

E@NIKO KAI KAПOДI工TPIAKO ПANEПI工THMIO A@HNתN MOPIAKH KAI EФAPMOEMENH ФYЕIONOГIA

Δ IПИЛМАТІКН ЕРГАЕІА

Physical activity in Greek patients with Primary Sjogren's Syndrome
 EЛENH TEO^AKKH

AOHNA

Nó́ $\boldsymbol{\mu} \boldsymbol{\beta}$ ıос, 2018

DECLARATIONS

I would like to declare my deepest gratitude to a group of people that made possible for me to study for my master's degree and furthermore to commit to and complete this Master Thesis. Special Mention goes to my supervisor for this effort, Professor Kleio Mauragani who was a tremendous guide for me through this whole process. Also, to the all the patients that sincerely answered the questionnaires and took part to this study. My love and eternal gratitude to my Mother Maria and Father Konstantinos for their unconditional love, doing everything they can for me to make my dreams come true. My Sister Georgia and brother Thomas for the endless inspiration and last by not least my friends and the rest of the family.

Abstract

This study aims to evaluate the benefits provided by physical activity being performed by patients that have been diagnosed with primary Sjogren's syndrome. Through this random controlled trial, in which 70 PSS patients took part, we aimed to compare the physical exercise ratio of the subject group with healthy population that matched age and sex. Moreover, trying to assess the value and the influence that inflammatory markers (IL-1 and IL-18) and fatigue have to patients that have been diagnosed with PSS. The medium used for the comparison described above was the Recent Physical Activity Questionnaire (RPAQ).

Keywords: Primary Sjogren's Syndrome, Physical activity, Fatigue, Inflammatory markers
Table of Contents
1.0 Introduction 1
2.0 Patient and methods 2
2.1 Subject groups 2
2.2 Data Collection Tools 2
2.3 Statistical Analysis 3
2.4 Measures 3
2.5 Ethical Considerations 3
3.0 Results 4
4.0 Discussion 17
5.0 Limitations 19
6.0 Future work 19
7.0 Bibliography 20
8.0 Appendices 22
8.1 Appendix 1: Questionnaire 22
9.0 Supplements 33
9.1 List of tables 33
9.2 List of abbreviations 33

1.0 Introduction

Primary Sjogren's syndrome is an autoimmune rheumatic disease, affecting 0.09% 0.23% of the Greek population, with the symptom of chronic fatigue being predominant (Patel \& Shahane, 2014; Gabriel \& Michaud, 2009). An international research has shown that one out of two rheumatic patients suffers from fatigue (Overman, Kool, Da Silva \& Geenen, 2016). Most recent inquire about, showed that fatigue- a major burden for patients with Sjogren's syndrome- can be reduced when physical activity is implemented (Wouters et al., 2012). Additionally, previous evidence suggests that the symptom of depression that have been linked with those people is largely present due to low levels of physical activity (Ng et al, 2017). However, there is no sufficient information concerning physical activity levels in people with primary Sjogren's syndrome in Greek population.

Previous studies (Perandini et al., 2012; Petersen \& Pedersen, 2005), showed the benefits of physical exercise to inflammation and how chronic systemic diseases can be prevented by regular exercise. Another study showed important changes in aerobic capacity and depression levels in people with primary Sjogren's syndrome after a 12-week exercise intervention (Strombeck, Theander \& Jacobsson, 2007). Moreover, a study suggested that people with PSS have shown decreased ability to do an extensive variety of regular exercises in comparison with healthy controls. As a result, decreased physical exercise can be related with many of the clinical highlights of the syndrome and decrease the condition and wellbeing of the patients (Strombeck et al., 2000).

Up until now there has not been a formal study regarding the benefits of physical exercise in patients with that has been diagnosed with PSS within Greek population and the effect on the inflammatory markers and fatigue.

The questionnaire RPAQ (Recent Physical Activity Questionnaire), is a validated questionnaire used in Greek population and it assess physical activity during the last month of the subjects' lifetimes. The results are going to be compared with healthy control groups. This questionnaire is separated into three parts: A) physical activities
performed at home, B) physical activities performed at work, C) physical activities performed during free time (MRC Epidemiology Unit, University of Cambridge, 2018). The purpose of this study is to provide an outline concerning if in fact, Greek population with PSS spends time on different types of exercise and the influence of the exercise training on the inflammatory markers and fatigue (Golubic et al., 2014).

2.0 Patient and methods

PSS patients were selected from the rheumatology department of the General Hospital of Athens (LAIKO) from February 2018 to June 2018. Moreover, blood samples of the patients with PSS who completed the questionnaire were used to find the amount of IL-1 and IL-18. Questionnaires from patients with PSS were compared to healthy population.

2.1 Subject groups

The available Data was collected from a sample of seventy participants with primary Sjogren's syndrome in Greek population through a distribution of questionnaires in physical copies and via telephone calls. Those seventy patients were asked to fill in the questionnaire about their physical activity during the last four weeks. The age group that is included in the study is patients from 21 years until 83 years old. People with secondary Sjogren's syndrome were excluded from the study (according to the classification criteria of American College of Rheumatology 2016).

2.2 Data Collection Tools

The primary data was collected through the use of the RPA Questionnaire. The Questionnaire is divided into three parts: A) physical activities performed at home, B) physical activities performed at work, C) physical activities performed during free time. The RPAQ assessed physical activity of patients during the last four weeks. The Fatigue scale (FACIT) was used in order to determine fatigued or non-fatigued PSS patients (Webster, Cella, \& Yost, 2003).

2.3 Statistical Analysis

The data analysis was done using the IBM SPSS software 25.0 using different comparisons. In the first part, we compared people with primary Sjogren's syndrome and healthy controls in order to find which group of people are exercising more. Moreover, we analyzed fatigue and exercise in people with Primary Sjogren's syndrome in order to see if people who exercise show signs of fatigue. Additionally, we searched for a correlation of the inflammatory markers (IL-1 and IL-18) and exercise through the help of the questionnaire. The significance level was set at $\mathrm{P}<0.05$.

2.4 Measures

The laboratory findings that were included in this study were acquired from the General Hospital of Athens (LAIKO) in July 2018. The main results that were included in this paper were IL-1 and IL-18, Fatigue scale (FACIT). To evaluate the activity ratio of the subjects group and moreover compare it with the healthy population group the RPA questionnaire was used.

2.5 Ethical Considerations

Patients were informed before completing the RPAQ that their answers and their personal information will remain anonymous and would only be used for the aims of the research.

