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Abstract:

Model selection is a statistical procedure concerning the comparison
of various models with respect to their ability to describe a particular set
of data. It sustains a field of undiminished interest in both Classical and
Bayesian Statistics. The present thesis focuses entirely on the Bayesian
approach of Model Selection, which includes a variety of analytical and
computational methods. The employment of MCMC techniques has
been of vital importance regarding the development of computational
Model Selection methods in the Bayesian framework, therefore, the fun-
damental principles and the most popular algorithms are explicitly out-
lined. We attempted to make a thorough overview of the most widely
known Bayesian methods for Model Selection, which include the deriva-
tion of Bayes’ factors, the BIC and the DIC criteria and the L-Measure,
all of which may be effective, but often prohibitively time-consuming
when implemented on high-dimensional models.

Gibbs Variable Selection methods sustain a class of computational
methods based on the Gibbs Sampler and their development was moti-
vated by the imperative necessity to speed up and, if possible, automize
the process of model selection for complex models. The member of this
class of methods studied in the present thesis is Stochastic Search Vari-
able Selection, originally introduced by E. I. George and R. I. MacCul-
logh in 1993. We explicitly present the theoretical foundation of the
method, as well as its implementation on the Normal Linear model and
the Logit and Probit models. Additionally, the last chapter includes a
real data example of the implementation of SSVS in a logistic regression
model.
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Chapter 1

Basics of Bayesian Statistics

1.1 Fundamental principles and notation

The cornerstone of Bayesian statistical theory is a well-known and
rather simple probabilistic theorem called Bayes’ Theorem or Bayes’
Rule presented below for probabilities of events:

Theorem 1 (Bayes’ Theorem). Let us consider two possible outcomes A
and B. Then, the conditional probability of A given B, which expresses
the probability of A taking place, provided that B has occurred, is equal
to:

P (A|B) =
P (B|A) · P (A)

P (B)
∝ P (B|A) · P (A)

Furthermore, if A is such that A = A1∪A2∪· · ·∪An, whereas Ai∩Aj = ∅
then the conditional probability of Ai, i = 1, . . . , n given B, is:

P (Ai|B) =
P (B|Ai) · P (Ai)

P (B)
∝ P (B|Ai) · P (Ai),

where P (B) =

n∑
i=1

P (B|Ai)P (Ai).

1.2 General perception

1.2.1 Prior distributions

The fundamental difference between Bayesian and Classical Statistics
lies in the way an unknown parameter θ is perceived and handled. In
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the Bayesian paradigm, θ is treated as a random variable and not as
an unknown constant quantity and, therefore, a probability distribution
has to be assigned to it. This density function is called prior distribu-
tion and it is denoted as π(θ). It is important to note that the prior
distribution π is set by the statistician before any kind of analysis of the
data takes place. In order to determine the optimal distributional form,
the statistician takes into consideration the pre-existing beliefs concern-
ing the data and “weighs” their credibility.

Priors are classified, according to the influence they should have on
the data, as informative, weakly informative or diffused and non-
informative or flat. The use of informative prior distributions leads to
an active involvement of prior beliefs in the analysis, like having a “sec-
ond source of information”, apart from the data, figuratively speaking.
On the opposite hand, flat priors seem to have zero-impact on the out-
come. A frequently used rationale for their use is “to let the data speak
for themselves” (Bayesian Data Analysis, Gelman, Carlin et. al, 2014).
Weakly informative priors lie in the middle between the two previous
classes in terms of influence; the information provided could perhaps be
considered as a subtle hint for the analysis, which affects the results, but
in no case attempts to “fully capture one’s complete scientific knowledge
about the studied parameter” (Gelman et al., 2014). Examples and fur-
ther elaboration about the above classes of distributions will be provided
in the following chapters.

1.2.2 Extracting information from the data: The poste-
rior distribution

In the Bayesian framework, the first step in the analysis is setting
a probabilistic model that describes in the best possible way the phe-
nomenon under study. Then, we place a prior distribution on the param-
eter we wish to conduct inference about. The notation used to denote
the likelihood of the data is f(data|θ).

The prior distribution is then combined with the likelihood of the data
to update our knowledge about the parameters based on the information
contained in the likelihood function. This is achieved by the derivation
and the further study of a distribution that summarises the update due to
the data. This distribution is called the posterior distribution and it
is obtained by applying Bayes’ Theorem, as it is expressed for probability
distributions. More specifically, by using Lynch’s (2007) more simple and
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clarified notation, the posterior distribution, denoted as f(θ|data), is
obtained by the following fraction:

f(θ|data) =
f(data|θ) · π(θ)

f(data)
.

The denominator of the fraction is the marginal distribution or evi-
dence of the data and it is derived from the integral:

f(data) =

∫
Θ
f(data|θ) · π(θ)dθ,

where Θ is the parameter space of θ.

In mathematical notation, the posterior distribution of θ, assuming
that it is a continuous random variable, satisfies the condition∫

Θ
f(θ|data)dθ = 1 .

The analytic calculation of the integral∫
Θ
f(data|θ) · π(θ)dθ

is challenging and as the dimension of the parameter space Θ increases,
it turns into a complicated and time consuming process that usually
demands extensive integration skills. In order to avoid these intensive
calculations, the posterior distribution is determined up to a normalis-
ing constant, which means that we only need to compute a function, to
which the posterior is proportional to. Consequently, the marginal dis-
tribution of the data does not have to be computed and we are restricted
to its expression via proportionality. We should note that we are com-
pletely justified to omit the denominator, since

∫
Θ f(data|θ) ·π(θ)dθ ∝ 1

is a constant regarding θ and therefore we do not lose any substantial
information concerning its posterior distribution.

However, the calculation of the posterior up to a constant proportion-
ality is not sufficient; we have to be more specific in order to be able
to make any sort of conclusions (at this point, we cannot even get the
basic descriptive characteristics, such as the mean, the median or the
variance). Depending on the functional form we have arrived at, the
following two options are available to us: we can either determine ana-
lytically the posterior density distribution, or we will turn to simulation
methods, based on the thinking that by obtaining a large number of
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draws from the unknown posterior, we will be able to figure out its main
features and properties.

Analytic Computation of the posterior: Conjugate Prior Dis-
tributions

The analytic computation of a posterior distribution becomes much
more simple and in some cases even possible, by the use of functions be-
longing to the family of conjugate distributions, for which we provide
the following definition based on the notation we have previously used.

Definition 1.2.1. Suppose we wish to study a parameter θ ∈ Θ ⊂ Rk,
with k ∈ N and we have derived the likelihood f(data|θ) of the data,
which belongs to a class of probability densities denoted by F . We have
also placed a prior on θ denoted as π(θ), that belongs to a parameterized
family of distributions, denoted as Π. Π is said to be conjugate or
closed under sampling for F , if for every prior π ∈ Π, the posterior
distribution f(θ|data) also belongs to Π for every f ∈ F .

Conjugate prior distributions constitute a very useful mathematical de-
vice, precisely due to the property described in the definition. The fact
that the analysis always leads to a posterior that belongs to the same
distributional family, is a great computational advantage, because basic
computational skills are required and most importantly, the functional
form of the posterior is always known. What is more, if the likelihood
function belongs to the exponential family, the posterior can be derived
in a more straightforward way, according to the following proposition,
which actually states that each distribution of this particular family has
a “natural conjugate prior distribution” (Gelman et al., 2014). We note
that the form of an exponential-family distribution we will hereby pro-
vide, serves solely the purpose of a rough, first understanding of the
context of the proposition and will not be used in the next chapters.

Proposition 1. Suppose that θ ∈ Θ ⊂ R and the likelihood of the data
denoted as fX|θ(x|θ) belongs to the exponential family.
Then the likelihood referring to one observation xi will be given by

fX|θ(x|θ) = h(xi)e
θ·xi−ψ(θ)

Consequently, the likelihood corresponding to a random sample, X =

7



(x1, ..., xn), is

fX|θ(x|θ) =
n∏
i=1

h(xi)e
θ·
∑n
i=1 xi−nψ(θ).

The conjugate prior π(θ) will have the form

π(θ) ≡ ψ(θ|µ, λ) = K(µ, λ) · eθµ−λψ(θ),

where µ, λ ∈ R are called hyperparameters and they are constants and
so is the term K(µ, λ) . The posterior distribution will of course be-
long in the same distributional family with the prior and in fact, it will
be ψ(·) with different hyperparameters. Specifically, f(θ|x) ≡ ψ(θ|µ +∑n

i=1 xi, λ+ n).

In Table 1.1, we briefly mention some of the most typical cases of
conjugate analyses, to better demonstrate the use of conjugate priors in
practice. The form of the posterior distributions can be easily verified.

Likelihood Conjugate Prior Posterior Distribution

X ∼ Bin(n, θ) θ ∼ Beta(p, q) θ|X ∼ Beta(p+X, q + n−X)
X1, ..., Xn ∼ Geom(θ) θ ∼ Beta(p, q) θ|X ∼ Beta(p+ n, q +

∑n
i=1Xi − n)

X1, ..., Xn ∼ Poisson(θ) θ ∼ Gamma(p, q) θ|X ∼ Gamma(p+
∑n

i=1Xi, q + n)

X1, ..., Xn ∼ N(θ, τ−1), (τ known) θ ∼ N(b, c−1) θ|X ∼ N
(
cb+nτX̃
c+nτ , 1

c+nτ

)
Table 1.1: Standard conjugate priors and corresponding posterior distributions

It is of great importance to note that we should not be tempted by
the mathematical convenience of conjugate analysis and in each case,
easily place a conjugate prior on the studied parameter, unless we are
convinced that the particular distribution expresses in a satisfactory way
of representing our uncertainty regarding that specific parameter. Oth-
erwise, we ran a very serous risk of misleading our analysis, due to the
subjectivity inserted through the prior.

Extensive research is still conducted in order for this subjectivity to
be reduced to the minimum extent and various suggestions have been
introduced. The most simple approach to make a conjugate prior less
informative is by properly adjusting the values of the hyperparameters,
so that the variance of the distribution is large. A typical example would
be the Normal distribution with mean µ = 0 and variance σ2 = 10000.
We shall also briefly refer to the cases of Binary and Poisson data as two
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other examples, where it seems that both conjugacy and objectivity are
achieved (Kerman, 2006).

In the study of Binary data, two forms of Beta distributions are the
most popular and widely used: the uniform Beta(1, 1) and the Jeffrey’s
prior Beta

(
1
2 ,

1
2

)
. The former, expresses prior ignorance by assigning

equal weights to all possible parameter values and it is very commonly
used in Bayesian textbooks. The latter, as its name clearly states, is
derived by applying Jeffrey’s Rule on the binomial likelihood of the data
and it is recommended particularly for reasons of objectivity by both
Bernardo (1979) and Berger(2006).

The conjugate prior for a Poisson model will be obtained from the
Gamma family of distributions. Kerman mentions Gamma distributions
of the form Gamma(ε, ε), with ε → ∞, but arrives at the conclusion
that the scale-free Gamma

(
1
3 , 0
)

is the optimal candidate, despite the
fact that it is improper, since the posterior will be proper.

1.3 Markov Chain Monte Carlo methods

Numerous are the cases, in which the posterior distribution can only
be identified up to a normalizing constant. This specific problem is
referred to as intractability and it arises very frequently in Bayesian
inference. Before the evolution of computational methods, statisticians
would turn to analytical techniques, (the most well known of which is
the Normal and the Laplace approximation), which would indeed
handle the problem by providing an asymptotic approximation of the
posterior distribution, but at the rather high cost of time consuming
and complicated computations. Also, as the dimension of the problem
increases, the whole process requires much more time and even more
sophisticated computational skills.

The prospect of struggling with mathematically and computation-
ally advanced procedures in order to conduct inference in the Bayesian
paradigm, when Classical Statistics methods provide quick and effective
results, was one of the main arguments of the opponents of Bayesian
Statistics against it. Statisticians and scientists who would engage in
statistical procedures in their research, have indeed been discouraged
from employing Bayesian methods for inference.
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The scenery of statistical inference changed dramatically in the early
nineties, due to the evolution of stochastic simulation methods and their
successful implementation in Bayesian statistics. It was the use of com-
puters that made this implementation so successful, mainly because of
their capacity to perform a large number of complicated computations
in a few moments.

The fundamental idea upon which an MCMC method is built, is to
consider the distribution we wish to study, usually referred to as the
“target distribution”, as the equilibrium distribution of a Markov
chain. The procedure we follow in order to construct this chain requires
a solid mathematical background, regarding the knowledge of Proba-
bility Theory with special focus on asymptotic theorems of Stochastic
Processes. The computer is the tool that enables us to produce a large
number of draws from the chain automatically and extremely quickly.
More specifically, the speed of the computer relieves us form the tedious
task of repeatedly performing the intensive, arithmetic calculations re-
quired to build the chain. What is more, the fact that we can rapidly ob-
tain an adequately large number of draws justifies the use of asymptotic
properties, thus enhancing the robustness of our conclusions. Conse-
quently, stochastic simulation methods constitute a statistical, computa-
tional tool, which can both save us time and provide credibility. Finally,
stochastic simulation methods in general, constitute a very active field
of research, mainly regarding the improvement of the performance of the
algorithmic part, by reaching the maximum speed and effectiveness.

In this chapter, we will attempt a brief review of the Monte Carlo
Integration method, the Gibbs and Metropolis-Hastings algorithms and
also the Random Walk Sampler, which are the MCMC methods that are
employed in the present thesis for the study of the posterior distribution
of random variables. An important note we have to make regarding their
structure is that the Markov chain formed in each case has as stationary
distribution the joint distribution of interest.

1.3.1 Monte Carlo Integration

As we have previously mentioned, quite often arises the need to com-
pute marginal distributions, either because they are normalizing con-
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stants in the posterior distribution, or because they have their own role
in the inference. Monte Carlo Integration is a simulation method,
by which we can compute integrals of the form

I1 =

∫
t(θ) · π(θ)dθ,

where θ ∈ Θ ⊂ Rk, whereas t(·), π(·) : Rk → Rl. The idea of Monte
Carlo Integration, also called the simple Monte Carlo estimator, is based
on the well-known theorem known as “The Law of Large Numbers”:

Theorem 2. (The Law of Large Numbers) Let X1, ..., Xn be a se-
quenece of independent random variables with common means E(Xi) = θ
and variances V ar(Xi) = σ2 , i = 1, ..., n. If X̄n = 1

n

∑i=1 nXi, that is
the sample mean, then,

E
(
X̄n − θ

)
=
σ2

n
→ 0, as n→∞.

What the theorem suggests, is that the sample averages will converge to
the population mean with rate 1

n .
If we study again the integral I1, we will come to realize that it can be
regarded as the expression of a mean and more specifically:

I1 = Eπ[t(θ)]

.
The Monte Carlo Integration Method, provides a natural estimator for
I1, which is obtained thusly:

• Since the above expression suggests that the distribution of θ is
π(·), we obtain s draws θ(1), θ(2), ..., θ(s) ∼ π.

• We calculate Î1 = 1
s

∑s
i=1 t

(
θ(i)
)
.

In order to conduct inference, we need to calculate the marginal
likelihood or evidence of the data from an integral of the form I2 =∫
f(x|θ) · π(θ)dθ, where π(·) is the prior distribution placed on θ.

We can obtain the simple Monte Carlo estimator of I2, by once again
simulating s draws θ(1), θ(2), ..., θ(s) ∼ π and then calculate the sum
Î2 = 1

s

∑s
i=1 f

(
x|θ(i)

)
. Monte Carlo integration has advantage over an-

alytical methods, because it can be implemented as easily in low and
high-dimensional problems. Finally, the estimators, denoted as Î, have
good frequentist properties, as they are unbiased and strongly consistent
estimators of the corresponding integrals I.
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1.3.2 Using Metropolis-Hastings Algorithms: A Review
of the Generic Metropolis-Hastings Algorithm

As their name clearly states, Markov Chain Monte-Carlo methods
are ideas of simulation based on the theory of Markov Chains. Markov
Chains constitute a category of stochastic processes that have interest-
ing and appealing transition and limit properties. In order to better
comprehend and explain the algorithms that will be used, a very brief
review of the most basic theorems and properties of the Markov Chains
is provided below.

Fundamentals of the Markov Chain Theory

Definition 1.3.1. Let θ0, ..., θn, n ∈ N, be a sequence of random vari-
ables with state space S. Then we refer to (θn)n≥0 as a Markov Chain
if the following property is satisfied:

P (θn+1 = in+1|θn = in, θn−1 = in, ..., θ0 = i0) = P (θn+1 = in+1|θn = in).
(1.1)

We refer to P (θn+1 = in+1|θn = in), n ∈ N, as the transition probabili-
ties, whereas the probability distribution P (x, y) = P (θn+1 = x|θn = y), n ∈
N, is called the transition kernel. Also, we will be using the notation
Pm(x, y) = P (θn+1 = y|θ0 = x) for the transition probability from state
x to state y over m steps.

Definition 1.3.2. A distribution π is referred to as the stationary
distribution of the Markov Chain (θn)n≥0 with transition probabilities
P (x, y) if, when it is set as the initial distribution of θ0, satisfies the
system of equations:∑

x∈S
π(x)P (x, y) = π(y), y ∈ S,∑

z∈S
π(z) = 1.

(1.2)

The distribution π is also often called the equilibrium distribution.

If the stationary distribution exists, then it also has the property:

limm→∞P
m(x, y) = π(y)

upon which, the whole concept of the Metropolis-Hastings algorithm is
built.
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Definition 1.3.3. A Markov chain (θn)n≥0 with state space S, tran-
sition probabilities P (x, y), x, y ∈ S, and stationary distribution π is
called reversible if:

π(x)P (x, y) = π(y)P (y, x), for all x, y ∈ S

The idea of the Metropolis-Hastings algorithm is to consider the dis-
tribution of the parameter θ ∈ Θ ⊂ Rk+1, f(θ), from which we wish to
sample and which is usually called the target distribution, as the sta-
tionary distribution of a reversible Markov chain. In order to achieve
that, we need to come up with the appropriate transition kernel P (θ, φ),
so that the balance equation

f(θ)P (θ, φ) = f(φ)P (φ, θ), θ, φ ∈ Θ,

is satisfied. The transition kernel P (θ, φ) can be further analysed as the
product of a transition kernel q and a probability distribution a:

P (θ, φ) = q(θ, φ) · a(θ, φ), if θ 6= φ.

Consequently, P (θ, θ) = 1−
∫
q(θ, φ) · a(θ, φ)dφ.

The purpose of the function q is to propose the candidate value φ
to which the chain will move, whereas a is a probability that will en-
sure reversibility by expressing the probability whether the chain will
move or not, through the following equation, proposed by Hastings: the
probability that the chain will move to φ or equivalently, the acceptance
probability of the value φ will be:

a(θ, φ) = min

{
1,
f(φ)q(θ, φ)

f(θ)q(φ, θ)

}
. (1.3)

Implementation of the Generic MH algorithm to obtain
f(θ|y,X)

• Set an initial value θ(0).
The process to get the j-th value of θ, that is θ(j) for j = 1, 2, ..., T ,
is the following loop:

• Get a candidate value from the proposal distribution q, so that
θcan ∼ q(θ|θ(j−1)).
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• Calculate the probability a = min

{
1,

f(θ(j−1)|y,X)q(θcan|θ(j−1))
f(θcan|y,X)q(θ(j−1)|θcan)

}
.

• Set θ(j) = θcan with probability a; with probability 1 − a set
θ(j) = θ(j−1).

Discarding of initial generated values and comments on con-
vergence diagnostics

• The number T mentioned above, is the total number of iterations of
the algorithm and consequently, the total number of observations
from f(θ|y,X) we are supposed to get.

• The idea is that the reversible Markov chain generated by the algo-
rithm will converge to the posterior distribution of θ. This results
to the dismissal of a number t ≤ T of generated values and keep-
ing the ones we get after convergence is achieved. The number
t is called the burn-in period , it is specified by the statistician
conducting the inference and there can be no “right” choice.

Nevertheless, there are some quick, informal ways of monitoring
the convergence of the algorithm. A common choice is to make a
plot of the ergodic mean, which is the mean of the sample, calculated
until the current iteration. By inspecting the plot of the ergodic
means (which will be T in total), we are trying to determine the
iteration after which the generated values are very close arithmeti-
cally, giving an impression of stability, which will be demonstrated
as a roughly straight, horizontal line. This is considered to be the
point at which the convergence has been achieved and so we dis-
card all the simulated values right before that particular iteration.
Another alternative are the trace plots, which are plots of the
iterations versus the generated values. Periodicities or tendencies
among the generated values are indications of convergence.

• In general, the algorithm is considered effective if convergence is
achieved quickly. Theoretically, the reversible Markov chain con-
structed with this technique is bound to converge to the target
distribution, but this is supposed to happen after infinite itera-
tions. Consequently, it has to be ensured that convergence will be
achieved within the number of iterations we are able to perform.
Also, after discarding the burnin values, we wish to have a rather
large sample of the target distribution, in order to conduct accurate
inference. Therefore, benefiting from the fastness of the computers,
we should produce long chains, meaning that a large number of it-
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erations should be performed.

The speed of convergence depends on the candidate distribution
q. A poor choice will result to a slow-converging algorithm and an
inadequate investigation of the support of the target distribution,
which will cloud our understanding and compromise our inference.
Therefore, it is of major importance, but usually also a challenging
task, to find the optimal candidate distribution and several tech-
niques have been developed aiming to determine the appropriate q
in each case.

• The very important advantage of the MH algorithms is that we
do not have to know the precise form of f(θ|y,X). Since the ac-
ceptance probability is computed by a fraction, the complicated
integral of (3.4) is simplified and only the term of (3.5) needs to be
computed at each iteration.

The Random Walk Sampler

As the name of the algorithm reveals, the fundamental idea of its
development was the Markovian (k+1-dimensional) Random Walk, since
we consider that the candidate θcan and the current value θ(j−1) of the
j-th step are related through the following property:

θcan = θ(j−1) + uj−1, uj−1 ∼ Nk+1(0,Σ), j = 1, ..., n. (1.4)

Consequently, at the j-th step, θcan ∼ Nk+1

(
θ(j−1),Σ

)
. Thus, the

proposal distribution q will actually be a symmetric distribution and
more specifically: q

(
θcan|θ(j−1)

)
= q
(∣∣θcan − θ(j−1)

∣∣). Consequently,

q
(
θcan|θ(j−1)

)
= q

(
θ(j−1)|θcan

)
and, so, the acceptance probability

cancels down to the fraction: a = min
{

1, f(θcan|y,X)

f(θ(j−1)|y,X)

}
.

