NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

INTERDISCIPLINARY POSTGRADUATE PROGRAM
"INFORMATION TECHNOLOGIES IN MEDICINE AND BIOLOGY"

MASTER THESIS

Algorithm for the construction of spliced-peptides database

Aliki Evangelia I. Konstantinou

Supervisors: Dr. George Paliouras , Research Director at Institute of
Informatics and Telecommunications, NCSR “Demokritos”

Dr. Stavros J. Perantonis, Research Director at Institute of
Informatics and Telecommunications, NCSR “Demokritos”

ATHENS

FEBRUARY 2019

EONIKO KAI KAMOAIZTPIAKO MNMANENIZTHMIO AGHNQON

2XOAH OETIKQN ENIZTHMQON
TMHMA NMAHPO®OPIKHZ KAI THAEMIKOINQNIQN

AIATMHMATIKO NMPOrPAMMA METANTYXIAKQN ZINMOYAQN
"TEXNOAOT'IEZ NAHPO®OPIKHZ ZTHN IATPIKH KAI TH BIOAOI'IA"

AINAQMATIKH EPT AZIA

AAyo6pI80G yia TRV dnuioupyia BAoNG CUVAPHUOOHEVWYV
TETTIOIWY

AAikn EuvayyeAia I. KwvoTtavrivou

EmiBAéTTOVTEG: Ap. Mwpyog NMaAiovpag, AicuBuvtrigc Epeuvwy, IvoTirouTo
MANnpo@opIkAg kai TnAetTikovwviwy, EKEDPE «AnudkpITogy»

Ap. Zraupog Mepavrwvng, Aicubuvtng Epeuvwy, lvoTitouTo
MANnpo@opIkAg kai TnAetTikovwviwy, EKEDPE «AnudkpIiTogy»

AGHNA

®EBPOYAPIOZ 2019

MASTER THESIS

Algorithm for the construction of spliced-peptides database

Aliki Evangelia I. Kostantinou
A.M.: 0154

SUPERVISORS Dr. George Paliouras, Research Director at Institute of Informatics
and Telecommunications, NCSR “Demokritos”

Dr. Stavros J. Perantonis, Research Director at Institute of
Informatics and Telecommunications, NCSR “Demokritos”

EXAMINATION Dr. George Paliouras , Research Director at Institute of
COMMITTEE: Informatics and Telecommunications, NCSR “Demokritos”

Dr. Stavros J. Perantonis, Research Director at Institute of
Informatics and Telecommunications, NCSR “Demokritos”

Dr. Ema Anastasiadou, Lecturer-Researcher IV, Biomedical
Research foundation of the Academy of Athens

deBpoudpiog 2019

AINAQMATIKH EPTAZIA

AAy6pIBu0G yia TRV dnuioupyia BAoNG CUVAPHOCUEVWY TTETTTIOIWV

AAikn EuvayyeAia I. KwvoTavrivou
A.M.: 0154

EMNIBAENMONTEZ Ap. Nwpyog MaAiotpag, AicubBuvTtig Epeuvwy, IvoTiTouTo
MANpo@opIkAg Kal TnAetTikoivwviwy, EKEDE «Anuokpitog»

Ap. ZTaupog Mepavrwvng, AicubuvTng Epeuvwy, IvoTITouTo
MANpo@opIkAg Kai TnAetTikoivwviwy, EKEDE «Anuokpitogy

EZETAZTIKH EMITPOMH Ap. Nwpyog MaAioupag, AicubBuvTtig Epeuvwy, IvoTiTouTo
MAnpo@opIkng kal TnAetTikovwviwy, EKEDE «AnuokpItog»

Ap. Zraupog Mepavrwvng, AicuBuvTic Epguvwy, IvoTITOUTO
MAnpo@opIkng kal TnAetmikovwviwy, EKEDE «Anudkpitog»

Ap. ‘Epa AvaoTtaociadou, Epsuvntpia A', 1Idpupa
latpoviohoyikwv Epeuvwv Akadnuiag ABnvwyv (IIBEAA)

February 2019

ABSTRACT

The identification of spliced peptides has garnered significant interest in the recent
years due to their role in the function of adaptive immune system, especially in the
context of cancer. Spliced peptides are composed from protein fragments originally
distant in the parental protein. Splicing takes place in the proteasome, a protein
complex in the cell that regulates the concentration of unneeded, damaged or
pathogenic proteins. Proteolysis results in the degradation of proteins to smaller
peptides of 7-12 amino acids that are either further degraded into amino-acids for the
composition of new proteins or transferred onto the cell surface to be recognized by the
immune system. Those peptides where believed to be only linear fragments of the
parental proteins, however recent studies proved otherwise. They can derive from
distant peptidic fragments of a protein sequence.

The experimental identification of spliced peptides requires Mass Spectrometry (MS)
analysis and computational software that matches the spectra to theoretical peptides.
The latter process requires a proteome or peptide database containing the sequences
assumed to be present in the experiment. However, there are no readily available
computational solutions to construct a complete spliced-peptides database. Therefore,
the database construction should be implemented by the user who conducts a related
experiment.

The current thesis aims to overcome this computational gap. We developed a
methodology, implemented as an R package, that enables the user to construct a
custom spliced-peptide database, save it in a convenient file format according to MS
analysis software requirements and reduce its size to occupy less disc space and speed
up the analysis process. Additionally, the database computing can be parallelized for
optimized speed. Lastly, identified peptides from spectra matching can be searched
against the database to verify their origin and estimate the false discovery rate (FDR).

SUBJECT AREA: Computational Proteomics

KEYWORDS: spliced peptides, immune system, autoimmune diseases, peptide

database, R package

NEPIAHWYH

H avayvwpion Twv ocuvapuoouévwy TTETTIOIWY (spliced peptides) €xel kepdioel Eviovo
epeuvNTIKG evOIO@EPOV Ta TeAeuTaia Xpdvia AOyw TOUu KATOAUTIKOU TOUG pOAOU OTnv
AEIToUpyiad TOU AVOOOTIOINTIKOU OUCTAMOTOG Kol O€ dia TTANBwpa autoavoowv
VOONUATWY, €I0IKOTEPA TOU KAPKiVOU. Ta ouvappoouéva TTETTTIOIN TTPOKUTITOUV aTTd TNV
EVWON OTTOUOKPUOMEVWY TTPWTEIVIKWY TUNMATWY OTO TTPWTEACWHPA, TO OTTOIo
avaAauBavel Tnv atmopuBuion axpnoTwy, eTMIRBAABWY I KOTECTPAUPEVWYV TTPWTEIVWY OTO
KUTTOPO. MEéOw TNG TTPWTEOAUCNG ETTITUYXAVETAI N SIACTIACT TWV TTPWTEIVIKWY HOPIwV
ot MIKPOTEPEG TTIETTIOIKEG OAuUCideg 7-12 auIvOLEWV 01 OTToiEG €iTe 0dnyouv o€
QVOKUKAWON TWV AUIVOZEWV yia oUvBeon VEWV TTPWTEIVWV EiTE PETAPEPOVTAlI OTNV
ETTIPAVEIN TOU KUTTAPOU YId va avayvwplioTouv amd To avoooTtroinTikdé ocuoTnua. Ta
TETTIOI auTd, TTPOC@ATA aTTOdEiXONKE OTI Oev €ival ATTOKAEIOTIKA OUVEXOUEVEG
QMIVOEIKEG aAUCIOEG TNG YOVIKAG TTPWTEIvNG aAAd pTTopoUv va TTpokUyWouv aTrd
QTTOMAKPUOUEVA UETAEU TOUG TTETTTIOIKG TUAMATA.