3.0 Results

Table 1. Demographics of patients with PSS and HC

Patient Characteristics	PSS	HC	p-value
Female sex (\%)	$94.2(66 / 70)$	$92.9(65 / 70)$	1.00
Age (years, mean \pm SD)	61.5 ± 12.3	61.4 ± 9.15	0.499

Table 2. Prevalence of patients with PSS and HC in physical activities performed at home

PSS vs HC exercise	PSS ($\mathrm{n}=70$)	HC ($\mathrm{n}=70$)	p-value
Transportation (\%)			
Car	42.9 (30/70)	62.9 (44/70)	0.027
Walking	27.1 (19/70)	24.3 (17/70)	0.847
Public Transport	30 (21/70)	11.4 (8/70)	0.011
Cycling	1.4 (1/70)	1.4 (1/70)	1.00
TV, DVD or Video (\%)			
Week			
Never	10 (7/70)	10 (7/70)	1.00
0-1 hours	8.6 (6/70)	8.6 (6/70)	1.00
1-2 hours	34.3 (24/70)	31.4 (22/70)	0.857
2-3 hours	24.3 (17/70)	25.7 (18/70)	1.00
3-4 hours	8.6 (6/70)	12.9 (9/70)	0.586
4+ hours	12.9 (9/70)	10 (7/70)	0.533
Weekend			
Never	11.4 (8/70)	12.9 (9/70)	1.00
0-1 hours	7.1 (5/70)	4.3 (3/70)	0.718
1-2 hours	32.9 (23/70)	10 (7/70)	0.125
2-3 hours	27.1 (19/70)	20 (14/70)	0.426
3-4 hours	7.1 (5/70)	14.3 (10/70)	0.274
4+ hours	14.3 (10/70)	28.6 (20/70)	0.063
Computer use (\%)			
Week			
Never	61.4 (43/70)	45.7 (32/70)	0.090
0-1 hours	7.1 (5/70)	18.6 (13/70)	0.075

1-2 hours	$15.7(11 / 70)$	$18.6(13 / 70)$	0.823
2-3 hours	$1.4(1 / 70)$	$5.7(4 / 70)$	0.366
3-4 hours	$5.7(4 / 70)$	$7.1(5 / 70)$	1.00
4+ hours	$8.6(6 / 70)$	$4.3(3 / 70)$	0.493
Weekend			
Never	$61.4(43 / 70)$	$40(28 / 70)$	$\mathbf{0 . 0 1 8}$
0-1 hours	$7.1(5 / 70)$	$8.6(6 / 70)$	1.00
1-2 hours	$15.7(11 / 70)$	$25.7(18 / 70)$	0.210
2-3 hours	$1.4(1 / 70)$	$7.1(5 / 70)$	0.209
3-4 hours	$7.1(5 / 70)$	$7.1(5 / 70)$	1.00
4+ hours	$8.6(6 / 70)$	$11.4(8 / 70)$	0.779
Stairs $\boldsymbol{\%})$		$22.9(16 / 70)$	$\mathbf{0 . 0 0 7}$
None	$45.7(32 / 70)$	$37.1(26 / 70)$	0.605
1-5 times a day	$42.9(30 / 70)$	$21.4(15 / 70)$	0.170
6-10 times a day	$11.4(8 / 70)$	$11.4(8 / 70)$	$\mathbf{0 . 0 0 6}$
11-15 times a day	$0(0 / 70)$	$8.6(6 / 70)$	$\mathbf{0 . 0 2 8}$
16-20 times a day	$0(0 / 70)$	$0(0 / 70)$	1.00
$20+$ times a day	$0(0 / 70)$		

Table 3. Prevalence of patients with PSS and HC in physical activities performed at work

PSS vs HC exercise	PSS (n=70)	HC (n=70)	p-value
Employment during the last four	$22.9(16 / 70)$	$62.9(44 / 70)$	0.00
weeks (\%)			
Hours per week (mean \pm SD)	23.9 ± 21.6	8.71 ± 16.5	0.00
Type of work (\%)	$14.3(10 / 70)$	$45.7(32 / 70)$	0.00
Sedentary occupation	$5.7(4 / 70)$	$12.9(9 / 70)$	0.243
Standing occupation	$2.9(2 / 70)$	$4.3(3 / 70)$	1.00
Manual work	$0(0 / 70)$	7.36 ± 11.9	1.00
Heavy Manual work	2.43 ± 6.083	3.16 ± 2.483	0.00
Distance from home to work (km,		0.00	
mean \pm SD)	1.16 ± 2.91	$58.6(41 / 70)$	0.00

Public Transport	$7.1(5 / 70)$	$1.4(1 / 70)$	0.209
Bicycle	$2.9(2 / 70)$	$0(0 / 70)$	0.496
Walking	$7.1(5 / 70)$	$4.3(3 / 70)$	0.718

Table 4. Prevalence of patients with PSS and HC performing aerobic exercise

PSS vs HC exercise	PSS (n=70)	HC (n=70)	p-value
Recreation (minutes, mean $\pm \mathbf{S D})$			
Aerobic exercise			
Swimming leisurely	65.7 ± 214	34 ± 90.4	0.925
Swimming competitive	0	0	1.00
Sports on the beach	474.2 ± 771	0	1.00
Walking for pleasure	7.71 ± 45.6	468.9 ± 674	0.802
Backpacking or mountain climbing	0	4.29 ± 35.9	0.567
Cycling	0	25.9 ± 135	0.13
Rough cycling	2.50 ± 13.5	4.29 ± 102	0.081
High impact aerobics	13.4 ± 77.6	4.29 ± 35.9	0.323
Other types of aerobics	0.57 ± 4.78	37.3 ± 102	0.316
Bicycle treadmill	40.3 ± 216	22.9 ± 134	$\mathbf{0 . 0 0 2}$
Dancing	0	0	0.732
Competitive Running	0	19.2 ± 80	1.00
Running on a Treadmill	0	3.43 ± 28.7	$\mathbf{0 . 0 0 7}$
Jogging		0.317	

Table 5. Prevalence of patients with PSS and HC performing strengthening exercises

PSS vs HC exercise	PSS (n=70)	HC (n=70)	p-value
Recreation (minutes, mean \pm SD)			
Strengthening exercises	56.6 ± 182	182 ± 65.9	0.248
Exercise with weights	199 ± 363	114 ± 317	0.499
Conditioning exercises	101 ± 186	46.1 ± 114	0.105
Floor exercises			

Table 6. Prevalence of patients with PSS and HC performing hobbies

PSS vs HC exercise	PSS (n=70)	HC (n=70)	p-value
Recreation (minutes, mean \pm SD)			
Hobbies	0	0	1.00
Bowling	0	0	1.00
Ping pong	0	0	1.00
Tennis or Badminton	0	0	1.00
Squash	0	0	1.00
Golf	0	0	1.00
Football, rugby or hockey	0	0	1.00
Rowing	0	6.86 ± 57.4	0.317
Fishing	0	0	1.00
Horse-riding	12.43 ± 100	0.156	
Musical-instrument playing or singing	0	0	1.00
Sailing-wind surfing	0	0	1.00
Martial arts	0		

Table 7. Prevalence of patients with PSS and HC performing activities at home

PSS vs HC exercise	PSS (n=70)	HC (n=70)	p-value
Recreation (minutes, mean \pm SD)			
Activities at home	0	6 ± 37	0.81
Heavy gardening work	70.4 ± 199	199 ± 450	$\mathbf{0 . 0 0 7}$
Light gardening work	78.4 ± 603	194 ± 528	$\mathbf{0 . 0 0}$
DIY			