The most popular choices of proposal distributions are the multivari-
ate Uniform and the multivariate Normal.We will focus on the latter
and so the proposal distribution at the j-th step of the algorithm will
be q ≡ Nk+1

(
θ(j−1),Σ

)
. The matrix Σ is the main issue, as it affects

directly the convergence rate of the algorithm. Specifically, supposing
we choose Σ to be diagonal, then the positive values Σii determine how
close the proposed and the current values of each coefficient θi will be.
Small values yield high acceptance probabilities but slow convergence,
due to the fact that the candidate values θcan will be close to each other
and so the algorithm will keep exploring the same, small area of the
parameter space, dictated by the proposal distribution. On the other
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hand, by placing high values on Σii, we are constructing an algorithm
with very low acceptance rates, resulting to the repetition of the same
values, since the candidate values will be often rejected. In the end, once
again a small area of the parameter space will have been explored and the
sample of the posterior distribution will contain high autocorrelations.
Therefore, we must proceed cautiously by “trial and error”, and we have
to first monitor the acceptance rate of the algorithm and if it is not ad-
equate, tune the algorithm appropriately by adjusting the values of Σ.
The “adequacy” of the acceptance rate is subjective, but usually a rate
of roughly 25% is considered appropriate. We can tolerate a somewhat
lower percentage if we are exploring high-dimensional spaces, whereas
in small dimensions, it is advised for the acceptance rate to lie between
10% and 40%. We should note that the tuning process is far from trivial
and can get very time consuming as the dimensionality of the parame-
ter space grows. Finally, the performance of the proposal distribution
can be assessed by running the chain several times and monitoring the
acceptance rates.

The Independence Sampler

The Independence Sampler is another member of the Metropolis-Hastings
algorithmic family, the special characteristic of which is that at the j-th
step of the algorithm, the proposal distribution q is set to be independent
from θ(j−1), j = 1, ..., n. In mathematical notation, this is expressed as:
q(θcan|θ(j−1)) = q(θcan).

Based on the above, the acceptance probability of the candidate value
at each step j, as given in (3.8), takes the form:

a = min

{
1,
f
(
θ(j−1)|y,X

)
q(θcan)

f(θcan|y,X)q
(
θ(j−1)

)}, j = 1, 2..., n. (1.5)

Once again, the convergence properties of the algorithm depend on q,
which has to diverge as little as possible from the target/posterior dis-
tribution. Consequently, the challenging part of the process is to find
the suitable proposal density. If we choose the “trial and error” option,
then we will have to test various proposal densities by running the chain
using each one of them as q, monitoring the acceptance probabilities,
inspecting the trace plots and then decide whether we have to tune the
algorithm or not. Unless we can roughly figure out the form of the poste-
rior distribution, this endeavour will turn out to be very time consuming
and as the number of dimensions increases, so does the complexity of
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the posterior distribution and thus, the task becomes even more cum-
bersome. So, if we relied solely on that technique, we would prefer the
Random Walk alternative.

However, various computational and analytical methods have been
developed in order to approximate the main descriptive statistics of the
posterior distribution and improve the performance of q. In general,
a successful proposal distribution for the Independence Sampler is the
multivariate Normal with parameters the posterior mode θ̃ and the in-
verse of the curvature at the posterior mode, denoted as C(θ̃).

Once again, the computation of the posterior mode can be performed
analytically or computationally. A version of the latter option, known
as the Bayesian Iterative Weighted Least Squares algorithm will be used
in the present thesis and it will be directly implemented in the logistic
regression model.

The Gibbs Sampler

The Gibbs Sampler, originally introduced by Geman and Geman
(1984), is an MCMC method, which is very useful when the studied
parameter θ is considered to be a multivariate random variable; in other
words, the parameter space denoted as Θ is considered to be a subsection
of Rk, k ∈ N.

Apart from the Markovian Theory, the fundamental idea behind the
construction of this particular algorithmic scheme, is the statistical con-
cept of conditional conjugacy. We assume independent priors for each
coordinate of the parameter vector θ = (θ1, ..., θk). So, we would a pri-
ory consider that θ1 ∼ π1, ..., θk ∼ πk, where π1(·), ..., πk(·) : R → R,
whereas the joint prior distribution of θ, will be:

π(θ) =

k∏
i=1

πi(θi).

Supposing that we wish to conduct inference on a vector of inde-
pendently distributed components θ = (θ0, θ1, ..., θk) and that we have
obtained the likelihood of the model under study, denoted by p(y|θ) ≡
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p(y|θ0, θ1, ..., θk), then by applying Bayes’ Theorem, we would get:

p(θ|y) ∝ p(y|θ) · π(θ)

= p(y|θ0, θ1, ..., θk) · π0(θ0) · · ·πk(θk).

Quite often, the posterior distribution of θ turns out to be very costly
to directly simulate draws from, or even intractable.

However, conjugacy allows us to easily determine the conditional pos-
terior distribution of each θi, denoted by p(θi|y, θ0, ..., θi−1, θi+1, ...., θk), i =
0, 1, ..., k.
Indeed,

p(θi|y, θ0, ..., θi−1, θi+1, ...., θk) ∝ p(y|θ) · π(θi|θ0, ..., θi−1, θi+1, ...., θk)

But, since we have assumed independent priors, we can conclude that

π(θi|θ0, ..., θi−1, θi+1, ...., θk) = πi(θi)

and consequently, we deduce that

p(θi|y, θ0, ..., θi−1, θi+1, ...., θk) ∝ p(y|θ) · πi(θi)

The Algorithm

1. Consider an arbitrary initial vector θ(0) =
(
θ

(0)
0 , θ

(0)
1 , ..., θ

(0)
k

)
, where

θ
(0)
0 ∼ π0

θ
(0)
1 ∼ π1

θ
(0)
2 ∼ π2

...

θ
(0)
k ∼ πk

2. Use the current vector of θ.

• Simulate from the conditional posterior distribution θ
(1)
0 from

the conditional posterior distribution p(θ0|y, θ(0)
1 , θ

(0)
2 , ..., θ

(0)
k ).

• Simulate from the conditional posterior distribution θ
(1)
1 from

the conditional posterior distribution p(θ1|y, θ(1)
0 , θ

(0)
2 , ..., θ

(0)
k ).
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• Simulate from the conditional posterior distribution θ
(1)
2 from

the conditional posterior distribution p(θ2|y, θ(1)
0 , θ

(1)
1 , θ

(0)
3 ..., θ

(0)
k ).

...

• Simulate from the conditional posterior distribution θ
(1)
k from

the conditional posterior distribution p(θk|y, θ
(1)
0 , θ

(1)
1 , θ

(1)
2 , ..., θ

(1)
k−1).

Then, θ(1) =
(
θ

(1)
0 , θ

(1)
1 , ..., θ

(1)
k

)
.

3. Return to step 2. using as the current value of θ, the k + 1-
dimensional vector obtained in the previous step.

Once again, we can monitor the convergence of the algorithm using the
ergodic means plot mentioned before for each coordinate θi, i = 0, 1, ..., k
and set an appropriate total number of iterations T , so that after the
burn-in period, denoted by t, a sufficiently large sample is available.
The idea is that, as the total number of iteration increases, the formed
chain approaches its equilibrium distribution (Gamerman and Lopes,
2006), which is the desired posterior distribution and so,the set of draws

defined as:
{
θi : i ∈ {t + 1, ..., T}

}
, can be regarded as a sample from

p(θ|X, y).

A basic fact that has to be pointed out, is that the formed chain is
indeed Markovian, since in order to obtain θ(j+1), we rely solely on θ(j)

and thus, there is probabilistic dependence on the exact previous state
of the chain.

As far as the scanning over the components of θ in each iteration, as
well as the derivation of the sample are concerned, various methods have
been proposed, mainly for optimization reasons. For instance, instead of
the deterministic order suggested above, Roberts and Sahu (1997) con-
sider a scan, in which at each iteration a permutation of the indicator
set 0, 1, 2, . . . , k is selected randomly and dictates the order the compo-
nents θi, i = 0, 1, . . . , k will be visited. Alternatively, Zeger and Ibrahim
(1991) suggested a scheme, according to which, some components are
visited only on every jth iteration, where j ∈ N is a finite and fixed
value.
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The way by which we chose to obtain a sample of size n from the pos-
terior distribution of θ is to perform t+n k+ 1-dimensional generations
from one single chain and keep the last n draws, which will all have as
marginal distribution the stationary distribution of the chain. Although
ergodic theorems ensure that the obtained sample is valid, we still run the
risk of failing to acknowledge high autocorrelations between the sample
values, because nmay not be an adequately large sample size. This possi-
bility makes sense, since each value θ(l) strongly depends on the previous
θ(l−1). Such an incident could lead to an incomplete exploration of the
parameter space, because the chain will move very slow and in the same
areas and, as a result, we could end up with inferences that would not
offer a sufficient view regarding the posterior distribution of the studied
parameter. Bearing that option in mind, a statistician should definitely
set n as a large number, in order to enhance the validity of the inference.
Of course, safety in this case may come at the cost of time, depending
on the amount of computations required. In an attempt to avoid the
hazard of a misleading sample due to chain autocorrelation, one could
derive an n-sized sample by keeping the generated value after every mth
iteration,m ∈ N, where m is fixed. I.e. if we considered the sample as a
set denoted by S, then S =

{
θ(t+m),θ(t+2m), . . . ,θ(t+nm)

}
. Thus, we

produce a sample of independent and hence, not autocorrelated values,
all drawn from a single chain, at the cost, however, of t+nm generations
in total, which could once again be high, depending on the integers n
and m.

1.4 Bayesian Inference and Model Selection

1.4.1 Summarizing the information

In the Bayesian framework, inference is conducted by studying the
posterior distribution. That task is performed in steps, the combi-
nation of which, enlightens our view concerning the properties and the
peculiarities of the distribution of the studied parameter.

Location Parameters, Spread Parameters and Measures of As-
sociation Between Two or More Variables

Supposing we wish to study a random variable denoted by θ ∈ Rm.
After obtaining its posterior distribution (analytically or computation-
ally), our study begins by deriving the means vector, for which the usual
notation is θ̄ and the covariance matrix Σ. If the posterior distribution
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has the form of a known distribution, the elements above are directly
available, thanks to properties of the Probability Theory. In any dif-
ferent case, we have to estimate them, using the formulas bellow. Let
S = {θ(1), ...,θ(n)} be a sample from the posterior distribution of θ.
Then,

• the posterior mean is estimated by:

θ̄ ≡


θ̄1

θ̄2
...
θ̄m

 =
1

n

n∑
i=1

θ(i)

• whereas, the posterior covariance matrix, Σ =
(
σk,l

)
, with k, l ∈

{1, ...,m}, is calculated based on the formula:

σkl =
Cov(θk, θl)√

V ar(θi) · V ar(θj)
=

1

n

∑n
j=1

(
θ

(j)
k − θ̄k

)
·
(
θ

(j)
l − θ̄l

)
√

1

n2

∑n
j=1

(
θ

(j)
k − θ̄k

)2
·
(
θ

(j)
l − θ̄l

)2

The elements in the main diagonal, that is
(
σii

)
i=1,...m

, correspond

to the estimated variances of each coordinate θi, i = 1, ...,m,

whereas
(
σij

)
i 6=j

= Cov
(
θi, θj

)
.

Especially in the multivariate case, in which a graph of the posterior
distribution cannot be obtained if the parameter space is of dimension
over 3, each component of the studied parameter can be studied indi-
vidually by first deriving the marginal posterior distributions and
then the statistical features mentioned above. Additionally, we can also
obtain the central tendency measures of the median and the mode and
the spread parameters of range and interquantile range. Likewise, in
the case of a posterior distribution of known form, we can obtain these
parameters in a straightforward way. Otherwise, if a sample of the pos-
terior distribution is available, trivial computations are required.

More specifically, bearing in mind the relative definitions from the Sta-
tistical Theory, after sorting the observations of the sample in ascending
order, we can deduce that:
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• the median of each covariate,θi ∈ R, i = 1, ...,m is either θ
[(n+1)/2]
i ,

if n is an odd number, or
θ
[n/2]
i +θ

[n/2+1]
i

2 , if n is an even number

• a value θ
[j]
i , j ∈ {1, ...n} is identified as mode if f

(
θ

[j]
i |y

)
≤ f

(
θ

[k]
i |y

)
,

for every k ∈ {1, ...n} − {j}. We note that the value of mode may
not be unique.

• the range is described as the difference θ
[1]
i −θ

[n]
i , where θ

[1]
i and θ

[n]
i

are the smallest and largest values of the random variable θi in the
obtained sample

We should note that statistical software like R or WinBugs, have
special functions, which by using as input the set of the sampling values,
can provide all the statistical features mentioned above.

Highest Posterior Density Regions

The numerical summaries mentioned previously cannot offer any mea-
sure of accuracy. In an attempt to overcome this lack of information,
the idea of credibility intervals (when the parameter space Θ ⊂ R) and
credibility regions (when Θ ⊂ Rk, k ∈ N) was developed. Initially, our
goal is to determine an area, denoted by C(α) ⊂ Θ, in which the stud-
ied parameter θ will lie with probability 1 − α, based on the posterior
distribution. This idea could be formally summarised by the definition
provided below:

Definition 1.4.1. Suppose that the posterior distribution of the param-
eter θ ∈ Θ ⊂ Rk+1 is p(θ|y). Then C(α) ⊂ Θ is called a 100%(1 − α)
credible region, if: ∫

C(α)
p(θ|y)dθ = 1− α.

The region defined above, however, is not unique and so, the question
that automatically rises is which one of the areas satisfying this condi-
tion should be chosen?

The optimal choice is considered to be the area with the smallest
width, which will inevitably also be a high density area. This amounts
to an additional constraint, according to which, C(α) has to be of the
form:

C(α) =

{
θ : p(θ|y) ≥ γ

}
.
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Thus, a highest posterior density region is determined.

It should be noted, that there is still a possibility of more than one
areas, satisfying the two, required, conditions. This, for instance, could
occur if the posterior distribution has more than two similar peaks.

Highest posterior density regions are a familiar concept from Clas-
sic Statistics, although there are fundamental differences, which will be
clarified below. First, in the Bayesian framework θ is treated as a ran-
dom variable, to which, a probability distribution is assigned, whereas
the region C(α), is defined as a region with constant boundaries. In the
case of the traditional confidence region, however, its boundaries are the
random variables, θ is an unknown constant and 100%(1− α) amounts
to the possibility, that the constructed space C(α) will include the re-
searched parameter (usually 95% or 99%).

Another very important remark is that Bayesians, contrary to Classi-
cal statisticians, usually do not rely on the study of the HPDIs when it
comes to hypothesis testing. Instead, the test of two or more hypotheses
versus one another is performed by assigning a model to each hypothesis
and then, by selecting the optimal model. The hypothesis corresponding
to the selected model is considered to be supported by the data. This
view is the most celebrated, but there is still debate over the matter.
For instance, Robert and Marin (2006), employ highest posterior den-
sity regions in the search of a more parsimonious Normal, linear model.

In the absence of an analytic posterior distribution, an informal, com-
putational way to estimate a credibility region of 95% probability would
be to select a sample of 1000 observations, after the burn-in period of an
MCMC algorithm, rank them with respect to the frequency of appear-
ance and then consider C(α) to be the area formed between the 25th and
975th drawn value.

In any case, it is strongly recommended, that one should first plot
a graph from simulated values of the posterior distribution, which will
provide an initial, informal view of the distributional behaviour of the
parameter. Thus, insight to the form and the uniqueness of a credibility
region or interval will be obtained.
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1.4.2 Model Selection

Based on the different statistical approaches, the methods of model
selection presented in this thesis could be roughly classified to three basic
categories:

1. Methods that point out as the optimal model, the one,
which is best
“supported by the data”
In this particular framework, we reach this conclusion by calculat-
ing either the Bayes factor or the marginal likelihood of the data
for each candidate model. The derivation of both is based on the
posterior distribution of the studied parameter under each model.

Bayes factor : Supposing we wish to compare two models M1

and M2, regarding a parameter θ = (θ0, ..., θk). Since the present
dissertation focuses on the task of variable selection in regression
models, each one of the various, compared models suggests a subset
of indicators θi, i = 0, ..., k, which corresponds to a more economic
selection of explanatory variables for the data at hand.

So let Θ1 and Θ2 stand for the vector of parameters suggested by
M1 and M2 respectively. The Bayes factor is defined as the ratio:

BF12 =
f(data|Θ1)

f(data|Θ2)
,

where

f(data|Θi) =

∫
Θi

f(Θi|data) · π(Θi)dθi,

with f(·) and π(·) being the posterior and prior distribution of Θi

respectively. What is interesting about the Bayes factor, is that it
allows us to measure the information contained in M1, when it is
compared to M2. A value that is a lot greater than 1, indicates
that the information in M1 offers us a better insight and therefore,
it should be preferred over M2.

Marginal likelihood of the model : After the posterior distri-
butions of two possible parameter selections Θ1 and Θ2 have been
derived, we could, in a way, rely on the data to point us to the
right direction, in order to make the best choice. An obvious way
of doing that, is to obtain the posterior probability of each model,
given the data and then, select the one with the maximum marginal
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likelihood.

The posterior probability of M1, given the data, is analytically
calculated by Bayes’ Theorem as follows:

P (M1|data) =
P (data|M1) · P (M1)

P (data|M1) · P (M1) + P (data|M2) · P (M2)

where P (data|M1) and P (data|M2) are the marginal likelihoods of
each model respectively. The computation of the two latter prob-
abilities could be challenging, depending on the dimension of the
parameter space studied each time. It would require to solve an
integral of the following form:∫

Θi

f(data|Θi) · π(Θi)dθi

where f(data|Θi) is the likelihood of the data, according to the
model structure and π(·) : Rm → Rn is the prior distribution as-
signed on Θi, with m being the dimension of the parameter space.

2. Methods that can be regarded as “self-consistency” or
“predictive” checks
They are mainly graphical tests or tests measuring discrepancies
between replicated data and the observed data, via an appropriate
statistical function. By the term “replicate”, we refer to the data
generated directly from the studied model. The credibility of the
particular model is judged by the compatibility of the replicated
values with the observed values.

Graphical checks
They basically involve the plotting of histograms of the replicated
data, which, if they are similar to the one of the available data,
indicate a good performance of the suggested model. Additionally,
small discrepancies of the main statistical features (mean, mode,
variance) of the samples, indicate that we are dealing with a plau-
sible model.

The Bayesian p-value
Another important, although controversial, tool is the Bayesian
p-value, which expresses the possibility of a sort of discrepancy, de-
termined by the researcher, depending on the nature of the data.
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A definition will be provided in the next chapter, which will clarify
that there is a distinction between the Classic and the Bayesian
perspective. Bayesians in general, tend to give a lot less credit to
p-value as a tool of inference. It is often employed as an additional
feature, but it is seldom used on its own.

The L Measure
The idea that led to the development of the L Measure is similar
to the notion described above; it is the notion that the more com-
patible to the data at hand, y, an arbitrary vector of predicted
values z = (z1, ..., zn), under the candidate model, turns out to
be, the more plausible that specific model would be.
The L Measure is a Bayesian test statistic, by which this “compat-
ibility” between observed and predicted values can be assessed by
formal, statistical means. The main idea for its definition is that
small discrepancies between y and z, indicate a good performance
of the model.
Before proceeding to the functional forms suggested for the L Mea-
sure, we need to clarify that by z, we refer to a vector of predictions,
not to replicated values; this means that the sampling distribution
of z is the predictive distribution and therefore, it is obtained by
the following integral:

f(z|y,M) =

∫
L(z|θ,M) · f(θ|y)dθ,

with L(·|θ,M) denoting the likelihood under a model M .

Two of the first statisticians, who introduced and researched
the idea of the L Measure, were Joseph G. Ibrahim and Laud.
They originally considered as an adequate test statistic the expected
squared Euclidean distance between y and z, expressed as

LIL = E
[
(y − z)T (y − z)

]
.

It can be shown that the former expression can also be written as

LIL =

n∑
i=1

{
V ar(zi|y) +

(
E[zi|y]− y

)2}
.

Both the expectation and the variation are derived with respect to
the posterior predictive distribution f(z|y,M).
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Ibrahim and Laud (1994) have assigned weight 1 on both the
variation and the expectation of the squared difference between a
predicted and an observed value. Ibrahim, Chen and Sinha (2001)
pointed out that this decision is not theoretically justified and also,
that by assigning a weight ν ∈ (0, 1) on the second term (which can
be regarded as a sort of bias), one can gain “greater flexibility in
the tradeoff between bias and variance”.
Thus, they finally proposed the functional form below for the L
Measure:

LIL =

n∑
i=1

{
V ar(zi|y) + ν ·

(
E[zi|y]− y

)2}
(1.6)

The question that arises now is whether there is an “optimal” value
for ν and how that is determined. Bibliography provides no definite
answer until now. Ibrahim, Chen and Sinha, after a brief discussion
over the subject and based on the results of the inference conducted
on three models, as an example, they conclude that in the cases of
linear and logistic regression, ν = 1

2 appears to be a generally good
choice. The same value will be assigned on ν in the present paper as
well. Consequently, the L Measure will be calculate by the following
formula:

LIL =
n∑
i=1

{
V ar(zi|y) +

1

2
·
(
E[zi|y]− y

)2} (1.7)

The model with the smallest value of the L Measure statistic is the
one selected among the possible candidate models.

Last but not least, we should note that an important property
of the L Measure is that it very little affected by the prior defini-
tion and it is tolerant with improper priors as well. This property
is the basic argument, used to justify why it should be preferred
over Bayes’ factors and Posterior Model probabilities for the task
model assessment and comparison. We recall that these two meth-
ods are very sensitive to prior distributions, in the sense that a
misplaced prior distribution would result to misleading Bayes’ fac-
tors and posterior model probabilities. Additionally, an improper
prior distribution would rule out these methods as options for model
selection.

3. Information Criteria
Probably a common practice for model selection in both the Clas-
sical and the Bayesian approach. Among the many criteria, we
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choose to confine our analysis to the Bayesian Information Crite-
rion (abbreviated as BIC) and the Deviance Information Criterion
(DIC).

The Bayesian Information Criterion
BIC is computed for a candidate model Ml as follows:

BIC := −2logL
(
y|Θ̂l

)
+ dl · log(n),

where:

• Θ̂l is the vector of parameters that maximises the likelihood of
the data under model Ml

• L
(
y|Θ̂l

)
is the likelihood of the data under the structure de-

fined by Ml and also, with Θ̂l as the parameter vector

• dl is the dimension of the parameter space in Ml

• n is the dimension of the response variable y.

The original derivation of BIC is based on a method for Bayesian
model comparison introduced by Schwarz in 1978 and presents two
very appealing computational properties. It is clear that the func-
tional form that defines BIC is the log-likelihood of the model (pe-
nalized by the quantity dl · log(n)) and none of the assigned prior
distributions. Hence, it constitutes a convenient comparison cri-
terion when the specification of the prior is controversial. What
is more, it is not affected by improper or non-conjugate priors in
general.

Another interesting feature is that it is closely related to the
Bayes factor of the model, due to its connection to the Schwarz cri-
terion. In fact, it can be used to roughly approximate the log-Bayes
factor under a wide family of prior distributions (Ntzoufras, 2009),
which includes the exponential family. This statement is justified
by the following property of the Schwarz criterion, calculated for
the comparison of two arbitrary models M1 and M2.

The Schwarz criterion, according to Ntzoufras’ Bayesian Model-
ing using WinBugs (2009) is derived thusly:

S12 = logL
(
y|Θ̂2,M2

)
− logL

(
y|Θ̂1,M1

)
− 1

2
(d2 − d1) · log(n)
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Based on the definition of BIC, we can deduct that

S12 = −1

2

{
BIC(M1)−BIC(M2)

}
.

The property that interests us is that ,the Bayes factor B12 is con-
nected asymptotically to the quantity S12:

S12 − log(B12)

log(B12)
→ 0, as n→∞.

Bearing in mind the latter equation, we can conclude that

−2log(B12) ≈ BIC(M1)−BIC(M2).

