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ABSTRACT

In this master thesis we describe a mathematical model for breast cancer based on a
system of ordinary differential equations in the presence of chemotherapy treatment and
ketogenic diet. Analytic methods are being used to examine the stability of the model.
Moreover we seek out the sufficient conditions for the parameter values to test cancer tumor
persistence when different therapies are being applied. Optimal control theory is being used
adapted to verify the optimal drug dosage as an input control of the system therapies,in
order to minimize the population of tumor cells under different control combinations of cure
strategies utalizing the maximum principle of Pontryagin. Last but not least, numerical
simulations verify the theoritical results for both the non linear and the linear model using
LQR and H∞ algorithms.



ΠΕΡΙΛΗΨΗ

Στόχος αυτής της διπλωματικής διατρίβής, είναι η μελέτη ενός μαθηματικού μοντέλου για

τον καρκίνο του μαστού. Το μοντέλο αυτό αποτελείται από ένα σύστημα Συνήθων Διαφορικών

Εξισώσεων, το οποίο μελετάμε όταν εφαρμόζεται χημειοθεραπεία ή κετονική δίαιτα. Αναλυτι-

κές μέθοδοι χρησιμοποιούνται για τη μελέτη ευστάθειας του μοντέλου καθώς και την εύρεση

κατάλληλων συνθηκών για τις παραμέτρους ώστε να ελεγχθεί η εξαπλωση του καρκίνου κάτω

από την χρησιμοποίηση διαφορετικών μεθόδων θεραπείας. Η θεωρία βέλτιστου ελέγχου κα-

θώς και η αρχή του Pontryagin εφαρμόζεται για να βρεθεί η βέλτιστη παροχή φαρμάκου που
χρησιμοποιείται ως εισαγωγικός έλεγχος στο σύστημα θεραπειών, έτσι ώστε να ελαχιστοποι-

ηθεί ο πληθυσμός των κυττάρων του καρκινικού όγκου, όταν χρησιμοποιούμε διαφορετικούς

συνδυασμούς θεραπειών. Τέλος, με αριθμητική προσωμοίωση, επιβεβαιώνουμε τα θεωρητι-

κά δεδομένα,τοσο για το μη γραμμικο μοντελο οσο και για το γραμμικο χρησιμοποιωντας 2

μεθοδους την LQR και τον αλγοριθμο H∞.
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2 Biology of Cancer

SECTION 1.1

Cell Circle

Cell in an adult organism can be viewed as a steady-state system. The DNA is constantly
read out into a particular set of mRNA’s, which specify a particular set of proteins. As
these proteins function, they are also being degraded and replaced by new ones, and the
system is so balanced that the cell neither grows, shrinks, nor changes its function. Never-
theless, cell circle is not that static but a dynamic replication program.The cell-replication
program is encoded in the DNA and executed by proteins. This program usually involves
a period of cell growth, during which proteins are made and DNA is replicated, followed
by cell division, when a cell divides into two daughter cells. Most eukaryotic cells live ac-
cording to an internal clock; that is, they proceed through a sequence of phases, called the
cell cycle, during which DNA is duplicated during the synthesis (S) phase and the copies
are distributed to opposite ends of the cell during mitotic (M) phase (see figure below).
Progress along the cycle is controlled at key checkpoints, which monitor the status of a cell,
for instance, the internal amount of DNA or the presence of extracellular nutrients. When
certain conditions are met, the cell proceeds to the next checkpoint. The cycle begins after
the cell divides into two daughter cells, each containing an identical copy of the parental
cell’s genetic material. Whether a given cell will grow and divide is a highly regulated
decision of the body, assuring that an adult organism replaces worn out cells or makes
more cells in response to a new need.

In eukaryotic cells, or cells with a nucleus, the stages of the cell cycle are divided into
two major phases:

• Interphase.

• Mitotic (M) phase.

During interphase, the cell grows and makes a copy of its DNA. During the mitotic
(M) phase, the cell separates its DNA into two sets and divides its cytoplasm, forming two
new cells.

Interphase

1. G1 phase.

• During the G1 phase, also called the first gap phase, the cell grows physically
larger, copies organelles, and makes the molecular building blocks it will need
in later steps.

2. S phase.

• In S phase, the cell synthesizes a complete copy of the DNA in its nucleus. It
also duplicates a microtubule-organizing structure called the centrosome. The
centrosomes help separate DNA during M phase.

3. G2 phase.

• During the second G phase,the cell grows more, makes proteins and organelles,
and begins to reorganize its contents in preparation for mitosis. G2 phase ends
when mitosis begins.
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M phase

During the mitotic (M) phase, the cell divides its copied DNA and cytoplasm to make
two new cells. M phase involves two distinct division-related processes:

1. Mitosis

• In mitosis, the nuclear DNA of the cell condenses into visible chromosomes
and is pulled apart by the mitotic spindle, a specialized structure made out
of microtubules. Mitosis takes place in four stages:prophase(sometimes divided
into early prophase and prometaphase), metaphase, anaphase, and telophase.

2. Cytokinesis

• In cytokinesis, the cytoplasm of the cell is split in two, making two new cells.
Cytokinesis usually begins just as mitosis is ending, with a little overlap. The
cell cycling process is carefully regulated and responds to the specific needs of a
certain tissue or cell type. Normally, in adult tissue, there is a delicate balance
between cell death (programmed cell death or apoptosis) and proliferation (cell
division) producing a steady state. Disruption of this equilibrium by loss of cell
cycle control may eventually lead to cancer.
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SECTION 1.2

Cancer Development

Cancer development Cancer is a disease in which some of the body’s cells begin to divide
without stopping and spread into surrounding tissues. Cells can experience uncontrolled
growth if there are mutations to DNA, and therefore, alterations to the genes involved in
cell division. They have many different mechanisms to restrict cell division, repair DNA
damage, and prevent the development of cancer. Because of this, it’s thought that cancer
develops in a multi-step process, in which multiple mechanisms must fail before a critical
mass is reached and cells become cancerous. Specifically, most cancers arise as cells acquire
a series of mutations (changes in DNA) that make them divide more quickly, escape internal
and external controls on division, and avoid programmed cell death. Firstly a cell might
lose activity of a cell cycle inhibitor, an event that would make the cell’s descendants
divide a little more rapidly.It’s unlikely that they would be cancerous, but they might form
a benign tumor, a mass of cells that divide too much but don’t have the potential to invade
other tissues (metastasize).Over time, a mutation might take place in one of the descendant
cells, causing increased activity of a positive cell cycle regulator. The mutation might not
cause cancer by itself either, but the offspring of this cell would divide even faster, creating
a larger pool of cells in which a third mutation could take place. Eventually, one cell might
gain enough mutations to take on the characteristics of a cancer cell and give rise to a
malignant tumor, a group of cells that divide excessively and can invade other tissues.

Four key types of gene are responsible for the cell division process:

• suicide genes which control apoptosis and tell the cell to kill itself if something goes
wrong

• DNA-repair genes which instruct a cell to repair damaged DNA.

• oncogenes oncogenes tell cells when to divide.

Positive cell cycle regulators may be overactive in cancer. For instance, a growth
factor receptor may send signals even when growth factors are not there, or a cyclin
may be expressed at abnormally high levels. The overactive (cancer-promoting) forms
of these genes are called oncogenes, while the normal, not-yet-mutated forms are
called proto-oncogenes. This naming system reflects that a normal proto-oncogene
can turn into an oncogene if it mutates in a way that increases its activity.
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• tumor suppressor genes tell cells when not to divide.

Negative regulators of the cell cycle may be less active (or even nonfunctional) in can-
cer cells. For instance, a protein that halts cell cycle progression in response to DNA
damage may no longer sense damage or trigger a response. Genes that normally block
cell cycle progression are known as tumor suppressors. Tumor suppressors prevent
the formation of cancerous tumors when they are working correctly, and tumors may
form when they mutate so they no longer work. One of the most important tumor
suppressors is tumor protein p53 , which plays a key role in the cellular response to
DNA damage. p53 acts primarily at the checkpoint (controlling the G1 to S transi-
tion), where it blocks cell cycle progression in response to damaged DNA and other
unfavorable conditons. When a cell’s DNA is damaged, a sensor protein activates
p53 , which halts the cell cycle at the G1 checkpoint by triggering production of a
cell-cycle inhibitor. This pause buys time for DNA repair, which also depends on
p, whose second job is to activate DNA repair enzymes. If the damage is fixed, p
will release the cell, allowing it to continue through the cell cycle. If the damage is
not fixable, p will play its third and final role: triggering apoptosis (programmed cell
death) so that damaged DNA is not passed on.

In cancer cells, p53 is often missing, nonfunctional, or less active than normal. For
example, many cancerous tumors have a mutant form of p53 that can no longer bind
DNA. Since p53 acts by binding to target genes and activating their transcription,
the non-binding mutant protein is unable to do its job. When p53 is defective, a cell
with damaged DNA may proceed with cell division. The daughter cells of such a
division are likely to inherit mutations due to the unrepaired DNA of the mother
cell. Over generations, cells with faulty p53 tend to accumulate mutations, some of
which may turn proto-oncogenes to oncogenes or inactivate other tumor suppressors.
p53 is the gene most commonly mutated in human cancers, and cancer cells without
p53 mutations likely inactivate p53 through other mechanisms (e.g., increased activity
of the proteins that cause p53 to be recycled)
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SECTION 1.3

Breast Cancer

In this thesis we will study a model for breast cancer

Breast Cancer

Breast cancer starts when cells in the breast begin to grow out of control,forming a
tumor. The tumor is malignant (cancer) if the cells can grow into (invade) surrounding
tissues or spread (metastasize) to distant areas of the body. Breast cancer occurs almost
entirely in women, but men can get breast cancer, too.It is estimated that 1 out of 8
women will develop breast cancer during their lifetime. If left untreated, malignant cells
may eventually spread beyond the original tumor to other parts of the body, a process
called metastasis which eventually causes death. Breast cancer is the most commonly oc-
curring cancer in women and the second most common cancer overall. There were over 2
million new cases in 2018. The mortality rate from cancer is projected to continue to rise,
with an estimated 13 million deaths by 2030.

Causes of Breast Cancer

Researchers have identified hormonal, lifestyle and environmental factors that may in-
crease your risk of breast cancer. But it’s not clear why some people who have no risk
factors develop cancer, yet other people with risk factors never do. It’s likely that breast
cancer is caused by a complex interaction of your genetic makeup and your environment.
Several factors are associated with an increased risk of breast cancer. First of all women
are much more likely than men are to develop breast cancer.Breast cancer is more likely
to occur as age increases.Moreover if a woman had a breast biopsy that found lobular car-
cinoma in situ (LCIS) or atypical hyperplasia of the breast, you have an increased risk of
breast cancer. Moreover women who have a history of breast cancer have greater chance of
suffering from the disease because of the genes inherited from their ancestors.Certain gene
mutations that increase the risk of breast cancer can be passed from parents to children.
The most well-known gene mutations are referred to as BRCA1 and BRCA2. These genes
can greatly increase your risk of breast cancer and other cancers, but they don’t make
cancer inevitable. Last but not least, exposure to high dosage of radiations also increase
chance of breast cancer, while obesity and other abuses such as alcohol and drug overcon-
sumtion also increase the likelihood.

Types of breast cancer

Breast cancers can start from different parts of the breast. Most breast cancers begin
in the ducts that carry milk to the nipple (ductal cancers). Some start in the glands that
make breast milk (lobular cancers). There are also other types of breast cancer that are less
common. A small number of cancers start in other tissues in the breast. These cancers are
called sarcomas and lymphomas and are not really thought of as breast cancers. Although
many types of breast cancer can cause a lump in the breast, not all do. Many breast cancers
are found on screening mammograms which can detect cancers at an earlier stage, often
before they can be felt, and before symptoms develop. There are other symptoms of breast
cancer you should watch for and report to a health care provider. It’s also important that
most breast lumps are benign and not cancer (malignant). Non-cancerous breast tumors
are abnormal growths, but they do not spread outside of the breast and they are not life
threatening. But some benign breast lumps can increase a woman’s risk of getting breast
cancer. Any breast lump or change needs to be checked by a health care professional to
determine if it is benign or malignant (cancer) and if it might affect your future cancer risk.
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Treatment methods

• radiation therapy

• surgery

• biological therapy, or targeted drug therapy

• hormone therapy

• chemotherapy

Direct Therapies

Radiation therapy

Controlled doses of radiation are targeted at the tumor to destroy the cancer cells.
Used from around a month after surgery, along with chemotherapy, it can kill any remain-
ing cancer cells.Each session lasts a few minutes, and the patient may need three to five
sessions per week for 3 to 6 weeks, depending on the aim and the extent of the cancer.The
type of breast cancer will dictate what type of radiation therapy, if any, is most suitable.
Adverse effects include fatigue,lymphedema, darkening of the breast skin, and irritation of
the breast skin.

Chemotherapy

Medications known as cytotoxic drugs may be used to kill cancer cells, if there is a
high risk of recurrence or spread. This is called adjuvant chemotherapy.If the tumor is
large, chemotherapy may be administered before surgery to shrink the tumor and make
its removal easier. This is called neo-adjuvant chemotherapy.Chemotherapy can also treat
cancer that has metastasized, or spread to other parts of the body, and it can reduce some
symptoms, especially in the later stages.It may be used to reduce estrogen production, as
estrogen can encourage the growth of some breast cancers. The most common drug used
in chemotherapy is Tamoxifen which is an anti-estrogen agent. Adverse effects include
nausea, vomiting, loss of appetite, fatigue, sore mouth, hair loss, and a slightly higher
susceptibility to infections.Other Medications can help control many of these.

