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Abstract
Aim of this work is to present metrics like Outage Capacity and Gallager Bound
for the characterization of the performance of the link of wireless and fiber optical
channels. Due to the increased complexity and computational burden, these metrics
can only be approximated through methods stemming from Random Matrix Theory,
Large Deviations and Replica Theory. In this work we provide analytic equations for
the approximation of these metrics and we show that they are very accurate for real
systems.
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Summary
The thesis in divided into 7 chapters: Introduction (Chapter 1),Theory - Mathematical
and Telecommunications Background (Chapter 2), The Optical Channel (Chapter 3),
Crosstalk Existence (Chapter 4), Outage Capacity (Chapter 5), Gallager Bound (Chap-
ter 6) and Optical Fiber MIMO Channel Model- Hamiltonian Approach (Chapter 7).
In Chapter 1 it is given a brief description of the telecommunication trends and how

they will change in the upcoming years. Moreover, it is a made a small introduction
into wireless and fiber optical communications.
In Chapter 2 it is given the theory for the required mathematical and telecommu-

nications background which is necessary in this work. In particular some basic notions
from random matrix theory (RMT) and statistical physics are demonstrated along
with some examples. Moreover, it is presented the large deviation (LD) approach and
the saddle point analysis in addition to basic concepts of information theory in SISO
and MIMO telecommunications.
In Chapter 3 the model of the optical MIMO channel is demonstrated and we

discuss the two different approaches for its analysis: the scattering matrix approach
and the Hamiltonian approach.
Further, in Chapter 4 it is given evidence of the presence of crosstalk in modern

optical fiber communications and thus, rendering them ideal for the application of the
MIMO technology from the wireless domain.
In Chapter 5 and 6 some metrics are presented for the evaluation of the performance

of fiber optical MIMO networks.
Finally, in Chapter 7 it is demonstrated a channel model for the fiber optical MIMO

channel.
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Notations

Linear algebra
X matrix
IN identity matrix of size N ×N

diag(x1, x2, . . . , xN) diagonal matrix with entries x1, x2, . . . , xN
XT transpose of X
X† complex conjugate transpose of X
X∗ complex conjugate of X
trX trace of X
detX determinant of X
X⊗Y Kronecker or Tensor product of X and Y
||X||p ℓ-p norm of X
x column vector
xi ith entry of vector x
≤,≥, >,< component-wise inequalities, e.g. x ≥ y implies that xi ≥ yi ∀i
⪯,⪰,≻,≺ matrix inequalities, e.g., A ⪰ B means that A−B is

nonnegative definite
DX ≡

∏mrows

i=1

∏mcols

j=1 dXij integrals over real matrix elements.
We integrate over the elements of an mrows ×mcols matrix X

Analysis
C,R,N the complex, real and natural numbers
|x| absolute value
R{z} real part of z
I{z} imaginary part of z
i i =

√
−1 with I{i} = 1

f ′(x) first derivative of f(x)
log(x) natural logarithm
C+ z ∈ C : I{z} > 0



x Notations

Probability theory
FX distribution function of X, i.e., FX(x) = P (X ≤ x)

E[X] expectation of X, i.e, E[X] =
∫
Ω
X(ω)dP (ω)

a.s.−→ almost sure convergence
∼ distributed as, e.g., X ∼ N(0, 1)

N(m,Q) Gaussian distribution with mean m and covariance Q
Q(x) Q-function, i.e., Q(x) =

∫∞
0

1
2π
e−

t2

2 dt
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CHAPTER 1
Introduction

1.1 Communications Carving our World

Undoubtedly the era that we are living in can be identified as the era of information.
Never before in the history of mankind, vast amount of information was delivered
across the earth in the blink of an eye and the whole knowledge of humanity was
in the disposal of every man and woman. The outstanding fact is that all these are
happening individually and simultaneously. In other words, it is not necessary for
someone to be in a specific place i.e. home, library etc to access the vast ocean of
information, but on the contrary, the information is available to everyone and at any
time, even to hand held devices such as mobile phones.

That breakthrough has altered the human societies forever. First of all, we (every-
one separately and together collectively) get in contact with anyone, no mater where
they are, forming a global civilization. Secondly, the search of knowledge is unthink-
ably easier now and the scientific and technological advance more rapid than ever.
Personally, I am having difficulties to imagine myself writing the same thesis and per-
forming the same scientific work without the use of internet. Finally, the easiness of
information exchange is opening new frontiers to the human evolution. Sociologically,
scientifically, economically, Earth will not be the same.

Modern communications are carving everyday life. It is almost impossible nowadays
for someone not to own a mobile phone or not to use a broadband internet connection:
We are all connected to each other, constantly exchanging information either for work
or for recreation purposes. Analysts predict that soon the number of people and devices
trying to “go online” will exceed the 15 billions in number 1.1 and at the same time,
the demand for greater connection speeds with minimal latency will be undiminished,
rendering the today technology obsolete.
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Figure 1.1: Global Mobile Devices and Connections Growth [1].

Although, xDSL , 3G and 4G services are totally adequate to accommodate today
the increased demand for connectivity, this is impossible to be valid in the near future,
thus making the establishment of the new 5G wireless and fiber-to-the-premise wired
networks an one-way road.

1.2 The Challenge of Backbone Networks.

One major common feature in our communications either through wireless infrastruc-
ture (2G, 3G, LTE) or through the wired one (copper, coaxial) is that our traffic passes,
almost surely, through a network of optical fibers. Thus, the optical networks, even if
they do not reach our premises directly (FTTx), form the backbone of modern infor-
mation exchange and feel the urgent need of expanding their potential capacity. So far,
we keep optimizing the end-user part of the network and we believe that the already
laid optic fiber network is totally adequate to administer the increased traffic. But as
the number of users soars high and the information exchange rate follows this trend,
the networks become more and more congested. A perfect example for this, is the
traffic jam occurring in highways [10]: as the number of car users increases, the traffic
jams become an everyday phenomenon even for the highways. Studies show [66], that
by the year 2020 a capacity crunch in the optical fiber networks is eminent as can be
seen in Fig. 1.2 and we are forced to find a drastic solution in this urgent problem.
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Figure 1.2: A capacity crunch is unavoidable in the upcoming future [66].

1.3 Modern Communications

Wireless Communications
The birth of wireless communications dates back to early 1800’s with the pioneer-
ing work of Oersted, Faraday, Gauss, Maxwell and Hertz. The explosive growth of
radio communication systems, however, happened the next century, when Fleming
demonstrated the first vacuum tube amplifier which led to the invention of amplitude
modulated (AM) signal and so the first radio station appeared i.e., Radio KDKA in
Pittsburg.
Nowadays almost no one thinks of himself without using some sort of wireless

communication. This involves the transmission of information over a distance without
the help of wires, cables or any other forms of electrical conductors. This definition
is so broad that includes communications from just a few meters of distance e.g.,
television’s remote control, to thousands of kilometers e.g., ionospheric and satellite
communications. Of course cellular telephony is the type of wireless communication
with the most usage in our times.

System of Wireless Communications

The wireless communication system is designed so as to send information from a source
to one or more recipients. In general, such a (digital) system can be seen in Fig. 1.3.
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Figure 1.3: Basic elements of a digital communication system.

We can divide the system into three major parts:

• The transmitter. Produces the information/message, encodes and modulates it.

• The channel. Is the physical medium that is used for the propagation of the
signal.

• The receiver. Collects the messages and after successful demodulation and de-
coding, acquires the information.

Transmitter

In contemporary digital communication systems, the messages produced by the source
are converted into a binary digits (bits) sequence. Ideally the output of the source
consists of the minimum number of bits possible, thus the redundancy is minimized.
This procedure is called source encoding or data compression.
The data sequence then, enters the channel encoder which inserts deliberately some

sort of redundancy in order to increase the reliability of the received data and to en-
hance the fidelity of the corresponding signal. For example, a trite method of encoding
a binary sequence is just repeating every bit m-times. A more complicated encoder, re-
ceives k bits of information and represents them in another sequence of n bits (n > k)
which is called codeword. The amount of redundancy inserted with this method is
measured through the ratio n/k and the inverse of this, is called code rate.
After that, the encoded message enters the modulator which represents the bi-

nary sequence into a signal waveform e.g., Phase Shift Keying (PSK) or Quadrature
Amplitude Modulation (QAM), see Fig. 1.4
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Figure 1.4: Signal constellation. The corresponding waveform can be expressed as
s(t) = a(t)cos(2πfct)− b(t)sin(2πfct).

We can assume that the transmission of the bit sequence is happening at a uni-
form rate R bits/sec. If the output of the modulator is updated every b−bits, the
corresponding available transmission time is b/R sec.

Receiver

Before we describe the channel we can take a look at the side of the receiver, which in
practice executes the reverse operation of the transmitter: The demodulator processes
the corrupted from the channel, waveform and estimates the corresponding bit. Using
the inherited redundancy, the decoder is able to fill in, where the demodulator was
unable to decide. A way of measuring (metric) the error-free operation of the demod-
ulator and decoder is the rate of bit-error occurrence (Bit Error Rate - BER) at the
output of the decoder.

Channel

As we described before, the channel provides the link between the transmitter and the
receiver. Usually, the channel is governed by additive noise which corrupts any signal
that propagates through it. This type of noise can be due to the electronics used in
the different components of the system (thermal noise) as well as it can be due to
interference from other users of the channel. Alternative sources of signal degradation
are e.g., the signal attenuation and the distortion due to multipaths.
Many times, the noise effect can be overcome by increasing the power of the trans-

mitted signal. However, limitations due to electronics and other reasons such as prox-
imity to more channel users constrict this method. Finally, the available channel
bandwidth imposes one more major limitation to our communications. That way, the
maximum amount of information we can transmit through a given channel each time is
finite, depends on the signal noise and bandwidth of the channel and is called capacity
of the channel.
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MIMO-Diversity and Spatial Multiplexing

The wireless communication channel is very hostile. The transmitted signal over a
wireless communication link suffers from fading (severe fluctuations in signal level),
dispersion in time and frequency, path loss and other phenomena of degradation. Of
course, as was discussed briefly in the previous section, the limited available bandwidth
posses one more obstacle in our wireless communications.
Multiple antenna systems are the current trend in our effort to design communica-

tion systems with high spectral efficiency and high quality of link availability. Mutliple
Input-Multiple Output (MIMO) systems, whch can be seen in Fig. 1.5, improve the
spectral efficiency and offer high quality links when compared to traditional Single
Input-Single Output (SISO) systems [77,78].
Apart from antenna configurations (antenna multiplicity either on the transmitter

Tx-MISO- or on the receiver Rx-SIMO- or on both sides-MIMO) there are two ways of
performing MIMO (in general) communications. Existence of multiple antennas in a
system, means existence of a plurality of propagation paths, hence aiming at improving
the reliability of the system we may choose to send the same data across the different
propagation (spatial) paths. This is called spatial diversity. On the other hand, aiming
at improving the data rate of the system, we may choose to transmit different portions
of the data through different propagation paths. This is called spatial multiplexing.
In spatial multiplexing, each subchannel carries independent information, thus

increasing the data rate of the system. This can be compared to Orthogonal Fre-
quency Division Multiplexing (OFDM) technique, where, different frequency subchan-
nels carry different parts of the modulated data. But in spatial multiplexing, if the
scattering by the environment is rich enough, several independent subchannels are
created in the same allocated bandwidth. Thus the multiplexing gain comes at no
additional cost on bandwidth or power.

Figure 1.5: Schematic of the MIMO channel model.
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Optical Communications
The Fiber

Optical fibers is not something new in communications. In fact, it was first proposed
by Kao and Hockam [42] in 1966 and for that study they received the Nobel prize in
physics in 2009. The idea is both simple and revolutionizing: light beam carrying the
information, is inserted into a silica fiber and after many total reflections, the light
comes out with minimal power loss as can be seen in the schematic Fig.1.6.

Incoming
Light

Outgoing
Light

Core

Cladding

Cladding

Jacket

Jacket

Figure 1.6: Schematic of a simple fiber.

In order to achieve total reflection, the fiber consists of three parts: the core with
reflective index n1 ∽ 1.62, where the waveguiding takes place, the cladding with re-
flective index n2 ∽ 1.52 and the jacket which protects and insulates the rest system.
According to the core diameter, there are different types of fiber. For core diameter
8 ∽ 12 µm the fiber is called Single Mode Fiber (SMF) and as the name suggests, it
can support only one propagating mode inside the core. When the core diameter gets
bigger, then more than one propagating modes can exist inside the core (see Fig. 4.1)
and the fiber is called Multi Mode Fiber. A sub-category of the MMF is the Few Mode
Fiber (FMF) where the core can support only a few propagating modes.

(a)

Figure 1.7: Mode profiles of the lower -order fiber modes (a) LP01 (b) LP11 (c) LP21

(d) LP02
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Because the different propagating modes have slightly different propagating veloc-
ities, great fiber lengths result in significant difference in the time of arrival of the
various waveforms. Therefore SMFs are more suitable for long distance communica-
tions [30]. On the other hand, MMFs have greater splicing and coupling tolerance and
are easier to manufacture, making them ideal for short range communications. A new
type of optical fiber is the Multi Core Fiber where inside the cladding there is not only
one, but multiple cores, each one acting as a single and different waveguide. But as
the number of the cores increases, so does the energy leakage between them. Thus,
the crosstalking phenomenon between the various cores arises.
In order to have total reflections resulting into successful light propagation inside

the fiber, the incoming light beam from the source must come from a maximum angle
in the core, called Acceptance Angle (θα). If n0 is the reflective index of the air, then
we call Numerical Aperture (NA) the quantity

NA = n0 sin θα =
√
n2
1 − n2

2 (1.1)

Light Sources
In optical communications the light source (see Fig. 1.8) can be either a LASER or a
LED source depending on the type of the fiber we are going to use. In SMFs the NA
is very small, thus precision in the alignment source-fiber is needed and the usage of
LASER source is necessary.

Light
Source

ModulationSignal

Pump
Output

NA

Figure 1.8: Ideal light source

Optical Modulators
The most common way of modulating an optical signal after its production from a
LASER source, is by using a Mach-Zehnder modulator: The input light is split up into
two interferometer arms. When we apply voltage across one of the arms, a phase shift
is induced for the signal passing through that arm. If the two arms are recombined,
the phase difference between the two waves is converted to an amplitude modulation.
That way we can produce simple ASK (Amplitude Shift Keying) symbols or more
complicate QAM (Quadrature Amplitude Modulated) ones.

Optical Amplifiers
In modern optical communications, the light amplifiers that are in use, are the Erbium
Doped Fiber Amplifiers (EDFAs) which are, in fact, some lengths of Erbium doped
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fiber. A secondary light source is used as a pump to raise the Erbium ions from their
ground state to a metastable state and so, the incoming light signal absorbs energy
(amplification) as the ions return to their ground state, see Fig 1.9.

Coupler1

2

3

4

Pump

Input output

Er3+

Isolator

Figure 1.9: EDFA schematic

The main advantages of the EDFAs are the all-optical and low noise operation.

Photo Detection and Demodulation
The basic method of photo detection is just by using a photodetecting diode. That way
the optical signal is converted into electrical one which is then fed to an equalizing
system for the demodulation process. In optical fiber communications we do not
use pilot signals to acquire channel information. Instead we use blind equalization
techniques.

Spatial Multiplexing (SDM) in Optical Domain
The ongoing exponential growth in both wire and wireless data traffic is forcing the cur-
rently deployed infrastructure to its limits. To counter this trend, scientists have been
working towards exhausting all available degrees of freedom of fiber-optical transmis-
sion, including the bandwidth (through WDM modulation), available power (subject
to power constraints imposed by non-linearities), and polarization diversity [86]. One
possibility to increase throughput is spatial modulation, which would allow multiple
transmission streams within the same fiber or fiber bundle. This can be achieved by
designing MMFs and/or MCFs. An important issue that arises is that typically there
is cross-talk between fiber modes, as can be graphically seen in Fig 1.10, which in-
creases with segment length [75] and can be attributed to imperfections, as well as
to the twist and the bending of the fiber [21, 33], and slight variations in the local
temperature [44].

Tx1

Tx2

TxM

Rx1

Rx2

RxM

Figure 1.10: Optical SDM using M parallel transmission paths in MCF. There is
crosstalking between adjacent cores.
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There have been two trends of work in this direction. In the first, effort has been
made to minimize cross talk between cores to extremely low levels [92], thus not having
to deal with self-interference. While appealing from a signal processing point of view,
the downside is that this methodology does not scale, in the sense that coupling be-
comes unavoidable with increasing number of cores in a fiber. Another more pragmatic
approach is to design fibers without bothering about the appearance of cross-talk. In-
deed, bringing cores close to each other can lead to power being spread at the receiver
side evenly in the outlook of the channel [57]. Recently, it was proposed [38,76,86] to
use sophisticated transceiver techniques developed in the context of wireless commu-
nications between multiple transmitting and receiving antennas (MIMO), which can
mitigate self-interference, thus providing significant throughput increases. Of course,
optical fiber multi-core systems have several differences compared to multi-antenna
wireless systems, which need to be addressed later.

1.4 Summary of Contributions and Questions for
Future Work

The main idea of this work stems from the need to provide cost-effective and efficient
ways of evaluating the performance of modern communication links both fiber optical
and wireless. Therefore, we had to work on different channel models which describe the
physics governing the various connections, by using the assumption of large systems
and hence utilizing the approximations provided by the random matrix theory. It was
shown, however that the analytic expressions which were obtained, are applicable as
well to small-sized systems, thus making our proposed methods especially useful to
modern communication systems.
More precisely, for the optical MIMO channel we proved, first of all, the existence of

crosstalking (Chapter 4) just like in an ordinary wireless system with multiple transmit-
ters and receivers, and further we proposed a method of improving the demodulation
procedure, based on compressed sensing techniques. Therefore, having established the
basic notion that optic fiber links can follow the trend of the wireless ones, namely
incorporate Spatial Division Multiplexing (SDM), we calculated the outage capacity
of such a system (Chapter 5) under the assumptions of increased crosstalking and
zero loss inside the fiber. Further, we investigated the Gallager bound for the coded
fiber optic MIMO link (Chapter 6.2) with fixed power constraints as well as average
power constraint among all transmitters, and the Sphere-Packing bound. Since, the
calculation of the information capacity of a communication channel, can impose huge
computational burden, we are obliged to find good enough approximations, which pro-
vide us with lower and upper bounds for the corresponding channel capacity. Once
again, the proposed approximation method follows well the theory. Finally, as concern
as the optic fiber channel we investigated a more realistic channel model based on the
idea of a chaotic cavity (Chapter 7). Specifically, we modeled the optic fiber MIMO
channel as a chaotic cavity where energy is injected and taken out from leads in the
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form of particles, and the crosstalking happens in a random way with energy exchange
between the particles. That way we can address phenomena occurring inside the fiber
such as increased loss, non-linearities and some level of crosstalking.
Unlike in the optical domain, the use of random matrix theory methods in the

wireless one is a well established practice by numerous of researchers. Hence, in the
context of this work, we calculated an approximated Gallager bound for the wireless
channel (Chapter 6.1) in a closed form by using random matrix theory for fixed power
constraints as well as average power constraint among all transmitters, and the Sphere-
Packing bound. That way, we provided a metric of the performance of such a system
which although requires minimal computational burden, however it follows well the
expected bounds.
Surely, the more we dive into the exciting world of telecommunications with the

help of random matrix theory, the more questions rise. For example, a more realistic
practical implementation of an optical MIMO system along with a compressed sens-
ing equalization technique is a question for future work, in order to grasp better the
mechanics of the crosstalking and thus the mechanics also of the optical MIMO. Fur-
thermore, the methodology for the approximation of the Gallager bound can be applied
to include the uplink MU-MIMO [23] and the Amplify-and-Forward channels [13]. It
should be noted that more general Gaussian channels, which do not have a known joint
eigenvalue distribution can be analyzed in similar ways using the replica method [59].
Finally, the newly introduced MIMO fiber optic channel model, although it gives us
the means to analyze the statistics of throughput in the corresponding channel in the
presence of arbitrary level of crosstalk and mode dependent loss, it is however, also
amenable to extensions, such as dispersion and nonlinear effects.
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CHAPTER 2
Telecommunications and

Mathematical Background
2.1 Introduction in Modern Telecommunications
The “Classic” SISO Channel
Modern telecommunications owe a lot, if not their own existence to Claude Shannon,
who in 1949 estimated the information capacity of a telecommunications channel [71].
The equation that describes the discrete memoryless channel (DMC), as seen in Fig.2.1,
is

y = hx+ n, (2.1)

where y,h,x and n are the output, the complex impulse response, input and noise of
the channel respectively, and the mutual information I(X;Y ) that denotes the amount
of information that one random variable contains about the other random variable is

I(X;Y ) = H(X)−H(Y |X). (2.2)

As a “loan” from statistical physics, the average amount of information per symbol is
called entropy and is measured in bits/symbol:

H(Z) =
N∑
i=1

pi log2
[
1

pi

]
= −

∑
z∈Z

p(z) log2 p(z), (2.3)

which is the measure of uncertainty of a random variable Z ∈ {z1, z2, . . . zN} with
probabilities p(z) = {p1, p2, . . . pN}. In other words, it characterizes the amount of in-
formation required on an average to describe the random variable. Hence, information

Figure 2.1: The discrete memoryless channel (DMC). The noise corrupts the input
symbols independently.

channel capacity C is the maximum mutual information taken over all possible input
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distributions p(x) for given channel realization:

C = max
p(x)

I(X;Y |H). (2.4)

SISO capacity evaluation
Let’s assume the SISO flat fading channel (2.1). The noise is considered to be white,zero
mean, Gaussian, independent of the input, with variance σ2

n. Moreover, the receiver
has perfect knowledge of the channel and the average power P = σ2

x at the transmitter
is upper limited to Pt. That way the channel capacity reads

C = max
p(x),P≤Pt

I(X;Y |H). (2.5)

Since the input and output values are discrete in time, we have to use differential
entropy Hd (in the literature the differential entropy is often depicted with h; here in
order to avoid confuse with the channel coefficients, we chose to use the subscript d)

I(X;Y |H) = Hd(Y |H)−Hd(Y |X,H) = Hd(Y |H)−Hd(hX +N |X,H). (2.6)

Since the receiver has perfect knowledge of the channel: Hd(hX|X,H) = 0 and the
noise N is independent of the input X: Hd(N |X,H) = Hd(N |H). Thus, for a given
channel realization, we get

I(X;Y |H) = Hd(Y |H)−Hd(N |H). (2.7)

If, on the other hand, the noise is zero mean, e.g. N ∼ N (0, σ2
n), the PDF of the noise

is given by

fN(n) =
1

πσ2
n

e
− n2

σ2
n , (2.8)

and the differential entropy of the noise for a given channel matrix, is given by

Hd(N |H) = −
∫
fN(n) log2 [fN(n)] dn

= −
∫
fN(n) log2

[
1

πσ2
n

e
− n2

σ2
n

]
dn

= −
∫
fN(n)

[
− log2(πσ2

n)−
n2

σ2
n

log2(e)
]
dn

= log2(πσ2
n)

∫
fN(n)dn+

log2(e)
σ2
n

∫
n2fN(n)dn

= log2(πeσ2
n). (2.9)
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In the above calculations we used that
∫
fN(n)dn = 1 and

∫
n2fN(n)dn = σ2

n. There-
fore, the differential entropy is independent of the mean of the noise and for the afore-
mentioned channel, the mutual information I(X;Y |H) is maximized when the differen-
tial entropy Hd(Y |H) is also maximized. It is proven, that the differential entropy at-
tains the maximum value for Gaussian random variables, thus Hd(Y |H) = log2(πeσ2

y),
where the received average power is

σ2
y = E[Y 2] = E[(hX +N)(hX +N)∗] = σ2

x|h|2 + σ2
n, (2.10)

and finally,the information channel capacity is

C = Hd(Y |H)−Hd(N |H)

= log2(πeσ2
y)− log2(πeσ2

n)

= log2
[
πe(σ2

x|h|2 + σ2
n)
]
− log2(πeσ2

n)

= log2
(
1 +

σ2
x

σ2
n

|h|2
)

= log2
(
1 +

Pt

σ2
n

|h|2
)
bits per channel use. (2.11)

In the above equation the base of the logarithm is 2 and the capacity is measured in
bits per channel use, but usually for convenience we use as base the neperian num-
ber, thus we denote the logarithm simply as log and the capacity is measured in
nats per channel use. In the last equation, the channel term h is considered to be a
random variable, thus the capacity equation is also a random variable. Hence, we can
distinguish the block-fading channel model:

Block Fading Channel Model

An important channel parameter is the time-scale of the variation of the channel. In
other words, how fast the channel statistics change. The block-fading channel model
assumes that the channel coefficients remain constant for a block of T consecutive
transmitted symbols and change to an independent realization in the next block [7,9,
89]. We can consider the parameter T as the channel’s coherence time, or if we want to
incorporate the idea of time slots, T is the number of time-frequency slots over which
the channel remains constant. Let y,x, z ∈ RTN are the output, input and noise (i.i.d.
∼ Z(0, 1) sequences respectively. By arranging these components as T ×N arrays we
can write the channel equation as

Y = AX+ Z, (2.12)

where A = diag(√α0, . . . ,
√
αT−1) is an T × T matrix whose diagonal elements are

the fading amplitudes over the current slot. Input symbols on the same row of X
experience the same fading coefficient.
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Ergodic Capacity
As ergodic capacity we define the statistical average of the mutual information, where
the expectation is taken over all channel realizations

Cerg = EH

[
log
(
1 +

Pt

σ2
n

|h|2
)]

. (2.13)

Outage Capacity
As outage capacity we define the information rate (R) below which the instantaneous
mutual information falls below a prescribed value of probability expressed as percent-
age:

Pout = Pr
[
log
(
1 +

Pt

σ2
n

|h|2
)
< Cout,q%

]
= q%. (2.14)

In other words, we can assume that the channel allows log(1+ρ|h|2) nats per channel use
through when the fading gain is h. For high SNR we can approximate

Pout(R) ≈
2R − 1

ρ
(2.15)

The MIMO Channel
Consider a MIMO channel with N transmitting and K receiving antennas. For sim-
plicity the channel is considered to be frequency flat and the input-output equation
reads

y = Hx+ n, (2.16)

where y is the K × 1 received vector, x is the N × 1 transmit vector, n is K × 1 white,
zero mean, circularly symmetric complex Gaussian noise vector with variance σ2

n, H is
the K×N channel matrix. In order to maintain the total average energy constrain, for
the covariance matrix of x, Rxx = E{xxH}, must apply that trRxx = Pt. As seen for
the SISO channel, the information capacity for a given channel realization is defined
as

C = max
f(x)

I(x;y|H), (2.17)

where f(x) is the probability distribution of x. By defining Hd(y) the differential
entropy of y and Hd(y|x) the conditional differential entropy of y given x, then

I(x;y|H) = Hd(y|H)−Hd(y|x,H) = Hd(y|H)−Hd(Hx+ n|x,H). (2.18)

We can assume that the channel is perfectly known to the receiver, i.e., Hd(Hx|x,H) =
0 and since the noise is independent of the input, i.e., Hd(n|x,H) = Hd(n|H), the
equation for the mutual information becomes

I(x;y|H) = Hd(y|H)−Hd(n|H). (2.19)
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Following the same procedure as for the SISO case we can write
Hd(n|H) = log det(πeRnn) (2.20)
Hd(y|H) = log det[πe(HRxxHH +Rnn)] (2.21)

where Rnn is the covariance matrix of the noise vector and the covariance matrix of y
is

Ryy = E{(Hx+ n)(Hx+ n)H} = HRxxHH +Rnn. (2.22)
Therefore, we can write for the capacity

C = log det(IK +
1

Rnn
HRxxHH). (2.23)

For the case, where the noise is uncorrelated between the antenna branches, Rnn =
1
σ2
n
IK , thus the capacity for MIMO flat fading channel is

C = log det(IK +
1

σ2
n

HRxxHH). (2.24)

If the transmitter has no CSI, the optimal strategy is to distribute evenly the available
transmit power at the corresponding antennas. Hence, Rxx = Pt

N
IN . Analogously to

the SISO case we can define also the ergodic and the outage capacity.

