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Abstract

For Ω ⊂ RN an open set with boundary ∂Ω satisfying certain smooth-
ness assumptions, we consider the Besov spaces Bl−1/p

p (∂Ω) as the
trace spaces of the Sobolev spaces W l

p(Ω). More specifically, first
we consider the traces in RN−1 of functions defined on RN and
we prove that the trace operator T : W 1

p (RN) → Lp(RN−1) satisfies
TW1

p(RN
+ ) = B1−1/p

p (RN−1). Then we prove that TWl
p(Ω) = Bl−1/p

p (∂Ω),
where Ω ⊂ RN an open set with Cl-boundary. For the case p = 2,
we approach the definition of the trace spaces with two other meth-
ods, namely using the Fourier transformation and using the spec-
tral definition given by Auchmuty [3]. Finally, we use the previous
results to prove the existence of solution for the Dirichlet problem.
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Chapter 1

Introduction

In many problems of mathematical physics and the calculus of vari-
ations it is not sufficient to deal with classical solutions of differ-
ential equations, especially when questions are raised about the
regularity of the solutions. In many cases it is necessary to in-
troduce the notion of weak derivatives and work in the so called
Sobolev spaces. In 1936–38, S.L.Sobolev introduced spaces of in-
tegrable functions having weak derivatives in Lp. These function
spaces have turned out to be very useful when studying partial dif-
ferential equations on smooth and nonsmooth domains and their
boundary value problems.

A key component when using Sobolev spaces as a framework to
deal with boundary value problems in PDEs is Trace theory. When
we work with Sobolev spaces we have a certain knowledge regarding
the regularity and smoothness of the solutions. But what about the
regularity and smoothness of the functions defining the boundary
conditions?
In order to better understand the importance of this question for a
domain Ω ⊂ RN let us consider the following problem:{

−∆u = F , x ∈ Ω,
u|∂Ω = g, x ∈ ∂Ω,

(1.1)

which is also know as Poisson problem with non-homogeneous Dirich-
let boundary conditions and let us suppose that we wish to find a
solution u ∈ Hs(Ω), where Hs(Ω) = W s

2 (Ω).
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Introduction

There are several approaches to the solution of such problem.
One approach is to look for a minimizer of the corresponding en-
ergy functional. Then the minimizer satisfies the associated Euler-
Lagrange equation which coincides with the given problem. For this
approach it is essential to know which functions g are admissible. If
we think of the trace of a function u ∈ Hs(Ω) as an element of L2(∂Ω)
and in a more broad sense as the restriction of u to the boundary
of Ω (in fact, it is the restriction if u is continuous) equivalently to
problem (1.1) we can write:{

−∆u = F , x ∈ Ω,
T u = g, x ∈ ∂Ω,

(1.2)

where T denotes the trace operator.
Thus, it becomes more clear why describing the trace operator’s
image from a Sobolev space is a fundamental problem. In fact this
problem has challenged mathematicians for a long time. It was
first solved in the case p = 2 via Fourier Transform methods. The
solution for p 6= 2 and l = 1 was given by Gagliardo in the 50’s. The
general case was sorted out by Besov and Nikolskii. The solution
involves the so-called Besov-Nikolskii spaces Blp(∂Ω) (in the following
chapters we will be referring to them simply as Besov spaces).

A very interesting and recent approach, for the case p = 2, in-
volves a spectral representation of the trace spaces and was given
by G. Auchmuty in 2006. For this approach, Auchmuty generates
an orthonormal basis for L2(∂Ω) with use of the Steklov eigenfunc-
tions and uses this basis to describe the trace spaces.

In the last chapter, after we present the trace theorems we will
go back to the Poisson problem with Dirichlet boundary conditions
that motivated us in the first place and we will prove the existence
of solutions: first with use of the classical definition of trace spaces
(i.e. via Besov spaces) and then with use of the spectral definition
as given by Auchmuty.

Lastly, another aspect regarding the importance of describing
the trace image of Sobolev spaces lies in the study of Sobolev spaces
themselves and not just in the frame of PDEs, since they constitute
an individual field of study.
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Chapter 2

Preliminaries

We present here a number of results widely used in the following
chapters. For further information we refer to [7], [8], [9], [10].

2.1 Some useful results
Lemma 2.1 (Minkowski’s inequality). Let (X,M, µ) be a measure
space. Let 1 ≤ p ≤ ∞ and let u, υ : X → [−∞,∞] be measurable
functions. Then

‖u+ υ‖Lp ≤ ‖u‖Lp + ‖υ‖Lp .

Lemma 2.2 (Minkowski’s inequality for integrals). Let (X,M, µ) and
(Y,N , ν) be two measure spaces. Assume that µ, ν are complete and
σ-finite. Let u : X×Y → [0,∞] be a (M×N )-measurable function and
let 1 ≤ p ≤ ∞. Then∣∣∣∣∣∣∣∣∫

x

|u(x, ·)|dµ(x)

∣∣∣∣∣∣∣∣
Lp(Y,N ,ν)

≤
∫
x

‖u(x, ·)‖Lp(Y,N ,ν)dµ(x).

Lemma 2.3 (Minkowski’s inequality for sums). Let (X,M, µ) and
(Y,N , ν) be two measure spaces. Assume that µ, ν are complete and
σ-finite. Let u, υ : X × Y → [0,∞] be a (M×N )-measurable function
and let 1 ≤ p ≤ ∞. Then(∑

x∈X

|u(x) + υ(x)|p
)1/p

≤

(∑
x∈X

|u(x)|p
)1/p

+

(∑
x∈X

|υ(x)|p
)1/p

.
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Preliminaries

Theorem 2.1 (Tonelli’s Theorem). Let (X,M, µ) and (Y,N , ν) be two
measure spaces. Assume that µ and ν are complete and σ-finite and
let u : X × Y → [0,∞] be a (M × N )-measurable function. Then
for µ-a.e., x ∈ X the function u(x, ·) is measurable and the function∫
Y
u(·, y)dν(y) is measurable. Similarly, for ν-a.e. and y ∈ Y the func-

tion u(·, y) is measurable and the function
∫
Y
u(x, ·)dµ(y) is measur-

able. Moreover,∫
X

(∫
Y

u(x, y)dν(y)

)
dµ(x) =

∫
Y

(∫
X

u(x, y)dµ(x)

)
dν(y)

Theorem 2.2 (Fubini’s Theorem). Let (X,M, µ) and (Y,N , ν) be two
measure spaces. Assume that µ and ν are complete and let u : X ×
Y → [−∞,∞] be (µ× ν)-integrable. Then for µ-a.e. x ∈ Xthe function
u(x, ·) is ν-integrable and the function

∫
Y
u(·, y)dν(y) is µ-integrable.

Theorem 2.3 (Hölder’s inequality). Let (X,M, µ) be a measure space,
1 ≤ p ≤ ∞ and and let q be its Hölder conjugate exponent, i.e. 1

p
+ 1

q
=

1. If u, υ : X → [−∞,∞] are measurable functions, then

‖uυ‖L1(X) ≤ ‖u‖Lp(X)‖υ‖Lq(X).

Lemma 2.4 (Fatou’s lemma). Let (X,M, µ) be a measure space. Let
un : X → [0,∞] be a sequence of measurable functions, then∫

X

lim inf
n→∞

undµ ≤ lim inf
n→∞

∫
X

undµ.

Theorem 2.4. Let (X,M, µ) be a measure space. Let Y be a metric
space, and let u : X × Y → R be a function. Assume that for each
fixed y ∈ Y the function x ∈ X 7→ u(x, y) is measurable and that there
exists y0 ∈ Y such that

lim
y→y0

u(x, y) = u(x, y0),

for every x ∈ X.
Assume also that there exists an integrable function g : X → [0,∞]
such that

|u(x, y)| ≤ g(x),
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Preliminaries

for µ a.e. x ∈ X and for all y ∈ Y . Then the function F : Y → R,
defined by

F (y) =

∫
X

u(x, y)dµ(x), y ∈ Y,

is well-defined and continuous at y0.
Theorem 2.5. Let Y be an interval of R and assume that for each
fixed x ∈ X the function y ∈ Y 7→ u(x, y) is differentiable and that for
each fixed y ∈ Y the functions x ∈ X 7→ u(x, y) and x ∈ X 7→ ∂u

∂y
(x, y)

are measurable. Assume also that for some y0 ∈ Y the function x ∈
X 7→ u(x, y0) is integrable and that there exists an integrable function
h : X → [0,∞] such that ∣∣∣∣∂u∂y (x, y)

∣∣∣∣ ≤ h(x)

for µ a.e. x ∈ X and for all y ∈ Y .Then the function F : Y → R, defined
by

F (y) =

∫
X

u(x, y)dµ(x), y ∈ Y,

is well-defined and differentiable, with

F ′(y) =

∫
X

∂u

∂y
(x, y)dµ(x).

Now we need to define the functions called mollifiers.
Definition 2.1. Let φ ∈ L1(RN) be a non-negative, bounded function
with

suppφ ⊂ B(0, 1),

∫
RN

φ(x)dx = 1. (2.1)

For every ε > 0 we define

φε(x) =
1

εN
φ
(x
ε

)
, x ∈ RN .

The functions φε are called mollifiers.
In the case that φ is of class C∞c defined by

φ(x) :=

{
α exp

{
1

|x|2−1

}
, if |x| < 1

1, if |x| ≥ 1,
(2.2)

where α > 0 is such that (2.1) is satisfied. We call φε standard molli-
fiers.

8



Preliminaries

Remark. We note that suppφε ⊂ B(0, ε).

Definition 2.2. Let Ω ⊂ RN be an open set and let u ∈ L1(Ω). We
consider the open set Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}. For x ∈ Ωε we
define the function uε : Ωε → R, which we will call a mollification of u:

uε(x) := (u ∗ φε)(x) =

∫
Ω

u(x− y)φε(y)dy,

where φε the standard mollifiers.

Theorem 2.6. Let Ω ⊂ RN be an open set, let φ ∈ L1(RN) be a non-
negative bounded function satisfying (2.1), and let u ∈ L1(Ω).

1. If u ∈ C(Ω), then uε → u as ε→ 0+ uniformly on compact subsets
of Ω.

2. For every Lebesque point x ∈ Ω of u we have uε(x) → u(x) as
ε→ 0+.

3. If 1 ≤ p ≤ ∞, then
‖uε‖Lp(Ωε) ≤ ‖u‖Lp(Ω),

for every ε > 0 and

‖uε‖Lp(Ωε) → ‖u‖Lp(Ω) as ε→ 0+. (2.3)

4. If u ∈ Lp(Ω), 1 ≤ p <∞, then

lim
ε→0+

(∫
Ωε

|uε − u|pdx
)1/p

= 0.

In particular, for any open set Ω′ ⊂ Ω with dist(Ω′, ∂Ω) > 0, uε → u
in Lp(Ω′).

Theorem 2.7. Let Ω ⊂ RN be an open set, let φ ∈ L1(RN) be defined
as in (2.2) and let u ∈ L1(Ω). Then uε ∈ C∞(Ωε) for all 0 < ε < 1.
Moreover, for every multi-index α we have

∂auε
∂xa

(x) =

(
u ∗ ∂

aφε
∂xa

)
(x) =

∫
RN

∂aφε
∂xa

(x− y)u(y)dy,

for all x ∈ Ωε.
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Preliminaries

Definition 2.3. Let (H, 〈·, ·〉) be a Hilbert space and let T : H → H be
a symmetric operator, i.e. 〈Tx, y〉 = 〈y, Tx〉, where H a Hilbert space.
We say that T is non-negative if

〈Tu, u〉 ≥ 0, (2.4)

for all u ∈ H.

Proposition 2.1. Let (H, 〈·, ·〉) be a Hilbert space and let T : H → H
be a self-adjoint operator. Then T is non-negative if and only if σ(T ) ⊂
[0,∞], where σ(T ) denotes the spectrum of T .