Table 8. Demographics and clinical characteristics of patients with PSS

Patient Characteristics	Fatigued (n=32)	Non-Fatigued $(n=74)$	p-value
Female sex (\%)	96 (24/25)	93.2 (42/45)	1.00
Age (years, mean \pm SD)	60.2 ± 13.4	63.8 ± 9.68	0.35
Age at PSS diagnosis (years, mean \pm SD)	48.8 ± 11.6	50.2 ± 17.4	0.83
Disease Duration (years, mean \pm SD)	14 ± 8.09	15 ± 10.1	0.45
Clinical characteristics			
Ocular dryness (\%)	91.7 (22/24)	94.9 (37/39)	1.00
Oral dryness (\%)	100 (24/24)	92.3 (36/39)	0.86
SGE (\%)	33.3 (8/24)	30 (12/40)	1.00
Abnormal Schirmer's test (\%)	85.7 (18/21)	75.8 (25/33)	0.84
MSG Biopsy focus score (mean \pm SD)	3.38 ($\pm 2.34)$	2.09 ($\pm 1.87)$	0.037
Arthralgias/ Myalgias (\%)	68 (17/25)	61.4 (27/44)	0.84
Arthritis (\%)	28 (7/25)	11.1 (5/45)	0.20
Raynaud's (\%)	32 (8/25)	20 (9/45)	0.41
Purpura (\%)	36 (9/25)	17.8 (8/45)	0.27
Interstitial nephritis (\%)	4 (1/25)	0 (0/45)	0.37
Liver involvement (\%)	$8(2 / 25)$	0 (0/45)	0.14
Lung involvement (\%)	24 (6/25)	6.67 (3/45)	0.14
Peripheral neuropathy (\%)	32 (8/25)	15.6 (7/45)	0.25
Lymphoma (\%)	45.8 (11/24)	20.9 (9/43)	0.19
IL-1 (mean \pm SD)	1.27 ± 0.96	2.48 ± 2.27	0.19
IL-18 (mean \pm SD)	0.69 ± 0.34	1.02 ± 0.61	0.16
Medications			
Hydroxychloroquine (\%)	0 (0/25)	8.89 (4/45)	0.29
Rituximab (\%)	4 (1/25)	4.44 (2/45)	1.00
Steroid use (\%)	16 (4/25)	20 (9/45)	1.00

Table 9. Prevalence of patients with PSS in physical activities performed at home

PSS-Fatigue	Fatigued (n=25)	Non-Fatigued $(\mathbf{n}=45)$	p-value
Transportation (\%)			
Car	$52(13 / 25)$	$37.8(17 / 45)$	0.316
Walking	$24(6 / 25)$	$28.9(13 / 45)$	0.782

Public Transport	$24(6 / 25)$	$33.3(15 / 45)$	0.587
Cycling	$0(0 / 25)$	$2.2(1 / 45)$	1.00

TV, DVD or Video (\%)
Week

Never	$8(2 / 25)$	$11.1(5 / 45)$	1.00
$0-1$ hours	$16(4 / 25)$	$4.4(2 / 45)$	0.177
1-2 hours	$36(9 / 25)$	$33.3(15 / 45)$	1.00
$2-3$ hours	$24(6 / 25)$	$24.4(11 / 45)$	1.00
$3-4$ hours	$4(1 / 25)$	$11.1(5 / 45)$	0.410
$4+$ hours	$12(3 / 25)$	$13.3(6 / 45)$	1.00
Weekend	$8(2 / 25)$		
Never	$12(3 / 25)$	$13.3(6 / 45)$	0.702
$0-1$ hours	$40(10 / 25)$	$4.4(2 / 45)$	0.341
1-2 hours	$24(6 / 25)$	$28.9(13 / 45)$	0.428
2-3 hours	$4(1 / 25)$	$8.9(4 / 45)$	0.782
$3-4$ hours	$12(3 / 25)$	$15.6(7 / 45)$	0.648
$4+$ hours			1.00

Computer use (\%)
Week

Never	$68(17 / 25)$	$57.8(26 / 45)$	0.451
0-1 hours	$4(1 / 25)$	$8.9(4 / 45)$	0.648
1-2 hours	$4(1 / 25)$	$22.2(4 / 45)$	0.083
2-3 hours	$4(1 / 25)$	$0(0 / 45)$	0.357
3-4 hours	$4(1 / 25)$	$6.7(3 / 45)$	1.00
4+ hours	$16(4 / 25)$	$4.4(2 / 45)$	0.177
Weekend	$68(17 / 25)$		
Never	$4(1 / 25)$	$57.8(26 / 45)$	0.451
0-1 hours	$8(2 / 25)$	$8.9(4 / 45)$	0.648
1-2 hours	$4(1 / 25)$	$0(9 / 45)$	0.306
2-3 hours	$4(1 / 25)$	$8.9(4 / 45)$	0.357
3-4 hours	$16(4 / 25)$	$4.4(2 / 45)$	0.648
4+ hours			0.177
Stairs $(\%)$	$30(15 / 25)$	$46.7(21 / 45)$	0.455
None	$36(9 / 25)$	$15.6(7 / 45)$	0.244

$16-20$ times a day	$0(0 / 25)$	$0(0 / 25)$	1.00
$20+$ times a day	$0(0 / 25)$	$0(0 / 25)$	1.00

Table 10. Prevalence of patients with PSS in physical activities performed at work

PSS-Fatigue	Fatigued ($\mathrm{n}=25$)	Non-Fatigued $(\mathrm{n}=45)$	p-value
Employment during the last four weeks (\%)	20 (5/25)	24.4 (11/45)	0.772
Hours per week (mean \pm SD)	7.8 ± 15.9	9.22 ± 16.9	0.701
Type of work (\%)			
Sedentary occupation	16 (4/25)	13.3 (6/45)	0.737
Standing occupation	0 (0/25)	8.9 (4/45)	0.289
Manual work	4 (1/25)	2.2 (1/45)	1.00
Heavy Manual work	0 (0/25)	0 (0/25)	1.00
Distance from home to work (km, mean \pm SD)	7.8 ± 6.83	11.9 ± 9.57	0.594
Times per week travelling	5 ± 0	5.09 ± 1.22	0.615
Travel to work (\%)			
By car	$8(2 / 25)$	11.1 (5/45)	1.00
Public Transport	$8(2 / 25)$	6.7 (3/45)	1.00
Bicycle	0 (0/25)	4.4 (2/45)	0.534
Walking	$8(2 / 25)$	6.7 (3/45)	1.00

Table 11. Prevalence of patients with PSS performing aerobic exercise

PSS-Fatigue	Fatigued (n=25)	Non-Fatigued $(\mathbf{n}=\mathbf{4 5})$	p-value
Recreation (minutes, mean $\pm \mathbf{S D})$			
Aerobic exercise	38.4 ± 128	80.9 ± 250	0.650
Swimming leisurely	0	0	1.00
Swimming competitive	0	0	1.00
Sports on the beach	380.2 ± 491	526.4 ± 891	0.464
Walking for pleasure	6.6 ± 48	6.67 ± 44.7	0.687