In addition to that, once the BIC of a model m is obtained, we can
also approximate the posterior probability of that particular model
as follows:

P
(
m|y

)
≈

exp
(
− 1/2 ·BIC(m)

)
∑

ḿ∈M exp
(
− 1/2 ·BIC(ḿ)

) ,
where M is the set of all the examined models.

An elaborate sketch of the derivation of BIC, as well as var-
ious information regarding the range of its use, are provided in
Neath and Cavanaugh’s paper “The Bayesian information Crite-
rion:background, information and application”(2011). An inter-
esting feature pointed out in the paper is the consistency of the
Bayesian Information Criterion, which is defined as an asymptotic
property, by which the selected model will “converge with probabil-
ity one to the most parsimonious model that is closest to the true
model (as measured by the Kullback-Leibler information)”, even
if the model that generated the observed data is not among the
candidate models.

The Deviance Information Criterion
DIC is another very popular Bayesian criterion, originally intro-
duced by Spiegelhalter in 2002. It is constructed as a trade-off be-
tween model fit and model complexity (Yong Li,Jun Yu, Tao Zeng,
2017) and it examines whether the data, replicated under a specific
model, can predict the observed data in a “satisfactory” way. We
will elaborate on the above statement, by defining the quantities,
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that express these notions in the Bayesian framework.

Firstly, by the term deviance, we actually refer to the statistical
function, defined as

D(θ) := −2lnL(y|θ),

where L(y|θ) expresses the likelihood of the data at hand, with
respect to the vector of coefficients, denoted by θ, determined by
the model under study.
Secondly, we introduce a frequently used, Bayesian measure of
model fit, which is the posterior expectation of the deviance, ex-
pressed as

D(θ) := Eθ|y

[
D(θ)

]
= −2

∫
Θ
lnL(y|θ) · f(θ|y)dθ,

with B indicating the parameter space of the vector of coefficients.
The more plausible the model is, the larger the log-likelihood gets,
resulting to a smaller value of D(θ).

DIC is calculated based on the formula bellow:

DIC := D(θ) + pD.

The term denoted by pD is a measure of model complexity, known
as the effective number of parameters. It is derived as follows:

pD := D(θ)−D
(
θ̄(y)

)
= D(θ) + 2lnL(y|θ̄(y)),

where θ̄(y) ≡ θ̄ =
∫

Θ θ · f(θ|y)dθ is the posterior mean of the
coefficient vector. The last term is the deviance, evaluated at the
posterior mean; that is D

(
θ̄
)

= −2lnL(y|θ̄).The complexity of the
model is in fact used to “penalize” the DIC score of the model, since
the more complex it is, the larger this score gets.The optimal model
is the one corresponding to the smallest value of the Deviance In-
formation Criterion.

We should note that for the specific task of variable selection,
this criterion can be a justified choice, due to the choice of the
penalty-function, affecting the deviance. As a more specific exam-
ple, consider a model with a generally suitable structure, that is, an
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informative form, concerning the interpretation of the data, but of
a very high dimension. Naturally, such a model with a large num-
ber of explanatory variables, would have a large likelihood, which
is equivalent to a small deviance score. However, the penalty im-
posed by DIC would be large, since that model is complex. Hence,
it would not be preferred over another, nested perhaps model, that
includes fewer variables, provided that the likelihood is not signifi-
cantly reduced.
The paper “Bayesian measures of model complexity and fit” (Spiegel-
halter, et.al.), provides the original justification and an extensive ex-
amination of the Deviance Information Criterion. Also, “Deviance
Information Criterion for Bayesian Model Selection: Justification
and Variation”, authored by Li, Yun and Zeng in 2017, provides
a very informative study for DIC and for that, the symbolism and
terminology suggested, have been used in the present paper as well.
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Chapter 2

Bayesian Analysis of the
Multiple Normal Linear
Regression Model

General Notation

The Bayesian approach to both univariate and multivariate normal
linear models is of great interest and has been extensively studied in a
number of scientific fields, especially in the field of econometrics (Kooper
2003) due to their significant applications. In general, the linear regres-
sion model suggests a relationship between the dependent or observed
variable, y, and a set of k explanatory variables x1, ..., xk, which is of the
form:

yi = β0 + β1xi1 + ...+ βkxik + εi, i = 1, ..., n, n, k ∈ N. (2.1)

We denote as yi the ith observation of the dependent variable and as xij
the ith observation of the jth explanatory variable. We will assume that
for every observation yi there is an observation xij and also a quantity
εi, i = 1, ..., n , j = 1, ..., k.
It is important to explain the meaning and nature of every variable that
is used in the model:
-The vector y is the quantity of interest and refers to a priori available
observations. It is a continuous random variable.
-The xj variables are the factors considered to have a possible influence
on y and have to be continuous. The observations of y are considered
fixed, whereas the explanatory variables can be either fixed or stochastic.
However, their values are given to us by the experimenter.
-The parameters β0, β1..., βk are called regression coefficients, they are
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unknown and their estimation is a major goal of the entire analysis. In
the Bayesian paradigm the parameters are considered to be random vari-
ables and, therefore are assigned prior density functions or distributions.
-The quantities εi are error terms usually called disturbancies .Their ex-
istence is inevitable, since the formula suggested by the model is only
an approximation of the actual relationship between y and xj and it is
certain that the values β0 +β1xi1 + ...+βkxik and yi are in fact unequal.
Therefore, we are justified to use the concept of the equation only if
we conclude the errors which could be the result of false measurements,
the absence of influential factors from the model etc. Their values are
unknown and consequently they are treated as random variables. We
should note that the assumptions made regarding the distribution of the
disturbancies define the likelihood of the model and the whole process
of the analysis.

The normal linear model

The most widely used version of linear models is the normal linear
model in which we assume that the disturbancies follow a normal dis-
tribution and consequently yi will also have a normal distribution given
xij with a mean that is a linear combination of xij :

E[yi|β0, β1..., βk, xi1, ..., xik] = β0+β1xi1+...+βkxik, i = 1, ..., n, j = 1, ..., k.
(2.2)

2.1 The ordinary linear model

Assumptions

The ordinary linear model is the simplest version of a normal linear
model and it is defined by the assumption that the disturbancies are
homoscedastic, independent and identically distributed. That is :
1. εi ∼ N(0, σ2) i = 1, 2, .., n.
2. For every i, j the random variables εi and εj are independent from
one another for every i 6= j.
In the next chapters we will discuss deviations from the above assump-
tions.

Using matrices
Since most of the times we are working with a rather large amount of
data, it is accustomed to use vectors and matrices for computational
reasons and for convenience. These are the vectors and matrices we will
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be using from now on for the variables mentioned above:

• We consider the vector y =


y1

y2
...
yn

 which contains the values of the

dependent variable y.

• The values of each explanatory variable xj are placed as columns
in a n × (k + 1) matrix named X the first column of which, is in
fact a unit vector:

X =


1 x11 . . . x1k

1 x21 . . . x2k
...

...
. . .

...
1 xn1 . . . xnk

. If these values are random variables, X

is a stochastic matrix.

• There is also the regression coefficients vector β =


β0

β1
...
βk

.

• Finally, we create a n×1 vector with the values of the disturbancies:

ε =


ε1

ε2
...
εn

.

From now on,the equation of the ordinary linear model will be the fol-
lowing:

y = Xβ + ε , ε ∼ Nn(0, σ2In), (2.3)

where Nn(0, σ2In) is the multivariate normal distribution with mean a
n× 1 vector of zeros and In is the n×n identity matrix. From the form
of the model and our previous assumptions, we can also assume that
y|X,β, σ ∼ Nn(Xβ, σ2In).
The vector β as well as the value of σ2 are considered unknown and
therefore, they are treated as random variables and the inference problem
is the estimation of the vector θ = (β0, β1, ..., βk, σ

2).

Formal justification of the form of conditioning

Before we proceed to the full analysis, we need to clarify the condi-
tioning when the explanatory variables are also random variables and so

34



X is a stochastic matrix. In this case there is also the distribution of X,
p(X|ψ) where ψ is an unknown parameter similar to θ and, therefore,
we have a likelihood of the form f(y,X|θ, ψ) and a joint prior distribu-
tion p(θ, ψ). Although this seems to influence the whole concept of the
regression, this is not the case, because we assume that the distribution
of X offers no information to the conditional modelling of y given X;
in other words we assume prior independence between the parameters θ
and ψ. As a result, we can write p(θ, ψ) = p(θ)p(ψ) and the posterior
distribution can be written as p(θ, ψ|X, y) = p(ψ|X)p(θ|X, y). Hence,
we can write the second factor as p(θ|X, y) ∝ p(θ)p(y|X, θ), which is the
form of conditioning we will be using. Of course, when the values of X
are chosen; meaning they are fixed and known, there is no parameter ψ
to consider.

2.1.1 First-step analysis of the ordinary normal linear re-
gression using Jeffreys’ non-informative prior distribution
for β and τ

The prior

The first step of our analysis is to determine a prior distribution for
the variables β and σ2. We assume in advance that β0, β1, ..., βk and σ2

are independent.

Supposing that nothing is known about the vector of parameters β, we
can make the general assumption that βi ∈ (−∞,+∞) for each i =
0, 1, ..., k. Based on this, we can state that p(βi) ∝ ci, where ci is a
constant or, even more simply, that p(βi) ∝ 1 for each i. Consequently,
we will be using

p(β) ∝ 1 (2.4)

as the non-informative prior of the vector of parameters.

We have to note that the suggested prior for β is improper, because∫
·· ·
∫

Rk+1

p(β)dβ 6= 1. However, this consists no problem in our further

analysis, since the respective posterior is proper.

In the case of the variance σ2, we choose a suitable non-informative
prior to represent our ignorance, thinking in a similar way. Obviously,
σ2 ∈ (0,+∞), which is equivalent to log(σ2) ∈ (−∞,+∞). Once again,
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we can use the non-informative prior that satisfies the condition:

p(log(σ2)) ∝ 1. (2.5)

Now, we can deduce the prior of σ2 based on the change-of-variable
technique:

p(σ2) = p(log(σ2))
∣∣∣d log(σ2)

dσ2

∣∣∣ ∝ 1 · 1

σ2
.

At this point, we will follow a rather common practice of transforming
the variance σ2 to the new variable τ = 1

σ2 called precision. Using the

same technique and based on the fact that σ2 =
1

τ
we have that:

p(τ) = p
(1

τ

)∣∣∣∣∣d
1

τ
dτ

∣∣∣∣∣ ∝ τ 1

τ2
=

1

τ
. (2.6)

Finally, the joint non-informative prior distribution of β and τ will be:

p(β, τ) ∝ 1

τ
. (2.7)

Obtaining the posterior distributions

First, we will determine the posterior distribution of β, conditional
on the precision τ ; that is p(β|τ, y) and then we will obtain the marginal
distribution of τ ;that is p(τ |y).

The analytical form of the likelihood of the model is:

p(y|β, τ) = (2π)−
n
2 (τ)

n
2 exp

[
− τ

2
(y −Xβ)T (y −Xβ)

]
. (2.8)

After applying Bayes’ Rule and considering that we are interested only
in the terms that include β and τ , we get the following expression:

p(β, τ |y) ∝ (τ)
n
2
−1 exp

[
− τ

2
(yTy − yTXβ − βTXTy + βTXTXβ)

]
.

(2.9)
We set b = (XTX)−1XT y, namely the least squares estimate, as a quan-
tity that provides help to calculate and identify the necessary posterior
distributions. We are going to insert b in (1.7) by observing that:

y −Xβ = y −Xb+Xb−Xβ = y −Xb+X(b− β). (2.10)
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Using (1.8) we can rewrite (1.7) as:

p(β, τ |y) ∝ (τ)
n
2
−1 exp

[
− τ

2

(
[(y −Xb)T + (b− β)TXT ][(y −Xb) +X(b− β)]

)]
= (τ)

n
2
−1 exp

[
− τ

2

[
(y −Xb)T (y −Xb) + (y −Xb)TX(b− β)

· exp (b− β)TXT (y −Xb) + (b− β)TXTX(b− β)
]]

= (τ)
n
2
−1 exp

[
− τ

2

[
(y −Xb)T (y −Xb) + (b− β)TXTX(b− β)

]]
.

(2.11)

Because of the form of b, the crossproduct (y −Xb)TX(b − β) is equal

to zero. We set s2 =
(y −Xb)T (y −Xb)

n− k − 1
and thus (1.9) can finally take

the form below:

p(β, τ |y) ∝ (τ)
n
2
−1 exp

[
− τ

2
(n− k − 1)s2

]
exp
[
− τ

2
(b− β)TXTX(b− β)

]
= (τ)

n−k−1
2
−1 exp

[
− τ

2
(n− k − 1)s2

]
(τ)

k+1
2 exp

[
− τ

2
(b− β)TXTX(b− β)

]
.

(2.12)

Observing the final result,we now can use the exponential terms to fac-
torize the joint posterior probability as: p(β, τ |y) = p(β|τ,y)p(τ |y),

where p(β|τ,y) ∝ (τ)
k+1
2 exp

[
− τ

2 (b− β)TXTX(b− β)
]

and therefore

we can assume that β|τ,y ∼ Nk+1(b,
1

τ
(XTX)−1).

Also, since p(τ |y) ∝ (τ)
n−k−1

2
+1 exp

[
− τ

2 (n− k − 1)s2
]
, we can con-

clude that τ |y ∼ Inv − χ2(n− k − 1, s2).

We must note that the prior we used is improper and, therefore, we
need to make sure that the posterior distribution is proper. In this case,
the joint posterior distribution p(β, τ |y) has to be proper; this condition
is true when n > k and X is of full rank. In other words, it is necessary
that the number of observations is larger than the number of the model
parameters and the explanatory variables are linearly independent. The
marginal posterior distribution of β, that is p(β|y), can be computed by
the following integral:

p(β|y) =

∫ ∞
0

p(β, τ |y)dτ

∝
∫ ∞

0
(τ)

n
2
−1 exp

[
− τ

2
(n− k − 1)s2

]
exp

[
− τ

2
(b− β)TXTX(b− β)

]
dτ.

(2.13)
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By carefully observing the last term, we can recognise the main body

of a Γ

[
n

2
,
(n− k − 1)s2 + (b− β)TXTX(b− β)

2

]
. Consequently, we can

perform the integration, deriving the following result:

p(β|y) ∝

(
(n− k − 1)s2 + (β − b)TXTX(b− β)

2

)−n
2

Γ

(
n

2

)

∝
(
(n− k − 1)s2

)−n
2

[
1 +

(b− β)TXTX(b− β)

(n− k − 1)s2

]−(n−k−1
2

+ k+1
2

)

∝

[
1 +

(b− β)TXTX(b− β)

(n− k − 1)s2

]−(n−k−1
2

+ k+1
2

)
.

We can conclude that β|y ∼ tn−k−1

(
b, XTX

(n−k−1)s2

)
. However, the marginal

distribution of β is rarely used since it is more convenient to sample the
marginal posterior distribution of β via the Gibbs sampler using the
conditional distribution of β.

Checking the fit of the model

Before we proceed to a more thorough examination of the model pa-
rameters, we should check the credibility of that particular model. In
other words, we need to confirm the consistency of our prior assump-
tions and the general fit of the model to the data, since only then we
are justified to continue our analysis. A way to do that is to use the
Bayesian p-value, which will provide a first hint of the suitability of the
model.We should mention that the Bayesian p-value, despite its popu-
larity, is a point of controversy for statisticians: it is either approved
and recommended or faced with scepticism. Each side, nevertheless, has
famous supporters. Since we will be based on Gelman’s definition of
the posterior predictive p-value, in order to comprehend it, we need to
clarify the meaning of what we will refer to us a replicated value:
By yrep we refer to replicated data, which are the observations we would
get, instead of y, if the suggested model was true. These values would
be obtained, if we used the original matrix X as input to the model we
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would get, after our posterior inference. The main concept behind their
use is that if we are dealing with a credible model, they should be close
to the corresponding values of y as measured by a test quantity.

Usually, the replicated values are simulated after the posterior dis-
tributions of the unknown parameters of the model are obtained. The
vector of the replicated values will have dimension n×1 and we will refer
to it by yrep =

(
yrep1 , yrep2 , ..., yrepn

)
. The steps of the simulation of the

replicated and the predicted values are the same:

• Fist, we draw the precision τ (1) as a value of the distribution Inv−
χ2(n− k − 1, s2).

• Then we draw β(1) ∼ tn−k−1

(
b, XTX

(n−k−1)s2

)
.

• Baring in mind that yrep1 ∼ N(X[1, ·]β(1), τ (1)), we draw yrep1 as a
value of N(X[1, ·]β(1), τ (1)).

• We repeat the same steps for the rest of the yrepj , j = 2, .., n.

We introduce the definition of the Bayesian p-value according to Gel-
man (”Bayesian Data Analysis” (2014)).

Definition 2.1.1. (p-value)
Let θ be the vector of unknown parameters. Then, given a test quantity
T (y, θ) or T (y), the posterior predictive p-value is defined as the proba-
bility:

ppv = P
[
T (yrep, θ) > T (y, θ)

∣∣∣y] =

∫∫
IT (yrep,θ)>T (y,θ)p(y

rep|θ, y)p(θ|y)dyrepdθ.

(2.14)

The Bayesian p-value is the probability that the data, generated under
the assumption that the studied model is true, could be more extreme
than the observed data, as measured by the test quantity. As far as the
test quantity is concerned, its formula is based entirely on the nature of
the data and it has to be carefully constructed in order to capture in
the best possible way the discrepancies between the observed and the
replicated data. Since the functional form of T is determined by the
statistician and the values of y are available, T (y, θ) can be calculated
immediately and will get an arithmetic value. Furthermore, as it is noted
in the definition, T can be a function of both the unknown parameter
and the data.
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A simplified interpretation of the posterior predictive p-value would
be that it is the percentage of extreme discrepancies of the kind we have
just described. The general notion is that if the model generally fits, then
extreme discrepancies between the values of T for y and yrep should oc-
cur rarely. That means that p-values that are greater or smaller than
the percentages we set as boundaries (usually 0.95 as the highest value
and 0.05 as the lowest) would indicate misfit of the model.

In our case,the vector of the unknown parameters is θ =
(
β, τ

)
and

so (1.14) will take the following form:

ppv =

∫∫
IT (yrep,β,τ)>T (y,β,τ)p(y

rep|β, τ, y)p(β, τ |y)dyrepdβdτ (2.15)

2.1.2 Inference for the coefficient vector of β

The most common inferential problem in classical statistics is the at-
tempt to reduce the number of explanatory variables by assessing the
statistical significance of the coefficients associated with each one of
them. In classical statistics,these conclusions are drawn based on the
p-values and the confidence intervals of each coefficient. In the Bayesian
paradigm, p-values have a different use and are used to check the good-
ness of fit as we will display in a following section.

Inference via Point Estimators
As it has been shown previously, β ∼ tk+1(b, s2(XTX)−1, n− k), which
yields that βj |y ∼ t(bj , s2((XTX)−1)jj , n−k) for j ∈ {0, ..., k}. Since the
properties of the Student’s t-distribution have been extensively studied
in Probability Theory, the main location and variance parameters can
be easily derived, via already available formulas. More specifically, for
the posterior distribution of each coefficient parameter, denoted by βj ,
the same value corresponds to the descriptive statistics of mean, mode
and median and that is βj |y = bj . Also, the variance is determined

by the next formula: V ar(βj |y) = n−k
n−k−2s

2

((
XTX

)−1

)
jj

. In addition

to that, any statistical language can easily plot a t-distribution, thus
providing a visual image, which contributes to the general perception of
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the posterior distribution. It is equally easy to obtain the interquartile
range.

Using Highest Posterior Density Regions for inference regard-
ing hypothesis testing

Highest posterior density regions are a rather quick, intuitive sta-
tistical tool, which is frequently employed by Bayesians strictly for in-
ference and not as a model selection technique. Regarding the task of
parameter selection in particular, they can provide useful insight con-
cerning hypothesis tests of the form H0 : βj = 0 versus H1 : βj0 for
j = 0, 1, 2, ..., k, by cross-examining the behaviour of the posterior dis-
tribution, under each hypothesis.
We recall that β ∼ tk+1(b, s2(XTX)−1, n− k).
Consequently,βj |y ∼ t(bj , s2((XTX)−1)jj , n− k).
Since the posterior distribution of βj |y is known for every j,we can ob-
tain 95% or 99% HPDIs for each one of them using the properties of the
t-distribution and study the position of 0 in the formed area. Thus, we
can get a hint for the contribution of a specific variable to the interpre-
tation of the data. We clarify that by obtaining a 95% HPDI for a βj

that does not include zero, we can state that P
(
βj 6= 0

)
= 95%. By

displaying the 95% or 99% HPDI for every βj , j ∈ 1, 2, .., k as well as the
posterior mean and the 25% and the 95% quantiles, which can be easily
simulated by R, we can informally justify a model comparison between
the two models, corresponding to H0 and H1 respectively.

It has to be pointed out that, according to the Bayesian approach,
HPDIs cannot be used as a method for model selection, which consti-
tutes an obvious contrast to the framework of Classical statistics.

Quite often, we are dealing with more complicated, multiple restric-
tions such as H0 : β1 + β2 = −1 versus H1 : β1 + β2 6= −1. These
constraints are expressed, using matrix notation. The general formula
we use is Rβ = w, where the dimensions of the matrix R and the vector
m depend on the number of constraints.We provide an example:
Suppose we have three explanatory variables and we want to test the
hypotheses

H0 : β1 + β2 − β3 = 0

β3 − β2 = −1
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versus

H1 : β1 + β2 − β3 6= 0

β3 − β2 6= −1 ,

then

R =

[
0 1 1 −1
0 0 −1 1

]
and

w =

[
0
−1

]
As we observe, if we have l constraints and k coefficients, then R is a
l × k + 1 matrix and w an l-dimensional vector.

The following theorem refers to a particular feature of the t-distribution,
with a very helpful computational use.

Theorem 3. Let W be a k-dimensional vector following the multivariate
t(µ, V, ν) distribution and A be an m × k non-stochastic matrix with
rank(A) = m. Then AW ∼ t(Aµ,AWAT , ν) .

Based on the above theorem, given that β ∼ tk+1(b, s2(XTX)−1, n −
k), we may assume that Rβ ∼ tl(Rb, s

2R(XTX)−1RT , n − k). Since
we are studying a random variable vector, we will, automatically, be
exploring a multidimensional subspace. This amounts to the derivation
of confidence regions, denoted by D, which are in fact hypersurfaces,
usually hyperellipsoids, with the following property:∫

D
p(β|X, y)dβ = 1− α.

Usually, α = 0, 05 or α = 0, 1. We will prefer the first value throughout
this thesis.

Consequently, our confidence region will satisfy the property:∫
D
p(β|X, y)dβ = 0, 95,

and since we are dealing with a multivariate t-distribution, we know that
the vectors that satisfy this constraint are the vectors β with p(β|X, y).
We can state that the null hypothesis is favoured by the data, if the
condition

(Hb− w)T (HT (XTX)−1H(Hb− w)

ls2
< F1−α,l,n−k
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is satisfied. However, we are restricted to inference and we do not proceed
to decision making, by relying on the particular outcome.

2.1.3 Model Selection

We will focus on the comparison between models embodying the var-
ious coefficient combinations. For that purpose, we could employ the
Bayesian Information Criterion, as well as the Deviance Information Cri-
terion.