Hormone blocking therapy

Hormone blocking therapy is used to prevent recurrence in hormone-sensitive breast
cancers. These are often referred to as estrogen receptive (ER) positive and progesterone
receptor (PR) positive cancers.Hormone blocking therapy is normally used after surgery,
but it may sometimes be used beforehand to shrink the tumor.It may be the only option for
patients who cannot undergo surgery, chemotherapy, or radiotherapy. The effects normally
last for up to 5 years after surgery. The treatment will have no effect on cancers that
are not sensitive to hormones. Some of the common hormone therapies are drugs such
as tamoxifen,use of aromatase inhibitors ovarian ablation or suppression and a luteinising
hormone-releasing hormone agonist (LHRHa) drug called Goserelin, to suppress the ovaries.

The Ketogenic Diet (KD), a high-fat/low-carbohydrate/adequate-protein diet, has re-
cently been proposed as an adjuvant therapy in cancer treatment . KDs target the Warburg
effect, a biochemical phenomenon in which cancer cells predominantly utilize glycolysis
instead of oxidative phosphorylation to produce ATP. In this regard, these dietary modifi-
cations might be expected to reduce tumor size and growth rate which depend on glucose
as an energy source during anaerobic glycolysis. Also the inability of ketone bodies me-
tabolization due to various deficiencies in mitochondrial enzymes, is one of the metabolic
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modification found in malignant cells. Further, ketone bodies possibly result in a decreas-
ing the supply of gluconeogenic precursors by restriction of the branch chain amino acids
oxidation. Thus, the rationale in providing a fat-rich, low-carbohydrate diet in cancer
therapy is to reduce circulating glucose levels and induce ketosis such that cancer cells are
starved of energy while normal cells adapt their metabolism to use ketone bodies and sur-
vive. Furthermore, by reducing blood glucose also levels of insulin and insulin-like growth
factor, which are important drivers of cancer cell proliferation, drop.
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SECTION 2.1

System formulation

Culling useful aspects of previously developed mathematical models, we combine the fol-
lowing features in this model:

• competition terms

• immune response

• estrogen dependence

Tumor cells population, CD8+T cell population, and Natural Killer cell population
competed in a way almost similar to that suggested by Lotka-Volterra’s competition models
Cell populations have also been known to compete for nutrients and natural cell require-
ments resulting in nutrient consumption models. Tumor cell proliferation and death are
considered to be dependent on only one generic nutrient (most often oxygen). However,
some consider the effect of several nutrients and pH on the cell population.

Normal cells : Based on many previous useful models done on tumor growth we here
consider a model which subdivides the total population N(t) of cells of the breast tissue
at any given time t into three groups which include normal or host cells, tumor cells and
immune cells classes. The normal cells class, denoted by N(t) is in form of epithelial cells
that make up the breast tissue. The cells differentiate and die normally as they have un-
altered DNA which controls all cell actions. We assumed that the normal and tumor cells
compete for space and resources in a small volume. The normal cells grow exponentially
at a per capita growth rate of a1 as a result of DNA initiation. µ1 is the depletion rate
resulting from competition for resources such as nutrients and oxygen or the accumulation
of substances released from cell metabolism within themselves.

Tumor cells : Tumor cells, denoted by T at any time t, represent a class of breast
cancer cells with damaged DNA. Actually, there are about 51 breast cancer cell lines which
mirror the 145 primary breast tumors . These can be classified into 2 major branches, the
luminal, which has estrogen receptors (ESR1 positive), and basal-like, without estrogen
receptors (ESR1 negative). In this thesis we assume a homogeneous luminal type of cancer
cells . Several tumor growth laws have been proposed which include an exponential growth,
Gompertz growth and logistic growth. We assume the presence of a small tumor mass,
that is, a tumor size that is close to zero relative to carrying capacity, and therefore the
choice of growth law does not significantly affect the qualitative behaviour of the model
since they only differ for large tumor sizes. We therefore assume an exponential growth of
tumor cells with per capita rate of a2 which results from the damaged DNA. Analogously
µ2 is a factor restricting their growth competition for space and food within themselves.
The normal cells N(t) and tumor cells T(t) also compete for space and natural cell require-
ments like oxygen as they are supplied by the blood vessels. We assume cancer cells have
uncontrolled cycle than the normal cells due to changed DNA which makes them fail to
regulate a cell cycle and thus their interaction with normal cells results in an inhibitory
effect on normal cells at rate φ1

Immune system cells : The model includes an immune cells class, M(t), in form
of Natural Killer (NK) cells and CD8+ T cells. Their growth may be stimulated by the
presence of the tumor and they can destroy tumor cells through a kinetics process. We
also assume that the presence of a detectable tumor in a system does not necessarily imply
that the tumor has completely escaped active immunosurveillance. Although a tumor is
immunogenic, it is possible that the immune response may not be sufficient on its own to
completely combat the rapid growth of the tumor cell population and the eventual devel-
opment into a tumor. The population of immune cells is considered to be outside of the
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system and we assume a background level of NK cells, even in the absence of tumor with
CD8+ T cells only present as a result of activation. It is therefore reasonable to assume a
constant source, s, of the immune cells from the thymus gland. Furthermore, in the absence
of any tumor, the cells will die off naturally at a per capita rate of µ3 . The presence of
tumor cells stimulates the immune response resulting in growth of immune cells. This is
represented by a positive nonlinear growth term for immune cells which as a function of
T(t), where % is the immune response rate and ω is the immune threshold rate, which is
inversely proportional to the steepness of the immune response curve. Thus immune cell
proliferation is controlled and will never result in immune crowding which might in turn be
detected as a threat. Furthermore, the reaction of immune cells and tumor cells can result
in either the death of tumor cells at a rate µ3 or the inactivation of the immune cells, with
γ3 as the interaction coefficient.

Estrogen dependance : Finally, we considered estrogen compartment denoted by
E(t)in the form of 17-β estradiol to the dynamics of breast cancer cells. Estrogen is a
female steroid hormone that is produced by the ovaries in lesser amounts, and by the
adrenal cortex, placenta and male testes. The assumption here is that as women take
hormonal birth control methods they increase a constant level of the estrogen hormonal
level. We therefore assume a constant source, π of 17-β estradiol, the primary biologically
most active estrogen which is all the estrogen in the system at any given time. Human
breast cells, the epithelial cells, contain estrogen receptors termed estrogen receptor-1 (ΕΡ-
α)and estrogen receptor-2 (ΕΡ-β). These are intracellular receptors, which when activated
by ligand binding, translocate to the nucleus and act as transcription factors by binding to
DNA in the promoter regions of target genes. Both ΕΡ-α and ΕΡ-β bind 17-β estradiol in
the nucleus of the cell with similar affinity and act as transcription factors to regulate gene
expression. This will lead to gene transactivation which may also result from tethering of
estrogen receptors to nuclear transcription factors such as NFYB and SPI .We assumed
that the majority of cancer cells are estrogen-receptor positive and only a small propotion
of epithelial cells are estrogen-receptor positive which can be only blocked by anti-cancer
drug (1-κ). It is also consistent to assume that the estrogen modulation of the inflammatory
response is a contributing factor in estrogen-stimulated growth of breast tumor which also
has an effect on the host innate immune response. This can however result in damage
to DNA primary structure of the double helix as a result of estrogen oxidation products.
Therefore, normal cell population N will be reduced as some of the normal cells are being
converted into tumor cells by a factor µ4*ΝΕ , where µ4 is the rate of tumor formation as a
result of DNA damage by estrogen. Damaged normal cells will now form the class of tumor
cells and therefore tumor cell population will also increase at a rate µ4 resulting in a growth
factor of µ4*ΝΕ on tumor cell population. Here µ4 < λ1 since some of the damaged cells
can be destroyed as a result of antitumor immunity from Natural Killer cells. Estrogen is
oxidised to catechol estrogens by recombinant phase 1 enzymes (CYP1A1 and CYP1B1)
which also die naturally at a rate θ represented by the death factor θ*Ε . The molecule 17-β
estradiol stimulates growth in estrogen-responsive breast cancer cells. As shown by in a
series of experiments, ER-positive cells can stimulate surrounding benign cells to proliferate
through similar paracrine effects involving stromal-epithelial cell interactions. The presence
of estrogen has also been shown to reduce immune cell proliferation. We therefore assume
that if estrogen deficiency increases immune cell proliferation and lifespan, then its presence
will inhibit immune cell proliferation.
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SECTION 2.2

System Analysis

System equilibrium analysis

The model system admits six steady states in which there are four dead equilibria,
one tumor-free equilibrium point and one co-existing equilibrium point.In this section, we
mainly analyzed the stability behaviors of system the by means of eigenvalues. We apply
Hartman–Grobman Theorem which states that in the neighborhood of a hyperbolic equi-
librium point, a nonlinear dynamical system is topologically equivalent to its linearization.

Pontryagin’s optimal control

In this section, we formulated a corresponding optimal control problem for the model
in the system considering ketogenic diet and anticancer drugs as control interventions to
minimize the breast cancer and tumor burden at finite time. The units of cells were nor-
malized in order for the carrying capacity of normal cells to be kept above threshold of
time. On the other hand, the aim is to reduce the tumor size which indicates the degree of
the disease in the body and it requires the application of as much anticancer drugs as much
as possible. However, it also minimized the systemic cost, which is based on the quantities
of anticancer drugs, since large drug concentrations can be harmful and cause toxic side
effects. In brief, the drug doses were minimized because the smaller the dose, the better.

Numerical Simulation of the non linear system

A picture of the dynamical behavior of breast cancer cells in the presence of normal
cells, tumor cells, immune cells, and estrogen is given by the numerical simulations of the
model. The optimal control is acquired by solving the optimality system of four ordinary
differential equations from the state variables and the adjoint system. Simulations on this
model give us a portrait of the general behaviour of breast cancer cells in the presence of
normal cells and immune cells. We are also concerned on the parameters which are of im-
portance in stabilising the model and the ranges in which the system is stable and unstable.

Simulation of the linearized system using 2 different robust controllers
We synthesized two controllers using Matlab r2018a for the linearized system around P0

steady point.Each controller simulates the solution of the system.*
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SECTION 2.3

Objectives

The design of a mathematical model of a biological system is governed by the need to distill
the essential behavior of the system and the need to answer specific questions about that
system. In our case, our goal was to use the model to design a protocol for chemo-therapy
that would produce an improved outcome by way of reducing final tumor size without
causing large losses in the normal cell population. In order to do this we incorporated time
dependent control parameters (use of ketogenic diet, immune booster, and anti-cancer
drugs) based on the assumption that there is an interaction between normal cells and
tumor cells that is due to a mutation in DNA as a result of excess estrogen in the body
system Furthermore,we analyzed and applied an optimal control to the improved model to
determinethe possible impacts of ketogenic-diet use and anti-cancer drugs as a treatment
on tumor cells. We carried out a rigorous qualitative optimal control analysis of the
resulting model and found the necessary conditions foroptimal control of the disease using
Pontryagin’s maximum principle in order to determine the optimal strategies for controlling
the metastatic of the tumor cells. Last but least we used 2 modern rebust control methods
LQR,and H∞ to simulate system’s theoritical data.
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SECTION 3.1

Formulation of the System of Equations

For the growth law terms, we considered several possible models, including exponential
growth, Gompertz growth, logistic growth and Lotka-Volterra competition models.

Exponential growth law

The exponential growth law in the context of a tumor cell population assumes that
the rate of increase in the population at a certain point in time is directly proportional to
the size of the tumor population at that time; the exponential curve is unbounded as time
increases

∂P

∂t
= kP, P (0) = P0 (3.1)

Gompertz growth

Benjamin Gompertz originally designed the function for the royal society in 1825 to
detail his law of human mortality. The law rests upon a priori assumption that a person’s
resistance to death decreases as his years increase. The model can be written in this way:

N(t) = N0e
−ce(at−1) (3.2)

where N(0) is the initial number of cells-orgamisms when time is zero a is an asymptote
c denotes the rate of growth N(t) represents the number of individuals in the given time
period, t. The letters c and a are constants. This model is a modification of a demographic
model of Robert Malthus It was commonly used by insurance companies to calculate the
cost of life insurance.