2.2 The Gallager Bound
For fading channels, the standard metric to characterize the performance of the link
is the outage capacity [62], which corresponds to the throughput for a fixed outage
probability. However, the outage capacity corresponds to infinitely long codewords. To
deal with the realistic case of finite length codewords, Gallager [26] proposed a simple
yet effective bound to the probability of error, as a function of rate and codeword length
T . In its original version, as well as in more recent variations [69] this bound focused on
single antenna links. There has been a number of extensions of the Gallager bound. For
example, in [72] the Gallager’s random coding error exponent was derived for MIMO
Rayleigh block-fading channels, however, the expressions, while valid for all antenna
sizes, are quite cumbersome to compute and analyze for any reasonably sized antenna
array. In [88,90] expressions for Gallager’s exponent were derived for space-time-block-
coding (STBC) MIMO channels for non-Rayleigh fading models. However, STBC
reception effectively corresponds to a single antenna link with increased diversity.
More recently, optimal bounds of the error probability for large but finite codewords

have been established for single-link communications [32,64]. These results are of a
central–limit–theoretic nature, in that they are valid for large blocklengths with the
rate converging to the ergodic rate at a fixed error probability. Similar results were
obtained for MIMO systems in [37], where the number of antennas also goes to infinity
at a fixed ratio with T . In contrast to the Gallager bound this approach does not
capture the tails of the error probability, i.e. when the rate deviation per antenna
from the ergodic rate is finite.
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Gallager Bound Calculation for SISO Channel
Let us remind ourselves the discrete memoryless channel (DMC) depicted in Fig.2.1.
The input of the channel is a random variable X who selects its value from a discrete
limited set X whose cardinality is the number of the point in the used constellation.
In an ideal channel the output is equal to the input but since in real life channels the
input is corrupted by noise, the output can be different from the input with a given
probability. All these probabilities P (Y = yi|X = xi) are called transition probabilities.
Thus, for the Maximum Likelihood (ML) decoding for fixed codes, the error prob-

ability is upper bounded by

Pe|m ≤
∑
y
pN(y|xm)

(∑
m′ ̸=m

(
pN(y|xm′

)

pN(y|xm)

)λ
)ρ

λ, ρ ≥ 0, (2.25)

where Pe|m is the block error probability conditioned on the transmitted length-N code
word xm (m = 1, 2, . . . ,M), y is the observation vector (N components) and pN(y|x)
is the channel’s transition probability measure for a block of length N .
For the calculation of the homonym bound, Gallager assumed codewords selected

independently by a distribution µN(x). By applying the Jensen inequality E[xρ] ≤ (E[x])ρ
for (0 < ρ < 1) and setting λ = 1

1+ρ
, the Gallager random coding bound results in

Pe ≤ (M − 1)ρ
∑
y

(∑
x
µN(x)pN(y|x)

1
1+ρ

)1+ρ

, 0 ≤ ρ ≤ 1, (2.26)

where Pe is the average ML decoding error probability and M is the number of code-
words. For a momoryless channel it is

pN(y|x) =
N∏
l=1

p(yl|xl), (2.27)

and the corresponding input distribution is

µN(x) =
N∏
l=1

µ(xl). (2.28)

By setting the code rate

R =
logM
N

, (2.29)

and

E(R, µ) = max
0≤ρ≤1

(E0(ρ, µ)− ρR), (2.30)
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with

E0(ρ, µ) = − log

∑
y

(∑
x

µ(x)p(y|x)
1

1+ρ

)1+ρ
 , (2.31)

the Gallager random coding bound reads
Pe ≤ e−NE(R,µ). (2.32)

Sphere-Packing Bound [70]
A fixed composition code over a k-alphabet has the property that the number of
occurrences of the k symbols within a codeword is the same for each codeword. Let C
be a fixed composition code of M codewords and block length N and its transmission
takes place over a DMC. Assume that the DMC is specified by the set of transition
probabilities P (j|k) where k ∈ {1, . . . , K} and j ∈ {1, . . . , J} designate the channel
input and output alphabets respectively. Assume that the code C forms a set of M
codewords of length N and consider an arbitrary list decoder where the size of the list
is limited to L. Then the maximal error probability satisfies

Pe,max ≥ e
−N

(
Esp(R− log 4

N
−ϵ)+

√
8
N
log

(
e√

Pmin

)
+ log 4

N

)
, (2.33)

where R =
log(M

L )
N

is the code rate, Pmin designates the smallest non-zero transition
probability, the parameter ϵ is an arbitrarily small positive number, and the function
Esp is given by

Esp(R) = sup
ρ>0

(E0(ρ)− ρR) (2.34)

E0(ρ) = max
µ

E0(ρ,µ) (2.35)

E0(ρ,µ) = − log

 J∑
j=1

(
K∑
k=1

µkP (j|k)
1

1+ρ

)1+ρ
 . (2.36)

The maximum in the RHS of (2.35) is taken over all probability vectors µ = (µ1, . . . , µK),
i.e. over all µ with K non-negative components summing to 1.

Gallager Exponent with Fixed Power Constraints
Let X denote the input space to a DMC and let f(x) be a real-valued function on the
input letters. We impose the constraint that E{f(x)} ≤ E , where E is a fixed value.
For example, by choosing f(x) = x2 then we are describing an energy constraint. From
a coding point of view, we can write the constraint as a demand that each codeword
x = (x1, . . . , xN) satisfies

N∑
n=1

f(xn) ≤ NE . (2.37)
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That way, we will construct an ensemble of codes in which each codeword satisfies the
equation above. Denoting P (j|k) the transition probabilities for a DMC with input
alphabet 0, . . . , K−1 and output alphabet 0, . . . , J−1, and µ(k) the input distribution,
then ∑

k

µ(k)f(k) ≤ E . (2.38)

Further, let µN(x) be the probability distribution of N channel inputs given by

µN(x) = c−1ϕ(x)
N∏

n=1

µ(xn), (2.39)

where

ϕ(x) =
{

1; for NE − δ <
∑

n f(xn) ≤ NE
0; otherwise

(2.40)

c =
∑
x
ϕ(x)

N∏
n=1

µ(Xn) (2.41)

and δ is an arbitrary positive number. Finally, consider an ensemble of codes with M
codewords of block length N in which the codewords are independently chosen with
joint pdf µN(x), PN the joint pdf of the transition probabilities, then the average error
probability for each message, 1 ≤ m ≤M over the ensemble of codes, is upper bounded
for all ρ, 0 ≤ ρ ≤ 1 by

Pe|m ≤ (M − 1)ρ
∑
y

[∑
x
µN(x)PN(y|x)1/(1+ρ)

]1+ρ

. (2.42)

By choosing an appropriate upper bound for ϕ(x) we can write

Pe|m ≤
(
erδ

c

)1+ρ

e−N(E0(ρ,µ,r)−ρR) (2.43)

E0(ρ,µ, r) = − log
∑
j

[∑
k

µ(k)er(f(k)−E)P (j|k)1/(1+ρ)

]1+ρ

(2.44)

where r, δ ≥ 0 are arbitrary parameters and M =
⌈
eNR

⌉
.

2.3 Random Matrix Theory (RMT)
The origins of RMT can be found back in 1928 in the work of Wishart [87] and James
(1954-1964) [40] but it was Wigner in ’50s who used RMT in Nuclear physics and
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showed how helpful can be this mathematical tool. In particular, Wigner proposed
that the fluctuations in positions of compound nuclei resonances can be described in
terms of statistical properties of eigenvalues of very large symmetric matrices with
i.i.d. entries.
In RMT we calculate the statistics of the eigenvalue of matrices whose entries are

drawn randomly from various probability distributions. There are three classical prob-
ability distributions (random matrix ensembles): The Gaussian Orthogonal Ensemble
(GOE), the Gaussian Symplectic Ensemble (GSE) and the Gaussian Unitary Ensemble
(GUE). In summary, the properties of each ensemble are

• GOE: The Hamiltonian matrix H of the system is a Hermitian symmetric ran-
dom matrix with its elements Hjk, j ≥ k statistically independent. The joint
probability function of the eigenvalues is invariant under all real orthogonal trans-
formations of H, thus modeling Hamiltonians with time-reversal symmetry.

• GUE: The Hamiltonian matrix H of the system is a Hermitian random matrix,
with its diagonal elements Hjj and the real and imaginary parts of its off-diagonal
elements Hjk, j > k, are statistically independent. Moreover, the The joint prob-
ability function of the eigenvalues is invariant under all unitary transformations
of H, thus modeling Hamiltonians without time-revearsal symmetry.

• GSE: The Hamiltonian matrix H of the system is a Hermitian self-dual random
matrix, with its diagonal elements Hjj and the four quaternionic components
of its off-diagonal elements Hjk, j > k, are statistically independent and the
joint probability function of the eigenvalues is invariant under all symplectic
transformations of H, thus modeling Hamiltonians with time-reversal symmetry
but no rotational symmetry.

Marčenko-Pastur Law
The Marčenko-Pastur law describes the asymptotic behavior of singular values of large
rectangular matrices, see Fig. 2.2.

Theorem 2.1. If X is a M × N random matrix which entries are i.i.d. random
variables with zero mean and variance σ2 < ∞, then the empirical distribution of
eigenvalues of XX† converges almost surely as M,N → ∞ with M

N
→ β:

f(x) =

(
1− 1

β

)+

δ(x) +

√
(x− a0)+(b0 − x)+

2πβx
, (2.45)

where (z)+ = max(0, z) and

a0 = (1−
√
β)2 b0 = (1 +

√
β)2. (2.46)
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Figure 2.2: Marčenko-Pastur density function

Wishart Matrices
Assume a Gaussian realM×N matrix X with i.i.d. columns, each with zero mean and
covariance Σ, and N ≥M . The real matrixXXT is called Wishart and its distribution
is indicated as WM(N,Σ). Denoting Γm(a) = πm(m−1)/4

∏m
i=1 Γ(a− (i− 1)/2), the joint

pdf of the ordered eigenvalues λi ≥ 0, i ∈ {1, . . . ,M} of the real Wishart matrix with
WM(N, I) is

f(x1, . . . , xM) = K
M∏
i=1

e−
xi
2 x

N−M−1
2

i

M∏
i<j

(xi − xj), (2.47)

where K is a normalizing constant given by

K =
π

M2

2

2
MN
2 ΓM(N

2
)ΓM(M

2
)

(2.48)

The marginal pdf of the unordered eigenvalues z of the Wishart matrix 1
N
XX† is

gM,N(zN) =
1

β

M−1∑
k=0

k!

(k +N −M)!
[LN−M

k (zN)]2(zN)N−Me−zN , (2.49)

where Ln
m(x) is the Laguerre polynomials. In Fig. 2.3 we see that as we increase the

dimensions of the system, the marginal pdf converges to the Marčenko-Pastur limit.

Haar Measure
In the case of no time reversal symmetry, the unitary matrices form the group U(N).
We define the Haar measure as the unique uniform measure on U(N). In this work



2.3 Random Matrix Theory (RMT) 23

.....
0
.

0.5
.

1
.

1.5
.

2
.

2.5
.

3
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

Eigenvalue

..

. ..Marčenko-Pastur

. ..M = 1

. ..M = 4
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we are interested in the left-translation-invariant property of a Haar measure which
states that for a countably additive, nontrivial measure µ on the Borel subsets of a
locally compact topological group G it is

µ(gS) = µ(S), (2.50)

for every g ∈ G and all Borel sets S ⊂ G.

Random Matrices and Telecommunications
A typical telecommunications channel, both wireless and optical, is described by the
equation

y = Hx+ n, (2.51)

where x is the K-dimensional input vector, y is the N -dimensional output vector, n is
the additive Gaussian noise, which for memoryless channel, the components are inde-
pendent complex Gaussian random variables with the same variance σ2

2
, i.e. circularly

distributed, and H is the N ×K complex random matrix describing the channel.
The empirical cumulative distribution function of the eigenvalues of an N × N

Hermitian matrix A is defined as

f(x) =
1

N

N∑
i=1

Θ(λi(A) ≤ x), (2.52)



24 2 Telecommunications and Mathematical Background

where λ1(A), . . . , λN(A) are the eigenvalues of A and Θ(x) is the indicator (step)
function.
In (2.51), if the channel is known by the receiver and the input x is Gaussian with

independent and identically distributed entries, the normalized mutual information
conditioned on H is, as we saw in the previous section,

I(x;y|H) = log det
(
I+ ρHH†)

=
N∑
i=1

log
[
1 + ρλi(HH†)

]
= N

∫ ∞

0

log [1 + ρf(x)] dx, (2.53)

where ρ is the transmitted signal-to-noise ratio and f(x) the pdf of the eigenvalues.

Multi-Antenna Channel Example [81]
Let us consider a singe-user channel with nT transmitting antennas and nR receiving.
Thus, for frequency-flat fading assumption, the entries of H represent the fading coef-
ficients between each nTi and each nRi, typically normalized, zero-mean Gaussian such
that

E
[
tr
{
HH†}] = nR. (2.54)

If all antennas are co-polarized the entries of H are identically distributed and the
resulting variance is 1

nT
. Hence, the signals transmitted by different antennas can be

correlated. Normalized by its energy per dimension, the input covariance is

Rxx = E[xx†], (2.55)

and normalized, so that E[tr{Rxx}] = nT . Furthermore, we can decompose the input
covariance in its eigenvectors: Rxx = VPV†, where each eigenvalue represents the
normalized power allocated to the corresponding signaling eigenvector.
In order to achieve capacity, Rxx must be properly determined depending on the

channel state information (CSI), which is available to the transmitter. So, in any case
of full, partial or zero CSI knowledge respectively, the capacity per receive antenna is
given by the maximum over Rxx of the Shannon transform of the averaged empirical
distribution of HRxxH† (VHRxxH†):

C(ρ) = max
Rxx:trRxx=nT

VHRxxH†(ρ). (2.56)

2.4 The Replica Method
The replica method is a very useful and effective mathematical tool, although yet,
there is no rigorous mathematical proof. The method originates itself from statistical
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physics, where the partition function Z depends also on some random parameters,
hence Z (or logZ) becomes a random variable too. Moreover, in the thermodynamic
limit of N → ∞ , 1

N
logZ a.s.−−→ 1

N
⟨logZ⟩ (self-averaging property). Therefore, if we

are examining a system with many particles, the free energy of any particle, for a
typical realization of the random parameters that apply on the system, becomes the
computation of ⟨logZ⟩. But, in general that computation is very hard. Exactly at this
point, replica method shows its usefulness. Because the partition function Z is a sum,
we do not have many things to say for ⟨logZ⟩. But, thanks to the simple relation

⟨logZ⟩ = lim
n→0

⟨Zn⟩ − 1

n
= lim

n→0

log ⟨Zn⟩
n

(2.57)

we can interchange the expected value of log-sum to the expected value of integer
moments. To do this, we have to use the trick of doing the aforementioned computation
of a general, positive integer n and acquire the expression as function of integer n. But
since our system consists of many particles, we can assume that the expression is also
valid for n being a real variable. Finally, in order to compute the free-energy of any
particle, we take the limit n→ 0.
In modern telecommunications the goal for a successful demodulation at the re-

ceiver is to minimize the energy function of a given received signal. This is an opti-
mization problem which can be solved by using Lagrangian form: the free energy is
the object to be minimized and the system temperature is the Lagrange multiplier.
In most cases the function in the exponent is multivariate, therefore the replica

method dictates the computation of the extremum of a multivariate function for an
arbitrary number of arguments and unless we exploit some symmetries of the optimiza-
tion problem, this is an impossible task. This replica symmetry means that one can
safely assume that the optimization is feasible if all variables take on the same value,
thus reducing the multivariate problem to a single variate one. One way to circumvent
the problem of the existence of a replica symmetry is to assume there is one and prove
that is a correct, thus sufficient solution. In many cases, we reach true solutions which
show physical impracticality, e.g. negative entropy. This is called replica symmetry
breaking and there has been an extensive research in literature on this [22, 56, 60].
For the rest of this work, however, replica symmetry breaking is a too advanced issue.

Example - SISO Channel Capacity
In order to better understand the usage and the usefulness of the replica method in
the telecommunications, we are going to provide next with an example. Let us remind
ourselves the SISO noisy channel (2.1), where the mutual information is given by

I(Y ;X) = H(Y |H)−H(Y |X,H) (2.58)
where X, Y and H are the random variables for the input, output and channel respec-
tively. From the definition of the entropy we can write

H(Y |X,H) = −
∫ [∫

p(y|x, h) log p(y|x, h)dy
]
p(x)dxdh (2.59)
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H(Y ) = −
∫
p(y) log p(y)dy (2.60)

Using the replica trick we can write for the expectation of the entropy

E{H(Y )} = − lim
n→0

∂

∂n
logE

{∫
p(y)[p(y)]ndy

}
= − lim

n→0

∂

∂n
logZn, (2.61)

and for the conditional entropy

E {H(Y |X,H)} = − lim
n→0

∂

∂n
logEy

{
n+1∏
a=1

∫∫
p(y|xa, h)p(xa)p(h)dydxa

}
. (2.62)

Further in our calculations we can use the Gaussian input and the white, zero
mean, Gaussian noise (z) assumption:

p(y|xa, h) =
1√
πσ2

z

e
− (y−xa)2

σ2
z =

1√
πσ2

z

e
− z2

σ2
z (2.63)

p(y) =
1√
πσ2

y

e
− y2

σ2
y . (2.64)

But we can reduce the computations if we remind ourselves (2.7). Thus,

E{H(Y )} = − lim
n→0

∂

∂n
logE

{∫ (
e
− y2

σ2
y

)n+1

dy
}

= − lim
n→0

∂

∂n
log 1√

n+ 1

(
1

πσ2
y

)n

=
1

2
+ log

(
π

σ2
y

)
(2.65)

and because of (2.10)

E{H(Y )} =
1

2
+ log

(
π

σ2
x|h|2 + σ2

z

)
; (2.66)

same way

E{H(Z)} =
1

2
+ log

(
π

σ2
z

)
(2.67)

and finally we end up at the well-known equation for the capacity

C = E{H(Y )} − E{H(Z)} = log
(
1 +

σ2
x

σ2
z

|h|2
)
. (2.68)



2.5 The Saddle Point Approximation- Method of Steepest Descend 27

2.5 The Saddle Point Approximation- Method of
Steepest Descend

Let us consider an integral in the complex plane of the form

I(N) =

∫ b

a

g(z)eNf(z)dz, (2.69)

where f is an analytic complex function.
We expect that the integral to be dominated by the highest stationary points of f .

To better understand this, let us write f = u + iv and thus we expect the integral to
be dominated by points where u is maximized and also we require that v is stationary
so that the oscillating contributions do not cancel. Hence, f ′(z) = 0.
Actually, the only extrema possible for f are saddle points. To see this, recall that

for f = u + iv the Cauchy-Riemann conditions imply that both u, v satisfy Laplace’s
equation i.e.,

∂2u

∂x2
+
∂2u

∂y2
= 0. (2.70)

In other words, at a stationary point, if e.g., ∂2u
∂x2 > 0 then ∂2u

∂y2
< 0. We call these

stationary points as saddle points, see Fig. 2.4.

Figure 2.4: Graphical explanation of a saddle point.

Assume z0 the highest saddle point and using Taylor expansion near z0 we can
write

f(z) ≃ f(z0) +
1

2
f ′′(z0)(z − z0)

2, (2.71)

where we took into account that f ′(z0) = 0. Thus, I(N) becomes

I(N) ≃ g(z0)e
Nf(z0)

∫
e

1
2
N |f ′′(z0)|eiθr2e2iϕeiϕdr. (2.72)

Further, we may choose ϕ = π−θ
2
and we can re-write

I(N) ≃ g(z0)e
Nf(z0)eiϕ

∫
e−

1
2
N |f ′′(z0)|r2dr. (2.73)
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Extending the limits of the above integral to infinity and performing the gaussian
integral we get

I(N) ≃ g(z0)e
Nf(z0)eiϕ

(
2π

N |f ′′(z0)|

)1/2

. (2.74)

The equation above is called Saddle Point Approximation. The path we chose to make
the integration gaussian i.e., ϕ = π−θ

2
corresponds to the path that descends most

steeply from the saddle point, hence the name Steepest Descend.

2.6 Constrained Optimization and Lagrange
Multipliers

Nowadays, there is an increasing interest in optimization problems, mainly driven
by new found applications such as machine learning and artificial intelligence. An
optimization problem is related to minimizing or maximizing a function, e.g. error
function and likelihood respectively with respect to some variable x. If there are
constraints in the possible values of x, then the Lagrange Multipliers method can
restrict the search of solutions in the feasible set of values of x. Hence,

x∗ = argmin
x

f(x)

subject to hi(x) =0, ∀i = 1, . . . ,m. (2.75)

The Lagrange Multipliers method dictates the insertion of both cost function and
constraints in a single minimization problem and multiply each constraint by a factor
of λi. Hence, the optimization problem becomes

x∗ = argmin
x

L(x, λ) = argmin
x

f(x) +
m∑
i=1

λihi(x), (2.76)

where L is the Lagrangian and λ the Lagrange multiplier. The search for the extrema
in the last equation leads us to the following optimality condition

∇xL(x, λ) = ∇xf(x) +
∑
i

λi∇xhi(x) = 0. (2.77)

Finally, since λi are “dummy” variables and irrelevant to the initial problem, we can
set

∂L(x, λ)
∂λi

= 0, (2.78)

which makes the problem determined and thus solvable. A simple explanation of the
method of Lagrange Multipliers can be seen in Fig. 2.5. The problem is to minimize
f(x, y) subject to g(x, y) = c. The necessary conditions is ∇f = λ∇g. Treat ∇f as the
direction of the movement of f and ∇g as the normal vector of the curve g(x, y) = c.
One can observe the optimal value is attained when ∇f is parallel to ∇g.
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Figure 2.5: How Lagrange Multipliers Method works.