H treipapatik) dladikaoia TnG avayvwpiorS TwV CUPPANPEVWY TTETTTIOIWY ATTAITEI TNV
Xpnon oacpaTtopeTpiag palag (Mass Spectrometry, MS) kai pia oe€ipd ao1rod
UTTOAOYIOTIKG €pYOAEia Ta OTTOIO OTOXEUOUV OTNV TAUTOTTOINON TWV QaoudaTwy. lMNa TIg
UTTOAOYIOTIKEG BIadIKATIEG aTTAITEITAI N XPHon Hiag BAong dedouévwy TTou TTEPIAAUPBAVEI
OAEG TIG TTPWTEIVIKEG AKOAOUBIEG TTOU avapéveTal va gival TTapoUoEG OTO Treipaua. Ta
UTTApXOVTa UTTOAOYIOTIKA €pyaAgia péxpl oAPEPA, dev TTPORAETTOUV TNV dnuIoupyia PIOG
oAokAnpwuévng Bdong ocuvapuoouévwy TTETITIOIWY VIO dia dedouévn BACN TTPWTEIVWV.
2UVETTWG N dladikaoia Tng dnuIoupyiag TNG METAPEPETAI OTOV XPNOTn TTou B€Ael va
XPNOIUOTTOINOEI TO CUYKEKPIPEVA EPYAAELia yia TRV avaAuon Tou TTEIPAPATOS TOU.

2TnVv TTapouca gpyacia, avamTuxdnke pia pebodoAoyia n oTroia ETMITPETTEI OTOV XPAOTN
va dnuioupynoel pia BAcn CuvappOOUEVWY TTETITIOIWY TTPOCAPHOCHEVN OTIC AVAYKEG
Tou TreIpauaTog. EmimmAéov divel TV €1TIAOYA TNG TTPOCAPUOCUEVNG HOPYOTTOINONG TNG
Bdaong avdAoya pE TIC ATTAITAOEIS TOU AOYIOMIKOU TTOU XPNOIYOTTIOIEITAl YIO TNV
TAUTOTTOINON TWV TTETTIOIWY, TN dUVATOTNTA TOU TTEPIOPICHUOU TOU PEYEBOUG TNG KAl TV
TTapaAAnAoTroinon NG d1adIKAciag yia MEYIOTN TaXUTNTa €KTEAEONG. TEAOG divel T
duvatoéTNTa OTO XPNOTN Va avalnTioel Ta TAUTOTTOINUEVA TTETTTIOI TTIOW OTnN BACN WOTE
va eEakpIBwOei n TTpoéAeuct) Toug aAAd Kal va eKTIUNOEI TO TTOOOOTO TWV WEUDWG
BeTIKWV atroTeAeopaTWY. O aAyOpIBUOG £XEl UAOTTOINGEI 0€ pop@r R TTaKETOU.

OEMATIKH MNMEPIOXH: YTtroAoyioTikA BioAoyia, MNpwTeopikn

AEZEIZ KAEIAIA: cuvapuoopéva TTeTTioIa, avoooTroinTikd cUoTnua, autodvooa

voonuarta, Bdon TemTidiwy, TTakETOo R

CONTENTS

R N I (@ 15 1 L O 1 1 U 9
L L TSI S PUI DO S i 9
I I g T= S 130 1 U o3 U = PSR 10
2. BACKGROUND ... oot e e e et e et e e e e e e eann s 11
2.1 Peptides and the immMUNE SYSTEM ... 11
2.1.2 Peptide splicing in the proteasome.ooiiiiiii 11
2.1.3 A computational Approach.............ooiii i 12
2.2 Computational tools iN ProtEOMICScooiiiiiiiiiiii 14
2.3 Target Decoy Search Strategy ... 16
2.3.1 Separate versus composite database. ... 17
3. METHODOLOGY ..iiiiiiiiiiiiaiiriratassa s ssa s snnnnn s s ssasansansassasansansassnssnsnns 18
R 700 I o 1= 1 (=1 d ¢ o P 18
3.2 Implementation of the procedure............cooiiiiiiii 18
3.2.1 AUIOMAIEA PrOCESS. ... ettt 18
3.2.2 Protein catalyzing and SPliCiNg.o 23
3.2, 3 I OriNg. . i e 27
3.2.4 Output in protein format.o 28
3.2.5 DECOY database. .. .o.eiiiii i 31
3.2.7 Searching the hits. e 34
4. BENCHMARKING AND SYSTEM SPECIFICATION...cicciiiitriirinernansnnsnnnss 35
4.1 System information..........cccoiiiiii i e e e nn 35
4.2 Benchmarking: Settings and results............cooiiiiiiii i 35
o B U (o]0 g F= 1 (= To [o] o o =Y 36
4.2.2 Main database CONSIIUCTION.uei e e aeeaas 39
4.2.3 FIEIING PrOCESS. ... vttt et e e ettt et et et e e e e e aaas 40
4.2.4 Decoy database CONSIIUCTION.o.iuiii e e ee e e 41
4.2.5 OUIPUL 0 DIOCKS. ...t 42
5. CONCLUSION ...ttt e e et e e et e e et a e e et e e e et e e eanaaees 44
ANNEX L e e e e 45

REFERENCES e e ennaaes 46

LIST OF FIGURES

Figure 2.1 Andromeda scoring algorithmoooevviiiiiiiiiiiiiiiiieeeieeeeeeeeeeee e 15
Figure 3.1 Length distribution of proteome versus group of proteinscccccevvvvveeeeeee. 21
Figure 3.2 lllustration of workflow and interdependencies of functions............cccccccc...... 22
Figure 3.3 Output samples of non-spliced and spliced peptidesceevvvveereeeeennee. 27
Figure 3.4 Samples of dataframe D and vector masslist for the filtering process.......... 29
Figure 3.5 Output to peptide-blocks format for proteinlcceeevvviiiiiiiiiiiiiiiieiiiieeene. 32
Figure 3.6 Decoy sequences of spliced peptides when peptide block format is used... 33
Figure 4.1 Protein length diStribUtiONSooviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 36
Figure 4.2 Automated process for 9mers on 1010 proteins using 6 logical cores 37
Figure 4.3 Speed gain from parallel @XeCULIONccovvvviiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeee 38
Figure 4.4 Main database construction for 9mers on 1010 proteins and 6 cores........... 39
Figure 4.5 Execution time for different protein lengths ..., 40
Figure 4.6 Filtering execution time for different protein lengths............cccccvvviiiiiiiinnnne. 41
Figure 4.7 Decoy construction for different protein lengthsccccvviiiiiiiinieeinns 42

Figure 4.8 Format conversion execution time for different protein lengths.................... 43

Algorithm for the construction of spliced-peptides database

INTRODUCTION

1.1 Thesis purpose

The current thesis was an effort of overcoming a methodological gap that exists in
computational proteomics, regarding the experimental identification of spliced peptides.
The splicing process of proteins in the proteasome is a relatively new but novel finding.
This concept being so new might be a reason why computational solutions for
identification are not yet readily available or complete.

Proteolysis, which is the breakdown of proteins inside the cell and takes place inside the
proteasome, results in peptidic sequences and serves several purposes. It might take
place in post-translational process to activate a protein, to break down proteins from
food to provide amino acids in the organism or to regulate the accumulation of
unneeded proteins inside the cell. Here we focus on its critical role in the function of the
adaptive immune system.

A fraction of the peptides derived from the breakdown of proteins is transferred onto the
cell surface to act as flags for the immune system. When peptides derived from viral,
tumoral or pathogenic proteins and processes are recognized, the cells displaying those
peptides are destroyed. Till very recently, epitopes found on the cell surface had been
believed to be only continuous fragments of proteins. However this changed when
several peptides composed of distant fragments, called spliced-peptides, were
identified.

The process of identifying peptides in an experiment includes Mass Spectrometry
analysis which results in spectra of masses and probabilistic matching of those spectra
to actual peptidic sequences. The latter step requires a theoretical database of the
proteins or peptides assumed to be present in the experiment.

Computational software available for proteomics is not yet configured to compute the
vast databases associated with spliced-peptides. Here we developed ProteoSplicer, an
R package that enables the user to construct and further process a custom spliced-
peptide database and finish the downstream analysis by identifying the matched
peptides back in the database, while requiring minimum knowledge of programming. It
is developed in accordance with Liepe’s described workflow [8]. It is compatible with any
type of system configuration and operating system and developed to execute in a
reasonable amount of time. The processes are parallelized to use as many cpu cores
the user wants to dedicate.

The following computational tasks can be performed:

e Construction of custom spliced peptide database for varying peptides lengths
and intervening sequences lengths.

e Reduction of the database by filtering out peptides that are not potential
candidates according to their mass, with user defined tolerance of filtering.

