ∈ [Ui, Vi] where Ui ≥ Yi is:

Pr(Ui ≤ Ti ≤ Vi|Ti ≥ Yi) = Pr(Ti ≥ Ui|Ti ≥ Yi)− Pr(Ti ≥ Vi|Ti ≥ Yi) =
S(Ui)− S(Vi)

S(Vi)

So in this case, the likelihood function is given by the following formula:

L((t, δ)|θ) =
∏
d∈D

f(td)

S(Yd)
×
∏
r∈R

S(tr)

S(Yr)
×
∏
l∈L

S(Yl)− S(tl)

S(Yl)
×
∏
i∈I

S(Ui)− S(Vi)

S(Yi)

=

∏
d∈D

f(td)×
∏
r∈R

S(tr)×
∏
l∈L

[S(Yl)− S(tl)]×
∏
i∈I

[S(Ui)− S(Vi)

n∏
i=1

S(Yi)

Likelihood construction for right truncated data

In the case of right truncation the probability to observe a death at Yi conditional on that the
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survival time Ti is less than or equal to Yi is proportional to:
f(Yi)

1− S(Yi)
. So the likelihood

function is: L(t∗, δ|θ) =

n∏
i=1

f(Yi)

1− S(Yi)
.

1.5 Modelling approaches in Survival Analysis

There are basically three ways to model time-to-event data. The parametric, the semi-parametric

and the non-parametric techniques. If the distributional assumption on the survival times is

valid, the parametric models result in more efficient estimates for the parameters in the sense

of having smaller standard errors as compared to those obtained by the non-parametric models

and the interpretation of the results is easier (Ibrahim et al. (2013)).

1.5.1 Parametric models

The parametric models most commonly found in the literature are the following:

1. The exponential distribution: The simplest choice of parametric model is the Expo-

nential distribution. The characteristic of this distribution is the fact that it assumes a

constant hazard over time, which reflects its property called lack of memory. However, the

specific property makes the exponential model a poor choice for modelling human survival

and for that reason other parametric models have been developed.

2. The standard Weibull distribution: Another very common choice of parametric model

is the one in which the standard Weibull distribution (2-parameter Weibull distribution) is

being used. The Weibull model was introduced by Weibull (1939) and is the most popular

generalization of the exponential model with two positive parameters. It constitutes a

better choice compared to the Exponential one, due to the fact that it has the ability to

assume the characteristics of many different types of distributions. However, this distribu-

tion is inappropriate when the hazard rate is indicated to be uni-modal or bathtub-shaped

and for that reason, a generalization was proposed by Mudholkar et al. (1996) in order to

be able to include such kind of shapes.

3. The Gamma distribution: The Gamma distribution constitutes an extension of the

Exponential distribution, yet it is of limited use in survival analysis, since it does not
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have closed form for the survival and the hazard function because both of them include

the incomplete gamma integral: Ik(x) =

∫ x

0

sk−1 exp(−s)ds

Γ(k)
. In addition, it should be

mentioned that the great advantage of this distribution is the fact that for different values

of the parameters, it can model different hazard forms, such as constant, monotonically

increasing or monotonically decreasing.

4. The Gompertz distribution: Benjamin Gompertz (1825) proposed the Gompertz dis-

tribution which is widely used especially in actuarial, biological and demographic appli-

cations. The Gompertz distribution, just as the previously mentioned parametric models,

captures several hazard forms, such as increasing and decreasing forms for different pa-

rameter values. In addition, by adding one more parameter to the 2-parameter Gompertz

distribution, it is generalized to the Gompertz-Makenhaam distribution. Finally, a very

important characteristic of this distribution is the fact that when the domain of its param-

eters changes, then it becomes defective. More specifically, a distribution is called defective

if the integral of its density function does not result in unity, but in a value p ∈ (0, 1).

Then, it can model situations in which there are individuals who never experience the

event of interest, known as long-term survivors. The specific version of the Gompertz

distribution will be investigated in more detail to the next chapters, under the maximum

likelihood and the Bayesian approach to inference.

5. The log-Logistic distribution: An alternative modelling approach is the use of the

log-Logistic distribution. The log-Logistic distribution has a fairly flexible functional form

and therefore it is one of the parametric survival models in which the hazard rate may be

decreasing, increasing, as well as hump-shaped.

6. The log-Normal distribution: The last most commonly used parametric model is the

log-Normal distribution. A key feature of the distribution and its appropriateness as a

model for survival data, is that the hazard function is non-monotone. The hazard starts

at zero, rises rapidly to a peak and then falls off gradually. Therefore, this model should

be considered only when such behaviour makes biological sense. Except for that, the log-

Normal distribution yields non-proportional hazards, which is often encountered in real
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life problems (Royston; 2001).

1.5.2 Semi-Parametric models

Throughout the present subsection the following notation will be used. For each study subject

i, Ti denotes the survival time and Ci the censoring time. Also, by Zi(t) are denoted the

covariates which may depend on time. Due to the censoring effect, the observable data are

[Yi, δi, Zi(.), i = 1, ..., n] where Yi = min(Ti, Ci) and δi = I(Ti ≤ Ci).

1. The Cox proportional hazards model: As it is known, the most popular semi-

parametric model is the Cox proportional hazard model introduced by Cox (1972). The

basic assumption of this survival model is the proportionality of the hazards and since

some times this assumption is very strict, various models have been proposed to overcome

the problem of non-proportionality.

2. The proportional odds model: A model that constitutes an alternative choice when

the hazards’ proportionality does not hold is the proportional odds model introduced by

Bernett (1983). The difference between this model and the Cox model is the fact that the

hazard ratio between two sets of covariate values converges to unity rather than staying

constant as time passes. This property is very desirable especially when the differences

between stages of a disease at diagnosis tend to diminish with time or even when the

initial effects of a treatment tend to diminish with time. It should be noted though that

in the case of this model the estimation procedure is not as easy as in the Cox model and

for more detail we refer to the work done by Dabrowska & Doksum (1988), Cheng et.al

(1995), Murphy et.al (1997) and Shen (1998).

3. The additive hazards model: Another approach is the additive hazards model, which

has been studied by Cox & Oakes (1984) as well as by Lin & Ying ( 1994; 1995). The

specific model has been introduced especially for dealing with the cases when the effects

of the covariates are time dependent. In this case, thr Cox model is difficult to fit, since

smoothing parameters need to be chosen.

4. The accelerated failure time model: A very useful model for the analysis of survival
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data is the accelerated failure time model (Zeng & Lin (2007)), an alternative to the

Cox proportional hazards model since it provides a natural formulation of the effects of

covariates on potentially censored response variable and is in many ways more appealing

because of its direct interpretation, especially in cases when the response variable does not

pertain to survival time.

1.5.3 Non-parametric models

As it is widely known, the standard non-parametric estimator of the survival function is the

Kaplan-Meier (K-M) estimator, also known as the product-limit estimator, introduced by Ka-

plan & Meier (1958). The KME is a step function estimator of the survival distribution S(t)

which takes into account the fact that the observed survival times may be censored. To define the

KME, suppose that we have a sample which consists of the observed survival times t1, t2, . . . , tn.

The effect of censoring is to limit the length of survival time. So for censored observations we

know only that t∗i ≥ ti, however for uncensored observations we have that t∗i = ti.

1.5.4 Frailty models

The notion of frailty provides a convenient way to introduce random effects, association and

unobserved heterogeneity into models for survival data. This term was introduced by Vaupel

et al. (1979) in univariate survival models and was substantially promoted by its application

to multivariate survival data (Clayton (1978)) on chronic disease incidence in families. In its

simplest form, a frailty is an unobserved random proportionality factor that modifies the hazard

function of an individual. Normally, in most clinical applications, survival analysis implicitly

assumes a homogeneous population to be studied. This means that all individuals sampled into

that study are subject, in principle, to the same risk. However, in many applications the study

population must be considered as a heterogeneous sample, since it is impossible to measure

all relevant covariates related to the disease of interest. Therefore, the frailty approach is a

statistical modelling concept which aims to account for heterogeneity, caused by unmeasured

covariates.
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Chapter 2

General Principles of Bayesian

Inference

2.1 Introduction

As it is widely known, in statistical inference there are two broad schools of inference, classi-

cal inference and Bayesian inference. The second one, on which the present thesis emphasizes,

is a method of statistical inference in which Bayes theorem is used to update the probability

for a hypothesis as more evidence or information becomes available and constitutes an impor-

tant technique in mathematical statistics finding application in a wide range of fields, such as

engineering, sports and medicine. More specifically, Bayesian inference derives the posterior

probability as a combination of two elements: the prior probability and the likelihood function

which is derived from a statistical model concerning the observed data.

2.1.1 Bayes Theorem

Let A and B be the two possible outcomes of a given situation and in addition assume that

A = A1 ∪A2 ∪ . . .∪An, with Ai ∩Aj = ∅ for every i 6= j. Then, the Bayes theorem provides an

expression for the conditional probability of Ai given B, which is equal to:

P (Ai|B) =
P (B|Ai)P (Ai)

P (B)
=

P (B|Ai)P (Ai)
n∑
i=1

P (B|Ai)P (Ai)

,

27
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while more usually we write:

P (Ai|B) ∝ P (B|Ai)P (Ai).

The last equation which is based on the proportionality of the probabilities is also called the

Bayes rule introduced by Laplace, stating the proportionality of the two parts by considering

that the P (B) in the denominator of the first equation being constant (Hoffmann & Jorgensen;

1994).

2.1.2 Bayesian versus Maximum likelihood estimation

The two schools of statistical inference have several major differences. The principal difference

between the two statistical approaches is the fact that the Bayesian approach does not con-

sider the parameters as constants but as random variables characterized by prior distributions.

Therefore, Bayesian inference does not take into account only one value of the parameter, but

a whole distribution. It is known that the frequentist statisticians used to treat the Bayesians

as a minority until the late 80s. This happened since the Bayesian approach needed computer

power to reach its real potential, while maximum likelihood did not.

However, when Markov Chain Monte Carlo techniques, which will be mentioned below, were

introduced in the field of statistics, as well as the informatics made progress, Bayesian statistics

started getting close to what they could truly offer to the statistical society, becoming a valuable

tool to every researcher. Let’s see the principal ideas of each inferential approach:

Frequentist-Maximum likelihood approach

� The parameters of the population are unknown fixed constants.

� Statistical procedures have a long-term meaning, like an infinite repetition of the same

experiment.

� Probabilities are interpreted as a frequency after a long number of experiments.

Bayesian approach:
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� The parameters are considered as random variables, as we are not certain of their real

values.

� The way to make inference is just the use of the rules of probabilities.

� Each person has his own way of thinking, so the prior beliefs naturally vary across people.

� There can be a continuous update of our beliefs as data come to our hand.

So it is seen that, the Bayesian approach, especially based on the last two ideas, gets more

related to real life situations and a more sensible and natural way of quantifying problems.

2.1.3 Inference

Let us consider a random sample y = (y1, . . . , yn), with f(yi|θ) as the distribution function

which describes the random variables y1, . . . , yn. Therefore, the likelihood function is given by

f(y|θ) =

n∏
i=1

f(yi|θ) which sets the probability of observing yi under different values of the pa-

rameter. As already mentioned, Bayes’ Theorem incorporates the information already gathered,

our prior beliefs for the parameter, represented by one or more prior distributions, then takes

into account the observed data and makes inference. For the case where θ is continuous, the

following equation is obtained representing the posterior distribution:

π(θ|y) =
f(y|θ)f(θ)∫
f(y|θ)f(θ)dθ

,

where π(θ) is the prior distribution,

∫
f(y|θ)f(θ)dθ = f(y) is the marginal likelihood function

and f(y|θ) is the likelihood of the data given the parameter θ. In the case when the parameter

θ is discrete, the previous relationship changes and takes the following form:

π(θ|y) =
f(y|θ)π(θ)∑

θ∈Θ

f(y|θ)π(θ)
,

where
∑
θ∈Θ

f(y|θ)π(θ) = f(y) is again the marginal likelihood of the observed data.

By controlling the prior distribution we can express either the fact that we are very certain

about our beliefs by setting the variance of the distribution to a low value, or our prior igno-

rance by placing a large variance. There are various techniques for specifying our prior ignorance

and the researcher should take into account the cases in which the placing of an uninformative
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prior is improper (i.e. does not integrate to 1) and therefore will cause computation troubles,

especially if the concluding posterior is simultaneously an improper one.

2.2 The choice of prior distribution

One of the most basic issues that we are called to face is the choice of the appropriate parameter’s

prior distribution. For this issue the following points should be noted:

� It should be understood that the data analysis under the framework of Bayesian inference

is more subjective, since the prior distribution represents our prior beliefs about the pa-

rameter. Therefore, it follows that the analysis is unique for each statistical analyst, since

someone else’s prior would lead to a different posterior analysis.

� We should also have in mind that as long as the prior distribution does not seem unrea-

sonable for a specific problem, then its effect becomes less influential as the number of

available data increases.

� When we do not have a clear idea about the form of the prior distribution, it is suggested

to use a more convenient form which is consistent with our rough prior beliefs, but also

makes the computation more easily handled.

� Finally, in cases when we feel that we do not have a specific prior information about the

parameter, we should choose a form that depicts this ignorance.

2.2.1 Conjugate Priors

In the context of Bayesian theory, when the posterior distribution of a parameter π(θ|x) is

in the same probability distribution family as its prior π(θ), then the prior and the posterior

distributions are called conjugate and the prior is called conjugate prior for the specific likelihood

function L(x|θ). It should be made clear that, a conjugate prior is an algebraic convenience,

giving a closed-form expression for the posterior, otherwise numerical integration techniques

may be necessary. However, the conjugate family should not be used without limits only for the

convenience that offers in the statistical analysis.

©Thomas Tsiampalis, 2018 @ MSc Biostatistics, NKUA



-31-

2.2.2 Absence of prior information

As already mentioned, when we do not have any specific information about the parameter, we

usually choose a prior distribution which reflects this ignorance. One way to do this, is to choose

a prior distribution from the conjugate family but with a large enough variance. This would

mean the absence of information concerning the concentration of the parameter values around

a certain value.

Another choice of less-informative prior distribution is the Uniform distribution. The fun-

damental problem by using the uniform distribution as our prior is the fact that the uniform

distribution is not invariant under re parametrization, as well as if the parameter space is infi-

nite the uniform prior is improper which means it does not integrate to one. This is however

not always a serious problem since improper prior distributions often lead to proper posterior

distributions.