Theorem 2.8 (Courant-Rayleigh minmax principle). Let
(
H, 〈·, ·〉

)
be

a Hilbert space and let T : H → H be a compact, self-adjoint operator,
whose positive eigenvalues are listed in decreasing order 0 ≤ · · · ≤
λn ≤ · · · ≤ λ1. Then

λn = min
V⊂H

dimV=n−1

max
x∈V ⊥
x 6=0

〈Tx, x〉
‖x‖

,

where V ⊂ H is an (n− 1)-dimensional subspace.

Theorem 2.9 (Riesz’s Representation Theorem). LetM be a bounded
linear functional on a Hilbert spaceH equipped with the inner product
〈·, ·〉. Then there exists some g ∈ H such that for every u ∈ H

Mu = 〈u, g〉.

Moreover, ‖M‖ = ‖g‖, where ‖ · ‖ the inducted norm.

Theorem 2.10. (Spectral Theorem for compact and self-adjoint oper-
ators) Let H be a Hilbert space and T : H → H a compact and self-
adjoint operator on H. Then there exists a finite or infinite sequence of
real eigenvalues {λn}Nn=1 with {λn} 6= 0 and a corresponding orthonor-
mal sequence of eigenfunctions {en}Nn=1 in H such that

1. Ten = λnen for all 1 ≤ n ≤ N ,

2. ImT = span〈{en}N
n=1〉,

3. if N =∞, that is {λn}Nn=1 is infinite, then λn → 0 as n→∞.
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Preliminaries

Theorem 2.11. Let Ω ⊂ RN a bounded set. The space L2(Ω) with
the standard norm is a Banach space. Moreover, let {φn}∞n=1 be an
orthonormal sequence in L2(Ω), then given a sequence of numbers
{cn}∞n=1 such that

∞∑
n=1

c2
n < ∞ there exists a function u ∈ L2(Ω) such

that ∫
Ω

|u(x)|2dx =
∞∑
n=1

c2
n, cn =

∫
Ω

φn(x)u(x)dx.

2.2 Sobolev Spaces
Let Ω ⊂ RN be an open set, s ∈ N, 1 ≤ p ≤ ∞. Let C∞c (Ω) be the space
of functions in C∞(Ω) with compact support in Ω, i.e. the space of
test functions.

Definition 2.4. Let u, υ ∈ L1
Loc(Ω) and α = (α1, . . . , αN) ∈ NN

0 a multi-
index. We say that υ is the αth-weak partial derivative of u, and we
write Dαu = υ if ∫

Ω

uDαφdx = (−1)|α|
∫

Ω

υφdx,

for all φ ∈ C∞c (Ω).

Definition 2.5. We define the Sobolev Space W s
p (Ω) to be the space

of all the functions u ∈ Lp(Ω) such that for all α ∈ NN
0 with |α| ≤ s, the

weak derivative Dαu exists and belongs to Lp(Ω). In the special case
p = 2 we write Hs(Ω) = W s

2 (Ω). We also introduce the following norm
in W s

p (Ω):

‖u‖W s
p (Ω) :=

(∑
|α|≤s

‖Dαu‖Lp(Ω)

)1/p

, p 6=∞

‖u‖W s
∞(Ω) :=

∑
|α|≤s

‖Dαu‖L∞(Ω).

Definition 2.6. Let {um}∞m=1, Ω ⊂ RN and u ∈ W s
p (Ω). We say that um

converges to u in W s
p (Ω) and write um → u in W s

p (Ω) provided that

lim
m→∞

‖um − u‖W s
p (Ω) = 0.
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Definition 2.7. We denote by W s,p
0 (Ω) the closure of C∞c (Ω) in W s

p (Ω)
and respectively Hs

0(Ω) for the case p = 2.

Thus we have that u ∈ W s,p
0 (Ω) for Ω ⊂ RN if and only if there

exist functions um ∈ C∞c (Ω) such that um → u in W s
p (Ω). We can

interpret W s,p
0 (Ω) as comprising all those functions u ∈ W s

p (Ω) such
that Dαu = 0 on the boundary ∂Ω for all |α| ≤ s− 1.

Proposition. For all s ∈ N, 1 ≤ p ≤ ∞, the Sobolev Space W s
p (Ω) is a

Banach space.

Proof. Let {uj}∞j=1 a Cauchy sequence in W s
p (Ω). Then for all |α| ≤ s

{Dαuj}∞j=1 is a Cauchy sequence in Lp(Ω) and since Lp(Ω) is complete,
there exist functions u, ua ∈ Lp(Ω) such that

uj → u,as j →∞ in Lp(Ω)

Dαuj → ua,as j →∞ in Lp(Ω),

for all |α| ≤ s.
Let φ ∈ C∞c (Ω), then by Hölder’s inequality it follows∫

Ω

|(u− uj)Dαφ|pdx ≤
∫

Ω

|u− uj|pdx
∫

Ω

|Dαφ|qdx→ 0,

where q the conjugate of p.
Hence, u ∈ W s

p (Ω) and Dαu = uα for all |α| ≤ s. This means that
Dαuj → Dαu for all |α| ≤ s and as a result we have uj → u in W s

p (Ω).

Definition 2.8. For an arbitrary nonempty set Ω ⊂ RN we denote by
Cb(Ω) the Banach space of functions u continuous and bounded on Ω
with the norm ‖u‖C(Ω) = sup

x∈Ω
|u(x)|.

Definition 2.9. Let l ∈ N. We denote by Clb(Ω) the Banach space of
functions u ∈ Cb(Ω) such that for all α ∈ NN

0 where |a| = l and for all
x ∈ Ω the derivatives (Dau)(x) exist and Dau ∈ Cb(Ω), with the norm

‖u‖Cl(Ω) = ‖u‖C(Ω) +
∑
|α|=l

‖Dαu‖C(Ω).
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Lemma 2.5. Let 1 ≤ q < p ≤ ∞ and let Ω ⊂ RN be a bounded open
set with boundary of class C0,1. Then the embedding

W 1
p (Ω) ↪→ Lq(Ω)

is compact.
Lemma 2.6. Let l ∈ N, 1 ≤ p ≤ ∞ and let Ω ⊂ RN be an open set with
Lipschitz boundary, i.e. of class C0,1. Let also φ ∈ Clb(Ω). Then for all
u ∈ W l

p(Ω)
‖uφ‖W l

p(Ω) ≤ c‖u‖W l
p(suppφ∩Ω),

where c > 0 is independent of u.
Lemma 2.7. Let l ∈ N, 1 ≤ p ≤ ∞ and let Ω ⊂ RN be an open set
having a quasi-resolved boundary1. Moreover, let g = (g1, . . . , gN) :
Ω → RN , gK ∈ Cl(Ω), K = 1, . . . , N . We suppose that for all α ∈ NN

0 ,
satisfying 1 ≤ |α| ≤ l the derivatives DαgK are bounded on Ω and the
Jacobian Jg(x) = Dg

Dx
is such that infx∈Ω |DgDx(x)| > 0. Furthermore, let

g(Ω) be also an open set with a quasi-resolved boundary. Then for
all u ∈ W l

p(Ω)

c1‖u‖W l
p(g(Ω)) ≤ ‖ug‖W l

p(Ω) ≤ c2‖u‖W l
p(g(Ω)),

where c1, c2 > 0 are independent of u and p.
Next we present two approximation by smooth functions theo-

rems. For the proofs we refer to [5].
Theorem 2.12 (Global approximation by smooth functions). Let
Ω ⊂ RN be an open set and let u ∈ W l

p(Ω) for some 1 ≤ p < ∞. Then
there exist functions um ∈ C∞(Ω) ∩W l

p(Ω) such that

um → u in W l
p(Ω).

Theorem 2.13 (Global approximation by functions smooth up to
the boundary). Let Ω ⊂ RN be an open bounded set with C1 bound-
ary. We suppose that u ∈ W l

p(Ω) for some 1 ≤ p <∞. Then there exist
functions um ∈ C∞(Ω) ∩W l

p(Ω) such that

um → u in W l
p(Ω).

Definition 2.10. Let Ω ⊂ RN be an open set and let 1 < p < ∞. The
Sobolev space L1,p(Ω) is the space of all functions u ∈ L1

Loc(Ω) whose
gradient ∇u (in the sense of distributions) belongs to Lp(Ω).

1The precise definition of this notion is given in the next chapter.
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2.3 Trace of a function
In this section we present the definition, as well as several results,
regarding the Trace operator.
Let u ∈ L1

Loc(R
N), N > 1. We want to define the trace g of the function

u on RM , where 1 ≤M < N . In order to do so we will represent each
x ∈ RN as x = (y, z),where y = (x1, . . . , xM) ∈ RM , z = (xM+1, . . . , xN) ∈
RN−M and we will consider RM as the M-dimensional space of all
points (y, z), where z = (0, . . . , 0) and y runs through any possible
values.
If u is continuous we can define the trace to be the restriction of the
function on RM . However, this definition obviously does not make
sense for every u ∈ L1

Loc(R
N). In order to define the trace g for a

function u ∈ L1
Loc(R

N) we have to make certain requirements:

1. g ∈ L1
Loc(R

M),

2. if g ∈ L1
Loc(R

M) is a trace of u, then ψ ∈ L1
Loc(R

M) is also a trace
of u iff ψ is equivalent to g on RM ,

3. if g ∈ L1
Loc(R

M) is a trace of u and h is equivalent to u on RN ,
then g is also a trace of h,

4. if u is continuous then u(y, 0) is a trace of u.

The following definition, as given by Burenkov [1], satisfies all of
the requirements above .

Definition 2.11. Let u ∈ L1
Loc(R

N) and g ∈ L1
Loc(R

M). We call the func-
tion g a trace of the function u if there exists a function h ∈ L1

Loc(R
N)

such that h is equivalent to u on RN and

h(·, z)→ g(·) in L1
Loc(R

M) as z → 0.

Theorem 2.14. (Existence of Trace) Let s,m,N ∈ N, m < n and 1 ≤
p ≤ ∞. Then traces on RM exist for all u ∈ W s

p (RN) iff

s >
n−m
p

for 1 < p ≤ ∞, s ≥ N −M for p = 1,

equivalently, iff
W s
p (RN−M) ↪→ C(RN−M).
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Proof. We refer to [1].

Definition 2.12. We say that a domain Ω ⊂ RN is a bounded domain
with a resolved boundary with the parameters d, D satisfying 0 < d ≤
D <∞ if

Ω = {x ∈ RN : αN < xN < φ(x), x ∈ A}, (2.5)

where diamΩ ≤ D, x = (x1, . . . , xN−1) ∈ RN−1, A = {x ∈ RN−1 : ai < xi <
bi, i = 1, . . . , N − 1}, −∞ < ai < bi <∞ and

aN + d ≤ φ(x), x ∈ A.

Let Ω ⊂ RN be an open set with C1-boundary. Now we wish to
extend Definition 2.11 to the case of RN , RM being replaced with Ω,
∂Ω respectively.
In order to do so, we will use the same method as in [1]. We start
with Ω ⊂ RN being a bounded domain having the form (2.5), with φ
of class C1.
Let u ∈ L1(Ω). In the spirit of Definition 2.11 we say that the function
g ∈ L1(Γ), where Γ = {x ∈ RN : xN = φ(x), x ∈ A}, is a trace of the
function u on Γ if there exists a function h equivalent to u on Ω such
that

h(·+ teN)→ g(·) in L1(Γ) as t→ 0−,

where eN = (0, . . . , 0, 1).
Since there is no guarantee that the boundary ∂Ω will be flat near
a chosen point x0 ∈ ∂Ω, we can use a proper transformation Φ of Ω
(with inverse Φ−1), which straightens out ∂Ω near x0. Then with use
of the transformation Φ of Ω (as chosen in [1]) we have that g(Φ−1)
is a trace of u(Φ−1) on Φ(Γ).
Next we suppose that Ω ⊂ RN is an open set such that for a certain
map λ, which is a composition of rotations, reflections and transla-
tions, the set λ(Ω) is a bounded domain with C1-boundary and Γ is
such that λ(Γ) = {x ∈ RN : xN = φ(x), x ∈ A} (for further details we
refer to [1]). In this case we say that g is a trace of u on Γ if g(λ−1) is
a trace of u(λ−1) on λ(Γ).
Finally, let Ω ⊂ RN be an open set with C1-boundary and let Vj be
open parallelepipeds defined as in [1]. Then there exists a parti-
tion of unity ψj ∈ C∞(RN) such that 0 ≤ ψj ≤ 1, suppψj ⊂ (Vj) d

2
,
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j = 1, . . . , s,
s∑
j=1

ψj = 1 on Ω and

|Dαψj(x)| ≤ cd−|α|, x ∈ RN , α ∈ N0, j = 1, . . . , s,

where c > 0 is independent of x, j and d (for the proof we refer to [1]).
Having said so, we have the following definition.