Cycling	0	0	1.00
Racing or rough cycling	0	0	1.00
High impact aerobics	0	3.89 ± 16.7	0.190
Other types of aerobics	4 ± 20	18.7 ± 95.6	0.903
Bicycle treadmill	0	0.89 ± 5.96	0.456
Dancing	0	62.7 ± 268	0.190
Competitive Running	0	0	1.00
Running on a Treadmill	0	0	1.00
Jogging	0	0	1.00

Table 12. Prevalence of patients with PSS performing strengthening exercises

PSS-Fatigue	Fatigued (n=25)	Non-Fatigued $(\mathbf{n}=\mathbf{4 5})$	p-value
Recreation (minutes, mean \pm SD)			
Strengthening exercises	48 ± 240	61.3 ± 143	0.085
Exercise with weights	100 ± 332	254 ± 371	$\mathbf{0 . 0 4}$
Conditioning exercises	24 ± 120	143 ± 204	$\mathbf{0 . 0 0 2}$
Floor exercises			

Table 13. Prevalence of patients with PSS performing hobbies

PSS-Fatigue	Fatigued (n=25)	Non-Fatigued $(\mathbf{n}=\mathbf{4 5})$	p-value
Recreation (minutes, mean \pm SD)			
Hobbies			
Bowling	0	0	1.00
Ping pong	0	0	1.00
Tennis or Badminton	0	0	1.00
Squash	0	0	1.00
Golf	0	0	1.00
Football, rugby or hockey	0	0	1.00
Fishing	0	0	1.00
Musical instrument playing or singing	0	0	1.00
Sailing-wind surfing	0	0	1.00
Martial arts	0	0	1.00

Table 14. Prevalence of patients with PSS performing activities at home

PSS-Fatigue	Fatigued (n=25)	Non-Fatigued $(\mathbf{n}=\mathbf{4 5})$	p-value
Recreation (minutes, mean \pm SD)			
Activities at home	0 ± 0	0 ± 0	1.00
Heavy gardening work	91.2 ± 231	58.9 ± 182	0.877
Light gardening work	12 ± 60	115 ± 751	0.930
DIY			

The Results of the questionnaire are described extensively in the tables above. Depending on the activity there was a spectrum of differences between the PSS and HC group. Based on table 1, the people who participated were mostly women with an average age of 61 years old in both groups. Regarding the question about transportation, the biggest difference between the two groups was found to be associated with car and public transportation use with p-values 0.027 and 0.011 respectively. Considering the healthy population group, people are mostly using their cars with the percentage of 62.9% (20% more than people with PSS). Patients with PSS most often use public transportation to move around while in contrast only a quite small percentage of healthy people use this form of transport (11.4%). Contrary to the findings above, the difference concerning walking and cycling appeared to be much more settle with p-values 0.847 and 1.00 respectively. According to the results, neither group seemed to use walking as their primary way of transportation although the PSS appeared to walk slightly more. Cycling appeared to have no difference in percentage between the two groups.
Moreover, people were asked about some activities that take place at home like TV, DVD or Video viewing and computer use at home and not during working hours. The results appeared to be similar in the category of TV, DVD or Video Viewing. The only significant difference appeared to be during weekends in 4+ hours with percentage of 14.3 in people with PSS and 28.6 in healthy group (p-value was 0.063). In addition, the most notable finding associated with the computer use at home was during the weekends concerning those who never use it with a p-value 0.018 . PSS patients seem to that they do
not prefer to use the computer at home (with a percentage of 61,4 \%) on both weeks and weekends compared with the healthy control group. Furthermore, people were asked about the number of stairs climbing each day at their home. A high percentage of 45.7% that corresponds to people with PSS seem to totally avoid climbing stairs with a 22.8% difference with healthy people (p-value was calculated to be 0.007). P-value of 0.006 and 0.028 showed another two major differences in this section between the two groups. People with PSS seem to climb stairs less than 11-15 times and 16-20 times a day at home while the healthy control group had 11.4% and 8.6% more respectively. The next part of the RPA Questionnaire was asking about activity at work. People were asked if they were employed the last four weeks (before the questioning process took part). There seems to be a quite noticeable difference as far as the rate of employment goes between the two groups. More specifically, the healthy population group proved to have a higher employment rate (40%) while the first group of patients with PSS showed a significant less amount of employment (22.9%) even though the latter group appeared to work longer hours than the former when employed. Additionally, the next question was about the type of work that people were performing in order to gain the knowledge about the physical activity involved during work time. In both groups, the higher percentage appeared in people who spend most of their time sitting during work with healthy population having a significant larger percentage of people doing a sedentary occupation (p-value: 0.000). Percentage in people who had a standing occupation, or a manual work had no significant difference between PSS and matched group. In general, in both groups no people that apply vigorous physical activity during work time where spotted. Moreover, people with PSS seem to have a job in a close distance from their home. In addition, they attend work fewer times per week than the healthy population. Most of the people in both groups travel with car to go to work. However, there is a huge difference between PSS patients and HC (p-value: 0.00). Public transport and walking are used as alternative ways of transportations to work. Bicycle use was only used by the PSS group with a percentage of 2.9%.
Last but not least, people were asked about the recreations that they may have performed the last four weeks and the number of times and the average time spend on each physical activity. Physical activities were separated into different categories as aerobic exercise,
hobbies and activities at home. The main physical activity in the category of aerobic exercise that seemed to be performed by both groups is walking for pleasure with 474.2 hours and 468.9 during the last four weeks in PSS and HC respectively. Healthy group engage in physical activities like bicycle treadmill and running on a treadmill in contrast with the PSS group (p-value: 0.002 and 0.007 correspondingly). In the category of other types of exercise, people with PSS seem to perform conditioning exercises mostly (199 hours/4xweeks). Furthermore, PSS patients give the impression to like more floor exercises than exercises with weights. The main difference between the two groups derives through the amounts of time spend in exercise with weights and floor exercises. HC group spend more time exercising using weight lifting than PSS group (p-value: 0.248). However, PSS group appears to prefer the floor exercises more than the HC group. Moreover, regarding the category of hobbies it looks like PSS group doesn't perform any hobbies during their free time in comparison with HC group who seem to play musical instruments or go for fishing few hours during the last four weeks. Lastly, patients were asked about the physical activities carry out at their home. P values of 0.007 and 0.00 showed that HC population spend on average more time in Light gardening and DIY activities at home than patients with PSS who mentioned that they get easily tired when performing these kinds of activities. In addition, people with PSS don't spend any time in heavy gardening work while HC people spend some hours per month.