We recall that the likelihood function is expressed as:

p(y|β, τ) ≡ L(y|β, τ) = (2π)−
n
2 (τ)

n
2 exp

[
− τ

2
(y −Xβ)T (y −Xβ)

]
.

Therefore, the log-likelihood takes the form:

lnL((y|β, τ) = −n
2
ln(2π) +

n

2
lnτ − τ

2
· (y −Xβ)T (y −Xβ).

In both information criteria, the first step would be to maximize the
deviance, which was defined as the function: D(β) = −2lnL((y|β, τ),
which is equivalent to minimizing the log-likelihood . Since our interest
lies on the impact of the coefficient vector, we will consider that we need
to minimize lnL((y|β, τ) over the parameter space of β, as this is formed
by each studied model.

Supposing we wish to do so for an arbitrary model Mi, with cor-
responding parameter space denoted by Bi, for the particular model
structure, we can achieve this by analytical and computational meth-
ods. As a computational method, we could employ the widely-used
Newton-Raphson algorithm. However, the vector β̂ ∈ Bi that minimizes
the log-likelihood can as well be determined as the vector that satisfies
the following equation:

∂lnL(y|β, τ)

∂β
= 0

The solution would be the vector β̂ =
(
XTX

)−1
XTy, namely the least

squares estimator of β. If β̂ indeed minimizes the log-likelihood func-
tion, then the condition below has to be satisfied as well:

∂2lnL((y|β, τ)

∂β∂βT

∣∣∣∣
β=β̂

> 0,
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which can be more simply expressed as the restrain that the matrix
XTX has to be positive-definite. Having derived the required vector
β̂, the Bayesian Information Criterion and the Deviance Information
Criterion can be easily calculated and suggest the optimal model. It
is noted that the Bayes factors, as well as the posterior probabilities of
each model, could be approximated by the corresponding BIC scores.

2.1.4 The posterior predictive distribution

Since the predictive performance of a model is often of major con-
cern, another important part of posterior inference is to compute the
predictive distribution. By ypr we refer to the predicted data; that is an
l × 1-dimensional vector of the observations we would obtain by using
a new l × (k + 1) matrix of explanatory variables, Xnew, in the studied
model, which has first been updated with the posterior distributions of
the unknown variables. We should note that Xnew contains totally new
data, which are not involved in the derivation of the posterior distribu-
tions.

Analytic Computation

It is possible to obtain an analytic form of the posterior predictive
distribution by computing the following integral:

p(ypr|y) =

∫
· · ·
∫

B

∫
τ

p(ypr|y, β, τ) · p(β, τ |y)dβdτ (2.16)

where ypr|y, β, τ ∼ Nl(Xnewβ,
1

τ
I) and so we can set

p(ypr|y, β, τ) ∝ (τ)
l
2 exp

[
− τ

2
(ypr −Xnewβ)(ypr −Xnewβ)

]

Simulation via an MCMC algorithm

The computation of (1.15) can be proved to be very challenging and
for that reason, it is preferred to simulate the posterior predictive dis-
tribution via the MCMC algorithm. By ypr =

(
ypr1 , ..., y

pr
l

)
, we will be

referring to the vector of predictions.
The steps we take for the simulation are the following:
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• We get the arithmetic values of the quantities b and s2 as we have
determined them previously.

• We draw τ (1) ∼ Inv − χ2(n − k − 1, s2) which is the posterior
distribution of τ .

• We draw β(1) ∼ tn−k−1

(
b, XTX

(n−k−1)s2

)
.

• Baring in mind that ypr1 |y, β(1), τ (1) ∼ N(Xnew[1, ·]β(1), τ (1)), we
draw ypr1 as a value from N(Xnew[1, ·]β(1), τ (1)).

• We draw τ (2) ∼ Inv − χ2(n− k − 1, s2).

• We draw β(2) ∼ tn−k−1

(
b, XTX

(n−k−1)s2

)
.

• And ypr2 will be obtained as a value from N(Xnew[2, ·]β(2), τ (2)).

We repeat the same steps l times in total; that is the number of lines of
Xnew and thus, we get the predicted values under the model.

2.2 Using conjugate prior distributions for β and
τ

The use of conjugate prior distributions is very helpful with the com-
putational part, since the posterior distributions will belong to the same
distributional family as the priors. Consequently, integrating and recog-
nising distributions is much simpler than in the case of non-informative
priors. Usually, independence between β and τ is assumed and therefore
we will assign the following conjugate priors to each one of them:

• β ∼ Nk+1(b0, τ
−1T0), where b0 is a k + 1-dimensional vector and

T0 is a k + 1 × k + 1 positive matrix, the form of which depends
on the assumptions we make for βj , j = 0, 1, ..., k. The vector and
the matrix are defined by us and so they are fixed. Here, we will
assume that the βjs are independent and, therefore, uncorrelated
and so T0 will be diagonal. The jth diagonal element is the variance
of βj , j = 0, 1, ..., k. In the more general case, which includes cor-
relations between the βjs, T0 will be a positive, symmetric matrix
and its non-diagonal elements are these correlations.

• τ ∼ Γ
(ν0

2
,
ν0

[2τ0]

)
, where τ0 is a prior belief about the precision and

by ν0 we express how strong this belief is.

Although conjugate priors are referred to as informative, we can adjust
the provided information by setting the appropriate precision. More
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specifically, if information about the mean and the variance is given by
the experimenter, then we set a prior distribution that satisfies these
conditions. If we are based solely on our own beliefs concerning a pa-
rameter, but we strongly believe that they are close to the truth, then
we set a small value for the precision of the prior distribution of that
particular parameter, making the variance smaller. Thus, our belief will
strongly influence our results and we should always take this fact into
consideration. On the opposite hand, if we are sceptical or not so certain
about our guess, then by setting a large precision, the prior distribution
will affect less the information provided by the data. Such distributions
are often called diffuse priors. For instance, if we are convinced that
the explanatory variable Xj is not needed in our model, we can use as
prior distribution of βj a Normal distribution with mean 0 and precision
about 0,5. If, however, we think that we put the analysis under risk, we
can use the same Normal distribution with τ = 100. The value of τ can
increase or decrease depending on our certainty.

2.2.1 Obtaining the posterior distributions

The analytic formulas of the prior density functions mentioned above
are the following:

p(β) = (2π)−
k+1
2 τ

k+1
2 |T0|−

1
2 exp

[
− 1

2
(β − b0)T τT−1

0 (β − b0)
]
,

p(τ) =

(
ν0

[2τ0]

) ν0
2

Γ
(
ν0
2

) τ
ν0
2
−1 exp

(
− ν0

[2τ0]
τ

)
.

The likelihood function of the model has already been expressed in (1.6).
After applying Bayes’ Theorem we have the relationship:

p(β, τ |y) ∝ τ
ν0+n+k+1

2
−1 exp

[
− τ

2

[
(y −Xβ)T (y −Xβ)− (β − b0)TT−1

0 (β − b0)
]
− ν0τ

[2τ0]

]
.

With conjugate prior distributions, the marginal distributions of β
and τ can be analytically computed. In fact, the computation of the
conditional posterior distribution of τ |y is straightforward. If we exam-
ine carefully the joint posterior distribution of τ and β and bearing in
mind that there is a dependence between β and τ , due to the conditional
form of the prior distribution of the first, we can rewrite the above dis-
tribution as a function of τ :
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p(β, τ |y) ∝ τ
ν0+n+k+1

2
−1 exp

[
− τ

2
·A
]

(2.17)

Consequently, we can conclude that τ |y ∼ Γ

(
n+ k + 1 + ν0

2
,
A

2

)
, where

A ∈ R, since A = (y −Xβ)T (y −Xβ)− (β − b0)TT−1
0 (β − b0) + ν0

[τ0] .

In order to obtain the marginal distribution of β, we need to perform
the following computation:

p(β|y) =

∫ ∞
0

p(β, τ |y)dτ. (2.18)

In order to be able to deduce and recognise the form of the distribution,
we will once again use the least squares estimate b = (XTX)−1XT y, as

well as the quantity s2 =
(y −Xb)T (y −Xb)

n− k − 1
.

The joint posterior distribution can be rewritten and will have the fol-
lowing form:

p(β, τ |y) ∝ τ
n+k+1+ν0

2 exp

{
−τ
2

[
s2(n− k − 1) + (b− β)TXTX(b− β)

+ (β − b0)TT−1
0 (β − b0) +

ν0

[τ0]

]
}

In order to be able to compute (1.19). we will replace the joint distri-
bution in the integral with the above form. Also, the following additive
calculations are necessary to complete the task:

(b−β)TXTX(b−β) + (β− b0)TT−1
0 (β− b0) = (β−µ)TT−1(β−µ) +Q,

where:

• Q = bTXTXb+ bT0 T
−1
0 b0 − µTT−1µ

• T = XTX + T−1
0

• µ = T (XTX + T−1
0 )

Consequently, (1.19) will be:

p(β|y) ∝
∫ ∞

0
τ
n+k+1+ν0

2 exp

{
−τ
2

[
s2(n− k − 1) + (β − µ)TT−1(β − µ) +Q+

ν0

[τ0]

]}
dτ

∝
[
(β − µ)TT−1(β − µ) +N

]−n+k+1+ν0
2

,
]
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where N = s2(n− k − 1) +Q+ ν0
[τ0] .

We can conclude that β|y ∼ tk+1(µ, T ) with ν0 +n degrees of freedom.

Inference via Point Estimators and Highest Posterior Density
Regions
In order to obtain HPDIs for each βj or the highest posterior den-
sity region of the vector β, it is necessary to have the marginal pos-
terior distributions. Based on the previous analysis, we can assume that
βj ∼ t(µj , (X

TX + T−1
0 [τ0](−1))jj) and since it is a known distribution,

we can easily obtain a 95% HPDI for j = 0, 1, ..., k. By checking whether
zero is included in each one of these HPDIs, we get an indication, whether
the null hypothesis H0 : βj = 0 is favoured by the data or not.

Generally, we can examine any hypothesis of the form H0 : βj = a
versus H1 : βj 6= a for every j and for any real number a, by simply
observing whether a is included in the HPDI. For more complicated
forms of the null hypothesis such as H0 : Rβ = w or H0 : Rβ > w, we
use the Highest Posterior Density Regions. Based on the theorem, we
can assume that Rβ ∼ tl(Rµ,R

T (XTX + T−1
0 )R) and then, once again

H0 would appear plausible, if the condition

(Rb− w)TRT (XTX + T−1
0 )(Rb− w)

ls20
< F1−α,l,n−k

is satisfied. The reader is reminded that α denotes the level of statistical
significance, as this is specified by either the statistician or the experi-
menter.

2.2.2 Model Selection

Using Bayes’ Factors

Another advantage of using conjugate priors is that it allows us to
compute analytically the Bayes’ Factor. Consequently, the comparison
between two models can be conducted in this way as well. Specifically,
we can test the hypothesis H0 : βj = 0 versus H1 : βj 6= 0 by comparing
the full model M1 with M0, which is the model without the explanatory
variable Xj ; that is the model where βj = 0, j = 1, 2, ..., j. What we
need to do is compute the marginal likelihoods under each model and
then compute the ratio:
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BF =
p(y|M1)

p(y|M0)
(2.19)

If BF > 1, then we have evidence against M0, which means that Xj is
rather significant, otherwise, it can be omitted.
Marginal likelihoods are generally difficult to compute and usually an
analytic form cannot be obtained, since we are dealing with complicated
integrals. However, due to conjugate priors these integrals are much
simpler as we will demonstrate below.

We need to point out that p(y|M1) is the marginal likelihood or evi-
dence of the model M1 and it is obtained by integrating the joint poste-
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rior distribution p(y,β, tau|M1) over β and τ as follows:

p(y|M1) =

∫ ∫
· · ·
∫

B

p(y,β, tau|M1)dβdτ =

∫ ∫
· · ·
∫

B

p(y|β, τ)p(β|τ)dβdτ

= (2π)−
n+k+1

2 |T0|−
1
2

(
ν0

2[τ0]

) ν0
2

Γ
(
ν0
2

) ×

×
∫ ∫

· · ·
∫

B

exp
{
− τ

2
(y −Xβ)T (y −Xβ) + (β − b0)TT−1

0 (β − b0) +
ν0

2[τ0]

}
τ
ν0+n+k−1

2 dβdτ

= (2π)−
n+k+1

2 |T0|−
1
2

(
ν0

2[τ0]

) ν0
2

Γ
(
ν0
2

) ×

×
∫ ∫

· · ·
∫

B

exp
{
− τ

2
(β − b1)TΣ−1

0 (β − b1) +
ν0

[τ0]
τ
ν0+n+k+1

2 dβdτ
}

= (2π)−
n+k+1

2 |T0|−
1
2

(
ν0

2[τ0]

) ν0
2

Γ
(
ν0
2

) Γ
(
ν0+n+k+1

2

)
2

×
∫
· · ·
∫

B

[ ν0

[τ0]
+ (β − b1)TΣ−1

0 (β − b1)
]− ν0+n+k+1

2
dβ

= (2π)−
n+k+1

2 |T0|−
1
2

(
ν0

2[τ0]

) ν0
2

Γ
(
ν0
2

) Γ
(
ν0+n+k+1

2

)
2

Γ(ν0 + n)(ν0 + n)
k+1
2 π

k+1
2 |Σ0|

1
2

Γ

[
ν0+n+k+1

2

]

= 2−
n+k+3

2 π−
n
2 |T0|−

1
2

(
ν0

2[τ0]

) ν0
2

Γ
(
ν0
2

) Γ(ν0 + n)(ν0 + n)
k+1
2 |Σ0|

1
2

(2.20)

where similarly:
Σ−1

0 = XTX + T−1
0

b1 = Σ0

(
XT y + T−1

0 b1
)
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We derive that:

p(y|M0) = 2−
n+k+2

2 π−
n
2 |T1|−

1
2

(
ν0

2[τ0]

) ν0
2

Γ
(
ν0
2

) Γ(ν0 + n)(ν0 + n)
k
2 |Σ1|

1
2

According to M1, βj is excluded, consequently b0j , the jth column and
row of T0 and Xj also have to be excluded.
By Σ1 and T1 we denote the modified matrices Σ0 and T0.
After our calculations, we can obtain a result for (1.12) in the form of
the following formula:

BF = 2−
1
2
|T1|

1
2

|T0|
1
2

(ν0 + n)
|Σ0|

1
2

|Σ1|
1
2

It is rather obvious that Bayes’ Factor is sensitive to our prior assump-
tions, especially those concerning the variance of the variables, whereas
the actual data, influence the outcome solely through the terms Σ0 and
Σ1. This is a fact that has been long pointed out by Bayesian statisticians
and therefore it is very important to choose the prior distributions with
caution, as unreasonable priors would lead to unreasonable inference.
Another disadvantage of this method, is that Bayes’ Factor usually can-
not be defined when we use improper prior distributions. Finally, when
we are dealing with very small values of BF, the use of the logarithm of
BF (noted as LBF) because it is a more stable form, by which we also
gain more computational precision.

Model Comparison based on the Posterior Probabilities of the
candidate models

Another more intuitive way of comparing models is to compare their
posterior probabilities and consider the optimal model to be the one
with the highest posterior probability, assuming that this would be the
model which is best supported by the data. Every possible combination
of the parameters will be matched to a different model, as we did before.
Consequently, we end up with the parameters of the model Mj , where
Mj : P (Mj |y) = max

i∈M
P (Mi|y). The posterior probability of each model,

using Bayes’ Theorem, is given by:

P (Mj |y) =
P (y|Mj)P (Mj)∑
i∈M P (y|Mj)P (Mj)
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Once again, the outcome is affected by the prior distributions and also by
our initial convictions concerning the plausibility of each model, which
are expressed by the prior probabilities P (Mj) for each j. If we prefer
not to favour any model, then we can choose all of the models to have
equal prior probabilities. Consequently, the term that interests us is
P (y|Mj), the calculation of which, has been shown previously.

Having conducted the model comparison, based on the above criteria,
we could skip calculating the information criteria of BIC and DIC, since
the latter are often regarded as equivalent means of model selection.
In fact, if it is possible for the Bayes factor and the posterior model
probabilities to be derived in a straightforward way, they are generally
preferred over information criteria in Bayesian Statistics.

2.2.3 The posterior predictive distribution

Let Xnew be a l × k + 1 matrix containing new observations, for
which we need to predict the values of the dependent variable, denoted
by ypr, as in the previous section. It is known that ypr|y, β, τ ∼
Nl

(
Xnewβ,

1

τ
I
)

.

Analytic Computation
We can obtain the posterior predictive distribution by calculating the
following integral:

p(ypr|y) =

∫
· · ·
∫

B

∫
τ

p(ypr|y, β, τ) · p(β, τ |y)dβdτ

Obtaining the predicted values via simulation
It is a common practice to get the predicted values via simulation, once
we have derived the posterior distributions of the unknown parameters.
We will follow the same procedure we have described in the previous sec-
tion, when we referred to the predictive values with the slight difference
that in this case we will be using only marginal posterior distributions:

• We get the arithmetic values of the quantities A, b and s2 as we
have determined them previously.

• We draw τ (1) ∼ Γ

(
n+ k + 1 + ν0

2
,
A

2

)
which is the posterior dis-

tribution of τ .
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• We draw β(1) ∼ tk+1(µ, T ).

• Baring in mind that ypr1 |y, β(1), τ (1) ∼ N(Xnew[1, ·]β(1), τ (1)), we
draw ypr1 as a value from N(Xnew[1, ·]β(1), τ (1)).

• We draw τ (2) ∼ Γ

(
n+ k + 1 + ν0

2
,
A

2

)
.

• We draw β(2) ∼ tk+1(µ, T ).

• And ypr2 will be obtained as a value from N(Xnew[2, ·]β(2), τ (2)).

We repeat the same steps l times in total; that is the number of lines of
Xnew and thus, we get the predicted values under the model.
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Chapter 3

Bayesian Inference for
Generalized Linear Models

3.1 Introduction

3.1.1 Motivation

Linear models are appealing due to the straightforward and rather
intuitive interpretation of the relationship between the response and the
explanatory variables and because they can be handled relatively easily
in terms of computation and inference. As mentioned before, the main
assumption that has to be made is that the mean of the response vari-
able y is a linear function of the explanatory variables x1, x2, ..., xk. In
mathematical notation that is expressed as:

E[y|X] = β0 + β1x1 + ...+ βkxk. (3.1)

We also assume that the model is described by the formula:

yi = β0+β1xi1+...+βkxik+εi, εi ∼ N(0, σ2), i = 1, ..., n, n, k ∈ N.
(3.2)

However, these very conditions that make them easy to handle, also en-
sure their limited applicability, since they are very restrictive and rather
seldom satisfied. For instance, linear models fail to describe adequately
the relationship between y and X when y is a binary or dichotomous
variable describing the occurrence or non-occurrence of an event and
consequently y ∈ {0, 1}n. Another example is the case of y being a vec-
tor of counts, as it would be if yi represented the number of customers
arriving in a bank at the i-th specified time period, which yields that
yi ∈ N i = 1, ..., n. We can conclude that linear models cannot be an
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option for a very wide area of applications and, therefore, alternative
options need to be investigated.

3.1.2 Basic Assumptions of the GLM Class

Generalized Linear Models, often referred to us GLMs, enable us to
conduct a statistical analysis when the support of the response variable
is R+ or N. The appeal of GLMs is due to the really wide range of
applications they provide (clinical, environmental researches etc), but
also because they sustain the familiar concept of linearity.
We could say that the fundamental idea of the GLM theory is expressed
mathematically by the following statement:

y|X,β ∼ f(xTi β), (3.3)

where y = (y1, y2, ..., yn)T is the 1× n vector of the dependent variable,

X =


1 x11 . . . x1k

1 x21 . . . x2k
...

...
. . .

...
1 xn1 . . . xnk

 is a n×(k+1) matrix and β = (β0, β1, ..., βk)
T

is the (k+1)×1 vector of the regression coefficients. The special restric-
tion we impose upon function f is that it must belong to the exponential
family of distributions.

The exponential family

Definition 3.1.1. Let y =
(
y1, ..., yn

)
∈ Rn denote an n-dimensional

random variable. The distribution f of the n-dimensional random vari-
able y given the natural parameter vector θ =

(
θ1, ..., θk

)
∈ Θ ⊂ Rk and

dispersion parameter φ, belongs to the exponential family if:

• The support of the distribution, S =
{
y ∈ Rn : f(y|θ, φ) > 0

}
, is

independent of θ and φ.

• The density function of each yi may be written in the form:

f(yi|θ, φ) = exp
{b(θ) · T (yi)−B(θ)

a(φ)

}
· c(yi, φ)

for known real functions a(·), b(·), B(·), T (·) and c(·). If b(·) is the
identity function, the density function is in canonical form. We
can always convert the distribution to canonical form, by defining
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a transformed parameter b = b(θ) and considering the following
transformation of (2.3):

f(yi|b, φ) = exp
{b · T (yi)−B(b)

a(φ)

}
· c(yi, φ) (3.4)

An important remark about φ is that, depending on the nature of
the problem, it can be either a vector, like in overdispersed Poisson
models, or a scalar, which is common for every yi, like in the case
of a normal linear model with homoscedastic error terms, where
φ = σ2. The GLMs we are going to focus on in the following
chapters are the Logit, Probit models and they constitute cases
of models, where φ = 1 for every yi i = 1, 2, ..., n. We consider
that in these models there is no dispersion parameter and so, our
inference is restricted to θ.

Important properties of the exponential family

• In (3.4) b(θ), is referred to as the canonical link .

• From (3.4) we can deduce the mean and the variance of yi through
the following equations:

E(Tj(yi)|b) =
dB(b)

dbj
,

V ar(Tj(yi)|b) =
d2B(b)

d2bj
· a(φ), i = 1, 2, ..., n, j = 1, ..., k.

The exponential family is a wide class of functions including the most
important and frequently encountered distributions: the Normal, the
Binomial, the Poisson and the Multinomial distribution.

Basic Specifications of a GLM

A generalized linear model is specified by three functions:

• The linear predictor denoted as η = Xβ.
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• A link function, usually denoted as g, by which the mean µ =

E
[
y|X,β

]
of y is related to the systematic component X through

the equation:
g(µ) = η (3.5)

For identifiability reasons, g is a one-to-one function and therefore,
it is also invertible. Usually, the canonical link is chosen to be the
link function, but in fact there is no “optimal” choice, which means
that it is up to the statistician to decide its form. Thus,(2.5) can
be written in the form:

µ = g−1(η) = g−1
(
Xβ
)

(3.6)

• The density function f of the random component y, which as men-
tioned before has to belong to the exponential family of distribu-
tions and it can also depend on the dispersion parameter φ.

So, supposing that y1, y2, ..., yn represent a random sample from the dis-
tribution f with mean µ̃ = (µ1, .., µn) and a dispersion parameter φ,
then the joint distribution would be:

f
(
y|µ̃, φ

)
=

n∏
i=1

f
(
yi|µi, φ

)
. (3.7)

Since the response variable is related to the explanatory variables through
its mean according to (2.6), it is preferred to reparameterize the con-
ditional density function via (2.6), so that it is directly a function of
µi, i = 1, 2, .., n. Thus, the dependence on β and X through the linear
predictor is clarified and also, it is a useful form to apply Bayes’ Theorem
and determine the posterior distributions. Consequently, the likelihood
function will be given by:

f(y|X,β) =

n∏
i=1

f
(
yi|X,β, φ

)
. (3.8)

We should note at this point that, based on all the above, normal linear
models also belong to the GLM family. Indeed, the distribution of y is
Normal, θ ≡ µ = (µ1, ..., µn) and the dispersion parameter is φ = σ2,
whereas the identity function is used as the link function.