Definition 2.13. Let Ω ⊂ RN be an open set with C1-boundary and
u : Ω→ RN with u ∈ L1(B∩Ω), for each ball B ⊂ RN . We suppose that
u =

s∑
j=1

uj, where suppuj ⊂ Vj and uj ∈ L1(Vj ∩ Ω). If the functions gj

are traces of the functions uj on Vj ∩ ∂Ω, j = 1, . . . , s, then the function

g =
s∑
j=1

gj is said to be a trace of the function u on ∂Ω.

Theorem 2.15 (Trace Theorem). Let Ω ⊂ RN bounded with C1 bound-
ary. Then there exists a bounded linear operator

T : W 1
p (Ω)→ Lp(∂Ω)

such that

1. T u = u|∂Ω

2. ‖T u‖Lp(∂Ω) ≤ C‖u‖W 1
p (Ω),

for all u ∈ W 1
p (Ω) and C = C(p,Ω) independent of u.

Proof. For the proof we refer to [5].

Theorem 2.16. Let N ≥ 2 and Ω ⊂ RN be an open set whose bound-
ary ∂Ω is uniformly Lipschitz, let 1 ≤ p <∞, and let u ∈ W 1

p (Ω). Then
T u = 0 if and only if u ∈ W 1,p

0 (Ω).

Proof. For the proof we refer to [2].

Lastly we present the following Theorem regarding the compact-
ness of the Trace operator. For the proof we refer to [6].

Theorem 2.17. (Compact Trace Theorem) Let Ω ⊂ RN be a bounded
open set with C1 boundary and let 1 ≤ p <∞. Then the trace operator
T : W 1

p (Ω)→ Lp(∂Ω) is compact.

16
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2.4 Besov spaces
In order to determine the Trace Spaces of the Sobolev Spaces W s

p it
is necessary to introduce the Besov Spaces Bsp.

Definition 2.14. Let u : RN → R. We have the following definitions.
For all h ∈ R, i = 1, . . . , N and x ∈ RN we define

∆h
i u(x) := u(x+ hei)− u(x) = u(x′i, xi + h)− u(x′i, xi),

where ei is the i-th vector of the canonical basis in R.
For h ∈ RN and σ ∈ N we define

∆σ
hu(x) =

σ∑
k=0

(−1)σ−k
(
σ

k

)
u(x+ kh).

Thereinafter, the use of each definition given above will be clear
from the context.

Definition 2.15. Let s > 0, σ ∈ N, σ > s and 1 ≤ p, θ ≤ ∞. The func-
tion u ∈ L1

Loc(Ω) belongs to the Besov space Bsp,θ(Ω) if u is measurable
on RN and

‖u‖Bsp,θ(RN ) := ‖u‖Lp(RN ) + |u|Bsp,θ(RN ) <∞,

where

|u|Bsp,θ(RN ) :=

(∫
RN

(‖∆σ
hu‖Lp(RN )

|h|l

)θ
dh

|h|N

) 1
θ

,

if 1 ≤ θ <∞ and

|u|Bs∞(RN ) := sup
h∈RN ,h6=0

‖∆σ
hu‖Lp(RN )

|h|l
.

This definition is independent of σ > l as the following lemma
shows. (For the proofs of the following Lemma and Propositions we
refer to [1].)

Lemma 2.8. Let l > 0, 1 ≤ p, θ ≤ ∞. Then the norms ‖ · ‖Bsp,θ(RN )

corresponding to different σ ∈ N satisfying σ > l are equivalent.

Proposition 2.2. Let 1 ≤ p, θ ≤ ∞, s > 0. Then the Besov space
Bsp,θ(Ω) is a Banach space.

17
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Remark. For θ = s we denote Bsp,p = Bsp.
Proposition 2.3. Let 0 < s < 1, 1 ≤ p ≤ ∞. For any u ∈ L1

Loc(R
N) let

uε := φε ∗ u, where φε is a a standard mollifier. Then
|uε|Bsp(RN ) ≤ |u|Bsp(RN ),

for all ε > 0 and
lim
ε→0+

|uε|Bsp(RN ) = |u|Bsp(RN ).

Moreover if p <∞ and u ∈ Bsp(RN), then
lim
ε→0+

|uε − u|Bsp(RN ) = 0.

In particular, if p <∞ then C∞(RN) ∩ Bsp(RN) is dense in Bsp(RN).
Now we need to define the spaces Bsp(∂Ω), where s > 0, 1 ≤ p ≤ ∞.

In order to do so, we use similar arguments as in the case of defining
the Trace in Ω ⊂ RN instead of RN .
If Ω ⊂ RN is a bounded domain with C1-boundary and u is defined
on Γ, we say that u ∈ Bsp(Γ) if u(x, φ(x) ∈ Bsp(A) and we set

‖u‖Bsp(Γ) = ‖u(Φ−1)‖Bsp(Φ(Γ)) = ‖u(x, φ(x)‖Bsp(A),

where Φ, A defined as above.
If Ω ⊂ RN is such that for a certain map λ, which is a composition of
rotations,reflections and translations, the set λ(Ω) is bounded with
C1-boundary, then u ∈ Bsp(Γ) if u(λ−1) ∈ Bsp(λ(Γ)) and

‖u‖Bsp(Γ) = ‖u(λ−1)‖Bsp(λ(Γ)) = ‖u(Λ)‖Bsp(Λ),

where Λ = Φ(λ).
Hence we have the following definition.
Definition 2.16. Let s > 0, 1 ≤ p ≤ ∞ and let Ω ⊂ RN be an open set
with with C1-boundary. We say that u ∈ Bsp(∂Ω) if uψj ∈ Bsp(Vj ∩ ∂Ω),
j = 1, . . . , l and

‖u‖Bsp(∂Ω) =

(
l∑

j=1

‖uψj‖pBsp(Vj∩∂Ω)

)1/p

=

(
l∑

j=1

‖uψj(Λ−1)‖pBsp(Φ(Γ))

)1/p

,

where Λj = Φj(λj) and ψj is the partition of unity defined above.
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Chapter 3

Trace Spaces of Sobolev
Spaces

In this chapter we will define the Trace spaces of the Sobolev spaces
with use of the Besov spaces. More specifically we have the following
Theorems.

Theorem 3.1. Let 1 ≤ p ≤ ∞, l,M,N ∈ N with M < N , l > N−M
p

and
the trace operator T : W l

p(R
N)→ Lp(RM). Then

TWl
p(RN) = B

l−N−M
p

p (RM).

Proof. For the proof we refer to [1].

We will prove the theorem for the case l = 1 and M = N − 1.
For the inclusion TW 1

p (RN
+ ) ⊂ B1−1/p

p (RN−1) it suffices to show that
for all u ∈ W 1

p (RN
+ ) the trace g = T u ∈ B1−1/p

p (RN−1). More specifically
we will prove that there exists a constant C = C(N, p) such that

‖g‖B1−1/p
p (RN−1)

≤ C‖u‖Lp(RN ),

for all u ∈ L1(RN
+ ).

Theorem 3.2. Let 1 < p <∞, N ≥ 2, RN
+ = {(x′, xN) ∈ RN−1×R : xN >

0)}. Then,
TW 1

p (RN
+ ) ⊂ B1−1/p

p (RN−1).
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Proof. Let u ∈ L1(RN
+ ) ∩ C∞(RN). For ∆h

i u(x) := u(x + hei) − u(x) =
u(x′i, xi + h)− u(x′i, xi), we write

u(x′, 0) = u(x′, xN)− (u(x′, xN)− u(x′, 0)) = u(x′, xN)−∆xN
N u(x′, 0),

for all x′ ∈ RN−1, xN > 0.
By integrating in xN over the interval (0, h), h > 0 we get∫ h

0

|u(x′, 0)|dxN ≤
∫ h

0

|u(x′, xN)|dxN +

∫ h

0

|∆xN
N u(x′, 0)|dxN .

Therefore,

|u(x′, 0)| ≤ 1

h

∫ h

0

|u(x′, xN)|dxN +
1

h

∫ h

0

|∆xN
N u(x′, 0)|dxN .

We replace u with ∆h
i u

|∆h
i u(x′, 0)| ≤ 1

h

∫ h

0

|∆h
i u(x′, xN)|dxN +

1

h

∫ h

0

|∆xN
N ∆h

i u(x′, 0)|dxN

≤ 1

h

∫ h

0

|∆h
i u(x′, xN)|dxN

+
1

h

∫ h

0

|∆xN
N u(x′ + he′i, 0)|+ |∆xN

N u(x′, 0)|dxN ,

(3.1)

where ei = (e′i, 0), i = 1, . . . , N − 1.
By the Fundamental Theorem of Calculus we have:

• ∆h
i u(x′, xN) = u(x′ + he′i, xN)− u(x′, xN) =

∫ h
0

∂u
∂xi

(x′ + ξe′i, xN)dξ

• ∆xN
N u(x′+e′i, 0) = u(x′+he′i, xN)−u(x′+e′i, 0) =

∫ xN
0

∂u
∂xN

(x′+he′i, z)dz

• ∆xN
N u(x′, 0) = u(x′, xN)− u(x′, 0) =

∫ xN
0

∂u
∂xN

(x′, z)dz

Then by 3.1 it follows

|∆h
i u(x′, 0)| ≤ 1

h

∫ h

0

∫ h

0

∣∣∣∣ ∂u∂xi (x′ + ξe′i, xN)

∣∣∣∣ dξdxN
+

1

h

∫ h

0

∫ xN

0

∣∣∣∣ ∂u∂xN (x′ + he′i, z)

∣∣∣∣+

∣∣∣∣ ∂u∂xN (x′, z)

∣∣∣∣ dzdxN .
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For J =
∫ h

0

∫ xN
0
| ∂u
∂xN

(x′ + he′i, z)|+ | ∂u∂xN
(x′, z)|dzdxN we have

J ≤
∫ h

0

∫ h

0

∣∣∣∣ ∂u∂xN (x′ + he′i, z)

∣∣∣∣+

∣∣∣∣ ∂u∂xN (x′, z)

∣∣∣∣ dzdxN︸ ︷︷ ︸
I

and the Tonelli-Fubini Theorem yields

I =

∫ h

0

∫ h

0

∣∣∣∣ ∂u∂xN (x′ + he′i, z)

∣∣∣∣+

∣∣∣∣ ∂u∂xN (x′, z)

∣∣∣∣ dxNdz
= h

∫ h

0

∣∣∣∣ ∂u∂xN (x′ + he′i, z)

∣∣∣∣+

∣∣∣∣ ∂u∂xN (x′, z)

∣∣∣∣ dz.
Therefore,

|∆h
i u(x′, 0)| ≤ 1

h

∫ h

0

∫ h

0

∣∣∣∣ ∂u∂xi (x′ + ξe′i, xN)

∣∣∣∣ dξdxN
+

∫ h

0

∣∣∣∣ ∂u∂xN (x′ + he′i, z)

∣∣∣∣+

∣∣∣∣ ∂u∂xN (x′, z)

∣∣∣∣ dz.
By Minkowski’s inequality for integrals we obtain

‖∆h
i u(x′, 0)‖Lp(RN−1) ≤

c

h

∫ h

0

∫ h

0

‖ ∂u
∂xi

(x′ + ξe′i, xN)‖Lp(RN−1)dξdxN

+ c

∫ h

0

‖ ∂u
∂xN

(x′ + he′i, z)‖Lp(RN−1) + ‖ ∂u
∂xN

(x′, z)‖Lp(RN−1)dz

=
c

h
h

∫ h

0

‖ ∂u
∂xi

(x′ + ξe′i, xN)‖Lp(RN−1)dxN

+ c

∫ h

0

‖ ∂u
∂xN

(x′ + he′i, xN)‖Lp(RN−1) + ‖ ∂u
∂xN

(x′, xN)‖Lp(RN−1)dxN

Hence,

‖∆h
i u(·, 0)‖Lp(RN−1) ≤ c

∫ h

0

‖ ∂u
∂xi

(·, xN)‖Lp(RN−1) +‖ ∂u
∂xN

(·, xN)‖Lp(RN−1)dxN .