2.3 Credibility Intervals

The credibility intervals constitute the analogous of confidence intervals that we meet in the

framework of classical statistics. However, there is a fundamental difference between these two

notions. In Classical inference, a 95% confidence interval can not be interpreted as the interval

in which the parameter lies with probability 95% since the parameter θ is considered to be

constant, whereas in the framework of Bayesian inference, this is the interpretation of a 95%

credibility interval since the parameter is considered to be random. A 95% credibility interval

satisfies the following equation:

Cα(x) = [θ : π(θ|x) ≥ γ]

(2.1)

where γ is considered to be such that:

∫
Cα(x)

π(θ|x)dθ = 1 − α, with such regions being called

highest posterior density regions.
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2.4 Markov Chain Monte Carlo Methods

A fairly important reason that Bayesian analysis has grown rapidly in recent years, is the de-

velopment of Markov Chain Monte Carlo (MCMC) methodology. These methods allow us to

overcome problems of great computational difficulty that could not be handled before. They also

allow us to be more realistic in our modelling approaches, as it is possible to infer more complex

models. In particular, the MCMC methods are simulation techniques that give us samples from

the joint posterior distribution of the parameters based on the creation of a Markov chain that

after a large number of steps converges to that distribution. In particular, a Markov chain is a

sequence of discrete or continuous random variables θ with the property that, given the present

outcome, the past and future outcomes are independent:

p(θk+1 = y|θk = x, θk−1 = xk−1, . . . , θ
0 = x0) = p(θk+1 = y|θk = x).

In the following subsections, we will briefly describe two of the most well known MCMC methods,

the Gibbs sampler and the Metropolis Hastings algorithm.

2.4.1 The Gibbs sampling algorithm

The Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm for obtaining a sequence

of observations which are approximated from a specified multivariate probability distribution,

when direct sampling is difficult. This sequence can be used to approximate the joint distri-

bution; to approximate the marginal distribution of one of the variables, or some subset of the

variables; or to compute an integral (such as the expected value of one of the variables). Typ-

ically, some of the variables correspond to observations whose values are known, and hence do

not need to be sampled. It is a randomized algorithm and is an alternative to deterministic

algorithms for statistical inference such as the expectation-maximization algorithm (EM).

As with other MCMC algorithms, Gibbs sampling generates a Markov chain of samples, each of

which is correlated with nearby samples. As a result, care must be taken if independent samples

are desired. In general, samples from the beginning of the chain (the burn-in period) may not

accurately represent the desired distribution and are usually discarded. In practice, we assume
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that after k iterations, the chain has reached its target distribution and we can throw away the

early portion and use the remaining draws for posterior inference. The value of k is the burn-in

length of the burn-in period.

As far as the selection of the burn-in period is concerned, it is made through some tests which

are known as convergence diagnostics. One of the most widely known convergence diagnostics is

the Gelman and Rubin test, proposed by Gelman & Rubin (1992) which compares the variances

between the chains. Also, Geweke (1992) proposed the comparison of the means calculated

from distinct segments of one Markov chain, as well as Raftery & Lewis (1992) introduced a test

based on the estimation of the minimum chain length needed in estimate a percentile to some

precision. Except for these, one possible remedy is thinning the resulting chain of samples if

needed. It has been shown, however, that using a longer chain instead leads to better estimates

of the true posterior. Thus, thinning should only be applied when time or computer memory

are restricted.

Mathematical Notation

Suppose that a sample X is taken from a distribution depending on a parameter vector θ ∈ Θ

of length d with prior distribution g(θ1, . . . , θd). The Gibbs algorithm is being implemented

through the following steps:

1. We start with θ = (θ0
1, . . . , θ

0
d), generated by the prior distribution of the parameter.

2. We simulate θ
(1)
1 by the conditional posterior distribution f(θ1|x, θ0

2, . . . , θ
0
d).

3. We simulate θ
(1)
2 by the conditional posterior distribution f(θ1|x, θ(1)

1 , θ0
3, . . . , θ

0
d).

4. . . .

5. We simulate θ
(1)
d by the conditional posterior distribution f(θ1|x, θ(1)

1 , θ
(1)
2 , θ

(1)
3 , . . . , θ

(1)
d−1).

6. Repeat the above procedure times the number of samples we would like to generate.

The convergence of the above Markov chain in the posterior distribution f(θ1, θ2, . . . , θd|x) is

guaranteed. The above procedure is completed after a large number of iterations, but by first

©Thomas Tsiampalis, 2018 @ MSc Biostatistics, NKUA



-34-

deducting the first samples we get from the burn-in period, which are not ”realistic” samples of

the joint posterior distribution.

2.4.2 The Metropolis-Hastings algorithm

The Metropolis Hastings algorithm is an MCMC method for obtaining a sequence of random

samples from a probability distribution for which direct sampling is difficult. This sequence

can be used to approximate the distribution, or to compute an integral, such as an expected

value. Metropolis Hastings is generally used for sampling from multi-dimensional distributions,

especially when the number of dimensions is high.

The fundamental difference between this algorithm and the Gibbs Sampling Algorithm lies

on the fact that Gibbs can be used only when the conditional posterior distributions of the

unknown parameters are recognizable. However, in many cases the conditional posterior distri-

butions are not written in closed form, which results in not being able to use the Gibbs sampler.

Instead, the Metropolis-Hastings algorithm is one of the most common choices in such cases.

Mathematical Notation

Before looking at the specific algorithm in more detail, it is important to look at the steps

followed by generalized simulation algorithms.

1. We divide the unknown parameters into d sets θ1, . . . , θd where each set has dimension

≥ 1.

2. Start with (θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
d ).

As in the case of the Gibbs sampler, we remove the initial samples that we will get from the

procedure and the rest can be considered to be from the distribution required.

Let us assume that we have reached the jth iteration with the values θ
(j)
1 , θ

(j)
2 , . . . , θ

(j)
d and

we want to simulate the value θ
(j+1)
1 , the next value of θ1. The updating mechanism of the

Metropolis-Hastings algorithm is as follows:

1. We propose a candidate value θcan1 which is from a random distribution with a function

of density q(θcan1 |θ(j)
1 , . . . , θ

(j)
d ).
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2. We choose as the next value of θ1 in the Markovian chain the θ
(j+1)
1 where

θ
(j+1)
1 =


θcan1 , with probability p

θ
(j)
1 , with probability 1-p

(2.2)

where

p = min[1,
f(θcan1 |x, θ(j)

2 , . . . , θ
(j)
d )

f(θ
(j)
1 |x, θ

(j)
2 , . . . , θ

(j)
d )

q(θ
(j)
1 |θ(can)1, θ

(j)
2 , . . . , θ

(j)
d )

q(θcan1 |θ(j)
1 , θ

(j)
2 , . . . , θ

(j)
d )

]

(2.3)

and f(θcan1 |x, θ(j)
2 , . . . , θ

(j)
d ) is the conditional probability density function of θ1 calculated

for θ1 = θcan1 and respectively for f(θj1|x, θ
(j)
2 , . . . , θ

(j)
d ).

As it can be seen, the Gibbs sampler is a special sub-case of Metropolis-Hastings algorithm

where q(θcan1 |θ(j)
1 , θ

(j)
2 , . . . , θ

(j)
d ) = f(θcan1 |x, θ(j)

2 , . . . , θ
(j)
d ).

2.4.3 Assessing the convergence of the Markov chain

As it was mentioned above, MCMC techniques generate a Markov chain that ultimately pro-

vides a sample from the posterior distribution and the summary measures calculated from this

chain consistently estimate the corresponding true posterior summary measures. In addition, it

should be noted that when the probabilities mentioned before do not depend on k, the Markov

chain is called homogeneous.

The fundamental question resulting from the sampling procedure is what happens with the

Markov chain when k goes to infinity. One can show that if the generated chain has a limiting

distribution π, then the distribution is also stationary which means that further elements of the

chain also have π as distribution. Further, we speak for a reversible Markov chain if the rate at

which the Markov chain moves from x to y is the same as the rate at which it moves from y to

x, which is the detailed balance condition. Furthermore, we say that a Markov chain satisfies

the ergodicity criteria if it satisfies the following three criteria:

1. Irreducibility: the chain can reach each possible outcome whatever the starting position;

2. Aperiodicity: there is no cyclic behaviour in the chain and
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3. Positive Recurrence: the chain visits every possible outcome an infinite number of times

and the expected time to return to a particular outcome, irrespective of where we start in

the chain, is finite.

In practical terms, ergodicity means that the chain will explore the posterior distribution ex-

haustively. In the following theorems the most important results are given concerning the

convergence of the Markov chains generated by Gibbs sampler or Metropolis-Hastings.

Graphical approaches to assess convergence

Trace Plot : A simple exploration of the trace plot gives a first and insightful impression of

the characteristics of the Markov chain. Trace plots are produced for each parameter separately

and evaluate the chain univariately, but it is also useful to monitor the Markov chains jointly,

i.e. the total parameter vector θ.

Autocorrelation Plot : When future positions in the chain are highly predictable from the

current position, then the posterior is slowly explored and one says that the chain has a low

mixing rate. The mixing rate is measured by autocorrelations of different lags. The autocorrela-

tion of lag m, denoted as ρm, is defined as the correlation between θk and θk+m (for k = 1, 2, . . .)

and can be simply estimated by the Pearson correlation or a time series approach.When the au-

tocorrelation decreases only slowly with increasing lag, the mixing rate is low. Note that the

autocorrelation plot can also indicate the minimum number of iterations for the chain to ignore

from its starting position. Once the Markov chain converged, the ACF plot does not change

anymore, irrespective of the magnitude of the autocorrelations. When all autocorrelations are

close to zero then MCMC sampling is done in an almost independent manner and stationarity

will be attained quickly.

Running mean plot : Upon stationarity at k0, the mean (and all other characteristics) of

πk(θ) shows stability for k > k0. The running mean or ergodic mean plot can display this

stability. It is a time-series plot of the running mean θk, i.e. the mean of all sampled values up

to and including iteration k.The initial variability of the running -mean plot is always relatively
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high (even when sampling from the correct posterior), but stabilizes with increasing k in case

of stationarity.

Q-Q plot : Another graphical tool that was proposed is a Q-Q plot with the first half of

the chain on the x-axis and the second half of the chain on the y-axis. A Q-Q plot deviating

from the bisecting line is an indication of non-stationarity of the chain.Finally,

Cross-correlation plot : The correlation between θk1 with θk2 (k = 1, . . . , n) is called the

cross-correlation of θ1 with θ2. The scatterplot of θk1 versus θk2 produces a cross-correlation plot.

This plot is useful in case of convergence problems to indicate if model parameters are strongly

related and thus is a diagnostic for an over specified model.
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Chapter 3

Cure Rate Models

3.1 Introduction

In the field of survival analysis, a strict and implicit assumption is that all subjects participating

in the study will eventually experience the event of interest if the follow-up time is sufficiently

long enough. However, this assumption may not be true in many cases. For instance, in some

cancer research studies there may be a certain portion of patients who respond favourably to

treatment and appear to be risk free after a sufficient follow-up time. Such patients are called

cured of the disease. In other words, only a proportion of patients from the population are

susceptible to the event of interest and other subjects are not susceptible to the event. The

proportion of the cured subjects in the population is called the cure fraction or cure rate.

A long and stable plateau at the tail of the Kaplan-Meier survival curves is a clear indication

concerning the existence of a cure fraction in the dataset.

As it is widely known, the model for the survival data with a cure fraction is called the cure

rate model or simply cure model and the model to analyse the survival data without a cure

fraction is referred to as non-cure model. Before introducing the cure models, the notation of

the survival data with a cure fraction should be first given. Survival data with a cure fraction

are similar to the survival data without a cure fraction, as defined in the first chapter, yet, the

true failure time Y of the subjects can be∞. However, the case where Y =∞ is not observable
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due to the existence of right censoring and therefore the survival data with a cure fraction looks

identical to the survival data without a cure fraction.

In the context of cure rate modelling, the survival function S(t), the hazard function λ(t) or

h(t), the cumulative hazard function Λ(t) or the probability density function f(t) are said to be

improper functions, in the sense that lim
t→∞

S(t) > 0, lim
t→∞

Λ(t) < ∞ and

∫ ∞
0

f(t)dt < 1. As far

as the other properties of the specific quantities are concerned, they remain the same as the one

in the survival models without a cure fraction. Thus in these situations we still have that S(t)

of cure model is monotone decreasing with S(0) = 1, h(t) is non-negative and Λ(t) =

∫ t

0

h(t)dt

is monotone non-decreasing, as well as f(t) is always non-negative.

3.2 Mixture Cure model

The Mixture Cure model, introduced by Boag (1949), is a popular method for analysing time-to-

event data in which some of the participating subjects are believed to be cured in a reasonable

way. More specifically, this model assumes that a proportion (π) will be cured and these subjects

are not at risk of experiencing the occurrence of the event of interest. The remaining proportion

(1−π) is for the rest of the participants who are expected to experience the event some time in

the future. Under those assumptions, the mixture cure model takes the following form:

S(t|z, x) = π(z) + (1− π(z))S0(t|x)

where S(t|z, x) is the improper population survival function, π(z) is the cure rate fraction,

S0(t|x) is the proper survival function for the non cured participants, z is the covariate associ-

ated with π(z) and x is the covariate associated with S0(t|x), where z and x may share some

common elements.

As far as the part for non cured individuals is concerned, several different parametric distribu-

tions have been used, including the Exponential distribution (Ghitany et.al. 1994), the Weibull

distribution (Farewell, 1986), as well as, the Log Normal distribution (Boag, 1949). Except for

the choice of parametric distributions, many non parametric approaches have also been consid-

ered in the literature so far (Taylor, 1995; Sy & Taylor, 2000).
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In addition, a generalized link function of logistic distribution was suggested in order to ac-

cess the effects of covariates for the cured probability (π(z)), while parametric functions were

suggested for fitting the S0(t|x). More specifically, Farewell (1982) used logistic regression for

modelling the cured probability and a Weibull distribution for fitting the survival function for

the non cured participants. That means that the cured probability was modelled as follows:

log(
π(z)

1− π(z)
) = β

′
z,

where β′s are the logistic regression’s coefficients.

Except for that, Maller and Zhou (1996) provided a very comprehensive treatment of the cure

model based on different parametric failure time regression models, as well as, they investigated

one-sample non-parametric failure time models. Also, Zhang & Peng (2009) considered separate

modelling of covariate effects on the cure probability and the distribution of the survival time for

the non cured participants. It should be noted though, that unlike the traditional mixture cure

rate models, the last one of Zhang & Peng (2009), allowed the covariate effects on the failure

time distribution of the non cured patients to be negligible at time zero and to grow gradually

with time. This property of the specific modelling is very useful especially in several cancer

treatments when their effect gradually increases from zero.

Furthermore, there were several semi and non parametric methodologies proposed for the esti-

mation of the survival function when the distribution of the survival times was not specified.

More specifically, Tsodikov et.al. (2003) provided a very useful summary of the non parametric

model proposed by Maller & Zhou (1996) who approached a homogeneous sample. Also, Kuk &

Chen (1992) proposed a semi-parametric approach of the cure rate model, in which the survival

times were estimated using a proportional hazards regression model while the cure probabil-

ity was determined by the logistic regression model and they also developed a Monte Carlo

approximation in order to estimate the model’s parameters. The specific model (proportional

hazards regression model) was further studied and developed by Peng & Dear (2000), Sy &

Taylor (2000), as well as, Lam et.al. (2005) among various authors, aiming to develop a new
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methodological approach for calculating the joint parametric-non-parametric likelihood func-

tion. Finally it should be noted that the approaches mentioned above are basically based on the

EM (Expectation-Maximization) algorithm which focuses on the computation of the parametric

as well as the non-parametric components.