In the chapters that follow, we will study Bayesian inference on two
of the most common cases of GLMs; these would be the logit and probit
models.
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Chapter 4

Logistic Regression

4.1 First-step analysis of the logistic regression
model

4.1.1 The likelihood of the model

Logistic regression is performed when the response variable y is bi-
nary or binomial. In the binary case, yis refer to the occurrence or
non-occurrence of an incident with different success probabilities pi and
therefore yi ∼ Bern(pi), for each i ∈

{
1, 2, ..., n

}
. Our intention is to

conduct inference on the vector p = (p1, p2, ..., pn). First, however, we
need to associate the data with the vector p via a formal mathematical
expression.
The Bernoulli distribution has the form: p(yi|pi) = pyii ·(1−pi)1−yi , with

E
[
yi|pi

]
= pi. As a first step, we express the probability function in the

exponential family canonical form:

f(yi|pi) = pyii · (1− pi)
1−yi

= exp{yi log(pi) + (1− yi) log(1− pi)}

= exp

{
yi log

(
pi

1− pi

)
− log

(
1

1− pi

)}
.

We can easily get that bi ≡ b(pi) = log
(

pi
1−pi

)
and B(pi) = log

(
1

1−pi

)
,

which yields that B(bi) = log(1+eb), whereas φ is considered a constant
equal to 1.
Also, we can obtain the following equations:

E
[
yi|bi

]
=
dB(b)

dbi
=

ebi

1 + ebi
, (4.1)
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V ar
[
yi|bi

]
=
d2B(b)

db2i
=

ebi(
1 + ebi

)2 =
(

1− ebi

1 + ebi

) ebi

1 + ebi
= pi(1− pi).

(4.2)

The canonical link function is g(µi) = g(pi) = log
(

pi
1−pi

)
, known as the

logit function . Consequently, we will set:

log

(
pi

1− pi

)
= XT

i β ⇔
pi

1− pi
= eX

T
i β

⇔ pi =
eX

T
i β

1 + eX
T
i β
, i = 1, 2, .., n.

(4.3)

The likelihood function, denoted as L(y|p) would be:

L(y|p) =
n∏
i=1

f(yi|pi)

=
n∏
i=1

pyii · (1− pi)
1−yi .

Using (3.1), we can express the likelihood involving directly the linear
predictor:

L(y|X,β) =

n∏
i=1

(
eX

T
i β

1 + eX
T
i β

)yi(
1

1 + eX
T
i β

)1−yi
. (4.4)

Finally, equations (4.1) and (4.2) will be transformed likewise

4.1.2 Setting a prior distribution and obtaining the pos-
terior distribution

We will focus on the most frequently used prior for the vector of pa-
rameters β, which is the multivariate Normal Nk+1(µ,C). As we have
already discussed before, the mean and the covariance matrix are ad-
justed properly depending on the quality of the prior information that
is available to us. Specifically, if the mean and the covariance matrix
are set in such a way that the Normal distribution best fits the prior
information. For instance, if we are confident about the source of this
information, then we can set small variances as the diagonal values of C.
Furthermore, if there are indications of correlations between the explana-
tory variables,we can add non-diagonal values to C. In the absence of
prior information, µ is set as a k+1-dimensional zero vector, whereas the
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corresponding C can have large diagonal values. So, if β ∼ Nk+1(0,C),
the prior distribution will have the form:

π(β) = (2π|C|)−
1
2 e−

1
2
βTC−1β. (4.5)

According to Bayes’ Theorem, the full form of the posterior distribution
of β will be:

f(β|y, X) =
L(y|X,β) · π(β)∫

·· ·
∫
B L(y|X,β) · π(β)dβ

=

∏n
i=1

(
eX

T
i β

1 + eX
T
i β

)yi(
1

1 + eX
T
i β

1−yi)
· (2π|C|)−

1
2 e−

1
2
βTC−1β

∫
·· ·
∫
B

∏n
i=1

(
eX

T
i β

1 + eX
T
i β

)yi(
1

1 + eX
T
i β

1−yi)
· (2π|C|)−

1
2 e−

1
2
βTC−1βdβ

,

(4.6)

where B = Rk+1 is the parameter space of β. The integral of the de-
nominator is most of the times very troublesome to compute and in the
particular case cannot be computed analytically. For that reason, in-
stead of equalities and since the integral is a normalising constant, we
proceed with proportionalities and so we will be using that

f(β|y, X) ∝
n∏
i=1

(
eX

T
i β

1 + eX
T
i β

)yi
· e−

1
2
βTC−1β. (4.7)

Our major obstacle for the inference is that, contrary to the normal
linear model case, we cannot identify the joint posterior distribution of
the parameters, neither compute it analytically. That fact also excludes
Gibbs sampler, as it requires the full, analytic form of the distributions
used.

Approximation methods have been developed as a solution to this
problem, such as the Laplace approximation method , which is the
oldest and probably most known method. Another, equally popular
method is the Normal approximation method . The popularity of
these two approaches lies mainly on the theoretical robustness and the
accuracy of the results they produce. However, both of these quali-
ties come at the cost of complex and rather sophisticated mathematical
computations, which tend to intensify as the dimension of the problem
increases.
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In the present thesis, we choose to focus on the MCMC algorithms and
specifically Metropolis-Hastings algorithms that come as a rather sim-
pler and very effective alternative approach to the same problem, with
an equally robust, theoretical background. MCMC processes are under
constant study and development and they have proven to be extremely
beneficiary in terms of Bayesian inference, especially in high-dimensional
cases, in which the already cumbersome, computational part of the ap-
proximating methods becomes extremely difficult and time consuming.
As we have mentioned before, the most important part of Bayesian in-
ference lies on studying the form of the posterior density function of the
parameter of interest and this is what we expect to achieve by simulat-
ing it via the Metropolis-Hastings algorithms, that have already been
presented in the introduction of chapter 2.

Simulating the posterior distribution via Gamerman’s Metropolis-
Hastings IWLS algorithm

Instead of using the standard form of the Metropolis-Hastings al-
gorithm in order to approximate f(β|y, X), we will employ a slightly
changed version, originally introduced by David Gamerman in the pa-
per Sampling from the posterior distribution in generalized mixed linear
models(1997). The modification suggested by Gamerman, considers the
form of the proposal distribution and can be summarized as follows:
Suppose we have performed j−1 iterations and we are at the step of the
loop in which a new value for β is suggested. The current value, β(j−1),
is used as input for a single iteration of the Bayesian Iterative Least
Squares Algorithm. Thus, a vector denoted by b(j) is obtained, which
is considered an approximation of the posterior mode and the proposal
distribution will be a multivariate Normal of the form N(b(j), Cj).

The great advantage of this procedure is that there is no need of tuning
the proposal distribution, the convergence of the algorithm is quicker and
after it is reached, we have additionally obtained the posterior mode,
after the last iteration of the IWLS algorithm.

An explicit scheme of Gamerman’s algorithm, as well as a review of
the Bayesian IWLS algorithm are provided in the following pages.
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Bayesian Computation of the Posterior Mode Using an IWLS
scheme

We will present a Bayesian, computational way to obtain the posterior
mode, which incorporates the Iterative Weighted Least Squares (IWLS)
algorithm. Prior to that, we shall briefly review the main concept and al-
gorithmic form of the IWLS algorithm from the view of Classic Statistics.

The IWLS algorithm is very often employed in Classical Statistics, in
order to derive the Maximum Likelihood estimator, βML, of the coef-
ficients vector β in a GLM. Bearing in mind the notation of paragraph
2.1.2, we will hereby outline the generic steps of the algorithm.

1. Set an initial value β(0).

2. Consider the random variables

Z
(0)
i := η

(0)
i + (yi − µi) · g′(µi)

= XT
i β

(0) + (yi − µi) · g′(µi), i = 1, 2, ..., n,

and the n × n diagonal matrix W
(
β0
)
, with elements the weights

wii
(
β0
)

:= 1/g′(µi), i = 1, 2, ..., n.

3. Consider that Z(0) ∼ Nn

(
Xβ(0),W−1

(
β0
))

and perform linear

regression on the corresponding model. Thus, we obtain β(1).

4. Monitor the quantity ||β(1) − β(0)||.
5. Iterate the process of steps 2.-4. using the current value of β.

The loop described in step 5. stops at the j-th iteration, if ||β(j) − β(j−1)||
is a sufficiently small value according to the researcher and βML = β(j),
j ∈ N.

According to the Bayesian paradigm, we place a multivariate Normal
prior on β and so we consider that β ∼ Nk+1(b0, C0). At the j-th step
of the algorithm, we perform Bayesian linear regression on the model
Z
(
β(j−1)

)
∼ Nn

(
Xβ,W

(
β(j−1)

))
, where we consider that a priori

β ∼ Nk+1(b0, C0). Also, β(j−1) is a simulated value already available
to us, by which the quantities Zi

(
β(j−1)

)
and wii

(
β(j−1)

)
, i = 1, ..., n

are derived from the same equations as in the classic approach, where of
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course we use β(j−1) as the current value of β. Thus, we obtain the n-
dimensional vector Z

(
β(j−1)

)
and the n×n diagonal matrix W

(
β(j−1)

)
.

Up to a normalizing constant, the above distributions can be written as:

f(β) ∝ exp
{[
β − b0

]T
C−1

0

[
β − b0

]}
,

L
(
Z(β(j−1))|X

)
∝ exp

{[
Z(β(j−1))−Xβ

]T
W (β(j−1))

[
Z(β(j−1))−Xβ

]}
.

Bayes’ Theorem yields that:

f
(
β|X,Z(β(j−1))

)
∝ f(β) · L

(
Z(β(j−1))|X

)
∝ exp

{
βT
[
XTW (β(j−1))X + C−1

0

]
β − βT

[
XTW (β(j−1))Z(β(j−1)) + C−1

0 b0

]}
· exp

{
−
[
Z(β(j−1))TW (β(j−1))X + bT0C

−1
0

]
β
}

∝ exp
{

(β − b1)TC−1
1 (β − b1)

}
,

where

Cj =
[
XTW (β(j−1))X + C−1

0

]−1

bj =
[
XTW (β(j−1))X + C−1

0

]
·
[
Z(β(j−1))TW (β(j−1))X + b0C

−1
0

]
.

We set β(j) =
[
XTW (β(j−1))X + C−1

0

]
·
[
Z(β(j−1))TW (β(j−1))X + b0C

−1
0

]
.

We repeat the steps described above until we diagnose the convergence
of the algorithm.

We have shown that the posterior distribution of β|y is a multivariate
normal density and, consequently, due to the symmetry, the posterior
mode, noted as β̂, equals to the mean of the sample we get after the
burn-in period, which is trivial to calculate. Also, the precision ma-
trix of the posterior distribution will be the inverse of the curvature at

the posterior mode ; that is
[
XTW (β̂)X + C−1

0

]−1
. In other words,

asymptotically β|y ∼ Nk+1

(
β̂,
[
XTW (β̂)X + C−1

0

]−1
)

.

Since we are studying logistic regression models, we should clarify that
in the above calculations :

µi = pi
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and we bear in mind as well that

g(µi) ≡ g(pi) = log

(
pi

1− pi

)
, i = 1, .., n.

Gamerman’s Independent Sampler Algorithm

Dani Gamerman uses the Independent Sampler scheme to obtain the
posterior distribution of β, suggesting the following modification, which
concerns solely the proposal distribution q:
At the point of the loop where the current value of the regression coeffi-
cients vector β(j−1) has already been obtained and the next value βcan

has to be proposed, a single iteration of the Bayesian IWLS is performed.
Thus, we derive the k + 1-dimensional vector

bj =
[
XTW (β(j−1))X + C−1

0

]
·
[
Z(β(j−1))TW (β(j−1))X + b0C

−1
0

]
and the (k+1)×(k+1) diagonal matrixCj =

[
XTW (β(j−1))X + C−1

0

]−1
,

which we respectively use as the mean and the covariance matrix of a
Gaussian distribution. This is the proposal distribution for the current
step of the algorithm. More specifically, q

(
βcan|β(j−1), y

)
≡ Nk+1(bj, Cj).

The candidate value is accepted with probability

p = min

{
f(βcan|y) · q

(
β(j−1)|βcan, y

)
f
(
β(j−1)|y

)
· q
(
βcan|β(j−1), y

) , 1},
where by f(·|·), we refer to the posterior distribution. The term q

(
β(j−1)|βcan, y

)
in the numerator is the proposal of the reverse move and has to be han-
dled with cautiousness, because we have to perform the calculations of a
single iteration of the IWLS using βcan as an operating value and then

obtain bcan =
[
XTW (βcan)X + C−1

0

]
·
[
Z(βcan)TW (βcan)X + b0C

−1
0

]
and Ccan =

[
XTW (βcan)X + C−1

0

]−1
. Then, we use the formula of

Nk+1(bj , Cj).

Gamerman’s Independent Sampler has several appealing properties:

• There is no need of tuning the algorithm and as a result, there is no
difficulty with the convergence and we are spared the cumbersome
process of searching for the proper candidate generator;
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• The proposal distribution q of each iteration of the algorithm is
reasonably close to the target distribution, that is the posterior
distribution of β. Therefore, the acceptance probabilities are high,
which indicates that the support of the posterior is more thoroughly
explored;

• The proposed algorithm has a wide area of applications beyond the
common GLMs dealing with logistic or Poisson regression. In the
relative paper, it is used for inference for mixed effects and nested
random effects models, whereas the issue of non-normal priors for
β is also discussed.

4.1.3 Inference and Model Selection

In order to assess a logistic regression model or compare it with an-
other, we will use the Deviance Information Criterion and the L Measure.
The form of the posterior distribution of β, f(β|y, X) prevents us from
using Bayes’ factors or the posterior probability of the models under
comparison.

Using the Deviance Information Criterion
We recall that the score of the Deviance Information Criterion is given
as:

DIC = D(β) + pD

= 2D(β) + 2lnL(y|β̄(y))

= −4

∫
B
lnL(y|β) · f(β|y)dβ + 2lnL(y|β̄(y)),

(4.8)

where β̄(y) =
∫
B β · f(β|y)dβ. Also, from (4.2), we can easily derive

that

lnL(y|β) =

n∑
i=1

yi ·XT
i β − ln

(
1 + eX

T
i β
)
.

The two integrals involved in (4.6) can be estimated via Monte Carlo

integration. More specifically, supposing that S =
{
β(1), ...,β(n)

}
is

a sample of simulated values from the posterior distribution, after the
initial values have been discarded, then the simple Monte Carlo estimator

65



for the posterior mean β̄(y) would be:

β̄(y) =

∫
B
βf(β|y)dβ

≈ 1

n

n∑
i=1

β(i),
(4.9)

whereas D(β) can be estimated based on the following approximation
of the corresponding integral:∫

B
lnL(y|β) · f(β|y)dβ

≈ 1

n

n∑
i=1

lnL(y|β(i)).
(4.10)

Using the L Measure method

Suppose we need to compare two models M1 and M2. In order to use
the L Measure, an n-dimensional vector of predicted values is needed.
Let this be denoted by z =

(
z1, ..., zn

)
. The sampling distribution of z,

under each model, can be obtained via Monte Carlo integration.

Also, let S1 =
(
β(1), ...,β(I)

)
be a sample from the posterior distri-

bution of β regarding model M1 and S2 =
(
β(1), ...,β(J)

)
be a sample

from the posterior distribution of β regarding model M2. The sampling
distribution of z, that is the predictive distribution, under model M1,
can be approximated via Monte Carlo integration, based on the formula
below:

f
(
z|y,M1

)
≈ 1

I

I∑
j=1

L(z|y,β(j)), with β(1), ...,β(I) ∈ S1.

Likewise, we can obtain the distribution of z, under model M2:

f
(
z|y,M2

)
≈ 1

J

J∑
j=1

L(z|y,β(j)), with β(1), ...,β(J) ∈ S2.

We will compute the L Measure, corresponding to each one of the candi-
date models by the equation (1.7) and then select the one, corresponding
to the lowest value.
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Since logistic regression models belong to the class of GLMs, our
endeavour becomes much easier with the assistance of several statistical
properties:

1. The full conditional posterior distribution of the prediction vector
z, under a specific model and given a vector of predictors β(j), is
the likelihood of that model, as given in (4.4), with the difference
that a sample Sm from the posterior distribution f(β|y,M), is ob-
tained via Gamerman’s Independent Sampler Algorithm.

In mathematical notation, the property above can be written as:

L(z|β(j),y,M) =

n∏
i=1

(
eX

T
i β

(j)

1 + eX
T
i β

(j)

)zi(
1

1 + eX
T
i β

(j)

)1−zi
, (4.11)

with β(j) ∈ Sm and z ∼ f(z|y,M).

2. By the Law of Double Expectation , we can get an equivalent
expression for the expectation E[zi|y] in (1.6):

E[zi|y] = Eβ|y

[
E
[
zi|β,y

]]
. (4.12)

3. Recalling equations (4.1) and (4.2) and bearing in mind that in a
logistic regression model

θi = log
( pi

1− pi
)

= XT
i β

and also the distribution of each zi|β,y, i = 1, 2, ..., n, we can
conclude that:

E
[
zi|β,y

]
= b′(θi) =

eθi

1 + eθi
=

eX
T
i β

1 + eX
T
i β
, (4.13)

V ar
[
zi|β,y

]
= b′′(θi) =

eθi

(1 + eθi)2
=

eX
T
i β

(1 + eX
T
i β)2

. (4.14)

Consequently, (4.12) can be rewritten as follows:

E[zi|y] = Eβ|y

[
b′(θi)

]
= Eβ|y

[ eX
T
i β

(i)

1 + eX
T
i β

(i)

]
≈

s∑
k=1

1

s

[
eX

T
i β

(k)

1 + eX
T
i β

(k)

]
.

(4.15)
The sum in the last equation is the simple Monte Carlo estimator
for the expectation, with respect to the posterior distribution of
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β, whereas the set
(
β(1), ..., β(s)

)
is a sample from the distribution

f(β|y). In addition to that, there is also an alternative expression
for the variance V ar(zi|y). Since we know that

V ar(zi|y) = E[z2
i |y]− E2[zi|y], (4.16)

based on (4.15), we can rewrite the squared expectation as E2[zi|y] ≈(∑s
k=1

1
s

[
eX

T
i β

(k)

1+eX
T
i
β(k)

])2

. By making the observation below, based

on the Law of Double Expectation and the general definition of the
variance:

E[z2
i |y] = Eβ|y

[
E
[
z2
i |β,y

]]
= Eβ|y

[
V ar

[
zi|β,y

]
+
(
E
[
zi|β,y

])2
]

= Eβ|y

[
b′′(θi) +

(
b′(θi

)2]

= Eβ|y

[
eX

T
i β

(1 + eX
T
i β)2

+

(
eX

T
i β

1 + eX
T
i β

)2]

= Eβ|y

[
eX

T
i β

1 + eX
T
i β

]

≈ 1

s

s∑
k=1

[
eX

T
i β

(k)

1 + eX
T
i β

(k)

]
.

So, we conclude that (4.16) can be approximated by the form

V ar(zi|y) ≈ 1

s

s∑
k=1

[
eX

T
i β

(k)

1 + eX
T
i β

(k)

]
−

(
s∑

k=1

1

s

[ eX
T
i β

(k)

1 + eX
T
i β

(k)

])2

.

(4.17)

Now, we can calculate (1.7) and obtain the L Measure criterion for
M1:

L1
IL ≈

n∑
i=1

1

I

I∑
k=1

[
eX

T
i β

(k)

1 + eX
T
i β

(k)

]
−

(
I∑

k=1

1

I

[ eX
T
i β

(k)

1 + eX
T
i β

(k)

])2


+
1

2

n∑
i=1

1

I

I∑
k=1

(
eX

T
i β

(k)

1 + eX
T
i β

(k)
− y

)2
, with β(1), ..., β(I) ∈ S1.

68



Likewise, the L Measure for M2 can be derived by:

L2
IL ≈

n∑
i=1

 1

J

J∑
k=1

[
eX

T
i β

(k)

1 + eX
T
i β

(k)

]
−

(
J∑
k=1

1

J

[ eX
T
i β

(k)

1 + eX
T
i β

(k)

])2


+
1

2

n∑
i=1

 1

J

J∑
k=1

(
eX

T
i β

(k)

1 + eX
T
i β

(k)
− y

)2
, with β(1), ..., β(J) ∈ S2.
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Chapter 5

The Probit Model

5.1 Introduction

The treatment of binary, dichotomous data, that need to somehow
be linked to a set of explanatory parameters through their mean, is not
restricted solely to logistic regression models. Suppose we are dealing
with a series of outcomes describing the occurrence or not occurrence
of an incident; in mathematics notation, we have n random binary vari-

ables, yi ∈ {0, 1}, such that yi =

{
1 with probability pi

0 with probability 1− pi
. Once

again, it is obvious that yi ∼ Bern(pi), consequently the probability
mass function will be:

f(yi|pi) = pyii (1− pi)1−yi

µi = E(yi) = pi, i = 1, ..., n.

Our priority is to associate each mean µi = pi with the corresponding
linear predictor ηi = XT

i β, where X = (X1, X2, ..., Xn) is the already
known design matrix and β is the vector of the coefficients. In the
previous section, the canonical link was defined as the link function. In
the Probit model case we use as link function (usually referred to as the
probit link) the cumulative distribution of the Standard Normal
distribution , noted as Φ(·) and so we set:

Φ(pi) = XT
i β

⇔ pi = Φ−1
(
XT
i β
)
.

(5.1)

We note that our link function is well defined, since, as a cumulative
distribution, Φ(·) : R → [0, 1] and therefore the quantities Φ−1

(
XT
i β
)
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can be regarded as possibilities for every Xi, β ∈ Rk+1.
So now, each coordinate yi of the random component y = (y1, ..., yn)
is described by yi ∼ Bern

(
Φ−1

(
XT
i β
))

and by substituting pi in the
corresponding probability mass function we have that:

f(yi|X,β) =
[
Φ−1

(
XT
i β
)]yi[

1− Φ−1
(
XT
i β
)]1−yi

, i = 1, ..., n.

Finally, the probability mass function of the probit model, since we con-
sider the observations to be independent, is:

L(y|β,X) =
n∏
i=1

f(yi|X,β)

=

n∏
i=1

[
Φ−1

(
XT
i β
)]yi[

1− Φ−1
(
XT
i β
)]1−yi

.

(5.2)

5.2 Inference for the Probit Model

5.2.1 Prior Specification and First-step Analysis

Our interest obviously lies on deriving the posterior distribution of the
coefficient parameter vector β = (β0, β1, ..., βk) and thus, link the data
of the design matrix X to the mean of the response variable y. We place
a proper prior on β and so consider that β ∼ Nk+1(b0, C0), where b0 is
a k × 1-dimensional column vector and C0 a (k + 1) × (k + 1) diagonal
matrix. The values we set upon the mean vector and the covariance
matrix depend on the quality of the prior information. If we decide that
the provided piece of information is unreliable or with little importance
and consequently, we are in a state of ignorance, we can set b0 = 0 and
place large values (i.e. C0ii = 10000)on the non-zero elements of C0.
By applying Bayes’ Theorem, we get that:

f(β|y,X) ∝ f(β) · L(y|β,X)

∝ exp
{
−1

2
(β − b0)TC−1

0 (β − b0)

}
·
n∏
i=1

[
Φ−1

(
XT
i β
)]yi[

1− Φ−1
(
XT
i β
)]1−yi

.