(3.2)
For fixed small ε > 0 we write∫ h

0

‖ ∂u
∂xi

(·, xN)‖Lp(RN−1)dxN =

∫ h

0

xεNx
−ε
N ‖

∂u

∂xi
(·, xN)‖Lp(RN−1)dxN .
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With use of Hölder’s inequality we get∫ h

0

‖ ∂u
∂xi

(·, xN)‖Lp(RN−1)dxN ≤
(∫ h

0

x−εqN dxN

)1/q (∫ h

0

xεpN ‖
∂u

∂xi
(·, xN)‖pLp(RN−1)

dxN

)1/p

= ch
1
p
−ε
(∫ h

0

xεpN ‖
∂u

∂xi
(·, xN)‖pLp(RN−1)

dxN

)1/p

,

where 1
p

+ 1
q

= 1. Similarly,∫ h

0

‖ ∂u
∂xN

(·, xN)‖Lp(RN−1)dxN ≤ ch1/q−ε
(∫ h

0

xεpN ‖
∂u

∂xN
(·, xN)‖pLp(RN−1)

)1/p

.

Then by (3.2) it follows

‖∆h
i u(·, 0)‖pLp(RN−1)

≤ chp/q−εp
∫ h

0

xεpN

(
‖ ∂u
∂xi

(·, xN)‖pLp(RN−1)
+ ‖ ∂u

∂xN
(·, xN)‖pLp(RN−1)

)
dxN .

Hence,∫ ∞
0

‖∆h
i u(·, 0)‖pLp(RN−1)

hp
dh ≤ C

∫ ∞
0

hp/q−εp

hp

∫ h

0

xεpN

(
‖ ∂u
∂xi

(·, xN)‖pLp(RN−1)
+

‖ ∂u
∂xN

(·, xN)‖pLp(RN−1)

)
dxNdh.

By Tonelli’s Theorem we get∫ ∞
0

‖∆h
i u(·, 0)‖pLp(RN−1)

hp
dh ≤ C

∫ ∞
0

∫ ∞
xN

hp/q−εp

hp
xεpN

(
‖ ∂u
∂xi

(·, xN)‖pLp(RN−1)
+

‖ ∂u
∂xN

(·, xN)‖pLp(RN−1)

)
dhdxN

= C

∫ ∞
0

xεpN

(
‖ ∂u
∂xi

(·, xN)‖pLp(RN−1)
+

‖ ∂u
∂xN

(·, xN)‖pLp(RN−1)

)∫ ∞
xN

hp/q−εp

hp
dhdxN .

Since
∫∞
xN

hp/q−εp

hp
dh =

∫∞
xN

1
hεp+1dh = 1

εp
x−εpN , we have∫ ∞

0

‖∆h
i u(·, 0)‖pLp(RN−1)

hp
dh ≤ C

εp

∫ ∞
0

(
‖ ∂u
∂xi

(·, xN)‖pLp(RN−1)
+ ‖ ∂u

∂xN
(·, xN)‖pLp(RN−1)

)
dxN

=
C

εp

(
‖ ∂u
∂xi
‖pLp(RN+ )

+ ‖ ∂u
∂xN
‖pLp(RN+ )

)
.
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Now we want to remove the assumption that u ∈ C∞(RN).
First we can extend via reflection the function u ∈ L1,p(RN

+ ) to the
whole L1,p(RN). For ε > 0 we consider the sequence {uε} with uε :=
u ∗ φε, where φε are the standard mollifiers. As ε→ 0+ we have:

uε → u in L1
Loc(R

N), ∇uε → ∇u in Lp(RN) and
uε(·, 0)→ T u in L1

Loc(R
N−1).

We can select a subsequence such that uε(x′, 0) → T u(x′). Then by
Fatou’s Lemma for

I =

∫ ∞
0

∫
RN−1

|T u(x′ + he′i)− T u(x′)|p

hp
dx′dh

it follows

I ≤ lim infε→0+

∫ ∞
0

∫
RN−1

|uε(x′ + he′i, 0)− uε(x
′, 0)|p

hp
dx′dh

≤ C(N, p) lim
ε→0+

∫
RN+

|∇uε(x)|pdx = C(N, p)

∫
RN+

|∇u(x)|pdx.

Hence,
TW 1

p (RN
+ ) ⊂ B1−1/p

p (RN−1). (3.3)

For the inverse inclusion B1−1/p
p (RN−1) ⊂ TW 1

p (RN
+ ) we will prove

that for all g ∈ B1−1/p
p (RN−1) there exists a function u ∈ W 1

p (RN
+ ) such

that T u = g and

‖u‖W 1
p (RN+ ) ≤ C2‖g‖B1−1/p

p (RN−1)
,

where C2 = C2(N, p).

Theorem 3.3. Let 1 < p <∞, N ≥ 2, RN
+ = {(x′, xN) ∈ RN−1×R : xN >

0)}. Then,
B1−1/p
p (RN−1) ⊂ TW 1

p (RN
+ ).

Proof. Let g ∈ B1−1/p
p (RN−1). Let φ ∈ C∞c (RN−1) be such that suppφ ⊂

BN−1(0, 1) and ∫
RN−1

φ(x′)dx′ = 1.
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For xN > 0 we define

υ(x′, xN) :=
1

xN−1
N

∫
RN−1

φ

(
x′ − y′

xN

)
g(y′)dy′,

for x′ ∈ RN−1.Then for all xN > 0 we have∫
RN−1

|υ(x′, xN)|pdx′ ≤
∫
RN−1

∣∣∣∣ 1

xN−1
N

∫
RN−1

φ

(
x′ − y′

xN

)
g(y′)dy′

∣∣∣∣p dx′
≤
(∫

RN−1

∫
RN−1

∣∣∣∣ 1

xN−1
N

φ

(
x′ − y′

xN

)∣∣∣∣q dy′)p/q ∫
RN−1

|g(y′)|pdy′dx′,

where in the last inequality we have used Hölder’s inequality.
By Theorem 2.6, where xN plays the role of ε, we get∫
RN−1

|υ(x′, xN)|pdx′ ≤
(∫

RN−1

∫
RN−1

|φ(x′ − y′)|qdy′
)p/q ∫

RN−1

|g(y′)|pdy′dx′

≤
∫
RN−1

|g(y′)|pdy′.

(3.4)

We will use the notation x′ = (x′′i , xi) ∈ RN−2 ×R, for i = 1, . . . , N − 1.
Then by Theorem 2.7 we have

∂υ

∂xi
(x) =

1

xNN

∫
RN−1

∂φ

∂xi

(
x′ − y′

xN

)
g(y′)dy′.

Since∫
R

∂φ

∂xi

(
x′ − y′

xN

)
g(y′′i , xi)dyi = g(y′′i , xi)

∫
R

∂φ

∂xi

(
x′ − y′

xN

)
dyi = 0

we can write
∂υ

∂xi
(x) =

1

xNN

∫
RN−2

(∫
R

∂φ

∂xi

(
x′ − y′

xN

)
g(y′)dyi −

∫
R

∂φ

∂xi

(
x′ − y′

xN

)
g(y′′i , xi)dyi

)
dy′′

=
1

xNN

∫
RN−1

∂φ

∂xi

(
x′ − y′

xN

)
[g(y′)− g(y′′i , xi)]dy

′.

Therefore,

∂υ

∂xi
(x) =

1

xNN

∫
RN−1

∂φ

∂xi

(
y′

xN

)
[g(x′ − y′)− g(x′′i − y′′i , xi)]dy′.
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Since suppφ ⊂ BN−1(0, 1) it follows∣∣∣∣ ∂υ∂xi (x)

∣∣∣∣ ≤ C

xN

∫
BN−1(0,xN )

|g(x′ − y′)− g(x′′i − y′′i , xi)|dy′.

We raise both sides to the power p and integrate in x over RN
+∫

RN+

∣∣∣∣ ∂υ∂xi (x)

∣∣∣∣p dx ≤ C

∫
RN+

1

xNpN

(∫
BN−1(0,xN )

|g(x′ − y′)− g(x′′i − y′′i , xi)|dy′
)p

dx

≤ C

∫
RN+

1

xNpN
|BN−1(0, xN)|p/q

∫
BN−1(0,xN )

|g(x′ − y′)− g(x′′i − y′′i , xi)|pdy′dx,

where in the second inequality we have used Hölder’s inequality.
Then,∫
RN+

∣∣∣∣ ∂υ∂xi (x)

∣∣∣∣p dx ≤ C

∫
RN+

(xN−1
N )p−1

xNpN

∫
BN−1(0,xN )

|g(x′−y′)−g(x′′i−y′′i , xi)|pdy′dx,

and by Tonelli’s theorem we get∫
RN+

∣∣∣∣ ∂υ∂xi (x)

∣∣∣∣p dx ≤ C

∫
RN+

∫
BN−2(0,xN )

∫ xN

−xN

|g(x′ − y′)− g(x′′i − y′′i , xi)|p

xp+N−1
N

dyidy
′′
i dx︸ ︷︷ ︸

I

.

(3.5)
For the calculation of I we consider the change of variables z′′i =
x′′i − y′′i and zi = xi − yi. Then,

I =

∫
RN+

∫
BN−2(0,xN )

∫ xN

−xN

|g(z′i, zi)− g(z′′i , xi)|p

xp+N−1
N

dzidz
′′
i dx

=

∫ ∞
0

∫
BN−2(0,xN )

∫ xN

−xN

∫
R

∫
RN−2

|∆yi
i g(z′′I , xi − yi)|p

xp+N−1
N

dx′′Idxidzidz
′′
i dxN ,

where in the second equality we have used Tonelli’s theorem. By
Hölder’s inequality we get

I ≤ C

∫ ∞
0

xN−2
N

xp+N−1
N

∫ xN

−xN

∫
RN−1

|∆yi
i g(z′)|pdz′dyidxN

= C

∫ ∞
0

1

xp+1
N

∫ xN

−xN

∫
RN−1

|∆yi
i g(z′)|pdz′dyidxN︸ ︷︷ ︸

J
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and once more with use of Tonelli’s theorem we have

J =

∫ ∞
0

∫
RN−1

|∆yi
i g(z′)|p

∫ ∞
yi

1

xp+1
N

dz′dyidxN

= C

∫ ∞
0

∫
RN−1

|∆yi
i g(z′)|pdyi

ypi
dxN .

Therefore by 3.5 it follows∫
RN+

| ∂υ
∂xi

(x)|pdx ≤ C

∫ ∞
0

∫
RN−1

|g(x′ + he′i)− g(x′)|p

hp
dx′dh, (3.6)

for all i = 1, . . . , N − 1.
In order to estimate ∂υ

∂xN
we write:

g(y′)−g(x′) =
N−1∑
i=1

[
g(y1, . . . , yi, xi+1, . . . , xN−1)−g(y1, . . . , yi−1, xI , . . . , xN−1)

]
.