Logistic growth Verhulst

A typical application of the logistic equation is a common model of population growth,
originally due to Pierre Francois Verhulst in 1838, where the rate of reproduction is pro-
portional to both the existing population and the amount of available resources, all else
being equal. Verhulst derived his logistic equation to describe the self-limiting growth of a
biological population. The equation was rediscovered in 1911 by Mckendrik for the growth
of bacteria in broth and experimentally tested using a technique for nonlinear parameter
estimation.
Letting P represent population size (N is often used in ecology instead) and t represent
time, this model is formalized by the ordinary differential equation

∂P

∂t
= rP (1− P/K) (3.3)

where the constant r defines the growth rate and K is the carrying capacity where

lim
t→∞

P (t) = K

Lotka-Volterra

Lotka-Volterra model is the simplest model of predator-prey interactions. The model
was developed independently by Lotka (1925) and Volterra (1926)
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∂H

∂t
= rH − aHP

∂P

∂t
= bHP −mP

(3.4)

It has two variables P and H and several parameters which denote

• H : the density of prey

• P : the density of predators

• r : the intrinsic rate of prey population increase

• a : the predation rate coefficient

• b : the reproduction rate of predators per one prey eaten

• m : the predator mortality rate

In this section, we considered tumor progression and regression as a prey-predator
like system. The predator is the immune system which slaughters the tumor cells (prey).
In most of the mathematical models of the tumor-immune system, the response of the
immune system is considered as a single population of cells, namely, effector cell , which
perform the task of destroying cancer cells. This simplifying assumption allows decreasing
the complexity of the dynamics of the immune system. The predator, that is, immune
system, is eradicating tumor cells in two stages: one is hunting cells and another is resting
cells. Here, we are considering that hunting cells can slaughter tumor cells, but resting cells
cannot. The cellular immune response identifies and eliminates the tumor cells from the
host because tumor cells produce some antigens on its outer surface. The strength of the
immune response depends on the tumor antigenicity . The cellular response of the immune
system is carried by T lymphocytes. During maturation, T cells surface contains specialized
antibody like receptors that see fragments of antigens on the surface of tumor cells. In
most of the cases, T cells can recognize only antigen that is bound to a cell membrane
protein called major histocompatibility complex (MHC) molecule. MHC molecule is a
protein recognized by resting T cells, which distinguish between self and nonself. Resting
T cells engulf the tumor cells and then produce various growth factors known collectively
as cytokines, but they cannot kill tumor cells. Cytokines are chemical messenger switches
which turn on the cytotoxic T lymphocytes (hunting cells). In contrast to the resting T cell,
the cytotoxic T lymphocytes generally not only secrete many cytokines but also eliminate
tumor cells by mounting a cytotoxic reaction that lyses their target . Considering the above
biological mechanism, we have produced a mathematical model of tumor development in
immune response. The model involves certain assumptions as follows:

1. logistic growth function is assumed for the growth of tumor cells in the absence of
hunting CTL cells;

2. the tumor cells and hunting cells are being eradicated at a rate proportional to the
densities of tumor cells and hunting predator cells according to the law of mass action;

3. the resting predator cells are converted to the hunting cells, either by direct contact
with them or by contact with a fast diffusing substance (cytokines) produced by the
hunting cells;

4. resting cells also follow logistic growth in absence of tumor cells;

5. once a hunting T cell has been converted, it will never return to the resting stage;

6. resting cells also were stimulated due to the presence of tumor cells, and this is
considered by the Michaelis-Menten function.
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Normal cells equation

The normal cells are modeled by a logistic growth law, with parameters ai and mi

representing the per capita growth rates and reciprocal carrying capacities of the two
types of cells: i = 1 identifies the parameters associated with the tumor, and i = 2 identifies
those associated with the normal tissue. In addition, there are two terms representing the
competition between tumor and host cells. The first equation is

∂N(t)

∂t
= N(t)α1 − µ1N(t)2 − φ1N(t)T (t)− (1− k)λ1N(t)E(t) (3.5)

where

• N(t) is the number of normal cells around a tumor

• α1N(t) is the logistic growth rate of normal cells which are breast tissues made of
epithelial cells

• µ1N(t)2 is the rate of natural death of normal cells

• φ1N(t)T (t) is the rate which normal cells inhibit due to an alteration in DNA that is
responsible for cancer cells having an uncontrolled cycle that normal cells dont have

• (1 − k)λ1N(t)E(t) describes the gene transactivation that can be a contributing
growth factor responsible for estrogen stimulation of breast cancer which can result
in damage of DNA

there will be a reduction in population of normal cells N(t) being trasformed into tu-
mor cells by λ1N(t)E(t) where λ1 represents the tumor formation rate resulting from DNA
mutation caused by the presence of excess estrogen and (1−k) represents the effectiveness
of anticancer drugs such as tamoxifen .

Tumor cells

Tumor cells can be denoted by T(t) in the form of an abnormal mass of tissue. Tumors
are classic signs of inflammation, and can be benign or malignant (cancerous). Breast
cancer types can be classified into two major branches: the luminal, which has estrogen
receptors, and the basal-like, which has no estrogen receptors.

∂T (t)

∂t
= T (t)dα2 − µ2T (t)2 − γ2M(t)T (t)− µ5T (t) + (1− k)λ1N(t)E(t) (3.6)

where

• T (t)α2d is a limited growth term for tumor cells that depends on d (ketogenic diets)
if d=0 tumor cells are eradicated but any DNA mutation that is caused by excess
estrogen will repopulate the tumor again by λ1N(t)E(t).

• µ5 is the induced death rate as a result of tumor starvation of nutrients and glycose
due to ketogenic diet.

• γ2 is the rate tumor cells are removed from effectiveness of immune response.
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Immune response cells

M(t) is the immune system response in the form of natural killer NK cells and CD8+T
cells. Their growth may be stimulated by the presence of tumor and they can destroy
tumor through the kinetic process.

dM

dt
= sβ +

ρMT

ω + T
− γ3MT − µ3M − (1− k)

λ3ME

g + E
(3.7)

where

• s denotes the source rate of immune response fully infused in the body daily.

• β immune booster (a supplement as ketone bodies) to assist the immune response
whenever tumor cells overpower immune cells in order to activate immune response.

• ρMT

ω + T
is a non linear growth term for immune response, where

– ρ is the rate of immune response

– ω is the immune cell threshold

– γ3 is the rate immune response is inactivated

– µ3 is immune cells natural death rate, as a result of necrosis

– λ3 is rate immune suppression

• (1−k)
λ3ME

g + E
is the limited rate at which estrogen suppress immune cells activation,

where g is the rate of immune suppression

Estrogen

Estrogen is a female steroid hormone.Estrogen helps to the growth of tumor cells.It
also serves as a mitogen by triggering cell division in breast tissue. Estrogen acts as a
carcinogen by directly damaging DNA forcing healthy epithelial cells to have a higher
likehood of malignantt conversion

∂E

∂t
= (1− k)ε− µ4E (3.8)

where ε is the process of constantly replenishing excess estrogen We assumed that
the majority of cancer cells are estrogen-receptor positive and only a small propotion of
epithelial cells are estrogen-receptor positive which can be only blocked by anti-cancer drug
(1-k) and µ4 is the rate at which estrogen is being washed out. Thus our model is:

∂N
∂t = Nα1 − µ1N

2 − φ1NT − (1− k)λ1NE
∂T
∂t = Tdα2 − µ2T

2 − γ2MT − µ3M + (1− k)λ1NE
dM
dt = sβ + ρMT

ω+T − γ3MT − µ3M − (1− k)λ3ME
g+E

∂E
∂t = (1− k)ε− µ4E
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SECTION 3.2

Math definitions and Theorems

We will commence analysing the system properties but before that its important to quote
some definitions and theorems,from Ordinary Differential Equation theory,being used in
this analysis.

Definitions

Definition 1

Homeomorphism

A function h : X → Y is a homeomorphism between X and Y if it is a continuous
bijection (1-1) and onto function) with a continuous inverse denoted as h−1. The existence
of homeomorphisms tell us that X and Y have analogous structures.

Definition 2

Topological Conjugacy

Given two maps,f : X → X and gY → Y , the map hX → Y is a topological semi
conjugacy if it is continuous, onto and

h(f(x)) = g(h(x)) (3.9)

where x is a point in X. Furthermore, h is a topological conjugacy if it is a homeomorphism
between X and Y ( h is also 1-1 and has a continuous inverse). We then say that X and Y
are homeomorphic.

Definition 3

Hyperbolic Fixed Point

A hyperbolic fixed point for a system of differential equations a point at which the
eigenvalues of the Jacobian for the system evaluated at that point all have nonzero real
part.

Definition 4

Flow

Let
~x′ = F (~x) (3.10)

~x′ = F (~x) (3.11)

be a system of differential equations and ~x0 be an initial condition for F (~x). Provided that
the solutions to the differential equation exist and are unique (the conditions of which are
given in the existence and uniqueness theorem. Then f(t; ~x0) , the flow of F (~x), gives the
spatial solution of F (~x) given the initial condition over time. An important result of flows
is that changing initial conditions in phase space will change flows in a continuous fashion
because we have a continuous vector field in Rn

Definition 5

Orbit/trajectory

The set all all points in a flow f(t; ~x0) for the set of differential equations

~x′ = F (~x) (3.12)

is called the orbit or trajectory of F (~x) with initial condition ~x0. We write the orbit
as f(t; ~x0) . When we consider only t, we say we consider the forward orbit or forward
trajectory.
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Definition 6

Lyapunov Stability

Consider an autonomous nonlinear dynamical system :

~x′ = F (~x), x(0) = x0 (3.13)

where x(t) ∈ D ⊆ Rn denotes the system state vector,D an open set containing the origin,
and f : D → Rn continuous on D. Suppose f has an equilibrium point at xe so that

f(xe) = 0 (3.14)

then:

1. This equilibrium is said to be Lyapunov stable if for every ε > 0 ,there exist a δ such
that,if ‖ x(0)− xe ‖< δ then for every t ≥ 0 ‖ x(t)− xe ‖< ε

2. The equilibrium of the above system is said to be asymptotically stable if it is Lya-
punov stable and there exists a δ such that,if ‖ x(0)− xe ‖< δ then for every t ≥ 0
‖ x(t)− xe ‖< ε

Definition 7

Positively invariant set

Let f(t; ~x0) be the flow for the set of differential equations

~x′ = F (~x) (3.15)

defined on Rn. If, for S ⊂ Rn and f(t; ~x0) ∈ S for any point ~x0 ∈ S, t ≥ 0, then S is
positively invariant. In other words, if the forward orbits of all initial conditions in S are
subsets of S, then S is positively invariant.

Definition 8

ω-limit point,ω-limit set

Let f(t; ~x0) be the flow for the set of differential equations

~x′ = F (~x) (3.16)

defined on Rn with initial condition ~x0. ~z is called an ω-limit point of ~x0 if ∃ an infinite
sequence of times t0,t1,...,tn,tn+1,... such that f(t; ~x0) converges to ~z. The ω-limit set of
~x0, denoted ω( ~x0) , is the set of all ω-limit points of ~x0.
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Theorems
The Hartman-Grobman Theorem
Let x ∈ Rn. Consider the nonlinear system

~x′ = f(~x) (3.17)

with the flow φt and the linear system

~x′ = A ~x∗ (3.18)

where A is the Jacobian maxtrix of f and ~x∗ is a hyperbolic fixed point. Assume that we
have appropriately translated ~x∗ to origin.

~x∗ 6= 0 (3.19)

. Let f be C1 on some E ⊂ Rn with ~0. Let I0 ⊂ R, U ⊂ Rn and V ⊂ Rn such that U, V
and I0 each contain the origin. Then 3 a homeomorphism H : U → V such that, ∀ initial
points ~x0 ε U and all t ∈ I0,

H ◦ fφ( ~x0) = eAtH( ~x0) (3.20)

Thus the flow of the non-linear system is homeomorphic to the flow, eAt, of the linear
system given by the fundamental theorem for linear systems.

Comparison Theorem
Let

x′ = f(x), x(0) = x0 (3.21)

and suppose x′ ≤ cx,∀t ≥ 0 Then there is a T1 > 0 such that: x ≤ c ∀ t ≥ T1 thus x is
oultimately bounded.
Lyapunov global stability Theorem

Let
~x′ = f(~x) (3.22)

suppose there is a function V such that:

• V is positive definite

• V (z)′ < 0 for all z > 0 , V (0) = 0

then every trajectory of ~x′ = f(~x) converges to 0 as t → ∞ which implies the system is
globally asymptotically stable.
LeSalle Invariance principle

We consider ~x′ = f(~x) suppose there is a function V : Rn → R such that:

• V is positive definite

• V ′(x) ≤ 0

• the only solution of ~x′ = f(~x) , V (x) = 0 is x(t) = 0 for all t > 0 then

the system ~x′ = f(~x) is globally asymptotically stable.