Once again, the posterior distribution is known up to a normalising con-
stant and it is intractable, since it does not correspond to any known
distribution. Therefore, we have to turn to MCMC methods in order to
obtain it.
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We could naively implement the algorithms mentioned above, but we
are going to take advantage of the form of the link function and introduce
an innovative computational trick, which,in the end, allows us to use a
Gibbs sampler in order to extract the distribution of β|X, y.

5.3 Data Augmentation in the Probit Model

Data augmentation (Tanner and Wong,1987) is a sophisticated, stochas-
tic technique, which is employed by statisticians as a way to overcome
the problems of missing data or the intractability of likelihood distri-
butions. In the Bayesian paradigm, both problems are frequently faced
and particularly in the probit model, we are dealing with the latter at
the course of our analysis.

The fundamental idea upon which the whole process is built, is to in-
troduce an n-dimensional vector of latent variables or data denoted
as z = (z1, ..., zn) and conduct inference on (β, z). It is noted, that there
are no specific criteria regarding when z is considered to be a variable
vector or a vector of data, since in the Bayesian context, both are han-
dled as random variables. So, after adding z as a random variable vector,
the task of extracting the posterior distribution of (β, z), although the
dimension of the problem has increased, has become less complicated.

Contrary to f(β|y,X), the posterior distribution of the new param-
eter vector, that is f(β, z|y,X), demands less intensive computational
methods. As a matter of fact, it will be shown that a sample from the
joint posterior distribution can be obtained via the Gibbs Sampler.

5.3.1 A latent data-based expression of the Probit Model

The introduction of the auxiliary variable vector z, enables us to
express the probit regression model as a Normal linear model, with z
being the ”unobserved” vector of responses:

zi = XT
i β + ei, where ei ∼ N(0, 1), i = 1, ..., n. (5.3)

The link to the observed data, y is described by the following argument:

yi =

{
1, if and only if zi > 0,

0, if and only if zi ≤ 0
.
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Let us consider the above setup before proceeding any further. The la-
tent data zi, as they have been defined according to the concept of a Nor-
mal linear model, are continuous random variables and zi ∼ N

(
XT
i β, 1

)
for every i ∈ {1, ..., n}. However, the dichotomous responses yi are still
associated with the linear predictor η = Xβ, because the values 0 or
1 are assigned, depending on whether the corresponding zi is positive
or not. The probability of each zi falling above the threshold of 0 is
expressed thusly:

P (yi = 1) = P (zi > 0) = 1− P (zi ≤ 0)

= 1− P
(
zi −XT

i β ≤ −X
T
i β
)

= 1− Φ
(
−XT

i β
)

= Φ
(
XT
i β
)
, because zi −XT

i β ∼ N(0, 1).

Also, P (yi = 0) = 1− P (yi = 1) = 1− Φ
(
XT
i β
)

= Φ
(
−XT

i β
)
.

Our inference will be conducted on the model:

z ∼ Nn(Xβ, 1)

with the restriction that{
zi > 0, if yi = 1,

zi ≤ 0, if yi = 0, i = 1, ...n.

and we place again a proper prior on the coefficients vector

β ∼ Nk+1(b0, C0). (5.4)

What is special about the above model is that the values zi follow
a truncated Normal distribution, zi ∼ TN

(
XT
i , 1

)
, with 0 as the

point of truncation, whereas the truncated area of the distribution is
determined by the corresponding values of yi thusly:

• if yi = 0, the distribution is truncated above 0,

• if yi = 1, the distribution is truncated below 0.

By making the simple observation that {zi, i = 1, ..., n} = {i : yi = 1} ∪
{i : yi = 0}, the likelihood of the model in (4.4), conditional on y,β, can
be expressed as
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L(z|β, y) =

=
∏
i:yi=1

exp

{
−1

2

(
zi −XT

i β
)2}

I [zi > 0] ·
∏
i:yi=0

exp

{
−1

2

(
zi −XT

i β
)2}

I [zi < 0].

(5.5)

We will attempt to obtain the posterior distribution of β computa-
tionally, via a Gibbs sampler. In order to do that, we need to make the
remark that the distribution of the auxiliary variables vector, z, condi-
tional only on β is a usual multivariate Normal, Nn(Xβ, In).
We can easily apply Bayes’ Rule and thus, derive that:

f(β|z) ∝ L(z|β) · f(β)

∝ exp
{
−1

2
(z −Xβ)T In(z −Xβ)

}
· exp

{
−1

2
(β − b0)TC−1

0 (β − b0)

}
∝ exp

{
−1

2

[
βT
(
XTX + C−1

0

)
β − βT

(
XT z + C−1

0 b0
)
−
(
zTX + bT0 C

−1
0

)
β
]}

· exp
{
−1

2

(
zT z + bT0 C

−1
0 b0

)}
∝ exp

{
−1

2
(β − b1)TΣ−1(β − b1)

}
.

(5.6)

Consequently, β|z ∼ Nk+1(b1,Σ), where b1 =
(
XTX + C−1

0

)−1(
XT z + C−1

0 b0
)

and Σ =
(
XT z + C−1

0 b0
)−1

.

Knowing and having fully identified the distributions of the variables
z|β, y and β|z, we can obtain the posterior distribution of β|z, y via
the following Gibbs sampler, according to Scott M.Lynch (2007):

1. Initialize the parameter vector β by setting as a starting value
β(0) ∼ Nk+1(b0, C0).

2. Use the current value of β to simulate zi|β, y ∼ TN(XT
i β, 1) i ∈

1, ..., n and consider the vector z = (z1, ..., zn).

3. Use β and z of Step.2 to calculate b1 and C1 and then, simulate
β|z, y ∼ Nk+1(b1, C1).

4. Return to Step.2 .
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As usual, we iterate the algorithm until convergence is achieved.

However, in the above procedure, we need to perform the somewhat
challenging simulation of the truncated Normal distribution in Step.2.

We present two possible simulation methods in order to deal with the
problem.

5.3.2 Simulating Truncated Gaussians

By truncating a Normal distribution, we bound the values that the
normally distributed random variable can take within an interval of the
form [a, b] ⊂ (−∞,+∞), whereas the plot of the truncated distribution
can be obtained by “cutting off” the sides below a and above b from the
plot of the corresponding Normal. Although it is easy to comprehend
the form of a truncated Gaussian, an effective simulation turns out to
be as trivial as expected.

The “naive” approach

The “naive approach” as it was referred to by Robert (1995), and
Lynch (2007) as well afterwards, is the idea we would instinctively follow
in our attempt to simulate a truncated Normal:
Suppose we have already iterated the Gibbs sampler j times and we have
obtained a parameter vector β(j). At this point, based on the fact that
zi|β, yi ∼ TN(XT

i β, 1) and depending on whether yi = 1 or yi = 0, we
would keep simulating values from N(XT

i β, 1) until, we got zi > 0 or
zi < 0 respectively. The flaw in that idea is that it can be proved to be
extremely time consuming if the desired zi is an outlier for N(XT

i β, 1).
This would occur in two occasions:

• If XT
i β >> 0 and yi = 0, then we would accept a simulated value

from N(XT
i β, 1) and set it as zi only if it is negative. However,

since the variance is 1, a large number of failed simulations will
take place, before a negative value is obtained.

• In the exact opposite case, where XT
i β << 0 , but yi = 1, then due

to the larger probability mass that negative values would have, a
positive outcome would be rear. Therefore, once again, numerous
simulations would take place, until a positive value would appear.
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Considering that a simulation from an appropriately truncated Gaussian
has to be obtained in each step of the Gibbs sampler, until convergence is
diagnosed, we realize that despite the simplicity of the algorithm, we run
the risk of engaging in a cumbersome and very slow process. Therefore,
this approach is not usually recommended.

The Inversion Sampling approach

Lynch (2007) recommends the Inversion Sampling approach as the
most rapid and straightforward way, since there is no need of monitoring
the drawn values in order to accept or reject them. In other words, the
acceptance rate is 100%. The fundamental idea upon which this method
is built is the following lemma:

Lemma 4. Let u be a random variable such that u ∼ U(0, 1) and
F (·) : (−∞,+∞) → [0, 1] be a cumulative distribution, corresponding
to a density function, denoted as f . Then, if we consider the random
variable F−1(u) , we get that F−1(u) ∼ f .

Proof
We will show that the cumulative distribution of F−1(u) is F .
Indeed, we can easily observe that

P
(
F−1(u) ≤ x

)
= P (u ≤ F (x)) = F (x).

As we have mentioned before, we need to simulate values from Gaus-
sians of the form N(XT

i , 1), that are truncated below or above 0 if yi = 1
or yi = 0, respectively. We shall describe a method of simulating the
side of a N(XT

i , 1), i ∈ 1, ..., n, below zero. That is the case when for
that particular i, yi = 0.

We will use Lynch’s notation and denote the cumulative distribution
of N(XT

i , 1) as Φµi,1(·), where µi = XT
i . First, we should consider that

we cannot directly use the inverse of the cumulative distribution, Φ−1
µi,1

,
because we will get values in (−∞,+∞), whereas we are restricted in
(−∞, 0). Mathematically, this restriction is expressed as −∞ < z < 0.
Suppose that we do set zi = Φ−1

µi,1
(u), where ui ∼ U(0.1). Then, our

restriction takes the form: −∞ < Φ−1
µi,1

(ui) < 0, which is equivalently
expressed as Φµi,1(−∞) < ui < Φµi,1(0).
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Consequently, by setting ui ∼ U(0,Φµi,1(0)), the problem is solved,

since the drawn zis will always belong in an interval of the form:
(

Φ−1
µi,1

(0),Φ−1
µi,1

(Φµi,1(0))
)

,

which is the interval (−∞, 0). In order to obtain values from N(XT
i , 1),

truncated above 0, we simply consider that for each i = 1, ..., n, ui ∼
U(Φµi,1(0), 1).

5.4 Model Selection

Due to the fact that the posterior distribution f(β|y) can only be
simulated and because the use of latent variables, according to many
authors, should prevent us from using the Bayesian and the Deviance
Information Criterion, we will employ the L Measure in order to com-
pare two arbitrary probit models.

Let S1 =
(
β(1), ..., β(I)

)
and S2 =

(
β(1), ..., β(J)

)
denote two samples

from the posterior distribution of β, that is f(β|y), under model M1 and
M2 respectively, whereas z =

(
z1, ..., zn

)
shall denote a vector of future

observations. We recall, that the L Measure is given by (1.7):

LIL =

n∑
i=1

{
V ar(zi|y) +

1

2
·
(
E[zi|y]− y

)2}
.

We will employ the Law of Double Expectation, as we did in the case
of the logistic regression, to benefit from some special properties of the
Generalized Linear Models and thus, significantly simplify the computa-
tional part. First, we should consider the following equations, which will
allow us to express the conditional expectation of an observation, with
the probit link. We already know from (4.3) that:

E[yi|β] = pi =
eX

T
i β

1 + eX
T
i β

and also from (5.1) that:

pi = Φ−1
(
XT
i β
)
.

Consequently, we can make the following assumptions:

E[yi|β] = Φ−1
(
XT
i β
)

(5.7)

and that

eX
T
i β =

Φ−1
(
XT
i β
)

1− Φ−1
(
XT
i β
) . (5.8)
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Since from (4.14) we have deducted that V ar(yi|β) = eX
T
i β(

1+eX
T
i
β

)2 , the

last equation yields that:

V ar(yi|β) = 1− Φ−1
(
XT
i β
)
. (5.9)

Also, we need to bear in mind that E[zi|y,β] = Φ−1
(
XT
i β
)
. By the Law

of double expectation, as this is expressed in (4.12), the expectation of a
future observation with respect to the data at hand, y, and by applying
the Monte Carlo integration, takes the following form:

E[zi|y] = Eβ|y

[
E
[
zi|β,y

]]
= Eβ|y

[
Φ−1

(
XT
i β
)]

≈ 1

s

s∑
k=1

[
Φ−1

(
XT
i β

(k)
)]
.

(5.10)

Following similar steps with the ones required to transform (4.16) to
(4.17), it can be shown that the variance of a predicted value zi with
respect to y can be written as:

V ar(zi|β) ≈ 1

s

s∑
k=1

Φ−1
(
XT
i β

(k)
)
−

(
1

s

s∑
k=1

Φ−1
(
XT
i β

(k)
))2

, (5.11)

where Sm =
(
β(1), ...,β(s)

)
is a sample of simulated values from the

posterior distribution of β under a model m.

The values we need to compare, in order to select the model with the
lowest score of the L Measure are the following:

L1
IL ≈

n∑
i=1

1

I

I∑
k=1

[
1

I

I∑
k=1

Φ−1
(
XT
i β

(k)
)
−

(
1

I

I∑
k=1

Φ−1
(
XT
i β

(k)
))2]

+
1

2

n∑
i=1

1

I

I∑
k=1

(
1

I

I∑
k=1

[
Φ−1

(
XT
i β

(k)
)]
− y

)2
, with β(1), ..., β(I) ∈ S1.

and

L2
IL ≈

n∑
i=1

 1

J

I∑
k=1

[
1

J

J∑
k=1

Φ−1
(
XT
i β

(k)
)
−

(
1

J

J∑
k=1

Φ−1
(
XT
i β

(k)
))2]

+
1

2

n∑
i=1

 1

J

J∑
k=1

(
1

J

J∑
k=1

[
Φ−1

(
XT
i β

(k)
)]
− y

)2
 with, β(1), ..., β(J) ∈ S2.
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Chapter 6

Stochastic Search Variable
Selection

Motivation

Given a standard model structure, a major statistical task is to inves-
tigate the existence of a more parsimonious version of it, that will ade-
quately interpret the data at hand. This procedure is in other words de-
scribed as “variable selection” and amounts to the detection and removal
of explanatory variables form the original, “full model”. In the Bayesian
framework, in order to perform variable selection, we need to compare
the submodels corresponding to each one of the possible variable com-
binations. More specifically, for a given matrix X = (X1, ...,Xk) of ex-
planatory variables, whereXi ∈ Rn for each i = 1, ..., k, there will also be
a corresponding vector of coefficients, denoted by β = (β0, β1, ..., βk) ∈
Rk+1. The reader should recall that the first coordinate β0 is the inter-
cept of the model. The statement that “the variable Xi can be excluded
from the model” is equivalent to setting the corresponding coefficient
coordinate βi equal to zero. Consequently, the candidate models are
defined and distinguished from one another by the specific subset B of
predictors, based on which, they are built. It is clarified that B ⊂ B,
where B ⊂ Rk+1 denotes the set of predictors dictated by the full model.

Although it is very clear which models need to be compared and
even though, depending on the form of the model, a statistician can
employ one or more of the various methods mentioned in the previous
chapters, in order to perform the necessary model comparisons, another
very important aspect of the variable selection problem is the total
number of these comparisons.
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The simplest example of a case of variable selection would be a normal
linear model. More specifically, suppose we wish to study a model of the
following linear structure, with the usual assumptions:

yi = β0 + β1X1i + β2X2i + ...+ βkXki + εi, where εi ∼ N(0, τ−1),

for every i ∈ {1, 2, ..., n}. Initially, our interest lies in conducting in-
ference for the vector of predictors, β = (β0, β1, ..., βk), each coordinate
of which is considered to be a random variable. Once we gain a more
solid perspective of the general statistical performance of the model, as
well as for the behaviour of β, it is required to find out whether we can
afford to reduce its dimension without affecting its performance. To this
purpose, we have to compare all the submodels, which can be derived
by setting one or more predictors equal to zero. As a result, we are led
to the study of 2k submodels, which will all have to be compared with
each other, so that the optimal, candidate submodel can be selected out.

It is obvious that the particular task requires the use of computers
and can easily become very time-consuming. A linear model of just four
explanatory variables would generate 25 = 32 candidate models, that
would have to be compared by couples. The reader should also bear in
mind that an initial suggested model is usually of a higher dimension.
This is due to the fact that a large number of explanatory variables pro-
vides a level of safety, considering the informative character of a model.
Additionally, a researcher may be compelled to do so, due to the com-
plexity of the phenomenon under study.

Thus, we reach the conclusion that, although the methods of model
comparison mentioned in the previous chapters are consistent and not
hard to implement, they seem to fail to serve the purpose of variable se-
lection, in the sense that the statistician will have to engage in the cum-
bersome process of multiple model comparisons. Evidently, the search
of a more parsimonious model comes at a rather high price in terms of
time and resources by the traditional methods of the Bayesian paradigm.
That fact sustained for a long time a major drawback of Bayesian Statis-
tics, especially since it is easily carried out in the framework of Classical
Statistics.

Bayesian Variable Selection and Model Averaging have been intro-
duced as techniques to overcome the obstacle of the cumbersome process
of multiple comparisons. Their use is at the current moment extensive
and they are considered both efficient and very practical methods, with
the additional advantage that they have a solid probabilistic background
and they are based on intuitional, statistical thinking.
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Due to the significance of the problem, various methods of Variable
Selection have been introduced over the past few years. In their paper
“ A Review of Bayesian Variable Selection Methods:What, How and
Which”, R.B. O’Hara and M.J. Sillanpaam make an informative review
of the most popular methods used currently: Kuo and Mallick, Gibbs
Variable Selection (GVS), Stochastic Search Variable Selection (SSVS),
adaptive shrinkage with Jereys prior or a Laplacian prior, and reversible
jump MCMC. The present thesis shall focus solely on the study of the
SSVS method, originally introduced by Edward I. George and Robert E.
MacCullogh in 1993, and its application on Normal Linear models and
Generalized Linear models.

6.1 Stochastic Search Variable Selection in Nor-
mal Linear Regression

Let us review the general structure and assumptions of a Normal Lin-
ear Regression model. The data available to us is the n−dimensional
vector of independent variables, denoted by y = (y1, ..., yn) ∈ Rn and
the matrix of the explanatory variables, X = (1, X1, ..., Xk) ∈ Rn×(k+1).
There is also the vector of predictors, with the notation β = (β0, ..., βk) ∈
Rk+1. We assume that the vector of the mean values of y can be ap-
proached as a linear combination of the explanatory variables, by the
following formula:

E[y] = βTX + ε

⇐⇒ E[yi] = β0 + β1Xi1 + β2Xi2 + ...+ βkXik + εi,

where ε ∼ N(0, τ−1In) is the vector of random errors.

Having conducted inference for that particular model, our efforts are
turned to the detection of a “promising” subset of predictors X∗ =(
X∗1 , X

∗
2 , ..., X

∗
q

)
, where q ≤ k + 1, by which another model, of sim-

ilar performance to the full model, is built. The new model will be
henceforth denoted by M∗. In order to find out which coefficients are
non-zero in M∗, we consider a vector of latent variables, denoted by
γ = (γ0, γ1, ..., γk), with γj ∈ {0, 1} for every j = 0, 1, ..., k. The idea is
to use the posterior distribution of γ in the following way: the selected
coefficients will be indicated by the unit coordinates of γ, whereas the
zero coordinates will correspond to the coefficients that can be set equal
to zero.

81



6.1.1 Building a hierarchical model

In order to implement this idea, George and Mac Cullogh suggested
that “the original regression model should be embedded in a larger hi-
erarchical model”, with the key feature that the prior assigned to each
coordinate of β would be the following mixture of two Gaussians, with
respect to γ:

(βj |γj) ∼ (1− γj)N(0, τ−1
j ) + γiN(0, cjτ

−1
j ), j = 0, 1, ..., k.

(6.1)
Thus, we successfully establish a strong dependence between β and γ.
Since γ is an unknown vector of variables, a prior distribution has to be
placed on it. Assuming prior independence between its coordinates, the
simplest choice would be to assign a Bernoulli distribution on each one
of them and so we consider that:

γj =

{
1, with porbability pj ,

0, with probability 1− pj , j = 0, 1, ...k.

Each probability pi ∈ [0, 1] is defined by the statistician, reflecting his
belief about the importance of the corresponding variable Xi for the in-
terpretation of the data. Hence, a large prior probability expresses the
belief that Xi is a very valuable explanatory variable, whereas with a
small pi, the incident (γi = 1) rarely occurs, implying that the informa-
tion provided by Xi is of little significance for inference. Thus, we end
up with the following hierarchical structure:

(yi|β, τ2,γ) ∼ N
(
XT
i β, τ

−1
)
, i = 1, ..., n,

(βj |γj) ∼ (1− γj)N(0, τ−1
j ) + γjN(0, cjτ

−1
j ),

τ ∼ G
(ν

2
,
λ

[2ν]

)
,

γj ∼ Bern(pj), j = 0, 1, ..k.

(6.2)

In matrix notation the model is written as follows:(
y|β, τ,γ

)
∼ Nn

(
Xβ, τ−1In

)
,(

β|γ
)
∼ Nk+1

(
0, DT

γ ΣDγ

)
,

τ ∼ G
(ν

2
,
λ

[2ν]

)
,

γj ∼ Bern(pj), j = 0, 1, ..k,

(6.3)

where Σ is the prior correlation matrix for the vector β and Dγ :=
diag

(
α0τ

−1
0 , α1τ

−1
1 , ..., αkτ

−1
k

)
, with αj = 1, if γj = 0, whereas αj =
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cj , if γj = 1. We note that the precision of each Gaussian density in
the conditional prior of βj , j = 0, 1, ..., k, that is τ2

j is irrelevant to the
precision τ of the response variables.

Furthermore, although we chose to set τ independent from γ, George
and MacCullogh in their original paper attempted to suggest ways of
setting appropriate values λγ and νγ in order to incorporate dependence
on γ. Nevertheless, they point out that the fact that y depends on γ
only through β is a common feature in hierarchical modelling, which in
our case simplifies the computational procedure.

6.1.2 Setting τj and cj

Contrary to the precision of the explanatory variables, that is τ , which
is a random variable and therefore a prior distribution is placed on it, τj
and cj have fixed values, prespecified by the statistician. Nevertheless,
these values need to be set with caution, so that the purpose of the SSVS
model structure is served. More specifically, we need to ensure that the
following two properties will hold:

• By getting γj = 0 a posteriori, we want to assume that βj can be
“safely” set equal to zero, for every j = 0, 1, ..., k. Since, if γj = 0,
then (βj |γj) ∼ N(0, τ−1

j ), such an assumption can be justified only

if the value of τ−1
j is small, thus causing the Gaussian distribution

to be clustered around 0. As a result, the probability P
(
|βj | ≤ ε

)
,

for an appropriately small value ε > 0, will be sufficiently large to
permit setting βj = 0.

• If γj turns out to be equal to 1, this yields that (βj |γj) ∼ N(0, cjτ
−1
j ).

If γj = 1, we want to be led to the conclusion that βj 6= 0. For
that reason, the quantity cjτ

−1
j has to be large enough, so that only

regions with substantially large, non-zero values have high density,
meaning that a zero or “close to zero” value for βj is a very rare
and probably unlikely incident.