A.E. Konstantinou 9

Algorithm for the construction of spliced-peptides database

e Construction of decoy databases using reliable methods known in the current
literature.

e |dentification of matched peptides in the database.

1.2 Thesis structure

In Chapter 2. the background of the subject is explained. We describe the concept of
peptide splicing and its importance in the current knowledge of immune system function.
We provide all the literature available that has focused on the identification of spliced
peptides and its methodology. We also mention in an introductory manner the current
computational tools that exist for this purpose.

In Chapter 3 we explain in depth every technical aspect of the algorithm. We provide a
guide on how the user can run the algorithm step by step, how each function works and
what outputs are computed.

In Chapter 4 we benchmark all the heavily computational tasks and provide an accurate
estimation of execution time, depending on the parameters and the length of database.

A.E. Konstantinou 10

Algorithm for the construction of spliced-peptides database

2. BACKGROUND

2.1 Peptides and the immune system

The proteasome is a protein complex responsible for degradation of damaged or
unneeded proteins inside the cell. Those proteins are tagged with another small protein,
ubiquitin, by ubiquitin ligases. This signals the degradation process which results in
small peptides of around 7-12 amino-acids.

A fraction of those peptides is transferred into the lumen of the Endoplasmatic
Reticulum (ER) by a transporter associated with antigen processing (TAP) [1]. There,
they are loaded onto major histocompatibility complex (MHC) class 1 molecules (also
called human leukocyte antigen, HLA) which then exit the ER and reach the cell
surface. As a result, peptides originating from tumoral or viral proteins are displayed on
the surface of the cell by MHC and, as the immune system constantly monitors cellular
integrity, CD8 cytolytic T lymphocytes (CTL) recognize those peptides and destroy the
cell marked by them [2].

Thus, the presence of epitopes on the cell surface of eukaryotic organisms is the major
mechanism through which pathogens, tumoral activity and any kind of malfunctioning is
identified.

2.1.2 Peptide splicing in the proteasome

Antigenic peptides recognized by CTL, has been believed to originate only from linear
fragments of the parental proteins. However, peptides composed of distant protein
fragments assembled together by a new peptide bond, have been recently identified
although considered to be a rare event. This process of peptide splicing has been
shown to take place in the proteasome. Most of them fall within the usual length range
of 8-12 amino-acids, as the average length of proteasome generated peptides is 11
amino acids, however spliced peptides of a longer amino-acid chain have been
identified as well.

The first spliced peptide was discovered by Hanada K. et al .who showed that a CTL
clone recognized a peptide derived from FGF-5 protein and generated by protein
splicing, when it was targeted towards a renal cell carcinoma [3]. Despite its unusual
length (40 amino-acids) it was shown later to be produced by the proteasome [4].
Vigneron et al. also identified a second peptide composed by two non-linear fragments
of the melanoma differentiation antigen gp100 [4] and then a third peptide containing
two fragments of the SP110 protein, spliced together in the reverse order than the
original sequence [5]. All splicing reactions have been shown to take place in the
proteasome by transpeptidation and the intervening sequence between the fragments
ranged from 4 to 40 amino acids. Vigneron et al. tested the efficiency of the splicing
over different lengths of the intervening sequence and observed that the longer the
length, the lower the efficiency of the splicing process [6]. Moreover, they showed that
splicing with fragments from different parental proteins hardly ever occurred as it is
highly unlikely that two distinct protein substrates can be degraded simultaneously in

A.E. Konstantinou 11

Algorithm for the construction of spliced-peptides database

the same proteasome[6]. The same group, recently identified a fifth antigenic spliced
peptide originated from protein gp100 [7].

2.1.3 A Computational approach

In principle, a spliced peptide could occur via transpeptidation between any two protein
fragments released through proteolysis. As expected, the list of all the possible splicing
combinations for a given proteome database can become vast. However, until recently,
only few spliced peptides have been in vitro identified. This could be the result of two
limitations: the availability of specific CTL directed against spliced peptides and the lack
of a spliced peptide database. Mass spectrometry software used for matching ions is
limited to produce only linear protein fragments.

Liepe et al. developed an analytical strategy that could handle the vast spliced-peptide
database derived from the human proteome and analyzed the HLA cass 1
immunopeptidome of three unrelated cell lines. They concluded to the observation that
around one quarter of the total number of the peptides found at the cell surface, was
represented by spliced peptides. They account for one-fourth in terms of abundance
and one-third in terms of diversity [8]. Espe cially in the case of melanoma-associated
epitopes, they reported that the abundance of spliced peptides was comparable to that
of the non-spliced.

In previous studies, it was suggested that the generation of spliced-peptides might rely
on specific underlying mechanisms. One of them might be the preference for specific
peptide sequences [4] [5] [9] [10]. However the limited findings could not draw any
conclusions with sufficient statistical power. This large pool of spliced peptides, obtained
in Liepe et al. study, resolved this issue. It was observed that there were no differences
in the frequencies of the parental proteins of all the antigenic epitopes, no significant
preference for specific antigens generating non-spliced versus spliced peptides, no
difference in peptide length distribution between spliced and non-spliced and, finally, no
preference for specific intervening sequence length within the fragments of spliced
peptides. The peptides’ motifs were also studied to determine whether there is a
specific binding affinity to HLA-I molecules. Spliced peptides found to be non-
compatible with HLA-A and HLA-B variants which was also supported in previous
peptide-splicing analysis [11].

In addition, it was found that several proteins were represented only through spliced
peptides rather than linear epitopes suggesting that, those proteins, may fail to produce
linear fragments with binding motifs to HLA molecules. Antigen targeting only through
non-spliced peptides may be limited due to sequence restrictions, thus, peptide splicing
mechanism might be an evolutionary mechanism to combat this.

Liepe et al. managed to circumvent the previously mentioned computational limitations
by creating a custom, theoretical, spliced peptides database [8] .To reduce the size of
this database:

() the intervening sequence between two fragments was at most 25 amino-acids;

(i) the range of peptide length was 9-12 amino acids as those constitute the
large majority of HLA-I immunopeptidome;

A.E. Konstantinou 12

Algorithm for the construction of spliced-peptides database

(iif) post translational modifications of the peptides were ignored;

(iv) spliced peptides derived from fragments of two distinct proteins were
excluded,

(v) theoretical peptides with computed molecular weights not equal to the
masses detected in the experiment, where filtered out of the database.

The workflow of the identification of all peptides eluted from the HLA-1 molecules
consisted of the following steps, as described in the supplementary file:

1.

Extraction of all the spliced and non-spliced, 9 to 12 amino-acids, peptides from
the human proteome database. The database of the spliced peptides included all
possible protein-fragments combination, in both normal (N-terminal splice-
reactant to C-terminal splice reactant) and reverse order, for intervening
sequence lengths of 1 to 25 amino-acids.

Computation of the molecular weights for all entries in both non-spliced and
spliced databases.

Extraction of the precursor masses from the Mass Spectrometry analysis, in
order to obtain an experimental mass list.

The entries in non-spliced and spliced databases obtained from step 1. that had
a molecular weight equal to at least one entry in the experimental mass list were
kept in the database (using 3 ppm tolerance).

Transformation of both databases into FASTA format, with a structure that
followed human proteome. That was several peptides each time bound together
in a sequence of adequate length to form a protein block.

Construction of a decoy for each database by randomizing their protein
sequences.

All databases (spliced, non-spliced, decoys) merged into one. This was used as
the input in a MS search engine (Mascot) along with the raw data from the MS
experiment. In the search engine, the protein entries provided, were cut into
peptides again, either randomly or by rule, and matched via probabilistic rules to
the ions provided in the experimental data, providing a list of peptides that were
the best candidates.

The candidate matched peptides were then searched against the non-spliced,
spliced and decoy databases with the peptide entries (obtained from step 1.), in
order to determine if they were actual peptides and not decoys or sequences
containing two separate peptide fragments as a result of the stitching step.

A.E. Konstantinou 13

Algorithm for the construction of spliced-peptides database

2.2 Computational tools in Proteomics

Proteomics is the study of all proteins in a biological system. Usually the interest is held
for specific biological events or conditions, for example the protein expression, in variety
and abundance, during cell mitosis or in tumor cells. To identify and quantify protein and
peptide molecules, the most common analytical technique used is a combination of
tandem Mass Spectrometry (MS/MS) and sequence database searching.