Certainly there are many studies that have been conducted within this particular model. For

instance, Kim & Jhun (2008) suggested using the Mixture cure rate model for interval censored

data. More specifically, they developed the likelihood function based on an approximate ap-

proach which was proposed by Goetghebeur & Ryan (2000) and they introduced a frailty model

to characterize the association between the cure probability and the survival time. Furthermore,

Kim et.al. (2009) suggested a new cure rate model by incorporating latent cure rate markers,

which were modelled via a multinomial logistic regression and the individuals who were sharing

the same cure rate were classified into the same risk group.

In addition, Seppa et. al. (2010) proposed a new mixture cure rate model with random ef-

fects to cause-specific survival data concerning female breast cancer patients. More specifically,

they applied two different sets of random effects in order to capture the regional variation in the

cure probability and in the survival of the non cured patients. Another very useful contribution

in the specific scientific field, was made by Peng & Taylor (2010) who also studied the mixture

cure rate model with random effects, yet they obtained the maximum likelihood estimates of

the model for clustered survival data with a cure fraction, based on several estimation methods,

such as rejection sampling and importance sampling.

Finally, another scientific contribution to the field that deserves to be noted is that made by Ma

(2010). In that specific work, Ma presented a semi-parametric cure rate model for mixed case

interval-censored data (Note: Mixed case interval-censored data arise when the event time of

interest is only known to lie in an interval obtained from a sequence of k random examinations,

where k is a random integer), in which a generalized linear model was used to describe the

probability of cure and a Cox model was applied for the estimation of the non cured part.
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3.3 Proportional Hazards Cure Rate Model

Another important cure model is the Proportional Hazards Cure model, which is given as

follows:

S(t|z, x) = exp (−θ(z)F0(t|x)),

where S(t|z, x) is the improper population survival function, F0(t|x) is a proper baseline cumu-

lative distribution function and θ(z) is a positive function of z which is usually formulated as

exp(β′z). Then, the cure rate of this model is given by S(∞|z, x) = exp(−θ(z)).

The proportional hazards cure model was first proposed by Yakovlev et al. (1993) and then

studied by various researchers. Chen et al. (1999) studied this model in the Bayesian framework.

Also, Tsodikov (1998b, 2001) studied the model by assuming that F0(t) is non-parametrically

specified, Tsodikov (2003) and Tsodikov and Garibotti (2007) studied the model again by as-

suming a Cox proportional hazards model for F0(t) with unspecified baseline hazard function.

Tsodikov (1998a) studied this model when the covariate z is time-dependent and finally, Chen

et al. (2002) studied the application of this model to multivariate survival data.

The advantage of the proportional hazards cure model over the mixture cure model is that

it has a proportional hazards structure, which is preferable for Bayesian inference, and a biolog-

ical interpretation, which is explained as follows: For a given subject, let N be the number of

tumor cells that is capable of metastasizing after treatment and (X1, . . . , XN ) be the survival

times of each cell. Then the failure time of the subject is the min(X1, . . . , XN ). Usually, N

is assumed to follow a Poisson distribution with mean θ and (X1, . . . , XN ) are assumed to be

independent and identically distributed with a common cumulative distribution function F (t)

independent of N . Then the survival function is given by the following relation:

S(t) = Pr(N = 0) + Pr(N > 1)× Pr(X1 > t, . . . ,XN > t|N > 1) =

= exp(−θ) +

∞∑
j=1

(1− F (t))jθj exp(−θ)
j!

= exp(−θF (t))

Because of its biologic derivation, the specific model is also known as the Promotion Time

Cure model in the literature. As far as the estimation approaches are concerned, Ibrahim et.al.
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(2001) discussed various parametric and semi-parametric approaches. In addition, Tsodikov

et.al. (2003) provided a very nice review of these non-mixture cure modelling techniques in cure

rate estimation and various statistical problems associated with them. They have also high-

lighted one more advantage over the classical mixture cure model, which is the fact that it is

very attractive for computations, since it has a simple structure for the survival function which

can provide a natural technical structure for maximum likelihood estimation techniques.

Except for the scientific works mentioned above, the non mixture cure rate model was also

studied by Herring & Ibrahim (2002) who introduced a parametric estimation approach by

incorporating random effects. Furthermore, they proposed a methodology to account for non-

ignorable missing covariates in the framework of the specific model. In addition, Brown &

Ibrahim (2003) extended the non mixture cure rate model to include longitudinal covariates.

Uddin et. al. (2006a, b) proposed two different approaches (non-parametric and parametric) for

the estimation of the cure rate, based on the specific model, yet they based their conclusion on

uncensored data. Furthermore, Liu & Chen (2009) introduced a semi-parametric non mixture

cure rate model for the analysis of interval censored data by introducing a semi-parametric max-

imum likelihood estimation procedure for the model using the EM algorithm. Finally, Lopesa

& Bolfarine (2012) investigated the specific model with random effects and they estimated the

parameters by classical and Bayesian methods.

3.4 Proportional Odds Cure Rate Model

The third cure model, which is less popular than the previous two though, is the Proportional

Odds Cure model, which is defined analogous to the proportional odds model for survival

data without a cure fraction. The survival function of the model is given as shown below:

S(t|z, x) =
1

1 + exp(β′z)F0(t|x)
,

where S(t|z, x) is the improper population survival function and F0(t|x) is a proper cumula-

tive distribution function. The cure rate of the proportional odds cure model is S(∞|z, x) =

1

1 + exp(β′z)
. Tsodikov (2003) studied the model when F0(t) is non-parametrically specified and

Zeng et al. (2006) studied the model as a special case of their transformation cure model. Also,
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Gu et al. (2011) provided a biological derivation of the model and studied it parametrically.

3.5 Transformation Cure Rate Models

First of all, a little notation about the transformation models should be given. Semi-parametric

transformation models have attracted much interest in the last two decades. In the transfor-

mation model, a family of transformation functions is imposed on the failure time, the hazard

function or the survival function. The transformation function is usually parametrically spec-

ified. When the transformation function changes within the family, the transformation model

generates a class of survival models, including some well-known survival models as its special

cases. There are many examples of transformation survival models. For example, Ciampi et al.

(1989) used the Box-Cox transformation for survival data generation. However, the transforma-

tion models considered in this section are imposed on the survival function instead of the failure

time.

The first transformation model applied on the survival function was proposed by Cheng et

al. (1995) and it has the following form:

g(S(t|z)) = h0(t) + β′z,

where g(.) is the transformation function, S(t|z) is the population survival function and h0(t)

is the baseline hazard function. When g(.) = log(− log(.)), the model becomes the Cox propor-

tional hazards model, whereas when g(.) = −logit(.), it becomes the proportional odds model.

Therefore, this model nests the proportional hazards model and the proportional odds model

as its special cases. Since the origination of the model, the transformation models have been

widely studied by many researchers. A nice summary of the transformation models could be

found in Zeng & Lin (2007), where the authors presented several classes of semi-parametric

transformation models, as well as, various corresponding estimating methods.

After listing some basic information on these models, we are now in a position to proceed

to the reference to the transformation cure models which have also been proposed in the litera-

ture. Lu & Ying (2004) proposed a transformation cure model in the mixture cure pattern with
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the following form:


S(t|z) = π(z) + (1− π(z))S0(t|z),

S0(t|z) = exp(−Λ(H0(t) + β′z)),

where S(t|z) is the improper population survival function, π(z) is the cure rate, S0(t|z) is the im-

proper survival function of the non cured subjects which follows a similar transformation model

as the model mentioned above, H0(t) is an unspecified monotone increasing function and Λ(x) is

a specified transformation function. When Λ(x) = exp(x), S0(t|z) follows the Cox proportional

hazards model with unspecified hazard function, whereas when Λ(x) = log(
exp(x)

1 + exp(x)
), S0(t|z)

follows the proportional odds model.

Similarly to the previous transformation cure model, Mao & Wang (2010) proposed another

transformation cure model by applying a parametric transformation model for S0(t|z) which

takes the following form:



S(t|z) = π(z) + (1− π(z))S0(t|z),

S0(t|z) =

exp(−β
′z

ρ
)

(exp(−β
′z

ρ
) + ρH0(t))

1

ρ

,

where H0(t) is a proper, but unspecified, baseline cumulative hazard function. The proper sur-

vival function for non cured patients S0(t|z) follows a transformation model, which is called

the generalized proportional odds model proposed by Dabrowska & Doksum (1988). When the

transformation parameter ρ = 1 in the previous model, S0(t|z) follows the proportional odds

model. However, when ρ→ 0, S0(t|z) follows the proportional hazards model.

It can be seen that both models mentioned above are based on the mixture cure model and

the transformation model is applied only on the proper baseline survival function. Transforma-

tion cure models which are not based on the mixture cure model have also been proposed in the

literature. More specifically, Yin and Ibrahim (2005a) proposed a transformation cure model,
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by applying the Box-Cox Transformation model on the survival function as follows:

S(t|z) = (1− α exp(β′z)

1 + α exp(β′z)
F0(t))

1

α ,

where S(t|z) is the improper population survival function and F0(t) is a proper cumulative dis-

tribution function. Also, α is the transformation parameter. The cure rate of this model is

S(∞|z) = (1 +α exp(β′z))
−

1

α . When α = 1, the model becomes a mixture cure model with the

following form:

S(t|z) =
1

1 + exp(β′z)
+

exp(β′z)

1 + exp(β′z)
S0(t|z),

where S0(t) = 1 − F0(t). On the other hand, when α → 0, the model becomes a proportional

hazards cure model with the following form:

S(t|z) = exp(− exp(β′z)F0(t)).

In addition, when 0 < α < 1, the model becomes an intermediate model between the mix-

ture cure model and the proportional hazards cure model. It should be noted that the specific

model is still a valid cure model when α > 1.

Another transformation cure rate model has also been proposed by Zeng et al. (2006) which

does not follow the mixture cure pattern and has the following form:

S(t|z) = [1 + αθ(z)F0(t)]
−

1

α ,

where S(t|z) is the improper population survival function and F0(t) is a proper cumulative distri-

bution function. α is the transformation parameter and the cure rate is S(∞|z) = [1+αθ(z)]
−

1

α .

As before the following cases should be noted as well:

When α = 1, it results in the proportional odds cure model:

S(t|z) = 1 + θ(z)F0(t).

When α→ 0, it results in the proportional hazards cure model:

S(t|z) = exp(θ(z)F0(t)).

Finally, even when 0 < α < 1, the specific model produces a new intermediate cure model

between the proportional odds cure model and the proportional hazards cure model and when

α > 1, the model is still a valid cure rate model.

©Thomas Tsiampalis, 2018 @ MSc Biostatistics, NKUA



-47-

3.6 Further progress on Cure Rate Modelling

Research in the field of cure rate modelling does not stop in the classic model choices mentioned

above. Many researchers have dealt with this issue and have extended much of the relevant

statistical knowledge. This specific section will cover some of the scientific work done on cure

rate modelling under the frequentist, as well as, under the Bayesian perspective, in recent years.

Pal & Balakrishnan (2016) assumed that the number of competing causes follow an exponen-

tially weighted Poisson distribution. More specifically, let M be a random variable denoting the

initial number of competing causes related to the occurrence of an event of interest. Then, M

is assumed to follow an exponentially weighted Poisson distribution with parameter η > 0 and

weight function exp(φm), where φ is a real number and m = 0, 1, 2, . . .. The probability mass

function of M is given by the following relation:

Pr[M = m|η, φ] = exp(−η exp(φ))
(η exp(φ))m

m!
.

The researchers, under the assumption that the population of interest has a cure fraction, de-

veloped an EM algorithm in order to determine the maximum likelihood estimates of the model

parameters. In addition, this model is characterized as more flexible than the promotion time

cure model mentioned above, and also it provides an interesting and realistic interpretation of

the biological mechanism of the occurrence of an event of interest.

Gallardo et al. (2017) introduced a new cure rate model based on a new distribution, called

the Yule-Simon distribution, for modelling the concurrent events. They studied some proper-

ties of this distribution and the model arising when the distribution of the competing causes

is the Weibull model. They called this distribution the Weibull-Yule-Simon distribution, which

assumes the following forms:

SWY S(t|ρ, λ) = ρ(ρ+ 1)

∫ 1

0

uρdu

1− (1− u) exp(− exp(α)tν)
− ρ, t > 0 and

fWY S(t|ρ, λ) = ρ(ρ+ 1)νtν−1 exp(α− exp(α)tν)

∫ 1

0

uρ(1− u)du

[1− (1− u) exp(− exp(α)tν)]2

Under those assumptions, the authors conducted the maximum likelihood estimation procedure
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for the model parameters, as well as, they conducted a small scale simulation study indicating

satisfactory parameter recovery by the estimation approach. Finally, the results on which they

concluded were applied to the melanoma data set illustrating the fact that this model can out-

perform traditional alternative models in terms of model fitting.

Borges (2017) developed a regression model for survival data in the presence of long-term sur-

vivors based on the generalized Gompertz distribution introduced by El -Gohary et al. (2013)

in a defective version. The specific model also includes as a special case the Gompertz cure

rate model proposed by Gieser et al.(1998). Finally, Borges (2017) developed an EM algorithm

for determining the maximum likelihood estimates (MLEs) of the parameters of the model and

discussed the construction of confidence intervals for the parameters using the asymptotic dis-

tribution of the MLEs and the parametric bootstrap method as well. More specifically, the

regression model proposed had the following properties:

f(t|λ, α, θ) = λθ exp(αt− λ

α
(exp(αt− 1)))(1− exp(−λ

α
(exp(αt− 1))))θ−1,

S(t|λ, α, θ) = 1− (1− exp(−λ
α

(exp(αt− 1))))θ.

Finally, it should be noted that the author chose to use this modelling approach since the

defective distributions have the potential to model data with a cure fraction and they also have

the great advantage that the proportion of cured is always estimated using a distribution with

one parameter less than the standard mixture model, which brings plenty of benefits in terms

of estimation.

Koutras & Milienos (2017) introduced a flexible family of cure rate models, motivated by

the biological derivation of the classical promotion time cure rate model and assuming that

a metastasis-competent tumor cell produces a detectable -tumor mass only when a specific

number of distinct biological factors affect the cell. The proposed model has as special cases,

among others, the promotion time (proportional hazards), the geometric (proportional odds),

and the negative binomial cure rate model. In addition, their model generalizes specific families

of transformation cure rate models and some well-studied destructive cure rate models. Ex-
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act likelihood inference was carried out by the aid of the EM algorithm, as well as, a profile

likelihood approach was exploited for estimating the parameters of the model while the model

discrimination problem was treated by the aid of the likelihood ratio test. More specifically the

authors proposed the following model:

Sp(t) =


exp

(
α

(1− α)δ
[1− (1 + δα−1H(t))1−α]

)
, α 6= 1,

(1 + δH(t))
−

1

δ , α = 1,

where α, δ ≥ 0 with H(t) being a cumulative hazard function and the probability someone to

be cured is non zero only when α > 1.