The problem we are facing is how the product cjτ
−1
j is affected by the

values we set, since a very large cj and a very small τ−1
j could cancel

each other out and thus, lead to an inappropriate value of c2
jτ

2
j . Should

this occur, then the assumption that βj 6= 0, if γj = 1, is unjustified.
In other words, we need to ensure that if the data support γj = 1 over
γj = 0, then the incident

(
βj = 0

)
is very unlikely. So, we are challenged

to come up with an efficient combination of values for cj and τj .
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MacCullogh and George’s remarks and suggestions

Mac Cullogh and George attempted to suggest a form of criterion that
could guide us to a safe choice of values, which is based on the following
thinking:
They considered the intersection point of N

(
0, τ−1

j

)
and N

(
0, cjτ

−1
j

)
,

which can be expressed as cjtj . Based on this expression, they concluded

that tj =
√

2(lncj)c2
j/(cj − 1). They observed that the intersection point

has the following property: “The density of N
(
0, cjτ

−1
j

)
is larger that

the density of N
(
0, τ−1

j

)
if and only if |βj | > cjtj .” Additionally, they

pointed out that cj is “the ratio of the heights of the two Gaussians at
0. Thus, they concluded the very interesting interpretation of cj as “the
prior odds that Xj should be excluded when βj is very close to 0”.

Furthermore, tj can be regarded as the statistic-threshold with a
very particular use:
If the outcome γj = 1 leads to a posterior value of βj , such that |βj | >
cjtj , then we get that P

(
γj = 1

)
> P

(
γj = 0

)
. This means that “the

variable Xj has an increased probability to be involved in the model.
This yields that small values for tj tend to favour more complex models,
whereas large values of tj would point to more parsimonious models.

Finally, in the paper “The Practical Implementation of Bayesian
Model Selection”, which was published in 2001 and included a review
of the SSVS, Chipman, George and MacCullogh noted that any τj and
cj satisfying the property: ln

(
cjτj/τj

)
/
[
τ−1
j − c

−1
j τ−1

j

]
= t2j , for a given

tj , are considered appropriate choices. They additionally advised that
cj should be set to a value less than 10.000.

6.1.3 Extracting the best subsets through f(γ|y) using the
Gibbs Sampler

In order to avoid the cumbersome process of calculating 2k+1 poste-
rior probabilities for every model derived from the possible combinations
of predictors, SSVS uses the hierarchical structure described above and
then the Gibbs Sampler to get a sequence of observations from the pos-
terior distribution of γ, that is f(γ|y). We collect the values we will
get from the algorithm after the burn-in period in order to consider a
sample from f(γ|y), denoted by

Sγ =
{
γ1, ...,γL

}
, where L ∈ N∗, (6.4)
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and we rely on it to indicate which is the optimal subset of predictors.
First, we shall describe the structure of the Gibbs sampler.

The Gibbs Sampler

1. We initialize β,γ and τ by setting β(0) =
(
XTX

)−1
XTY and

τ = (y−Xβ0)T (y−Xβ(0))
n−k−1 , which are the least squares estimators for

the coefficient vector and the precision respectively, whereas we set
γ(0) = (1, 1, ...., 1).

2. At the j-th iteration of the algorithm, we simulate β(j) from its con-
ditional distribution f

(
β(j)|y, τ (j−1),γ(j−1)

)
≡ N(µγ(j−1) ,Σγ(j−1)),

where

µγ(j−1) = τ (j−1)Σγ(j−1)

(
XTX

)
β̂LS and

Σγ(j−1) =
[
(DγRDγ)−1 + τ−1(XTX)

]−1
.

(6.5)

The result above is derived by Bayes’ Theorem, since

f(β(j−1)|γ(j−1)) ∝ exp
{β(j−1)T (DγRDγ)−1β(j−1)

2

}
and

f(y|β(j−1),γ(j−1), τ (j−1)) ∝
(
τ (j−1)

)n/2
exp

{(y −Xβ(j−1))T τ (j−1)(y −Xβ(j−1))

2

}
and so by applying Bayes’ Theorem, we get that

f(β(j)|y,γ(j−1), τ (j−1)) ∝ f(y|β(j),γ(j−1), τ (j−1))f(β(j)|γ(j−1))

∝ exp

{(
β(j) − µγ(j−1)

)T
Σ−1
γ(j−1)

(
β(j) − µγ(j−1)

)
2

}
.

Again by applying Bayes’ Theorem and using β(j), we can derive
the conditional distribution of τ (j), that is f(τ (j)|y,β(j),γ(j−1)),
since

f(τ (j)|y,β(j),γ(j−1)) ∝ f(y|β(j),γ(j−1), τ (j))f(τ (j))

∝
(
τ (j)
)n/2

exp

{(
y −Xβ(j)

)T
τ (j)
(
y −Xβ(j)

)
2

}(
τ (j)
)λ/2−1

exp

{
− λ

[2ν]
τ (j)

}

=
(
τ (j)
)n+λ

2
−1

exp

{
− τ (j)

[(
y −Xβ(j)

)T (
y −Xβ(j)

)
+ λ/[ν]

2

]}
.

Evidently,
(
τ (j)|y,β(j),γ(j−1)

)
∼ Γ

(
n+λ

2 ,

(
y−Xβ(j)

)T(
y−Xβ(j)

)
+λ/[ν]

2

)
.
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3. The vector γ(j) is sampled componentwise and consecutively ac-
cording to the following scheme:
Let us assume that we are at the point of the algorithm at which a
total number of m ≤ k + 1 coordinates have been updated for the
j-th time. We choose γi from the set of the coordinates that have
not yet been upgraded at the j-th iteration of the Gibbs Sampler
- we do not necessarily follow any particular order for the selec-

tion of i - and we sample γ
(j)
i from f

(
γ

(j)
i |y, γ

(j−1)

S
(j−1)
i

,β(j), τ (j)
)

,

where S
(j−1)
i =

(
γ

(k)
l

)
k,l

, with l ∈ {0, 1, ..., i − 1, i + 1, ..., k} and

k ∈ {j − 1, j}. We note that the values of k, mathematically ex-
press whether the coordinate γi has been updated for the j-th time
or not. What is more, due to the structure of the model, there is
nondependence on y and τ (j) (George and MacCullogh, 1993) and

therefore f
(
γ

(j)
i |y, γ

(j−1)

S
(j−1)
i

,β(j), τ (j)
)

= f
(
γ

(j)
i |γ

(j−1)

S
(j−1)
i

,β(j)
)

, which

simplifies the computational procedure.

The distribution f
(
γ

(j)
i |γ

(j−1)

S
(j−1)
i

,β(j)
)

is a Bernoulli distribution

with success probability P

[
γ

(j)
i = 1|γ(j−1)

S
(j−1)
i

,β(j)

]
=

a

a+ b
, where

a =f

[
β(j)|γ(j−1)

S
(j−1)
i

, γ
(j)
i = 1

]
· P
[
γ

(j)
i = 1

]
= f

[
β(j)|γ(j−1)

S
(j−1)
i

, γ
(j)
i = 1

]
· pi,

(6.6)

whereas

b =f

[
β(j)|γ(j−1)

S
(j−1)
i

, γ
(j)
i = 0

]
· P
[
γ

(j)
i = 0

]
= f

[
β(j)|γ(j−1)

S
(j−1)
i

, γ
(j)
i = 0

]
·
(
1− pi

)
.

(6.7)

We perform the same procedure until we have finally obtained γ(j).

Diebolt and Robert (1994) proved that the sequence

γ(1),γ(2), ...,γ(M), where M ∈ N∗,

86



that is formed by the Gibbs Sampler is a homogeneous ergodic Markov
chain that converges geometrically to its equilibrium distribution f

(
γ|y
)
.

The convergence is more rapid if f
(
γ|y
)

is peaked, having as a result
the probability mass not to be scattered, but concentrated in a small
area. If this occurs, it is beneficiary for the purpose of model selec-
tion, since the most “valuable” and informative explanatory variables
would be few and they would stand out as those, corresponding to the
predictors with the highest posterior probability. More specifically, a
tabulation of the obtained sample SL can show us the frequency of the
incident

(
γi = 1

)
, for every i = 0, 1, ..., k. Thus, we can derive a vector(

γ∗q1 ,γ
∗
q2
, ...,γ∗ql

)
, with {q1, q2, ..., ql} ⊂ {0, 1, ..., k} of the coordinates

that are most frequently equal to 1, indicating the predictors that most
likely have non-zero values. The optimal, more parsimonious model is
the one built by the corresponding explanatory variables.

6.2 Stochastic Search Variable Selection for Lo-
gistic Regression

Given a set of binary data y = (y1, ..., yn), where we assume that
yi ∼ Bern(pi), pi ∈ [0, 1] for every i = 1, 2, ..., n, a vector of explanatory
variables X = (X1, ..., Xk) and the coefficient vector β = (β0, β1, ..., βk),
we wish to conduct inference regarding the unknown vector of parameters
p = (p1, ..., pn). We link p with the vector of explanatory variables X,
assuming the following connection between them:

log

(
pi

1− pi

)
= XT

i β

⇐⇒ pi =
eX

T
i β

1 + eX
T
i β
,

where pi = E[yi|pi], for every i = 1, 2, ..., n.

(6.8)

We have already elaborated on the mathematical and computational
procedures we follow in the Bayesian framework in previous chapters.
Admittedly, logistic regression is a commonly used model structure in
studies in econometrics, genetics, biology etc., the majority of which in-
clude a very large number of explanatory variables, thus creating very
complex models. The computational difficulties that arise and the fact
that even with the assistance of computers the assessment of the data
becomes time-consuming and cumbersome, justify the expansion of the
SSVS method on the generalised linear models. It was a necessity to
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avoid the overwhelming amount of comparisons between the 2p models
that had to be examined, so that more parsimonious submodels could
be proposed for the interpretation of the data. MacCullogh, George
and Tsay (1995) proceeded to the implementation of SSVS on logistic
regression models and soon after that, SSVS was adopted by a variety
of scientists in statistical research. A very characteristic example is the
paper of Swarz et. al. (2006), which employed SSVS in the study of
Gene Mapping, thus introducing the “SSGS” method for Gene Map-
ping. Furthermore, SSVS for generalised linear models captured the
interest of many statisticians, who engaged in the research of computa-
tional optimization, implementation potentials and comparison to other
techniques of Bayesian variable selection. The present thesis, reviews
results and remarks from the papers of Dellaportas and Smith (1993),
Ntzoufras, Foster and Dellaportas (2000), Chipman, George and Mac-
Cullogh (2001) and Swartz, M.D., Yu, R.K., Shete,S. (2008).

The hierarchical model we consider is built in a similar way as the
one in (6.2), which was used for normal linear regression. Naturally, the
likelihood of the data is expressed by (4.4) and the random variables of
the model are β and γ. More specifically, the conditional distributions
describing the variables currently are as follows:

• The likelihood of the data, with respect to β and γ; that is

L(y|X,β, γ) =
n∏
i=1

(
eX

T
i β

1 + eX
T
i β

)yi(
1

1 + eX
T
i β

)1−yi
.

• The conditional prior placed on β with respect to γ is again ex-
pressed as a mixture of two Normal distributions; that is (βj |γj) ∼
(1 − γj)N(0, τ−1

j ) + γjN(0, cjτ
−1
j ), where τj and cj are set, as de-

scribed in section 6.1.2, for every j = 0, 1, ..., k. In matrix notation,
the prior can be expressed thusly:(

β|γ
)
∼ Nk+1

(
0, DT

γ ΣDγ

)
,

where Σ is the prior correlation matrix for the vector of β and Dγ :=
diag

(
α0τ

−1
0 , α1τ

−1
1 , ..., αkτ

−1
k

)
, with αj = 0, if γj = 0 whereas αj =

cj , if γj = 1.

• Each one of the coordinates of γ = (γ0, γ1, ..., γk) gets values from
{0, 1}, according to a Bernoulli distribution, where P

[
γj = 0

]
=

1− P
[
γj = 1

]
= 1− pj , with pj ∈ [0, 1] for every j = 0, 1, ..., k. In

mathematical notation, γj ∼ Bern(pj), j = 0, 1, ..., k.
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Consequently, the hierarchical model we will be studying has the fol-
lowing structure:

L(y|X,β, γ) =
n∏
i=1

(
eX

T
i β

1 + eX
T
i β

)yi(
1

1 + eX
T
i β

)1−yi
,

(βj |γj) ∼ (1− γj)N(0, τ−1
j ) + γjN(0, cjτ

−1
j ),

γj ∼ Bern(pj), j = 0, 1, ..k.

(6.9)

6.2.1 Drawing from the full conditional distribution of(
β|γ, y,X

)
The extra difficulty in applying the SSVS in the logistic regression

model is the intractability of the conditional posterior distribution of β.
More specifically, by applying Bayes’ Theorem, we are once more led to
expression (4.7); that is

f(β|y,γ, X) ∝
n∏
i=1

(
eX

T
i β

1 + eX
T
i β

)yi
· e−

1
2
βT (DγRDγ)−1β.

Since the above functional form cannot be identified, we have to sim-
ulate a sample from the conditional posterior distribution of β using a
slightly more sophisticated algorithm. We will follow a computational
procedure proposed by Lynn Kuo and Bani Mallick in their paper “Vari-
able Selection for Regression Models”, which is mostly known as the
“Metropolis-within-Gibbs” algorithm.

Employing the Metropolis-within-Gibbs algorithm for SSVS

The algorithmic scheme known as “Metropolis-within-Gibbs” is a hy-
brid MCMC procedure, originally introduced by Muller(1991, 1994) and
can be regarded as a combination of Gibbs and M-H. It is often employed
for the study of complex, high-dimensional models and it is basically
the Gibbs algorithm with a step, that is an embedded loop, where a
Metropolis-Hastings step is performed.

Returning to the hierarchical logit model, we are facing the major
obstacle that f(β|γ) is intractable, and, as a result, it cannot be sim-
ulated by the Gibbs Sampler. For that particular purpose, at the step
of the algorithm where a value from f(β|γ,y) has to be drawn, this is
achieved via the Independence Sampler. More specifically, suppose that
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we are at the point where the i+1 iteration of the algorithm is initiated,
meaning that β(i) and γ(i) are available and it is the point the iterations
of the M-H loop are performed. Let us assume that the total number of
iterations is I ∈ N. Mallick and Kuon describe that the K-th iteration,
1 ≤ K ≤ I goes through the following steps:

• Since we are building a Metropolis-Hastings algorithm, and more
specifically an Independence Sampler, an appropriate proposal dis-
tribution needs to be set. At the K-th iteration, the input would

be the vector β
(i)
K and the proposal distribution is set to be q =

Nk+1

(
β
(i)
K , cΣK

)
, where ΣK is the current estimation of the poste-

rior covariance matrix, whereas c is a fixed constant, appropriately
adjusted so that a satisfactory staying rate is achieved. This yields,
that the acceptance probability of a proposed vector β(can) ∼
Nk+1

(
β
(i)
K , cΣK

)
is

aK = min

{
1,

f
(
β
(i)
K |γ(i), y

)
· q(β(can)|β(i)

K ))

f
(
β(can)|γ(i), y

)
· q(β(i)

K |β(can))

}
.

We should be cautious, when calculating q(β(can)), because in or-
der to obtain the mean and the covariance matrix, a single iteration

of the IWLS has to be performed using as input β
(i)
K .

• We set

β
(i)
K+1 =

{
β(can) with porbability aK

β
(i)
K with probability 1− ak

• We perform the K + 1-st iteration, with β
(i)
K+1 as input.

This loop has to be repeated, until the target distribution f(β(i+1)|y,γ(i), X),
which is also the equilibrium distribution of the formed chain, is ap-
proached. Mallick and Kuon report that a total number I of iterations
between 20 and 50 would suffice. The last vector that is obtained, de-

noted by β
(i)
I is set as β(i+1), since it can be regarded as a draw from

the conditional distribution f(β(i+1)|y, γ(i), X). Then, the main algo-
rithm proceeds to the simulation of γ(i+1), which will also be described
in the following section.
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Employing Gamerman’s Independence Sampler

Previously, as we described the Metropolis-Hastings part of the algo-
rithm, when the proposal distribution q was set, it was implied that we
need to come up with an appropriate value for c, so that the acceptance
rate is within the desirable limits. That fact can be proved troublesome
and time consuming, since we will probably need to engage in a series
of “trial and error” tests, in order to come up with a suitable value.
Furthermore, the M-H step is part of a larger algorithm, meaning that
there are more complex updates and dependence between the variables,
which automatically makes the task much more challenging.

Bearing in mind the introduction of Gamerman’s Independence Sam-
pler in section 4.1.2 for the specific task of the simulation of the posterior
distribution of β in the logit model, instead of having to handle a tuning
constant, by employing that particular technique, we end up with an
automatic tuning process, which could also lead to more rapid conver-
gence. To be more specific, the modification we propose for the M-H
part of the algorithm, given β(i) and γ(i), is that at each iteration K
of the loop, the proposal distribution will also be updated, based on
the current value of β. The modified algorithmic scheme is thoroughly
explained below.

Let β
(i)
K be the current value, used as input, as the K + 1-st iter-

ation of the M-H loop initiates, where 1 ≤ K ≤ I. A single itera-
tion of the IWLS algorithm provides an approximation of the mode of

f(β(i+1)|γ(i),y, X), which is denoted by b
(i+1)
K . Based on the method-

ology and notation of section 4.1.2 , can be expressed as b
(i+1)
K

b
(i+1)
K = [XTW (β

(i)
K )X + (Dγ(i)RDγ(i))

−1] · [Z(β
(i)
K )TW (β

(i)
K )X],

where W (β
(i)
K ) and Z(β

(i)
K ) are calculated as described in section 4.1.2.

We also consider the matrix

C
(i+1)
K =

[
XTW (β

(i)
K )X + (Dγ(i)RDγ(i))

−1
]−1

.

Consequently, the proposal distribution at the K-th iteration is q ≡
Nk+1(b

(i+1)
K , C

(i+1)
K ). The rest part of the algorithm remains the same.

6.2.2 Drawing from the full conditional distribution of
(γ|β, y)

The update of γ, with respect to y and the current value of β is
achieved with the same method as in the case of the SSVS for the linear
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regression model. More specifically, at the i + 1-st step of the main
algorithm, using β(i), we update γi componentwise and consecutively. A
very important remark we need to make is that after each the component
γj , j = 1, 2, ..., k + 1 is updated, we have to accordingly update the
matrix D and use it as input for a Gamerman’s Independence Sampler,
which we iterate 20 times in order to obtain a new value for the coefficient
vector, denoted by β(i+1)

γj
. Then, we can proceed to the update of the

rest of the components, which is carried out likewise. It is preferable that
the update is performed randomly, rather than in a specific, deterministic
order. Hence, we arrive at the conclusion that for each component j ∈
{0, 1, ..., k}, γ(i+1)

j is drawn from the conditional distribution denoted by

f

(
γ

(i+1)
j |γ(i)

S
(i)
j

,β(i+1)
γj

,y

)
, where, once again, S

(i)
j =

(
γ

(n)
m

)
m,n

, with

m ∈ {0, 1, ..., j − 1, j + 1, ..., k} and n ∈ {i, i + 1}. Based on Bayes’
Theorem, we can finally conclude that

f

(
γ

(i+1)
j |γ(i)

S
(i)
j

,β(i+1)
γl

,y

)
≡ Bern

(
aj

aj + bj

)
, (6.10)

where

aj = P
[
γ

(i)
j = 1

]
· L
(
y|β(i+1)

γl
, γ

(i)

S
(i)
j

, γ
(i)
j = 1, X

)
= pi · L

(
y|β(i+1)

γl
, γ

(i)

S
(i)
j

, γ
(i)
j = 1, X

) (6.11)

and

bj = P
[
γ

(i)
j = 0

]
· L
(
y|β(i+1)

γl
, γ

(i)

S
(i)
j

, γ
(i)
j = 0, X

)
= (1− pi) · L

(
y|β(i+1)

γl
, γ

(i)

S
(i)
j

, γ
(i)
j = 0

)
.

(6.12)

By γ
(i+1)
l we refer to the last updated component, which is not necessar-

ily γ
(i+1)
j−1 , since the components are updated randomly, whereas β(i+1)

γl
denotes the corresponding simulated value of β, derived from Gamer-
man’s Independence Sampler.

6.2.3 The SSVS Algorithm for the Logit model

The algorithmic scheme used for the construction of the chain fol-
lows the steps described below, which are iterated until convergence is
reached:

1. Initialize γ(0) = (1, ..., 1) and β(0) = βLS = (XTX)−1XTY .
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2. At the i+1-th iteration of the main loop we use as input
(
γ(i),β(i)

)
and perform the following steps:

(a) Use the current value of β and the current version of matrix

D to update a single component of γj , by drawing γ
(i+1)
j ∼

f

(
γ

(i+1)
j |γ(i)

S
(i)
j

,β(i+1)
γl

,y

)
≡ Bern

(
aj

aj + bj

)
, where S

(i)
j =

(
γ

(n)
m

)
m,n

,

with m ∈ {0, 1, ..., j− 1, j+ 1, ..., k} and n ∈ {i, i+ 1}, whereas
aj and bj are calculated according to (6.11) and (6.12).

(b) Depending on whether γ
(i+1)
j = 0 or 1, set D(j, j) = τj or

D(j, j) = cj · τj respectively.

(c) (Metropolis-within-Gibbs)
Perform 20 iterations of Gamerman’s Independence Sampler,
using as input β(i+1)

γl
and the current vector of γ, containing

the updated components, as well as those that have not been
yet updated. Thus, we obtain a new vector β(i+1)

γj
, which is

used as the current value for β.

(d) Return to step a).

3. (Metropolis-within-Gibbs)
Perform 50 iterations of Gamerman’s Independence Sampler, using
as input the last updated value of β, which has been derived in
step c), after the last component of γ was updated and as prior
covariance matrix, the matrix D, as this is formed after all the
components of γ have been updated. Set the 50-th value obtained
by the algorithm as β(i+1).

4. Return to step 2.

6.3 Stochastic Search Variable Selection for the
Probit model

In the case of the Probit model, which was described in chapter 5, the
response variable y has binary components, each one of which, informs
us whether an event occurs (yi = 1) or not (yi = 0). Consequently,
yi ∼ Bern(pi), i = 1, 2, ..., n and as a result, the likelihood of the data
is expressed as:

f(y) =
∏

pyii (1− pi)1−yi ,

whereas E[yi] = pi.
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The vector of means, denoted by E[y] = p = (p1, p2, ..., pn) is linked to
the linear predictor η = Xβ through (5.1) :

p = Φ−1(Xβ).

Hence, the likelihood of the model with respect to β is expressed by (5.2)
as follows:

L(y|β,X) =
n∏
i=1

[
Φ−1

(
XT
i β
)]yi[

1− Φ−1
(
XT
i β
)]1−yi

.

Since the above form leads to the intractable form of f(β|y, X) in section
5.1.2, it has been noted that the inference for the Probit model can
be simplified with the method of data augmentation. We consider
an additional n-dimensional vector of latent variables, denoted by z =
(z1, ..., zn), which enables us to express the original model as a special
case of a Normal linear model, according to relation (5.3), which leads
to the structural form of (5.4):

z ∼ Nn(Xβ, 1),

with the restriction that{
zi > 0 if yi = 1

zi ≤ 0 if yi = 0 i = 1, ...n

and we place again a proper prior on the coefficients vector

β ∼ Nk+1(b0, C0)

We will perform Stochastic Search Variable Selection in the Pro-
bit model, according to the papers of Lee et.al. (“Gene Selection: a
Bayesian variable selection approach”,2003) and Chang, Chen and Chin
(“Bayesian Variable Selection for Probit Models with Componentwise
Gibbs”, 2014). The latter paper describes two methods of SSVS, one of
which, is the approach of the first paper. What is more, Lee’s approach
of SSVS using a Gibbs Sampler is given the title “SSVS-Lee” by Chang
et.al.