A mass spectrometer ionizes the chemical species provided in the sample and sorts the
ions based on their mass-to-charge (m/z) ratio. In the case of a protein sample, the
molecules undergo a random fragmentation resulting in smaller and charged amino-acid
chains. Each one of them provides a mass spectrum, a plot of the ion signal as a
function to the m/z ratio. In order to match the spectra obtained to an amino-acid
sequence and, therefore, to the best protein candidate, specialized MS analysis
software is needed.

The peptide identification algorithms in MS software fall into two classes: de novo
search and database search. The latter searches the spectra against a database that
contains all the amino-acid sequences assumed to be present in the experimental
sample. For each spectrum, it assembles a list of matched known peptide sequences
through a scoring function. The peptide with highest score is considered the best match
[12]. This is the most popular approach and numerous related software packages are
available. Mascot, MaxQuant, Sequest , ProLuUCID are a few popular examples.

De novo search is usually based on graph theory, as it was first described by Bartels
[13]. In this method peaks in the spectrum are transformed into graph vertices. If two
vertices in this spectrum graph have the same mass difference of one or several amino
acids, a directed edge is applied. Other methods have also been proposed, including:

i) Composition of list with all possible peptides for a given spectrum and then
matching each candidate’s theoretical spectrum to the experimental. The most
similar spectrum is the most likely to be the right sequence [14][15]

i) Subsequencing. A method which matches short sequences of peptides that
represent only a part of the complete peptide. Sequences that match the
fragment ions in the experimental spectrum are extended one by one amino-acid
until the best match is found [16] [17].

i) A method which displays all series of peaks differing by the mass of each
amino-acid residue. Fragment ions that have the same mass differences of one
amino acid are connected by lines. This can be helpful for manual de novo
peptide sequencing. [18]

In database search software each set of tandem mass (MS/MS) spectra, acquired from
the mass spectrometer, is interrogated against a theoretical mass spectrum derived
from peptides in the database. For each observed spectrum, candidate peptides are
retrieved from the input database according to their theoretical mass so that it matches
the precursor mass of the observed spectrum. As expected, if a database is large, many

A.E. Konstantinou 14

Algorithm for the construction of spliced-peptides database

Peptide sequence (incl. fixed
and variable modifications)

fragment masses

Calculation of theoretical l

y.b
y*, b
y-H,0, b-H,0

y-NH,, b-NH,

Modification-specific
neutral losses”

Diagnostic peaks
(HCD)

always
Precursor charge > 2

If fragment contains
D, E, Sor T and parent
ion is present

If fragment contains
K, N, Q or R and parent
ion is present

If fragment contains
modification™

If peptide contains
modification™"

*Score is calculated once with and once without loss

Raw MS/MS spectrum

If applicable (MaxQuant):
* centroiding

* de-isotoping

« transfer to charge =1

Processed MS/MS spectrum

1 Filter top g peaks per 100 Da

Filtered MS/MS spectrum

Match with Da or ppm-based

peaks added (loss = true/false)
""e.g. H;PO, loss for Ser and Thr
phosphporylation
" e.g. H,,CsPNO, ions for Tyr

tolerance

n = total number of theoretical ions
k = number of matching ions in spectrum

phosphporylation

A.E. Konstantinou

n

s(g,loss) =—10log,, Z

J=k

Approx. probability of getting
at least k matches by chance

BN

‘ Optimize inclusion of losses

s(q)= max s(q,loss)

loss = true/false

Optimize g (peaks per 100 Da)

s =max s(q)

p22

Figure 2.1: Andromeda scoring algorithm [19]

candidate peptides will be identified. The pairing of a single input spectrum with a single
candidate peptide is termed a peptide-spectrum match (PSM) and requires a scoring
function which computes a specific score for each theoretical spectrum. Each software
solution uses its unique scoring algorithm which should usually be a function of the total
number of theoretical ions and the number of matching ions in the spectrum.

In Figure 2.1 is the scoring algorithm representation of Andromeda search engine in
Mascot [19].

15

Algorithm for the construction of spliced-peptides database

2.3 Target-Decoy search strategy

As described previously, the output of mass spectrometry analysis software indicates
the most likely theoretical peptide matches to the input spectra. Those are then used to
infer the parental protein sequence that was present in the biological sample. However
there are several limitations interfering with the accuracy of the results; not all peptide
species in a sample are represented in the search database; non-peptide species in
the input spectra will be falsely given a peptide assignment and lastly, an incorrect
candidate might, occasionally, be given the highest score in the candidate list. It is
crucial that an extra step in the downstream analysis should be taken in order to
distinguish the false positives and estimate their frequencies. Target decoy methods
are powerful, yet simple tools for this purpose.

There are five criteria a successful decoy database should meet [20].

There should be similar amino acid distributions to the target protein sequence.
Similar protein length distribution to the input protein database.

Similar numbers of proteins as target protein list.

Similar numbers of predicted peptides.

No peptides in common.

arwnE

There are several methods to construct a decoy:

1. Reversed sequences. The simplest and most widely used method that produces
the reversed sequences [21][22]. For example the decoy sequence for
“‘“ABCDEFGHIJKL” would be “LKJIHGFEDCBA”. As it switches the amino-carboxyl
orientation of the protein’s amino-acids, the number of actual peptide sequences
preserved is virtually zero. It is fairly simple to programmatically implement so it is
easily replicable between different researchers. However, it is not a random
database and does not represent a null random distribution which might be needed
for certain peptide types. Nonetheless, it can easily be deduced that it meets all five
criteria mentioned above [23].

2. Shuffled Proteins. Another reliable method which also has the stochastic properties
lacking in the previous one [24]. In this method the amino-acids of a protein
sequence are sampled and randomly rearranged. For example, in sequence
‘“ABCDEFG” a possible decoy would be “CAGFDBE”. It is also very easily
implemented programmatically and it preserves all the parental protein features
meeting all the criteria described above. However redundancies and homologies
between protein entries will not be preserved, resulting in a greater number of
decoy peptides than originally present in the target sequence list [20].

3. Random Proteins. Sequences generated in a completely random manner. Amino
acids and length sampling should follow the distribution that is normally found in
actual proteins. Thus, for a given protein database, the frequency matrix of amino-
acids and the distribution of proteins’ lengths should be first estimated. For example

A.E. Konstantinou 16

Algorithm for the construction of spliced-peptides database

A random sequence using alphabet letters would be “AJTKROELHTEBBPEFWD”.
However each letter has a specific probability to be chosen during sampling,
according to the frequencies found in the original input sequence.

4. Decoy peptides. In all three previous methods, the decoy database consists of
decoy proteins which then are “digested” into peptides by the MS analysis software
used. An alternative way is to generate decoy peptides by altering directly the
peptides derived from the protein list (reversing or sampling) instead of the parental
sequences. This way, the decoy peptides’ masses are the exact same as the
peptides that the search engine will consider for matching.

2.3.1 Separate versus composite database.

There are two database search strategies when estimating the false positive rate once a
decoy is constructed. Separate and combined search.

One method is to supply the search engine with two separate databases: the target and
the decoy. This way, each input spectrum is searched against two databases and has
one target and one decoy best score. However this method can lead to an overly
conservative interpretation of search results. Without competition between decoy and
target sequences for the top-ranked score, it is likely that decoy sequences that partially
match MS/MS spectra, will get a higher score compared to target-search hits. Also, all
peptides that are below the score at which decoy hits outnumber target hits, are
assumed to be incorrect. This way the false positive rate is overestimated [23].

It is generally accepted to construct one single database that consists of both target and
decoy sequences and clearly annotating each sequence’s origin. In this approach, both
target and decoy peptides compete each other for the best score and incorrect peptide
matches will be randomly drawn from decoy and target sequences.

A.E. Konstantinou 17

Algorithm for the construction of spliced-peptides database

3. METHODOLOGY

In this chapter, we explain the method that constructs the databases needed in the
process of spliced-peptides identification and then describe step by step the
implementation of the procedure. The databases obtained are useful when a database
search algorithm (as described in chapter 2) is used to match experimental mass
spectra to theoretical peptides. The pipeline follows the workflow of Liepe et al. [8],
presented in the section 2.1.3.