Balakrishnan et al. (2017) assumed a Conway-Maxwell-Poisson distribution under a competing

cause scenario and they studied a flexible cure rate model in which the lifetimes of non-cured

individuals were described by a Cox proportional hazard model with a Weibull hazard as the

baseline function. As far as inference is concerned, they developed an approach for right censored

data by the maximum likelihood method with the use of the EM algorithm and a profile likeli-

hood approach for the estimation of the dispersion parameter of the Conway-Maxwell-Poisson

distribution.

More specifically, the Conway -Maxwell -Poisson distribution accommodates and generalizes

some well known discrete distributions and it is a flexible family of distributions since it can be

over-dispersed or under-dispersed depending on the value of the dispersion parameter. There-

fore, if the number of competing causes M follows a Conway -Maxwell -Poisson distribution, its

probability mass function is given by the following relation:

Pr[M = m|η, φ] =
1

Z(η, φ)
× ηm

(m!)φ
,

where

Z(η, φ) =

∞∑
j=0

ηj

(j!)φ
,

with φ ≥ 0 and η > 0. If φ = 1, M is an equi-dispersed Poisson random variable with

E(M) = η, while if φ → ∞, M becomes an under-dispersed Bernoulli random variable with

parameter
1

1 + η
. Moreover, if φ = 0 and η < 1, then M is an over-dispersed geometric random
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variable with parameter 1−η. Therefore, according to the value of φ we can have various differ-

ent distributions (over, under or equi dispersed). Finally, the cure rate is given by the following

relation:

p0 = Pr[M = 0|η, φ] = Z(η, φ)−1.

Shen (2015) proposed a semi-parametric non mixture cure model for the regression analysis

of left-truncated and interval-censored data and developed semi parametric maximum likeli-

hood estimation for the non mixture cure model after conducting a simulation study in order

to investigate the performance of the proposed estimators.

Rodrigues & Castro (2011) developed a flexible cure rate survival model by assuming the number

of competing causes of the event of interest to follow a compound weighted Poisson distribu-

tion. In fact, their model is more flexible in terms of dispersion than the promotion time cure

model and it gives an interesting and realistic interpretation of the biological mechanism of the

occurrence of event of interest as it includes a destructive process of the initial risk factors in a

competitive scenario.

Rodrigues et al. (2015) published a paper whose purpose was to make the standard promo-

tion cure rate model (Yakovlev & Tsodikov, 1996) more flexible by assuming that the number of

altered cells after some a treatment follows a fractional Poisson distribution (Laskin, 2003). It

was proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, 2005) was

a simple way to obtain a new cure rate model which is a compromise between the promotion

and geometric cure rate models allowing for super-dispersion. So, the relaxed cure rate model

developed by the authors can be considered as a natural and less restrictive extension of the

popular Poisson cure rate model at the cost of an additional parameter but a competitor to

negative-binomial cure rate models (Rodrigues et al., 2009b).

Louzada (2015) extended the promotion cure rate model by incorporating excess of zeros in

the modelling. Despite allowing to relate the covariates to the cure fraction, the specific ap-
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proach, which is based on a biological interpretation of the causes that trigger the event of

interest, did not enable to relate the covariates to the fraction of zeros.

Of course there has been a wealth of research activity not only under the frequentist approach

but also under the Bayesian perspective. Below, some of the typical tasks that have been done

under the Bayesian perspective will be presented. Rodrigues et al. (2010) proposed a new

Bayesian flexible cure rate survival model, which generalised the stochastic model of Klebanov

et al. (1993) and had much in common with the destructive model formulated by Rodrigues et

al. (2009). For the development of the Bayesian inference for the proposed model the authors

used Markov Chain Monte Carlo (MCMC) methods.

Yin & Nieto-Barajaw (2009) proposed a class of Bayesian cure rate models by incorporating

a baseline density function as well as multiplicative and additive covariate structures. Their

model naturally accommodated zero and non-zero cure rates, which provided an objective way

to examine the existence of a survival fraction in the failure time data. Within the Bayesian

paradigm, they took a Markov gamma process prior modelling the baseline hazard rate, and

mixture prior distributions for the parameters in the additive component of the model. Finally,

they implemented a Markov chain Monte Carlo computational scheme to sample from the full

conditional distributions of the posterior and they conducted simulation studies to assess the

estimation and inference properties of the proposed model.

Souza et al. (2017) proposed a flexible probability distribution induced by a discrete frailty,

and then presented some special discrete probability distributions. More specifically, they fo-

cused on a special hyper-Poisson distribution and then developed the corresponding Bayesian

simulation, influence diagnostics by means of intensive Markov chain Monte Carlo algorithm.

Furthermore, Kim et al. (2007) proposed a new class of semi-parametric cure rate models

and they constructed dynamic models for piecewise hazard functions over a finite partition of

the time axis. Allowing the size of partition and the levels of baseline hazard to be random, their
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proposed models provide a great flexibility in controlling the degree of parametricity in the right

tail of the survival distribution and the amount of correlations among the log-baseline hazard

levels. In addition, several properties of the proposed models were derived, and propriety of the

implied posteriors with improper non informative prior distributions for regression coefficients

based on the proposed models was established for the fixed partition of the time axis. Finally,

they developed an efficient reversible jump computational algorithm for carrying out posterior

computation.

Ortega et al. (2017) proposed a four-parameter extended fatigue lifetime model called the

odd Birnbaum -Saunders geometric distribution, which extends the odd Birnbaum-Saunders

and Birnbaum-Saunders distributions. The authors derived some properties of the new distri-

bution that included expressions for the ordinary moments and quantile functions. In addition,

they adopted the method of maximum likelihood and a Bayesian approach in order to estimate

the model parameters. Also, they performed various simulations for different parameter settings

and sample sizes and they proposed two new models with a cure rate called the odd Birnbaum-

Saunders mixture and odd Birnbaum-Saunders geometric models by assuming that the number

of competing causes for the event of interest has a geometric distribution. More specifically,

they adopted proper prior distributions according to variations of the parametric space, but en-

suring non-informativeness according to the fixed hyper-parameters that lead to such a situation.

Yiqi et al. (2016) developed a Bayesian approach for the Weibull-Negative-Binomial regression

model with cure rate under latent failure causes and in the presence of randomized activation

mechanisms. They assumed the number of competing causes of the event of interest followed

a Negative Binomial distribution while the latent lifetimes were assumed to follow a Weibull

distribution. In addition, the Bayesian procedure was developed through Markov chain Monte

Carlos methods and the authors also discussed the model selection for the comparison of the

fitted models. Moreover, they developed case deletion influence diagnostics for the joint poste-

rior distribution based on the ψ-divergence, which has several divergence measures as particular

cases.
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Cantor and Shuster (1992) made a constructive discussion about parametric and non-parametric

methods for estimating cure rates based on censored survival data. They used the Kaplan-Meier

method for non-parametric estimation of the cure proportion. On the other hand for parametric

estimation of cure rates, they assumed a survival function S(t) for which lim
t→∞

S(t) = S(∞) > 0

i.e., in a proportion of patients the event never occurs. Using MLE one can estimate S(∞),

which is considered as the cure rate fraction. Two survival functions considered by the authors

are:

S1(t) = π + (1− π) exp(−λt), 0 < π < 1, λ > 0

S2(t) = exp[β−1α(1− exp(β(t)))], α > 0 and β < 0

The first model represents the case where a proportion π of patients are cured, while the re-

maining 1−π have an exponential failure rate. The second one is a modified Gompertz survival

distribution, for which S2(t) approaches exp(
α

β
) asymptotically. In addition, the first model

which is based on the exponential distribution, has been extensively discussed by Goldman

(1984), who studied the performance of maximum likelihood estimates of the parameters of

S1(t) in the context of a Monte Carlo study, whose main aim was the study of the power, bias,

variance and other characteristics of maximum likelihood estimates of the binomial-exponential

model, by involving simulation of a large number of clinical studies with differing designs.

Also, the second model was developed by Gompertz (1825) and was motivated by observed

population life tables. Garg et al. (1970) discussed the Gompertz distribution and the maxi-

mum likelihood estimation of its parameters. However, they did not consider the situation in

which the hazard is decreasing, causing S(∞) to be positive. Gehan and Siddiqui (1973) pre-

sented a least squares procedure for estimating the parameters of the Gompertz distribution.

Given a set of survival data, either of the above survival functions can be used as the basis of the

likelihood function, whose logarithm can be maximized to find the estimates of the parameter.

Estimates of the cure rates are given by π̂ or by exp(
α̂

β̂
). However, the maximization of the

likelihood function based on S1(t) creates problems and therefore Newton-type methods often
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fail or require a large number of iterations.

Wu (2010) proposed a novel extension of the classical mixture cure rate model in order to

incorporate the additional information about the status of cure. This modelling approach also

showed that with the specific additional information, more efficient estimators could be obtained.

Finally it should be noted that the author mentions that both proportional hazards cure rate

models and accelerated failure times cure rate models can use this extension.
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Chapter 4

Defective distributions for cure

rate modelling

4.1 Introduction & Background

In the previous chapter we presented some of the most widely known models used in the field of

cure rate modelling, as well as some of the most recent progress conducted in this field. Except

for these approaches, Rocha (2016) introduced in his doctoral thesis, a new modelling approach

for the cases where there are long term survivors. More specifically, he proposed the the use of a

class of distributions which are called defective. The characteristic of these distributions is the

fact that the integral of their density function does not equal to unity, but to a value p ∈ (0, 1),

which represents the proportion of long term survivors in the data set, known as the cure rate

or cure fraction, when the domain of their parameters changes. By this definition, it is made

clear that it is not necessary to assume by hand that there are indeed long-term survivors, as is

the case of the traditional cure rate models, but the conclusion whether they exist or not arises

through the process of estimating the parameters.

A great advantage of these distributions, is the fact that the proportion of cured participants

is always estimated using a model with one parameter less than the respective mixture model,

as well as the calculation of the cure rate becomes very easy, since it is calculated through a
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simple function of the distributions’ parameters. In more detail, Rocha proposed the use of the

Gompertz and the Inverse Gaussian distribution, in their simple form shown below, as well as

the Marshall-Olkin family of distributions, shown in the next chapter. These distributions are

based on positive values of their parameters, however, when the parameter α takes negative

values they can be used for cure rate modelling, since they can instantly assess the proportion

of long term survivors in the data set. It is noted that, when the point estimate of the param-

eter α is negative, it means that there are cured patients in the data set. For the statistical

significance of this existence, as proposed by Rocha, we should look at the confidence intervals

of the estimates. When both edges of the confidence interval are negative, then the cure rate is

statistically significant. All these distributions and their respective properties are presented in

more detail in this chapter, as well as the next one.

The aim of the present chapter is to reproduce the maximum likelihood estimates for the parame-

ters of the baseline functions, namely the defective Gompertz and the defective Inverse Gaussian

distribution, under the right censoring mechanism. More specifically, we are going to obtain the

maximum likelihood estimates with the same procedure presented in the PhD of Rocha (2016).

Except for that, we are going to investigate these two baseline defective distributions under the

Bayesian inferential procedure, in order to propose a new Bayesian approach to the defective

Gompertz distribution, compared to the one published by MR dos Santos et.al. (2017), as well

as to obtain for the first time Bayesian estimates for the parameters of the defective Inverse

Gaussian distribution, under the right censoring assumption.

4.2 The baseline defective distributions

The Gompertz distribution is used for modelling survival data in various areas of knowledge,

especially where there is a suspicion of exponential hazard and it takes the following form:

f(t|α, β) = β exp(αt) exp[−β
α

(exp(αt)− 1)],

where α > 0, β > 0 and t > 0 as well. By using the specific parametrization, α is called
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the shape parameter and β is called the scale parameter. In addition, its survival function takes

the following form:

S(t|α, β) = exp[−β
α

(exp(αt)− 1)].

According to the literature, the Gompertz distribution takes its defective version when the

shape parameter (α) takes values outside of its domain, which means that it takes negative

values. Then, the cure fraction is given by the following relation:

p0 = lim
t→∞

S(t|α, β) = lim
t→∞

exp[−β
α

(exp(αt)− 1)] = exp[
β

α
] ∈ (0, 1)

In Figure 4.1 we can see various different forms of the survival function based on different

negative choices for the shape parameter, while the parameter β was kept constant and equal

to unity. Smaller values of the shape parameter indicate a higher cure fraction. Therefore, the

cure fraction estimated in each case is as follows:

p1 = 60.65%, for α = −2

p2 = 71.65%, for α = −3

p3 = 77.88%, for α = −4 and

p4 = 81.87%, for α = −5

In probability theory, the Inverse Gaussian distribution is a two-parameter family of continuous

probability distributions with support on (0,∞). In the present thesis this particular distribu-

tion is going to be used as a model for cure rates, an idea introduced for the first time by Lee &

Whitmore (2006). The probability density function of the Inverse Gaussian distribution takes

the following form:

f (t|α, β) =
1√

2βπt3
exp

[
− 1

2βt
(1− αt)2

]
,

for α > 0, β > 0 and t > 0. In addition, its survival function is given by the following
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Figure 4.1: Survival function of the defective Gompertz distribution, for different

values of the parameter α and with constant β.

formula:

S (t|α, β) = 1−
[
Φ

(
αt− 1√
βt

)
+ exp

(
2α

β

)
Φ

(
−αt− 1√

βt

)]
,

where Φ(.) denotes the cumulative distribution function of a standard normal random vari-

able. The Inverse Gaussian distribution takes its defective form when α < 0. In this case the

cure fraction is given by the following relation:

p0 = lim
t→∞

S(t|α, β) =

= lim
t→∞

[
1−

[
Φ

(
αt− 1√
βt

)
+ exp

(
2α

β

)
Φ

(
−αt− 1√

βt

)]]
=

= 1− exp

(
2α

β

)
.

As can be seen, the cure fraction can be estimated using the estimated parameters α and

β. In Figure 4.2 we can see graphs of the survival function of the defective Inverse Gaussian

distribution for different values of the parameter α and β = 4. Again, when α takes lower val-

ues, the Inverse Gaussian distribution captures a higher proportion of cured individuals. More

specifically, we get the following cure fractions:
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Figure 4.2: Survival function of the defective Inverse Gaussian distribution, for

different values of the parameter α and constant β.

p1 = 22.12%, for α = −0.5

p2 = 39.35%, for α = −1

p3 = 52.76%, for α = −1.5 and

p4 = 63.21%, for α = −2.

4.3 Setup of the simulation studies

4.3.1 Artificial data generation

Before introducing the maximum likelihood and the respective Bayesian estimation procedure

for the parameters of the baseline defective distributions, we present the simulation algorithm,

based on which we simulated right censored survival times from all the defective distributions

presented in this thesis. The survival times were simulated according to the following procedure

published by Rocha (2016):

� Determine the desired parameter values, as well as the value of the cure fraction p;

� Generate Mi ∼ Bernoulli(1− p);

� If Mi = 0 set ti =∞. If Mi = 1 take ti as the root of F (t) = u, where u ∼ Uniform(0, 1−

p);
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� Generate u′i ∼ Uniform(0,max(ti)), considering only the finite ti;

� Calculate ti = min(ti, ui). If ti < ui set δi = 1, otherwise set δi = 0.