PSS patients were separated in two groups: fatigued ($\mathrm{n}=25$) and non-fatigued ($\mathrm{n}=45$). By observing the results that are associated with the PSS patients we came to the conclusion that physical activity did not influence the following clinical characteristics: Ocular dryness, Oral dryness, SGE, Arthralgias/Myalgias, Purpura, Insterstitial Nephritis, Liver involvement, Peripheral neuropathy, Lymphoma. In contrast with the above findings we concluded that physical exercise was in fact associated with Arthritis, more specifically we did observe that PSS patients who performed more Bicycle Treadmill, the following parenthesis features minutes [$3,3(\pm 11,6)$ vs 0$]$ with p value $=0,03$ and dancing $[183(\pm$ $9,83)$ vs $10,3(\pm 7,07)]$ with p value $=0,02$. Additionally, PSS patients with Raynaud's syndrome appeared to perform more in the other types of aerobics category [55,3 (\pm 153,2) vs 0] with p value $=0,002$. Lastly the findings also showed that PSS patients with

Lung involvement seemed to perform fewer conditioning exercises [0 vs 228,5 ($\pm 300,1)$] with p value $=0,02$. Furthermore, an interesting fact should be distinguished, the PSS patients that were swimming more appeared to have increased IL-1 levels (p -value: 0.047, r-value: 0.334).

The comparison of the clinical characteristics and the RPA Questionnaire was made between the two sub-groups. First of all, both groups were asked about their physical activities executed at home. Patients with fatigue tend to predominantly use their car for transportation than non-fatigued patients (p-value:0.316). Around 24% of the Fatigued patients use walking as their main form of transportation, while non-fatigued patients walk a bit more with a percentage of 28.9%. Only one patient in the non-fatigued group answered that used cycling in order to transport. PSS patients were asked about the time they spend watching TV, DVD or Video during the days of the week and the weekend. No major differences were spotted between the two sub-groups with the he most significant difference appearing during the week and weekend in 0-1 hours with fatigued patients occupying percentages around 12-16 \%, while a percentage of 4-4.4 \% of nonfatigued patients watch TV, DVD, or Video. Another difference that needs to be highlighted appeared during the week in 3-4 hours with p-value of 0.410 and with nonfatigued group having a 7.1% higher than fatigue group. Besides the use of TV, DVD, or Video, PSS were asked about the use of computer at home. The most noticeable result came into sight during week at 1-2 hours with p-value 0.083 and non-fatigued group have 18.2 \% higher than the fatigue group. Additionally, during week and weekends at 4+ hours, patients with fatigue seem to have a higher distinction with percentage of 11.6% showing that non-fatigued patients may have a more active lifestyle. Furthermore, PSS patients were asked about walking in stairs at home. Non-fatigued patients seem to climb stairs more than patients with fatigue. 60% of Patients with fatigue didn't seem to climb stairs at all in contrast with non-fatigue patients that had an 22.2% lower in the climbing stairs question.
The next questions that were completed by PSS patients were about physical activities at work (Table 4). There is no considerable difference on the percentage of people that were employed during the last month. Non-fatigued PSS patients tend to spend more time on
work on an average than fatigue PSS patients. In both sub-groups, PSS patients tend to spend most of the time at work sitting in an office. While some of the non-fatigued patients have a job that requires them to be in standing position or even walking, there isn't any fatigued patient who is employed in a non-sitting occupation. Moreover, there is only one patient in each sub-group that his work involves some light physical effort. There is also no difference in the section of heavy manual work since no PSS patient from either group seem to be occupied by a job that requires vigorous physical activity. While the mean amount of times that both fatigue and non-fatigued patients went to work is the same, fatigue patients' home to work distance in km seems to be longer on an average than non-fatigue patients. Both Fatigue and non-fatigue patients seemed to equally use their cars, public transport and walking in order to head from home to work and vise-versa. The only difference can be seen on patients who travel with bicycle since fatigue patients don't travel at all with this form of transport while a small percentage of people with no fatigue choose the bike as their main (p -value: 0.534).

In table 5-8, we can see the prevalence of patients doing several physical activities separated into different kinds of exercise. In table 5, we can observe that in most cases of aerobic exercise, non-fatigue PSS patients spend more time exercising in comparison with fatigue patients. More specifically, physical activities like high impact aerobics and dancing have a p-value of 0.190 and we can notice that there are major differences in the total time that the subjects spend during the last month. In table 6, we can notice the hours spend in other kind of exercises such as exercises with weights, conditioning and floor exercises. Non-fatigued PSS patients spend a lot more hours during the last four weeks doing these 3 kinds of exercises in contrast with fatigue patients. Although, the most significant p-values are found in the categories of conditioning exercises and floor exercises with 0.04 and 0.002 respectively. Patients with PSS don't seem to perform any hobbies during their free time. Lastly, we can see that patients with fatigue spend more time on light gardening work, while non-fatigue patients spend more time in DIY work.

4.0 Discussion

In general, physical activity seemed to be reduced in PSS patients in comparison with matched HC group. However, PSS group stays active and in some forms of exercises it even spends more hours in average than HC group. Some of these exercises are swimming leisurely, walking for pleasure, backpacking, other types of aerobics, dancing, conditioning exercises and floor exercises. Interestingly, it is noteworthy that there is difference in hours performing bicycle treadmill and running on treadmill between two groups showing that patients with PSS don't like these kinds of exercises, which are more intense. Moreover, intense physical activities at home like light gardening work and DIY were executed by patients with PSS but in a significantly smaller amount of time in average during the last month compared with the HC.

In addition, the clinical characteristics that seemed to be mostly influenced by physical activity were arthritis, Raynaud's syndrome and lung involvement. Another fact that came up after analyzing the results was that PSS patients who did spend more time swimming seemed to have elevated IL-1 levels.

In this research, we tried to observe, compare and analyze the occurrence, types and frequency of the physical activity between PSS patients separated into two groups: fatigued and non-fatigued group.
Numerous patients with PSS (about 70\%) appear to have fatigue as a symptom. Most of the patients mention that it is the most crippling manifestation of the syndrome (Newton et al., 2012). A previous study showed that people with PSS have decreased ability to do an extensive variety of regular exercises in comparison with HC. As a result, decreased physical exercise levels are related with many of the clinical highlights of the syndrome and in addition lessened wellbeing personal satisfaction. (Strombeck et al., 2000). We managed to prove that exercise indeed reduces the fatigue levels in PSS patients. The most significant and chief finding was that PSS patients who exercise and more specifically perform conditioning exercises and floor exercises don't experience the feeling of fatigue.

Exercise has a great significance in keeping up great wellbeing. Sedentary lifestyle is a hazard factor for chronic diseases like PSS and the benefits of a daily physical activity are many (Musumeci, 2015). A lifestyle without physical activity has major risks like developing cardiovascular diseases. In another study performed to 273 individuals with Primary Sjogren's Syndrome, physical activity was assessed using the validated International Activity Questionnaire- short form and compared with a healthy group. The results showed that physical activity is decreased in patients with Primary Sjogren's Syndrome and it primary connected with the feeling of depression and the need of extra sleep during the day. However, sitting time had not any outstanding difference between the PSS patients and the control group (Ng et al., 2017). Although in this study that used the RPA Questionnaire helped us to observe that sitting time of PSS patients is almost at the same levels of HC and apparently HC are more in sitting position than PSS. The main difference is seen in computer use during weekends where a large number of patients with PSS didn't use computer at home at all in comparison with HC.