3.1 The Method

In the spliced-peptide identification process, one major issue is the unavailability of a
complete database, as its size can become quite large depending on the experiment
and the peptide lengths needed to be studied. Therefore, it is mandatory that for any
related experiment, the researcher constructs its own custom database. The following
method has been developed to provide a custom spliced and non-spliced database,
according to user parameters. The procedure consists of the following steps that are
described in detail in section 3.2 :

1. Construction of both spliced and non-spliced databases for a given proteome
database. For each protein sequence, first all linear single fragments of the
desired length are derived to obtain the non-spliced peptides. Then, all possible
paired AA fragments combinations are computed according to a minimum and
maximum intervening sequence to obtain the spliced-peptides database. If non-
spliced peptides also appear in the spliced database they are removed from the
latter.

2. Reduction of the obtained databases by filtering out the peptides whose

molecular weights are not represented in the experimental mass list obtained

from MS/MS analysis. This step might result in a significant reduction depending
on the tolerance selected for filtering.

Construction of spliced and non-spliced decoy databases.

4. Saving all databases in two formats: i) lists of peptides along with their AA
indices to their parental protein and ii) FASTA files of the peptides stitched
together to resemble proteins.

5. This is the last and separate step in the identification analysis: after using MS
analysis/ database search software, the peptides that have been found to match
the MS/MS spectra are searched against the spliced, non-spliced and decoy
databases saved in step 4, in order to determine their origin.

w

A.E. Konstantinou 18

Algorithm for the construction of spliced-peptides database

3.2 Implementation of the procedure

As the process has high computational requirements, it is parallelized, in order to exploit
the full capabilities of available hardware and optimize speed. However, the option of
running in serial mode is also available. Here we explain the method used and the
challenges faced during the development.

3.2.1 Automated process

There are two options for running the workflow. Either one function is called that
automatically performs all the tasks according to user’s settings requiring minimal user
involvement, or each function is called separately and the user can have control of each
task. The latter is useful when it would be best to create once a database that can be
later used for different experiments.

To initiate the automated process the following function is called:

>create_database (data, nmers, isl,
target, filter, masslist,
tolerance, as.blocks, decoy,
ncores)

The parameters are the following:

1. data: the input file in FASTA format which contains all the proteins assumed to
be present in the experiment.

2. nmers(min, max) : a numeric pair including the minimum and maximum length
of peptides. If peptides of a specific length should be produced, this length
should be defined as the minimum and maximum, i.e. c(9,9) for peptides of 9
amino-acids only.

3. Isl (min, max) : intervening sequence length. Also a pair of the minimum and
maximum of the sequence length that may intervene between two peptide
fragments.

4. target : a string variable with three possible values: “spliced” if only the spliced
database is needed; “non-spliced” if only the non-spliced database is needed;
“all” if both databases should be saved.

5. filter : Boolean variable. If TRUE the database is reduced by filtering the entries

according to their molecular weight and the experimental mass list provided by
the user.

A.E. Konstantinou 19

Algorithm for the construction of spliced-peptides database

6. masslist (optional): a numeric vector containing all the ion masses found in the
MS analysis. These can be obtained either from conversion of the raw spectra
files or by MS analysis software that matches the masses to the proteome.

7. tolerance(optional): numeric variable defining the tolerance in p.p.m. used to
filter the peptides according to mass list provided.

8. as.blocks: Boolean variable. If TRUE the dataset is also saved in FASTA format
with a proteome structure (peptides stitched together to resemble proteins)

9. decoy: Boolean variable. If TRUE a decoy database is also created using
reverse or shuffled sequences.

10. ncores: Numeric variable defining the number of cores in the system or cluster
to be used in parallel processing. When ncores = 1 the process will be serial.

The function first estimates the proteome length distribution and its parameters (mean
and variance) which are used later on to sample protein lengths for generating peptide-
proteins (only when parameter as.blocks == TRUE). The distribution estimation
excludes outliers, i.e. unusually large proteins that contain more than 20x the number of
amino-acids than the median length.

Afterwards, the proteome is assorted in groups of proteins of varying lengths that follow
the original proteome distribution, so that every group accounts for roughly the same
workload. This is done by sorting ascending the proteins according to length and filling
each group with protein p =i to protein p = n while in-between proteins are separated
from one another by k = K proteins in the rank. For example, if we choose to have 20
groups of proteins in a proteome of 20000 proteins then each group should contain
1000 proteins, one protein every 20 in the sorted list. The first group gets the
proteins p=1, p=21, p= 41, p= 61,.., p= 19981, the second group p = 2,p =
22,p =42,p = 62,...,p = 19982 etc. This way all groups follow the length distribution of
the proteome as illustrated in figure 3.1

A.E. Konstantinou 20

Algorithm for the construction of spliced-peptides database

—— Human Proteome
— Protein group

Figure 3.1 Length distribution of proteome versus group of proteins

This facilitates the monitoring and the runtime estimation of the process as all groups
require equal computing time. Even though the algorithm has been optimized for speed,
monitoring is especially useful when a single machine is used along with other
processes and the database computing might need to be paused. The user can keep
track of the groups that have already been processed and restart from the last
processed protein group. The status of the process is printed in a .txt file in the same
directory.

In the last step, the function creates all folders and subfolders where the databases will
be saved and gives initiation to the parallel computing.

The interdependencies of functions are illustrated in figure 3.2

A.E. Konstantinou 21

Algorithm for the construction of spliced-peptides database

Create_database

Splicer
p_nonspliced Create_blocks
p_spliced il Create_decoy
mass_filter
Save Qutput
find_hits

Figure 3.2: lllustration of workflow and interdependencies of functions

A.E. Konstantinou

22

Algorithm for the construction of spliced-peptides database

The majority of the computing work takes place within the splicer() which in turn calls all
the functions needed for each individual task i.e. peptide database computation, filtering
according to mass list, decoy construction and output management for a given protein.
In splicer() all the steps described below (3.1.4 to 3.1.7) are automatically completed,
deriving in reduced, filtered and ready to use spliced, non-spliced and decoy databases
for a given protein. It is designed to be called within a serial or parallel process and
includes the task of monitoring.

In the next sections we explain how each function works, what it requires as input and
what it returns as output.

3.2.2 Protein catalyzing and splicing.

The following functions are called for the peptides’ computation:
>p_nonspliced(sequence, N) and

>p_spliced(sequence, N, isl)

Where:

e sequence is the input sequence in a vector of characters [‘A”, “B”, “C”..],
e N is the number of amino-acids for each peptide,
e isl a vector of the minimum and maximum length intervening sequence.

Both functions take as input one protein sequence at a time and one single numeric
value for the peptide length. To compute peptides of multiple lengths, the functions
should be called multiple times. For the next sections we assume that we have the
sequence:

MGLSGLLPILVPILLGDIQEPGHAEGILGKPCPKIKVE

> p nonspliced():

It returns the non-spliced peptides (catalyzed peptides - CP). In a sequence of N amino-
acids there are N - Nmer + 1 catalyzed peptides. Each peptide starts from amino-acid
AA; where i =1,2,3,..,N — Nmer + 1 and ends at amino-acid A4; j = Nmer, Nmer +
1, Nmer + 2, Nmer + 3.....,Nmer.

For example, in the first part of our sequence we get the illustrated 9mer peptides:

A.E. Konstantinou 23

Algorithm for the construction of spliced-peptides database

MGLSGLLPILVPFILLGDIQEPGHAEG...

MGLSGLLPILVPFILLGDIQEPGHAEG...
MGLSGLLPILVPFILLGDIQEPGHAEG...

R

MGLSGLLPILVPFILLGDIQEPGHAEG...
- J
Y
The output is a list of two character vectors: one with all non-spliced peptides and one
with the corresponding amino-acids indexes in the parental sequence. The index for
each peptide is denoted by “i,j ”.