It is noted that the range of F (t) has been changed, since instead of (0, 1) the interval (0, 1− p)

was used. In addition, the censoring distribution chosen is the Uniform(0,max(ti)), while the

limit max(ti) was taken in order to control the censoring regardless of the initial parameter

choices.

4.3.2 Maximum likelihood estimation

Assume that the data are independently and identically distributed according to a distribu-

tion with density and survival functions specified by f(., θ) and S(., θ), respectively, where

θ = (θ1, . . . , θk) denotes the vector of parameters which we are interested in. Then, in survival

analysis the full data set takes the form D = (t, δ), where t = (t1, . . . , tn) are the survival times

and δ = (δ1, . . . , δn) are the failure indicators, with δi = 1, if a failure is observed and δi = 0

otherwise. Then the likelihood function for the full data set can be written as follows:

L(D|θ) ∝
n∏
i=1

[
f(t|θ)

δiS(ti|θ)1−δi
]
,

while the log likelihood function takes the following form:

logL(D|θ) = c+

n∑
i=1

δi log f(ti|θ) +

n∑
i=1

(1− δi) logS(ti|θ),

where c is a constant number.

It is noted that the above expression of the likelihood and the log likelihood function for the

full data set is valid only when the censoring mechanism is type I, type II or random and non-

informative. Since the maximum likelihood estimates of the parameters usually do not have a

closed expression, it is necessary to use computational methods to calculate them. In R, where

all the simulations were carried out, there are various routines available for numerical maximiza-

tion, one of which was used in the present thesis. More specifically, we used the optim function

in order to obtain the maximum likelihood estimates, as suggested by Rocha (2016), based on

the BFGS maximization algorithm (Liu & Nocedal (1989)).
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As far as the simulation procedure is concerned, we simulated right censored survival times

with different sample size (n = 200, . . . , 2000) and then we always chose the value of S = 1000

simulations per sample size. In each sample size, we calculated the bias, the mean squared error

and the coverage probability for each parameter. The θ̂ was taken as the average of θi, for

i = 1, . . . , S, while for the calculation of the previous quantities, the following equations were

used:

V ar(θ̂) =
1

S

S∑
i=1

(θ̂i − θ)2

Bias(θ̂) = θ̂ − θ and

MSE(θ̂) = V ar(θ̂) +Bias2(θ̂)

The coverage probability is the frequency in which the real parameter value stays in the con-

fidence region, for each simulation. The cure fraction was calculated based on the estimated

parameters and the appropriate equation according to each defective distribution, while for its

variance we used the first order Taylor approximation of the Delta method (Oehlert (1992)).

4.3.3 Bayesian estimation

Let D = (t, δ) be the full data set of survival times, as denoted in section 4.3.2 and let

θ = (θ1, . . . , θk) be the parameters of interest. Then for the Bayesian estimation of these

parameters we used the likelihood function of the observed data (L(D|θ)), the prior distribu-

tion of the parameters (π(θ)) and based on Bayes’ rule described in chapter 2, we calculated

the conditional posterior distribution of the parameters (π(θi|D, θ−i)), where θ−i denotes the

parameter vector without the i-th element.

First of all it should be noted that the parameter α was replaced from another parameter

γ, as γ = −α, in all the defective distributions (chapter 4 and chapter 5). This replacement

was done, since the defective version of the Gompertz and the Inverse Gaussian distribution is

based on the assumption that α < 0. Therefore, with this replacement the parameter γ takes
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only positive values and it is easier to specify a prior distribution. Furthermore, for all the

parameters as prior distribution we assumed the Uniform distribution, since we did not aim to

include any prior information into the Bayesian inferential procedure.

The MCMC algorithms constructed in both chapters were based on the Gibbs algorithm and

the Metropolis Hastings algorithm with normal increments, both of which presented in chapter

2. More specifically, we used the Gibbs algorithm for the parameter β of the defective Gompertz

distribution, while for all the other parameters and in all defective distributions we used the

Metropolis Hastings algorithm with normal increments, since the conditional posterior distribu-

tion of the parameters was not of a recognizable form. In the context of the Metropolis Hastings

algorithm, the variance of the normal candidates was defined by trial and error, so that the

proportion of accepted draws ranges between 20% and 30% on average. After this step, we used

appropriate graphs in order to diagnose the convergence of the simulated chains (trace plots), as

well as to investigate the autocorrelation at different lags (autocorrelation plots). The final chain

for each parameter was obtained after the appropriate removal of draws and the appropriate

thinning, according to these graphs.

For obtaining the final Bayesian estimates of the parameters and the respective cure fraction, we

simulated right censored survival times with different sample size (n = 200, . . . , 2000) and then

we always chose the value of S = 1000 simulations per sample size. The point estimate in each

simulation was taken as the mean of the thinned chains and for its 95% credible interval we used

the 25%-th percentile and the 75%-th percentile of the chains. The final point estimate for each

parameter and each sample size, was calculated as the average value over all the simulations of

those mean values, as in the case of the maximum likelihood estimates.

The bias and the variance of the final estimates for each sample size, were calculated according

to the equations shown in section 4.3.2, while we used again the Delta method in order to calcu-

late the variance of the cure fraction. The variance of the filal point estimates was used for the

construction of their 95% credible intervals. Finally, it is noted that in all distributions in both
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chapters we removed the first 2,000 iterations from the beginning of the chains and then we

thinned the remaining chains, by keeping every 20-th value in chapter 4 (baseline distributions)

and every 300-th value in chapter 5 (extended distributions under the Marshall-Olkin family).

4.4 Maximum likelihood inference

Let D = (t, δ) be the full data set of right censored survival times, where t = (t1, . . . , tn) are

the survival times and δ = (δ1, . . . , δn) are the failure indicators, with δi = 1 if the ti is a failure

time and δi = 0 if ti is a censored time. Then the log likelihood function for the two baseline

defective distributions introduced in section 4.2, takes the following form:

For the Gompertz distribution:

log[L(D|α, β)] = c+ log(β)

n∑
i=1

δi + α

n∑
i=1

δiti −
β

n∑
i=1

exp(αti)

α
+
nβ

α
,

while for the Inverse Gaussian:

log[L(D|α, β)] = c− 1

2

n∑
i=1

δi log(2βπt3i )−
α2

2β

n∑
i=1

δiti +
α

β

n∑
i=1

δi −
1

2β

n∑
i=1

δi
ti

+

+

n∑
i=1

(1− δi) log

[
1−

(
Φ

(
−1 + αti√

βti

)
+ exp(

2α

β
)Φ

(
−1− αti√

βti

))]
,

where c is constant. By maximizing numerically the two equations shown above we get the

maximum likelihood estimates of the parameters α and β. In addition, the confidence intervals

for the parameters were based on asymptotic normality. Therefore, in order to check the asymp-

totes of the maximum likelihood estimates, as well as the performance of the Delta method used

for the calculation of the cure fraction variance, we conducted the simulation study described in

the next section. Furthermore, the simulation study aims to investigate whether the sample size

affects the estimates’ bias and mean squared error, as well as to examine whether the coverage

probability remains close to the level of 95% for different sample sizes.
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4.4.1 Simulation studies

In this section we propose two simulation scenarios in order to check the maximum likelihood

estimates when the sample size increases. First of all we generated data according to the algo-

rithm described in section 4.3, from the defective Gompertz and the defective Inverse Gaussian

distribution.

In the first simulation scenario we simulated 1000 random samples each of size n = 200, . . . , 2000.

These random samples were assumed to come from the defective Gompertz distribution with

(α, β, π) = (−1, 1, 0.3679). We calculated the maximum likelihood estimates α̂, β̂ and π̂, as

well as their standard errors, which were used to compute the bias, the mean squared error and

the coverage probability for each parameter. As for the standard deviation of the cure fraction,

the delta method was used. Figure 4.3 shows the obtained results from this simulation scenario.

The second scenario was simulated from the defective Inverse Gaussian distribution with param-

eters (α, β, π) = (−0.2, 1, 0.3297) following the same procedure described above. The obtained

results from this simulation scenario are shown in Figure 4.4. Both scenarios produced similar

results. More specifically, it is noticed that:

1. The mean squared error decreases very smoothly as the sample size increases and its value

remains small for any n. In addition, the smallest level of MSE is obtained for the cure

fraction estimate.

2. The bias is very small for both parameters (α and β), as well as for the cure fraction (π).

3. The coverage probability stays around 95% even for the smallest value of n, for both

parameters, while the coverage probability of the cure fraction is observed at higher levels.

The third point suggests that the Delta method constitutes a good approximation to the variance

of the cure fraction, as well as that the asymptotic normality provides good confidence intervals

for the distribution’s parameters. Therefore, it can be seen that both distributions can give a

good point and interval estimation with no need for a large amount of data.
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Figure 4.3: Mean squared errors, biases and coverage probabilities of the maximum

likelihood estimates (α̂, β̂, π̂) versus the sample size n, from the Gompertz distribu-

tion with (α, β, π) = (−1, 1, 0.3679). The dashed line represents the average mean

squared error, bias and coverage probability, over all simulated sample sizes.

Figure 4.4: Mean squared errors, biases and coverage probabilities of the maximum

likelihood estimates (α̂, β̂, π̂) versus the sample size n, from the Inverse Gaussian

distribution with (α, β, π) = (−0.2, 1, 0.3297). The dashed line represents the average

mean squared error, bias and coverage probability, over all simulated sample sizes.
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4.5 Bayesian Inference

In this section we will present the Bayesian inferential procedure for the defective Gompertz

and the defective Inverse Gaussian distribution. As mentioned in section 4.3.3, the parameter

α was replaced by the parameter γ as γ = −α so that γ > 0. Then the likelihood function of

both distributions, takes the following form:

For the Gompertz distribution:

L((T1, δ1), (T2, δ2), . . . , (Tn, δn)) = β

n∑
i=1

δi
exp[−γ

n∑
i=1

δiti +
β

γ

n∑
i=1

[exp(−γti)− 1]],

while for the defective Inverse Gaussian distribution, it takes the following form:

L ((T1, δ1), (T2, δ2), . . . , (Tn, δn)) = (2π)
−

n∑
i=1

δi

2 exp(−3

2

n∑
i=1

δi log(ti))β
−

n∑
i=1

δi

2 ×

× exp

(
− γ

2

2β

n∑
i=1

δiti −
γ

β

n∑
i=1

δi −
1

2β

n∑
i=1

δi
ti

)
exp

(
n∑
i=1

(1− δi) log(S(ti|γ, β))

)
,

where S(ti|γ, β) = 1−
[
Φ

(
−1− γt√

βt

)
+ exp

(
−2γ

β

)
Φ

(
−1 + γt√

βt

)]
.

Since there is no joint conjugate prior distribution for the parameters (γ, β), we assumed that

the two parameters were independently distributed according to the Uniform distribution in

both defective distributions. Then, the joint posterior distribution of the parameters takes the

following form:

π (β, γ|(T1, δ1), (T2, δ2), . . . , (Tn, δn)) ∝

∝ L((T1, δ1), (T2, δ2), . . . , (Tn, δn)|β, γ)× π(β)× π(γ) ∝

∝ L((T1, δ1), (T2, δ2), . . . , (Tn, δn)|β, γ).

So, after the above formulation of the joint posterior distribution we get the following rela-

tions for the conditional posterior distribution of β and γ.
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For the Gompertz distribution:

π(β|γ, (T1, δ1), (T2, δ2), . . . , (Tn, δn)) ∝ β

n∑
i=1

δi
exp


n∑
i=1

[exp(−γti)− 1]

γ
β

 and

π(γ|β, (T1, δ1), (T2, δ2), . . . , (Tn, δn)) ∝ exp

[
−γ

n∑
i=1

δiti +
β

γ

n∑
i=1

[exp(−γti)− 1]

]
,

while for the Inverse Gaussian distribution:

π (β|γ, (T1, δ1), (T2, δ2), . . . , (Tn, δn)) ∝

∝ β
−

n∑
i=1

δi

2 exp

(
− γ

2

2β

n∑
i=1

δiti −
γ

β

n∑
i=1

δi −
1

2β

n∑
i=1

δi
ti

)
×

× exp

(
n∑
i=1

(1− δi) log(S(ti|γ, β))

)
and

π (γ|β, (T1, δ1), (T2, δ2), . . . , (Tn, δn)) ∝

∝ exp

(
− γ

2

2β

n∑
i=1

δiti −
γ

β

n∑
i=1

δi

)
exp

(
n∑
i=1

(1− δi) log(S(ti|γ, β))

)
.

As it can be seen, the conditional posterior distribution of β in the case of the defective

Gompertz distribution is the Gamma distribution with parameters p =

n∑
i=1

δi + 1 and q =

− 1

γ

n∑
i=1

[exp(−γti)− 1], while the form of the conditional posterior distribution of γ can not be

recognized in both distributions.

4.5.1 Simulation studies

In this section we present two simulation scenarios, one for each defective distribution, in order

to obtain the Bayesian estimates for their parameters. As mentioned in section 4.1, this is the

first attempt for obtaining the Bayesian estimates of the parameters of the defective Inverse

Gaussian distribution and, in addition, a different Bayesian inferential procedure is provided for

the parameters of the defective Gompertz distribution compared to that of the paper of MR dos

Santos et.al (2017).
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Figure 4.5: Mean squared errors, biases and coverage probabilities of the Bayesian

estimates (α̂, β̂, π̂) versus the sample size n, from the Gompertz distribution with

(α, β, π) = (−1, 1, 0.3679). The dashed line represents the average mean squared error,

bias and coverage probability, over all simulated sample sizes.

First of all, we simulated right censored survival times of different sample sizes (n =200,. . .,2000)

from the defective Gompertz distribution with parameters α = −1, β = 1 and π = 0.3679. For

the calculation of the parameters’ Bayesian estimates we followed the procedure described in

section 4.5. In Figure 4.5 we present the results concerning this simulation scenario and it is

observed that:

� The mean squared error of both parameters and the cure fraction decreases smoothly with

the sample size, with the lowest being succeeded in the estimation of the cure fraction and

the biggest in the estimation of the parameter α.

� The bias of the Bayesian estimates seems to be at very low levels, with the smallest bias

being observed in the estimation of the cure rate.

� Finally, as far as the coverage probability is concerned, it is observed that it is very high

for both parameters and the cure fraction, with the average probability being very close

to 95.0%. In addition, it is seen that the coverage probability for π is the highest one,

compared to those obtained for the other two parameters.
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Figure 4.6: Mean squared errors, biases and coverage probabilities of the Bayesian

estimates (α̂, β̂, π̂) versus the sample size n, from the Inverse Gaussian distribu-

tion with (α, β, π) = (−0.2, 1, 0.32968). The dashed line represents the average mean

squared error, bias and coverage probability, over all simulated sample sizes.

Subsequently, we simulated right censored survival times of different sample sizes (n = 200,. . .,

2000) from the defective Inverse Gaussian distribution with parameters α = −0.2, β = 1 and

π = 0.32968. The conclusions seem to be the same as in the previous case of the defective

Gompertz distribution. More specifically, in Figure 4.6, we present the results regarding this

specific simulation scenario, where it is observed that:

� The mean squared error decreases smoothly as the sample size increases, with the one

concerning the parameter α being the smallest compared to the MSE obtained from the

estimation of the parameter β and the cure fraction π.