2.7 The Large Deviation (LD) Method
The LD method comes in hand when we have to deal with the probabilities of rare
events that are exponentially small as a function of some parameter [79]. In other
words, the LD method gives a description of the asymptotic behavior of remote tails
of sequences of probability distributions. For example, assume a sum of real random
variables

SN =
1

N

N∑
i=1

Xi. (2.79)

This is also called sample mean and we want to compute the pdf of SN in the case
where the random variables are i.i.d.

p(X1, . . . , XN) =
N∏
i=1

p(Xi). (2.80)

In case of Gaussian pdf then

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , x ∈ R (2.81)

where µ = E[X] is the mean of X and σ2 = E[(X − µ)2] is the variance. In order to
compute the pdf of SN , we sum the pdf of all the values (realizations x1, . . . , xN ∈ RN)
of X1, . . . , XN such that SN = s, using the Dirac’s delta funtion δ(x).

pSN
=

∫
R
dx1 . . .

∫
R
dxNδ(

N∑
i=1

xi −Ns)p(x1, . . . , xN). (2.82)
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From (2.82) we can calculate the explicit expression for pSN
, ı.e. by using the method

of generating functions :

pSN
≈ e−NI(s), (2.83)

where I(s) = (s−µ)2

2σ2 , s ∈ R. pSN
is an exponentially decaying function of N .

So, we observe that I(s) controls the exponential decay rate of pSN
to zero. It is

I(s) ≥ 0 and only I(s) = 0 when s = µ. Therefore, as N → 0, the normalized SN

concentrates more and more around s = µ, e.g. SN converges in probability.

The LD Principle
The rigorous mathematical definition of the LD principle is too technical for this
present work, as it involves concepts of topology and measure theory [18]. Therefore,
for simplicity we will say that a random variable Sn or its pdf p(Sn) satisfies the LD
principle if the following limit exists [79]

lim
N→∞

(
− 1

N
log pSN

)
= I(s) (2.84)

where I(s) is called rate function. Because pSN
is dominated for a large N by a decaying

exponential, the exact pdf of SN can be written as

pSN
= e−NI(s)+o(N) (2.85)

where o(N) is for any correction term that is sub-linear in N . Taking the LD limit of
the last equation,

lim
N→∞

(
− 1

N
log pSN

)
= I(s)− lim

N→∞

(
−o(N)

N

)
= I(s). (2.86)

In other words, the LD limit is the one that we need to retain the dominant exponential
term in pSN

, while we can discard all the other terms.

Varadhan’s Theorem
In the LD method the Varadhan’s theorem is of big importance. Let us assume the
functional expectation of the form

WN [f ] = E{eNf(SN )} =

∫
R
pSN

(s)eNf(s)ds, (2.87)

where f is some function of the random variable SN . Assume also that SN satisfies
the LD principle with rate function I(s):

WN [f ] ≈
∫
R
eN [f(s)−I(s)]ds. (2.88)
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We have omitted all the sub-exponential correction terms in N . The last integral can
be identified as the Laplace integral and it is dominated for large N by its largest
integrand when it is unique. Thus, we have

WN [f ] ≈ eN sups[f(s)−I(s)]. (2.89)

If you look closely to the last equation, you can identify the saddle point approximation
that we saw in a previous section. So, for a functional of the form

λ[f ] = lim
N→∞

1

N
logWN(f), (2.90)

we can get

λ[f ] = sup
s∈R

{f(s)− I(s)}. (2.91)

(2.91) is the well known Varadhan’s Theorem [82], [79]. This theorem is valid not just
for i.i.d. random variables but also for random vectors and even for random functions.

Small and Large Deviations
We can get a lot of information about the pdf of a random variable, just by looking at
the LD principle of it. For example we know that the p(SN) concentrates on certain
point corresponding to the zeros of the rate function I(s). These points correspond to
the most probable values of SN as N → ∞ and can be shown that they are related to
the law of large numbers (see Sec. 3.5.7 of [79]).
Many times we need to know not only that SN converges in probability to some

values but also the probability these values are not away but close to the typical ones.
Let us consider such a typical value s⋆ and we can expand I(s) according to Taylor
series around that point:

I(s) = I(s⋆) + I ′(s⋆)(s− s⋆) +
I ′′(s⋆)

2
(s− s⋆)2 + . . . (2.92)

But, since s⋆ corresponds to a zero of I(s), the first two terms in (2.92) are also zero.
In other words, the small deviations of SN around the typical values are Gaussian
distributed :

pSN
(s) ≈ e−NI′′(s⋆)(s−s⋆)2/2. (2.93)

Therefore, we can identify inside the LD theory, the presence of the Central Limit
theorem and we get information not only about the small deviations of SN , but also
about the large deviations far away from its typical values.
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LD Example
In order to understand better the LD theory, let us consider a simple example. Suppose
we have a biased coin, such that for each toss the probability optaining “heads” is
“p”. If we assign the value 1 to the outcome “heads” (each outcome is denoted by
Xi, i = 1, 2, . . .) and 0 to the outcome “tails”, then the outcome after N trials is

MN =
1

N

N∑
i=1

Xi. (2.94)

As N → ∞, it is expected that MN → p. However, for large enough N , we want to
calculate the probability thatMN differs from p by at least x, where x is a pre-assigned
fraction, less than unity. By using the LD method, we can safely calculate how the
tail of the probability distribution of Xi behaves, as long as Xi are bounded and i.i.d.
random variables, i.e.,

P (MN > x) ≈ e−NI(x) for x > p

P (MN < x) ≈ e−NI(x) for x < p. (2.95)

Further, we can use Varadhan’s theorem that ensures that the sequence MN satisfies a
large deviation principle, i.e., P (MN ≈ x) ∼ e−NI(x) and further using the Chernoff’s
bound for a random variable X and for every t > 0

Pr(X ≥ a) = Pr(etX ≥ eta) ≤ E{etX}
eta

(2.96)

and hence for the Bernoulli distribution under consideration

E{etXi} = 1 + p(et − 1) ≤ ep(e
t−1); (2.97)

and minimizing w.r.t t, we have for the biased coin toss example

I(x) = x log x
p
+ (1− x) log 1− x

1− p
. (2.98)



CHAPTER 3
The Optical Channel

3.1 The Scattering Matrix Approach
We consider a single-segment N -channel lossless optical fiber system, with Nt ≤ N
transmitting channels excited and Nr ≤ N receiving channels coherently excited in the
input (left) and output (right) side of the fiber, as seen in Figure 3.1. The propagation
through the fiber may be analyzed through its 2N × 2N scattering matrix given by
[4,86]

S =

[
Rℓ Tℓ

Tr Rr

]
. (3.1)

This matrix “connects” the N left (ℓ) with the N right (r) modes of the fiber. The
kth column (for k = 1, . . . , N) of Rℓ correspond to the reflection coefficients at the
left of the N modes of the fiber when a unit amplitude signal is inserted from the
kth left input of the fiber. The same input signal results to transmission through the
fiber, with transmission coefficients at the right hand of the fiber given by the kth
column of Tr. In an analogous fashion the kth columns of Rr and Tℓ correspond to
the right-reflection and left-transmission coefficients when a unit amplitude signal is
inserted from the kth right input of the fiber. The input signal is represented by an 2N
dimensional vector, in which the first N entries correspond to the amplitudes of the
left-incoming signal and the remaining entries to the amplitudes of the right-incoming
signal.
We now assume that the signal propagates through the above N channels. In this

case, for any input vin the total input power into the fiber is equal to the total output
power, i.e.

v†invin = v†outvout = v†inS†Svin (3.2)

since vout = Svin. As a result, the matrix S has to be unitary, i.e. S†S = I2N .

NN

Figure 3.1: Illustration of crosstalk between spatial channels in optical fiber with input
power vin and output vout = Svin.
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A second important property of the scattering matrix relates to its time-reversal
symmetry. It is well known that electromagnetic propagation in the absence of exter-
nal magnetic fields is symmetric under time reversal. In this context, time reversal
corresponds to a change in the direction of propagation and time. For example, un-
der time-reversal the amplitude of a propagating plane-wave ψ(x, t) = exp[i(kx−ωt)]
changes both time t → −t and propagation direction k → −k. Hence, time-reversal
amounts to phase conjugation [39]. Therefore, if propagation through the optical fiber
is to be time-reversal invariant, feeding the system with the time-reversed version of
the output should produce the original version of the input. This implies thatRℓ = Rt

ℓ,
Rr = RT

r and Tℓ = TTr .
As a result, we are left with three different matrices, namely Rℓ, Rr and Tℓ = Tt

r ≡
T.These matrices are not independent, since they share the same singular values, since
R†

ℓRℓ+T†T = R†
rRr+T†T = IN .It is convenient to define the matrix∆ as the diagonal

matrix with the reflection eigenvalues, ı.e. ∆ = R†
ℓRℓ = R†

rRr. It has been shown
elsewhere [4,53] that S can be expressed in terms of ∆ by means of a so-called polar
decomposition as follows

S =

[
W 0
0 V

][
−∆1/2 (IN −∆)1/2

(IN −∆)1/2 ∆1/2

][
WT 0
0 VT

]
(3.3)

As a result, the information of the scattering matrix S is encoded in the matrix ∆ and
the unitary matricesW and V.
We now discuss two important properties of the scattering matrix as seen from

experimental data in the literature, which will help describe it better. We start with
the strength of backscattering, ı.e. reflection in optical fibers. This process is typically
due to localized imperfections in the fiber and is sometimes called Rayleigh scattering.
The strength of the reflected light is typically proportional to the product of the density
of such imperfections and the length of the fiber [31], ı.e. proportional to the average
number of such imperfections over the fiber length travelled. Due to the high quality of
fiber production techniques this imperfection density is extremely small. Hence, in [28]
single core fibers have reflection coefficients approximately equal to -120dB/mm, which
amounts to -30dB per 1000km. Similarly, in [54] a 25km single mode fiber has Rayleigh
backscattered power roughly -30dB. These very low reflected powers appear in single
mode fibers, however, we conjecture that they should be quite low for multi-core fibers
described below. As a result of this low backscattering amplitudes we may assume
that the reflection in the fiber may discarded, and hence ∆ ≈ 0. In this limit the
transmission matrix T can be expressed as T = WVT, which is thus random Haar
distributed.
A second important property of the scattering matrix in a multicore/multimode

fiber is the considerable mixing between core transmissions. For example, in a 60km
three coupled core fiber analyzed in [57], the crosstalk is so strong that light injected
into one core is equally distributed across all cores in the output. Considerable crosstalk
has been seen in other cases, e.g. in [61] where crosstalk of -25dB/km was observed.
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Even if this effect is smaller that in [57] above due to the different design of the
cores (it results to -8dB coupling for 60km), it highlights the relevance and ubiquitous
nature of crosstalk in multicore fibers, when they have their cores placed close to each
other. It should be pointed out that the difference in magnitude of backscattering
and crosstalk can be attributed to different mechanisms being responsible for the two
effects. In the backscattering case, as discussed above, the effect is due to localized
scattering [28], while in the latter the mechanism is scattering among the core modes
due their proximity, or due to bending [21].
In summary, we consider fibers with negligible backscattering and strong mixing

between core modes. We assume this mixing to be random over different frequency
subbands, due to strong delay spread. For example, in [67] 10nsec delay spreads
were measured over 700km transmission over a 6 mode fiber using 50GHz sub-band
widths. Hence the transmission matrix T will be modelled as a Haar random matrix of
dimension N×N . Without loss of generality we assume Nt ≤ N transmitting channels
and Nr ≤ N receiving channels, and therefore we only consider a submatrix of the full
transmission matrix T, which we denote by U, since not all transmitting or receiving
channels may be available to a given link. For simplicity we assume that this is the
upper left corner of T. We should emphasize that the remaining N − max(Nt, Nr)
“untapped” channels in T can be used to model loss to the environment in the fiber
propagation [73]. This is done in an analogous way to wireless communications, where
the energy transmitted from an antenna operating at wavelength λ is spread away over
a large number of modes (e.g. plane waves) and only a tiny fraction thereof O(λ2/R2)
is received at a receiving antenna at a distance R away. Indeed, in the limit of large
N ≫ Nt, Nr the channel will converge to a Gaussian distributed channel, [73] similar
to the case of open space wireless propagation, where the signal loss is significant. As
a result, the corresponding MIMO channel for this system reads

y = Ux+ z, (3.4)

with coherent detection and channel state information only at the receiver [24,78]. x,
y and z are the Nt × 1 input, the Nr × 1 output signal vectors and the Nr × 1 unit
variance noise vector, respectively, all assumed for simplicity to be complex Gaussian.
This assumption is also based on the optical MIMO modulation scheme, which uses
MZM (Mach-Zehnder Modulator) [47] to modulate a continuous wave (CW) laser
to generate the digital signal, which is then, transmitted through the fiber. This
modulation is achieved by equally splitting the incoming optical signal and enforcing a
time delay (phase shift) in one path, before recombining it. Therefore the signal output
from an MZM is complex, which for simplicity we model as a complex Gaussian. We
also assume no mode-dependent loss. As a result, the mutual information can be
expressed as

IN(U) =
1

Nt

log det(I + ρU†U) (3.5)
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=
1

Nt

Nt∑
k=1

log(1 + ρλk)

=

∫ 1

0

p(x)dx log(1 + ρx).

In the last line p(x) is the spectral density of U†U defined as

p(x) =
1

Nt

∑
k

δ(x− λk), (3.6)

and “log” is the natural logarithm, ρ is the average total signal-to-noise ratio, λk are the
eigenvalues of the matrix U†U and we assume for concreteness Nt ≤ Nr. It is useful
to define β = Nr/Nt > 1, N0 = N − Nt − Nr and n0 = N0/Nt ≥ 0. If N0 < 0, [15]
showed that we may recover the above form by replacing Nt → N −Nr, Nr → N −Nt

and N0 → −N0 and IN → IN + n0 log(1 + ρ). It should be emphasized that the above
mutual information is used as a performance metric of the channel.

3.2 The Hamiltonian Approach
The optical fiber may be viewed as a cavity where optical power may enter and exit
from both ends. The output power vout is related to the input power vin through
vout = Svin (see Fig. 3.1) with the 2N × 2N scattering matrix S given by (3.1)
The fiber exhibits random distributed crosstalk between modes or cores. We assume

this mixing to be random over different frequency bands, due to strong delay spread.
The situation is analogous to that of a chaotic cavity, which randomly mixes the cavity
states. The analytic expression of the 2N × 2N scattering matrix for a chaotic cavity
reads [4]:

S = I− 2πiW†(H+ iπWW†)−1W. (3.7)

Here H is the 2N × 2N channel Hamiltonian andW is a 2N × 2N matrix containing
the coupling constants of the fiber to the outside world. The dimension is 2N × 2N
as there are N incoming states from the left and N incoming states from the right,
while inside the fiber there are N states propagating from left to right and N states
propagating from right to left. So in case of perfect (lossless) leads,W ∝ I2N .
The channel Hamiltonian is

H =

[
0N Hr→ℓ

Hℓ→r 0N

]
. (3.8)

The offdiagonal sub-matrices vanish due to absence of reflection. H(ℓ,r→r,ℓ)N are N×N
Hermitian. Because Hr→ℓ = H†

ℓ→r we can write for simplicity H ≡ Hℓ→r. (3.7) then
becomes

S = I2N − 2απiW† (H+ iαπWW†)−1W. (3.9)
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But, as WW† = αI2N ≪ 1, for simplification it is H + iπWW† ≈ H and finally we
have

S = I2N − 2απiW†H−1W. (3.10)

To model the MDL we add the 2N × 2N loss matrix Γ [25]

Γ =

[
0N Γr→ℓ

Γℓ→r 0N

]
. (3.11)

Just as for H we have Γ ≡ Γℓ→r. For simplicity we can assume that Γ is a diagonal
matrix.

S = I− 2απiW† (H+ iΓ)−1W (3.12)

or

S = I− 2απiW† (H+ iΓ)
(
H2 + Γ2

)−1W. (3.13)

As we saw in the previous section, we are interested in the complex Nt × Nr sub-
matrix U (channel matrix) of the 2N × 2N matrix S. To extract U we use two
diagonal 2N × 2N matrices Adiag and Bdiag, which can be seen in Appendix A with
AdiagBdiag = 0.

U = AdiagSBdiag (3.14)

and

U† = B†
diagS†A†

diag, (3.15)

which yields

U†U = B†
diagS†A†

diagAdiagSBdiag, (3.16)

so that we can write,

U†U = 2αiπ (H− iΓ)
(
H2 + Γ2

)−1
(
−2αiπ (H+ iΓ)

(
H2 + Γ2

)−1
)

= 4α2π2
(
H2 + Γ2

)−1
. (3.17)

To incorporate the idea of a fading channel subject to crosstalk in our analysis, we
assume that the channel H consists of a random part G, plus a deterministic part H0.
Thus the final equation becomes

U†U = 4α2π2
(
(H0 + γG)2 + Γ2

)−1
. (3.18)

Here γ is a parameter controlling the randomness. H0 is a diagonal matrix and corre-
sponds to the line-of-sight component inside the fiber while the Gaussian distributed
matrix G describes the crosstalk.
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CHAPTER 4
Crosstalking Existence

4.1 Existence of Crosstalking in Modern Optical
MIMO

In order to feed the ever hungry demand for uninterrupted and broadband communi-
cations, optical backhaul networks are being deployed but even these are not sufficient,
reaching the limits of the “classical” - Single Mode Fiber (SMF) communications, which
forces us to investigate new ways of better exploiting the corresponding bandwidth.
For that, Multi Core Fibers (MCF) or Few Mode Fibers (FMF) have been developed,
which along with the Multi Mode Fibers (MMF), allow the light to propagate using
spatial division, thus increasing considerably the available channel capacity. An MMF,
contrary to SMF, has a larger core diameter, which exceeds the wavelength of the prop-
agating light. That characteristic allows the excitation of more than one propagation
modes (see Fig. 4.1), but at the same time makes the communication system suffer
from modal dispersion [27]. Moreover, as the number of transmitters increases, the
crosstalk phenomenon occurs [35,36]: In order to fit the many different propagating
ways inside the constricted space of the fiber, the distance between these propagating
modes has been reduced to a minimum, thus inevitably, they experience crosstalking
with adjacent ones. In this chapter we will show that the crosstalking phenomenon is
present even for a 4× 4 optical MIMO system of a very short span.

Figure 4.1: Mode profiles of the lower-order fiber modes (a) LP01 (b) LP11 (c) LP21

(d) LP02

In order to show this, we conducted an experiment along with Alcatel-Lucent.
More precisely, Our system consists of a very short piece of MMF fiber between MUX
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and DeMUX. 5 modes LP01, LP11 a+b and LP21 a+b being injected in the system
(LP11 and LP21 have 2 polarizations, “a” and “b” ), while the receiver reads LP21 a+b
and processes them in parallel in a MIMO 4 × 4 adaptive (blind) equalizer driven by
Constant Modulus Algorithm-CMA [41]). Each polarization is equally stimulated. At
the receiver there are 4 equalizers, each one with 4 filters (see Fig. 4.3). Each filter
consists of 25 taps because we need to recover not only the state of the polarization
(or mode) which would be memoryless, but also to recover all the other impairments
coming from the signal (Intersymbol Interference- ISI) or from the channel (chromatic
dispersion and polarization/spatial-mode dispersion). The sequence used is 215 − 1
PRBS -Pseudo Random Binary Sequence of PDM-QPSK at a rate of 32 GBs. Each
“Equalizer” variable is the state of the equalizer at the end of the processing of an
acquisition. The scope is triggered every 5 seconds and an acquisition lasts 40ms At
the end of the processing of an acquisition we register the output of each of the 25 taps
(T/2 spaced) of the 16 equalizer filters. In Fig. 4.2 we can see a representation of our
system, where s(n) is the PRBS sequence/signal, c(t) is the channel, w(t) is the AWGN,
FSE is the Fractionally Spaced Equalizer with “equalizer” variables fk and yM(n) is the
signal after the equalizing processing. The multi-channel model of Fig. 4.4 subdivides

Figure 4.2: Schematic representation of our system

the fractionally spaced channel coefficients ck = c(k T
2
) and the discrete-time random

process wk = w(k T
2
) into even and odd counterparts, [41], so that cevenn = c2n and

coddn = c2n+1 for n = 0, 1, . . . . In an analogous way, the coefficients of the Fractionally
Spaced Equalizer (FSE), f, are partitioned as f even

n = f2n and f odd
n = f2n+1. That way,

we can create

Ce =



ceven0

ceven1 ceven0
... ceven1

cevenM−1

... . . . ceven0

cevenM−1 ceven1
...

cevenM−1


, Co =



codd0

codd1 codd0
... codd1

coddM−1

... . . . codd0

coddM−1 codd1
...

coddM−1


which are matrices of size P×N where P =M+N+1,M is the length of a counterpart
of the channel coefficients and N , analogously, is the length of a counterpart of FSE
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Figure 4.3: Block schema of the receiver

Figure 4.4: Multi-channel paradigm, subdivided into odd and even counterparts.

coefficients. The impulse response, h, of the linear system relating sn to yn can be
constructed so that

h = Cf, (4.1)

where C = [Co Ce] and fT = [fe fo]. In case of perfect equalization and Perfect Source
Recovery (PSR) it is hδ = [0, 0, . . . , 1, . . . , 0], where the non-zero coefficient is in the δth
position (0 ≤ δ ≤ P − 1). For PSR under arbitrary δ, C must be of full row rank [48].
To simplify our notation we can construct the matrix CFS of size (M +N)× 2N from
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a vector of fractionally-spaced channel coefficients cFS = [c0, c1, . . . , c2M−1]
T so as

CFS =



c0

c1 c0 0
... c1

c2M−1
... . . . c0

c2M−1 c1

0 ...
c2M−1


, (4.2)

and the full rank requirement dictates that

2N ≥M + (N − 1) ⇒ N ≥M − 1. (4.3)

Finally, the nth equalizer output can be written as

yn = sT (n)Cf+wT (n)f. (4.4)

The CM algorithm for equalization uses a cost function JCM which penalizes devi-
ations [41]. For PSK symbols sn ∈ {ej2πm/2M}, m ∈ {0, 1, . . . 2M − 1}

JCM |PSK =
P−1∑
i=0

|hi|4 + 2
P−1∑
i=0

P−1∑
m=0,m̸=i

|hi|2|hm|2 + |E{s2}|2
P−1∑
i=0

P−1∑
j=0,j ̸=i

h2i (h
∗
j)

2

+ κwσ
4
w

2N−1∑
i=0

|fi|4 + 2σ4
w

2N−1∑
i=0

2N−1∑
m=0,m̸=i

|fi|2|fm|2

+ 4σ2
w||h||22||f||22 − 2(||h||22 + σ2

w||f||22) + 1, (4.5)

where κw is the normalized kurtosis of the noise, σw is the variance of the noise and
||·||2 is the ℓ−2 norm JCM is optimized through Steepest Descend. and the generalized
equalizer tap update for complex signals is

f(k + 1) = f(k) + µ. y(k)(γ2 − |y(k)|2)︸ ︷︷ ︸
∇fJCMA=eCMA(k)

r∗(k) (4.6)

where eCMA(k) is the error signal. Equation (4.6) is written in terms of the (fractionally-
sampled) regressor vector at time n:

rn = [roddn , . . . , roddn−(N−1), r
even
n , . . . , revenn−(N−1)]

T (4.7)

the equalizer parameter vector fn at time index n, the equalizer output yn, a step-size
µ, and the squared source-modulus γ (also referred to as the dispersion constant).



4.1 Existence of Crosstalking in Modern Optical MIMO 43

Methodology
As was stated in the beginning, we have acquired and saved the equalizer coefficients
f2N . Our aim is to compute the channel coefficients c2M only by using the already
known f2N . In the case of PSR, we know that hδ = Cf, therefore for our real data it
is a classic problem of finding C while minimizing the squared ℓ2 norm :

||Cf− hδ||22 = |Cf|2 − 2hδCf+ 1, (4.8)

which is a quadratic equation of the form cTAc−2cTv, where A is the quadratic part
and v is the linear part. To minimize (4.8), we take the derivative with respect to c
and set it to zero, which solves for

c = A−1v. (4.9)

We can take advantage of the toeplitz characteristics of C and write (4.8) analytically,
2M−1∑
m=0

2M−1∑
m′=0

cmcm′

2N−1+min(m,m′)∑
kmax(m,m′)

fk−mfk−m′ − 2

min(2N−1,δ)∑
l=max(0,δ−2M)

cδ−lfl + 1 = 0. (4.10)

Figure 4.5: Average value of the 500 different instantiations of the 4 filters for the 4
equalizers. The dashed line points the 13th tap.
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Figure 4.6: Channel coefficients for the 4 equalizers.