Since
∫
RN−1 φ(x′)dx′ = 1 we have

υ(x′, xN) =
N−1∑
i=1

∫
RN−1

1

xN−1
N

φ

(
x′ − y′

xN

)[
g(y1, . . . , yi, xi+1, . . . , xN−1)

− g(y1, . . . , yi−1, xI , . . . , xN−1)
]
dy′ + g(x′).

Then by Theorem 2.5 it follows

∂υ

∂xN
(x′, xN) =

N−1∑
i=1

∫
RN−1

∂

∂xN

(
1

xN−1
N

φ

(
x′ − y′

xN

))[
g(y1, . . . , yi, xi+1, . . . , xN−1)

− g(y1, . . . , yi−1, xI , . . . , xN−1)
]
dy′.

Hence,∣∣∣∣ ∂υ∂xN (x′, xN)

∣∣∣∣ ≤ C
N−1∑
i=1

1

xNN

∫
BN−1(0,xN )

∣∣g(y1, . . . , yi, xi+1, . . . , xN−1)

− g(y1, . . . , yi−1, xI , . . . , xN−1)
∣∣dy′.

By raising to the power p, integrating over RN
+ and by following the

exact same procedure as for | ∂υ
∂xi

(x′)| we obtain:∫
RN+

∣∣∣∣ ∂υ∂xN (x)

∣∣∣∣p dx ≤ C

∫ ∞
0

∫
RN−1

|g(z′ + he′i)− g(z′)|p

hp
dz′dh. (3.7)
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Trace Spaces of Sobolev Spaces

For x = (x′, xN) ∈ RN
+ we define u(x) := e−

xN
p υ(x).

Then by (3.4) and Tonelli’s theorem we get∫
RN+

|u(x)|pdx =

∫ ∞
0

e−xN
∫
RN−1

|υ(x′, xN)|pdx′dxN

≤
∫ ∞

0

e−xNdxN

∫
RN−1

|g(x′)|pdx′

=

∫
RN−1

|g(x′)|pdx′.

since for i = 1, . . . , N − 1 we have∣∣∣∣ ∂u∂xi (x)

∣∣∣∣ =

∣∣∣∣e−xNp ∂υ

∂xi
(x)

∣∣∣∣ ≤ ∣∣∣∣ ∂υ∂xi (x)

∣∣∣∣ ,
by (3.6) it follows∫

RN+

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣p dx ≤ C

∫ ∞
0

∫
RN−1

|g(x′ + he′i)− g(x′)|p

hp
dx′dh.

Moreover,
∂u

∂xN
(x) = e−

xN
p
∂υ

∂xN
(x)− 1

p
e−

xN
p υ(x),

so by (3.4) and (3.7) we have(∫
RN+

∣∣∣∣ ∂u∂xN (x)

∣∣∣∣p dx
)1/p

≤

(∫
RN+

∣∣∣∣ ∂υ∂xN (x)

∣∣∣∣p dx
)1/p

+

(∫
RN+

∣∣∣∣1pe−xNp υ(x)

∣∣∣∣p dx
)1/p

≤ C

{(∫ ∞
0

∫
RN−1

|g(z′ + he′i)− g(z′)|p

hp
dz′dh

)1/p

+

(∫
RN−1

|g(x′)|pdx′
)1/p}

<∞.

In other words u ∈ W 1
p (RN

+ ) and

‖u‖W 1
p (RN+ ) ≤ C‖g‖

B
1−1/p
p (RN−1)

. (3.8)

It remains to show that T u = g.
By Proposition (2.3) for p 6=∞ we know that there exists a sequence
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{gn} in C∞(RN−1) ∩B1−1/p
p (RN−1) such that ‖g − gn‖B1−1/p

p (RN−1)
→ 0.

Let un := e
−xN
p υn(x) be the corresponding sequence. We have that

υn ∈ C0(RN
+ ) with υn(x′, 0) = gn(x′), which follows from the fact that

υn = 1

xN−1
N

∫
RN−1 φ

(
x′−y′
xN

)
gn(y′)dy′ is defined via convolusion with pa-

rameter ε = 1
xN

(as ε→ 0).
By (3.8) we have that un → u in W 1

p (RN
+ ) and since T : W 1

p (RN
+ ) →

Lp(RN−1) is a continuous operator we have that T u = g.
Therefore,

B1−1/p
p (RN−1) ⊂ TW 1

p (RN
+ ). (3.9)

Therefore by (3.3), (3.9) it follows

TW1
p(RN

+ ) = B1−1/p
p (RN−1).

Now we wish to define the trace spaces for the case in which
RN is replaced with Ω ⊂ RN an open set. Once more we will divide
the proof in two parts. For the inclusion TW l

p(Ω) ⊂ Bl−1/p
p (∂Ω) we

will prove that for all u ∈ W l
p(Ω) there exists a trace g ∈ Bl−1/p

p (∂Ω, ),
l > 1/p.

Theorem 3.4. Let l ∈ N, 1 < p < ∞ and Ω ⊂ RN an open set with
Cl−boundary. Then, for l > 1/p we have

TW l
p(Ω) ⊂ Bl−1/p

p (∂Ω). (3.10)

Proof. Let Vj be parallelepipeds defined as by Burenkov [1] (pg.149)
and partition of unity ψj ∈ C∞0 (Vj), j = 1, . . . , s.
First we will prove that the trace gj of uψj exists on Vj ∩ ∂Ω and
gj ∈ Bl−1/p

p (Vj ∩ ∂Ω), j = 1, . . . , s.
By Lemma 2.6 we get:

‖uψj‖W l
p(Ω) ≤ c1‖u‖W l

p(suppψj∩Ω) ≤ c1‖u‖W l
p(Vj∩Ω), (3.11)

where c1 > 0 independent of u. In other words we have that uψj ∈
W l
p(Vj ∩ Ω), for all j = 1, . . . , s.

By Lemma 2.7 it follows

‖(uψj)(Λ−1
j )‖W l

p(Λj(Vj∩Ω)) ≤ c2‖(uψj)(Λ−1
j )Λj‖W l

p(Vj∩Ω)

= c2‖uψj‖W l
p(Vj∩Ω),

(3.12)
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where Λj = Φj(λj) (see Definition 2.16). Therefore we have that
(uψj)(Λ

−1
j ) ∈ W l

p(Λj(Vj ∩ Ω)). We extend by 0 to RN the function
(uψj)(Λ

−1
j ) and for this extension we have that (uψj)(Λ

−1
j ) ∈ W l

p(R
N),

since supp(ψj)(Λ
−1
j ) ⊂ Λj(Vj ∩ Ω).

Then by Theorem 2.14 we know that there exists a trace hj (of the
extended function) onRN−1 and therefore on Λj(Vj∩∂Ω). That means
that gj := hj(Λj) is a trace of uψj on Vj ∩ ∂Ω and as a result by Def-

inition 2.13 it follows that g :=
s∑
j=1

gj is a trace of u on ∂Ω (since
s∑
j=1

uψj = u
s∑
j=1

ψj = u).

For l > 1/p we have that

‖gj‖Bl−1/p
p (Vj∩∂Ω)

= ‖hj‖Bl−1/p
p (Λj(Vj∩∂Ω))

≤ ‖hj‖Bl−1/p
p (RN−1)

≤ c3‖uψj‖Bl−1/p
p (Vj∩Ω)

,

where in the last inequality we have used (3.12).
Then by Definition 2.16 it follows

‖g‖Bl−1/p
p (∂Ω)

=

(
s∑
j=1

‖gψj‖pBl−1/p
p (Vj∩∂Ω)

) 1
p

=

(
s∑
j=1

‖gj‖pBl−1/p
p (Vj∩∂Ω)

) 1
p

≤ c3

(
s∑
j=1

‖uψj‖pW l
p(Vj∩Ω)

) 1
p

.

Therefore, Lemma 2.6 gives us

‖g‖Bl−1/p
p (∂Ω)

≤ c4

(
s∑
j=1

‖u‖p
W l
p(Vj∩Ω)

) 1
p

≤ c5

 s∑
j=1

{‖u‖pLp(Vj∩Ω) +
∑
|a|=l

‖∂au‖pLp(Vj∩Ω)}

 1
p

,

where in the last inequality we have used an equivalent norm to the
standard one in W l

p(Vj ∩ Ω).
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With use of Minkowski’s inequality for sums we get

‖g‖Bl−1/p
p (∂Ω)

≤ c5

{(
s∑
j=1

‖u‖pLp(Vj∩Ω)

) 1
p

+

∑
|a|=l

s∑
j=1

‖∂au‖pLp(Vj∩Ω)

 1
p }

≤ c5

(
s

1
p‖u‖pLp(Ω) +

∑
|a|=l

s
1
p‖∂au‖pLp(Ω)

)
≤ c6s

1
p‖u‖W l

p(Ω).

Hence, it follows that g ∈ Bl−1/p
p (∂Ω).

For the inverse inclusion it suffices to show that for all g ∈
Bl−1/p
p (∂Ω) there exists a function u ∈ W l

p(Ω) such that g is a trace of
u on ∂Ω. Hence we have the following theorem.

Theorem 3.5. Let l ∈ N, 1 < p < ∞ and Ω ⊂ RN an open set with
Cl−boundary. Then, for l > 1/p we have

Bl−1/p
p (∂Ω) ⊂ TW l

p(Ω). (3.13)

Proof. Let g ∈ Bl−1/p
p (∂Ω). We consider the functions gj = (gψj)(Λ

−1
j )

on Λj(Vj ∩ ∂Ω) and we extend them by 0 to RN−1. We define E :

Bl−1/p
p (∂Ω)→ W l

p(Ω) with

Eg =
s∑
j=1

(
E0

(
(gψj)(Λ

−1
j )
))

(Λj),

where E0 is a modification of the extension operator such that

supp(E0gj(Λj)) ⊂ Vj ∩ Ω and supp(E0gj) ⊂ Λj(Vj ∩ Ω).

Then by Lemma 2.7 it follows

‖E0gj(Λ)‖W l
p(RN ) = ‖(E0gj)(Λj)‖W l

p(Vj∩Ω)

≤M1‖E0gj‖W l
p(Λj(Vj∩Ω))

= M1‖E0gj‖W l
p(RN ),
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where M3 is independent of g and j.
We have that gj is a trace of E0gj on RN−1 (see details in [1]), therefore
gj(Λ

−1
j ) = (gψj)(Λ

−1
j ) on Λj(Vj ∩ ∂Ω). Then

(
(gψj)(Λ

−1
j )
)
(Λj) = gψj is a

trace of
(
E0(gψj)(Λ

−1
j )
)
(Λj) on Vj ∩ ∂Ω and by definition 3 g =

s∑
j=1

gψj

is a trace of
s∑
j=1

(
E0(gψj)(Λ

−1)
)
(Λj) = Eg on

s∑
j=1

Vj ∩ ∂Ω = ∂Ω.

We have

‖E0gj‖W l
p(RN ) ≤M2‖gj‖Bl−1/p

p (RN−1)

≤M3‖gj‖Bl−1/p
p (Vj∩∂Ω)

≤M4‖gψj(Λ−1
j )‖Bl−1/p

p (Λj(Vj∩∂Ω))
,

where the last two inequalities follow from Lemma 2.5 and 2.7 re-
spectively and M2,M3,M4 are constants independent of g, j.
Then

‖Eg‖W l
p(RN ) =

∥∥∥ s∑
j=1

(E0gj(Λj))
∥∥∥
W l
p(RN )

≤M3

s∑
j=1

‖E0gj‖W l
p(RN )

≤M3M4

s∑
j=1

‖gψj‖Bl−1/p
p (Vj∩∂Ω)

Hence,
‖Eg‖W l

p(RN ) ≤M5‖g‖Bl−1/p
p (∂Ω)

.

This means that the extension operator E is bounded (and linear)
and since T Eg = g we have that Bl−1/p

p (∂Ω) ⊂ TW l
p(Ω).