� In addition, as far as the bias is concerned, we can see that it remains at very low levels,

with the one obtained from the estimation of the cure fraction being the smallest one.

� Finally, the coverage probability is very satisfactory for both parameters, as well as for

the cure fraction, since it can be seen that it is approximately equal to 95% in all cases.

©Thomas Tsiampalis, 2018 @ MSc Biostatistics, NKUA



-70-

4.6 Comparative results

In this section we are going to compare the two estimating methodologies, concerning the two

baseline distributions. After presenting the results from the simulation experiments under the

frequentist and the Bayesian perspective the following conclusions can be drawn:

1. Gompertz distribution

� Mean squared error: The two inferential procedures achieve approximately the

same mean squared errors for both parameters and the cure fraction.

� Bias: The absolute bias achieved by the maximum likelihood estimates is smaller

than the one achieved by the respective Bayesian estimates for both parameters and

the cure fraction.

� Coverage Probability: Finally, the coverage probability under the frequentist ap-

proach seems to be a little bit bigger than the one based on the Bayesian parameter

estimates.

2. I nverse Gaussian distribution

� The conclusions drawn concerning the mean squared error and the bias of the esti-

mates are similar to those mentioned before.

� Coverage Probability: As far as the parameter α and the cure fraction (π) is

concerned, we can see that the coverage probability achieved under the Bayesian

framework is greater than the one based on the maximum likelihood inferential pro-

cedure. However, it seems that for the parameter β the two inferential procedures

succeed approximately the same probability.
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Chapter 5

Defective distributions under the

Marshall-Olkin family

5.1 Introduction & Background

Except for the two baseline distributions (Gompertz & Inverse Gaussian) presented in the pre-

vious chapter, Rocha (2016) also suggested the use of their extension under various families of

distributions for cure rate modelling. More specifically, he proposed two new defective distri-

butions under the Marshall-Olkin family (Marshall & Olkin, 1997), a family which is obtained

by adding an extra parameter to a known baseline distribution. He showed that if the baseline

distribution is defective, then its extension under this specific family is also defective and can

be used for cure rate modelling. Let S(t) be the baseline survival function. Then, the extension

under the Marshall-Olkin family of distributions is given by the following relation:

S∗(t) =
rS(t)

1− (1− r)S(t))
,

for r > 0 and t ∈ IR. In addition, by making some simple algebraic manipulation we get

the following relation for its probability density function:

f∗(t) =
rf(t)

[1− (1− r)S(t)]2
.
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In the literature, there are many Marshall-Olkin G distributions which are studied, such as

the Marshall-Olkin asymmetric Laplace distribution (Krishna & Jose, 2011), the Marshall-

Olkin beta distribution (Jose et al., 2009), the Marshall-Olkin Birnbaum-Saunders distribution

(Lemonte, 2013) etc. These distributions have been already used to model several types of data,

among which are some daily ozone measurements in New York (Jose et al., 2009), the remission

times of a random sample of bladder cancer patients (Ghitany et al., 2005, 2007), as well as

the survival times of guinea pigs injected with different doses of tubercle bacilli (Krishna et

al., 2013). Since the use of the family was broad enough, Rocha decided to propose two new

defective distributions, extending the Gompertz and the Inverse Gaussian distributions, through

the Marshall-Olkin family. In addition, he performed a simulation study in order to assess the

performance of the maximum likelihood estimators and he illustrated the proposed distributions

using several real data sets.

As mentioned above, the main result presented by Rocha was the fact that, if a given distribu-

tion (baseline) is defective, then its extension under the Marshall-Olkin family is also defective.

This means that if the limit of S(t) equals p0 ∈ (0, 1), then:

lim
t→∞

S∗(t) = lim
t→∞

rS(t)

1− (1− r)S(t)
=

rp0

1− (1− r)p0
=

rp0

rp0 + 1− p0
.

Based on this specification, Rocha presented the two new defective distributions, the Marshall-

Olkin Gompertz and Marshall-Olkin Inverse Gaussian distributions. Our aim is to reproduce

the maximum likelihood estimates for the parameters of the two extended defective distribu-

tions obtained by Rocha, as well as to obtain, for the first time, the Bayesian estimates for their

parameters.

5.2 The extended defective distributions

Using the two relations shown in section (5.1) with the density and the survival function given

by the Gompertz distribution as the baseline distribution, we get the following relations for the

density and the survival function of the Marshall-Olkin Gompertz distribution:
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Figure 5.1: Survival function of the Marshall-Olkin Gompertz distribution for dif-

ferent parameters’ values.

f∗(t) =

βr exp(αt) exp

(
−β
α

)
(exp(αt)− 1)[

1− (1− r) exp

(
−β
α

)
(exp(αt)− 1)

]2 and

S∗(t) =

r exp

(
−β
α

)
(exp(αt)− 1)

1− (1− r) exp

(
−β
α

)
(exp(αt)− 1)

.

In Figure 5.1 we show the graph of the survival function of the Marshall-Olkin Gompertz

distribution. More specifically, we display the survival function of this distribution for different

values of the parameter α while the other two parameters were kept fixed. As it can be seen

from the figure, as the α parameter takes lower values, the cure fraction in the data set seems

to increase. In addition, if the parameter r equals 1, the Marshall-Olkin Gompertz distribution

diminishes to the Gompertz distribution. According to Rocha, the Marshall-Olkin Gompertz

distribution takes its defective form when α < 0. In this case, the cure fraction which can be

estimated is given in the following relation:

p = lim
t→∞

S∗(t) = lim
t→∞

1− 1

r exp(
β(exp(αt)− 1)

α
)− r + 1

 =
rp0

1− (1− r)p0
=

rp0

rp0 + 1− p0
,

where p0 = exp

(
β

α

)
is the cure fraction estimated by the defective Gompertz distribution.
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Figure 5.2: Survival function of the Marshall-Olkin Inverse Gaussian distribution

for different parameters’ values.

Instead, if the baseline distribution is the Inverse Gaussian distribution, then we get the Marshall-

Olkin Inverse Gaussian distribution which satisfies the following properties:

f∗(t) =

r

{
1√

2πβt3
exp

[
− 1

2βt
(αt− 1)2

]}
{

1 + (r − 1)

[
1−

(
Φ

(
−1 + αt√

βt

)
+ exp(

2α

β
)Φ

(
−1− αt√

βt

))]}2 and

S∗(t) =

r

[
1−

(
Φ

(
−1 + αt√

βt

)
+ exp(

2α

β
)Φ

(
−1− αt√

βt

))]
{

1 + (r − 1)

[
1−

(
Φ

(
−1 + αt√

βt

)
+ exp(

2α

β
)Φ

(
−1− αt√

βt

))]} .

In Figure 5.2, it is observed that when the parameter α takes higher values, then the cure

fraction in the data set declines. Furthermore, when α < 0 the Marshall-Olkin Inverse Gaussian

distribution becomes defective and it estimates the following cure fraction:

p = lim
t→∞

S∗(t) =
rp0

rp0 + 1− p0
,

where p0 is the cure fraction of the defective Inverse Gaussian distribution and is given by:

p0 = 1− exp

{
2α

β

}
.
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In the rest of this chapter we are going to obtain the maximum likelihood estimates for the

parameters of the two extended defective distributions, as well as the respective Bayesian esti-

mates, through a simulation study following the setup presented in the previous chapter.

5.3 Maximum likelihood Inference

Let D = (t, δ) be the full data set of right censored survival times, where t = (t1, . . . , tn) are the

survival times and δ = (δ1, . . . , δn) are the failure indicators. Then, the log likelihood function

of the Marshall-Olkin Gompertz distribution takes the following form:

log[L(D|α, β, r)] = log(β)

n∑
i=1

δi + n log(r) + α
n∑
i=1

δiti −
β

α

n∑
i=1

(exp(αti)− 1)

−
n∑
i=1

(1 + δi) log

(
1− (1− r) exp(−β

α
(exp(αti)− 1))

)
,

while, the respective quantity for the defective Marshall-Olkin Inverse Gaussian distribution

takes the following form:

log[L(D|α, β, r)] = n log(r)− 1

2

n∑
i=1

δi log
(
2πβt3i

)
− 1

2β

n∑
i=1

δi

(
α2ti − 2α+

1

ti

)
+

n∑
i=1

(1− δi) log

(
1−

{
Φ

(
−1 + αti√

βti

)
+ exp

(
2α

β

)
Φ

(
−1− αti√

βti

)})
−

n∑
i=1

(1 + δi) log

(
1 + (r − 1)

[
1−

{
Φ

(
−1 + αti√

βti

)
+ exp

(
2α

β

)
Φ

(
−1− αti√

βti

)}])
.

5.3.1 Simulation studies

Here we perform one simulation experiment. We simulated one thousand random samples

each of size n = 200, . . . , 2000, according to the algorithm described in section 4.3.1. The

random samples were taken to come from i) the Marshall-Olkin Gompertz distribution with

(α, β, r, π) = (−1, 4, 2, 0.0360) and ii) the Marshall-Olkin Inverse Gaussian distribution with

(α, β, r, π) = (−2, 10, 2, 0.4958). We computed the maximum likelihood estimates,α̂, β̂, r̂ and π̂,

as well as their standard errors for each sample. These were used to compute the bias, the mean

squared error and the coverage probability, as we did in the previous chapter for the baseline
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Figure 5.3: Mean squared errors, biases and coverage probabilities of the maximum

likelihood estimates (α̂, β̂, r̂, π̂) versus the sample size n, from the Marshall-Olkin

Gompertz distribution with (α, β, r, π) = (−1, 4, 2, 0.0360). The dashed line represents

the average mean squared error, bias and coverage probability, over all simulated

sample sizes.

defective distributions.

Figure 5.3 and Figure 5.4 show the mean squared errors, the biases and the coverage proba-

bilities of (α̂, β̂, r̂, π̂) versus the sample size n for the simulated data from the defective Marhall-

Olkin Gompertz and the defective Marshall-Olkin Inverse Gaussian distributions. From both

figures we can observe the following:

� The mean squared error seems to decrease to zero for all the parameters with increasing

sample size.

� The smallest mean squared errors seem to be achieved in the estimation of the cure fraction,

while the largest one, in the estimation of the parameter β and then in the estimation of

the parameter r.

� The biases seem to be very small in the estimation of all the parameters, as well as in the

estimation of the cure fraction.

� Finally, the coverage probabilities are very close to the level of 95%, with those obtained
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Figure 5.4: Mean squared errors, biases and coverage probabilities of the maximum

likelihood estimates (α̂, β̂, r̂, π̂) versus the sample size n, from the Marshall-Olkin

Inverse Gaussian distribution with (α, β, r, π) = (−2, 10, 2, 0.4958). The dashed line

represents the average mean squared error, bias and coverage probability, over all

simulated sample sizes.

by the π̂ being the largest.

5.4 Bayesian Inference

In this section, we will obtain the Bayesian estimates for the parameters of the defective Gom-

pertz and the defective Inverse Gaussian distribution, under the Marshall-Olkin family, after

replacing the parameter α with the parameter γ as in the section 4.5. In section 5.2 we pre-

sented the probability density function and the respective survival function of the defective

Gompertz and the defective Inverse Gaussian distributions under the Marshall-Olkin family.

Based on these relations and after replacing the parameter α, the likelihood function for the full

data set of right censored survival times takes the following form:

For the Marshall-Olkin Gompertz distribution:

L((T1, δ1), (T2, δ2), . . . , (Tn, δn)|γ, β, r) = β

n∑
i=1

δi
rn exp[−γ

n∑
i=1

δiti] exp

[
β

γ

n∑
i=1

(exp(−γti)− 1)

]
×
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× exp

{
−

n∑
i=1

(1 + δi) log

[
1− (1− r) exp

(
β

γ
(exp(−γti)− 1)

)]}

and for the Marshall-Olkin Inverse Gaussian distribution:

L((T1, δ1), (T2, δ2), . . . , (Tn, δn)|γ, β, r) = rn(2π)
−

n∑
i=1

δi

2 β
−

n∑
i=1

δi

2 exp

[
−3

2

n∑
i=1

δi log(ti)

]
×

× exp

[
− 1

2β
(γ2

n∑
i=1

δiti + 2γ

n∑
i=1

δi +

n∑
i=1

δi
ti

)

]
×

× exp

{
n∑
i=1

(1− δi) log

[
1−

(
Φ

[
−1− γti√

βti

]
+ exp

(
−2γ

β

)
Φ

[
−1 + γti√

βti

])]}
×

× exp

{
−

n∑
i=1

(1 + δi) log

[
1 + (r − 1)

(
1−

[
Φ

(
−1− γti√

βti

)
+ exp

(
−2γ

β

)
Φ

(
−1 + γti√

βti

)])]}
.

It can be seen that there is no conjugate prior distribution for the parameters (γ, β, r). There-

fore, we set the Uniform distribution as their prior, so that no prior beliefs would be included in

the inferential procedure. After this assumption, the conditional posterior distributions of the

parameters take the following form:

For the Marshall-Olkin Gompertz distribution:

Parameter γ:

π(γ|β, r, (T1, δ1), (T2, δ2), . . . , (Tn, δn)) ∝

∝ exp[−γ
n∑
i=1

δiti] exp

[
β

γ

n∑
i=1

(exp(−γti)− 1)

]
×

× exp

{
−

n∑
i=1

(1 + δi) log

[
1− (1− r) exp

(
β

γ
(exp(−γti)− 1)

)]}
,

Parameter β:

π(β|γ, r, (T1, δ1), (T2, δ2), . . . , (Tn, δn)) ∝

∝ β

n∑
i=1

δi
exp

[
β

γ

n∑
i=1

(exp(−γti)− 1)

]
×

× exp

{
−

n∑
i=1

(1 + δi) log

[
1− (1− r) exp

(
β

γ
(exp(−γti)− 1)

)]}
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and parameter r:

π(r|γ, β, (T1, δ1), (T2, δ2), . . . , (Tn, δn)) ∝

∝ rn exp

{
−

n∑
i=1

(1 + δi) log

[
1− (1− r) exp

(
β

γ
(exp(−γti)− 1)

)]}
,

while for the Marshall-Olkin Inverse Gaussian distribution we get the following equations for

the conditional posterior distributions of the parameters:

Parameter γ:

π(γ|β, r, (T1, δ1), (T2, δ2), . . . , (Tn, δn)) ∝

∝ exp

[
− 1

2β
(γ2

n∑
i=1

δiti + 2γ

n∑
i=1

δi +

n∑
i=1

δi
ti

)

]
×

× exp

{
n∑
i=1

(1− δi) log

[
1−

(
Φ

[
−1− γti√

βti

]
+ exp

(
−2γ

β

)
Φ

[
−1 + γti√

βti

])]}
×

× exp

{
−

n∑
i=1

(1 + δi) log

[
1 + (r − 1)

(
1−

[
Φ

(
−1− γti√

βti

)
+ exp

(
−2γ

β

)
Φ

(
−1 + γti√

βti

)])]}
,

Parameter β:

π(β|γ, r, (T1, δ1), (T2, δ2), . . . , (Tn, δn)) ∝

∝ β
−

n∑
i=1

δi

2 exp

[
− 1

2β
(γ2

n∑
i=1

δiti + 2γ

n∑
i=1

δi +

n∑
i=1

δi
ti

)

]
×

× exp

{
n∑
i=1

(1− δi) log

[
1−

(
Φ

[
−1− γti√

βti

]
+ exp

(
−2γ

β

)
Φ

[
−1 + γti√

βti

])]}
×

× exp

{
−

n∑
i=1

(1 + δi) log

[
1 + (r − 1)

(
1−

[
Φ

(
−1− γti√

βti

)
+ exp

(
−2γ

β

)
Φ

(
−1 + γti√

βti

)])]}

and parameter r:

π(r|γ, β, (T1, δ1), (T2, δ2), . . . , (Tn, δn)) ∝ rn×

× exp

{
−

n∑
i=1

(1 + δi) log

[
1 + (r − 1)

(
1−

[
Φ

(
−1− γti√

βti

)
+ exp

(
−2γ

β

)
Φ

(
−1 + γti√

βti

)])]}
.