4.2 Real Data Analysis and Results
As a first step in our data analysis, we plot the average of the output of the filter
taps; see Fig. 4.5. We can distinguish that for every equalizer, there is a dominant
filter, which has a maximum at almost the same tap, the 13th. It has to be mentioned
though that although the averaged output has always maximum at the 13th tap, this
is not the general rule for every instantiation. That characteristic, gives us the hint of
δ = #max(f2N). In fact, we check our hypothesis: min(||Cf− hδ||) and it holds true,
the proof of which is omitted. That way, we compute the c2M , for every equalizer,
see Fig. 4.6. The number of spatial sub-channels M is set manually to M = 9. The
reason for that is twofold: In the second part of (4.10) the argument of c is δ − l but
the length of c is 2M . Therefore 2M ≥ δ − l ⇒ Mmin = δ−l

2
. Moreover, we chose

M =Mmin = 9 for computational simplicity.
In Fig. 4.7 we compute the CDF of the eigenvalues for different channel coefficients.

By setting also the off-diagonal elements of the channel coefficients to zero, we plot 2
different group of curves, each one distinguished by the red and blue color. That way,
the red color indicates there is no crosstalking in our system. Therefore, it is easily
visible that our system suffers from cross-talking.
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Finally, in Fig. 4.8 we plot the MIMO channel capacity cf for the different frequen-
cies, with and without crosstalk.

cf =
1

18

18∑
f=1

log det(I4 + ρH†(f)H(f)) (4.11)

It is obvious that, by exploiting the MIMO gains, the channel capacity can be enhanced.

Figure 4.7: CDF of eigenvalues for some channel coefficients.

Figure 4.8: Average capacity cf for the different frequencies f , over the 500 instantia-
tions.
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4.3 Effect of Noise on Channel Estimation
In our experiment we registered only the equalizer coefficients, which left us uninformed
about the noise, its characteristics and how it affects our proposed method of extracting
the channel state information. To test the robustness of our algorithm, we construct
a single pseudo-channel with coefficients c2M , |C2

2M |2 = 1. The channel vector c is
sparse, with 7 non-zero elements and 11 zero ones. Channel matrix C with dimensions
(M+N)×2N is constructed according to (4.2) with toeplitz characteristics, where 2N
is the size of the equalizer vector f. In order to ease our computations we set M = N ,
thus C is easily invertible. Arbitrarily we set δ = 7. So, the estimated fest, without
the presence of AWGN is

fTest = C−1h, (4.12)

and reversely using the methodology from the previous section to estimate the channel
coefficients cest, we end up in Aest and Vest.

Sparse Channel Estimation
In the case of noise presence, by considering our channel as sparse, we can estimate
a new de-noised c̃est by using a Compressed Sensing (CS) method based on Dantzig
Selector (DS) [11]. Let us remember (4.9). By adding AWGN (z), we get

cnoise = A−1v+ z. (4.13)

v is the solution to the following optimization

min
ṽ

||ṽ||1 s.t. ||AH(c−A−1ṽ)||∞ ≤ ϵ, (4.14)

where ṽ is the estimate of v and ϵ is a constant, depending on the noise and the
channel. In our case we set ϵ = 5.10−3 As can be seen in Fig. 4.9, AWGN, can insert
significant distortion in channel estimation. But on the other hand by using a CS
algorithm like DS, the distortion can be minimized. The recreation of the channel is
less effective for higher Pnoise but yet the CS method shows significant effectiveness.

4.4 Conclusions
In this chapter it was shown that in-fiber crosstalking is an existing impairment for
systems which incorporate SDM techniques. Therefore, fiber optics is another field
where MIMO techniques can find great usage. Moreover, due to the sparse charac-
teristics of the channel, CS methods can further enhance the equalization process .
A more realistic, practical implementation of an optical MIMO system along with a
CS-equalization technique is a question for future work.
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Figure 4.9: Sparse channel coefficient estimation for Pnoise = −20dB per sample with
and without the use of DS.

Figure 4.10: Sparse channel coefficient estimation for Pnoise = −10dB per sample with
and without the use of DS.
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CHAPTER 5
Outage Capacity

5.1 Outage Capacity for the Optical MIMO
Channel

An important issue that arises in optical MIMO, as was already seen in the previous
chapter, is that typically there is cross-talk between fiber modes, which increases with
segment length [75] and can be attributed to imperfections, as well as to the twist and
the bending of the fiber [21,33], and slight variations in the local temperature [44].
There have been two trends of work in this direction. In the first, effort has been made
to minimize cross talk between cores to extremely low levels [92], thus not having to
deal with self-interference. While appealing from a signal processing point of view, the
downside is that this methodology does not scale, in the sense that coupling becomes
unavoidable with increasing number of cores in a fiber. Another more pragmatic
approach is to design fibers without bothering about the appearance of cross-talk.
Indeed, bringing cores close to each other can lead to power being spread at the
receiver side evenly in the outlook of the channel [57].
Recently, it was proposed [38,76,86] to use sophisticated transceiver techniques

developed in the context of wireless communications between multiple transmitting
and receiving antennas (MIMO), which can mitigate self-interference, thus provid-
ing significant throughput increases. Of course, optical fiber multi-core systems have
several differences compared to multi-antenna wireless systems, which need to be ad-
dressed. One important difference is the one-dimensional, near-lossless propagation
through the optical fiber. As a result, the incoming and outgoing propagating modes
of the fiber are related through a so-called scattering matrix, which we examined in a
previous chapter and is unitary in the limit of lossless propagation. In contrast, since
wireless propagation incurs significant radiation loss to the environment, the corre-
sponding channel coefficients may be taken to be i.i.d and Gaussian [23,73]. Second,
due to the existence of non-linearities at high powers, one cannot expect arbitrarily
large powers to be practical. Hence, the intuitive analysis of the tradeoff between
diversity and multiplexing [91], which is popular in the wireless context is not appli-
cable here. Third, in contrast to the wireless setting, where due to physical motion
the channel fades significantly over time, the variability of the channel is mostly over
different frequencies and fiber segments. Hence, given that a given packet is likely to
travel over different segments and frequencies, which cannot be known apriori to the
transmitter, it is important to define an outage criterion over the realization of the
channel matrix in this context. Finally, the practical metric for the performance is not
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the ergodic mutual information, but, rather, the outage capacity at very low outage
(e.g. 10−4) [86], due to the fact that feedback from the receiver to the transmitter to
request a retransmission in the case of packet loss, is almost always impossible.
It is therefore important to develop a propagation channel model for the fiber-

optical MIMO channel, which addresses these issues. Several attempts in this direction
have been made [38, 68], however the unitary aspect of propagation has not been
dealt with explicitly until [86] and then [15] introduced the unitary aspects of the
transmission channel. In particular, [15] introduced in a somewhat ad-hoc fashion the
so-called Jacobi MIMO channel, in which the matrix corresponding to the channel is
a rectangular submatrix from a Haar distributed random matrix from U(N).
In this chapter, we derive a channel model for an fiber-optical MIMO channel when

the coupling between transmitting channels is strong and backscattering is weak. These
two assumptions allow us to provide the general random matrix that characterizes the
propagation in such a multimode fiber in the presence of time-reversal symmetry. The
resulting model is similar to the one introduced by [15], but it also parameterizes loss in
the fiber. We show how for increased loss, the channel interpolates between unitary and
Gaussian. This channel allows us to analyze the outage capacity of the optical MIMO
channel. As mentioned above, this is the relevant information transmission metric for
fiber-optical coupled multi-core channels. We analyze the characterize the problem in a
dual way. First, we obtain closed form expressions for the outage probability for small
numbers of channels. We also obtain analytical expressions, which are valid technically
in the limit of large channel numbers, but also work well over smaller channel numbers.
The method is particularly suited to obtain the outage mutual information for very
low outages with finite SNR. Essentially, it amounts to calculating the rate function of
the logarithm of the average moment generating function of the mutual information.
The methodology we use is based on the so-called Coulomb gas approach which was
developed in the physics literature in the context of random matrix theory [19] in the
60’s. It is quite intuitive because it interprets the eigenvalues as point charges on a
line repelling each other logarithmically. The Coulomb gas method has seen recently
a renewed interest in its use to obtain large deviations results for random matrix
problems [16,51,83,84] and also in communications [13,14,45,49]. We will follow
the basic steps discussed in more details in [45]. As a by-product of this analysis we
obtain the ergodic mutual information and its variance for this channel.

5.2 System Model
We consider a single-segment N -channel lossless optical fiber system, with Nt ≤ N
transmitting channels excited and Nr ≤ N receiving channels coherently excited in
the input (left) and output (right) side of the fiber. The propagation through the
fiber may be analyzed through its 2N × 2N scattering matrix which was analyzed in
Chapter 3.1.
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Statement of Problem
We may now define the main problem we address, namely the calculation of

Pout(r) = Prob(IN < r) (5.1)
= EU [Θ(r − IN(U))] (5.2)

where Θ(x) is the indicator (step) function. We will also analyze the density of r i.e.
P (r) = P ′

out(r) = EU[δ(r − IN(U))] (5.3)
The aim of this chapter is to calculate the tails of the distribution of the rate r. The
first step is to express the joint distribution of eigenvalues of U†U as derived initially
in [73] and more recently in this context [15]

Pλ(λ1 . . . λNt) = Z−1
Nt

∏
n<m

|λn − λm|2
∏
k

λ
|Nt−Nr|
k (1− λk)

N0 (5.4)

In the above, ZNt is a normalization constant defined in (C.1).
In the above equation, we can see that when N0 becomes large, the last term can

be approximated roughly as (1 − λ)N0 ≈ e−N0λ. This corresponds to the eigenvalue
distribution of a Wishart matrix [85], which is typically used to model wireless MIMO
channel propagation because the latter has significant power loss in the atmosphere.
Hence, it can be seen that the parameter N0 can effectively model power loss through
the fiber and provide a continuous cross-over between lossless and lossy fibers [73].
In contrast, as was shown in [15], for N0 < 0, there is no outage below rates

r = |n| log(1 + ρ), because all transmission can be performed over channels with unit
constant channel.
In the next section, we will show how the above expression can be used to provide

a closed form solution for the outage probability, in terms of finite sums of simple
functions. However, it will become clear that for increasing channel numbers, the
formula becomes quite cumbersome, without providing much intuition. Hence, in
Section 5.4 a different approach will be adopted, namely the large-N analysis of the
outage probability using the Coulomb gas formalism.

5.3 Exact Solution
In this section, we will obtain a closed form expression for the outage probability
Pout(r). We start by introducing an integral representation for the Θ function

1−Θ(x) = Θ(−x) = −
∫ +∞

−∞

dp

2πi
eipx

p+ iϵ (5.5)

where ϵ is an infinitesimal positive number indicating that the k-integral goes over the
pole at zero. As a result, the outage probability can be expressed as follows:

1− Pout(r) =

∫
dλPλ(λ)

∫ ∞

−∞

dp

2π

eipNtr

ϵ− ip

Nt∏
n=1

(1 + ρλn)
−ip (5.6)
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where the integral notation
∫
dλ signifies multiple integration over all λk for k =

1, · · · , Nt. In Appendix B we show how the above multiple integral can be evaluated.
The final result can be expressed as follows:

1− Pout(r) =
∑
k,n

ck,n
∑
σ

(−1)|σ|
Nt∑

ℓ=ℓ(r)

(−1)ℓ+Ntdℓ(sσ)F (Ntr − ℓ log(1 + ρ), sσ)

where the sum of k is over [0, |Nt −Nr|]Nt, the sum of n is over [0, N0]
Nt and the sum

over σ is over all permutations of (1, . . . , Nt) with signature |σ|. The Nt-dimensional
integer vector sσ has components sj = j+σj −1+kj +N0−nj and ℓ(r) is the smallest
integer for which Ntr < ℓ log(1 + ρ), while

ck,n =
Nt!
∏Nt

j=1 ckj ,nj

ZNρN
2
t +(|Nt−Nr|+N0)Nt

(5.7)

dℓ(s) = eℓ ((1 + ρ)s1 , · · · , (1 + ρ)sNt ) (5.8)

F (z, s) =
Nt∏
j=1

s−1
j +

Nt∑
j=1

esjz

sj
∏

k ̸=j(sk − sj)
(5.9)

In the above ck,n are given in (B.6), ZNt is given in (C.1), while eℓ(x1, x2, · · · , xNt)
is the elementary symmetric polynomial of degree ℓ [50]. The prescription of how to
deal with F (z, s) in the case where two or more integers si are equal is discussed in
Appendix B. We also note that the density of r, P (r), can be obtained directly from
the above by differentiation with respect to r.
Although analytic and in closed form, the above result is handy and provides

intuition for the answer at best for small values of Nt, Nr, N0. When this is not
the case, one needs an alternate path, which can be achieved using the asymptotic
approach in N , which will be discussed next.

5.4 Coulomb Gas Methodology
In this section we will follow a complementary approach to the above and will derive
the outage probability in the limit of large channel numbers. The first step is to rewrite
the joint distribution of eigenvalues of U†U provided in (5.4) in the following form

Pλ(λ1...λNt) = Z−1
Nt
e−N2

t E(λ) (5.10)

where

E(λ) = −N0

N2
t

Nt∑
k=1

log(1− λk)−
Nr −Nt

N2
t

Nt∑
k=1

log(λk)−
1

N2
t

∑
k ̸=k′

log |λk − λk′| (5.11)

E(λ) represents the normalized potential energy of Nt unit charges bound on the
unit interval x ∈ (0, 1), while repelling from each other and from the boundaries
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logarithmically. It is reasonable to expect that when N is large, the charges will
coalesce to a smooth density p(x). This hypothesis, which is originally due to Dyson
[19], and is called the Coulomb (or Dyson) gas approach, has been used extensively
in statistical physics [23, 51, 55] and more recently in communications [45]. This
hypothesis was set in a more mathematical footing by [3] who proved that the large
deviations of the law of the spectral density p(x) can be described by a rate function
corresponding to the continuum limit of E(λ). [3] showed this for the case of the
Wigner Gaussian matrices, while [34] generalized it to Wishart matrices. Their proof
can be directly applied to this model by restricting the support of eigenvalues from
λ ∈ (0,∞) to the unit interval λ ∈ (0, 1). We will apply this formalism to obtain
the tails of Pout(r). The first result is summarized in the following theorem, which is
proved in Appendix C.1. Let us first denote by X the space of probability measures
on (0, 1), endowed with weak topology.

Theorem 5.1 (Large Deviations of Eigenvalue Density). Let

E [p] =− n0

∫
p(x) log(1− x)dx− (β − 1)

∫
p(x) log(x)dx

−
∫∫

p(x)p(y) log |x− y|dydx (5.12)

where p(x) ∈ X . Then

1. E [p] is convex on X .

2. E [p] obtains its minimum value denoted by E0 at a unique probability density p0(x)
on (0, 1).

3. limNt→∞
1
N2

t
logP (IN ≤ r) = E0 − infp∈Xr E [p] where

Xr =

{
p ∈ X and

∫ 1

0

p(x) log(1 + ρx) dx ≤ r

}
(5.13)

For concreteness and future use, we define as rerg the rate for the probability density
p0(x), namely

rerg =

∫ 1

0

p0(x) log(1 + ρx) dx (5.14)

In this chapter we mostly interested in the outage probability defined in (5.1) and
therefore the above result is of interest. However, an analogous result can be obtained
for the 1− Pout(r):

Corollary 5.1. If Xr includes the density p0(x) (or is arbitrarily close to it), then
from the above we conclude that infp∈Xr E [p] = E0 and hence for r > rerg we have
logP (IN ≤ r)/N2

t → 0. Hence, in this case, we do not strictly speaking have a large
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deviation event. Nevertheless, in this case it can be shown that the complement of Xr,
namely

X c
r =

{
p ∈ X and

∫ 1

0

p(x) log(1 + ρx) dx > r

}
(5.15)

is a large deviation event if r > rerg, i.e.

lim
Nt→∞

1

N2
t

logP (IN > r) = E0 − inf
p∈X c

r

E [p] (5.16)

Due to the convexity of E [p] and Xr, it is sufficient to find a local minimum of the
functional, subject to the constraints, which then is ensured to be a global minimum.
One handy way to do so is to introduce a Lagrangian and include the constraints of
normalization and positivity of p(x) using Lagrange multipliers. We thus have

L0[p, ν, c] = E [p]− c

(∫ 1

0

p(x) dx− 1

)
−
∫ 1

0

ν(x)p(x) dx (5.17)

L[p, ν, c, k] = L0[p, ν, c]− k

(∫ 1

0

p(x) log(1 + ρx) dx− r

)
(5.18)

from which we obtain E0 and E(r) by maximizing over the dual parameters ν (non-
negativity constraint), c (normalization constraint) and k (mutual information con-
straint):

E0 = sup
ν≥0; c

inf
p
L0[p, ν, c] (5.19)

E(r) = sup
ν≥0; c,k

inf
p
L[p, ν, c, k] (5.20)

Note that the functional form of (5.18) amounts to replacing the mutual information
inequality constraints in (5.13) and (5.15) with an equality constraint. Hence, to obtain
the large deviation results above, we need to optimize of E(r) as follows

lim
Nt→∞

1

N2
t

logP (IN < r) =E0 − inf
r′<r

E(r′) (5.21)

lim
Nt→∞

1

N2
t

logP (IN > r) =E0 − inf
r′>r

E(r′) (5.22)

It is useful to summarize here some properties of E(r):
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Lemma 5.1 (Properties of E(r)).

1. For r > rerg, E(r) is an increasing function of r, i.e. E ′(r) > 0.

2. For r < rerg, E(r) is an increasing function of r, i.e. E ′(r) < 0.

3. E(r) is a convex function of r.

The proof is deferred for Appendix C.2
The convexity of L0, L over p ensures uniqueness of the minimizing p. Therefore, if

we find a local minimum for the corresponding Lagrangian for k, c and ν that satisfy
the constraints, this will be a unique one. It is also worth pointing out that the only
difference between E0 and E(r) above is that the former can be seen as the maximum
over L[p, ν, c, k] keeping k = 0; this relation will come in handy later, because it allows
us to work with L and at the very last step set k = 0 to obtain E0. This result is in
agreement with (C.2) derived in Appendix C.1 using other methods. To find a local
minimum of L, it suffices to calculate its functional derivative with respect to p and
which is then set to zero. Note that the functional derivative of L at p ∈ Xr is the
distribution δL[p, ν, c, k] whose action on test functions which leave E [p] finite is given
by:

⟨δL[p], ϕ⟩ = d

dt

∣∣∣∣
t=0

L[p+ tϕ]. (5.23)

Note that maximizing the result with respect to k and c simply corresponds to enforcing
the normalization and mutual information constraints that appear in (5.17) and (5.18):∫ 1

0

p(x) dx = 1 (5.24)∫ 1

0

p(x) log(1 + ρx) dx = r (5.25)

The maximization over ν(x) ensures the non-negativity of p(x). It can be shown [8]
that either ν(x) or p(x) are non-zero, therefore making ν(x)p(x) = 0. For simplicity we
will not analyze this constraint, instead enforcing it explicitly. Setting the functional
derivative of L[p] to zero results to

2

∫
p(x′) log |x− x′|dx′ = −n0 log(1− x)− c− k log(1 + ρx)− (β − 1) log(x) (5.26)

for all x in the support of p(x). Once again, due to the convexity of E [p] and Xr, it is
sufficient to find a local minimum of the functional, subject to the constraints, which
then is ensured to be a global minimum. Hence, we look for a solution for the above
equation with p(x) having support on the (connected) interval (a, b) ⊆ (0, 1), with a,
b to be determined. Taking the derivative with respect to x in the above we obtain
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the following integral equation, which has the physically intuitive meaning of force
balancing at the charges in x:

2P
∫ b

a

p(x′)

x− x′
dx′ =

n0

1− x
− β − 1

x
− kρ

1 + ρx
(5.27)

where P represents the Cauchy principal value of the integral. Once p(x) has been
determined, we can obtain E(r) by direct integration. To evaluate the double integral
in (5.12) we can integrate using (5.26). Then the value of c can be determined by
calculating (5.26) at x′ = a [45,83]. Following Tricomi’s theorem [45,80] this integral
equation may be solved to yield the following general expression

p(x) =

n0

√
(1−a)(1−b)

1−x
− k

√
(1+aρ)(1+bρ)

1+ρx
− (β−1)

√
ab

x
+ C

2π
√

(x− a)(b− x)
(5.28)

where C is a constant. This is a valid solution if the right hand side expression of
(5.27) is L1+ϵ integrable (for some ϵ > 0) over the support (a, b). Clearly, this is not
the case if a = 0 or b = 1, whenever β > 1 or n > 0, respectively. Therefore, in those
cases the values of a and b need to be found self-consistently, by demanding that p(x)
is continuous at that value, i.e. that p(a > 0) = 0 or p(b < 1) = 0. As a result,
we find four types of solutions, depending on whether a = 0 and/or b = 1. Before
summarizing the solution results for these four cases, we obtain the solution for the
case k = 0, which corresponds to most probable value of r = rerg. In this case, the
eigenvalue distribution that minimizes L0 is simply

p0(x) =

√
(x− a0)(b0 − x)

2πx(1− x)
(5.29)

where

a0, b0 =

(√
1 + n0 ±

√
β(n0 + β)

)2
n0 + 1 + β

(5.30)

which has been obtained using other methods in [17,73]. From the above p0(x), E0
can be evaluated. The result thus obtained matches the result obtained using a more
direct method in Appendix C.1.
In the next sections we will obtain the solution for ∆E(r) for all allowed values of

parameters n, β, r. It should be stressed that given the convexity of E [p] with respect
to p, it is sufficient to find an acceptable solution of the constrained extremization
procedure discussed above. Below we will analyze the four possible types of solutions,
corresponding to a = 0 or a > 0 and b = 1 or b < 1. We will see that for any parameter
value of n0, β, r, there is a single solution to the Tricomi equation above (5.27), which is
consistent with all constraints, as well as positivity and continuity on (0, 1). We will see
that while continuity will exclude some types of solutions, e.g. a = 0 when β > 1 and
b = 1 when n0 > 0, we will find two or three types of solutions applicable for a given set
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of n0 and β. Of course, only one is valid for any given value of r. We will see that there
is a critical value of r, at which one type of solution becomes invalid, while another
becomes applicable. This phase transition is characterized with the attachment of the
support of p(x) to a boundary of (0, 1) and has been in the literature with a third order
phase transition and the Tracy-Widom law [16,45,51,83]. In Table 5.1 we summarize
the validity of each solution type, denoted by S01, Sa1, S0b and Sab, where the first
index describes the infimum of the support (0 if a = 0 and a if a > 0) and the second
corresponds to its supremum (1 if b = 1 and b if b < 1).

S0b Sab S01 Sa1

a = 0 a > 0 a = 0 a > 0

b < 1 b < 1 b = 1 b = 1

n0 = 0; β = 1 r < rc1 – rc1 < r < rc2 r > rc2

n0 > 0; β = 1 r < rc3 r > rc3 – –
n0 = 0; β > 1 – r < rc4 – r > rc4

n0 > 0; β > 1 – all r – –

Table 5.1: Summary of validity of four types of solutions depending on the values of
n0, β and r.

Solution S01: a = 0, b = 1

We start with the most trivial type of solution, namely when the support boundaries
a = 0 and b = 1 are enforced. This solution can be valid only when n0 = 0 and
β = 1, since otherwise the right-hand-side of (5.27) and hence also p(x) [80] will not
be L1+ϵ-integrable. The resulting optimal normalized spectral density is

p(x) =
(1 + ρx)(k + 2)− k

√
1 + ρ

2π(1 + ρx)
√
x(1− x)

(5.31)

The resulting relation between r and k obtained by enforcing the rate constraint is
(5.25)

r = r(k) ≡ log (1 +
√
1 + ρ)2

4
+ k log (1 +

√
1 + ρ)2

4
√
1 + ρ

(5.32)

and the corresponding value of the exponent ∆E = E(r)− E0 becomes quadratic

∆E =

(
r − 2 log 1+

√
1+ρ
2

)2
2 log (1+

√
1+ρ)2

4
√
1+ρ

(5.33)
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The validity of the above result breaks down when the positivity constraint of p(x)
is violated. This happens when k < kc1 or k > kc2, where

kc1 = − 2
√
1 + ρ√

1 + ρ− 1
, kc2 =

2√
1 + ρ− 1

(5.34)

with corresponding values of the rate obtained through r < rc1 = r(kc1) and r > rc2 =
r(kc2), respectively. If this is true, we need seek for a solution allowing b < 1, or a > 0,
respectively. This will be analyzed in the next two subsections.