Summary theorem

Consider:~x′ = f(~x) The following statements are equivalent:

• x = 0 is a globally asymptotically stable equilibrium of the system

• there exists a quadratic Lyapunov function V (x) = xTPx, PεSn

• there exists a matrix PεSn such that P > 0, ATPA− P < 0
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• matrix PεSn that solves the Stein equation ATPA− P +Q = 0 is positive definite.
P > 0 for some Q > 0

Ruth-Hurwitz criterion
We will use a modified version of Ruth-Hurwitz criterion for stability, for a 2x2 matrix.
Let:

~x′ = A~x, x(0) = x0 (3.23)

where A is linearitation matrix of the system above. All the eigenvalues of A are negative
meaning that the equilibrium points Pi for i = 1, ...., n are asymptotically stable if and
only if Det(A) > 0 and Tr(A) < 0
Dulac-Bendixson criterion

Let the autonomous system:

∂x

∂t
= f(x, t),

∂y

∂t
= g(x, t) (3.24)

if there exists a C1 function φ(x, y) such that the expression ∂fφ
∂x + ∂gφ

∂y has the same
sign (6= 0)almost everywhere in a simply connected region of the plane, then the plane
autonomous system above as no non-constant periodic solutions lying entirely within the
region.
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SECTION 3.3

Properties of the system

Invariance of non-Negativity, and Dissipativity
All solutions with positive values remain positive. The system of equations * has initial
conditions N(0) = N0≥ 0, T (0) = T0≥ 0, M(0) = M0≥ 0, E(0) = E0≥ 0 since our model
is to investigate cellular populations,therefore all the variables and parameters of the model
are all non negative. Based on the biological finding, the system of will be studied in

D = {(N,T,M,E) ∈ R4
+ |N(t) ≤ α1

µ1
, E(t) ≤ (1− k)ε

µ4
, T (t) ≤ (1− k)2λ1α1ε

µ1µ4(µ5 − α2d)
,

M(t) ≤ −sβω(µ5 − α2d)

ρ(1− k)2λ1α1ε

µ1µ4
− µ3ω(µ5 − α2d)

}

The following theorem assures that the system of Equation is well-posed such that
solutions with non-negative initial conditions remain non-negative for all 0 < t < ∞, and
therefore makes the variable biologically meaningful. Hence, we have the following result:

Theorem
Let the region D ⊂ R4

+ descripted above then:

1. D is positively invariant

2. All solutions of the system are within R4
+ are eventually uniformly bounded and are

attracted into the region D

3. System is dissipative

Proof
Let D = {(N,T,M,E) ∈ R4

+ |N(t) ≤ α1
µ1
, E(t) ≤ (1−k)ε

µ4
, T (t) ≤ (1−k)2λ1α1ε

µ1µ4(µ5−α2d) ,

M(t) ≤ −sβω(µ5−α2d)
ρ(1−k)2λ1α1ε

µ1µ4
−µ3ω(µ5−α2d)

}

• Boundary for N(t)

It is obvious from the first compartment of the system that
∂N(t)

∂t
≤ N(t)α1 − µ1(N(t))2

Solving with Bernoulli method and taking N(0) = N0, we have: N(t) ≤ α1

µ1+υα1eα1t

with υ = α1−N0µ1
N0α1

and N0 = α1
α1+υµ1

hence by all the above and the comparison Theorem we conclude to limsup(N(t)) ≤
α1
µ1

as t→∞

• Boundary for E(t)

From the forth differential equation of the system which is linear and first order, we

solve and find
∂N(t)

∂t
≤ (1−k)ε

µ4
+ (E0 −

(1− k)ε

µ4
)e−µ4t

for simplicity reasons we set ζ = E0−
(1− k)ε

µ4
and we assume that

∂E(t)

∂t
≤ (1− k)ε

µ4
if and only if ζ > 0 By all the above and the comparison theorem we deduce

limsup(E(t)) ≤ (1− k)ε

µ4
as t→∞

• Boundary for T(t)

Now let Tn be so large that 0 ≤ N(t) ≤ µ1

α1
for all t > Tn

and 0 ≤ E(t) ≤ (1− k)
ε

µ4
for all t > Te
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and choose Tt = max(Tn, Te)
∂T (t)

∂t
≤ T (t)(α2d− µ5) + (1− k)2λ1α1ε

µ1µ4

we set q = (1− k)2λ1α1ε

µ1µ4
and g = µ5 − α2d

∂T (t)

∂t
≤ (1−k)2λ1α1ε

µ1µ4(µ5−α2d) which infers that for every
q

g
> 0

limsup(T (t)) ≤ (1− k)2λ1α1ε

µ1µ4(µ5 − α2d)
as t→∞

• Boundary for M(t) Lastly,we choose Tm = max(Tn, Te) for all t > Tm
∂M(t)

∂t
≤ sβ +

ρMT

gω
− µ3M

we set w =
ρq − µ3gω

ω + g
∂M(t)

∂t
≤ −sβω(µ5 − α2d)

ρ(1− k)2λ1α1ε

µ1µ4
− µ3ω(µ5 − α2d)

and if w < 0

we conclude : limsup(M(t) ≤ −sβω(µ5 − α2d)

ρ(1− k)2λ1α1ε

µ1µ4
− µ3ω(µ5 − α2d)

Hence the system of equations is ultimately bounded and the Theorem is proved
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The Equilibrium Points of the System
The steady states occur by setting the left hand side of the system to zero

∂N(t)

∂t
=
∂T (t)

∂t

∂M(t)

∂t
=
∂E(t)

∂t
= 0

The model system admits six steady states in which there are four dead equilibria, one
tumor-free equilibrium point and one co-existing equilibrium point P = (N∗, T ∗,M∗, E∗)
where N∗, T ∗,M∗, E∗ represent the tumor free equilibrium values for the normal cells, tu-
mor cells, immune cells and estrogen hormone respectively We have N∗ > 0,M∗ > 0, E∗ >
0, T ∗ > 0 since cell populations are non-negative and real. Therefore, all parameters
s, β, g, µ1, µ3, µ4, ε, λ3, k, α1, and λ1 are positive.

1. Tumor free equilibrium

P0 = (
α1µ4 − (1− k)2λ1ε

µ1µ4
, 0,

sβ(gµ4 + (1− k)ε)

µ3(gµ4 + (1− k)ε) + (1− k)2λ3ε
,
(1− k)ε

µ4
)

In principle, we would like the tumor-free equilibrium to be stable so that the pos-
sibility exists of moving the state of the system toward the tumor-free point. P0

represents the situation where there is tumor free equilibrium, that is when only tu-
mor cell population has died off due to competition with other cells.
Theorem 1
The tumor-free equilibrium point P0 of the system is locally asymptotically stable if
R0 < 1, otherwise unstable.

Linearizing the system of equations around P0 we obtained the following Jacobian
Matrix J(P0) :

J(P0) =



B0 B2 0 −B6

B1 B3 0 B6

0 B4 −B5 −B7

0 0 0 −µ4


(3.25)

where :

B0 =
2µ1λ1(1− k)2ε− α1µ1µ4 − (1− k)2λ1µ1ε

µ1µ4

B1 =
(1− k)2λ1ε

µ4

B2 =
(1− k)2λ1φ1ε− φ1α1µ4

µ1µ4

B3 =
α2µ3dψ

∗ + α2λ3dε(1− k)2 − γ2sβψ
∗ − µ5µ3ψ

∗ − µ5λ3ε(1− k)2

µ3ψ∗ + (1− k)2λ3ε
ψ∗ = (gµ4 + (1− k)ε)

B4 = −sβ(gµ4 + (1− k)ε(ρ− γ3ω))

ωµ3(gµ4 + (1− k)ε)

B5 = −µ3µ4g + µ3(1− k)ε+ λ3(1− k)2ε

gµ4 + (1− k)ε

B6 =
(1− k)λ1α1µ4 − (1− k)3λ2

1ε

µ1µ4

B7 =
µ2

4(1− k)λ3gsβ(gµ4 + (1− k)ε)

(gµ4 + (1− k)ε)2(µ3(gµ4 + (1− k)ε) + (1− k)2λ3ε)



3.3 Properties of the system 27

|J(P0)| =

B0 B2 0 −B6

B1 B3 0 B6

0 B4 −B5 −B7

0 0 0 −µ4

(3.26)

Then the characteristic equation at P0 of the linearized system of the model is given
below.Obviously there exists two negatives characteristics roots δ1 = −µ4, δ2 = −B5

However we only need to consider: δ2 − (B0 +B3)δ +B0B3 −B1B2 = 0

δ2−(B0 +B3)δ+B0B3(1−B1B2

B0B3
) = 0 from where we get basic reproduction number

R0 =
B1B2

B0B3
so finally δ2− (B0 +B3)δ+B0B3(1−R0) = 0 where in order to use the

Routh-Hurwitz (Tr(A) < 0 , Det(A) > 0) provided
α0 = 1, α1 = (B0 +B3) < 0, (B0B3(1−R0) > 0 if R0 < 1
B0B3 > B1B2 , B1 > 0 , B2 > 0 , B3 < 0 , B(0) < 0

Epidemiological implication
Tumor cells population that are governed by the system of equations can be elimi-
nated from the population whenever an influx by tumor cells into the normal cells is
small such that R0 < 1. Therefor the existence of a tumor-free equilibrium in this
case depends on the estrogen level.
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2. Dead free type 1 equilibrium

Pd1 = (0, 0,
sβ(gµ4 + (1− k)ε)

µ3(gµ4 + (1− k)ε+ (1− k)2λ3ε)
, (1−k)ε

µ4
)

Pd1 represents Type 1 dead equilibrium point where both normal cells and tumor cells
die-off as a result of breast tissue removal through mastectomy surgery or death. This
is because overtime the cancer cells which are depending on estrogen to develop into
independent cells that grow regardless of estrogen receptors.

Theorem 2
The Type 1 Dead equilibrium point Pd1 of the system is locally asymptotically stable

if
(1− k)2λ1ε

α1µ4
> 1

Proof
Linearizing the system around Type 1 dead free equilibrium point Pd1 we obtained
the following Jacobian matrix J(Pd1)

J(Pd1) =



C0 0 0 0

C1 C2 0 0

0 C3 −C4 −C5

0 0 0 −µ4


(3.27)

where:
C0 = α1 − (1− k)λ1E

∗
0

C1 = (1− k)λ1E
∗
0

C2 = dα2 − γ2M
∗
0 − µ5

C3 =
M∗0ρω − γ3M

∗
0ω

2

ω2

C4 =
µ3(g + E∗0) + (1− k)λ3E

∗
0

g + E∗0

C5 =
λ3gM

∗
0 (1− k)

(g +M∗0 )2

|J(Pd1)| =

C0 − ξ 0 0 0

C1 C2 − ξ 0 0

0 C3 −C4 − ξ −B7

0 0 0 −µ4 − ξ

(3.28)

Clearly two eigenvalues of the system at Pd1 are negative and real: ξ1 = −µ4 ,

ξ2 = −C4 = −µ3(g + E∗0) + (1− k)λ3E
∗
0

g + E∗0
while the remaining two eigenvalues are

obtained from a 2x2 matrix:
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A =


C0 C1

C1 C2

 (3.29)

Applying the Routh-Hurwitz criterion state above we have:

(a) Tr(A) = C0+C2 ⇒ (
α1µ4 − (1− k)2λ1ε

µ4
+

(µ3α2d− γ2sβ − µ5µ3)A∗ + dα2λ3(1− k)2ε− (1− k)2λ3µ5ε

µ3A∗ + (1− k)2λ3ε
) <

0 if α1(1− (1−k)2λ1ε
α1µ4

) > 0 ⇒ (1− k)2λ1ε

α1µ4
) > 0 therefore Tr(A) < 0

(b) Det(A) = C0C2

(
α1µ4 − (1− k)2λ1ε

µ4
)( (µ3α2d−γ2sβ−µ5µ3)A∗+dα2λ3(1−k)2ε−(1−k)2λ3µ5ε

µ3A∗+(1−k)2λ3ε
) > 0

if α1(1− (1−k)2λ1ε
α1µ4

) > 0 provided that (
(1− k)2λ1ε

α1µ4
) > 1 and

(α1(1− (1−k)2λ1ε
α1µ4

)(µ3α2d−γ2sβ−µ5µ3)A∗+dα2λ3(1−k)2ε−(1−k)2λ3µ5ε
µ3A∗+(1−k)2λ3ε

> 0

which implies that Det(A) > 0. Thus, the remaining eigenvalues ξ3 and ξ4 are
negative and real since R-H criterion has been satisfied. Hence, the type 1 Dead
equilibrium point Pd1 of the system is locally asymptotically stable.

Epidemiological implication
Epidemiologically it is implied that the net growth of the tumor cells must be more
than the immune cells values in order to have the tumor cells overpower the normal
cells as the reactivation of the immune cells is due to the estrogen effects that are
greater than the reactivation of the immune cells due to the tumor effect. However,
ketogenic diet is inactive at the type 1 Dead equilibrium point
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3. Dead free type 2 equilibrium

Pd2 = (0,
dα2 − γ2M

∗
1 − µ5

µ2
,M∗1 ,

(1− k)ε

µ4
)

Pd2 could be described by Type 2 dead equilibrium point where normal cells were
only forced to extinction leaving the tumor cells surviving.
Theorem 3
The Type 2 Dead equilibrium point Pd2 of the system is locally asymptotically stable

if
(1− k)2λ1ε

α1µ4
> 1 and ω >

A∗

µ2
(

µ2C
∗ρ

γ3A∗C∗ + µ2µ3C∗ + ((1− k)2λ3ε
− 1) otherwise

unstable

Proof
Linearizing the system around Type 2 dead free equilibrium point Pd2 we obtained
the following Jacobian matrix J(Pd2)

J(Pd2) =



Q0 0 0 0

Q1 Q2 −Q4 0

0 Q3 Q5 Q6

0 0 0 −µ4


(3.30)

where:
Q0 = α1 − (1− k)λ1E

∗
1

Q1 = (1− k)λ1E
∗
1

Q2 = dα2 − µ2T
∗
1 − γ2M

∗
1µ5

Q3 =
µ2

2M
∗
1ωρ− γ3M

∗
1 (ωµ2 + dα2 − γ2M

∗
1 − µ5)2

(ωµ2 + dα2 − γ2M∗1 − µ5)2

−Q4 = −γ2T
∗
1

Q5 =
T ∗1 ρ)
T ∗1 +ω − γ3T

∗
1 − µ3 −

(1−k)λ3E∗1
g+E∗1

|J(Pd2)| =

Q0 − δ 0 0 0

Q1 Q2 − δ −Q4 0

0 Q3 Q5 − δ Q6

0 0 0 −µ4 − δ

(3.31)