>p_spliced()

The spliced peptides are computed by creating all possible combinations between two
non-continuous amino-acid fragments for the given isl (min, max). Two given fragments
are separated in the original sequence by at least isl (min) and at most isl (max) amino
acids. To compute the first two peptides we start from the first amino-acid AA; in the
protein sequence (first single AA fragment), skip isl (min) amino-acids and merge it
with Nmer — 1 continuous AA onward (second fragment). We get two Nmer spliced
peptides; one by combining the fragments in normal order and one in reverse. To create
the third and fourth peptide, we extend the first fragment by one amino-acid onward, i.e
AAq, AA,, we skip isl(min) amino-acids starting from AAzand we merge it with Nmer-2
continuous AA onward

After all fragment combinations for the isl (min) are reached within the sequence(from
AA; to AAy, the fragmentation starts again from AA; skips isl (min + 1) amino-acids
and creates the second fragment with Nmer — 1 continuous AA onward. When all
fragmentations for isl (min+1) and the starting point AA; are completed, the process is
repeated starting from AA,, and so forth.

An illustrated example for Nmer = 9 and isl = ¢(1,25) :

A.E. Konstantinou 24

Algorithm for the construction of spliced-peptides database

1 8
MGLSGLLPILVPFILLGDIQEPGHAEGILGKPCPKIKVE
o

SP, = MLSGLLPIL, SP, = LSGLLPILM

2 7
MGLSGLLPILVPFILLGDIQEPGHAEGILGKPCPKIKVE
e

SP; = MGSGLLPIL, SP, = SGLLPILMG

3 6
MGLSGLLPILVPFILLGDIQEPGHAEGILGKPCPKIKVE
H_J H_J

SP; = MGLGLLPIL, SP¢ = GLLPILMGL

MGLSGLLPILVPFILLGDIQEPGHAEGILGKPCPKIKVE

— ¥

SP,s = MGLSGLLPL, SP,;5 = LMGLSGLLP

MGLSGLLPILVPFILLGDIQEPGHAEGILGKPCPKIKVE

Yo

SP,, = MGLSGLLPL, SP,3 = LMGLSGLLP (first peptide with starting point AA,)

MGLSGLLPILVPFILLGDIQEPGHAEGILGKPCPKIKVE

/)

~

SP,,9 = GKPCPKIKE , SP,3, = EGKPCPKIK (last peptides with isl = 1)

A.E. Konstantinou

Y

25

Algorithm for the construction of spliced-peptides database

MGLSGLLPILVPFILLGDIQEPGHAEGILGKPCPKIKVE
LYJ - ~ _

SP,s1 = MSGLLPILV, SP,5, = SGLLPILVM (first peptides with isl = 2)

7~ isl=25 N
MGLSGLLPILVPFILLGDIQEPGHAEGILGKPCPKIKVE
N\ J LYJ

Y

SP;119 = MGLSGLLPP, SP,,,, = PMGLSGLLP (last peptides with starting point A4,
and isl = 25)

/isI:ZS \
MGLSGLLPILVPFILLGDIQEPGHAEGILGKPCPKIKVE

. ~ J LYJ

SP5,99 = LLPILVPFE, SP,,0 = ELLPILVPF (last peptides with is|=25, last in the
sequence)

Again, the output is a list of two character vectors: one with all spliced peptides and one
with indices. The index for each peptide is denoted as i,j;__ i,j, , where the first
fragment starts at i; and ends at j, and the second fragment starts at i, and ends at j,.
For example, for the first spliced peptide SP; the index will be 1,1 _ 3,10, meaning that
the first fragment starts and ends at amino-acid AA;, and the second fragment starts at
AA; and ends at A4 .

Both functions are implemented in C++ and return a non-reduced database which may
contain duplicates. As an extra step non-unique peptides should be removed manually
and non-spliced should be removed from spliced database. For the next steps, lists
should be translated into data frames of two columns (one with peptides, the other with
indices) as shown in figure 3.3:

A.E. Konstantinou 26

Algorithm for the construction of spliced-peptides database

1 MGLSGLLPI 1,9 1 MSGLLPILV 1,1 _4.11_
2 GLSGLLPIL 2,10 2 SGLLPILVM 411_1,1_
3 LSGLLPILY 3,11 3 MGGLLPILV 1,2.511_
4 SGLLPILVP 4,12 4 GLLPILVMG 5 11_1,2
5 GLLPILVPF 5.13 5 MGLLLPILV 1,3_6,11_
& LLPILVPFI 6,14 6 LLPILVMGL 6,11_1,3_
7 LPILVPFIL 7.15 7 MGLSLPILYV 1.4 7.11_
8 PILVPFILL 8,16 8 LPILVMGLS 7.11_1.4_
9 IWPFILLG 917 9 MGLSGPILY 1,5_811_
10 LVFFILLGD 10,18 10 PILVMGLSG 8,11_1,5_
11 VPFILLGDI 11,19 11 MGLSGLILV 1,6_9,11_
12 PFILLGDIO 12,20 12 IWMGLSGL S,11_1,6_
13 FILLGDIQE 13,21 13 MGLSGLLLY | 1,7_10,11_
14 ILLGDIQEP 14,22 14 LWMGLSGLL 10,11_1,7_
15 LLGDIQEPG 15,23 15 MGLSGLLPY 1,8_11,11_
16 LGDIQEPGH 186,24 16 VMGLSGLLP 11,11_1.8_
17 GDIQEPGHA 17,25 17 GGLLPILVP 2,2_512_
Figure 3.3 Output samples of non-spliced and spliced peptides
3.2.3 Filtering

As previously explained, the complete databases can become vast occupying large disc
space. It is advised to reduce the database entries to only those which are actual
candidates, if the experimental masses are available. To start the filtering process we
call:

>mass filter(D, masslist, tolerance)

Where:
e D is a data frame of the format shown in figure 3.3 containing the peptides to be
filtered
e masslist is a numeric vector containing all the ion masses found in the MS
analysis

e tolerance is a numerical value in parts per million

The function computes the molecular weight (mw) for each peptide and a range with
minimum and maximum weight according to tolerance. Tolerance of 3 ppm will result in
the range(mw —mw = 1,5 x 107®, mw + mw * 1,5 * 107°). This range is stored as a

A.E. Konstantinou 27

Algorithm for the construction of spliced-peptides database

minimum and a maximum column in the D. If at least one mass entry from the masslist
vector falls within a peptide’s molecular weight range, this peptide shall remain in the
database.

To efficiently implement that, the masslist and the peptide data frame D are sorted
ascending according to molecular weight. The mass list is reduced to contain equal or
greater values than the first element of the minimum MW column and equal or less
values than the last element of maximum MW column. Now instead of searching each
mass entry within the whole molecular weight column, we search until the queried mass
in masslist is larger than the maximum weight of a peptide in the D.

Let's assume we have two indices: i for indexing the peptide dataframe rows and j for
the masslist elements. Both indices start at 1.

Preprocessing:

) Compute columns mw, mw. min and mw. max for each peptide in D
i) Sort D according to mw ascending. Sort masslist ascending

iif) Remove elements in masslist if j < mw.min,;

iv) Remove elements in masslist if j > mw.max,

Now, by default, the following are always true:

1. mw.min; £ mw.min;
2. mw.max; < Mw.max;,q
3. j1 = mw.ming

Then, the control flow for filtering is as below:

A) If the currentj value is equal or less than the current i,,,, value we go through the
following conditions, else we remove current i element and move to the next:

)] If j element is within min; and max; , the i element is kept in the database
and we move to the next i (j remains the same) and start again at i).

i) If j element is greater than max; , the ielement is removed from the
database and we move to the next i (j remains the same) and start again at
i).

i) If, and only if, the j element is smaller than min; then we move to the next j
element and exit at A).

For example, let's assume that the first elements in the sorted peptide data frame
(where SP1 column contains the theoretical peptides, SP2 the AA indexes, MW the
computed molecular weight ,min-max the MW range) and mass list are as shown in
Figure 3.4 and represented by i and j indexes respectively.