Solution S0b: a = 0, b < 1

This solution can only be valid for β = 1. In this case the resulting optimal eigenvalue
density is given by

p(x) =
1

2π

√
b− x

x

(
n0√
1− b

1

1− x
− k√

1 + ρb

ρ

1 + ρx

)
(5.35)

The normalization condition (5.24) gives

n√
1− b

+ k

√
1

1 + ρb
= 2 + n0 + k (5.36)

which is shown in Appendix C.3 to have a unique solution, while the rate equality
(5.25) condition gives

r = r(k) ≡ log(ρb) + nb

2
√
1− b

(
G(

1

ρb
, 0)−G(

1

ρb
,−1

b
)

)
− kρb

2
√
1 + ρb

(
G(

1

ρb
, 0)−G(

1

ρb
,
1

ρb
)

)
(5.37)

and finally

E(r) =k
2

[
r − log (1 + bρ)

]
− n0 log(1− b)

2
− (n0 + 2) log b

2

− n2
0b

4
√
1− b

(
I3(

1

b
− 1) +G(

1

b
− 1,

1

b
− 1)

)
+

n0kρb

4
√
1 + ρb

(
I3(

1

b
− 1) +G(

1

b
− 1,−1− 1

ρb
)

)
− n0b

2
√
1− b

(
I3(0) +G(0,−1− 1

b
)

)
+

kρb

2
√
1 + ρb

(
I3(0) +G(0,−1− 1

ρb
)

)
(5.38)

In the above we have introduced the functions G(x, y) and I3(x). Their definition and
closed-form expressions can be seen in Appendix E, where we have used results from
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[12]. When n0 = 0, (5.36) breaks down (and hence p(x) is not properly normalized)
if k > kc1, assuming of course b ≤ 1. Hence, in this case this solution is invalid in
agreement with the discussion in the previous subsection.
In contrast when n > 0, the above solution breaks down when p(x) < 0 for small

x. This happens when, in addition to (5.36) n0(1 + ρ) < (2 + n+ kc3)ρ
√
1− bc3, which

corresponds to r > rc3 = r(kc3). In this case, we need to allow a > 0, which will be
analyzed in a later subsection.

Solution Sa1: a > 0, b = 1

In the spirit of previous subsections, this solution can only be valid when n0 = 0. In
this case the resulting optimal eigenvalue density is given by

p(x) =

√
x− a

2π
√
1− x

[
k

√
1 + ρ

1 + ρa

ρ

1 + ρx
+
β − 1

x

√
1

a

]
(5.39)

Using the normalization equation

β + 1 + k =
β − 1√

a
+
k
√
1 + ρ√

1 + ρa
(5.40)

and the rate constraint (5.25)

r =r(k) ≡ log(ρ(1− a))

+
k(1− a)ρ

2
√

(1 + ρ)(1 + ρa)

(
I3(

a+ ρ−1

1− a
) +G(

a+ ρ−1

1− a
,
a+ ρ−1

1− a
)

)
+

(β − 1)(1− a)

2
√
a

(
I3(

a+ ρ−1

1− a
) +G(

a+ ρ−1

1− a
,

a

1− a
)

)
(5.41)

we can finally calculate E(r)

E(r) =k
2
(r − log (1 + aρ))− β − 1

2
log a− β + 1

2
log(1− a)

− (β − 1)2(1− a)

4
√
a

(
I3(

a

1− a
) +G(

a

1− a
,

a

1− a
)

)
− (β − 1)kρ(1− a)

4
√

(1 + ρa)(1 + ρ)

(
I3(

a

1− a
) +G(

a

1− a
,
a+ ρ−1

1− a
)

)
−(β − 1)(1− a)

2
√
a

(
I3(0) +G(0,

a

1− a
)

)
− kρ(1− a)

4
√

(1 + ρa)(1 + ρ)

(
I3(0) +G(0,

a+ ρ−1

1− a
)

)
(5.42)

When β = 1, for k < kc2, where kc2 is defined in (5.34), (5.40) gives a < 0, which
is obviously not allowed, hence invalidating this solution. This is in agreement with
subsection 5.4.
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In contrast when β > 1, the above solution breaks down when p(x) < 0 for x ≈ 1.
This happens when, in addition to (5.40) we have (β − 1) + (1 + β + kc4)ρ

√
ac4 = 0,

which corresponds to r = rc4 = r(kc4). In this case, we need to also allow b < 1, which
will be analyzed below.

Solution Sab: a > 0, b < 1

The final, more general case includes generic a and b. In this case the resulting optimal
eigenvalue density is given by

p(x) =

√
(x− a)(b− x)

2π(1 + ρx)

(
n0(ρ+ 1)

(1− x)
√
(1− a)(1− b)

+
β − 1

x
√
ab

)
(5.43)

with the additional constraint
n0√

(1− a)(1− b)
=
β − 1√
ab

+
kρ√

(1 + ρa)(1 + ρb)
(5.44)

obtained by demanding p(a) = p(b) = 0. The parameters a, b, k can be evaluated
uniquely from the above equation in addition to the normalization constraint (5.24)

n0 + β + 1 + k =
β − 1√
ab

+
k(1 + ρ)√

(1 + ρa)(1 + ρb)
(5.45)

and the rate constraint (5.25)

r = r(k) ≡ log ρ∆+
n

2
√
ācb̄c

[
G (āz, āz)−G (āz,−āc)

]
+

(β − 1)

2
√
āb̄

[
G (āz, ā)−G (āz, āz)

]
(5.46)

where ∆ = b − a. For notational simplicity we also define ā = a/∆, ac = 1 − a,
āc = (1−ac)/∆, āz = (a+ρ−1)/∆ and b̄ = b/∆, b̄c = bc/∆ = (1−b)/∆, b̄z = (b+ρ−1)/∆.
The G function can be seen in Appendix E. We may now integrate over p(x) and obtain
an expression for E(r) as follows

E(r) =k
2
(r − log (1 + bρ))− log∆

2
(n0 + β + 1)− n

2
log bc

− n2
0

4
√
ācb̄c

(
G(b̄c, b̄c)−G(b̄c,−b̄z)

)
− (β − 1)

2
log b

+
n0(β − 1)

4
√
āb̄

(
G(b̄c,−b̄)−G(b̄c,−b̄z)

)
+
n0(β − 1)

4
√
ācb̄c

(G(ā,−āc)−G(ā, āz))−
(β − 1)2

4
√
āb̄

(G(ā, ā)−G(ā, āz))



5.4 Coulomb Gas Methodology 61

Figure 5.2: Outage probability curves as a function of transmitted rate for moderate
signal-to-noise ratio ρ = 10 and three different values of N0. For each set of parameters
we plot three curves, namely the LD (blue dashed) curves (corresponding to the current
large deviations methodology), the numerically generated curves (in black) and the
ones corresponding to the Gaussian approximation (red dot-dashed). First, we observe
that with decreasing values of N0 the whole curve shifts to the right signifying increased
throughput. Notice that this is so even when N0 = −2 < 0. In this case, as mentioned
also in [15], a number of channels (|N0|) becomes deterministic without fading. Second,
we observe that while the LD curves follow the numerical curves very closely, the
Gaussian curves tend to deviate at low outages. Even though the curves look to be
close, the outage difference between LD and Gaussian come out to about a factor of 2.

− n0

2
√
ācb̄c

(
G(0, b̄c)−G(0,−b̄z)

)
+
β − 1

2
√
āb̄

(
G(0,−b̄)−G(0,−b̄z)

)
(5.47)

To make contact with the solutions of the previous sections, we observe that the
conditions (5.44) and (5.45) cannot be simultaneously be satisfied if β = 1, n > 0, and
k < kc3 (corresponding to r < rc3) unless a < 0. In this parameter region S0b applies.
Also, for β > 1, n = 0, and k > kc4 (and correspondingly r > rc4), the above equations
result to b > 1, thereby invalidating the solution and necessitating the solution Sa1. In
conclusion, we see that the above four solutions are mutually exclusive and cover all
possible parameter values, thereby providing the unique solution to the exponent E(r)
of the outage probability.

Probability Distributions P (r) and Pout(r)

In the previous sections we obtained the asymptotic behavior of the outage probability
in the large Nt limit. We found that the outage probability is approximately
P (IN ≤ r) ∼ exp[−N2

t (E(r) − E0)] when r < rerg and we can similarly find for
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Figure 5.3: Outage probability curves as a function of transmitted rate for large signal-
to-noise ratio ρ = 100 and two different values of N0. As in the previous figure, three
curves are plotted for each parameter set, namely the LD (blue dashed) curves, the
numerically generated curves (in black) and the Gaussian (red dot-dashed) curves. The
LD curves continue to follow the numerical curves very closely, however the Gaussian
curves deviate much more from the numerical curves and the deviation can reach a
factor of 20. Hence, for large SNR the Gaussian approximation does not provide such
good results as the LD approach.

r > rerg that P (IN > r) ∼ exp[−N2
t (E(r) − E0)]. By differentiation we obtain

to leading exponential order that the probability density follows the same law, i.e.
P (r) ∼ exp[−N2

t (E(r) − E0)]. To obtain the normalization constant for the density,
we observe that the distribution close to its peak will be asymptotically Gaussian.
This can be checked by calculating E(r) in the small k limit and showing that it is
quadratic in r. Hence the normalization of the distribution will be given for large Nt

by the variance of the distribution close to the peak. Therefore, we obtain

P (r) ≈ Nt
e−N2

t (E(r)−E0)√
2πverg

(5.48)

where verg is the variance at the peak of the distribution. Correspondingly rerg is the
solution of r(k = 0) in (5.32), (5.37), (5.41) or (5.46) (depending on the values of n,
β) and corresponds to the ergodic rate. To obtain the value for verg we observe that
E ′(r) = k(r), which is negative for r < rerg and positive for r > rerg. Similarly, we
can obtain the local variance by differentiating once again E ′′(r) = dk(r)/dr. Setting
k = 0, it follows that

verg =

∫ b0

a0

dx
dp(x, k)

dk
log(1 + ρx) = log (

√
1 + ρb0 +

√
1 + ρa0)

2

4
√
1 + ρb0

√
1 + ρa0

(5.49)
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where a0, b0 are given in (5.30).
To obtain an expression for the outage probability that is continuous at k = 0,

we may integrate P (r) above from 0 to r and noticing that due to the exponential
dependence on Nt, only the region close to r will be important. Thus for r < rerg the
outage probability is

Pout(r) ≈
e
−N2[E(r)−E0− E′(r)2

2E′′(r) ]Q

(
N |E ′(r)|√

E ′′(r)

)
√

E ′′(r)υerg
(5.50)

and for r > rerg it is

Pout(r) ≈ 1−
e
−N2[E(r)−E0− E′(r)2

2E′′(r) ]Q

(
N |E ′(r)|√

E ′′(r)

)
√

E ′′(r)υerg
(5.51)

and E ′(r) = k(r) and E ′′(r) = k′(r) are the first and second derivative of E(r) with
respect to r and Q(x) =

∫∞
x
dte−t2/2/

√
2π. This approximation, while is essentially the

same as (5.21) when Nt is large irrespective of r, but it is convenient, because it gives
the crossover for fixed Nt and r ≈ rerg.

5.5 Numerical Simulations
The above section has provided us with the mathematical formulae to express the
outage probability as a function of rate r for various values of β, n and ρ. We will now
briefly describe the performance of the optical MIMO system and the accuracy of the
analytic approach. Apart from the outage probability, which is expressed in (5.50) we
will also show the behavior of the so-called Gaussian approximation. The corresponds
to assuming the outage probability is given by an error function with variance verg
evaluated in (5.49) and mean the value of rerg defined in (5.14), i.e.

1− Pout,g(R) = Q

(
R−Ntrerg

verg

)
(5.52)

In Fig. 5.2 we plot the outage probability for moderate signal-to-noise ratios ρ = 10
for different values of N0. We see that the outage curves are shifted to larger values
of the rate as N0 is reduced, in agreement with out intuition: the fewer channels we
leave untapped, the more throughtput we can get from the transmission. This holds
also for negative N0, in which case, as [15] predicted, a number of channels (|N0|)
will become non-fading. We also see that the LD outage curves are in good agreement
with numerics, while the Gaussian approximation also tends to follow along, with some
small deviations.
The deviations of the Gaussian approximation become more pronounced for larger

values of ρ, as in Fig. 5.3. For lower outages we see a significant deviation which reaches
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in the figure to about a factor of 20. This behavior has been observed in the context of
wireless MIMO tails [45]. The reason is that for larger ρ the importance of eigenvalues
of the matrix that are of the order of 1/ρ become significant. However, in the Gaussian
approximation these eigenvalues are “frozen” out of the problem. Nevertheless, the
accuracy of the LD results is good.
We also tested the system for the case when Nt = Nr, i.e. β = 1, in Fig. 5.4. Here,

and for moderate values of ρ, we see that the Gaussian approximation ceases to be
valid deviating significantly from the numerical curves. Instead the LD approximation,
although it also deviates, is relatively close to the numerical curves, suggesting that it
is robustly correct overall, even for small channel numbers (N0 = Nt = Nr = 2).

Figure 5.4: Outage probability curves as a function of transmitted rate for moderate
signal-to-noise ratio ρ = 10 and two different values of N0. In contrast to Fig. 5.2,
here the parameter β = 1, i.e. Nt = Nr. As in the previous figure, three curves are
plotted for each parameter set, namely the LD (blue dashed) curves, the numerically
generated curves (in black) and the Gaussian (red dot-dashed) curves. In this case, the
LD, while following close the numerical values, there is a larger deviation compared to
the case β > 1. Furthermore, we see that the Gaussian deviate even more and finally
for small rates become completely unreliable. This behavior is mainly due to the very
small values of rates at low outages, making the Gaussian curve “feel” that there are
no negative values of r.

5.6 Conclusions
The purpose of this chapter was to analyze the outage capacity for a particular model
of the optical MIMO channel applicable to a multimode-multicore optical fiber sys-
tem. The assumptions underlying the model assume strong forward scattering of light



5.6 Conclusions 65

between the modes/cores, while the backscattering is weak. At the same time, we can
model loss inside the fiber by varying a particular parameter of the model, namely
N0. We have provided two complementary approaches to provide analytic solutions
for the outage capacity. In the first, we derived closed-form expressions for the outage
probability. Despite its exactness, this approach becomes cumbersome to use beyond
the size of a few channels. Therefore, we also implemented a large deviation approach
to calculate the outage capacity for the optical MIMO channel in the limit of large
channel numbers. Our method is especially applicable for the tails of the distribu-
tion, which is relevant for low outage requirements due to the absence of feedback and
finite SNR. Our analytical results agree very well with numerical experiments. On
the other hand the Gaussian approximation fails to follow the respective numerical
and the deviation becomes greater as our system increases in size and complexity (β
and n). Additionally the method provides the distribution of eigenvalues constrained
on the transmission rate and SNR. Although the channel assumptions taken here are
somewhat idealized, this result gives an analytic metric to compare with other more
complicated channel models. Clearly, more work is necessary, both from the channel
sounding side, but also from the channel modeling side, so that the model will become
more realistic.
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CHAPTER 6
Gallager Bound

6.1 The Gallager Bound in the Wireless Domain
In this chapter we apply random matrix theory to evaluate the error probability expo-
nent of the Gallager bound when the blocklength T , the number of N transmitting, and
K receiving antennas, and the rate R all become large but at fixed ratios α = T/N ,
β = K/N , r = R/N . Our large deviation result is valid for all normalized rates
0 < r < rerg. When we evaluate the error exponent for small |rerg − r| ≪ 1, our results
match with the upper bound obtained by [37]. While the asymptotic limit of large
antenna numbers is somewhat idealized, it is known from other works, e.g. [45] that
even for moderate antenna numbers the asymptotic results become quite accurate. In
addition, we explore the impact of fading in the channel by allowing the channel to
take Q independent realizations within a codeword of length T .

Problem Formulation and Results
Channel Model and Capacity

Let us consider a MIMO link with N transmit and K receive antennas and analyze
the transmission of T symbols. We assume a block fading channel, which remains
constant over τQ =

[
T
Q

]
symbols and changes independently after each such coherence

time [6]. Hence τQ is a parameter indicated by the bandwidth of the system and the
fading statistics of the channel. Therefore, the memoryless channel reads

Yq = HqXq + σWq (6.1)

for q = 1 . . . Q, where Yq ∈ CK×τQ is the received signal matrix during the qth block,
Hq ∈ CK×N is the channel matrix, whose entries are independent and identically
distributed (i.i.d.) CN (0, 1

N
), Xq ∈ CN×τQ is the transmitted signal matrix and σWq ∈

CK×τQ is the noise matrix with entries i.i.d. following CN (0, σ2). For notational
convenience we will denote Y = [Y1, . . . ,YQ], X = [X1, . . . ,XQ], etc. The transmitter
has only statistical knowledge of the channel, while the receiver knows it perfectly e.g.,
using a pilot signal. The mutual information per channel use over the qth block for
Gaussian input with i.i.d. entries following CN(0, 1) is given by

Cq(σ
2,Hq) = log det

(
IN +

1

σ2
HqH†

q

)
. (6.2)
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The joint distribution of eigenvalues of HqH†
q is

Pλλλ(λ1 . . . λN) =
1

ZN

∏
N<i<j≤K

|λi − λj|2
∏
i

w(λi) =
1

ZN

e−N2E(λλλ), (6.3)

where ZN is the normalization constant, w(λ) is a weight function, which depends on
the statistics of Hq and the exponent E(λλλ) is an energy functional of the eigenvalues
{λi} that will become useful later. Fot the case of complex Gaussian channels, the
form of the weight function is w(x) = xK−Ne−Nx. There are a number of other random
matrix models for which the joint distribution of eigenvalues takes the same form
with different realizations of w(x). The value of the mutual information per antenna
Cq(σ

2,Hq)/N converges weakly to a deterministic value in the large N limit, given by
the ergodic average of the mutual information [59] (Eq. 105-106),

rerg(β, σ
2) = logu+ β log

[
1 +

1

uσ2

]
− (1− u−1), (6.4)

with

u =
1

2σ2

(
σ2+β − 1 +

√
(σ2+(β − 1))2 + 4 σ2

)
, (6.5)

where β = K
N
> 1. The empirical eigenvalue density of HqH†

q converges weakly to the
well-known Marčenko-Pastur distribution [81] (Equation 1.12)

p0(x) =

{ √
(b0−x)(x−a0)

2πx
, for x ∈ [a0, b0]

0, otherwise,
(6.6)

where a0, b0 = (
√
β ± 1)2 are the endpoints of its support.

In the infinite codelength limit, the effect of the channel fading is captured through
the optimal outage error probability [62] over the channel matrix Hq, given by pout =
P(C/N < r) (in the case of Q = 1, C ≡ C1). The exponent of the outage probability
was analyzed in [45] when the number of antennas becomes large. There it was shown
that when K,N → ∞ with β = K/N fixed, the outage probability behaves as

lim
N→∞

1

N2
logP

(
C

N
< r

)
= −Eout(r), (6.7)

where Eout(r) close to r = rerg behaves as

Eout(r) =
(r − rerg)

2

2v∞
+ o

(
(r − rerg)

2
)
, (6.8)

where

v∞ = − log
(
1− (1− u)2

βu2

)
. (6.9)

The above quantity is the dispersion of the mutual information distribution in the
infinite codelength limit and will be called hereafter infinite codelength dispersion, in
accordance with the names used for similar quantities in [2,37,64].
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Gallager Exponent for Power-Constrained Input Alphabets
The error probability of transmission at a code rate of R = Nr for a given instantiation
of {Hq}, P(E|{Hq}) of a discrete memoryless channel without feedback and maximum
likelihood (ML) decoding is bounded by (see Eq. (7.3.20) in [26])

P(E|{Hj}) ≤ eTNr

∫
dY
[∫

dX µcon(X) [µ(Y|X, {Hq})]
1

1+ρ

]1+ρ

, (6.10)

where ρ ∈ [0, 1], µ(Y|X, {Hq}) is the distribution of the noise σW, while µcon(X) is
the distribution of X constrained to inputs such that only codewords with

Tr
[
X†X

]
≤ NT (6.11)

are used. This constraint can be enforced as an inequality by following (Eq. (7.3.17))
in [26] to observe that

µcon(X) ≤ c̄ µ(X)es(Tr[X†X]−NT), (6.12)

for any s > 0, where µ(X) is the unconstrained input distribution assumed henceforth
to be Gaussian and c̄ a normalization constant. Integrating over X, Y we obtain

logP(E|{Hq}) ≤− T

Q

Q∑
q=1

[
ρ log det

(
1 +

1

(1 + ρ)(1− s)σ2
HqH†

q

)
− ρ rN + (1 + ρ)N (s+ log(1− s))

]
, (6.13)

after omitting the normalization term (ρ+1) log c̄, which can be shown to be subleading
in N [26]. After averaging P(E|{Hq}) over {Hq} and optimizing over the values of
ρ, s, we find that P(E), the average error rate after jointly decoding the total message
sent over Q blocks is bounded by

P(E) = E{Hq} [P (E|{Hq})] ≤ E{Hq}

[
e−N2E(r|{Hq})

]
, (6.14)

where

E(r|{Hq}) = max
ρ∈[0,1]
s∈[0,1)

{
α

Q

Q∑
q=1

[
ρ

N
log det

(
1 +

1

(1 + ρ)(1− s)σ2
HqH†

q

)

− ρ r + (1 + ρ) (s+ log(1− s))

]}
. (6.15)

In the above, α = T/N and r = R/N is the per-antenna rate and σ−2 is the SNR. We
then define the Gallager exponent as

EN(r) = − 1

N2
logE{Hq}

[
e−N2E(r|{Hq})

]
. (6.16)
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It should be stressed that while in single link transmission schemes the exponent of
the probability of error scales with the blocklength T , in MIMO systems it should
be proportional to NT , which is the number of symbols transmitted. To be able to
compare with the infinite codelength error exponent defined in the previous section,
we have chosen to re-scale the error exponent in the same way (i.e. with N2), adding
a factor of α in (6.44). We then take the limit N,K, T → ∞, while at the same time
keeping the ratios β = K/N and α = T/N fixed. The analytic evaluation of the error
exponent EN(r) in this limit is the main result of this section and is summarized by
the following theorem.

Theorem 6.1. The limit of the error exponent E(r) = limN→∞EN(r) exists and can
be expressed as

E(r) =Q max
ρ∈[0,1]
s∈[0,1)

[
−
∫ b

a

∫ b

a

log |x− y|p∗(x)p(y)dxdy +
∫ b

a

(x− (β − 1)) log(x)p∗(x)dx

+
α

Q

(
ρ

∫ b

a

log
(
1 +

x

zρ s

)
p∗(x)dx− ρ r + (1 + ρ) (s+ log(1− s))

)
− 1

2

(
3β − β2 log β + (β − 1)2 log(β − 1)

) ]
, (6.17)

where

p∗(x) =

√
(x− a)(b− x)

2πx(x+ zρ s)

[
x+ zρ s +

α ρ zρ s

Q
√
(zρ s + a)(zρ s + b)

]
, (6.18)

and zρ s = (1 + ρ)(1 − s)σ2. The values of the parameters a, b and s, as functions of
ρ, are the unique solutions of the following equations:

β − 1√
ab

− ρα

Q
√
(zρ s + a)(zρ s + b)

= 1, (6.19)

a+ b+ 2
ρα

Q
− 2(β + 1) =

2 ραzρ s

Q
√

(a+ zρ s)(b+ zρ s)
, (6.20)

s =
ρ

4(1 + ρ)

(√
zρ s + b−

√
zρ s + a

)2
. (6.21)

Having determined these parameters as functions of ρ, ρ is determined from r as
follows. Defining the function r̄(ρ) as

r̄(ρ) = log(1− s) +

∫ b

a

p∗(x) log
(
1 +

x

zρ s

)
dx (6.22)
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= log ∆(1− s)

zρ s
+

∆

2

(
1 +

ρα√
(zρ s + a)(zρ s + b)

)
G

(
zρ s + a

∆
,
a

∆

)
− ∆ ρα

2
√
(zρ s + a)(zρ s + b)

G

(
zρ s + a

∆
,
zρ s + a

∆

)
, (6.23)

where the function G(x, y) can be seen in Appendix E, and setting r1 = r̄(1) we have

ρ(r) =

{
1 r ≤ r1

r̄−1(r) r > r1,
(6.24)

where r̄−1 indicates the inverse function of r̄.