In conclusion, PSS patients must exercise as much as possible in order for them to feel less fatigued and also to decrease the possibilities of developing secondary chronic diseases like cardiovascular diseases (Klavestrand \& Vingard, 2009).

5.0 Limitations

We came across different limitations during the completion of this master thesis. First of all, while there are a lot of advantages using a questionnaire for a research, there is a limitation on the point that respondents may not give conscious answers and give answers that may affect the validity of the questionnaires. In an attempt of patients to protect their personal information, they will not be one hundred percent honest with their answers. Furthermore, some of the questionnaires were taken by telephone calls. The limitation to this is that while not talking with the patient face to face they may have a different perception of the questions and don't take the appropriate attention to answer through a telephone call.
Additionally, due to time restrictions, only 70 questionnaires of people with Primary Sjogren syndrome were completed. However, if we had more time and thus more questionnaires would be answered, results would be more reliable.

6.0 Future work

Primary Sjogren syndrome is a rheumatic disease that affects significant amount of people and there is a wide spectrum of possibilities regarding future work that can be done in order to gain knowledge and experience that could result in the improvement of the patient's quality of life.

Similar studies with additional human resources could take place in order to broaden the amount of available data concerning this topic. Moreover, studies in the form of Systematic Reviews could collect the available data from various studies like this one and present a much broader and collective source of evidence regarding this specific topic. Last but not least controlled and randomized trials involving specific exercise intervention programs for patients with Primary Sjogren syndrome (given by doctors or physiotherapists) can bring to the surface more information regarding the effects of fatigue and inflammatory markers. This may be time consuming but through specific instructions by specialists, it may have a positive outcome for researchers, Medical specialists and the patients.

7.0 Bibliography

1) American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjogren's Syndrome (2016). Arthritis and Rheumatology. Doi: 10.1002/art. 39859
2) Gabriel, S.E., \& Michaud, K. (2009). Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases. Arthritis Research \& Therapy, 11(3): 229. Doi: 10.1186/ar2669
3) Golubic, R., May, A.M., Benjaminsen, B.K., Overvad, K., Charles, M.A., Diaz, M.J., ...Brage, S. (2014). Validity of electronically administered Recent Physical Activity Questionnaire (RPAQ) in ten European countries. PLOS ONE, 9:11. Doi: 10.1371/journal.pone. 0092829
4) Klavestrand J, \& Vingard E (2009) Retracted: the relationship between physical activity and health-related quality of life: a systematic review of current evidence. Scand J Med Sci Sports,19(3):300-312. Doi: 10.1111/j.1600-0838.200900939.x.
5) MRC Epidemiology Unit, University of Cambridge (2018). Physical Activity Downloads. Retrieved from: http://www.mrc-epid.cam.ac.uk/physical-activitydownloads/
6) Patel, R., \& Shahane, A. (2014). The epidemiology of Sjogren's syndrome. Clinical Epidemiology, 6: 247-255. http://dx.doi.org/10.2147/CLEP.S47399
7) Perandini, L.A., Sa-Pinto, A.L., Roschel, H., Benatti, F.B., Lima, F.R., Bonfa, E., \& Gualano B. (2012). Exercise as a therapeutic tool to counteract inflammation and clinical symptoms in autoimmune rheumatic diseases. Autoimmunity Reviews, 12:218-224. Doi: 10.1016/j.autrev.2012.06.007
8) Petersen, A.M., \& Pedersen, B.K. (2005). The anti-inflammatory effect of exercise. Journal of Applied Physiology 98:1154-1162. Doi:
10.1152/japplphysiol.00164.2004
9) Strombeck, B., Ekdahl, C., Manthorpe, R., \& Jacobsson, L. (2000). Health-related quality of life in primary Sjogren's syndrome, rheumatoid arthritis and fibromyalgia compared to normal population data using SF-36. Scandinavian Journal of Rheumatology, 29: 20-28. Retrieved from:
https://www.ncbi.nlm.nih.gov/pubmed/10722254
10) Strombeck, B.E., Theander, E., \& Jacobsson, L.T.H. (2007). Effects of exercise on aerobic capacity and fatique in women with primary Sjogren's syndrome. Rheumatology, 46:868- 871. Doi: 10.1093/rheumatology/kem004
11) Musumeci, G. (2015). Effects of exercise on physical limitations and fatigue in rheumatic diseases. World Journal of Orthopedics, 6(10):762-769.

Doi:10.5312/ejo.v6.i10.762
12) Newton, J.L., Frith, J., Powell, D., Hackett, K., Wilton, K., Bowman, S., ... Ng, W.F. (2012). Autonomic symptoms are common and are associated with overall symptom burden and disease activity in primary Sjogren's syndrome. Annals of the Rheumatic Diseases, 71(12): 1973-1979. Doi: 10.1136/annrheumdis-2011201009
13) Ng., W.F., Miller, A., Bowman, S.J., Price, E.J., Kitas, G.D., Pease, C., ... Trenell, M. (2017). Physical activity but not sedentary activity is reduced in primary Sjogren's syndrome. Rheumatology International, 37: 623-631. Doi: 10.1007/s00296-016-3637-6
14) Overman, C.L., Kool, M.B., Da Silva, J., \& Geenen, R. (2016). The prevelance of severe fatigue in rheumatic diseases: an international study. Clinical Rheumatology, 35: 409-415. Doi: 10.1007/s10067-015-3035-6
15) Webster, K., Cella, D., \& Yost, K. (2003). The Functional Assessment of Chronic Ilness Therapy (FACIT) Measurement System: properties, applications and interpretation. Health Qual Life Outcomes, 1:79. Doi: 10.1186/1477-7525-1-79
16) Wouters, E.J.M., \& Leeuwen, N.V., \& Bossema, \& E.R., \& Kruize, A.A., \& Bootsma, H, Bijlsma, J.W.J. et al (2012). Physical activity and physical activity cognitions are potential factors maintaining fatigue in patients with primary Sjogren's syndrome. British Medical Journal, 71(5):668-73. Available when from doi: 10.1136/ard.2011.154245

The citation of the references in the bibliography is according to APA citation norm.