Clearly two eigenvalues of the system at Pd2 are negative and real: δ1 = −µ4 How-
ever,the remaining can be analysed by simple calculation: (Q0−δ)(Q2−δ)(Q5−δ) = 0
⇒ Q5 = δ2 , Q2 = δ3, Q0 = δ4 where A∗ = (gµ4 − (1− k)ε) and C∗ = (ωµ2 + dα2 −
γ2M

∗
1 − µ5) it follows the following conditions:

(a) Q0 < 0 if 0 6 k < 1, 0 6 k < 1 and
(1− k)2λ1ε

α1µ4
> 1

(b) Q5 < 0 provided A∗ > 0 , 0 6 k < 1 and ω >
A∗

µ2

µ2C∗ρ
γ3A∗C∗+µ2µ3C∗+(1−k)2λ3ε

− 1)
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4. Dead free type 3 equilibrium

Pd3 = (0,
dα2 − γ2M

∗
2 − µ5

µ2
,M∗2 ,

(1−k)ε
µ4

)

Pd3 represent Type 3 dead equilibrium point which means immune system is weak
and it cannot fight the tumor cells which eventually overpower normal cells and forced
it to extinction.
Theorem 4
The Type 3 Dead equilibrium point Pd3 of the system is locally asymptotically sta-

ble if
(1− k)2λ1ε

α1µ4
> 1 and ω >

A∗

µ2
(

µ2C
∗ρ

γ3A∗C∗ + µ2µ3C∗ + (1− k)2λ3ε
− 1) otherwise

unstable

Proof
Linearizing the system around Type 3 dead free equilibrium point Pd3 we obtained
the following Jacobian matrix J(Pd3)

J(Pd3) =



Z0 0 0 0

Z1 Z2 −Z4 0

0 Z3 Z5 Z6

0 0 0 −µ4


(3.32)

where:
Z0 = α1 − (1− k)λ1E

∗
2

Z1 = (1− k)λ1E
∗
2

Z2 = dα2 − µ2T
∗
2 − γ2M

∗
2µ5

Z3 =
µ2

2M
∗
2ωρ− γ3M

∗
2 (ωµ2 + dα2 − γ2M

∗
2 − µ5)2

(ωµ2 + dα2 − γ2M∗2 − µ5)2

−Z4 = −γ2T
∗
2

Z5 =
T ∗2 ρ)

T ∗2 + ω
− γ3T

∗
2 − µ3 −

(1− k)λ3E
∗
2

g + E∗2

|J(Pd3)| =

Z0 − ν 0 0 0

Z1 Z2 − ν −Z4 0

0 Z3 Z5 − ν Z6

0 0 0 −µ4 − ν

(3.33)

Clearly two eigenvalues of the system at Pd2 are negative and real: ν1 = −µ4 How-
ever,the remaining can be analysed by simple calculation: (Z0−ν)(Z2−ν)(Z5−ν) = 0
⇒ Z5 = ν2 , Z2 = ν3, Z0 = ν4 where A∗ = (gµ4 − (1− k)ε) and C∗ = (ωµ2 + dα2 −
γ2M

∗
2 − µ5) it follows the following conditions:

(a) Z0 < 0 if 0 6 k < 1, and
(1− k)2λ1ε

α1µ4
> 1
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(b) Z5 < 0 providedA∗ > 0 , 0 ≤ k < 1 and ω >
A∗

µ2
(

µ2C
∗ρ

γ3A∗C∗ + µ2µ3C∗ + (1− k)2λ3ε
−

1)

5. Dead free type 4 equilibrium

Pd4 = (0,
dα2 − γ2M

∗
3 − µ5

µ2
,M∗3 ,

(1− k)ε

µ4
)

Pd4 show that Type 4 dead equilibrium point where ketogenic diet is not effective,
immune booster is not active which lead to tumor cell over-compete normal cells as
a result of infusion of excess estrogen to the body system.
Theorem 5 The Type 4 Dead equilibrium point Pd4 of the system is locally asymp-

totically stable if
(1− k)2λ1ε

α1µ4
> 1 and ω >

A∗

µ2
(

µ2C
∗ρ

γ3A∗C∗ + µ2µ3C∗ + (1− k)2λ3ε
− 1)

otherwise unstable

Proof
Linearizing the system around Type 4 dead free equilibrium point Pd4 we obtained
the following Jacobian matrix J(Pd4)

J(Pd4) =



Y0 0 0 0

Y1 Y2 −Y4 0

0 Y3 Y5 Y6

0 0 0 −µ4


(3.34)

where:
Y0 = α1 − (1− k)λ1E

∗
3

Y1 = (1− k)λ1E
∗
3

Y2 = dα2 − µ2T
∗
3 − γ2M

∗
3µ5

Y3 =
µ2

2M
∗
3ωρ− γ3M

∗
3 (ωµ2 + dα2 − γ2M

∗
3 − µ5)2

(ωµ2 + dα2 − γ2M∗3 − µ5)2

−Y4 = −γ2T
∗
3

Y5 =
T ∗2 ρ)

µ∗2 + ω
− γ3T

∗
3 − µ3 −

(1−k)λ3E∗3
g+E∗3

|J(Pd4)| =

Y0 − ϑ 0 0 0

Y1 Y2 − ϑ −Y4 0

0 Y3 Y5 − ϑ Y6

0 0 0 −µ4 − ϑ

(3.35)

Clearly two eigenvalues of the system at Pd4 are negative and real: ϑ1 = −µ4 How-
ever,the remaining can be analysed by simple calculation: (Y0−ϑ)(Y2−ϑ)(Y5−ϑ) = 0
⇒ Y5 = ϑ2 , Y2 = ϑ3, Y0 = ϑ4 where A∗ = (gµ4 − (1− k)ε) and C∗ = (ωµ2 + dα2 −
γ2M

∗
3 − µ5) it follows the following conditions:
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(a) Y0 < 0 if 0 6 k < 1, and
(1− k)2λ1ε

α1µ4
> 1

(b) Y5 < 0 providedA∗ > 0 , 0 6 k < 1 and ω > A∗

µ2
(

µ2C
∗ρ

γ3A∗C∗ + µ2µ3C∗ + (1− k)2λ3ε
−

1)

6. Co-existing equilibrium point
Pe = (N∗4 , T

∗
4 ,M

∗
4 , E

∗
4)

Pe. A co-existing equilibrium state exists when all cells populations would have sur-
vived the competition.

Theorem 6
The Co-existing equilibrium point of the system is locally asymptotically stable
if Trace(J(Pe)) = (V0 + V3 + V6 − µ4) , Det(J(Pe)) = (−µ4(V0V6V3 + V0V4V5 +
V1V2V 6)) > 0 otherwise unstable.
Proof
We analyzed and linearized system around the co-existing equilibrium point Pe,
we obtained the following Jacobian matrix J(Pe) at Pe = (N∗4 , T

∗
4 ,M

∗
4 , E

∗
4) where

N∗4 , T
∗
4 ,M

∗
4 and E∗4 represent the coexisting equilibrium values for normal cells, tu-

mor cells, immune cells, and estrogen levels respectively.

N∗4 =
2(1− k)4λ4

1µ1µ4ε
2 + φ1α

2
1µ

2
4µ1 − 2(1− k)2µ1µ

2
4α1λ1φ1ε− 2α1φ

2
1µ1µ

3
4 − 2(1− k)2α1µ1µ

2
4λ1ε

2φ1α1µ2
1µ

3
4 − 2(1− k)2µ2

1µ
2
4λ1φ1ε

T ∗4 =
α2

1µ1µ
2
4 + 2α1µ1µ

2
4φ1

2φ1α1µ2
1µ

3
4 − 2(1− k)2µ2

1µ
2
4λ1φ1ε

M∗4 =
(G∗)2Z∗(1− k)2λ1ε+ (α2

1α2µ1µ
3
4d+ 2α1α2µ1µ

3
4φ1d− µ3

4µ5α
2
1 − 2µ3

4µ1µ5α1φ1)G∗ − µ3α
4
1µ

2
1µ

5
4 − 4α2

1µ
2
1µ2µ

5
4φ1 − 4φ2

1α
2
1µ

2
1µ

2
4µ2

(G∗)2Q∗µ4

E∗4 =
(1− k)ε

µ4

(G∗)2 = 2α1µ1µ
2
4φ1 − 2(1− k)2µ1µ4λ1φ1ε

Z∗ =
2(1− k)4λ2

1µ1µ4ε
2 + φ1α

2
1µ

2
4µ1 − 2(1− k)2µ2

4µ1α1λ1φ1ε− 2α1φ
2
1µ1µ

3
4 − 2(1− k)2α1µ1µ

2
4λ1ε

2φ1α1µ2
1µ

3
4 − 2(1− k)2µ2

1µ
2
4λ1φ1ε

Q∗ =
α2

1µ1µ
2
3γ2 − 2α1µ1µ

2
4φ1γ2

2φ1α1µ1µ2
4 − 2(1− k)2µ2

1µ
2
4λ1φ1ε

J(Pe) =



V0 −V2 0 −V7

V 1 V3 −V5 V7

0 V4 V6 V8

0 0 0 −µ4


(3.36)

where:

V0 =
α1µ4 − 2µ1µ4N

∗
4 − (1− k)2λ1ε

µ4

V1 =
(1− k)2λ1ε

µ4
V2 = −φ1N − 4∗

V3 = (dα2 − 2µ2T
∗
4 − γ2M

∗
4 − µ5)

V4 =
M∗4ωρ− γ3M

∗
4 (ω + T ∗4 )2

(ω + T ∗4 )2

V5 = −γ2T
∗
4
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V6 =
T ∗4 (gµ4 + (1− k)ε)ρ− γ3T

∗
4 (ω + T ∗4 )(gµ4 + (1− k)ε)− µ3(ω + T ∗4 )(gµ4 + (1− k)ε)− (1− k)2(ω + T ∗4 )λ3ε

(ω + T ∗4 )(gµ4 + (1− k)ε)
V7 = −(1− k)λ1N

∗
4

V8 =
λ3µ

2
4gM

∗
4 (1− k)

(gµ4 + (1− k)2

|J(Pe)| =

V0 −V2 0 −V7

V1 V3 −V5 V7

0 V4 V6 V8

0 0 0 −µ4

= 0 (3.37)

we need to show that: Trace(J(Pe)) < 0
that is :
Tr(J(Pe)) = (V0 + V3 + V6 − µ4) = α1(1 − A0) − 2µ1N

∗
4 + dα2(1 − µ5) − µ4 +

T ∗4 (−γ3(ω−T ∗4 )+(ρ)
ω+T ∗4

− µ3 − (1−k)4λ3ε
gµ4+(1−k)ε

Thus, Tr(J(Pe)) < 0 if A0 > 1, µ5 > 1 ,ρ < γ3(ω + T4∗ with A0 =
(1− k)2λ3ε

α1µ4
to show that |J(Pe)| = (−µ4(V0V3V6 + V0V4V5 + V1V2V6)) > 0 let
ζ1 = −µ4V0V3V6

ζ2 = −µ4V0V4V5

ζ3 = −µ4V1V2V6

ζ1 = (α1(1−A0)− 2µ1N
∗
4 )(dα2(1− µ5)− 2µ2T

∗
4 − γ2M

∗
4 )(

T ∗4 (−γ3(ω − T ∗4 ) + (ρ)

ω + T ∗4
)−

µ3 − µ3 −
(1− k)4λ3ε

gµ4 + (1− k)ε
)

this implies ζ1 > 0 is positive if A0 > 1 , µ5 > 1 , ωρ < γ3(ω + T ∗4 ) with A0 =
(1− k)2λ3ε

α1µ4
ζ2 = (α1(1−A0)− 2µ1N

∗
4 )(

M∗4
(ω+T ∗4 )2

)(ωρ < γ3(ω + T ∗4 ))(−γ2T
∗
4 )

this implies that ζ2 > 0 is positive if A0 > 1 , µ5 > 1 , ωρ < γ3((ω + T ∗4 )2) with

A0 =
(1− k)2λ3ε

α1µ4

ζ3 = µ4A0φ1N
∗
4 (
T ∗4 (−γ3(ω − T ∗4 ) + (ρ)

ω + T ∗4
)−µ3−µ3−

(1− k)4λ3ε

gµ4 + (1− k)ε
) This implies that

ζ3 < 0 is a negative and by Routh-Hurwitz criterion the system cannot be stable.
Thus the co-existing equilibrium point is always unstable if the cells coexist.
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Global stability Theorem 1
If the equilibrium point P0 is locally asymptotically stable in the interior of a positive
quadrant D then it will be globally asymptotically stable there.

Proof

Define Dulac function H1 =
1

NTME
N,T,M,E > 0

Also we set:
f(N,T,M,E) = N(t)α1 − µ1(N(t))2

g = (N,T,M,E) = Tα2 − µ2T
2 − µ5T + (1− k)λ1NE − γ2MT

h(N,T,M,E) = sβ +
MTρ

ω
− µ3M

j(N,T,M,E) = (1− k)ε− µ4E
in D dedcribed above,which is positive invariant and calculatediv(H1f,H1g,H1h,H1j) and
apply Dulac-Bendixson Theorem we have:

div(H1f,H1g,H1h,H1j) =
∂H1f

∂N
+
∂H1g

∂T
+
∂H1h

∂M
+
∂H1j

∂E
and after calculations (see

Appendix) div(H1f,H1g,H1h,H1j) = − µ1

TME
− (µ2 +

(1− k)λ1

NT 2
) − sβ

NTM2E
− (1 −

k)
ε

NTME2
< 0

hence it does not change sign, which implies there is no limit cycle or homoclinic con-
nection observed in D So P0, Pd1, Pd2, Pd3, Pd4, Pe which are locally asymptotic stable in
positive invariant subset D then They will be globally asymptotic stable in the interior of D.