We can see that none of the above conditional posterior distribution are of recognizable form. For

that reason, in both distributions and for all the parameters, we used the Metropolis Hastings

algorithm with normal increments, as mentioned in section 4.3.3.
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Figure 5.5: Mean squared errors, biases and coverage probabilities of the Bayesian

estimates (α̂, β̂, r̂, π̂) versus the sample size n, from the Marshall-Olkin Gompertz

distribution with (α, β, r, π) = (−1, 1, 0.5, 0.2254). The dashed line represents the av-

erage mean squared error, bias and coverage probability, over all simulated sample

sizes.

5.4.1 Simulation studies

In this section we present two simulation scenarios, one for each extended defective distribution

under the Marshall-Olkin family of distributions. This is the first presentation of the Bayesian

inferential procedure for the parameters of the defective Marshall-Olkin Gompertz and the de-

fective Marshall-Olkin Inverse Gaussian distribution in the literature.

First of all we simulated 1,000 random samples each one with sample size n = 200, . . . , 2000,

according to the algorithm described in section 4.3.1, from the defective Marshall-Olkin Gom-

pertz distribution with (α, β, r, π) = (−1, 1, 0.5, 0.2254). In Figure 5.5 we present the results

concerning this simulation scenario, and more specifically we present the mean squared error,

the bias and the coverage probability for all the distribution parameters, versus the sample size

n. According to Figure 5.5 the following conclusions can be drawn:

� Mean squared error: It can be seen that the mean squared error decreases smoothly as

the sample size increases. In addition, it should be noted that the largest mean squared
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Figure 5.6: Mean squared errors, biases and coverage probabilities of the Bayesian

estimates (α̂, β̂, r̂, π̂) versus the sample size n, from the Marshall-Olkin Inverse Gaus-

sian distribution with (α, β, r, π) = (−1, 1, 0.5, 0.7616). The dashed line represents the

average mean squared error, bias and coverage probability, over all simulated sam-

ple sizes.

error is obtained from the estimation of the parameter β, while the smallest one, from the

estimation of the cure fraction.

� Bias of the estimates: We can see that the bias of the estimation procedure is relatively

small, while it is seen that as the sample size increases the bias tends to zero for all the

distribution parameters, as well as for the cure fraction. The smallest bias is achieved

from the estimation of the cure fraction, while the largest one, from the estimation of the

parameter β.

� Coverage probability: Finally, as we can see, the coverage probability in the estimation

procedure for the three parameters is lower than 90% with the smallest one obtained

from the estimation of the parameter β, however the coverage probability achieved in the

estimation of the cure fraction is very close to 95%. Yet, we can see that as the sample

size increases, the coverage probability increases too.

For the last simulation experiment, we simulated 1,000 random samples from the Marshall-Olkin

Inverse Gaussian distribution each of sample size n = 200, . . . , 2000 with the following parameter
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values (α, β, r, π) = (−1, 1, 0.5, 0.7616). In Figure 5.6 we can see the results obtained for the

Bayesian estimates of the parameters as in the previous simulation experiments. The conclusions

drawn in the case of the Marshall-Olkin Inverse Gaussian distribution are very similar to those

drawn in the previous case. More specifically we can see that:

� As the sample size increases, the mean squared error decreases for all the parameters and

the cure fraction. In addition, we can see that the lowest mean squared error is achieved

from the estimation of the cure fraction, while the largest one, from the estimation of the

parameter β.

� As far as the estimation bias is concerned, we can see that it remains at low levels for all

the parameters and for the cure fraction. The smallest bias is obtained from the estimation

of the cure fraction and the largest one, from the estimation of the parameter β.

� Finally, the coverage probability for all the parameters and the cure fraction is very close

to 95%, while as the sample size increases, the coverage probability of the three parameters

(α, β and r) increases too.
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Chapter 6

Application to real data sets

6.1 Introduction

Cure rate models become more and more popular in modelling survival data from clinical tri-

als concerning various types of cancer, such as breast cancer, prostate cancer, colon cancer, or

melanoma. In these diseases a significant proportion of patients is cured and for that reason they

can not experience the event of interest, however long the follow-up time is. As already seen,

the baseline defective distributions, as well as their extension under the Marshall-Olkin family

of distributions, are able to model situations where there are long term survivors. Therefore,

in order to understand better their usefulness in modelling such situations, we applied them to

two real data sets.

The one dataset includes survival data from a clinical trial concerning melanoma, while the

other contains survival data on colon cancer. The choice of these two data sets seems reason-

able, since there is a substantial proportion of patients who survive from both types of cancer.

We applied both the baseline distributions and their extensions to the data sets in order to

model the survival probability of the total sample. Our aim was to find the maximum likelihood

and the Bayesian estimates of their parameters, in order to investigate whether they can capture

the existence of long term survivors or not, as well as to compare the two estimating methods

concerning the parameters’ estimates, their respective 95% confidence and credible intervals and
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other statistical concepts.

6.2 Description of the data sets

In this section we present the most important information concerning the two analysed data

sets, the melanoma data set and the colon cancer data set.

6.2.1 Melanoma data set

The first application of the defective distributions was carried out to the melanoma data set,

which is available in R in the library smcure. The data set contains information about 285

patients which have to do with the following characteristics:

� The treatment group which they belong to, where the control group is coded as zero and

the experimental group (IFN regimen) as one.

� The observed relapse-free time.

� The censoring indicator, where 1 represents the event of interest and 0 the censoring. The

event of interest is death from melanoma.

� The participants’ age, and

� The participants’ gender, 0 for male and 1 for female.

This information comes from the ECOG phase III clinical trial, whose aim was to evaluate the

high dose interferon alpha-2b (IFN) regimen, against the placebo as the postoperative adjuvant

therapy. More specifically, the researcher was trying to find if the high dose interferon alpha-2b

(IFN) regimen group would have higher survival times than the placebo group. It is noted that

this data set is widely used in the field of cure rate modelling (Kirkwood, et al., 1996). Below

we present an analytical descriptive investigation that we conducted on the data set.

In Figure 6.1, the survival curve is shown, not only concerning the total sample of the pa-

tients, but also separately according to the participants’ gender, as well as, the treatment group

to which they belong. As it can be seen, the survival curve presents a plateau almost at 0.30
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Figure 6.1: Overall survival probability for the melanoma data set, as well as,

separately according to the participant gender and treatment group.

(S(t) ≈ 0.30) which indicates the existence of long term survivors in the data set. Furthermore,

regarding the total sample it can be seen that the median survival time equals 1.35 with 95%

confidence interval of [1.00, 1.85]. In addition, we can see that there is no statistically significant

difference in the survival probability between males and females, whereas there is a statistically

significant difference between the two treatment groups (p = 0.0118 < 0.05). Also:

� The median survival time of males equals 1.24 with 95% C.I [0.95, 2.13] and the median

survival time of females equals 1.36 with 95% C.I [0.90, 2.30]. Also, the 25%-ile survival

time of males is 0.34 while for females it is 0.36.

� Concerning the two treatment groups it can be seen that the median survival time of the

control group equals 0.98 with 95% C.I [0.52, 1.70], whereas for the IFN group, equals 1.73

with 95% C.I [1.15, 3.02]. In addition, it was found that the 25%-ile survival time of the

control group is 0.28, while for the IFN treatment group is 0.55.

� There was no statistically significant effect of the participants’ age on the risk of death

from melanoma (HR = 1.01; 95% C.I = [0.99, 1.02]; p = 0.369 > 0.05).
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6.2.2 Colon cancer data set

The second data set used is the colon cancer data set, which is available in R, in the sur-

vival package. This data set consists of data from one of the first successful trials of adjuvant

chemotherapy for colon cancer. Levamisole is a low-toxicity compound previously used to treat

worm infestations in animals, while 5-FU is a moderately toxic chemotherapy agent. There are

two records per person, one for recurrence and one for death. The study is originally described

in Laurie (1989), whereas the main report is found in Moertel (1990). This data set is closer to

that of the final report in Moertel (1991) and a version of the data with less follow-up time was

used in the paper by Lin (1994). This data set contains the following information:

� Personal identification number

� Treatment group-Observation, Levamisole, Levamisole+5-FU

� Participants’ gender.

� Participants’ age in years

� Obstruction of colon by tumour

� Perforation of colon

� Adherence to nearby organs

� Number of lymph nodes with detectable cancer

� Days until event or censoring; converted to years

� Censoring status

� Differentiation of tumour

� Extent of local spread

� Time from surgery to registration

� Event type (recurrence, death).

As it is seen, there are two types of event. In the context of the present thesis, we included the

part of the data set which had to do with the possible death from colon cancer. Thus, the data
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Figure 6.2: Overall survival probability for the colon cancer data set, as well as,

separately according to several participant characteristics.

set used throughout this chapter has information about the 929 patients with median follow-up

time 5.1 years, concerning only death as the event of interest.

In Figure 6.2, the survival curve for the total sample is shown, as well as, separately according

to several participants’ characteristics. More specifically, we generated these plots for the total

sample, as well as according to the participants’ gender, treatment group, differentiation of

tumour, extent of local spread and the time from surgery to registration. In addition, in the

survival curve of the total sample of the participants, we can see that there is a plateau at

the end of the curve approximately at 0.4, which could be indicative of the existence of long

term survivors in the data set. Furthermore, there is a statistically significant difference in the

survival probability according to all participants’ characteristics, except for the participants’

gender. More specifically the following results were obtained:

� For the total sample: The median survival time equals 6.99 years, while the estimated

25%-ile survival time is 2.21 years.

� According to participants’ gender: It was found that the median survival time of the

females could not be calculated, since no woman reached the survival probability of 50%,

whereas the respective quantity for males is equal to 6.99 years. Moreover, the estimated
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25%-ile survival time for females is 2.2 years, while for males it is 2.3 years.

� According to the treatment group: There is a statistically significant difference among

the 3 treatment groups. More specifically, it was found that the median survival time

for the three treatment groups is equal to 5.7 and 5.9 years for the Observation and the

Levamisole group respectively, whereas for the third group, the median survival time could

not be calculated, for the same reason as mentioned above for women. Indeed, the patients

belonging in the third treatment group seem to have a much better survival probability

compared to the other two treatment groups, which seem to be almost the same.

� According to the differentiation of tumour: It can be seen that the patients charac-

terized by poor differentiation of tumour seem to have lower survival probability compared

to the other two statuses. More specifically, it was found that the median survival time of

the patients equals 7.4 and 3.04 years for the patients with moderate and poor differenti-

ation of their tumour.

� According to the extent of local spread: The median survival time for the patients

with extent of local spread defined as ”Serosa” and as ”Contiguous structures” was 6.35

and 3.49 years, respectively.

� According to the time from surgery to registration: It was found that the median

survival time equals 7.97 and 5.34 years for the patients with short and long time from

surgery to registration, respectively. In addition, the difference between the two groups

of patients is statistically significant, with those belonging in the short time group having

a statistically significant higher survival probability, compared to those in the long time

group.

6.3 Maximum likelihood estimates: Applications

In this section we are going to apply the defective distributions introduced in the previous

chapters to the data sets described in section 6.2, based on the maximum likelihood estimates

of their parameters.
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6.3.1 Melanoma data set

As seen in section 6.2, the survival curve for the total sample of the participants, presents a

plateau at its right part which indicates the existence of long term survivors in the data set. For

that reason we applied all the defective distributions in order to investigate whether there is a

statistically significant proportion of cured patients or not. In Table 6.1 we can see the results

after applying the defective distributions to the data set.

Distribution Parameters Estimate Lower 95% C.I Upper 95% C.I AIC

Gompertz α̂ -0.62 -0.75 -0.51 770.4205

β̂ 0.77 0.63 0.92

π̂ 29.11% 19.34% 38.88%

Inverse Gaussian α̂ -0.31 -0.49 -0.16 747.7463

β̂ 2.51 2.11 3.03

π̂ 22.14% 11.47% 32.81%

Marshall-Olkin Gompertz α̂ -0.55 -0.74 -0.46 771.1574

β̂ 0.50 0.38 1.13

r̂ 0.60 0.09 0.66

π̂ 28.81% 23.00% 34.63%

Marshall-Olkin Inverse Gaussian α̂ -0.29 -0.50 -0.07 749.6181

β̂ 2.63 1.98 3.73

r̂ 1.09 0.67 1.80

π̂ 21.19% 10.26% 32.09%

Table 6.1: Maximum likelihood estimates for the parameters of the defective distri-

butions in the melanoma data set.

Based on Table 6.1, we can draw the following conclusions:

1. Existence of long term survivors in the data set.

� All distributions estimate the parameter α with a negative value, which means that

there are long term survivors in the data set.

� Both edges of the 95% confidence interval for the parameter α are negative, under
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all the defective distributions. This means that the existence of long term survivors

is statistically significant, at 5% level of significance.

2. Comparison between the different distributions.

� The proportion of cured patients estimated by the Gompertz distribution and its

extension under the Marshall-Olkin family is higher compared to the one estimated

by the Inverse Gaussian distribution and its respective extension.

� These differences do not seem to be statistically significant, due to the overlap of 95%

confidence intervals of the cure fraction.

3. Comparison between the baseline distributions and their extension under the Marshall-

Olkin family

� There is statistically significant difference between the Gompertz distribution and the

Marshall-Olkin Gompertz distribution, since the parameter r differs from unity in a

statistically significant manner.

� However, the Inverse Gaussian distribution and its extension do not differ signifi-

cantly, since the parameter r of the defective Marshall-Olkin Inverse Gaussian distri-

bution does not differ significantly from unity.

4. Fit to the data according to the AIC values

� According to the AIC values, it seems that the Inverse Gaussian distribution provides

the best fit to the data set, with its extension under the Marshall-Olkin family having

a similar AIC value. Finally, the Gompertz distribution and its extension under the

Marshall-Olkin family, seem to provide a worse fit to the data set.