8.0 Appendices

8.1 Appendix 1: Questionnaire

RPAQ
Mépoç A：\triangle рaотирıóтптея ото опіт।

A1．Гıa тП $\mu \varepsilon т а к і v \eta \sigma \eta ~ \sigma a c ~$

Аитокіvпто／ нпхаví	Пெепа̇тпиа	нетачора́я	Поб̈ர்Аато
C	C	（	C

A2．Tп＾عópaơn，DVD ウ் ßivteo

	т $\varepsilon \sigma \sigma a ́ p \omega v ~ \varepsilon \beta \bar{o} \circ \mu \dot{\jmath} \delta \bar{\omega} \nu$					
паракоฝои̇Өпопऽ		Аıуо́теро	1 żفऽ	2 żws	3 Ėws	Пєрıббо́теро
Tп入во́paöя， DVD í ßivтвo avá $\eta \mu \varepsilon \dot{\varepsilon} \rho a$	Kaөóлou	aпó 1 $\dot{\omega} \rho a ~ т \eta v ~$ $\eta \mu \varepsilon ́ \rho a ~$	$\begin{gathered} \hline 2 \\ \dot{\omega} \rho \varepsilon \varsigma \\ T \eta v \\ \eta \mu \varepsilon \dot{p} \rho a \end{gathered}$	$\left\|\begin{array}{c} 3 \\ \dot{\omega} \rho \varepsilon \varsigma \\ \tau \eta v \\ \eta \mu \dot{\varepsilon} \rho a \end{array}\right\|$	$\begin{array}{\|c\|} 4 \\ \dot{\omega} \rho \varepsilon \varsigma \\ т \eta v \\ \eta \mu \dot{\varepsilon} \rho a \\ \hline \end{array}$	
KaөпиєрıVغ่ऽ прIV TIS $6 \mu \mu$	（	C	Γ	C	C	C
KaӨпнєрıVغ்ऽ $\mu \varepsilon т a ́$ TIC $6 \mu \mu$	C	Γ			C	C
£аßßатоки́рıака пріV TIC $6 \mu \mu$	5	Γ	\bigcirc	C	「	C
इаßßатоки́рıака $\mu \varepsilon т$ тіс $6 \mu \mu$	C				C	

 паıхvióra（playstation，xbox，gameboy к．Ап）］
 $\eta \mu \varepsilon ̇ p a ?$

Пฝєктроу！кои่ иполоүıбті் бто onitı avá $\eta \mu \varepsilon \dot{\rho} \rho a$	 					
	KaӨóAou	$\begin{gathered} \text { Ауо́твро } \\ \text { апо́ } 1 \\ \text { فра тпv } \\ \eta \mu \varepsilon ́ \rho a ~ \end{gathered}$	$\begin{gathered} 1 \text { ź } \omega \varsigma \\ 2 \\ \dot{\omega} \rho \varepsilon \varsigma \\ \tau \eta v \\ \eta \mu \varepsilon \dot{\rho} \rho a \end{gathered}$	$\begin{gathered} 2 \dot{2} \omega \varsigma \\ 3 \\ \dot{\omega} \rho \varepsilon \varsigma \\ \tau \eta v \\ \eta \mu \varepsilon \dot{c} \rho a \\ \hline \end{gathered}$	3 ह̇ ω s 4 ஸ́pec TクV пн $\dot{\varepsilon} \rho a$	
KaӨпнєрıvغ̧́ прıv TIC $6 \mu \mu$	C	C	C	C	C	（
KaӨпнєрıVغ́¢ $\mu \varepsilon т$ ́ TIS $6 \mu \mu$	Γ	C	C	C	C	C
इаßßатоки́рıака прір тіс $6 \mu \mu$	C	\bigcirc	\bigcirc	r	\bigcirc	C
гаßßатоки́рıака нєта́ тіс $6 \mu \mu$	Γ	\bigcirc	（	（	C	

 бкалопа́тіа）бто ơітіт бац？

Форモ́s пои aveßaivete śvav ópoqo （перinou 10 окаฝопа่тıа） кฮ́Өє $\eta \mu \dot{\rho} \rho a$ бто бпітI баৎ	$\varepsilon \beta \bar{\delta} \circ \boldsymbol{\rho} \dot{\alpha} \bar{\omega} \omega V$					
	Kaөó＾ou		$\begin{array}{\|c\|} \hline 6 \dot{\varepsilon} \omega \varsigma \\ 10 \\ \text { ¢Opś } \\ \text { TクV } \\ \eta \mu \dot{\varepsilon} p a \\ \hline \end{array}$	$11 \varepsilon \dot{\varepsilon} \omega \varsigma$ 15 بоре́ร TTV $\eta \mu \dot{́} p a$		
KaӨпuعрııغ́ऽ	r r		C	Γ	C	
इаß阝атоки́рıако			\bigcirc		Γ	

A5．Mépoç A：ミxò入ıa

Парака入்ं опиعıஸ்णт $\varepsilon \delta \dot{\omega}$
 тои Mépouc A：

Act
MRC $\left.\right|_{\text {Epidemiology unt }}$
RPAQ

$\mathrm{Nar} \Gamma$ OXI Γ

 oтףv عруacia oas

B2．＇Spes σ TП ठоиАєıà

 перı入а $ß$ ß́vєтє

о хро́vos нетакіvŋопя）
 лепты́．

Spes zpyáias 		Aeritá
	0	0
	0	0
	0	－ 0
	0	0

B3．Eiōoç عpyaciaç

ako入ouӨoúv

KaӨıбтıкі́ апабхо́Aクбך ypapعiou）	C
○○Өıа апабхо́Аŋоך 	
Хвıршуактикウ் вруабіа H epyaテia autí aпаıтеi не́трıa бw ПАЕктроАо́үоц，нараүко́ц к．лп．）	C
Bapıá xєıршуактıк＇் єруабía 	\bigcirc

 oas？

2	Anóotaon $\text { п.х. } 7.5 \mathrm{~km}$
Xıлıо́иятра	0.0

 бac？

п．х． 5
0

Мє тı μ ह்бо $\mu \varepsilon т а ч о р а ́ \varsigma ~$ yıa тп ס̄ouฝعıá ซac？	П̆ávTa	£uvij0ws	Перıотабıака́	Потと่ í Enávıa
Аитокіvпто／μ пххаvп́	Γ	C	C	C
Мє $\mu \varepsilon т а ч о р і к о ́ ~ \mu \varepsilon ́ \sigma о ~ т П ऽ ~$ наदІкウ́є нєтафора́я	C	Γ	Γ	C
Поб̆ウ́入ато				
	C	\bigcirc	r	C
Bádıбนa	C	C	C	C

 $\varepsilon ß \bar{\circ} \mu a \dot{0} \varepsilon \varsigma$ ？

Aфорá Tn үраци

тп үрациท่

п үрариі 3：
тп үрарий 4：

 бпиعı்்எт

A甲opá тп үрации்

т \quad ураци $2:$
тп үрани门ं 3：
тп үрациі் 4：

B5．Mėpos B：इxóMıa

$\sigma \pi \eta v$
опоіа аvацв́рєтаı．

Парака入ы் oxó入ıa yıa	
ополaठ̄ท்потє птих＇் тоu Mépouc B：	＊

 браотпріо்тŋта．

Парádeıуца

	 							Mécos ópos xpóvou をvacxónnons avá甲орá	
，	Käóhou		2 ws 3 форЕ̧́ TIS тعлहutuies 4 	Mía qopá IVV ε غбо	2 ws 3甲OpÉS TTV $\varepsilon \beta \delta о \mu \delta \bar{\alpha}$	4 ws 5 форछ்ध TクV 	Káध $\omega \varepsilon \rho \alpha$	noes	AहाT\％
 aypróxoptav								1	10
Пєрта́тпиа үIa ψ uxayayia									40