Global stability Theorem 2
If the equilibrium point P ∗ is locally asymptotically stable in the interior of the positive
definite set then it will be globally asymptotically stable there.

Proof
Consider the following Lyapunov function V (N,T,M,E) around P ∗ = (N∗, T ∗,M∗, E∗)

V (N,T,M,E) = (N −N∗−N∗ln(
N

N∗
) + (T − T ∗− T ∗ln(

T

T ∗
) + (M −M∗−M∗ln(

M

M∗
) +

(E − E∗ − E∗ln(
E

E∗
)

Differentiating V with respect to t, we get:

V ′ = (N − N∗)N
′

N
+ (T − T ∗)T

′

T
+ (M −M∗)M

′

M
+ (E − E∗)E

′

E
Substituting system’s

equations from 3.5 to 3.8 in the above we get:

V ′ =
(Nα1 − µ1N − φ1T )− (1− k)λ1NE)(N −N∗)

N
+

(Tdα2 − µ2T
2 − γ2MT − µ5T + (1− k)λ1NE)(T − T ∗)

T
+

(sβ +
ρMT

ω + T
− γ3MT − µ3M − (1− k)

λ3ME

g + E
(M −M∗)

M
+

((1− k)ε− µ4E)(E − E∗)
E

and

after some factorizing in some terms

V ′ = −[(N −N∗)2 α1

N −N∗
) + (T −T ∗)2 (−µ2 − µ5 + α2d)

T − T ∗
+ (M −M∗)2(

µ3

M −M∗
) + (E−

E∗)2(
(1− k)ε

E(E − E∗)
)+(N−N∗)(T−T ∗)(− µ1N

T − T ∗
− γ2M

N −N∗
+(N−N∗)(M−M∗)(− φ1T

M −M∗
−

γ3T +
sβ

M
+

Tρ

ω + T
N −N∗

)+(N−N∗)(E−E∗)((1− k)λ1ε

E − E∗
− µ4E

N −N∗
)+(T−T ∗)(M−M∗)((1− k)λ1NE

T (M −M∗)
−

(1− k)λ3E

(g + E)(T − T ∗)
+ (E − E∗)(M −M∗)0 + (T − T ∗)(E − E∗)0]

Thus V ′(N,T,M,E) is a quadratic form which can be expressed as V = −xTAx where
xT = (N −N∗, T − T ∗,M −M∗, E − E∗) and A is symmetric matrix given by
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A =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


(3.38)

a11 =
−α1

N −N∗

a12 =
µ1N

T − T ∗
+

γ2M

N −N∗

a13 =
φ1T

M −M∗
+
γ3T +

sβ

M
+

Tρ

ω + T
N −N∗

a14 = −(1− k)λ1ε

E − E∗
+

µ4E

N −N∗

a21 =
µ1N

T − T ∗
+

γ2M

N −N∗

a22 =
(−µ2 − µ5 + α2d)

T − T ∗

a23 = −(1− k)λ1NE

T (M −M∗)
+

(1− k)λ3E

(g + E)(T − T ∗)

a24 = 0 a31 =
φ1T

M −M∗
+
γ3T +

sβ

M
+

Tρ

ω + T
N −N∗

a32 = −(1− k)λ1NE

T (M −M∗)
+

(1− k)λ3E

(g + E)(T − T ∗)
a33 = − µ3

M −M∗
a34 = 0

a41 = −(1− k)λ1ε

E − E∗
+

µ4E

N −N∗
a42 = 0
a43 = 0

a44 = − (1− k)ε

E(E − E∗)

V · is negative definite if Di < 0 for all odd i = (1, 2, ..., n) and Di > 0 for all even
i = (1, 2, ...n) where Di is the determinant of A matrix.
Hence the V is a Lyapunov function with respect to P ∗.
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SECTION 4.1

Control methods Introduction

Definitions

Consider the m-input , n-state system:

x ∈ RN, u ∈ RM ẋ = A(t)x+B(t)u, x(0) = x0

find open loop u(r), r ∈ [t0, tf ] such that the following objective function is minimized

J(u, x0, t0, tf ) =
∫ tf
t0

[xTQ(t)x+ uTR(t)u]dt+ x(tf )TSx(tf )T

where Q(t) and S aresymmetric, positive semi definite nxn matrices, R(t) is a
symmetric mxm matrix and x0, t0, tf are fixed given data.
The control is to keep x(t) close to 0, at a final time tf using little control effort u. This
formulation can accommodate regulating an output y(t) = C(t)x(t) ∈ RR at near zero. In
this case one choice for S and Q(t) are C(t)TW (t)C(t) where W (t) ∈ RRχR is symmetic
positive definite matrix.
Such problems are called controlled problems.
Now consider : x′ = f(x, u), x ∈ Rn x(0) given , u ∈ Ω ⊂ Rp where :
f(x, u) = f1(x, u), ..., fn(x, u) : Rn ×Rp → Rn We wish to minimize a cost function J with

terminal constraints J =
∫ T

0 L(x, u)dt+ V (x(T ))

In the optimal control theory it proves very useful to apply an auxiliary function H of
four variables defined by :
H(t, x, u, p) = f(t, x, u) + pg(t, x, u) = xTQx + uTRu + λT (Ax + Bu) which is called the
Hamilton function (or Hamiltonian) of the given problem.
Pontryagin’s Maximum principle gives conditions that are necessary for an admissible
pair (x∗, u∗) to solve a given control problem.

The Maximum principle Theorem
Assume that x∗(t), u ∗ (t) is an optimal pair for the problem Then there exist a continuous
function p = p(t),such that ∀t ∈ [t0, tf ] the following conditions are satisfied:

1. u∗(t) maximizes H(t, x∗, u, p) u ∈ R that is :
H(t, x∗(t), u(t), p(t)) ≤ H(t, x∗(t), u∗(t), p(t)) for all u ∈ R

2. The function p(t) called the adjoint function satisfies the differential equation
−ṗ = ∂H

∂x (t, x∗, u∗, p) = Qx+ATλ , λ(T ) = Sx(T )

3. x′ = (∂H∂T )T = Ax+Bu, x(0) = x0

4. ∂H
∂u = Ru+ λTB ⇒ u = −R−1BTλ

5. 0 = PA+ATP + PBR−1BTP +Q,P (T ) = S which is called the algebraic Riccati
Equation

6. The function p obeys the condition p(t1) = 0 (transversality condition) hence, by the
Maximum Principle, it is necessary that:
ṗ = −∂H∗

∂x = −∂f∗

∂x
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SECTION 4.2

Quadratic optimal control for cancer chemotherapy

Optimally controlling chemotherapy
In this section, we formulated a corresponding optimal control problem for the model in the
system considering ketogenic diet and anti-cancer drugs as control interventions to mini-
mize the breast cancer and tumor burden at final time. The units of cells were normalized
in order for the carrying capacity of normal cells to be kept above threshold of 0 ≤ t ≤ tf .
On the other hand,the aim is to reduce the tumor-size which indicates the degree of the
disease in the body and and it requires the application of as much anti-cancer drugs as
much as possible. However, it also minimized the systemic cost, which is based on the
quantities of anti-cancer drugs, since large drug concentrations can be harmful and cause
toxic side effects. In brief, the drug doses were minimized because the smaller the dose,
the better. Then, we formulated the objective functional J1

J1(u1, u2) =
∫ tf

0 (A1T (t) +A2E(t) + 1
2A3u

2
1(t) + 1

2A4u
2
2(t))dt

system equations is subject to:
∂N
∂t = Nα1 − µ1N

2 − TNφ1 − (1− u1(t))λ1NE
∂T
∂t = T (1− u2(t))α2 − µ2T

2 − γ2MT − µ3M + (1− u1(t))λ1NE
dM
dt = sβ + ρMT

ω+T − γ3MT − µ3M − (1− u1(t))λ3ME
g+E

∂E
∂t = (1− u1(t))ε− µ4E

J1 involves a quadratic control. In , it was established that quadratic control in the treat-
ment terms has the added benefit of keeping the tumor in check both when it is small or
large in size. Quadratic control allows a weaker treatment to minimize the toxic side-effects
while permitting the system to maintain a low tumor size. Furthermore, for us to address
the tumor-to-therapy trade-off, we established the existence of an optimal control , which
required an analysis of super-solutions (that is, the upper bounds on solutions) of the sys-
tem . As soon as we were able to show that the system is bounded, we established the
existence of an optimal control using a result from . In addition, we proved that there exists
an optimal control that minimizes the objective functional using the established approach
of . We use the fact that super-solutions ¯N(t), ¯T (t), ¯M(t), ¯E(t) of
∂N̄
∂t = Nα1

∂T̄
∂t = Tα2(1− u2(t)
∂M̄
∂t = sβ + MTρ

ω+T
∂Ē
∂t = 1

are bounded on a finite time interval. Since the sub-solutions are zero, the result obtained
shows that our system is bounded.

Existence of an Optimal control

Given the objective functional J1(u1, u2) =
∫ tf

0 (A1T (t) +A2E(t) + 1
2A3u

2
1(t) + 1

2A4u
2
2(t))dt

where U = (u∗i , Lebesguemeasure, 0 ≤ u∗i ≤ 1,∀t ∈ [0, t]) subject to the system of equa-
tions with N(0) = N0, T (0) = T0,M(0) = M0, E(0) = E0 then there exist an optimal
control ū∗i such that
minū∗i∈[0,1]J(ūi

∗) = J1(ui(t)
∗) if the following conditions holds:

• f is not empty

• The admissible control set U is closed and convex

• Each right hand side of the state system is continuous, is bounded above by the
sum of the bounded control and the state, and can be written as a linear function of
ui(t)

∗) with coefficients depending on time and the state.
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• The integrand of ui(t)
∗) is convex on U and is bounded below by −c2 + c1ū

2 with
c1 > 0

Proof Since the system has bounded coefficients and the solutions are bounded on the
finite time interval.Furthermore, we note that U is closed and convex by definition. For
the third conditions, the right hand side of the system must be continuous. The right hand
side is continuous since the denominators of all fractions from the right hand side of the
system consists solely of positive entities. We let ~φ(t, ~X) be right hand side of the system
except for the terms of ū∗i and define.

|~f(t, ~x, u∗i | = ~φ(t, ~X)+



0

λ1NE

0

u1


with ~X =



N

T

M

E


thus using the boundedness conditions

we get:

where c1 depends on the coefficients of the system. For the forth equation we need to
show: J(t, T, E, (1− Pi)ui + PiVi) < (1− Pi)J(t, T, E, ui) + Pi(t, T, E, Vi)
we analyse the difference of
J(t, T, E, (1−Pi)ui +PiVi)− [(1−Pi)J(t, T, E, ui) +Pi(t, T, E, Vi)] = T (t) +E(t) + ε

2u
2
i −

2Piu
2
i + P 2

i u
2
i + P 2

i V
2
i − 2P 2

i V
2
i u

2
i + 2PiViui − (T (t) + E(t) + ε

2u
2
i − ε

2Piu
2
i + ε

2PiV
2
i =

ε
2(P 2

i − Pi)(ui − Vi)2

since Pi ∈ [0, 1] this implies (P 2
i − Pi) < 0 and (ui − Vi)2 > 0 but (P 2

i − Pi) < 0 which
implies ε

2(P 2
i − Pi)(ui − Vi)2 is negative. This implies that, J(t, T, E, (1− Pi)ui + PiVi) ≤

(1− Pi)J(t, T, E, ui) + Pi(t, T, E, Vi)
Lastly, T (t) + E(t) + ε

2u
2
i (t) ≥ ε

2u
2
i (t) ≥ −c + ε

2u
2
i which gives −c + ε

2u
2
i as the lower

bound.This completes the proof of the existence of optimal control.We now use Pontrya-
gin’s maximim principle. The constants A1, A2, A3, A4 are a measure of the relative cost
of the interventions over [0, T ]. The Optimal control problem is that of finding optimal
functions (u∗i , u

∗
2) such that: J1(u∗i , u

∗
2) = minΩJ1(u1(t),u2(t)) where:

Ω = (u1&u2 : 0 ≤ u1(t) ≤ u1(t), 0 ≤ u∗2(t) ≤ u2(t), t ∈ [0, Tf ]

Therapy strategies
Three different control strategies are explored. This approach can be used to test various
options. However, we only looked at the following three alternatives:

1. Anti-cancer drug treatment control on tumor cells (control u1(t) only)

2. Ketogenic diet control on excess estrogen and tumor cells (control u2(t) only)

3. Anti-cancer drug and ketogenic diet treatment combined control on tumor cells
growth and excess estrogen (controls u1(t) and u2(t)).