A.E. Konstantinou 28

Algorithm for the construction of spliced-peptides database

e = @& W s W k) e

P B3 P P B e e s

SP1
GLSGGHAEG
GHAEGGLSG
GLSGLGILG
GILGGLSGL
GLIGGILGK
GILGKGLSG
GLYGEGILG
EGILGGLSG
MGLIGGILG
GILGMGLSG
GLSGLPGHA
PGHAGLSGL
GGHAEGILG
GHAEGILGG
GLSGLLPPG
PGGLSGLLP
GLSGGKPCP
GEPCPGLSG
GLSGLLAEG
AEGGLIGLL
GLSGLAEGI
AEGIGLSGL
SGLAEGILG
AEGILGSGL
GLSGAEGIL
AEGILGLSG

SP2

2,5 2327
23,27 _25_
2,6_27,30_
27,30_2.6_
2,5_27,31_
27,31.2,5_
2,5_26,30_
26,30_2,5_
1,5.27,30_
27,30_1,5_
2,6.22,25_
22,25_2,6_
17,17_23,30_
23,30_17,17_
2,8 2223
2223 28_
2,5.30,34_
30,34.2,5_
2,7 25,27_
25,27 27_
2,6.25,28_
25,28 2.6_
4,6_25,30_
25,30 46_
2,5 25,29_
25,29 2,5_

MW

783.35NM
T83.35N
T85.4847
T85.4847
800.4756
800.4756
8014232
801.4232
8034211
2034211
S07.4239
S07.4239
S09.4031
509.4031
8094847
B09.4847
8144007
8144007
815.4389
815.4389
815.4389
815.4389
815.4389
815.4339
815.4389
815.4389

min

783.3499
783.3499
785.4635
785.4635
2004744
2004744
2014220
801.4220
803.4199
203.4199
g0T.4227
g0T.4227
209.4019
209.4019
809.4635
809.4635
814.3995
814.3995
815.4376
B815.4376
B15.4376
B15.4376
815.4376
815.4376
815.4376
815.4376

max
783.3523
783.3523
7854658
785.4658
8004768
800.4768
201.4244
801.4244
803.4223
803.4223
807.4251
807.4251
809.4043
809.4043
8059.4659
809.4659
8144019
814.4019
815.4401
815.4401
815.4401
815.4401
815.4401
815.4401
815.4401
8154401

b

—

= o W A W Mg

649

651

653

3415
3416
3T

Figure 3.4 Samples of data frame D and vector masslist for the filtering process

A.E. Konstantinou

783.3514
783.3543
783.3549
783.3618
783.3625
783.3626
783.3632

785.4634
7854634
7854635
7854630
785.4638
785.4639
7854639

800.4739
8004754
800.4761

814.3952
B14.3973
814.3975
B14.4079
814.4109

29

Algorithm for the construction of spliced-peptides database

The element j; in mass list is 783,3514. It is within the peptide i; MW range, so the
peptide is marked as “K” (Keep) and move to i,. Due to sorting, whatever the current
peptide is, the next peptide in the list will have either the same MW value or greater,
thus its min, max range will be either the same or shifted to the right in the numerical
scale.

The i, element is equal to i; so itis also a “K” and we move to i5. The j; is lower than
the mw.min and mw. max of i; so we need to move to j, which is still lower than i5. This
also applies for the next rows so we keep moving in j column until we arrive at jgsq -
This is within the MW range of i; so we mark peptide i; as a “K”. Same applies for i,.

For element is we need to skip many rows of j to get to a j element of similar value. We
keep moving in j column until we get to j 3416 Which is within i; MW range, we mark is
as a “K” and we keep moving on in i list

When we get to i ; and as we are still increasing the j (condition A.iii.) , we get to
J 6051 Which is greater than the mw.min but also greater than mw.max of i;; . This
peptide is, thus, not represented in the masslist so we mark it as an “R” (remove) and
move to i;g which equal to i;; and removed as well.

Getting to i;9 we enter again in condition iii) and we start moving on j list until we either
get a match or j exceeds a mw.max i element so we start moving in the i list.

This way it's not needed to search the whole mass list against each individual peptide in
the database. Instead, we go through both lists simultaneously, saving a lot of time.

This part of the algorithm is implemented in C++ for optimized speed.

3.2.4 Output in protein format

Before calling the main function that returns the database in the desired format, we
need to estimate the distribution of the current proteome database. We call:
>Distrifit(data, d)

Where:

e Data is the input proteome database in FASTA format
e d is a string variable indicating the distribution to be fitted, “lognormal” or
ngamma”

This returns a vector of the distribution parameters i.e. mean and variance in the case of
a log-normal distribution, k and 6 in the case of a gamma distribution. This step,
however, can be performed manually by the user who should choose a distribution that
best describes the data. In any case, this step is only complementary and reduction in
accuracy of fitting will not alter the results of the downstream analysis in any way.

Then the format conversion process can start. In this step, the peptides are stitched
together into peptide-blocks to resemble proteins. After obtaining a peptide data frame
(as in figure 3.1) we call:

A.E. Konstantinou 30

Algorithm for the construction of spliced-peptides database

>create_blocks(x, title, pep.type,fit, nmer)

Where:

X is a dataframe which has in the first column all the peptides to be stitched

title is the title of the original protein, needed for annotation

pep.type is the peptide type (spliced or non-spliced), needed for annotation

fit is the output of Distrfit() function. A list containing a vector with a character
element which indicates the distribution, and a numerical vector of the distribution
parameters from which the protein lengths will be sampled.

e Nmer is the peptide sequence length.

A random log normal or gamma generator is used to sample one thousand values from
the distribution of choice. Each value corresponds to the length of the current peptide-

block. For example, if the first value in the vector is N; = 900 then 0 _ 20

— =100

Nmer 9
peptides will be used in the first peptide-block. If the peptide list contains 1000 peptides
then the first 100 will be stitched together leaving behind 900 peptides. Thus, for the
second peptide-block the index starts from peptide 101 and uses N, peptides, i.e the
second value in the sampled vector. If the peptide list is so large that more that 1000
blocks are needed thus exceeding the length of the vector, then the index of the
sampled vector starts again at N;. This, however, does not happen often so it is
preferable to keep the sample vector reasonably short than allocating useless elements
that occupy RAM and slow down the process.

Let’'s assume we have already called the p_spliced() function which returned a list of
spliced peptides and transformed it into a data frame.

After calling the create_blocks() function the returned list includes all peptide-blocks
composed by spliced peptides derived from Proteinl, as shown in Figure 3.5 .

3.2.5 Decoy database

To obtain a decoy database of peptides from the current protein, the function
create_decoy() is called :

>create_decoy(x, title, pep.type, method)
Where:

e X is a character vector of peptides or a list of peptide sequences in peptide-block
format.

e title is the title of the protein for annotation

e pep.type is the type of peptides (spliced or non-spliced) for annotation

e method is a string variable indicating the decoy method to be used. Possible
values are “rev” for reverse sequences or “shf’ for shuffled sequences

A.E. Konstantinou 31

Algorithm for the construction of spliced-peptides database

> head(sPproteins)

$ Proteinl_spPl”