The proof of Theorem 6.1 can be found in Appendix D.1. 1

Remark 6.1. p∗(x) defined in (6.18) and appearing in (6.17) and (6.22) can be inter-
preted as a density of eigenvalues and exhibits a square root singularity at the limits
of its support, just as the Marčenko – Pastur density [52]. From physical point of
view, p∗(x) corresponds to the equilibrium charge density in the Coulomb gas pic-
ture, when the energy function is given by E(r). From a practical point of view, it
corresponds to the empirical distribution of observed eigenvalues {λi} of the realized
channel matrices, which balance the occurrence probability of such channel matrices
with the corresponding coding error probability, when operating at a given normalized
rate r, α and β.

Remark 6.2. Setting s = 0 in (6.12) corresponds to an unconstrained Gaussian input
distribution. Hence, the corresponding solution of (6.17) will be the Gallager exponent
for unconstrained Gaussian inputs, which is expected to be smaller.

Remark 6.3. From the equations of the above theorem we immediately see that the
Q-dependence of E(r) has the following form: E(r, α,Q) = QE(r, α

Q
, 1), where we

explicitly included the dependence of E(r) on α and Q. This allows us to make all
calculations for Q = 1 and in the end to re-scale E(r) and α accordingly.

Corollary 1. For β > 1 the above expression for the error exponent can be calculated
in closed form to read

E(r) = Q

[
∆2

32
− α ρ r

Q
+
a

2
− log∆− β − 1

2
log(a∆) +

α(1 + ρ)

Q
(s+ log(1− s))

+
α ρ

2Q

(
log(1 + a/zρ s) + zρ s

(√
zρ s + b−√

zρ s + a
)2

4
√

(zρ s + a)(zρ s + b)

)

+
∆α ρ

2Q
√

(zρ s + a)(zρ s + b)

[
G

(
0,
zρ s + a

∆

)
+
β − 1

2
G

(
a

∆
,
zρ s + a

∆

)]
1a and b are the endpoints of the support of p∗(x) and should not be confused with α = T/N and

β = K/N .
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−∆

2

(
1 +

α ρ

Q
√

(zρ s + a)(zρ s + b)

)[
G
(
0,
a

∆

)
+
β − 1

2
G
( a
∆
,
a

∆

)]
−1

2

(
3β − β2 log β + (β − 1)2 log(β − 1)

)
+
α ρ

2Q

[
log
(

∆

zρ s

)
− ∆α ρ

2Q
√

(zρ s + a)(zρ s + b)
G

(
zρ s + a

∆
,
zρ s + a

∆

)

+

(
∆

2
+

α ρ∆

2Q
√

(zρ s + a)(zρ s + b)

)
G

(
zρ s + a

∆
,
a

∆

)]
(6.25)

where ∆ = b− a.

Corollary 2. In the special case β = 1 the lower limit of the support of p(x) becomes
zero, i.e. a = 0. In this case (6.19) (which results from the continuity condition
p(a) = 0) does not hold. However, we can obtain E(r) by setting a = 0, β = 1 in
equations (6.20), (6.22), (6.25). Then E(r) reads

E(r) =Q

[
α ρ

Q

 b

8
+ log

1 +
√

1 + b
zρ s

2

− log b
4
+

α

32Q
(b− 4)(4zρ s + 3b+ 12)

+
α ρ

2Q

[
b

2

[
G(
zρ s
b
, 0) +

1

2
log
(

b

zρ s

)]
+

α ρ b

2Q
√
zρ s(zρ s + b)

[
G(
zρ s
b
, 0)−G(

zρ s
b
,
zρ s
b
)

−

(
zρ s
b

−
√
zρ s(zρ s + b)

b

)
log
(

b

zρ s

)]]
− α ρ

Q
r +

α(1 + ρ)

Q
(s+ log(1− s))

]
.

(6.26)

Analysis
Dependence of E(r) on α = T/N

In Fig. 6.1, we plot the Gallager error exponent for various values of α. We see that
increasing α brings the error curve closer to the error exponent Eout(r) of the infinite
codelength outage probability introduced in [45]. This convergence can be seen directly
in (6.18)-(6.22). As α → ∞, ρ → 0, so that α ρ = O(1) and the solution converges to
that of [45].
It is important to point out here that the assumption that the receiver knows the

channel matrix necessitates the existence of some training overhead, which becomes
significant when the number of channel uses T becomes comparable to the number of
transmit antennas N . We do not take into account this issue here, assuming instead
that the training takes place through some parallel channel. However, an effective way
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to incorporate training is to replace α by α− 1, since it takes roughly N channel uses
to train the N transmit antenna channels.

Figure 6.1: The Gallager error exponent E(r). As α is increased, the curves for
E(r) approach the outage probability exponent Eout(r) [45] (black). The small circles
indicate the points where r = r1. For α = 2 we also depict Gallager exponent for
the average power constraint (s = 0) and the Sphere Packing Bound error exponent
(dotted). Parameter values used are: β = 3, SNR = σ−2 = 20, Q = 1.

r ≤ r1 and Comparison with Sphere Packing Bound
The circles in Fig. 6.1 correspond to the values r = r1 = r̄(ρ = 1), below which the
Gallager error exponent becomes linear in r. This behavior is due to the fact that the
value of the error exponent in (6.17) is the result of the maximization with respect
to the parameter ρ over the unit interval ρ ∈ [0, 1]. For r < r1 the maximum lies
outaside this interval and hence ρ remains fixed to unity. Hence the error exponent in
(6.17) becomes linear in r. Extending the ρ-maximization interval to R+ provides the
so-called sphere-packing error exponent [26]. In Fig. 6.1 we include the sphere-packing
exponent in the case of α = 2 (dash-dot) for comparison. As expected, for rates above
the value of r = r1 indicated by a circle, the error exponent coincides with the Gallager
random coding exponent, while for r < r1 (corresponding to solutions with ρ > 1) the
sphere-packing exponent is higher.

Region r ≈ rerg and Comparison with [37]
The region close to r = rerg is interesting because the error exponent E(r) vanishes and
hence the error probability is maximal. It is easy to see that dE(r)

dr
= −α ρ(r), where

ρ(r) is the solution of the equation r = r̄(ρ) in (6.22) for r > r1. From (6.22), we see
that when ρ → 0, then r → rerg. This implies that E(rerg) = 0 is a global minimum,
since, taking advantage of the convexity of the supremum operation with respect to ρ
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and s, it can be shown that E(r) is a convex function of r [43]. Therefore, close to
r = rerg, we can write

ρ(r) = (r − rerg) ρ
′(rerg) (6.27)

where ρ′(r) = d ρ
dr
. Let us define vα through

ρ′(rerg) = − 1

αvα
. (6.28)

The left-hand-side of the above equation is easy to evaluate since d ρ(r)
dr

dr̄(ρ)
d ρ

= 1. Hence,
by differentiating r̄(ρ) and expressing its value at ρ = 0, we obtain

E(r) =
(r − rerg)

2

2vα
+ o

(
(r − rerg)

2
)
. (6.29)

In the above, vα can be expressed as

vα = v∞ +
δv

α
, (6.30)

where v∞ is the infinite codelength dispersion given in (6.9) and δv > 0 has the simple
form

δv = 2g0 − g20, (6.31)

where g0 is given by

g0 =

∫ b0

a0

xp0(x)

x+ σ2
dx =

(√
σ2+b0 −

√
σ2+a0

)2
4

, (6.32)

where p0(x) is the Marcenko-Pastur distribution given in (6.6) and a0, b0 its endpoints.
It is worth pointing out that the last term in (6.31) is the correction due to the peak-
power codeword constraint (6.11). We see that the Gallager error exponent E(r),
which is valid for all rates r < rerg takes a quadratic form akin to the exponent of
a normal distribution for rates close to rerg. This is analogous to the case of infinite
codelengths discussed in Section 6.1. (6.88) is valid when |rerg−r| ≪ 1, in order for the
error exponent to be small. However, it is also implicitly assumed that N |rerg−r| ≫ 1,
so that the term N2E(r) in the error probability exponent (see (6.16)) is the dominant
one. Hence this is exactly the moderate deviations regime discussed for general single
link systems in [2]. An important point that can be drawn from the form of (6.32) is
that it depends only on the empirical distribution of eigenvalues, which in this case
happens to be the Marcenko-Pastur distribution. Therefore, vα can be calculated for
other channel models for which v∞ and p0(x) are known.
In [37], the authors obtained bounds on the optimum average probability of error

for MIMO systems when the normalized rate of the code r = R/N approaches the
ergodic rate rerg such that N |r − rerg| = O(1) in the limit that N,K, T become large
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with fixed ratios. In this limit, they show that the error probability is bounded between
two Gaussian distributions with variances (or dispersions) given (in their notation) by
θ−, which can be expressed as

θ− = αv∞ +
1

2

(
β + 1− σ2(β + 1) + (β − 1)2√

(σ2+a0)(σ2+b0)

)
, (6.33)

and θ+ = αvα, respectively. Therefore, the Gallager random coding exponent with
Gaussian input saturates the upper bound in the dispersion derived by [37].

Figure 6.2: The dispersion at the Gaussian limit (ρ = 0) using the asymptotic method
and the method of induced ergodicity of [37]. The vα and θ+

α
curves are identical;

SNR = σ−2 = 20, β = 3, Q = 1.

Impact of Fading
The case Q > 1 models the realistic situation where the channel varies during the
transmission of the codeword. Specifically, the channel matrix H changes (Q times)
during the codelength T . It is assumed here that the receiver knows each channel
realization, either using an additional pilot signal or by using part of the codeword as
pilot (in which case T will represent the data-transmitting part of the codeword). In
Fig. 6.3 we can see the behavior of the error exponent for increasing values of Q. As
Q, the number of independent fading blocks within a codeword increases, the error
exponent E(r) also increases, signifying lower error probabilities. To understand the
behavior for large Q, we prove the following result.

Theorem 6.2 (Q→ ∞ Limit of E(r)).

lim
Q→∞

E(r) =α max
ρ∈[0,1]
s∈[0,1)

[
ρ rerg(β, z

−1
ρ s )− ρ r + (1 + ρ)(s+ log(1− s))

]
. (6.34)
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For fixed ρ, the maximum over s in the above equation is attained at the value

s =
ρ

4(1 + ρ)

(√
zρ s + b0 −

√
zρ s + a0

)2
. (6.35)

Defining the function

r̄(ρ) = log(1− s) + rerg
(
β, z−1

ρ s

)
, (6.36)

and setting r1 = r̄(1) we have

ρ(r) =

{
1 r ≤ r1

r̄−1(r) r > r1 ,
(6.37)

where r̄−1 indicates the inverse function of r̄.

From the above theorem we conclude that for fast-fading, and therefore large values
of Q it is the ergodic rate that determines the behavior of the error exponent. When
r ≈ rerg we can once again expand E(r) in powers of r − rerg to obtain

E(r) =
(r − rerg)

2

2 δv
+ o

(
(r − rerg)

2
)
, (6.38)

where δv is given in (6.31).

Figure 6.3: The error exponent for the Gallager bound with power constraint at the
limit of N → ∞; β = 3, SNR = σ−2 = 20, α = 20.The small circles indicate the points
of behavior change (r = r1).
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6.2 The Gallager Bound in Fiber Optical MIMO
In the previous section we studied extensively the application of the Gallager error
bound to the wireless MIMO case. Hence, it is logical that we use the same bound
for the evaluation and the quantification of the performance of MIMO fiber optical
systems. Again, since the expression of the Gallager bound is cumbersome to be
analyzed we will take the asymptotic limit for large length T of codewords and numbers
N and K of transmitting and receiving modes respectively.
In this chapter we evaluate the error probability exponent of the Gallager bound

for large T and large numbers N and K and fixed ratios, using random matrix theory.
That way, the calculation becomes simpler but the outcome is still valid: we invoke
the large deviations theory, just as we did in the previous chapter, and examine the
tails of the Gallager bound which correspond to regions with low outage probability
which is the region where the fiber optical networks operate.

Problem Formulation
System Model
In this chapter we consider a single-segment Ntot-channel lossless optical fiber system,
with N ≤ Ntot transmitting channels excited and K ≤ Ntot receiving channels coher-
ently excited in the input (left) and output (right) side of the fiber. The propagation
through the fiber may be analyzed through its 2Ntot × 2Ntot scattering matrix given
by [15,86] So, the corresponding MIMO channel for this system reads

y = Ux+ z (6.39)
with coherent detection and channel state information only at the receiver [24,78]. x,
y and z are the N×1 input, the K×1 output signal vectors and the K×1 unit variance
noise vector, respectively, all assumed for simplicity to be complex Gaussian. We also
assume no differential delays between channels, which effectively leads to frequency
flat fading [86]. We also assume no mode-dependent loss. As a result, the mutual
information can be expressed as

C = log det
(
IK + ρ UU†) , (6.40)

where ρ is the SNR. The total transmission rate is Rerg = Nrerg where rerg is the
ergodic rate per transmitter. The value of the mutual information per transmitter
C(ρ,U)/N converges weakly to a deterministic value in the large N limit: the ergodic
average of the mutual information [65]. In addition it is important to note that the
empirical eigenvalue density of UU† converges weakly, almost surely so, to the well-
known Marčenko-Pastur distribution [81]

p0(x) =

{ √
(b0−x)(x−a0)

2πx
, for x ∈ [a0, b0]

0, otherwise.
(6.41)

where a0, b0 = (
√
β ± 1)2 are the endpoints of its support.
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Gallager Exponent
In the infinite codeword limit, the effect of the channel fading is captured through the
optimal outage error probability [62], which in the large N,K limit has been analyzed
in [45]. On the other hand, for finite codewords, one can use the Gallager bound: For
Maximum Likelihood (ML) decoding for a discrete memoryless, fixed channel without
feedback the error probability P(E), is bounded by

P(E|U) ≤ e−N2E(R|U),

E(R|U) =
1

N
max
ρ∈[0,1]
s∈[0,1)

{E0[ρ |U]− ρ r + (1 + ρ)(s+ log(1− s))} (6.42)

where E0(ρ |U) is Gallager’s error exponent defined as

E0(ρ |U) = log
∫
dY
[∫

dX µ(X) [µ(Y|X,U)]
1

1+ρ

]1+ρ

= log det
(
1 +

ρ

(1 + ρ)(1− s)
UU†

)
, (6.43)

where the last line follows [6], for independent Gaussian input and for any s > 0. So,
plugging (6.43) in (6.42) we have

E(R|U) =
1

N
max
ρ∈[0,1]
s∈[0,1)

{
α ρ

[
log det

(
1 +

ρ

(1 + ρ)(1− s)
UU†

)
−Nr

]

+ (1 + ρ)N(s+ log(1− s))

}
, (6.44)

where α = T
N
, r is the rate. P(E) is error rate when we decode the message, therefore

P(E) = EU [P (E|U)] ≤ EU
(
e−N2E(r|U)

)
≡ e−N2EN (r). (6.45)

In this chapter, we calculate the closed form expression of the error exponent EN(r) as
N,K, T → ∞ while β = K

N
> 1 is kept constant. We further define N0 = Ntot−N −K

and n0 =
N0

N
the losses inside the fiber. In the case of N0 < 0, [15] showed that we may

recover the form of β, N0 and n0 by substituting N → Ntot −K, K → Ntot − N and
Ntot → −Ntot. Then, the mutual information becomes also C → C + n0 log(1 + ρ).
The joint distribution of eigenvalues of UU† is

Pλλλ(λ1 . . . λN) =
1

ZN

∏
N<i<j≤K

|λi − λj|2
∏
i

λK−N
i (1− λi)

N0 , (6.46)

where ZN is the normalizing constant. We can assume that when Ntot is large, then
the eigenvalues will coalesce to a smooth density p(x), which will be such that the
energy limN→∞EN(r) = E(r) will be minimum and (6.46) corresponds to the most
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probable eigenvalue distribution. In this limit, we can write the minimum energy of
the eigenvalues as

E0(r) =

{
sup
c
inf
p
L0[c, p]

}
(6.47)

L0 = max
ρ∈[0,1]

{
− n0

∫
p(x) log(1− x)dx− (β − 1)

∫
p(x) log(x)dx

−
∫ ∫

p(x)p(y) log |x− y|dydx
}
− c

(∫
p(x)dx− 1

)
, (6.48)

where we have added a Lagrange multiplier c to ensure that p(x) is properly normalized,
while implicitly assuming that p(x) is continuous in x ∈ (0, 1). In order to incorporate
the constraint on the rate r, we introduce another Lagrange multiplier so that

E(r) = sup
c
inf
p
L1[c, ρ, p, s] (6.49)

L1[p, c, ρ, s] =L0[p, c] + α ρ

(∫
log
(
1 +

ρx

1 + ρ

)
p(x)dx− r

)
+ α(ρ+1)(s+ log(1− s)). (6.50)

It is implied in (6.49) that first we maximize with respect to ρ and s and then search for
the infimum in p. But this is not an easy task because the maximization will depend
on the specific distribution of p(x). Hence, since it can be shown that L1 is continuous
and convex, it is very useful to point out the Minimax theorem ( [20]-Theorem 2)
which allows in our case, to exchange places between the max− inf. Therefore, we can
re–write

E(r) = max
ρ∈[0,1]
s∈[0,1)

{
sup
c
inf
p
L1[c, p]

}
(6.51)

and continue with our calculations. It is easy to show that the minimum of the
above function is unique since we can reach E0(r) from E(r) by maximizing over
L1, while keeping ρ, s = 0. The minimization of L1 with respect to p is done by
taking the functional derivative and setting it to zero which calculations are simlpe
but tedious and will be omitted. It can be shown also that the minimum of L1 is
unique [45]. So, taking the functional derivative with respect to p(x) and setting to
zero and differentiating with respect to x, gives us the following integral equation

2PV

∫
p∗(x)

x− y
dx =

no

1− x
− β − 1

x
+

α ρ

zρ s + x
, (6.52)

where zρ s = (1+ρ)(1−s)
ρ

and gives

p∗(x) =
1

2π
√

(x− a)(x− b)
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×
[
n0

√
(1− a)(1− b)

1− x
− (β − 1)

√
ab

x
+
α ρ
√

(z + a)(z + b)

x+ z
+ C ′

]
. (6.53)

We search for solution among continuous, non–negative, normalized functions over
x ∈ (0,∞). Continuity at x = b results to the constraint that the expression in the
square bracket vanishes at x = b:

p∗(x) =

√
b− x

2π
√
x− a

[
n0

√
1− a

1− b
− (β − 1)

√
a

x
√
b

+
α ρ

√
zρ s + a

(x+ zρ s)
√
zρ s + b

]
. (6.54)

The a is obtained through the continuity condition p(a) = 0:

n0√
(1− a)(1− b)

=
β − 1√
ab

− α ρ√
(zρ s + a)(zρ s + b)

, (6.55)

and back to p(x) we have

p∗(x) =

√
(x− a)(b− x)

2π(1− x)

[
β − 1

x
√
ab

− α ρ√
(zρ s + a)(zρ s + b)

1 + zρ s
x+ zρ s

]
. (6.56)

The b will be evaluated through the normalization condition of p∗(x),

β − 1

2
√
ab

(
1−

√
ab−

√
(1− a)(1− b)

)
− α ρ

2
√

(zρ s + a)(zρ s + b)

[
zρ s + 1−

√
(1− a)(1− b)−

√
(zρ s + a)(zρ s + b)

]
= 1.

(6.57)

The value of s will be calculated from

s =
ρ

1 + ρ

∫ b

a

p∗(x)
x

x+ zρ s
, (6.58)

which gives

s =
ρ

2(1 + ρ)(zρ s + 1)

[
β − 1√
ab

(
zρ s + 1−

√
(1− a)(1− b)−

√
(zρ s + a)(zρ s + b)

)
− α ρ√

(zρ s + a)(zρ s + b)

(
zρ s + 1−

√
(1− a)(1− b)−

√
(zρ s + a)(zρ s + b)

zρ s(zρ s + 1)√
(zρ s + a)(zρ s + b)

(√
(zρ s + a)(zρ s + b)− zρ s −

a+ b

2

))]
. (6.59)

The value of ρ will be determined by the saddle point equation,

r =

∫ b

a

p∗(x)

[
log
(
1 +

x

zρ s

)
− ρ

1 + ρ

x

x+ zρ s

]
dx. (6.60)
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Therefore, we integrate (6.60) to obtain

r = log ∆ρ

1 + ρ
− ∆α ρ

2
√

(zρ s + a)(zρ s + b)
G

(
zρ s + a

∆
,
zρ s + b

∆

)
+
∆

2

(
1 +

α ρ√
(zρ s + a)(zρ s + b)

)
G

(
zρ s + a

∆
,
a

∆

)
+

ρ(β − 1)

(1 + ρ)(zρ s + 1)
√
ab

(
1−

√
(1− a)(1− b)−

√
(zρ s + a)(zρ s + b)

)
− α ρ2(zρ s + 1)

(1 + ρ)
√
(zρ s + a)(zρ s + b)

[
zρ s + 1

2z2ρ s + 1

[
b+ a

2
+ 2zρ s −

√
zρ s + a

zρ s + b

(
b− a

2
+ 2zρ s + b

)

+
∆a

2
√
(zρ s + a)(zρ s + b)

]

+
1

2z2ρ s + 1

[
zρ s

√
(zρ s + a)(zρ s + b)− z2ρ s −

∆

2
(a(a+ b)− 3a+ 1)

− (1− a)2 − (1− a+ a∆)
√
(1− a)(1− b)

] ]
, (6.61)

where ∆ = b− a and G(x, y) can be seen in Appendix E

Results
Finally, we integrate over p(x) for β > 1 and n0 > 0:

E(r) = − ραr +
1

2
ρα log

(
1 +

b

zρ s(1 + ρ)

)
− 1

2
(β + 1 + n0) log (b− a)− β − 1

2
log (b)

−n0

2
log (1− b)− n2

0(b− a)

4
√
(1− a)(1− b

[
G

(
1− b

b− a
,
1− b

b− a

)
−G

(
1− b

b− a
,
zρ s + b

b− a

)]
+
n0(β − 1)(b− a)

4
√
ab

[
G

(
1− b

b− a
,− b

b− a

)
−G

(
1− b

b− a
,−zρ s + b

b− a

)]
+
n0(β − 1)(b− a)

4
√

(1− a)(1− b)

[
G

(
a

b− a
,−1− a

b− a

)
−G

(
a

b− a
,
zρ s + a

b− a

)]
−(β − 1)2(b− a)

4
√
ab

[
G

(
a

b− a
,

a

b− a

)
−G

(
a

b− a
,
zρ s + a

b− a

)]
− n0(b− a)

2
√

(1− a)(1− b)

[
G

(
0,

1− b

b− a

)
−G

(
0,−zρ s + b

b− a

)]
+
(β − 1)(b− a)

2
√
ab

[
G

(
0,− b

b− a

)
−G

(
0,−zρ s + b

b− a

)]
+
ρα

2
log
(

b− a

zρ s(1 + ρ)

)
+ α(1 + ρ)(s+ log (1− s))
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+
n0(b− a)

2
√

(1− a)(1− b)

[
G

(
zρ s + a

b− a
,
zρ s + a

b− a

)
−G

(
zρ s + a

b− a
,−1− a

b− a

)]
+
(β − 1)(b− a)

2
√
ab

[
G

(
zρ s + a

b− a
,

a

b− a

)
−G

(
zρ s + a

b− a
,
zρ s + a

b− a

)]
−1

2

[
(β + n0 + 1)2 log(β + n0 + 1)− (β + n0)

2 log(β + n0)− β2 log(β)

+(β − 1)2 log(β − 1)− (n0 + 1)2 log(n0 + 1) + n2
0 log(n0)

]
. (6.62)

Special Cases
We distinguish two different cases: while it is β = K

N
> 1, the losses inside the fiber

can be either n0 > 0 or n0 = 0.
Therefore, for n0 = 0 the density of eigenvalues becomes

p∗(x) =
1

2π
√
(x− a)(x− b)

[
−(β − 1)

√
ab

x
+
α ρ
√
(zρ s + a)(zρ s + b)

x+ zρ s
+ C

]
. (6.63)

The case 0 ≤ ρ ≤ 1 and β > 1 → α > 0

From the constraint p∗(a) = 0 we have

p∗(x) =

√
x− a

2π
√
b− x

[
β − 1

x

√
b

a
−
α ρ
√
zρ s + b

√
zρ s + a

1

x+ zρ s

]
. (6.64)

There are two options b = 1 and b < 1.