	 							$\begin{gathered} \text { Méaoç ópos } \\ \text { xpóvou } \\ \text { Eváxóanons } \\ \text { avá popá } \\ \hline \end{gathered}$	
	Käó̀ou			Mia мopá Tinv ε вбоиа́ба			Kà $\theta \varepsilon$ $\mu \varepsilon ̇ p a$	＇spec	＾हпти̇
Маоторє் $\mu а т а$ ото опіт। （६u入oupyikés， हрүaoíc， epyaoizs ouvtípnons tou onitioú， ouvtípŋon охウ்цатоร）	\bigcirc	Γ	\bigcirc	σ	$\therefore \Gamma$	Γ	Γ	0	0
авро́ипык （бтє்п－авро́цпик， транпо入ivo）	Γ	Γ	Γ	\bigcirc	Γ	r	\bigcirc	0	0
A入入a $\varepsilon і \bar{\prime} \bar{\eta}$ авро́ипик	C	C	Γ	（	C	C	Γ	0	0
AбKท்бєıৎ $\mu \varepsilon$ avtıotáčıı （ßápn）	T	Γ	C	C	Γ	C	σ	0	0
Aokńণeıs yia Tn вг入тimon Tņ甲ư̈к＇்s katáotaons	Γ	Γ	Γ	Γ	Γ	Γ	r	0	0
Mnxávnua поб̈ク入aoias，	C	C	Γ	\bigcirc	Γ	Γ	C	0	0
Aбкท்எモıऽ モठ்̣ous	Γ	\bigcirc	Γ	5	\bigcirc	\bigcirc	\bigcirc	0	0
Xopós	Γ	Γ	C	5	Γ	\bigcirc	C	0	0
Aүшvıттіко́ тр்்цıо	C	\bigcirc	C	C	5	C	C	0	0
Паракалы் －поוоб̄ர்поте oxó入ı yı́ та napanàv ω ：								－	－

	 							Méaos ỏpos ypóvou zvaoxónans avá popá	
	Käó入ou			Mia papó ThV $\varepsilon ß \overline{o \mu a ̄ o ̄ a ~}$	2 غ่ $\omega \varsigma 3$甲оре்с， Tnv $\varepsilon \beta$ б̄оца́ōa	4 हंजc 5甲оре́ร， TnV $\varepsilon \beta \overline{o \mu}{ }^{\text {áōa }}$	$\begin{aligned} & \text { Kı́As } \\ & \mu \varepsilon ̇ р а ~ \end{aligned}$	${ }^{\prime} \Omega \rho \varepsilon \varsigma$	Aenta
ки入ıல́иع бıд́броио	5	5	C	C	5	C	0	0	0
Tpoxáסŋทv （трદ́छıルо үıа щuxayшyia）	σ	5	C	6	0	\bigcirc	σ	0	0
Mnóou入ivyk	6	6	5	－	C	\bigcirc	C	0	0
Enıtpanéてıa （пІVүк－поүүк）	C	0	C	0	5	8	6	0	0
Avtıopaipıon （Tモ̇VIG）ウ่＊ аvтıாтย̇рıoŋ （ μ пávтиіvтоv）	6	6	C	ρ	0	r	C	0	0
ミkouóc	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0
Гко入甲	C	6	C	C	\bigcirc	（	\bigcirc	0	0
Oиaঠııá аӨлñната $\mu \varepsilon$ нпá入a （побо́бфаıро， Xо́кєÜ， петобчаірıпп （ßó入єï）， ка入а日оの甲aipıon （ μ пवंणкет）．．．）	\bigcirc	6	C	5	6	C	C	0	0
Парака入ы் опоюоб́ñпте oxó入io yia ta парапáv．：									


	 							```Mėбos ópos xpóvou Еvaซxȯฝŋのทร avá popá```	
	KaӨó入ou		2 غ́wc 3 Форモ́ц тіऽ телعutaisc 4  	Mia popá Tnv $\varepsilon ß \bar{o} \quad \mu a ́ o ̄ a$			$\begin{aligned} & K \dot{\theta} \theta \varepsilon \\ & \mu \dot{\varepsilon} \dot{p} ; \end{aligned}$	＇నрعธ	＾єптá
K $\omega \Pi \square \lambda$ 入áia	$\Gamma$	C	C	$\Gamma$	$\bigcirc$	$\Gamma$	C	0	0
Kuvṅvı， бкопоßо入n் kaı $\psi a ́ \rho \varepsilon \mu a$	$\bigcirc$	$\Gamma$	$\Gamma$	$\zeta$	$\Gamma$	$\Gamma$	$\bigcirc$	0	0
Innaoia	C	C	C	$C$	$\because C$	C	$\bigcirc$	0	0
Паіछ»о ноữкळ்v opyáv $\omega$ ท ń траүoúठัı	$\Gamma$	$\bigcirc$	$\sigma$	$\bigcirc$	$\zeta$	$\Gamma$	C	0	0
Iotın入oìa， ıттıơavióa，ウ் $\lambda \varepsilon \mu \beta о б \rho о \mu і \varepsilon$,	$\Gamma$	C	$\Gamma$	$\bigcirc$	$\Gamma$	C	$\Gamma$	0	0
АӨ入ท́ната $\mu$ а́Хпऽ （полвцикв்ऽ    пuүнахіа，пà $\eta$ ）	C	$\bigcirc$	（	$\Gamma$	T	$\Gamma$	C	0	0
Парака入ы опнعı்்тє عठ் onoוoठ̄ウ்потє oxódio yıa ta napanàv．	．								

Mépos Г：$\Sigma$ XóAıa
 Мв́pos Г．
Парака入ढ் бпиعıஸ்бє
عठ்க $\sigma \times \dot{\lambda} \lambda_{1 a}$ үıa
onolaōウ்потє птuxń тои
Mह்pous Г：

To INTERACT（LSHM－CT－2006－037197）

इaç عuxapıoтой $\boldsymbol{\mu}$ ．

### 9.0 Supplements

### 9.1 List of tables

Table 1. Demographics of patients with PSS and HC
Table 2. Prevalence of patients with PSS and HC in physical activities performed at home
Table 3. Prevalence of patients with PSS and HC in physical activities performed at work
Table 4. Prevalence of patients with PSS and HC performing aerobic exercise
Table 5. Prevalence of patients with PSS and HC performing strengthening exercises
Table 6. Prevalence of patients with PSS and HC performing hobbies
Table 7. Prevalence of patients with PSS and HC performing activities at home
Table 8. Demographics and clinical characteristics of patients with PSS
Table 9. Prevalence of patients with PSS in physical activities performed at home
Table 10. Prevalence of patients with PSS in physical activities performed at work
Table 11. Prevalence of patients with PSS performing aerobic exercise
Table 12. Prevalence of patients with PSS performing strengthening exercises
Table 13. Prevalence of patients with PSS performing hobbies
Table 14. Prevalence of patients with PSS performing activities at home

### 9.2 List of abbreviations

PSS- Primary Sjogren's Syndrome
HC- Healthy Controls
RPAQ- Recent Physical Activity Questionnaire