� However, it is noted that the Gompertz and the Marshall-Olkin Gompertz distribu-

tions estimate the cure fraction at a higher level compared to the other two estimates,

which is expected due to the survival curve in Figure 6.1.

In addition to the above results of the table, it is worthwhile to see the behaviour of the four

distributions in one figure. In Figure 6.3 we present the fit of the four defective distributions

to the melanoma data set, based on the maximum likelihood estimates of their parameters. It is
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Figure 6.3: Fit of the defective distributions to the melanoma data set, based on

the maximum likelihood estimates of their parameters.

observed that all distributions provide a very good fit to the data set, since they are close to the

Kaplan Meier estimate and they follow its behaviour at a very satisfactory degree. Furthermore,

we can see that there is no difference between the baseline distributions and their extensions

under the Marshall-Olkin family, but the different distributions seem to differ significantly, which

we have also seen in the previous table. However, in Table 6.1 we have noted that the Gompertz

distribution and its extension are significantly different, something that is not shown in Figure

6.3. Finally, compared to the conclusions drawn from the table, we can see that the Gompertz

distribution and the Marshall-Olkin Gompertz distribution are closer to the Kaplan Meier curve,

although, as mentioned before, these two distrbutions have higher AIC values compared to the

Inverse Gaussian and the Marshall-Olkin Inverse Gaussian distributions.

6.3.2 Colon cancer data set

Our second application was carried out to the colon cancer data set, described in section 6.2.

Table 6.2 presents the results obtained after applying the four defective distributions to the

data set.

Based on Table 6.2 the following conclusions can be drawn:

1. Existence of long term survivors in the data set.
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Distribution Parameters Estimate Lower 95% C.I Upper 95% C.I AIC

Gompertz α̂ -0.10 -0.15 -0.05 2917.049

β̂ 0.14 0.12 0.16

π̂ 24.53% 6.67% 42.38%

Inverse Gaussian α̂ -0.06 -0.09 -0.02 2318.419

β̂ 0.45 0.40 0.51

π̂ 21.97% 10.48% 33.47%

Marshall-Olkin Gompertz α̂ -0.51 -0.59 -0.42 2872.494

β̂ 1.89 1.33 2.52

r̂ 36.34 18.10 71.85

π̂ 47.31% 43.31% 51.07%

Marshall-Olkin Inverse Gaussian α̂ 0.16 0.07 0.27 2904.892

β̂ 0.84 0.62 1.21

r̂ 3.92 2.43 6.37

π̂ . . .

Table 6.2: Maximum likelihood estimates for the parameters of the defective distri-

butions in the colon cancer data set.

� All defective distributions, except for the Marshall-Olkin Inverse Gaussian distribu-

tion, estimate the parameter α with a negative value, which means that there is a

cure rate in the data set. The Marshall-Olkin Inverse Gaussian distribution suggests

that they do not exist cure patients in this data set.

� The cure rate suggested by the Gompertz, the Inverse Gaussian and the Marshall-

Olkin Gompertz distribution is statistically significant, since the 95% confidence in-

terval of the parameter α is fully negative.

2. Comparison between the different distributions.

� It is obvious that there is a statistically significant difference between the Gompertz

distribution and the Marshall-Olkin Inverse Gaussian distribution, as well as between

the Marshall-Olkin Gompertz and the Marshall-Olkin Inverse Gaussian distribution.
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The first two distributions estimate a statistically significant cure fraction in the data

set, whereas the last one does not suggest the existence of cured patients at all.

� The difference between the Inverse Gaussian distribution and the Marshall-Olkin

Gompertz distribution is statistically significant and it seems that they suggest a

different proportion of cured patients in the data set.

� However, the baseline distributions do not seem to differ, with the cure fraction

suggested by the Gompertz distribution being statistically equal with the respective

quantity proposed by the Inverse Gaussian distribution.

3. Comparison between the baseline distributions and their extension under the Marshall-

Olkin family.

� The baseline distributions differ from their extension under the Marshall-Olkin family

significantly, since the parameter r is significantly different from unity, both in the case

of the Marshall-Olkin Inverse Gaussian distribution and in the case of the Marhsall-

Olkin Gompertz distribution.

� The cure fraction proposed by the Gompertz distribution is significantly lower than

the one proposed by its extension under the Marshall-Olkin family.

� As already mentioned, the Marshall-Olkin Inverse Gaussian distribution does not

capture the existence of long term survivors in the data set, whereas its baseline form

suggests a statistically significant cure fraction.

4. Fit to the data set according to the AIC values.

� The Inverse Gaussian distribution seems to provide the best fit to the colon data set,

since it achieves the lowest AIC value. The worst fit seems to be suggested by the

Gompertz distribution, while the AIC value of the Marshall-Olkin Inverse Gaussian

distribution is close.

� However, we should note that the Marshall-Olkin Gompertz distribution which pro-

vides the second best fit to the data set, suggests a cure fraction which is in the

expected range based on the Figure 6.2.
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Figure 6.4: Fit of the defective distributions to the colon cancer data set, based on

the maximum likelihood estimates of their parameters.

In Figure 6.4 we present the fit of the four defective distributions to the colon cancer data

set. We can see that the Marshall-Olkin Gompertz distribution is very close to the Kaplan

Meier curve and it captures its behaviour at a very satisfactory degree. In addition, the Inverse

Gaussian distribution seems to capture very well the raw estimate and especially, approximately

after the three years of the patients follow up. However, the other two distributions (Gompertz

& Marshall-Olkin Inverse Gaussian) do not fit well to the data set. It is seen that the respective

coloured lines are not close to the black curve of the Kaplan Meier estimate, representing a lack

of fit. Finally, we could state that although according to the AIC values the best fit is proposed

by the Inverse Gaussian distribution, in Figure 6.4 the best fit seems to be succeeded by the

Marshall-Olkin Gompertz distribution.

6.4 Bayesian estimates: Applications

After the application of the maximum likelihood estimation procedure, in this section we are

going to apply the four defective distributions to the two data sets, based on the Bayesian

estimates of their parameters.

©Thomas Tsiampalis, 2018 @ MSc Biostatistics, NKUA



-95-

6.4.1 Melanoma data set

In the following table we can see the Bayesian estimates of the parameters, after applying the

defective distributions to the melanoma data set.

Distribution Parameters Estimate Lower 95% C.I Upper 95% C.I

Gompertz α̂ -0.63 -0.75 -0.50

β̂ 0.77 0.62 0.93

π̂ 29.12% 24.07% 34.56%

Inverse Gaussian α̂ -0.32 -0.50 -0.17

β̂ 2.57 2.11 3.12

π̂ 22.09% 13.09% 30.77%

Marshall-Olkin Gompertz α̂ -0.58 -0.76 -0.42

β̂ 0.66 0.16 1.42

r̂ 0.89 0.17 2.28

π̂ 28.57% 24.32% 32.82%

Marshall-Olkin Inverse Gaussian α̂ -0.26 -0.47 -0.06

β̂ 2.93 2.11 4.19

r̂ 1.28 0.75 2.11

π̂ 19.30% 5.39% 29.70%

Table 6.3: Bayesian estimates for the parameters of the defective distributions in the

melanoma data set. 95% C.I represents the 95% credible interval for the parame-

ters.

Based on Table 6.3 the conclusions which are drawn are very similar to those noted in the

previous section. In addition, the two estimating methodologies do not seem to differ much,

concerning the parameters’ estimates as well as the respective confidence and credible intervals,

yet they differ on the fact that, while under the maximum likelihood estimates the Gompertz

distribution was significantly different from its extension, now they are statistically equal since

the parameter r is not significantly different from unity. What is worth noting, is the fact that
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Figure 6.5: Fit of the defective distributions to the melanoma data set, based on

the Bayesian estimates of their parameters.

the 95% credible intervals of the cure fraction are narrower compared to the 95% confidence

intervals, except for the case of the Marshall-Olkin Inverse Gaussian distribution, where the

credible interval is wider than the confidence interval obtained in the previous section. As far

as the point estimates are concerned, we can see that the two estimating methods do not differ

at all in the case of the defective Gompertz and the defective Inverse Gaussian distributions.

However, a tiny difference is observed between the point estimates in the other two distributions.

Finally, the point estimates of the cure fraction in all cases are almost the same. We should

note that the choice of non-informative prior distribution for the parameters can justify the fact

that there is no difference between the two estimation methods, since the inferential ”weight”

lies on the likelihood function, even in the context of the Bayesian inferential procedure.

In Figure 6.5 we can see the fit of the defective distributions to the melanoma data set. As

it can be seen, all distributions fit very well to the data and they capture the behaviour of the

Kaplan Meier estimate at a very satisfactory degree. In addition, a small difference is observed

between the baseline distributions and their extension, yet as mentioned before, this difference

is not statistically significant.
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6.4.2 Colon cancer data set

In Table 6.4 we present the Bayesian estimates for the parameters of the defective distribu-

tions after applying them to the colon cancer data set. The conclusions drawn from Table 6.4

Distribution Parameters Estimate Lower 95% C.I Upper 95% C.I

Gompertz α̂ -0.10 -0.15 -0.06

β̂ 0.14 0.12 0.16

π̂ 24.53% 10.89% 36.13%

Inverse Gaussian α̂ -0.06 -0.09 -0.03

β̂ 0.45 0.40 0.51

π̂ 21.97% 11.52% 31.35%

Marshall-Olkin Gompertz α̂ -0.51 -0.58 -0.44

β̂ 1.94 1.48 2.47

r̂ 40.21 21.68 69.28

π̂ 46.91% 42.66% 50.24%

Marshall-Olkin Inverse Gaussian α̂ -0.011 -0.014 -0.003

β̂ 0.61 0.57 0.66

r̂ 1.76 1.60 1.94

π̂ 5.41% 0.30% 19.93%

Table 6.4: Bayesian estimates for the parameters of the defective distributions in the

colon cancer data set.

are similar to those mentioned in section 6.3.2 for all the defective distributions, except for the

Marshall-Olkin Inverse Gaussian. As it can be seen, based on the Bayesian inferential procedure,

the Marshall-Olkin Inverse Gaussian distribution suggests the existence of a small proportion

of long term survivors in the data set, whereas based on the maximum likelihood estimates, the

same distribution estimated the parameter α with a positive value meaning that there are no

cured patients in the data set.
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Figure 6.6: Fit of the defective distributions to the colon cancer data set, based on

the Bayesian estimates of their parameters.

Regarding the point estimates for the parameters of the baseline distributions, we can see that

there are no differences between the two estimating methods. However, there is a tiny difference

in the estimates for the parameters of the Marshall-Olkin Gompertz distribution. Concerning

the confidence and the credible intervals of the parameters, it is observed in the majority of

the parameters, that the 95% credible intervals are narrower compared to the respective 95%

confidence intervals, which means that more confidence is added to the results of the Bayesian

estimation procedure.

Finally, in Figure 6.6 the fit of the defective distributions can be seen. Based on this figure we

can see that the Marshall-Olkin Gompertz distribution, as well as the Inverse Gaussian distri-

bution, are closer to the Kaplan Meier curve providing a better fit compared to the other two

defective distributions. As in the case of the maximum likelihood estimates, it is seen that the

the Gompertz distribution and the Marshall-Olkin Inverse Gaussian distribution can not cap-

ture the behaviour of the Kaplan Meier estimate at a satisfactory degree, leading us to conclude

that they do not fit well to the colon cancer data set. Finally it should be noted that again the

Marshall-Olkin Gompertz distribution estimates the cure fraction in an expected range, whereas

the other three distributions lead to much lower proportion of cured patients.
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Chapter 7

Conclusions

In this thesis, we considered the Bayesian approach to inference for various defective distri-

butions, recently introduced by Rocha (2016), in the field of cure rate modelling in survival

analysis. In addition, the new Bayesian estimates for the parameters were compared to the re-

spective maximum likelihood estimates. Specifically, we carried out Bayesian estimation for the

parameters of the defective Gompertz distribution, which was already known in the literature.

Furthermore, we also provided Bayesian estimates for the parameters of the defective Inverse

Gaussian distribution, as well as for the Gompertz and the Inverse Gaussian distribution under

the Marshall-Olkin family of distributions.

The present thesis started in a more general context, presenting in the 1st chapter the gen-

eral principles in the field of survival analysis. In this chapter, the basic functions used in

survival analysis and the concepts of censoring and truncation were presented, as well as, the

basic parametric, semi-parametric and non-parametric models which are widely known in the

field of biostatistics.

Subsequently, in the 2nd chapter, the general concepts of the Bayesian approach to inference

were presented. More specifically, various ways of selecting prior distributions were presented,

while the basic algorithms used for Bayesian inference were described, as well.
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After discussing the general principles of survival analysis and the respective principles con-

cerning the Bayesian approach to inference, we moved on to the 3rd chapter, where the cure

rate models were introduced. In this chapter, an extensive literature review was presented

concerning the most widely used cure rate models, such as the mixture cure rate model, the

proportional hazards and proportional odds cure rate models, as well as, the transformation

cure rate models. Finally, we presented some of the most prominent works, based on which the

whole concept of cure rate models has been extended.

The final step of the present thesis was the introduction of the defective models for cure rate

modelling. More specifically, in the fourth chapter the defective Gompertz and the defective

Inverse Gaussian distributions were presented. Through various simulation scenarios we eval-

uated the performance of the Bayesian estimates for their parameters and we compared them

to the maximum likelihood estimates. In the fifth chapter, the extension of those distributions

under the Marshall-Olkin family was discussed. As in the previous chapter, various simulation

experiments were carried out in order to obtain new Bayesian estimates for the parameters of

the defective distributions. The behaviour of these models, based both on maximum likelihood

estimates and Bayesian estimates of the parameters, was evaluated by applying them to the

melanoma and the colon cancer data sets, presented in the last chapter.

What the present thesis adds

The present thesis submitted in partial fulfilment of the requirements for the degree of Master

in Biostatistics, is the first attempt to Bayesian inference for these distributions. First of all,

a new approach was introduced for obtaining the Bayesian estimates for the parameters of the

defective Gompertz distribution, by assuming the Uniform distribution as a prior distribution

for the parameters, compared to the one presented by MR dos Santos et.al. (2017), who used

the Gamma and the Inverse Gamma distribution as prior distributions of the parameters. In

addition, we are the first who obtained the Bayesian estimates for the parameters of the defective

Inverse Gaussian distribution, as well as for the parameters of the extension of those distributions

under the Marshall-Olkin family.
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Future work

Next, we intend to introduce several concepts in the framework of defective distributions for

cure rate modelling, some of which are listed below:

� We are going to obtain new Bayesian estimates for the parameters of the defective Gom-

pertz and the defective Inverse Gaussian distribution, under the Kumaraswamy family of

distributions.

� The next step is to incorporate covariate information in the defective models considered

here. By exploiting covariate information one can gain useful insights about each particular

individual in the study, regarding its survival and cure rate.

� Furthermore, we will consider the problem of variable selection in the context of the regres-

sion defective cure rate models under consideration. Our main interest is to develop new,

Bayesian methods for the variable selection problem in the context of defective cure rate

models, not only when the number of parameters is lower than the number of observations,

but also when the number of parameters is large.
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