6.3.1 Building a hierarchical model for SSVS for the Pro-
bit model

The SSVS approach for the Probit model followed in the present thesis,
was originally employed by Lee et.al. in 2003 for the specific purpose of
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Gene selection, as the title of the corresponding paper testifies, and it is
based on the SSVS technique, as this was introduced by MacCullogh and
George (1993). It is important to point out the fundamental elements of
Lee’s SSVS, which are the following:

• We use the technique of data augmentation in the same way as we
did for the simple inference. This means that we consider the vector
of auxiliary variables z = (z1, ...., zn) and for each component we
assume that{

(zi|β,y,γ) ∼ TN0

(
XT
i β, 1

)
, iff yi = 0,

(zi|β,y,γ) ∼ TN1

(
XT
i β, 1

)
, iff yi = 1,

where by TN0

(
XT
i β, 1

)
, we refer to the Normal distributionN

(
XT
i β, 1

)
,

with truncation above 0, whereas TN1

(
XT
i β, 1

)
stands forN

(
XT
i β, 1

)
,

with truncation below 0.

• Based on the general scheme of SSVS, we consider the vector of
latent variables γ = (γ0, γ1, ..., γk), where γj ∈ {0, 1} for every
j = 0, 1, ..., k, the purpose of which, is to indicate whether the
corresponding predictors are involved in the model or not. In the
two previous applications we placed the following conditional prior
on each βj , j = 0, 1, ..., k:

(βj |γj) ∼ (1− γj)N(0, τ−1
j ) + γjN(0, cjτ

−1
j ).

The quantities τj and cj were adjusted appropriately, so that if
γj = 0, then the resulting Gaussian N(0, τ−1

j ) would be such, that
we could “safely” assume that βj = 0, whereas if γj = 1, based on
N(0, cjτ

−1
j ), we could set βj 6= 0. Lee’s approach is slightly bolder,

since if we deduce at any part of the analysis that γj = 0, then
we straightly set βj = 0, which sustains an important structural
differentiation. Furthermore, given the vector of γ, Lee chooses to
consider the reduced versions of both β and the matrix of explana-
tory variablesX, by omitting the components of β and the columns
of X, which correspond to zero indicators. Consequently, with each
update of γ, we are led to a different coefficient vector, denoted by
βγ and a different matrix Xγ . Also, the prior placed on β with
respect to γ is not a mixture of two Gaussians, but a multivariate
Normal of the form (βγ |γ) ∼ Nl(0, c

TRc), where 1 ≤ l ≤ k + 1 is

the dimension of βγ and cγ = (c1, c2, ..., cl) ∈ Rl>0 is a vector of
fixed values. First, we specify the full vector cγ=1 = (c0, c1, ...., ck)
and after every update of γ, we consider that cγ consists of all those
components that correspond to a non-zero γi.
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• The posterior distribution of γ, that is f(γ|Z,y) is obtained via
simulation and more specifically by a Gibbs Sampler. An innovative
modification to the conditioning of the sampling distribution of γ
is made, due to which, the required calculations are less intensive
and the algorithm is performed more rapidly. Specifically, instead
of using f(γ|β, z,y), β is integrated out and so, γ is sampled from
f(γ|z,y) ≡ f(γ|z).

Last but not least, several remarks need to be made before proceeding
to the algorithmic scheme of the Gibbs Sampler. When Chang, Chen
and Chi describe SSVS-Lee, they use a componentwise Gibbs Sampler
for both β and γ, whereas in the paper of Lee et.al., only γ is sampled
componentwise.

Regarding the prior placed on (β|γ), both Lee et.al. and Chang et.al.
propose to set R = (XTX)−1 and c0 = c1 = .... = ck = c > 0. As
a result, we consider that (β|γ) ∼ Nl(0, c(X

TX)−1). What is more,
Lee et.al. state that c has to vary between 10 and 100 according to the
research of Kohn and Smith (1996) and they set c = 100, thus making
the prior of βγ given γ considerably less informative than the likelihood
of the data.

Before presenting the steps of the algorithm, we present the hierar-
chical model we will be studying, whereas the computational scheme is
outlined in the following section. The augmented model we are using is:{

(zi|βγ ,γ,y) ∼ TN0

(
Xiβγ , 1,

)
, iff yi = 0,

(zi|βγ ,γ,y) ∼ TN1

(
Xiβγ , 1,

)
, iff yi = 1,

(βγ |γ) ∼ Nl

(
0, c(XT

γ Xγ)−1
)
,

γi ∼ Bern(pi), pi ∈ [0, 1], i = 0, 1, ...k. (6.13)

6.3.2 The Gibbs Sampler for the SSVS-Lee

Now, we may outline the algorithmic scheme of the Gibbs Sampler.
We iterate the following steps until convergence is achieved.

1. We draw γ from the distribution f(γ|z), which is obtained from
Bayes’ Theorem:

f(γ|z) ∝ f(z|γ) · f(γ). (6.14)
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The distribution f(z|γ) can be calculated up to a normalizing con-
stant by integrating out from f(z|βγ ,γ) the variable βγ):

f(z|γ) ∝
∫
· · ·
∫
f(z|βγ ,γ) · f(βγ |γ)dβγ

∝
∫
· · ·
∫

exp
{
− 1

2

[
(z −XT

iγβγ)T · (z −XT
iγβγ) + βTγ c

−1(XT
γ Xγ)βγ

]}
dβγ

∝ exp
{
− 1

2

[
(zTz − c

1 + c
zTXγ)(XT

γ Xγ)−1XT
γ z

]}
.

(6.15)

Now, we can calculate (6.14) up to a normalising constant and
derive that:

f(γ|z) ∝ f(z|γ) · f(γ)

∝ exp
{
− 1

2

[
(zTz − c

1 + c
zTXγ)(XT

γ Xγ)−1XT
γ z

]}
·
∏

pγii (1− pi)1−γi .

(6.16)

Since we sample γ componentwise and consecutively, we will be
using the probabilities

P
[
γi = 1|γ(−i), z

]
∝ P

[
z|γ(−i), γi = 1

]
· P
[
γi = 1

]
∝ exp

{
− 1

2

[
(zTz − c

1 + c
zTXγ)(XT

γ Xγ)−1XT
γ z

]}
· pi

(6.17)

and

P
[
γi = 0|γ(−i), z

]
∝ P

[
z|γ(−i), γi = 0

]
· P
[
γi = 0

]
∝ exp

{
− 1

2

[
(zTz − c

1 + c
zTXγ)(XT

γ Xγ)−1XT
γ z

]}
· (1− pi),

(6.18)

where γ(−i) = (γ0, ..., γi−1, γi+1, ..., γk) i = 0, 1, ..., k.
Since γi is a binary variable, we can deduct that

(
γi|γ(−i), z

)
∼

Bern
( a

a+ b

)
, where

a = exp
{
− 1

2

[
(zTz − c

1 + c
zTXγ)(XT

γ Xγ)−1XT
γ z

]}
· pi (6.19)

and

b = exp
{
− 1

2

[
(zTz − c

1 + c
zTXγ)(XT

γ Xγ)−1XT
γ z

]}
· (1− pi).

(6.20)
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2. We sample βγ from the conditional distribution f(βγ |γ, z), which
can be derived by Bayes’ Theorem as follows:

f(βγ |γ, z) ∝ f(z|βγ ,γ) · f(βγ |γ)

∝ exp
{
− 1

2

[
(z −XT

iγβγ)T · (z −XT
iγβγ) + βTγ c

−1(XT
γ Xγ)βγ

]}
∝ exp

{
− 1

2

[
(βγ − µγ)TV −1

γ (βγ − µγ)

]}
.

(6.21)

Consequently, (βγ |γ, z) ∼ Nl

(
µγ , Vγ

)
, where Vγ =

c

1 + c
zTXγ)(XT

γ Xγ)−1

and µγ = VγX
T
γ zγ .

3. Finally, we update the vector of latent variables z, by simulating
each component zi as dictated by the hierarchical structure of the
model; that is, for each i = 1, ..., n we have that:{

(zi|βγ ,γ,y) ∼ TN0

(
Xiβγ , 1,

)
, iff yi = 0,

(zi|βγ ,γ,y) ∼ TN1

(
Xiβγ , 1,

)
, iff yi = 1.

We can draw values from the truncated Gaussians by using the
method of Inversion Sampling, described in section 5.3.2.

By monitoring the convergence of the formed Markov chain regard-
ing the vector of indicators γ, we can estimate the burn-in period and
consider the values that are drawn afterwards as a sample from f(γ|y).

6.4 Proposing the optimal submodel using the
Median Probability Model (MPM)

Having obtained the posterior distribution of the latent variable vector
γ, denoted by f(γ|y), in the Normal Linear, the Logit and the Probit
model, the question of which could be the submodel that best fits the
data, remains still open. A further study of f(γ|y) is required in or-
der to be able to extract that answer. The way of study proposed in
the present thesis is a widely used method of Bayesian model selection,
known as The Median Probability Model (MPM), which was orig-
inally introduced in 2004 by Barbieri and Berger in the paper Optimal
Predictive Model Selection .
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The essence of the Median Probability Model can be easily compre-
hended by the following two definitions. We should note that Barbieri
and Berger (2004) provided these definitions restricted to the case of the
normal linear model. However, we assume that they can be adequately
extended for the cases of the Logit and Probit models without loss of
generosity. Hence, they are given in the following forms in the present
thesis.

Definition 6.4.1 (Posterior Inclusion Probability). Let M denote an
arbitrary model, with a response variable denoted by y ∈ Rn and an n×
(k+1) matrix of explanatory variables, denoted byX =

(
1,X1, ....,Xk

)
,

whereXi ∈ Rn for every i = 1, ..., k. Additionally, by β =
(
β0, β1...., βk

)
∈

Rk+1 we will refer to the vector of unknown predictors, which link the
response variable, y, to the design matrix, X, through the following
expression:

E
[
y|β

]
= Xβ + ε, ε ∼ Nn

(
0, In

)
,

where ε stands for the vector or random errors. We consider γ =(
γ0, γ1, ..., γk

)
∈ {0, 1}k+1 to be a vector of indicators. We specify Mγ̃ ,

as the submodel built according to the following expression:

Mγ̃ : E
[
yγ̃ |βγ̃

]
= Xγ̃βγ̃ + εγ̃ ,

where γ̃ =
(
γ̃0, γ̃1...., γ̃k

)
∈ {0, 1}k+1 and each coordinate γ̃j , j = 0, 1, ..., k

is either 1 or 0 if and only if the explanatory variable Xj is included in
the model or not, respectively. It is clarified that Xγ̃ and βγ̃ are respec-
tively the design matrix and the coefficient vector corresponding to the
non-zero coordinates of γ̃.

The posterior inclusion probability for variable j is

P̂j :=
∑

γ̃∈{0,1}k+1:γ̃j=1

P
(
Mγ̃ |y

)
Definition 6.4.2. The Median Probability Model, denoted by Mγ∗ , is
defined as the model consisting of those variables whose posterior inclu-
sion probability is at least 1/2. Let γ∗ be the corresponding indicator
vector, whose non-zero coordinates correspond to the explanatory vari-
ables included in the submodel. Then

γ∗j =

{
1 if P̂j ≥ 1/2,

0 otherwise
j = 0, 1, ..., k

Based on the rather obvious remark that the vector γ =
(
1, 1, ..., 1)

corresponds to the full model and then by contemplating on the notion
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that there is a “one-to-one correspondence” between an arbitrary sub-
model, denoted by Mγ̃ and the respective vector of indicators, γ̃, we
can safely assume that the posterior inclusion probability for variable j
can be given by:

P̂j ≡
∑

γ̃∈{0,1}k+1:γ̃j=1

P
(
γ̃|y
)
. (6.22)

The immediate result that we get is the fact that the Median Probability
Model will include the explanatory variables Xj j = 0, 1, ..., k ,that
satisfy the following condition:

Xj :
∑

γ̃∈{0,1}k+1:γ̃j=1

P
(
γ̃|y
)
≥ 1/2 (6.23)

Consequently, after we have obtained a sample from f(γ|y), we cal-
culate P̂j for every j ∈ {0, 1, ..., k} and we check for which js the above
condition is satisfied. Then, the optimal choice for a parsimonious sub-
model is the Median Probability Model, to which we are led to by the
process described above.
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Chapter 7

Applications to a Simulated
Data Example

In this chapter we apply the methods of inference and stochastic vari-
able selection, described in chapters 4 and 6, to simulated data.

7.1 Conducting Inference

We have simulated data as follows. The matrix of explanatory vari-
ables is the following 7× 6 matrix containing zeros and units:

x =



1 0 0 0 0 1
1 0 0 1 0 0
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 1 0 1 1
1 1 1 1 1 1


. Each coordinate of the vector of the re-

sponse variable, y, was generated according to a Binomial distribu-
tion; that is yi ∼ Bin(ni, pi), i = 1, 2, ..., 7, with the vector of the tri-
als, n, being specified as n = (40, 2, 58, 18, 9, 26, 98). The correspond-
ing possibility of success for each yi was calculated by the formula:

pi =
exp (xTi β)

1 + exp (xTi β)
, i = 1, 2, ..., 7, where the vector of predictors, β,

was specified as: β = (1, 0.2, 0, 0, 0, 0.3). Consequently, our model has
the following structure: E[yi|β] = xi0 + 0.2xi2 + 0.3xi6, i = 1, ...7.

Firstly, we conducted simple inference on the model, employing Gamer-
man’s Independence Sampler in order to simulate the conditional pos-
terior distribution of β, that is f(β|y). We placed the following prior
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distribution on β: β ∼ N6(0, P ), where P is a 6×6 diagonal matrix, with
all its non-zero elements equal to 100. Thus, we assume prior ignorance.
We set the algorithm to perform 10000 iterations and afterwards, we ob-
tained the ergodic means plot for each predictor, in order to determine
the burn-in period. All 6 ergodic means plots are presented below.

Figure 7.1: Monitoring the convergence of Gamerman’s chain for β0.

Figure 7.2: Monitoring the convergence of Gamerman’s chain for β1.
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Figure 7.3: Monitoring the convergence of Gamerman’s chain for β2.

Figure 7.4: Monitoring the convergence of Gamerman’s chain for β3.
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Figure 7.5: Monitoring the convergence of Gamerman’s chain for β4.

Figure 7.6: Monitoring the convergence of Gamerman’s chain for β5.

We discard the first 16000 iterations, after which, we consider that
the formed chain has reached convergence. Thus, we end up with a
sample of 4000 draws from f(β|y). This sample is individually studied
for each predictor, by obtaining a histogram of the posterior densities and
a table of descriptive statistics, which include the location parameters of
the mean and the median and also the spread parameter of the standard
deviation for every predictor. The histograms are given in Figures 7.7-
7.11.
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Figure 7.7: Histogram of densities for the posterior sample of β0.

Figure 7.8: Histogram of densities for the posterior sample of β1.
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Figure 7.9: Histogram of densities for the posterior sample of β2.

Figure 7.10: Histogram of densities for the posterior sample of β3.
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Figure 7.11: Histogram of densities for the posterior sample of β4.

Figure 7.12: Histogram of densities for the posterior sample of β5.

In Table 7.1, we give the the location and spread parameters mentioned
above, as well as the real values of the predictors.
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Predictor Posterior Mean Posterior Standard Deviation Posterior Median Real Value

β0 0.46 1.46 0.38 1
β1 0.93 0.6 0.88 0.2
β2 -0.29 0.81 -0.3 0
β3 -0.46 0.62 -0.43 0
β4 -0.74 0.81 -0.71 0
β5 1.21 1.54 1.34 0.3

Table 7.1: Table of basic location and spread parameters

7.2 Performing SSVS for the proposed Logit model

In this particular example, the search of a more parsimonious model
would require 26 = 64 model comparisons. We performed SSVS as it
was described in chapter 6, using the following prior distributions:

γj ∼ Bern(1/2), j = 1, 2, ..., 6

β|γ ∼ N6

(
0, D

)
, where D = diag(10, ..., 10) ∈ R6

The initial values used as input for the algorithm are γ(0) = (1, 1, 1, 1, 1, 1),

since we begin from the full model and β(0) =
(
xtx
)−1

xty. We per-
formed a total number of 1000 iterations. Since the algorithmic scheme
we structured is a computationally intensive, as we will show later, the
time required for the statistical software of R to perform the total num-
ber of iterations was approximately 40 minutes. However, we may note
that the required time is still much less than the time that 64 model com-
parisons, carried out with the most popular methods of Model, would
take. A brief summary of the steps performed at each iteration is the
following:

1. A the i-th iteration of the algorithm, we updated γ consecutively
and componentwise, by first calculating the probability of each γj
getting the value 1 and then, by simulating it from the correspond-

ing Bernoulli distribution. In order to do that, we set γ
(i)
j = 0, with-

out changing the values of γ
(i)

(Sj)(i)
, j = 1, 2, ..., 6. We set D[j, j] =

0.3 and with the current version of matrix D, we perform 20 it-
erations of Gamerman’s Independence Sampler, in order to get a

draw from f(β|γ(i)
j = 0, γ

(i)

(Sj)(i)
, y). Then, we calculate the amount

aj , based on (6.11). Next, by setting γ
(i)
j = 1 and D[j, j] = 10, we

perform another 20 iterations of Gamerman’s Independence Sam-

pler, in order to get a draw from f(β|γ(i)
j = 1, γ

(i)

(Sj)(i)
, y) and then,
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we compute bi, as this is defined in (6.12) . We update component

γj , by considering that γ
(i)
j ∼ Bern

(
a/(a + bi)

)
. We repeat the

procedure described above for all the components of γ and we store
γ(i).

2. Having updated γ, we perform 50 iterations of Gamerman’s In-
dependence Sampler, using as prior covariance matrix the current
version of D, which reflects which are the non-zero components of
the indicator γ(i) and as prior mean, the vector β(i−1), which we
have also stored from the previous iteration.

3. Using the current value β(i), we return to step 1.

We monitor the convergence of the chain, by examining the ergodic
means plot for each component γj , j = 1, 2, ..., 6. Based on Figures 7.13-
7.18 given below, we can presume that convergence is achieved after the
first 800 iterations, which are specified as the burn-in period.

Figure 7.13: Monitoring convergence of the SSVS algorithm for γ1.
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Figure 7.14: Monitoring convergence of the SSVS algorithm for γ2.

Figure 7.15: Monitoring convergence of the SSVS algorithm for γ3.
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Figure 7.16: Monitoring convergence of the SSVS algorithm for γ4.

Figure 7.17: Monitoring convergence of the SSVS algorithm for γ5.
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Figure 7.18: Monitoring convergence of the SSVS algorithm for γ6.

Now, we can specify the Median Probability Model, based on the inclu-
sion probabilities of each variable, which are presented on Table 7.2.

Intercept X1 X2 X3 X4 X5

0.56 0.57 0.53 0.43 0.44 0.58

Table 7.2: Table of the inclusion probabilities

We arrive at the conclusion that the Median Probability Model is:

E[yi|β] = β0x0i + β1x2i + β2x3i + β5x6i, i = 1, ...7. (7.1)

This means that we have excluded variables x4, x5.

7.3 Inference for the Median Probability Model

We conducted inference for the Median Probability model, once again
employing Gamerman’s Independence Sampler, with 10000 iteration in
total. We concluded that convergence was reached after 16000 iterations
an thus, the sample from f(β|y) contained 4000 draws. However, we
must point out that now, β = (β0, β1, β2, β5) and the design matrix we
used was x, after we have erased columns 4 and 5, which corresponded
to predictors β3 and β4.

We present the histograms of frequencies for each predictor and the
corresponding table of location and spread parameters.
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Figure 7.19: Histogram of densities for the posterior sample of β0 in the Median
Probability Model.

Figure 7.20: Histogram of densities for the posterior sample of β1 in the Median
Probability Model.
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Figure 7.21: Histogram of densities for the posterior sample of β2 in the Median
Probability Model.

Figure 7.22: Histogram of densities for the posterior sample of β5 in the Median
Probability Model.
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Predictor Posterior Mean Posterior Standard Deviation Posterior Median Real Value

β0 1.65 0.39 1.65 1
β1 0.39 0.38 0.39 0.2
β2 -0.64 0.58 -0.67 0
β5 0.08 0.58 0.07 0.3

Table 7.3: Table of basic location and spread parameters for the Median Probability
Model

We can conclude that the real values of the predictors are more efficiently
approximated than in the case of the saturated model, whereas the gen-
eral fit of the Median Probability Model is also good. What is more, we
have succeeded in excluding two of the three unnecessary variables.
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Chapter 8

Conclusion

This dissertation has explored the methods of inference and Model
Selection in the Bayesian framework for the Normal Linear model, the
Logistic model and the Probit model. As far as Model Selection is
concerned, a variety of methods has been studied, including the most
well known method of the Bayes’ Factor, graphical checks, the infor-
mation criteria of BIC and DIC and the predictive method, called the
L-Measure. Despite their efficiency and the robustness of their results,
the implementation of the methods mentioned above has proven to be
very time-consuming in the study of high dimensional models, due to the
fact that they can compare only two models each time. Consequently,
when studying a p-dimensional model, a total number of 2p comparisons
have to be performed.

For that reason, Gibbs Variable Selection methods have been devel-
oped. The idea upon which this class of methods is built, is to structure a
Markov Chain the equilibrium distribution of which, when obtained and
properly studied, will point out the models of high posterior probability.
This Markov Chain is built via a Gibbs Sampler. The present thesis
focuses on one particular technique belonging to that family of methods,
called “Stochastic Search Variable Selection (SSVS)” (MacCullogh and
George, 1993) and contemplates on its application on the three types
of models mentioned above. The implementation on the Normal Linear
model is basically the one described in the original paper of MacCullogh
and George introducing the method. In the case of the Logit model,
where a Metropolis-within-Gibbs step has to be employed within the
Gibbs Sampler, we differentiate from the relevant papers, as we employ
Gamerman’s Independent Sampler, instead of Gilk’s Adaptive Rejection
Sampling, which is a technique we have used in order to conduct simple
inference as well. The whole algorithmic scheme may be computation-
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ally intensive, but it is a fully automatic procedure, which requires no
tuning and, therefore, it can be regarded as a more user-friendly algo-
rithm with a universal application on the class of Logit models. In order
to implement SSVS on the Probit model, we follow the procedure de-
scribed by Lee et.al (2003)(SSVS-Lee). The structure of the part of SSVS
is slightly modified from the original structure proposed by MacCullogh
and George(1993), probably in order to achieve faster convergence of the
algorithm, but the fundamental principles remain the same. SSVS is a
beneficiary technique regarding Model Selection, not only because of the
rapidness in producing results, but also because the conclusions we are
led to are robust, due to its solid Probabilistic background. Therefore,
it can be safely recommended for statistical research and it also already
included as a method in statistical software for Bayesian Statistics.
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