The case b = 1

In the first case of b = 1, which is stable close to ρ = 0, we have the additional constraint
that the first term cannot appear since it will lead to non-integrable singularity. Hence,

p1(x) =

√
x− a

2π
√
1− x

(
β − 1

x
√
a

−
α ρ
√
zρ s + 1

(z + xρ s)
√
zρ s + a

)
, (6.65)

and the normalization conditions gives

β + 1− ρα =
β − 1√

a
− ρα

√
zρ s + 1

zρ s + a
. (6.66)

To obtain ρ we need to solve the fixed point equation for r(ρ):

r1(ρ) =

∫ 1

a

p1(x) log
(
1 +

x

zρ s

)
dx− ρ

1 + ρ

∫ 1

a

p1(x)
x

x+ zρ s
dx. (6.67)



6.2 The Gallager Bound in Fiber Optical MIMO 83

Sparing with the calculations, we have

r1 = log
(
1− a

zρ s

)
− α ρ(1− a)

2
√

(zρ s + 1)(zρ s + a)

[
I3

(
zρ s + a

1− a

)
+G

(
zρ s + a

1− a
,
zρ s + a

1− a

)]
+
(β − 1)(1− a)

2
√
a

[
I3

(
zρ s + a

1− a

)
+G

(
zρ s + a

1− a
,

a

1− a

)]
− ρ

1 + ρ

[
1− zρ s(1− a)

4(1 + zρ s)2

(
(β − 1)zρ s√

a
+ β + 1− α ρ

)
− (β − 1)

4
√
a

(1−
√
a)2

+
(
√
zρ s + 1−√

zρ s + a)2

4(zρ s + 1)2

(
(β − 1)(zρ s + a)√

a
+
α ρ
√
zρ s + 1

√
zρ s + a

+
α ρ zρ s + 1

zρ s + a

)]
,

(6.68)
where

I3(x) = −G(x,−1). (6.69)

From here, following the method we saw in previous section, the calculation of E is
straight forward:

E(r1) =
ρα

2
log
(
1 +

1

zρ s(1 + ρ)

)
− ραr1 −

β − 1

2
log(a)− β + 1

2
log(1− a)

−(β − 1)2(1− a)

4
√
a

[
G

(
a

1− a
,

a

1− a

)
−G

(
a

1− a
,−1

)]
+

α ρ(β − 1)(1− a)

4
√
(zρ s(ρ+1) + 1)(zρ s(ρ+1) + a)

×
[
G

(
a

1− a
,
zρ s(ρ+1) + a

1− a

)
−G

(
a

1− a
,−1

)]
−(β − 1)(1− a)

2
√
a

[
G

(
0,

a

1− a

)
−G (0,−1)

]
+ α(1 + ρ)(s+ log (1− s))

+
ρα(1− a)

2
√
(zρ s(ρ+1) + 1)(zρ s(ρ+1) + a)

[
G

(
0,
zρ s(ρ+1) + a

1− a

)
−G (0,−1)

]
+
ρα

2
log
(

1− a

zρ s(ρ+1)

)
− ρα(1− a)

2
√
(zρ s(ρ+1) + 1)(zρ s(ρ+1) + a)

×
[
G

(
zρ s(ρ+1) + a

1− a
,
zρ s(ρ+1) + a

1− a

)
−G

(
zρ s(ρ+1) + a

1− a
,−1

)]
+
(β − 1)(1− a)√

a

[
G

(
zρ s(ρ+1) + a

1− a
,

a

1− a

)
−G

(
zρ s(ρ+1) + a

1− a
,−1

)]
−1

2

[
(β + 1)2 log(β + 1)− 2β2 log(β) + (β − 1)2 log(β − 1)

]
. (6.70)

The above expressions are valid for when p1(x) > 0 for all a < x < 1. When
p1(x) < 0, it breaks down and the upper limit becomes b < 1. The stability condition
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for that, is

β + 1− ρα =
β − 1√

a
− α ρ√

(zρ s)(zρ s + a)
. (6.71)

As α grows, this will not be valid at ρ = 1 and hence, there will be a breakdown. The
critical value of ρ = ρc is the solution of

ρc α = β + 1 +
β − 1
√
ac

zρ s, (6.72)

where ac =
(

(β−1)zρ s

ρα−β−1

)2
. Because a < 1 we also have

ρ >
(β + 1)(zρ s + 1)

α− zρ s(β + 1)
, (6.73)

and we finally reach

ρc =
α(zρ s + 1)(β + 1)− zρ s(β

2 + 1)− z2ρ s(β + 1)2

(α− z(β + 1)2 + 4βz

+
2
√
βz
√
z(α + β)(α + 1) + α(α+ 1 + β)

(α− z(β + 1)2 + 4βz
. (6.74)

So, we calculate the E(r) for the two different sub–cases

The case ρ ≤ ρc < 1

Eρ≤ρc(r1) =
ρα

2
log
(
1 +

1

zρ s(1 + ρ)

)
− ραr1 −

β − 1

2
log(a)− β + 1

2
log(1− a)

−(β − 1)2(1− a)

4
√
a

[
G

(
a

1− a
,

a

1− a

)
−G

(
a

1− a
,−1

)]
+

α ρ(β − 1)(1− a)

4
√
(zρ s(ρ+1) + 1)(zρ s(ρ+1) + a)

×
[
G

(
a

1− a
,
zρ s(ρ+1) + a

1− a

)
−G

(
a

1− a
,−1

)]
+ α(1 + ρ)(s+ log (1− s))

−(β − 1)(1− a)

2
√
a

[
G

(
0,

a

1− a

)
−G (0,−1)

]
+

ρα(1− a)

2
√
(zρ s(ρ+1) + 1)(zρ s(ρ+1) + a)

[
G

(
0,
zρ s(ρ+1) + a

1− a

)
−G (0,−1)

]
+
ρα

2
log
(

1− a

zρ s(ρ+1)

)
− ρα(1− a)

2
√
(zρ s(ρ+1) + 1)(zρ s(ρ+1) + a)

×
[
G

(
zρ s(ρ+1) + a

1− a
,
zρ s(ρ+1) + a

1− a

)
−G

(
zρ s(ρ+1) + a

1− a
,−1

)]
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+
(β − 1)(1− a)√

a

[
G

(
zρ s(ρ+1) + a

1− a
,

a

1− a

)
−G

(
zρ s(ρ+1) + a

1− a
,−1

)]
−1

2

[
(β + 1)2 log(β + 1)− 2β2 log(β) + (β − 1)2 log(β − 1)

]
. (6.75)

The case ρ ≥ ρc < 1

Eρ≥ρc(r1) =
ρα

2
log
(
1 +

a′

b′

)
− (β − 1)

2
log(a′)− β + 1

2
log(b′ − a′)

−(β − 1)2(b′ − a′)

4

[
G

(
a′

b′ − a′
,

a′

b′ − a′

)
−G

(
a′

b′ − a′
,
zρ s(1 + ρ) + a′

b′ − a′

)]
−(β − 1)(b′ − a′)√

a′b′

[
G

(
0,

a′

b′ − a′

)
−G

(
0,
zρ s(1 + ρ) + a′

b′ − a′

)]
+
ρα

2

[
log
(

b′ − a′

zρ s(1 + k)

)
+

(β − 1)(b′ − a′)

2
log(a′b′)

×
[
G

(
zρ s(1 + ρ) + a′

b′ − a′
,

a′

b′ − a′

)
−G

(
zρ s(1 + ρ) + a′

b′ − a′
,
zρ s(1 + ρ) + a′

b′ − a′

)]]

− ραr1 −
1

2

[
(β + 1)2 log(β + 1)− 2β2 log(β) + (β − 1)2 log(β − 1)

]
+α(1 + ρ)(s+ log (1− s)). (6.76)

where

a′ = zρ s(ρ+1)

(√
β(ρα− β)−

√
ρα− 1

ρα− 1− β

)2

, (6.77)

and

b′ = zρ s(ρ+1)

(√
β(ρα− β) +

√
ρα− 1

ρα− 1− β

)2

. (6.78)

The case ρ > 1

Finally, we analyze the case where ρ > ρc, so that the support of p(x) does not extend
to 1:

p2(x) =

√
(x− a)(x− b)

2π

(β − 1)zρ s

x
√
ab(x+ zρ s)

, (6.79)

with the constraints
β − 1√
ab

=
ρα√

(zρ s + a)(zρ s + b)
, (6.80)
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and

β + 1− ρα =
β − 1√
ab

− ρα(zρ s + 1)√
(zρ s + a)(zρ s + b)

. (6.81)

So, we have

a = zρ s

(√
β(ρα− 1)−

√
ρα− 1

ρα− β − 1

)2

, (6.82)

and

b = zρ s

(√
β(ρα− β) +

√
ρα− 1

ρα− β − 1

)2

, (6.83)

and finally,

r2 = log
(

∆

zρ s

)
+ log(1− s) +

(β − 1)∆

2
√
ab

[
G

(
zρ s + a

∆
,
a

∆

)
−G

(
zρ s + a

∆
,
zρ s + a

∆

)]
− ρ

1 + ρ

(β − 1)zρ s√
ab

(
√
zρ s + b−√

zρ s + a)2

4
√
(zρ s + a)(zρ s + b)

. (6.84)

The evaluation of E(r2) is then straight forward:

E(r2) =
ρα

2
log
(
1 +

a

zρ s(ρ+1)

)
− β − 1

2
log(a)− β + 1

2
log(1− a)

−(β − 1)2(1− a)

4
√
a

[
G

(
a

1− a
,

a

1− a

)
−G

(
a

1− a
,−1

)]
+

ρα(β − 1)(1− a)

4
√
(zρ s(ρ+1) + 1)(zρ s(ρ+1) + a)

×
[
G

(
a

1− a
,
zρ s(1 + ρ) + a

1− a

)
−G

(
a

1− a
,−1

)]
−(β − 1)(1− a)√

a

[
G

(
0,

a

1− a

)
−G (0,−1)

]
+

ρα(1− a)√
zρ s(ρ+1) + a

[
G

(
0,
zρ s(1 + ρ) + a

1− a

)
−G (0,−1)

]
+
ρα

2

[
log
(

1− a

zρ s(1 + ρ)

)
− ρα(1− a)

2
√

(zρ s(ρ+1) + 1)(zρ s(ρ+1) + a)

×
[
G

(
zρ s(ρ+1) + a

1− a
,
zρ s(1 + ρ) + a

1− a

)
−G

(
zρ s(ρ+1) + a

1− a
,−1

)]
+
(β − 1)(1− a)√

a

[
G

(
zρ s(1 + ρ) + a

1− a
,

a

1− a

)
−G

(
zρ s(1 + ρ) + a

1− a
,−1

)]]
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− ραr2 −
1

2

[
(β + 1)2 log(β + 1)− 2β2 log(β) + (β − 1)2 log(β − 1)

]
+α(1 + ρ)(s+ log (1− s)). (6.85)

The case ρ ≈ 0

Another issue is the behaviour close to ρ = 0. We already have seen that dE(r)
dr

= ρ(r).
At the ergodic point it is ρ(rerg) = 0. Therefore, assuming that the first derivative
exists, we can write

ρ(r) = (r − rerg)
d ρ(r)

dr

∣∣∣∣
r=rerg

+ o((r − rerg)), (6.86)

and we define (
d ρ

dr

)−1 ∣∣∣∣
ρ=0

= vergα. (6.87)

Thus, by differentiating r(ρ) and expressing their values and the values of their deriva-
tives at ρ = 0 and r = rerg, we have

E(r) =
(r − rerg)

2

2verg
+ o

(
(r − rerg)

2
)
, (6.88)

where

verg = vopt +
δv

α
, (6.89)

where vopt can be seen in (5.49)

vopt = − log
[(√

z0 + b0 +
√
z0 + a0

)2
4
√

(z0 + b0)(z0 + a0)

]
, (6.90)

δv = 2g0 − g20, (6.91)
where following the respective case in the wireless domain

g0 =

∫ b0

a0

p0(x)
x

x+ zs
dx = a0 + b0 + 2z0 − 2

√
(z + a0)(z + b0), (6.92)

For the evaluation of δv we can remind ourselves
dr

d ρ
= α

∂r

∂(α ρ)
+
dr

dz

dzρ s
d ρ

(6.93)

with

r =

∫ b

a

p(x)

[
log(1 + x

zρ s
)− ρ

1 + ρ

x

x+ zρ s

]
+ log(1− s) (6.94)

and ∂p
∂zρ s

|ρ≈0 = 0

Strictly speaking, the Gaussian approximation is valid for values of r closer to rerg,
specifically for r − rerg = O( 1

N
), there we can neglect in (6.88) terms of order higher

than 2.
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Analysis

We evaluated the exponent of the Gallager bound for β > 1 and the corresponding
sub–cases. The analysis was based on the respective analysis of the previous section
and therefore some tedious evaluations or proofs are omitted. Values away from the
optimal curve, means worst behavior. We can see that as we increase α we come
closer to the optimal limit [43] which corresponds to infinite codelength (α → ∞). In
Fig. 6.4 we can see the behaviour of the error exponent while there is some loss inside
the fiber (n0 ̸= 0) and in Fig. 6.5 we can see the corresponding behaviour for zero loss
(n0 = 0). In most of the curves we identify a phase transition which is indicated with
small, black circles. Since, ρ ∈ [0, 1], there are two major regions in the analysis of
the error exponent 0 ≤ ρ ≤ 1 and ρ > 1. For these two regions, we have respectively
rph < r ≤ rerg and r < rph, where rerg is the ergodic r and rph > rerg.

.....
0
.

0.2
.

0.4
.

0.6
.

0.8
.

1
.

1.2
.

1.4
.

1.6
.0 .

5

.

10

.

15

.

Normalized Throughput r

.

E
(r
)

.

. ..Outage α → ∞

. ..Gallager α = 10

. ..Gallager α = 50

. ..Gallager α = 2

. ..Av. Power Gallager α = 2

. ..Sphere Packing α = 2

Figure 6.4: As α is increased, the curves for E(r) approach the outage probability
exponent [45] (black). The small circles indicate the points where r = r1. For α = 2
depicted also the Gallager exponent for the average power constraint (s = 0, dashed)
and the Sphere Packing Bound error exponent (dotted); β = 3, ρ = 10, n0 = 2.
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6.3 Conclusions
In this chapter we have applied random matrix theory to calculate an analytic ex-
pression of the Gallager bound for finite codelength for block fading channels both
wireless with Q independent fading blocks within a codeword and the corresponding
optical ones. This method is valid for arbitrary normalized rates r < rerg, in the large
N,K, T limit. As expected, the error exponent increases with Q, resulting to a lower
error probability. The limit Q → ∞ is characterized by rerg. Furthermore, when the
normalized rate r becomes close to rerg the Gallager exponent becomes asymptoti-
cally equal to an upper bound of the fixed optimal error analysis. Other cases for
which the joint eigenvalue distribution of the effective channel is known and hence this
methodology can be directly applied by using the appropriate weight function w(x)
in (6.46), include the uplink MU-MIMO channel [23] and the Amplify-and-Forward
channel [13]. It should be noted that more general Gaussian channels, which do not
have a known joint eigenvalue distribution can be analyzed in similar ways using the
replica method [59].
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CHAPTER 7
Optical Fiber MIMO Channel

Model- Hamiltonian
Approach

7.1 Optical Fiber MIMO Channel Model and its
Analysis

Previously, in Chapter 5, we considered the outage capacity of the fiber optical MIMO
channel in the limit of full subchannel mixing and in the absence of Mode Dependent
Loss (MDL). In this chapter, we move towards a more realistic model of the optical
MIMO channel by establishing its analogy with a model from mesoscopic physics: The
chaotic cavity [4]. This model is amenable to a random matrix theory analysis and
can interpolate from zero to strong mixing between subchannels and includes MDL.
To showcase its validity we compute the channel’s mutual information via a saddle
point analysis.

7.2 Channel Description
The optical fiber may be viewed as a cavity where optical power may enter and exit
from both ends. The output power vout is related to the input power vin through
vout = Svin (see Fig. 3.1). The fiber exhibits random distributed crosstalk between
modes or cores. We assume this mixing to be random over different frequency bands,
due to strong delay spread. The situation is analogous to that of a chaotic cavity, which
randomly mixes the cavity states. The analytic expression of the 2N × 2N scattering
matrix for a chaotic cavity reads [4] and we have already discussed in Chapter 3.2

S = I− 2πiW†(H+ iπWW†)−1W. (7.1)
Here H is the 2N × 2N channel Hamiltonian andW is a 2N × 2N matrix containing
the coupling constants of the fiber to the outside world.

Statement of Problem
We wish to compute the capacity of the optical MIMO channel. The mutual informa-
tion is given by the well-known expression

I(y;x|U) =
⟨
log det (I+ ρ0UU†)

⟩
, (7.2)
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where ρ0 is the signal strength, U is the complex Nr × Nt channel matrix where
N = Nt +Nr and Nt, Nr are the number transmitted and reflected modes. x,y are Nt

and Nr dimensional vectors of the transmitted and received signals, respectively. Both
are assumed to be zero-mean Gaussian. The maximum of the mutual information over
the input distribution yields the capacity of the channel. The capacity is the maximum
error-free information transmission rate when the channel matrix U varies through its
whole distribution p(U). We assume U to be Gaussian distributed and we can remind
that

U†U = 4α2π2
(
(H0 + γG)2 + Γ2

)−1
. (7.3)

Here γ is a parameter controlling the randomness, H0 is a diagonal matrix and corre-
sponds to the line-of-sight component inside the fiber while the Gaussian distributed
matrix G describes the crosstalk and Γ is a diagonal matrix which models the losses
inside the fiber.

7.3 Analysis
Replica Theory
We start from the mutual information Eq. (7.2) of an optical MIMO channel. By
introducing Eq. (7.3) to Eq. (7.2) we obtain

I(y;x|H0,G) =
⟨
log det

(
I+ ρ04α

2π2
(
(H0 + γG)2 + Γ2

)−1
)⟩

=

⟨
log det

[
(H0 + γG)2 + Γ2 + ρI

]
− log det

[
(H0 + γG)2 + Γ2

]⟩
=E [I1 − I2] , (7.4)

where

ρ = 4α2ρ0π
2, (7.5)

F = Γ2 + ρI, (7.6)
I1 = log det

[
(H0 + γG)2 + F,

]
(7.7)

I2 = log det
[
(H0 + γG)2 + Γ2

]
. (7.8)

The generating function of (7.2), following [59], is

g(ν) =
⟨[
det
(
I+ γ0U†U

)]−ν
⟩
=
⟨
e−νI⟩

= 1− ν⟨I⟩+ ν2

2
⟨I2⟩+ . . . (7.9)

So we have

g(ν1, ν2) =
⟨
e−(ν1I1+ν2I2)

⟩
. (7.10)
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We are interested in the mean I = ⟨I1⟩ − ⟨I2⟩ and the variance var (I) = var (I1) +
var (I2)−2covar (I1, I2) of the mutual information. Therefore we have to calculate the
mean value of both I1 and I2 and also their respective variances and their covariance.
In order to set ourselves either to ν1- or ν2-space, we set ν2 = 0 or ν1 = 0, respectively.
The N → ∞ and ν → 0+ limits in the evaluation of g(ν) can be interchanged by first
taking the former and then the latter without changing the final answer. Indeed, the
two limits of large number of propagating modes and small ν are not different from
each other. Higher terms in the ν expansion lead to higher terms in the 1

N
expansion.

Calculation of gI1(ν1)
Using Identity 1 (Appendix F), we can write gI1(ν1) =

⟨
det
[
(H0 + γG)2 + F

]−ν1
⟩
, as

gI1(ν1) =

∫
DXe− 1

2
Tr{X†((H0+γG)2+F)X} =

∫
DXe− 1

2
Tr{X†FX}⟨e−

1
2
Tr{X†(H0+γG)2X}⟩G.

(7.11)

Using Identity 2 setting A† = −iX†(H0 + γG) and B = iX(H0 + γG), we write

⟨e−
1
2
Tr{X†(H0+γG)2X}⟩ =

∫
DYe− 1

2(YTY+iYT (H0+γG)X)+(YTY+iXT (H0+γG)Y). (7.12)

All-together we obtain

gI1(ν1) =

∫
DX

∫
DYe− 1

2(XTFX+YTY)e−
i
2(YTH0X+XTH0Y)⟨e−

iγ
2 (XTGY+YTGX)⟩G.

(7.13)
The ensemble average over channel realization for an arbitrary function is

⟨e−
iγ
2 (XTGY+YTGX)⟩G =

∫
DGe−N

2
Tr{G2}e−

iγ
2
Tr{G(XYT+YXT )} ∝ e−

1
2

γ2

4N (XY
T+YXT )

2

.

(7.14)
The last exponential can be written as

e
γ
8N
Tr(2(XTXYTY)+(XTY)2+(YTX)2). (7.15)

In order to evaluate the first term of (7.15) we will use Identity 3 and introduce ν1×ν1
matrices R, T :

e
γ
8N
Tr(2(XTXYTY)) =

∫
D(T ,R)eNTr(T R)e−

γ
2
Tr(YTYR+TXTX). (7.16)

The evaluation of the quadratic parts of the exponential (7.15) is trickier. This time
we will introduce ν1 × ν1 matrices P ,Q. We have

e
γ
8N
Tr((XTY)2+(YTX)2) =

=

∫
DPe−NP2

e−
iγ
2
Tr(P(XTY+YTX)) +

∫
DQe−NQ2

e−
iγ
2
Tr(Q(XTY−YTX)). (7.17)
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Saddle-point analysis
So, bringing everything together, we have

gI1(ν1) =

∫
D(T ,R,P ,Q)e−S , (7.18)

where

S = −NTr
(
T R − P2 −Q2

)
+ log det

[
F+ γT i (H0 + γ(P +Q))

i (H0 + γ(P −Q)) 1 + γR

]
.

(7.19)

To consider the vicinity near the saddle-point we rewrite R, T ,P ,Q as

T = tIν1 + δT
R = rIν1 + δR
P = pIν1 + δP
Q = qIν1 + δQ, (7.20)

where δT, δR, δP, δQ are ν1 × ν1 matrices which represent deviations around the
saddle point.
That way, we can use the Taylor expansion for S of (7.19) as :

S = S0 + S1 + S2 + S3 + . . . (7.21)

with

S0 = −NTr(tr − p2 − q2) + log
[
(F+ γt) (I+ γr) + (H0 + γ(p− q)) (H0 + γ(p+ q))

]
.

(7.22)

Continuing the evaluation of the next term of the Taylor expansion, since we are
looking for saddle point solution, S must be stationary with respect to variations in
R, T ,P,Q. Therefore S1 = 0 and the corresponding saddle-point equations are:

r =
1

N
Tr γ(1 + γr)

(F+ γt) (I+ γr) + (H0 − γp)2
(7.23)

p =
1

N
Tr γ(H0 − γp)

(F+ γt) (I+ γr) + (H0 − γp)2
(7.24)

t =
1

N
Tr γ(F+ γt)

(F+ γt) (I+ γr) + (H0 − γp)2
(7.25)

q = 0 (7.26)
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and the second order term is

S2 =
1

2
Tr




δT
δR
δP
δW


T

Σ


δT
δR
δP
δW


 , (7.27)

where Σ is a 4× 4 Hessian matrix the entries of which can be seen in Appendix G.1.
Following [59], the final outcome for the variance is:⟨

I2
⟩
− ⟨I⟩2 = − log det|Σ| . (7.28)

Calculation of gI2(ν)
For the calculation of the ⟨I2⟩ and the corresponding variance, we follow the same
method as above but instead of F we only have Γ2.

Calculation of gI12(ν1, ν2) (Covariance)
Again, using Identity 1

gI1I2(ν1, ν2) =

∫
DX1DX2

⟨
exp
(
−1

2
X†

1

[
F+ (H0 + γG)2

]
X1

− 1

2
X†

2

[
Γ2 + (H0 + γG)2

]
X2

)⟩
. (7.29)

Following the previous method we have

gI1I2(ν1, ν2) =

∫
DX1DX2 exp

(
−1

2
Tr
{
X†

1FX1 +X†
2Γ

2X2

)}
×

∫
DY1DY2 exp

(
−1

2
Tr
{
Y†

1Y1 +Y†
2Y2 + iX†

1H0Y1 + iX†
2H0Y2

)}
×⟨

exp
(
−iγ

2

(
X†

1GY1 +X†
2GY2

))⟩
G
. (7.30)

Again, using Identity 2 and Identity 3 we introduce the ever-helpful ν1×ν1 matrices
R1, T1,P1,Q1, ν2 × ν2 matrices R2, T2,P2,Q2 and ν1 × ν2 matrices R12, T12,P12,Q12

and following the diagonalizing method we end up to matrix A which can be seen in
Appendix G.2.
At the saddle point the cross-terms R12, T12 etc are equal to zero. So A becomes a

block-diagonal matrix and the evaluation of the determinant ( Identity 1) is just the
multiplication of these 2 blocks.
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Figure 7.1: Cumulative distribution function (CDF) of mutual information for N = 6
and ρ1 < ρ2. Runs = 106
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Figure 7.2: Comparison of the calculation of the mutual information. N = 6. Runs=
106

The rest of the calculations for the computation of the covariance is straightforward
and the Hessian matrix for the covariance can be seen in Appendix G.3.
So finally the variance is

V ar = − log det|ΣI1 | − log det|ΣI2 |+ 2 log det|Σcov|+ 4 log 2 . (7.31)

7.4 Numerical results
In order to check our analytical results we have numerically computed mutual informa-
tion and its cumulative distribution function (CDF). The results are shown in Figs. 7.1
and 7.2. We compare the Gaussian distribution N (⟨I⟩, var(I)) evaluated using the
analytical calculations in this chapter with results obtained by averaging over a large
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number of random matrix realizations for N = 6. Remarkably, we find that in both
cases, the discrepancy between the different curves is small. This shows that our ana-
lytical results are valid even for the practical relevant case of small number of modes
or cores N .