Thus, strategies 1-3 use the objective functional . We assumed that there are practical
limitations on the maximum rate at which the anti-cancer treatment may be applied in a
given time period. We defined the positive constant umax accordingly. We also define the
set Ω of admissible controls to be all Lebesgue measurable functions that take on values
in the control set u = [0, umax] almost everywhere on [0,T]. We sought an optimal control
u∗ ∈ Ω . In order H = L(N,T,M,E, u1, u2) + θ1N0 + θ2T0 + θ3M0 + θ4E0 where: where L
is the Lagrangian function
H = (A1T (t)+A2E(t)+ 1

2A3u
2
1(t)+ 1

2A4u
2
2(t))+θ1(Nα1−µ1N

2−φ1NT−(1−u1(t))λ1NE)+
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θ2(T (1− u2(t))α2 − µ2T
2 − γ2MT − µ3M + (1− u1(t))λ1NE) + θ3(sβ + ρMT

ω+T − γ3MT −
µ3M − (1− u1(t))λ3ME

g+E ) + θ4((1− u1(t))ε− µ4E)
where θ1, θ2, θ3, θ4 are the adjoints variables for the states N, T, M, E. However, with
the help of Pontryagin’s Maximum Principle, we obtained a minimized Hamiltonian that
minimizes the objective function or cost functional. We applied Pontryagin’s Maximum
Principle , to characterize the optimal control pair u∗1 and u∗2 in the following result

Theorem Given optimal control variables u∗1&u∗2 and N∗, T ∗,M∗&E∗ are correspond-
ing optimal state variables of the control system. Then there exists the adjoint variable
θi = (θ1, θ2, θ3, θ4) ∈ R4

+ that satisfies the following equations.
∂θ1
∂t = 2θ1µ1N + θ1Tφ1 + (θ1 + θ2)(1− u2(t))λ1E − α1θ1

∂θ2
∂t = −A1 + θ1Nφ1 + θ2(2Tµ2 + γ2M + µ5 − α2(1− u2(t)) + θ3(γ3M − ωρM

(ω+T )2

∂θ3
∂t = θ2γ2T − θ3ρT + γ3θ3T + µ3θ3T + θ3((1− u1) λ3Mg

(g+E)2
)

∂θ4
∂t = −A2 + (θ1 − θ2)(1− u1)λ1N − θ3((1− u1) λ3Mg

(g+E)2
− θ4µ4

with transversality conditions: θ1(Tf ) = θ2(Tf ) = θ3(Tf ) = θ4(Tf ) = 0 The correspond-
ing optimal controls u∗1 & u∗2 are given as:
u∗1 = min(max(0, 1

A3
(θ2λ1N

∗E∗ + θ3ε− θ1λ1N
∗E∗ − θ3λ3M∗E∗

g+E∗ ), 1)

and u∗2 = min(max(0, 1
A4

(θ2α2T
∗), 1))

Proof. Let u∗1 & u∗2 be the given optimal control functions and N∗, T ∗,M∗&E∗ be the cor-
responding optimal state variables of the system that minimize the cost functional or objec-
tive . Then by Pontryagin’s maximum principle,there exists adjoint variables θ1, θ2, θ3,&θ4

which satisfy the following equations:
∂θ1
∂t = −∂H

∂N ,
∂θ2
∂t = −∂H

∂T ,
∂θ3
∂t = − ∂H

∂M ,
∂θ4
∂t = −∂H

∂E

with transversality conditions: θ1(Tf ) = θ2(Tf ) = θ3(Tf ) = θ4(Tf ) = 0 where H is
the Hamiltonian and defined as: H(N,T,M,E, u1, u2, θ) = L(N,T,M,E, u1, u2) + θ1N

′
+

θ2T
′
+ θ3M

′
+ θ4E

∗

so substituting we get:

H = (A1T (t) + A2E(t) + 1
2A3u

2
1(t) + 1

2A4u
2
2(t)) + θ1(Nα1 − µ1N

2 − φ1NT − (1 −
u1(t))λ1NE) + θ2(T (1 − u2(t))α2 − µ2T

2 − γ2MT − µ3M + (1 − u1(t))λ1NE) + θ3(sβ +
ρMT
ω+T − γ3MT − µ3M − (1− u1(t))λ3ME

g+E ) + θ4((1− u1(t))ε− µ4E)

from the optimality condition we have:
∂H
∂u1

= 0 at u1 = u∗1
and
∂H
∂u2

= 0 at u2 = u∗2
which implies that:
∂H
∂u1

= A3u1 + θ1λ1NE − θ2λ1NE + θ3
λ3ME
g+E − θ4ε = 0

and

∂H
∂u2

= A4u2 − θ2α2T = 0

hence we obtain:

u∗1 =
θ2λ1NE+θ4ε−θ1λ1NE−θ3 λ3ME

g+E

A3

and
u∗2 = 1

A4
(θ2α2T )

By standar control arguments involving the bounds on the controls, we conclude that:
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u∗1 =


0 if,

θ2λ1NE+θ4ε−θ1λ1NE−θ3 λ3ME
g+E

A3
< 0

θ2λ1NE+θ4ε−θ1λ1NE−θ3 λ3ME
g+E

A3
if, 0 ≤

θ2λ1NE+θ4ε−θ1λ1NE−θ3 λ3ME
g+E

A3
≤ 1

1 if, 1
A4

(θ2α2T ) > 1

and

u∗2 =


0 if, 1

A4
(θ2α2T ) < 0

1
A4

(θ2α2T ) if, 0 ≤ 1
A4

(θ2α2T ) ≤ 1

1 , if 1
A4

(θ2α2T ) > 1



4.3 H∞ methods 43

SECTION 4.3

H∞ methods

The phrase H∞ control comes from the name of the mathematical space over which the
optimization takes place: H∞ is the Hardy space of matrix-valued functions that are ana-
lytic and bounded in the open right-half of the complex plane defined by Re(s) The H∞
norm is the maximum singular value of the function. There are methods being used in con-
trol theory to synthesize controllers to achieve stabilization with guaranteed performance.
To use H∞ methods, a control designer expresses the control problem as a mathematical
optimization problem and then finds the controller that solves this optimization.

The “plant” is a given system with two inputs and two outputs. It is often referred to
as the generalized system. The signal is an external input and represents driving signals
that generate disturbances, measurement noise, and reference inputs. The signal is the
control input. The output has the meaning of control error and ideally should be zero.
The output finally, is the observed output and is available for feedback.

State Feedback problem
X ′ = Ax+Bu+Gw

z =


Hw

u

 u: input , w:disturbances

we seek a control law u = Kx such that the control-loop system is stable and has ||H||∞ < γ
then system becomes:
X ′ = (A+BK)x+Gw

z =


Hw

u

 and must have:

(A + BK)TP + P (A + BK) + HHT + KKT + 1
γ2
PGGTP < 0 and by choosing K =

−BTP ,which is called state-feedback gain
0 = ATP + PA+HHT + 1

γ2
PGGTP − PBBTP

Differential game
Consider x′ = Ax+Bu+Gw
and J =

∫∞
O xTHTHx+ uTu− γ2ωTωdt

• u seeks to minimize J

• w seeks to maximize J

subject to both signal of finite energy

• Differential game has a Nash equilibrium

• the equilibrium involves both players employing a state feedback strategy, where
u(t) = Kx(t) is the best control and Kd = − 1

γ2
GTP has the worst disturbance

, P ≥ 0 a stabilizing solution of 0 = ATP + PA+HHT + 1
γ2
PGGTP − PBBTP



44 Optimal controlled therapies

Since the aim of this work is to design robust control for the system, deriving a linear
model is necessary, as the H∞ control design requires a linear nominal model. The linear
model is acquired by working point linearization. We will linearize around steady state P0

Let:

~x′i = f(~xi) (4.1)

for every i = 1, 2, 3, 4

~x′ =



N ′

T ′

M ′

E′


=



f1(N,T,M,E, u1, u2)

f2(N,T,M,E, u1, u2)

f3(N,T,M,E, u1, u2)

f4(N,T,M,E, u1, u2)


using Taylor’s Expansion Series we get :

fi = fi(N0, T0,M0, E0) + ∂fi
∂N δN + ∂fi

∂T δT + ∂fi
∂M δM + ∂fi

∂E δE

calculated around P0 for every i = 1, 2, 3, 4

The first term equals to 0 due to P0 is a steady state point. Thus the system becomes:
x′ = x′0 + δx′

δx′ =



∂f1
∂N

∂f1
∂T

∂f1
∂M

∂f1
∂E

∂f2
∂N

∂f2
∂T

∂f2
∂M

∂f2
∂E

∂f3
∂N

∂f3
∂T

∂f3
∂M

∂f3
∂E

∂f4
∂N

∂f4
∂T

∂f4
∂M

∂f4
∂E





δN

δT

δM

δE


+



∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

∂f3
∂u1

∂f3
∂u2

∂f4
∂u1

∂f4
∂u2




δu1

δu2



δx′ = Aδx+Bδu

δ~y = δ~x and ~z = H~x =

[
0 A1 0 A2

]
Finally we get:


x′ = Ax+B1w +B2u

z = C1x+D11w +D12u

y = C2x+D21w +D22u
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H infinity control setup
The objective of the problem is to design a linear, robust controller, which achieves good
tracking property, takes into account the model uncertainties and limits the magnitude of
the control input and the disturbance. The signals of the system are the following:

• r is the reference,

• u is the control input,

• y is the output,

• n is the measurement noise,

• zp is the penalized control input, whereas

• zn is the deviation of the output from the required one. The closed-loop system
includes the feedback structure of the nominal modelGn and the two-degree controller

• K =

[
Kf −Ky

]
which is portioned in two parts:
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• Ky is the feedback part to meet the requirements of internal and robust stability,
disturbance rejection, measurement noise attenuation, and sensitivity minimisation,
while

• Kr is the prefilter part, which optimises the response of the overall system to the
command input such that the output of the system would be near to that of the
chosen ideal system.

The input multiplication uncertainty Wu takes into consideration the differences between
the nominal model and the real plant. The weighting function Wn stands for the limitation
of sensor noise. The limitation of the control input is achieved by the weighting function
Wu which penalizes larger deflections. The model matching function Tid describes the ideal
transfer function of the plant. Since the designed controller should effect tumor regression
even in the worst case, the reference model, Tid describes fast regression from the maximal
tumor volume predicted by the model. The weighting function Wp penalizes tracking.

P =



zp

zn

r

y


=



−WpTid 0 WpG

0 0 Wu

I 0 0

0 WnG 0


=



A B1 B2

C1 D11 D12

C2 D21 D22


where : zp = Wp[Gu− Tidr] = WpGu−WpTidr

zu = Wnu
y = Gu+Wnn
u = Kfr −Ky(Gu+Wnn)
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SECTION 4.4

Linearized system simulation

Conclusions

A new nonlinear control method has been developed for a mathematical model studying
breast cancer,based on approximate linearization and stability theory. Above it has been
shown that the proposed method enables the state vector elements to track all the reference
points succesfully. The first stage of the proposed control method is the linearization of
the dynamic model using first order Taylor series expansion and the computation of the
associated Jacobian matrices. The errors due to the approximative linearization have been
considered as disturbances that affect,along with external pertubation the cancer model.
Feedback control scheme enabled accurate convergence,as diagrams show.
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Numerical Simulations
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SECTION 5.1

System simulation

A picture of the dynamical behavior of breast cancer cells in the presence of normal cells,
tumor cells, immune cells, and estrogen is given by the numerical simulations of the model.
The optimal control is acquired by solving the optimality system of four ordinary differen-
tial equations from the state variables and the adjoint system. An iterative scheme is used
to solve the optimality system.
All the numerical simulations were executed in Matlab 2018Rb. We employed the forward-
backward scheme method, beginning with an initial guess for optimal controls and solved
the optimal state system forward in time and after that solved the adjoint state system
backward in time. The aim of the therapy is to kill the tumor cells while minimizing the
amount of drug application, which also reduces the possible detrimental toxicity effect,
caused by the excess usage of the chemotherapy drugs. In the simulated cancer model,
the healthy equilibrium point P0 is locally stable, which means that the growth of cancer
is controllable if a sufficient immune surveillance is guaranteed. In the absence of suffi-
cient immune control, the tumor cells grow in number and kill the healthy tissue cells and
reach the limit capacity, which is referred to as dead equilibrium point. In our simulations,
in order to avoid selfcontrol of the immune system on the cancer cells, we choose a sce-
nario where the initial immune cell population is very small and the tumor cell population
is large, so that tumor growth is inevitable unless chemotherapy is applied. The initial
states, i.e., the conditions when the chemotherapy treatment is started, are assumed to be
: N(0) = 2000, T (0) = 800,M(0) = 500, E(0) = 20
While the initial values of variables are displayed in the chart below:
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Data were imported to Matlab r2018a

Simulation of the system in Matlab gave us the populations of each cell
type:
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The variation of proportion of Tumor cell population for different values of
d with other parameters fixed.

Graph 1 indicates that the introduction of a ketogenic diet results in a reduction of activities
of cancer cells and we also note that too much of a ketogenic diet will result in ketoacidosis.
Ketoacidosis is the combination of ketosis and acidosis. Ketosis is the accumulation of
substances called ketone bodies and acidosis is the increased acidity of the blood which can
cause frequent urination (Polyuria),poor appetite, and a loss of consciousness. Therefore,
our ketogenic diet’s parameter rate is best at d = 0.6 and it can complement the activity
of the anti-cancer drug (Tamoxifen).