Therefore it follows

TWl
p(Ω) = Bl−1/p

p (∂Ω).
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Remark. For l = 1 and p 6=∞ we have that TW 1
1 (Ω) = L1(∂Ω) (for the

proof we refer to [1]).
For the case p = ∞ let us consider for simplicity that l = 1, i.e. the
space W 1

∞(Ω). Then since Ω is open, bounded and with ∂Ω of class
C1 it follows that W 1

∞(Ω) is the space of all Lipschitz functions (this
follows from the characterization of W 1

∞(Ω) in [5]).
Now let u : Ω → R be such that u ∈ W 1

∞(Ω). Since u is bounded
and Lipschitz, it admits a unique Lipschitz extension to Ω. Hence, the
trace of u can be defined as the restriction of the extension of u to ∂Ω.
Thus, the trace of u is a Lipschitz function on ∂Ω.
Therefore, it follows that TW 1

∞(Ω) ⊂ Lip(∂Ω), where Lip(∂Ω) the space
of Lipschitz continuous functions defined on ∂Ω. As a matter of fact
TW 1

∞(Ω) = Lip(∂Ω).
Indeed let u ∈ Lip(∂Ω), then as proven in [11], u can be extended to a
Lipschitz function on the whole RN therefore on Ω and we have that
W 1
∞(Ω) is exactly the space of all Lipschitz functions defined on Ω.
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Chapter 4

The case p = 2: Hs spaces and
their traces

As mentioned above, when p = 2 we denote Hs = W s
2 . We will see

in the following sections that for this case we can skip the classical
definition of the Trace Spaces, that is with use of Besov spaces, and
use alternative ways to define the trace spaces.

4.1 Characterization via Fourier transform
A way to characterize the trace spaces is with use of Fourier trans-
form. In order to do so we will need several useful definitions and
results which are presented bellow.

Definition 4.1. We call Schwartz class and write S(RN) the class of
functions φ ∈ C∞(RN) such that for any multi-index α and any k ∈ N

sup
x∈RN

(1 + |x|)k|∂αφ(x)| <∞.

Definition 4.2. (Fourier Transform) Let u ∈ S(RN). We define the
Fourier transformation F : u 7→ û by

F{u(x)} = û(ξ) = (2π)−
N
2

∫
RN

u(x)e−ix·ξdx.
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The case p = 2: Hs spaces and their traces

It is known that if u ∈ S(RN) then û ∈ S(RN). Therefore F :
S(RN)→ S(RN) is a linear operator. For the inverse transformation
F−1 : S(RN)→ S(RN) we have the following formula:

u(x) = (2π)−
N
2

∫
RN

û(ξ)eix·ξdξ.

The Fourier transform can be extended by continuity to L2(RN)
and in fact F : L2(RN)→ L2(RN) is a unitary operator :∫

RN
|u(x)|2dx =

∫
RN
|û(ξ)|2dξ,

that is
‖u‖L2(RN ) = ‖Fu‖L2(RN ),

which is also known as Parseval’s equality.
Now we will use the Fourier transform in order to characterize the
Sobolev spaces Hs(Ω).
For the derivatives ∂αu(x) we have

F{∂αu(x)} = ∂̂αu(ξ) = (iξ)αû(ξ) = i|α|ξαû(ξ).

Hence,

‖u‖2
Hl(RN ) =

∑
|α|≤l

∫
RN
|∂αu|2dx =

∫
RN

(∑
|α|≤l

|ξα|2
)
|û(ξ)|2dξ. (4.1)

Here we notice that if we expand A(ξ) = (1 + |ξ|2)l by the binomial
expansion, that is A(ξ) = (1 + |ξ|2)l =

∑
|k|≤l

(
l
k

)(
|ξ|2
)k, we can choose

appropriate constants c1, c2 such that

c1(1 + |ξ|2)l ≤
∑
|α|≤l

|ξα|2 ≤ c2(1 + |ξ|2)l,

which when applied in (4.1) gives us

c1

∫
RN

(1 + |ξ|2)l|û(ξ)|2dξ ≤ ‖u‖2
Hl(RN ) ≤ c2

∫
RN

(1 + |ξ|2)l|û(ξ)|2dξ.

Thus, the norm
( ∫
RN

(1+|ξ|2)l|û(ξ)|2dξ
) 1

2 is equivalent to the standard
one in W l

p(R
N). With that being said we have the following definition

of Hs(RN) spaces.
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The case p = 2: Hs spaces and their traces

Definition 4.3. Let u ∈ L2(RN) and s ∈ R. We say that u ∈ Hs(RN) if∫
RN

(1 + |ξ|2)s|û(ξ)|2dξ <∞.

As we have proven in the previous chapter, Besov spaces allow us
to define the traces of Sobolev spaces and naturally this also applies
in the case ofHs = W s

2 spaces. However, the previous representation
of Hs spaces via Fourier transform allows us to have an additional
approach on how to define the trace spaces. More specifically, we
have the following theorems.

Theorem 4.1. Let u ∈ Hs(RN) and s > 1/2. Then the trace operator
T : C∞0 (RN) → C∞0 (RN−1) can be extended uniquely by continuity to a
linear continuous operator T : Hs(RN)→ Hs−1/2(RN−1). In particular,

‖T u‖Hs−1/2(RN−1) ≤ C‖u‖Hs(RN ).

Proof. Let u ∈ C∞0 (RN). Let x′ = (x1, x2, ..., xN−1) ∈ RN−1 then we have
the inverse Fourier transform formula:

u(x) = u(x′, xN) = (2π)−N/2
∫
RN

û(ξ′, ξN)eixN ξN eix
′·ξ′dξ′dξN .

By definition of the Trace operator we get

T u(x′) = u(x′, 0) = (2π)−N/2
∫
RN

û(ξ′, ξN)eix
′·ξ′dξ′dξN .

That is

u(x′, 0) = (2π)−N/2
∫
RN

û(ξ′, ξN)eix
′·ξ′dξ′dξN

= (2π)−N/2
∫ +∞

−∞

∫
RN−1

û(ξ′, ξN)eix
′·ξ′dξ′dξN

and by Fubini-Tonelli Theorem we get

u(x′, 0) = (2π)−N/2
∫
RN−1

∫ +∞

−∞
û(ξ′, ξN)dξNe

ix′·ξ′dξ′.

We write

T u(x′) = (2π)−(N−1)/2

∫
RN−1

( 1√
2π

∫ +∞

−∞
û(ξ′, ξN)dξN

)
eix
′·ξ′idξ,
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which by the inverse Fourier formula gives us

T̂ u(ξ′) =
1√
2π

∫ +∞

−∞
û(ξ′, ξN)dξN .

We have

|T̂ u(ξ′)|2 =
1

2π

∣∣∣∣∫ +∞

−∞
(1 + |ξ|2)−s/2(1 + |ξ|2)s/2û(ξ′, ξN)dξN

∣∣∣∣2
≤
∫ +∞

−∞
|û(ξ)|2(1 + |ξ|2)sdξN︸ ︷︷ ︸

I1

∫ +∞

−∞
(1 + |ξ′|2 + ξ2

N)−sdξN︸ ︷︷ ︸
I2

,
(4.2)

where in the last inequality we have used Hölder’s inequality.
For the calculation of I2 we set 1 + |ξ′|2 = α2 and get

I2 =

∫ +∞

−∞

1

(α2 + ξ2
N)s

dξN =

∫ +∞

−∞

1

α2s(1 + ( ξN
α

)2)s
dξN

y =
ξN
α=

α

α2s

∫ +∞

−∞

1

(1 + y2)s
dy = csα

1−2s,

where cs =
∫ +∞
−∞

1
(1+y2)s

<∞ since s > 1
2
.

Therefore,
I2 = cs(1 + |ξ′|2)1−2s.

Then by (4.2) we have

(1 + |ξ′|2)s−1/2|T̂ u(ξ′)|2 ≤ cs

∫ +∞

−∞
|û(ξ)|2(1 + |ξ|2)sdξN .

We integrate over RN−1∫
RN−1

(1 + |ξ′|2)s−1/2|T̂ u(ξ′)|2dξ′ ≤ cs

∫
RN
|û(ξ)|2(1 + |ξ|2)sdξ.

Thus for all u ∈ C∞0 (RN)

‖T u‖2
Hs−1/2(RN−1) ≤ cs‖u‖2

Hs(RN ). (4.3)

We note that the norm ‖u(ξ)‖ = (
∫
RN

(1+|ξ|2)s|û(ξ)|2dξ)1/2 is equivalent
to the standard norm in Hs(RN).
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The case p = 2: Hs spaces and their traces

Now we will extend the previous result for functions u in C∞0 (RN) to
functions u in Hs(RN).
In order to do so, we will use the fact that C∞0 (RN) is dense inHs(RN),
as follows.
Let u ∈ Hs(RN). Then there exists {uj}∞j=1 in C∞0 (RN) such that

‖uj − u‖Hs(RN ) → 0 , j →∞ .

Then (4.3) gives us that

‖T um − T ul‖2
Hs−1/2(RN−1)

≤ cs‖um − ul‖2
Hs(RN ) → 0 ,

as m, l→∞.

In other words {T uj}j∈N is a Cauchy sequence in Hs−1/2(RN−1)
and since Hs−1/2(RN−1) is complete in RN−1 there exists a limit υ ∈
Hs−1/2(RN−1), T uj → υ, j → ∞ in Hs−1/2(RN−1) and by definition we
set υ = T u.
We note that υ does not depend on the choice of the sequence {uj}.
Indeed, let {wj}∞j=1 in C∞0 (RN) be such that ‖wj − u‖Hs(RN ) → 0 as
j → ∞. Then, as above, {wj}∞j=1 is a Cauchy sequence and for w ∈
Hs−1/2(RN−1) such that T wj → w , j →∞, we have:

‖wj − uj‖Hs(RN ) ≤ ‖wj − u‖Hs(RN ) + ‖u− uj‖Hs(RN ) → 0,

as j →∞. Hence,

‖T wj−T uj‖2
Hs−1/2(RN−1) = ‖T (wj−uj)‖2

Hs−1/2(RN−1) ≤ cs‖wj−uj‖Hs(RN ) → 0.

Since uj ∈ C∞0 (RN) for all j ∈ N, by 4.3 it follows

‖T uj‖2
Hs−1/2(RN−1) ≤ cs‖uj‖2

Hs(RN ).

We take the limit

lim
j→∞
‖T uj‖2

Hs−1/2(RN−1) ≤ cs lim
j→∞

, ‖uj‖2
Hs(RN )

which gives us
‖T u‖2

Hs−1/2(RN−1) ≤ cs‖u‖2
Hs(RN ),

with u ∈ Hs(RN).

37



The case p = 2: Hs spaces and their traces

As a result of the previous Theorem we have

Hs−1/2(RN−1) ⊂ THs(RN).

For the inverse inclusion we have the following Theorem.

Theorem 4.2 (Extension Theorem). For k ∈ Z+, s > k + 1/2 we set
H〈s−1/2〉(RN−1) = Hs−1/2(RN−1) × Hs−3/2(RN−1) × · · · × Hs−k−1/2(RN−1).
Then there exists a linear continuous operator E : H〈s−1/2〉(RN−1) −→
Hs(RN) such that if u = Eg with g = (g0, g1, · · · , gk) ∈ H〈s−1/2〉(RN−1)

then gj = Tju , for all j = 0, 1, · · · , k , where Tj := T ◦ ∂j

∂xjN
: Hs(RN) →

Hs−j−1/2(RN−1).
Moreover,

‖Eg‖2
Hs(RN ) ≤ c‖g‖2

H〈s−1/2〉(RN−1) := c
k∑
j=0

‖gj‖2
H〈s−j−1/2〉(RN−1)

Proof. Let h ∈ C∞0 (R) with 0 ≤ h(t) ≤ 1 and h(t) = 1 for |t| ≤ 1. For
ξ′ ∈ RN−1, xN ∈ R we consider:

V (ξ′, xN) =
k∑
j=0

1

j!
xjN ĝj(ξ

′)h
(
xN
√

1 + |ξ′|2
)
,

where ĝj(ξ
′) is the Fourier transform of gj(x′) over g = (g0, . . . , gk) ∈

H〈s−1/2〉(RN−1).
We will prove that V (ξ′, xN) is the Fourier transform of a function
u(x′, xN) ∈ Hs(RN) with respect to x′. For xN = 0 we have

V (ξ′, 0) = ĝ0(ξ′) and ∂j

∂xN
V (ξ′, 0) = ĝj(ξ

′).