7.5 Conclusions
In this chapter we have introduced a novel channel model for the optical MIMO channel
by relating it to a chaotic cavity. This new modeling approach captures the fundamen-
tal properties of the optical MIMO channel. Using tools from random matrix theory
and a saddle point analysis, we have shown that in the limit of large N , the distribu-
tion of the mutual information approaches a Gaussian. Numerically we find that this
method is valid even for low N . This analytic method gives us the means to analyze
the statistics of throughput in the fiber optical MIMO channel in the presence of ar-
bitrary level of crosstalk and MDL. The introduced channel model is also amenable to
extensions, such as dispersion and nonlinear effects in deterministic and random part
respectively.
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APPENDIX A
The diagonal matrices Adiag

and Bdiag
Let be 2N × 2N matrices Adiag and Bdiag

Adiag =



1

1 0
1

0 . . .
0


(A.1)

where the number of “1”s equals the number of the receivers Nr and

Bdiag =



0

0 0
1

0 . . .
1

0


(A.2)

where the number of “1”s equals the number of the transmitters Nt and the number
of lower “0”s equals N − Nt. In general, to model the power loss inside the fiber
we introduce N0 so as N = Nr + Nt − N0 and after some minor algebra we have
Ñ = Ñr + Ñt [15]. So, without loss of generality we can omit N0 in our calculations.
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APPENDIX B
Details for Derivation of

Closed Form Solution
In this appendix we provide details of the derivation of the closed form expression for
the outage presented in Section 5.3. We start with (5.6). It is convenient to make the
change of variables 1 + ρλk = yk to get

1− Pout(r) = A
∫ ∞

−∞

dp

2π

eipNtr

ϵ− ip

∫
[1,1+ρ]Nt

dy
∏
n<m

|yn − ym|2

×
∏
k

[
y−ipk (yk − 1)|Nt−Nr| ((ρ+ 1)− yk)

N0

]
A =

1

ZNρN
2
t +(|Nt−Nr|+N0)Nt

where dy = dy1 · · · dyNt and A a normalization constant. Now we invoke the Andréief
identity (see also Lemma 8 in [73]), which takes advantage of the fact that the products
of the form

∏
n,m(yn − ym) can be written as a Vandermonde determinant. Defining

the function
g(x, p) = x−ip(x− 1)|Nt−Nr| ((ρ+ 1)− x)N0 (B.1)

we have ∫
[1,1+ρ]Nt

dy
Nt∏
k=1

g(yk, p) det
(
yj−1
i

)2 (B.2)

=

∫
[1,1+ρ]Nt

dy
Nt∏
k=1

g(yk, p)

∑
a(Nt)

(−1)|a|
Nt∏
i=1

yai−1
i

2

=
∑

a(Nt),b(Nt)

(−1)|a|+|b|
∫
[1,1+ρ]Nt

dy
Nt∏
k=1

g(yk, p)y
ak+bk−2
k

= Nt!det (Hi+j(p))i,j=1,...,Nt

In the second line we used the Leibnitz expansion of determinants [73], where the sum
is over all permutations a with (−1)|a| being the sign of the permutation. In the final
line we re-summed the integrated quantities to get a determinant of the Hankel matrix
H with elements Hi+j which can be expressed as

Hℓ(p) =

∫ 1+ρ

1

dx xℓ−2−ip(x− 1)|Nt−Nr|((1 + ρ)− x)N0
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=ρN0+|Nt−Nr|+1B(b, c− b)F (a, b; c;−ρ) (B.3)

where B(b, c−b) and F (a, b; c; z) are the Beta and hypergeometric functions respectively
[29], for the parameters a = 2+ ip− ℓ, b = |Nt −Nr|+ 1, c = N0 + |Nt −Nr|+ 2. This
results to the following expression for the outage probability

1− Pout(r) = A′
∫ ∞

−∞

dp

2π

eipNtr

ϵ− ip det (Hi+j(p))i,j=1,...,Nt
(B.4)

where A′ = Nt!A.
The integral (B.3) can be evaluated in the most elementary form exploiting the

fact that both |Nt − Nr| and N0 are integers. Using the binomial theorem to expand
the second and third powers, we get

Hℓ(p) =

|Nt−Nr|∑
k=0

N0∑
n=0

ck,n
(1 + ρ)ℓ−1−ip+k+N0−n − 1

ℓ− 1− ip+ k +N0 − n
(B.5)

where

ck,n =

(
|Nt −Nr|

k

)(
N0

n

)
(−1)|Nt−Nr|−k+N0−n(1 + ρ)n (B.6)

Let us now expand the determinant in (B.4) using (B.5). After rearranging the sums
we get

1− Pout(r) =
∑
k,n

Ck,n
∑
σ(Nt)

(−1)|σ|J (r; {sσ}) (B.7)

where the sum over the integer components of the vector k = [k1, · · · , kNt ] is over the
interval [0, |Nt−Nr|], while for the vector n = [n1, . . . , nNt ] its components are summed
over the interval [0, N0]. Also, Ck,n = A′∏

i cki,ni
and

J(r; {sσ}) =
∫ ∞

−∞

dp

2π

eipNtr

ϵ− ip

Nt∏
j=1

(1 + ρ)sj−ip − 1

sj − ip
(B.8)

where the components of the integer vector sσ are sj = j + σj − 1 + kj + N0 − nj.
Expanding the numerator of the above equation, we obtain

J(r; {s}) =
Nt∑
ℓ=0

(−1)ℓ+Ntdℓ(s)F (Ntr − ℓ log(1 + ρ), s)

dℓ(s) = eℓ ((1 + ρ)s1 , . . . , (1 + ρ)sNt ) (B.9)

F (z, s) =
∫ ∞

−∞

dp

2π

eipz

(ϵ− ip)
∏Nt

i=1(si − ip)
(B.10)

where in the second line we have used the elementary symmetric polynomials
eℓ(x1, x2, · · · , xNt) of degree ℓ.
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As a result, in order to evaluate the outage probability in closed form we only need
to evaluate the complex integral in F (z, s). Since all poles of the integrand are in
the lower half complex p-plane, if z > 0 (hence Ntr > ℓ log(1 + ρ)) then the integral
vanishes [63]. Hence only ℓ-terms with Ntr < ℓ log(1+ρ) survive. Having this in mind
the integral can be evaluated by summing over the residues of the poles. As a result
we obtain

F (z, s) =
Nt∏
j=1

s−1
j +

Nt∑
j=1

esjz

sj
∏

k ̸=j(sk − sj)
=

Nt∏
j=1

s−1
j + F1(z, s) (B.11)

Putting all above formulae together provides the final result expressed in (5.7).
Before concluding this section, it is worth discussing the value of the above equation

when two or more integers si are equal. To address this issue it will prove useful to
express F1(z, s) as a ratio of determinants [46]. Indeed we get

F1(z, s) =
det (fi(sj, z))∏
n>m(sn − sm)

(B.12)

where the elements of the vector function f(x, z) is defined as follows

fi(x, z) =

{
exz

x
i = 1

xi−1 Nt ≥ i > 1
(B.13)

When one or more values of sj are identical, the ratio is ill-defined, because both
numerator and denominator vanish. Although we could have dealt with the problem
directly at the level of complex integration by considering double poles, it is more
instructive to analyze this case as a limit of the s’s approaching each other. Following
Lemma 1 in [58] we can show that if s1 has multiplicitym then F1(z, s) can be expressed
as

F1(z, s) =
detZ∏m−1

q=1 {q!}−1∏
a>b>m(sa − sb)

∏Nt

j=m+1(sj − s1)m
(B.14)

where the matrix Z can be expressed as

Z =
[
f(s1, z); f′(s1, z); . . . ; f(m−1)(s1, z); f(sm+1, z); . . . ; f(sNt , z)

]
(B.15)

where the primes represent partial derivative with respect to the first argument. We
can similarly obtain expressions for the case when we have several multiplicities in s.
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APPENDIX C
Proofs in Chapter 5

C.1 Proof of Theorem 5.1
In this appendix we will provide some details on the proof of the above theorem.

Convexity
The convexity of E [p] has been shown in [3] over functions in X , as also in [45].

Uniqueness
The uniqueness of the minimum of E [p] has been shown in [3,34]. The value of E0 can
be obtained form the limit E0 = − limNt→∞ logZNt/N

2
t . However, the normalization

factor ZNt can be evaluated explicitly using the Selberg integral [23] as follows:

ZN =
N−1∏
k=0

Γ(N(β − 1) + 1 + k)Γ(Nn+ 1 + k)Γ(k + 2)

Γ(N(β + n) + k + 1)
(C.1)

Using the Stirling approximation for the Γ-functions and approximating the sums with
integrals, we get that

E0 =
(β + n+ 1)2

2
log(β + n+ 1)− (β + n)2

2
log(β + n)

− β2

2
log β +

(β − 1)2

2
log(β − 1)− (1 + n)2

2
log(1 + n) +

n2

2
logn (C.2)

Exponential Asymptote of Prob(IN < Ntr)

Let Xr be the set given by

Xr =

{
p ∈ X and

∫ 1

0

p(x) log(1 + ρx) dx ≤ r

}
(C.3)

Given the linearity of the constraint, the above set is convex. Now, in [34] it has been
shown that Prob(IN ≤ r) obeys the large deviation principle with good rate function
I[p] = E [p]− E0. Hence,

E0 − inf
p∈Xr

E [p] = − lim sup
Nt→∞

1

N2
t

logP (Xr) = − lim inf
Nt→∞

1

N2
t

logP (Xr) (C.4)

The analogous result can be obtained for Corollary 5.1 by noting that the com-
plement of Xr, namely X c

r is also convex. Then the above result follows directly for
P (IN > r).
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C.2 Proof of Lemma 5.1
We first define

Λ(k) = sup
c,ν≥0

inf
p

(
k

∫ 1

0

p(x) log(1 + ρx) dx− L0[p, ν, c]

)
(C.5)

By the definition of (5.18) we have E(r) = supk(kr − Λ(k)).
We start by noting that for r > rerg, E(r) can be obtained by optimizing over only

k > 0, i.e. E(r) = supk>0(kr − Λ(k)). Indeed, for any k ≤ 0

kr − Λ(k) ≤ krerg − Λ(k) ≤ E(rerg) = E0 (C.6)

Hence, since we have infr E(r) = E0 from Theorem 5.1(b), the quantity kr − Λ(k) will
have its supremum for positive k. Part (1) of this Lemma is then proved by taking the
derivative of E(r) with respect to r, which is

E ′(r) = k(r) > 0 (C.7)

where k(r) is the k-value of the supremum. We can similarly prove that k(r) < 0 for
r < rerg, hence showing part (b) of Lemma 5.1.
To prove convexity, let θ ∈ [0, 1]. Then we have

θE(r1) + (1− θ)E(r2) (C.8)
= sup

k
(θkr1 − θΛ(k)) + sup

k
((1− θ)kr2 − (1− θ)Λ(k))

≥ sup
k
((θr1 + (1− θ)r2)k − Λ(k)) = E(θr1 + (1− θ)r2)

C.3 Uniqueness of solution of (5.36)
In this appendix we will show the uniqueness of solution of the normalization equation
(5.36)

n√
1− b

+ k

√
1

1 + bρ
= 2 + n+ k

The left hand side of the above equation can, also, be identified as the in-parenthesis
element of the eigenvalues density equation (5.35) for x = b. We can set

f(b) =
n√
1− b

+ k
1√

1 + ρb

and taking the first derivative

f ′(b) =
n

(1− b)3/2
− kρ

(1 + ρb)3/2
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• If k < 0 it is f ′(b) > 0 and so, f(b) is monotonous and (5.36) has unique solution

• If k > 0 we also need the second derivative

f ′′(b) =
3

2

n

(1− b)5/2
+

3

2

kρ2

(1 + ρb)5/2
> 0

The minimum value of f(b) can be found for b = 0 equal to f(b)min = n + k <
2 + n+ k, which is the right hand side of the (5.36), and the maximum value is
for b = 1, equal to f(b)max → ∞. Finally, because f ′(b) = 0 has one real root,
we can visualize that again (5.36) has a unique solution.

The same procedure can be used to derive the respective solution uniqueness for the
other cases.
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APPENDIX D
Proofs in Chapter 6.1

D.1 Proof of Theorem 6.1
For Q = 1 we study the limit

E(r) =− lim
N→∞

1

N2
logEH

[
e−N2f [µN ]

]
, (D.1)

where µN(x) =
1
N

∑
i δ(x − λi), λi are the eigenvalues of HH† and f [p] is defined on

M(R+) → R, where M(R+) is the space of probability measures on R+ as

f [p] =α max
ρ∈[0,1]
s∈[0,1)

{
ρ

∫
R+

log
(
1 +

x

zρ s

)
p(x)dx− ρ r + (1 + ρ)(s+ log(1− s))

}
, (D.2)

where the argument of max is defined as g[ρ, s, p]. It is therefore important to show
a number of properties of f [p] and g[ρ, s, p]. First, when ρ = s = 0, the function g
vanishes, i.e. g[0, 0, p] = 0, so that f [p] ≥ 0. Second, f [p] is continuous in p, for which
Berge’s Maximum theorem [5] can be invoked. Third, f [p] is convex in p, which can be
shown directly from its definition. Fourth, g[ρ, s, p] is quasi-concave in ρ, s. To show
this we start by noting that, excluding the term ρ s in (D.2), g[ρ, s, p] is concave in both
ρ, s. Hence, since ρ s is quasi-concave, so is g[ρ, s, p]. Therefore for all p ∈ M(R+) for
which the integral

∣∣∫∞
0
log(x)p(x)dx

∣∣ <∞, g[ρ, s, p] has a global maximum in ρ ∈ [0, 1],
s ∈ [0, 1).

Varadhan’s Lemma
We now wish to invoke Varadhan’s Lemma. To do so, we first provide the following
definitions:

Definition D.1. [18] A rate function I[p] is a lower semicontinuous mapping I :
M(R+) → [0,∞], for which all level sets are closed. If, in addition, the level sets are
compact, then I[p] is called a good rate function.

Definition D.2. [3,18] The probability law µN satisfies the large deviation principle
in the scale N2 with rate function I if, for all subsets of Γ ⊂ M(R+)

− inf
p∈Γo

I[p] ≤ lim inf
N→∞

1

N2
logµN(Γ) ≤ lim sup

N→∞

1

N2
logµN(Γ) ≤ − inf

p∈Γ̄
I[p], (D.3)

where Γo and Γ̄ are the interior and closure of Γ, respectively.
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We now note that f [p] is continuous. In addition, since f [p] ≥ 0 for every p, then
for any γ > 0

lim sup
N→∞

1

N2
logE

[
e−γN2f [µN ]

]
<∞. (D.4)

Furthermore, in [34] it was shown that µN , the probability law of the {λi} satisfies a
large deviation principle with good rate function given by

I[p] =

∫ ∫
log |x− y|p(x)p(y)dxdy

+

∫
(x− (β − 1)) log(x)p(x)dx− 1

2

(
3β − β2 log β + (β − 1)2 log(β − 1)

)
. (D.5)

As a result, Varadhan’s Lemma can be applied to (D.1) to show that the limit exists
and is equal to

E(r) = inf
p∈M(R+)

(f [p] + I[p]) . (D.6)

Furthermore, it is possible to show that I[p] is a convex function of p. This follows
directly from [3,45] by observing the quadratic dependence of I[p] in p. Therefore,
since f [p] + I[p] is convex in p its infimum has a unique solution. Taking into ac-
count the definition of f [p] and its concave-convex properties discussed above, we may
apply Sion’s theorem [74] to exchange the order in which the max− inf are applied.
Therefore, E(r) in (D.6) can be expressed as

E(r) = max
ρ∈[0,1]
s∈[0,1)

inf
p∈M(R+)

(g[ρ, s, p] + I[p]) . (D.7)

Explicit Solution of optimum p(x) and Evaluation of E(r)
To solve the above optimization problem (D.7), we introduce the Lagrangian functions

L0[p, c] = f [p] + I[p]− c

(∫
p(x)dx− 1

)
, (D.8)

L1[p, c, ρ, s] = L0[p, c] + α(ρ+1) (s+ log(1− s)) + α ρ

(∫
log
(
1 +

x

zρ s

)
p(x)dx− r

)
.

(D.9)

Since L1 is convex in p and concave in c, ρ and s, the saddle point is unique [8] and
we obtain

E(r) = sup
c,ρ,s

inf
p
L1[p, c, ρ, s]. (D.10)
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Taking advantage of the convexity in p, in order to find the infimum of L1 we will
take the functional derivative with respect to p, which is defined as

δL1[p] =
d

dt

∣∣∣∣
t=0

L1[p
∗ + tϕ], (D.11)

where (p+ tϕ) ∈ M(R+) and ϕ is a test function. This can be re-written as

δL1[p] =

∫
ϕ(x)Ψ[p∗, x]dx, (D.12)

where

Ψ[p∗, x] = −2

∫
p(y) log |x− y|dy + x− (β − 1) log(x)− c+ α ρ log

(
1 +

x

zρ s

)
.

(D.13)

At the minimum, (D.12) must vanish identically for all φ, thus Ψ[p∗, x] = 0 and it
follows that

2

∫
log |x− y|p∗(y)dy = x− (β − 1) log(x)− c+ α ρ log

(
1 +

x

zρ s

)
. (D.14)

Next, we differentiate (D.13) with respect to x to obtain

2PV
∫

p∗(x)

x− y
dx = 1− β − 1

x
+

α ρ

zρ s + x
, (D.15)

where PV denotes the principle value. Following [80], the solution of the last equation
is given by

p∗(x) =
1

2π
√

(x− a)(b− x)

[
−x− (β − 1)

√
ab

x
+
α ρ
√
(zρ s + a)(zρ s + b)

(x+ zρ s)
+ C

]
,

(D.16)

where C is an unknown constant and a, b are the (unspecified) endpoints of the support
of p(x). Since p∗(x), if it exists, is unique, we search for a solution among continuous,
non-negative, normalized functions over x ∈ (0,∞). Continuity at x = b demands that
p∗(b) = 0, which fixes the value of C above, while continuity at x = a, i.e. p∗(a) = 0

results to (6.19). Furthermore, the normalization condition on p(x),
∫ b

a
p(x)dx = 1,

results to (6.20). In Appendix D.2 it is shown that for fixed ρ there is a unique solution
of (6.19) and (6.20) for 0 < a < b. For s ∈ [0, 1), L1 is concave. Hence the maximum
over s results when the first derivative of L1[p

∗] with respect to s vanishes, hence
(6.21).
Once we have determined the value of s as a function of ρ, we now search for the

optimal value of ρ. Extending its support to ρ ∈ [0,∞), the extremal value of ρ is
determined by (6.22). However, since the optimization of ρ is over [0, 1], then there are
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two possible types of solution: For rerg ≥ r ≥ r1, the optimal value of ρ < 1, hence the
value of ρ is determined by (6.22). In contrast, for r < r1 = r̄(1), the optimal value of
ρ is fixed to the boundary of the region, i.e. ρ = 1.
Having determined the values of a, b, s, ρ, we may now integrate the expression

in (D.9) to evaluate E(r). The integrals appear in (6.18) in Theorem 1. All single
integrals over p(x) can be evaluated in closed-form directly. (D.13) can be used to
simplify the double integral over p into a single one, which then can be evaluated
directly. The value of c in (D.13) can be obtained by evaluating Ψ[p, x] at x = a.
Finally, to obtain the value of E(r) for general Q, we make the substitution α → α

Q

and E(r) → QE(r) as discussed in Remark 6.3.

D.2 Proof of uniqueness of solution of (6.19),(6.20)
To show that (6.19) and (6.20) have a unique solution, we observe that the normaliza-
tion integral n(b) =

∫ b

a(b)
p(x)dx is an increasing function of b since its derivative can

be expressed as

n′(b) =
1

4zρ s

(
1 +

(β − 1)zρ s√
a(b)b3

)
zρ s − a(b)

zρ s + b
> 0. (D.17)

As a(b) is a decreasing function and bounded below by 0, we have limb→∞ n(b) = +∞
and by continuity there will be a unique b∗ such that n(b∗) = 1. Thus, both a∗ = a(b∗)
and b = b∗ will be the unique solution to (6.19) and (6.20).

D.3 Proof of Theorem 6.2
Let us re–write (D.6) as:

E(r) = Q

(
1

Q
f [p∗] + I[p∗]

)
︸ ︷︷ ︸

JQ[p∗]

, (D.18)

where p∗ is the function p at the infimum of JQ[p]. To examine the behavior of the
error exponent E(r) for large Q, we analyze the derivative of JQ with respect to Q.
Since JQ[p] is stationary at p∗, its variations with respect to p vanish at p∗. Hence,
since both f [p∗] and I[p∗] do not depend explicitly on Q we obtain

dJQ
dQ

=
∂JQ
∂Q

= − 1

Q2
f [p∗]. (D.19)

Now, as Q grows, it can be seen from (6.19) and (6.20) that p∗(x) converges to the
Marčenko-Pastur distribution and a, b converge to a0 and b0 respectively. Hence, f [p∗]
becomes f [p0]. Therefore if we integrate (D.19) between (Q,∞) we find that to leading
order in Q, JQ ≈ f [p0]

Q
. Multiplying JQ[p∗] with Q as in (D.18), we obtain (6.34).
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G(x, y) and I3(x) Function

The function G(x, y) for x > 0 and y > 0 or y < −1 is given by

G(x, y) =
1

π

∫ 1

0

√
t(1− t)

log(t+ x)

t+ y
dt (E.1)

=− 2sgn(y)
√

|y(1 + y)| log
[√

x|1 + y|+
√

|y|(1 + x)√
|1 + y|+

√
|y|

]

+ (1 + 2y) log
[√

1 + x+
√
x

2

]
− 1

2

(√
1 + x−

√
x
)2

This result first appeared in [12] and then later in [45], both for y > 0. It can readily
be shown that it can be generalized for y < −1. I3(x) appearing in [12,83] can be
shown to be I3(x) = −G(x,−1).
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APPENDIX F
Identities

The proofs for the next identities , can be found in [59].

Identity 1. Let M be a hermitian, positive, definite square matrix m ×m and X a
complex m× n matrix, then

(detM)−1 =

∫
DXe− 1

2
Tr{X†MX}. (F.1)

Identity 2. Let, X,A,B be m× n complex matrices, then∫
DXe− 1

2
Tr{X†X+A†X−X†B} = e−

1
2
Tr{A†B}. (F.2)

Identity 3 (Hubbard-Stratonovich transformation). Let, U,V be arbitrary complex
ν × ν matrices, where ν here is assumed to be an arbitrary positive integer. Then,

e−Tr{UV} =

∫
DTDReTr{RT−UT−RV}. (F.3)
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APPENDIX G
Matrices in Chapter 7

G.1 The Hessian Matrix

Σ =



−Tr
(

γ2

Z2
1
(I+ γr)2

) −Tr
(

γ2

Z2
1
(I+ γr)(∆ + γt)

+γ2

Z
− 1

) −Tr
(

2γ2

Z2
1
(I+ γr)(H0 − γp)

)
0

Tr
(

γ2

Z2
1
(I+ γr)(∆ + γt)

+ γ2

Z1
− 1

) −Tr
(

γ2

Z2
1
(∆ + γt)2

)
−Tr

(
2γ2

Z2
1
(∆ + γt)(H0 − γp)

)
0

−Tr
(

2γ2

Z2
1
(I+ γR)(H0 − γp)

)
−Tr

(
2γ2

Z2
1
(∆ + γt)(H0 − γp)

) −Tr
(

4γ2

Z2
1
(H0 − γp)2

+2γ2

Z1
− 2

) 0

0 0 0 2N − Tr
(

2γ2

Z1

)


where Z1 = (F+ γt) (I+ γr) + (H0 − γp)2.

G.2 The Matrix A

A =


F+ γT1 iH0 + iγ(P1 +Q1) 0 0

iH0 + iγ(P1 −Q1) I+ γR1 0 0

0 0 Γ2 + γT2 iH0 + iγ(P2 +Q2)

0 0 iH0 + iγ(P2 −Q2) I+ γR2


G.3 The Hessian Matrix for the Covariance
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where

Z =
[
(F + γt1)(I+ γr1) + (H0 − γp1)

2
]
×
[
(Γ2 + γt2)(I+ γr2) + (H0 − γp2)

2
]

and F,Γ are scalars. Due to simplification reasons we assumed that the loss is not
frequency selective.
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