The variation of proportion of Estrogen level population for different values
of k with other parapeters fixed
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Graph 2 shows the impact of anti-cancer drugs in reducing the production of excess estrogen
in the system, but when there is less production of estrogen there will not be a rapid
activation of the growth factor that expresses breast normal cells. However, the rapid
production of estrogen results in abnormal breast cells expression, which will lead to breast
cancer.

The variation of proportion of Tumor cell population for different values of
k with other parameters fixed

Graph 3 shows the obvious effectiveness of anti-cancer drugs on tumor cells when there is
no supply of nutrient or glucose to cancer cells.

The variation of proportion of Immune booster population for different val-
ues of β with other parameters fixed.



54 Numerical Simulations

Furthermore, Graph 4 illustrates that the red line β = 0 shows that during cancer formation
the activities of both innate and adaptive reduces drastically, which is due to the expression
of other proteins apart from those proteins that are responsible for the activation of the
immune response, such as an immune booster introduced to the system, which reactivates
the activities of the immune response towards the cancer cells.

The variation of Total cells population depicted as locally asymptotically
unstable.

The presence of abnormal estrogen level without anti-cancer drugs or a ketogenic diet will
lead the system into critical condition and became unstable (Graph 5).
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The variation of proportion of Normal cell population for different values of
λ1 with other parameters fixed

However, the system became stable as we introduced treatments, such as chemotherapy
and the ketogenic diet as represented in Graph 6.

The variation of proportion of Normal cell population for different values of
λ1 with other parameters fixed

Graph 7, indicates that there is DNA damage at λ1 = 0, which occurs naturally as a
result of metabolic or hydrolytic processes. It is as a result of the Tumor Suppressor Gene
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(TSG), which is able to control the activity of DNA gene repair successfully. On the other
hand, at λ1 = 0.2, 0.4, 0.6 showed that TSG (such as BRCA 1, BRCA 2, P53) compromised
the pathway that leads cells to grow uncontrollably and later form a tumor or it leads to
accelerated aging.

Control therapies on the system
By numerical simulation, optimal single control of anti-cancer drugs measure u1 and
ketogenic-diet optimal control measure u2 respectively. We set the time period in 100
days and we run the simulation with each,both and no therapies applied.

Simulation results showing population of normal cells against time, with
and without control.

Graph 8a shows the optimal single control of anti-cancer drugs
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Graph 8b shows the optimal single control of ketogenic-diet

Graph 8c is the use of combination of two control therapies which have significant impact
on the increase of normal cells population against time. However, all the strategies are ef-
fectively restrain the tumor growth, they cannot totally eliminate a large tumor in 100 days.

Simulation results showing population of tumor cells against time, with and
without control.
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It is observed that the combination of the two controls resulted in appreciable decreases
in the number of tumor cells population in the presence of control (solid green line) while
(dots red line)in the case of uncontrolled. However, tumor growth is driven to a very low
but non-zero level.
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Simulation results showing estrogen level against time, with and without
control.



60 Numerical Simulations

Furthermore, it was noticed from Graphs 10, that the level of estrogen was reduced
drastically in the presence of controls (solid green line) against the constant increase level
of estrogen (dots red line) in uncontrolled cases. However, anti-cancer drugs (for example
Tamoxifen) blocks estrogen receptors on breast cells, that is, it stops estrogen from con-
necting to the cancer cells while tamoxifen also acts like an anti-estrogen in breast cells; it
acts like an estrogen in other tissues like the uterus and the bones . In addition, ketosis
also regulating hormonal imbalance.
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Simulation results showing immune response against time, with and without
control.
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On the other hand, Graphs 11, shows that Immune response can help to fight cancer
cells while immune system recognize cancer cells as abnormal and kill them. However,this
may not be enough to eliminate cancer cells from the body.
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Final conclusions

A four-dimensional compartmental deterministic model was designed and used to mon-
itor the dynamics of breast cancer. The existing model was extended to incorporate treat-
ments,ketogenic diet, and an immune booster. The system was rigorously analyzed to gain
insight into their dynamical behaviors.

• The conditions of stability of the tumor-free equilibrium (TFE) was established and
the system is only local asymptotically stable if a certain threshold quantity, known
as the reproductive number, is less than unity (R0 < 1). It implies that the number of
tumor cells in the body will be brought to zero if proper treatments and a ketogenic
diet that can force make the threshold to a value less than unity are monitored.

• An individual has the chance of developing breast cancer depending on the level of
the immune system (s), the efficacy of the anti-cancer drug (k) and the rate at which
the ketogenic diet (d) is being taken to fight tumor cells. We also found out that
the presence of excess estrogen in system makes it unstable, as depicted in Graphs
10. This implies that any additional estrogen quantity introduced into the body
through the birth control, and hormone replacement therapy enhances the rate of
tumor formation. Thus, the development of breast cancer is certain.

• The transition from normal cells class to tumor cells class plays a crucial role in
breast cancer dynamics. More tumor is formed if the DNA is damaged or altered as
a result of excess estrogen, which reduces the number of normal cells being produced
by red blood cells. Furthermore, the results show that tumor cell formation depend
on the level of excess estrogen introduced into the body system. It must be noted
that the ability to resist changes in structure and amount of estrogen released during
natural biological processes is dependent on an individual’s DNA.Such biological
processes include: premenopausal and menopause stages. Other risk factors may
also be incorporated in the model for future work, which might generate different
results.
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CHAPTER 7

Matlab algorithms

SECTION 7.1

LQR controller algorithm

The algorithm to compute LQR controller is the following:

alpha1 =0.7 ;
alpha2 =0.514;
mu1=0.00003;
mu2=0.01;
phi1=6e−8;
gamma2=3e−6;
gamma3=1e−7;
s =1.3 e4 ;
eps1 =1.3 e4 ;
omega=3e5 ;
rho =0.2 ;
mu3=0.29;
kappa =0.5;
beta =0.01;
lam1 =0.2;
lam3 =0.002;
g =0.1 ;
mu4=0.97;
mu5=2;
d=0.6 ;
Ns=alpha1 ∗mu4−(1−kappa )ˆ2∗ lam1∗ eps1 /mu1∗mu4 ;
Ts=0;
Ms=s ∗beta ∗( g∗mu4+(1−kappa )∗ eps1 )/mu3∗( g∗mu4+(1−kappa )∗ eps1)+(1−kappa )ˆ2∗ lam3∗ eps1 ;
Es=(1−kappa )∗ eps1 /mu4 ;
A=[alpha1−2∗mu1∗Ns−(1−kappa )∗ lam1∗Es,−phi1 ∗Es ,0 ,(1−kappa )∗ lam1∗Ns ; (1−kappa )∗ lam1∗Es ,(1−kappa )∗ alpha2−gamma2∗Ms−mu5,0 ,(1−kappa )∗ lam1∗Ns ; 0 , rho∗Ms/omega−gamma3∗Ms,−mu3−(1−kappa )∗ lam3∗Es/g+Es,−(1−kappa )∗ lam3∗Ms∗( g+Es)+(1−kappa )∗ lam3∗Ms∗Es /( g+Es )ˆ2 ; 0 , 0 , 0 , −mu4 ] ;
B=[lam1∗Es∗Ns , 0 ; −lam1∗Ns∗Es,−Ts∗ alpha2 ; lam3∗Ms∗Es/g+Es , 0 ; 0,− eps1 ] ;
C= [ 1 , 1 , 1 , 1 ] ;
D=ze ro s ( 1 , 2 ) ;
Q=1e10∗ eye ( 4 , 4 ) ;
R=0.2∗ diag ( [ 1 , 1 ] ) ;
%Q=C’∗C;
K=l q r (A,B,Q,R) ;
%
Acl=A−B∗K
s y s c l=s s ( Acl ,B, eye ( 4 ) , z e r o s ( 4 , 2 ) ) ;
x0=[2000 800 500 2 0 ] ’ ;
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[ y , t , x ] = i n i t i a l ( s y s c l , x0 ) ;
%
f i g u r e (1 )
p l o t ( t , x ( : , 1 ) )
x l a b e l ( ’ time days ’ )
y l a b e l ( ’ normal c e l l s ’ )
g r i d
%
f i g u r e (2 )
p l o t ( t , x ( : , 2 ) )
x l a b e l ( ’ time days ’ )
y l a b e l ( ’ tumor c e l l s ’ )
g r i d
%
f i g u r e (3 )
p l o t ( t , x ( : , 3 ) )
x l a b e l ( ’ time days ’ )
y l a b e l ( ’ immune c e l l s ’ )
g r i d
%
f i g u r e (4 )
p l o t ( t , x ( : , 4 ) )
x l a b e l ( ’ time days ’ )
y l a b e l ( ’ e s t rogen ’ )
g r id
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SECTION 7.2

H∞ controller algorithm

Using Matlab r2018a we were able to compute the Optimal h infinity controller
under certain tolerance γ

%parameters
alpha1 =0.7 ;
alpha2 =0.514;
mu1=0.00003;
mu2=0.01;
phi1=6e−8;
gamma2=3e−6;
gamma3=1e−7;
s =1.3 e4 ;
eps1 =1.3 e4 ;
omega=3e5 ;
rho =0.2 ;
mu3=0.29;
kappa =.5;
beta =0.01;
lam1 =0.2;
lam3 =0.002;
g =0.1 ;
mu4=0.97;
mu5=2;
d=0.6 ;
Ns=alpha1 ∗mu4−(1−kappa )ˆ2∗ lam1∗ eps1 /mu1∗mu4 ;
Ts=0;
Ms=s ∗beta ∗( g∗mu4+(1−kappa )∗ eps1 )/mu3∗( g∗mu4+(1−kappa )∗ eps1)+(1−kappa )ˆ2∗ lam3∗ eps1 ;
Es=(1−kappa )∗ eps1 /mu4 ;
%Matrixes
A=[alpha1−2∗mu1∗Ns−(1−kappa )∗ lam1∗Es,−phi1 ∗Es ,0 ,(1−kappa )∗ lam1∗Ns ; (1−kappa )∗ lam1∗Es ,(1−kappa )∗ alpha2−gamma2∗Ms−mu5,0 ,(1−kappa )∗ lam1∗Ns ; 0 , rho∗Ms/omega−gamma3∗Ms,−mu3−(1−kappa )∗ lam3∗Es/g+Es,−(1−kappa )∗ lam3∗Ms∗( g+Es)+(1−kappa )∗ lam3∗Ms∗Es /( g+Es )ˆ2 ; 0 , 0 , 0 , −mu4 ] ;
B=[lam1∗Es∗Ns , 0 ; −lam1∗Ns∗Es,−Ts∗ alpha2 ; lam3∗Ms∗Es/g+Es , 0 ; 0,− eps1 ] ;
C= [ 1 , 1 , 1 , 1 ] ;
D=ze ro s ( 1 , 2 ) ;
R=[10 0 ; 0 1 0 ] ;
%plant
[P, L ,G]= care (A,B,C’∗C,R) ;

%GAMMA
num = [ 0 0 1 ] ;
den = [ 1 0 .8 1 ] ;
[A,B,C,D] = t f 2 s s (num, den ) ;
t o l = 1 .0 e−6 ;
[ gama toolbox ] = normhinf (A,B,C,D, t o l )

%C o n t r o l l e r
s = zpk ( ’ s ’ ) ;
W1 =0.1∗( s +100)/(100∗ s +1);
W2 = 0 . 1 ;
W3 = 0 . 1 ;
P = augw(G,W1,W2,W3) ;
[K,CL,GAMMA] = hin f syn (P) ;
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SECTION 7.3

Non-linear simulation

f unc t i on dy=fun1 ( t , y )
% func t i on dy=fun1 ( t , y )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% parameters
alpha1 =0.7 ;
alpha2 =0.514;
mu1=0.00003;
mu2=0.01;
phi1=6e−8;
gamma2=3e−6;
gamma3=1e−7;
s =1.3 e4 ;
eps1 =1.3 e4 ;
omega=3e5 ;
rho =0.2 ;
mu3=0.29;
kappa =.5;
beta =0.01;
lam1 =0.2;
lam3 =0.002;
g =0.1 ;
mu4=0.97;
mu5=2;
d=0.6 ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
n=y ( 1 ) ;
tc=y ( 2 ) ;
m=y ( 3 ) ;
e=y ( 4 ) ;
%
n d=n∗( alpha1−mu1∗n−phi1 ∗ tc )−(1−kappa )∗ lam1∗n∗e ;
t c d=tc ∗( alpha2 ∗d−mu2∗ tc )−gamma2∗m∗ tc−mu5∗ tc+(1−kappa )∗ lam1∗n∗e ;
m d=s ∗beta+(rho∗m∗ tc )/ ( omega+tc)−gamma3∗m∗ tc−mu3∗m−(1−kappa )∗ ( lam3∗m∗e )/ ( g+e ) ;
e d=(1−kappa )∗ eps1−mu4∗e ;

dy=[n d tc d m d e d ] ’ ;
end

% t e s t ode45
%
n0=2000;
tc0 =800;
m0=500;
e0 =20;
%
[ tout , yout ] = ode45 ( ’ fun1 ’ , [ 0 1 ] , [ n0 tc0 m0 e0 ] ’ )

f i g u r e (1 )
p l o t ( tout , yout ( : , 1 ) ) ;

f i g u r e (2 )
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p l o t ( tout , yout ( : , 2 ) ) ;

f i g u r e (3 )
p l o t ( tout , yout ( : , 3 ) ) ;

f i g u r e (4 )
p l o t ( tout , yout ( : , 4 ) ) ;
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