We use the following identities regarding the Fourier transform:

• F{xjNg(xN)} = ij ĝ(j)(ξN) = ij ∂j

∂ξjN
ĝ(ξN)

• F{g(αxN)} = 1
α
ĝ( ξN

α
) , α ∈ R

• F{xjNg(αxN)} = ij 1
αj+1 ĝ

(j)( ξN
α

) , α ∈ R.
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The case p = 2: Hs spaces and their traces

It follows that the Fourier transform of V (ξ′, xN) with respect to xN
is

F{V (ξ′, xN)} =
k∑
j=0

1

j!
ĝj(ξ

′)F
{
xjNh

(
xN
√

1 + |ξ′|2
)}

=
k∑
j=0

ij

j!
ĝj(ξ

′)(1 + |ξ′|2)−
j+1

2 ĥ(j)
( ξN√

1 + |ξ′|2
)

For û(ξ) = V (ξ′, ξN)(= F{V (ξ′, xN)}) we have that u ∈ Hs(RN). Indeed,

‖u‖2
Hs(RN ) =

∫
RN
|û(ξ)|2(1 + |ξ|2)sdξ

≤ c
k∑
j=0

∫
RN
|ĝj(ξ′)|2(1 + |ξ′|2)j−1

∣∣∣ĥ(j)
( ξN√

1 + |ξ′|2
)∣∣∣2(1 + |ξ|2)sdξ︸ ︷︷ ︸

I

.

We write

I =

∫
Rn−1

∫
R

|ĝj(ξ′)|2(1 + |ξ′|2)j−1
∣∣∣ĥ(j)

( ξN√
1 + |ξ′|2

)∣∣∣2(1 + |ξ|2)sdξndξ
′

=

∫
RN−1

|ĝj(ξ′)|2(1 + |ξ′|2)j−1

∫
R

∣∣∣ĥ(j)
( ξN√

1 + |ξ′|2
)∣∣∣2(1 + |ξ|2)sdξN︸ ︷︷ ︸

I1

dξ′.

For the calculation of I1 we set τ = ξN√
1+|ξ′|2

. We have dξN =
√

1 + |ξ′|2dτ

and 1 + |ξ|2 = 1 + |ξ′|2 + ξ2
N = 1 + |ξ′|2 + τ 2(1 + |ξ′|2) = (1 + |ξ′|2)(1 + τ 2),

then

I1 =

∫
R

|ĥ(j)(τ)|2(1 + |ξ′|2)s(1 + τ 2)s(1 + |ξ′|2)1/2dτ

= (1 + |ξ′|2)s+1/2

∫
R

|ĥ(j)(τ)|2(1 + τ 2)sdτ︸ ︷︷ ︸
C(j, s)

,
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The case p = 2: Hs spaces and their traces

where C(j, s) <∞ since ĥ ∈ S(R) for h ∈ C∞0 (R). Hence,

‖u‖2
Hs(RN ) ≤ C

k∑
j=0

∫
RN−1

|ĝj(ξ′)|2(1 + |ξ′|2)s−j−1/2dξ′

= C
k∑
j=0

‖gj‖2
Hs−j−1/2(RN−1).

Therefore the operator E : H〈s−1/2〉(RN−1) −→ Hs(RN) with Eg = u is
linear and continuous and we now prove that T uj = gj, for all j =
0, 1, . . . , k. This is equivalent to proving that the Fourier Transform
of ∂ju

∂xjN
with respect to x′ is ĝj(ξ′). Denote by F ′ the Fourier Transform

on the variable x′. We have F ′( ∂
ju

∂xjN
) = ∂jF ′u

∂xjN
= ∂jV (ξ′,xN )

∂xjN
= ĝj(ξ

′), as
resumed.

As a result we have THs(RN) ⊂ Hs−1/2(RN−1).
Therefore,

THs(RN) = Hs−1/2(RN−1).

4.2 Auchmuty’s method
Let Ω be a bounded region in RN and let its boundary ∂Ω be a finite
union of disjoint closed Lipschitz surfaces, each surface having fi-
nite surface area and unique outward normal ν(·) defined almost
everywhere.
We consider the inner product:

〈u, υ〉θ =

∫
Ω

∇u∇υdx+

∫
∂Ω

uυdσ

and the corresponding norm ‖·‖θ which is equivalent to the standard
one in H1(Ω).
A function u ∈ H1(Ω) is called harmonic in Ω provided that it is a
solution of Laplace’s equation in the weak sense. Namely:∫

Ω

∇u∇φdx = 0, (4.4)
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The case p = 2: Hs spaces and their traces

for all φ ∈ C1
c (Ω), or equivalently for all φ ∈ H1

0 (Ω). We define H(Ω) to
be the space of all harmonic functions u in Ω.
When Ω is defined as above we have by definition C1

c (Ω) = H1
0 (Ω) and

by (1) we have (C1
c (Ω))⊥ = H(Ω).

Then by the Projection Theorem on the Hilbert spaceH1(Ω) endowed
with 〈·, ·〉∂ it follows

H1(Ω) = C1
c (Ω)⊕θ (C1

c (Ω))⊥

Therefore,
H1(Ω) = H1

0 (Ω)⊕θ H(Ω), (4.5)

where ⊕θ is a θ-orthogonal direct sum.
Auchmuty’s method gives us a spectral definition of the trace spaces
Hs
A(∂Ω), s ∈ R, where the subscript A is here used to emphasize the

fact here the definition is given for this method. The idea is based
on the fact that the harmonic Steklov eigenfunctions provide an or-
thogonal basis in H(Ω) as well as an orthogonal basis in L2(∂Ω, dσ).
More specifically we can define an orthonormal basis in L2(∂Ω, dσ)
by means of the Steklov eigenfunctions and then use this basis to
represent the trace spaces.
In the end the definition of Hs

A(∂Ω) spaces is reduced to certain
summability conditions regarding the harmonic Steklov coefficients
which, as described above, help us represent the functions g ∈
Hs
A(∂Ω).

4.2.1 The harmonic Steklov eigenproblem
Let Ω be a region in RN defined as above. We consider the boundary
value problem: {

∆s = 0, x ∈ Ω
Dνs = δs, x ∈ ∂Ω

(4.6)

for δ ∈ R. Recall that Dνs denotes the normal derivative of s on ∂Ω.
In order to find the weak formulation of (4.6) we argue as follows.
We assume that s ∈ H1(Ω) is a classical solution to (4.6). Then by
integrating over Ω we get ∫

Ω

∆sυdx = 0,
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The case p = 2: Hs spaces and their traces

for all υ ∈ H1(Ω). By Green’s Formula it follows∫
Ω

∇s∇υdx =

∫
∂Ω

υDνsdσ,

Finally, by using the boundary condition we get the weak form of
(4.6): ∫

Ω

∇s∇υdx = δ

∫
∂Ω

υsdσ, (4.7)

for all υ ∈ H1(Ω). For υ = s we get that δ ≥ 0.
We rewrite (4) in the following form∫

Ω

∇s∇υdx+

∫
∂Ω

υsdσ = (δ + 1)

∫
∂Ω

υsdσ. (4.8)

We consider the Laplace operator ∆ as an operator from H1(Ω) to its
dual H1(Ω)′ defined by ∆[s][υ] = −

∫
Ω
∇s∇υdx, for all υ ∈ H1(Ω) and

the operator I : H1(Ω) → H1(Ω)′ defined ny I[s][υ] =
∫
∂Ω
sυdσ, for all

υ ∈ H1(Ω).
The operator I −∆ : H1(Ω)→ H1(Ω)′ with (I −∆)[s][υ] =

∫
Ω
∇s∇υdx+∫

∂Ω
sυdσ = 〈s, υ〉θ is an isometry and there exists (I−∆)−1 (by Riesz’s

Representation Theorem).
We also define the operator J : L2(∂Ω)→ H1(Ω)′ with J [s][υ] =

∫
∂Ω
sυdσ,

for all υ ∈ L2(∂Ω), and lastly we consider the trace operator T :
H1(Ω)→ L2(∂Ω).
Then (4.8) can be written as

(I −∆)s = (δ + 1)(J ◦ T )s.

Therefore,
(I −∆)−1 ◦ J ◦ T s =

1

δ + 1
s.

Note that
H1(Ω)

T−→ L2(∂Ω)
J−→ H1(Ω)′

(I−∆)−1

−−−−−→ H1(Ω).

Hence we can define the operator M : H1(Ω) → H1(Ω) with M =
(I −∆)−1 ◦ J ◦ T .
Then the weak form (4.7) of the Steklov eigenproblem is equivalent
to

Ms = µs, (4.9)
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The case p = 2: Hs spaces and their traces

where µ = 1
δ+1

> 0.
We notice that M is compact by definition, since the trace operator
T : H1(Ω)→ L2(∂Ω) is compact, and also M is non-negative.
Let s ∈ KerM, then

(I −∆)−1 ◦ J ◦ T s = 0,

which, since (I −∆) is an isometry, is equivalent to

J ◦ T s = 0

and by definition of J
T s = 0.

By Theorem (2.16) we have that T s = 0 iff s ∈ H1
0 (Ω). Therefore,

KerM = H1
0(Ω).

Hence, by (4.5) we obtain

H1(Ω) = KerM⊕θ H(Ω). (4.10)

Moreover, we have that the codimension of KerM, codimKerM = dim(H1(Ω)/H(Ω)),
is infinite and since M is a non-negative, compact, self-adjoint oper-
ator in a Hilbert space we have that the spectrum σ(M) is discrete
and σ(M)\{0} consists of eigenvalues {µj} of finite multiplicity with
µj → 0, as j →∞.
More specifically by the Courant-Raylegh minmax principle we have

µj = max
V⊂H(Ω)
dimV=j

min
s∈V \{0}

〈Ms, s〉θ
‖s‖θ

= max
V⊂H(Ω)
dimV=j

min
s∈V \{0}

〈(I −∆−1) ◦ J ◦ T s, s〉θ
‖s‖θ

= max
V⊂H(Ω)

V ∩H1
0(Ω)={0}

dimV=j

min
s 6=0

(I −∆) ◦ (I −∆)−1 ◦ J [T s][s]
‖s‖θ

Therefore for the Steklov eigenvalues δj = 1
µj
− 1 we have

δj = min
V⊂H(Ω)

V ∩H1
0(Ω)={0}

dimV=j

max
s 6=0

∫
Ω
|∇s|2dx∫
∂Ω
s2dσ

.
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By the Spectral Theorem for compact and self-adjoint operators
there exists an orthonormal set of eigenfunctions {sj}∞j=0 correspond-
ing to the eigenvalues {µj}∞j=0 such that

(KerM)⊥ = span〈sj : j ≥ 0〉.

Then by (4.10) it follows that S = {sj : j ≥ 0} is an orthonormal
basis for H(Ω).

Definition 4.4. We call a Steklov expansion an expression of the
form u(x) =

∞∑
j=0

cjsj , where cj := 〈u, sj〉θ , for u ∈ H1(Ω).

Since S = {sj : j ≥ 0} is an orthonormal basis in H(Ω) by The-
orem (2.11) (which implies the existence of limiting function iff the
coefficients are square summable) we have that a Steklov expres-
sion represents a H1-harmonic function on Ω iff

∞∑
j=0

|cj|2 <∞.

4.2.2 Spectral representation of the trace and the
extension operator

The Steklov eigenfunctions sj (as described above) have L2 traces on
the boundary ∂Ω whenever Ω is defined as in the beggining of this
section.
We now define

ŝj(x) :=
√

1 + δjT sj(x), for x ∈ ∂Ω and j ≥ 0.

Then, as proven in [4], Ŝ = {ŝj : j ≥ 0} is an orthonormal basis in
L2(∂Ω, dσ).
Since T is continuous for all u ∈ H1(Ω) we have

T u = T
∞∑
j=0

〈u, sj〉θsj =
∞∑
j=0

〈u, sj〉θT sj,

that is

T u =
∞∑
j=0

(1 + δj)
−1/2〈u, sj〉θŝj,
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for all u ∈ H1(Ω).
For all f, g ∈ L2(∂Ω, dσ) we consider the inner product:

〈g, f〉∂Ω =

∫
∂Ω

gfdσ,

We suppose now that g = T u for some u ∈ H1(Ω). Then g ∈ L2(∂Ω, dσ)

and we have g =
∞∑
j=0

gj ŝj(x), where gj = 〈g, ŝj〉∂Ω.

By the Riesz-Fischer Theorem it follows that g ∈ L2(∂Ω, dσ) iff we
have

∞∑
j=0

|gj|2 <∞.

We now define the extension operator E : A→ H(Ω) with

Eg =
∞∑
j=0

(1 + δj)
1/2gjsj,

where A ⊂ L2(∂Ω, dσ) the subspace of all the functions u ∈ L2(∂Ω, dσ)

such that
∞∑
j=0

(1 + δj)|gj|2 <∞.

4.2.3 The Hs
A(∂Ω) spaces

As described at the beginning of this section, in Auchmuty [3] the
Hs
A(∂Ω) spaces are defined as the subspaces of L2(∂Ω, dσ) of func-

tions whose Steklov harmonic coefficients satisfy certain summa-
bility conditions. More specifically, we have the following definition.

Definition 4.5. For s ≥ 0 we define Hs
A(∂Ω) as the subspace of all

functions g ∈ L2(∂Ω, dσ) with Steklov expansion satisfying
∞∑
j=0

(1 +

δj)
2s|gj|2 <∞.

We also define the s-inner product and s-norm on Hs(∂Ω):

〈g, f〉s,∂Ω :=
∞∑
j=0

(1 + δj)
2sgjfj

‖g‖2
s,∂Ω :=

∞∑
j=0

(1 + δj)
2sg2

j
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Proposition. For s = 1
2

the space H
1/2
A (∂Ω) coincides with the space

H1/2(∂Ω), that is
H

1/2
A (∂Ω) = H1/2(∂Ω).

Proof. We have proven that T H1(Ω) = H1/2(∂Ω) (result of Theorem
3.4 and Theorem 3.5). Therefore for the inclusionH

1/2
A (∂Ω) ⊂ H1/2(∂Ω)

it suffices to show that for all g ∈ H
1/2
A (∂Ω) there exists u ∈ H1(Ω)

such that T u = g.
For the inverse inclusion H1/2(∂Ω) ⊂ H

1/2
A (∂Ω) we will prove that

T u ∈ H
1/2
A (∂Ω) for all u ∈ H1(Ω), which implies that H1/2(∂Ω) =

T H1(Ω) ⊂ H
1/2
A (∂Ω).

Let g ∈ H
1/2
A (∂Ω), then we have that g =

∞∑
j=0

gj ŝj. We consider the

extension operator E and we define u = Eg =
∞∑
j=o

(1 + δj)
1/2gjsj. Then

u ∈ H(Ω) since
∞∑
j=0

(1 + δj)|gj|2 <∞, by definition of H1/2
A (∂Ω).

Since the trace operator T : H1(Ω)→ L2(∂Ω) is continuous we have

T u = T
∞∑
j=o

(1 + δj)
1/2gjsj =

∞∑
j=o

(1 + δj)
1/2gjT sj

=
∞∑
j=o

(1 + δj)
1/2gj(1 + δj)

−1/2ŝj =
∞∑
j=o

gj ŝj.

Hence,
H

1/2
A (∂Ω) ⊂ H1/2(∂Ω). (4.11)

Let u ∈ H1(Ω), then u =
∞∑
j=0

〈u, sj〉θsj and

T u = T
∞∑
j=0

〈u, sj〉θsj =
∞∑
j=0

〈u, sj〉θT sj.

We write

T u =
∞∑
j=0

〈u, sj〉θ
(1 + δj)1/2

(1 + δj)
1/2T sj =

∞∑
j=0

〈u, sj〉θ
(1 + δj)1/2

ŝj.
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According to the definition of H1/2
A (∂Ω) in order to prove that T u ∈

H
1/2
A (∂Ω) we have to check the summability condition for the Steklov

coefficient:
∞∑
j=o

(1 + δj)
2 1

2

∣∣∣ 〈u, sj〉θ
(1 + δj)1/2

∣∣∣2 =
∞∑
j=o

〈u, sj〉2θ <∞,

since u ∈ H1(Ω). Hence,

H1/2(∂Ω) ⊂ H
1/2
A (∂Ω). (4.12)

By (4.11),(4.12) we obtain

H
1/2
A (∂Ω) = H1/2(∂Ω).

Remark. We note that for the definition of the spaces Hs
A(∂Ω) the

boundary ∂Ω is required to be minimally smooth for the Steklov eigenfunctions-
eigenvalues analysis to hold. Contrary, for the classical definition of
the trace spaces Hs(∂Ω) via Besov spaces or Fourier analysis (for the
case p=2) it is required ∂Ω to be Cl, l ∈ N, with l > s.
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Chapter 5

Existence of solution for the
Poisson Problem with
Dirichlet boundary conditions

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary, F ∈
L2(Ω), g ∈ H1/2(∂Ω). We consider the following Problem:{

−∆u = F , x ∈ Ω,
T u = g, x ∈ ∂Ω,

(5.1)

which is known as the Poisson Problem with Dirichlet boundary
conditions and will be understood in the weak sense as follows.
We say that u ∈ H1(Ω) is a weak solution to problem (5.1) iff∫

Ω

∇u∇φdx =

∫
Ω

Fφdx, (5.2)

for all φ ∈ H1
0 (Ω), and T u = g in ∂Ω.

Let Φ ∈ H1(Ω) be a real-valued function such that T Φ = g and let
u ∈ H1(Ω) be a weak solution to problem (5.1), as described above.
Then for υ(x) := u(x)− Φ(x) it follows that T υ = 0 and∫

Ω

∇υ∇φdx =

∫
Ω

fφdx, (5.3)

for all φ ∈ H1
0 (Ω) and f = F + ∆Φ, where ∆Φ is an element of H−1(Ω)

defined by 〈∆Φ, φ〉 = −
∫

Ω
∇Φ∇φdx, for all φ ∈ H1

0 (Ω).
We can interpret the fact that T υ = 0 in the sense that υ ∈ H1

0 (Ω).
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Existence of solution for the Poisson Problem with Dirichlet
boundary conditions

Definition 5.1. Let Ω ⊂ RN as above. We consider the Poisson prob-
lem with homogeneous Dirichlet boundary conditions :{

−∆u = f, x ∈ Ω,
T u = 0, x ∈ ∂Ω,

(5.4)

with f ∈ H−1(Ω). A function υ ∈ H1
0 (Ω) is called a weak solution to

the problem (5.4) iff it satisfies (5.3) for all φ ∈ H1
0 (Ω).

5.1 Existence via the classical definition
of Hs spaces

Theorem 5.1. Let Ω ⊂ RN be a bounded domain with Lipschitz
boundary. Then for all f ∈ H−1(Ω) there exists a unique weak so-
lution υ ∈ H1

0 (Ω) to problem (5.4).

Proof. The form 〈υ, φ〉 :=
∫

Ω
∇υ∇φdx defines an inner product in

H1
0 (Ω) for all υ, φ ∈ H1

0 (Ω) and the corresponding norm is equiva-
lent to the standard norm ‖ · ‖H1(Ω).
Indeed since Ω is bounded Friedrichs inequality holds:∫

Ω
|υ|2dx ≤ CΩ

∫
Ω
|∇υ|2dx

which implies that∫
Ω
|υ|2 + |∇υ|2dx ≤ (CΩ + 1)

∫
Ω
|∇υ|2dx ,

for all υ ∈ H1
0 (Ω).

Hence,

‖υ‖H1(Ω) ≤ CΩ‖υ‖〈,〉.

By Riesz’s Representation Theorem there exists a unique function
υ ∈ H1

0(Ω) such that

f(φ) = 〈υ, φ〉,

for all φ ∈ H1
0(Ω) and

‖f‖ = ‖υ‖,
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which means that υ ∈ H1
0 (Ω) is a weak solution to (5.4).

Moreover the solution is unique. Indeed, let υ1, υ2 ∈ H1
0 (Ω) both be

weak solutions to problem (5.4), then∫
Ω
∇(υ1 − υ2)∇φdx = 0,

for all φ ∈ H1
0 (Ω).

Therefore,

υ1 − υ2 = c,

for some c ∈ R.
Since the trace operator T is linear we have that

T (υ1 − υ2) = T (υ1)− T (υ2) = 0.

Hence,

υ1 − υ2 = 0.

We now return to the Poisson problem with non-homogeneous
Dirichlet boundary conditions.

Theorem 5.2. Let Ω ⊂ RN be a bounded domain with Cl boundary.
Let F ∈ L2(Ω) and g ∈ H1/2(∂Ω). Then there exists unique weak solu-
tion u ∈ H1(Ω) to the problem (5.1).

Proof. By Theorem 3.5 for g ∈ H1/2(∂Ω) there exists an extension
Φ ∈ H1(Ω) with Φ = EΩg such that T Φ = g.
We consider f = F + ∆Φ ∈ H−1(Ω), with ∆Φ defined as above. By
Theorem 5.1 there exists a unique solution υ ∈ H1

0 (Ω) to Problem
(5.4).
Then the function u := υ + Φ ∈ H1(Ω) is such that

T u = T (υ + Φ) = T υ + T Φ = g

and ∫
Ω

∇u∇φdx =

∫
Ω

∇υ∇φdx+

∫
Ω

∇Φ∇φdx,

for all φ ∈ H1
0 (Ω).

Then by (5.3) we obtain∫
Ω

∇u∇φdx =

∫
Ω

f∇φdx+

∫
Ω

∇Φ∇φdx,
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for all φ ∈ H1
0 (Ω).

Since f = F + ∆Φ it follows that∫
Ω

∇u∇φdx =

∫
Ω

Fφdx,

for all φ ∈ H1
0 (Ω). By Definition 1 we have that u is a solution to the

problem (5.1).
We note that the solution is unique. This follows by the uniqueness
of the problem (5.4) : if we consider u1, u2 both to be solutions for
the problem (5.1), then for w := u1 − u2 from (1) we have∫

Ω

∇w∇φdx = 0,

for all φ ∈ H1
0 (Ω). Finally, since T w = T (u1 − u2) = T u1 − T u2 = 0 we

have w = u1 − u2 = 0.

5.2 With use of Auchmuty’s Definition
Another way to prove that the problem (5.1) has a unique solution
is by using the spectral definition of H1/2

A (∂Ω) = H1/2(∂Ω) given by
Auchmuty [3].
Since T u = g we know that g ∈ H1/2(∂Ω). Then by Auchmuty’s
definition we have

g =
∞∑
j=1

gj ŝj, where gj = 〈gj, ŝj〉∂Ω and
∞∑
j=1

(1 + δj|gj|2) <∞.

Then the the extension u of g to Ω is such that T u = g and

u = Eg =
∞∑
j=1

(1 + δj)
1/2gjsj ∈ H(Ω) ⊂ H1(Ω).

Moreover, it is the unique weak solution to the Dirichlet problem,
i.e. to the Poisson problem with homogeneous dirichlet boundary
conditions.
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