[1] "MSGLLPILVSGLLPILVMMGGLLPILVGLLPILVMGMGLLLPILVLLPILVMGLMGLSLPILVLPILVMGL SMGLSGPILVPILVMGLSGMGLSGLILY
ILVMGLSGLMGL SGLLLVLVMGL SGLLMGL SGLLPVVMGL SGLLPGGLLPILVPGLLPILVPGGLLLPILVPLLPILVPGLGLSLPILVPLPILVPGLSGLSGP
ILVPPILVPGLSGGLSGLILVPILVPGLSGLGLSGLLLVPLVPGLSGLLGLSGLLPYPYPGLSGLLPGLSGLLPIPPGLSGLLPILLLPILVPFLLPILVPFLL
SLPILVPFLPILVPFLSLSGPILVPFPILVPFLSGLSGLILVPFILVPFLSGLLSGLLLVPFLVPFLSGLLLSGLLPVPFVPFLSGLLPLSGLLPIPFPFLSGL
LPILSGLLPILFFLSGLLPILSLPILVPFILPILVPFISSGPILVPFIPILVPFISGSGLILVPFIILVPFISGLSGLLLVPFILVPFISGLLSGLLPVPFIVP
FISGLLPSGLLPIPFIPFISGLLPISGLLPILFIFISGLLPILSGLLPILVIISGLLPILVGPILVPFILPILVPFILGGLILVPFILILVPFILGLGLLLVPF
ILLVPFILGLLGLLPYPFILVPFILGLLPGLLPIPFILPFILGLLPIGLLPILFILFILGLLPILGLLPILVILILGLLPILVGLLPILVPLLGLLPILVPLIL
VPFILLILVPFILLLLLLYPFILLLVPFILLLLLLPYPFILLYPFILLLLPLLPIPFILLPFILLLLPILLPILFILLFILLLLPILLLPILVILLILLLLPIL
VLLPILVPLLLLLLPILVPLLVPFILLGLVPFILLGLLPVPFILLGVPFILLGLPLPIPFILLGPFILLGLPILPILFILLGFILLGLPILLPILVILLGILLG
LPILVLPILVPLLGLLGLPILVPLPILVPFLGLGLPILVPFLPILVPFIGGLPILVPFIPYPFILLGDVPFILLGDPPIPFILLGDPFILLGDPIPILFILLGD
FILLGDPILPILVILLGDILLGDPILVPILVPLLGDLLGDPILVPPILVPFLGDLGDPILVPFPILVPFIGDGDPILVPFIPILVPFILDDPILVPFILIPFIL
LGDIPFILLGDIIILFILLGDIFILLGDIILILVILLGDIILLGDIILVILVPLLGDILLGDIILVPILVPFLGDILGDIILVPFILVPFIGDIGDIILYPFII
LVPFILDIDIILVPFILILVPFILLIIILVPFILLLFILLGDIQFILLGDIQLLVILLGDIQILLGDIQLYLVPLLGDIQLLGDIQLYPLYPFLGDIQLGDIQL
VPFLVPFIGDIQGDIQLVPFILVPFILDIQDIOLVPFILLVPFILLIQIQLVPFILLLVPFILLGQQLVPFILLGVILLGDIQEILLGDIQEVVPLLGDIQELL
GDIQEVPVPFLGDIQELGDIQEVPFVPFIGDIQEGDIQEVPFIVPFILDIQEDIQEVPFIL"

fProteinl_sP2

[1] "VPFILLIQEIQEVPFILLVPFILLGOEQEVPFILLGVPFILLGDEEVPFILLGDPLLGDIQEPLLGDIQEPPPFLGDIQEPLGDIQEPPFPFIGDIQER
GDIQEPPFIPFILDIQEPDIQEPPFILPFILLIQEPIQERPPFILLPFILLGOEPOQEPPFILLGPFILLGDEPEPPFILLGDPFILLGDIPPPFILLGDIFLGDT
QEPGLGDIQEPGFFIGDIQEPGGDIQEPGFIFILDIOEPGDIQEPGFILFILLIQEPGIQEPGFILLFILLGQEPGQEPGFILLGFILLGDEPGEPGFILLGDF
ILLGDIPGPGFILLGDIFILLGDIQGGFILLGDIQIGDIQEPGHGDIQEPGHIILDIQEPGHDIOEPGHILILL IQEPGHIQEPGHILLILLGQEPGHOEPGHT
LLGILLGDEPGHEPGHILLGDILLGDIPGHPGHILLGDIILLGDIQGHGHILLGDIQILLGDIQERHILLGDIQELDIQEPGHADIQEPGHALLLIQEPGHALIQ
EPGHALLLLGOEPGHAQEPGHALLGLLGDEPGHAEPGHAL LGDLLGDIPGHAPGHALLGDILLGDIQGHAGHALLGDIOLLGDIQEHAHALLGDIQELLGDIQE
PAALLGDIQEPLIQEPGHAEIQEPGHAELLGQEPGHAEQEPGHAELGLGDEPGHAEEPGHAELGDLGDIPGHAEPGHAELGDILGDIOGHAEGHAELGDIQLGD
IOEHAEHAELGDIQELGDIQEPAEAELGDIQEPLGDIQEPGEELGDIQEPGGOEPGHAEGOEPGHAE GGGDEPGHAEGEPGHAEGGDGDIPGHAEGPGHAEGGD
IGDIQGHAEGGHAEGGDIOGDIQEHAEGHAEGGDIQEGDIQEPAEGAEGGDIQEPGDIQEPGEGEGGDIQEPGGDIQEPGHGGGDIQEPGHDEPGHAEGIEPGH
AEGIDDIPGHAEGIPGHAEGIDIDIQGHAEGIGHAEGIDIQDIQEHAEGIHAEGIDIQEDIQEPAEGTIAEGIDIQEPDIQEPGEGIEGIDIQEPGDIQEPGHGT
GIDIQEPGHDIQEPGHATIIDIQEPGHAIPGHAEGILPGHAEGILITOGHAEGIL GHAEGILIQIQEHAEGILHAEGTIL IQETOQEPAEGIL AEGILIQEPIQEPG
EGILEGILIQEPGIQEPGHGILGILIQEPGHIQEPGHATL IL TQEPGHAQGHAEGIL GGHAEGIL GOQQEHAEGIL GHAEGIL GQEQEPAEGIL GAEGILGQEPQ
EPGEGILG"

$Proteinl_sP3

[1] "EGILGQEPGQEPGHGILGGILGOEPGHQEPGHAILGILGQEPGHAEHAEGILGKHAEGILGKEEPAEGILGKAEGILGKEPEPGEGILGKEGILGKEPG
EPGHGILGKGILGKEPGHEPGHAILGKILGKEPGHAEPGHAELGKL GKEPGHAEEPGHAEGGKGKEPGHAEGE PGHAEGIKKEPGHAEGIPAEGILGKPAEGIL
GKPPPGEGILGKPEGILGKPPGPGHGILGKPGILGKPPGHPGHAIL GKPILGKPPGHAPGHAEL GKPLGKPPGHAEPGHAEGGK PGKPPGHAEGPGHAEGIKPK
PPGHAEGIPGHAEGILPPPGHAEGILGEGILGKPCEGILGKPCGGHGILGKPCGILGKPCGHGHAIL GKPCILGKPCGHAGHAEL GKPCLGKPCGHAEGHAEGS
KPCGKPCGHAEGGHAEGIKPCKPCGHAEGIGHAEGILPCPCGHAEGILGHAEGILGCCGHAEGILGHGILGKPCPGILGKPCPHHAILGKPCPILGKPCPHAHA
ELGKPCPLGKPCPHAEHAEGGKPCPGKPCPHAEGHAEGIKPCPKPCPHAEGIHAEGILPCPPCPHAEGILHAEGILGCPCPHAEGILGPHAEGILGKATILGKPC
PKILGKPCPKAAELGKPCPKLGKPCPKAEAEGGKPCPKGKPCPKAEGAEGIKPCPKKPCPKAEGIAEGILPCPKPCPKAEGILAEGILGCPKCPKAEGILGAEG
ILGKPKPKAEGILGKKAEGILGKPELGKPCPKILGKPCPKIEEGGKPCPKIGKPCPKIEGEGIKPCPKIKPCPKIEGIEGILPCPKIPCPKIEGILEGILGCPK
ICPKIEGILGEGILGKPKIPKIEGILGKKIEGILGKPEGILGKPCT"

Figure 3.5: Output to peptide-blocks format for Proteinl

The output is either in peptide-blocks format or a vector of peptides depending on the
input format. Two methods are available to construct a decoy: reverse and shuffled (as
described in section 2.3).

For example, let's assume we have already called the create_blocks() function which
returned those peptides in protein format as shown in Figure 3.5 . To get the reverse-
decoy sequences that correspond to Proteinl, we need to call create_decoy(X,
titte="Protein1”, pep.type= “SP”, method= “rev”) .The Figure 3.6 illustrates the list output
when reversed method is chosen.

Each protein’s spliced peptides produce a separate file of decoy sequences. For
Proteinl a FASTA file with title “Protein1_dSP.txt” is saved. Each decoy peptide-block is
annotated with an index number (1, 2, 3 etc).

A.E. Konstantinou 32

Algorithm for the construction of spliced-peptides database

> head(SPdecoy)

$ Proteinl_dspl’

[1] "LIFPVEQIDEQIDLIFPVIFPVEQIDGEQIDGIFPVFPVEQIDGLEQIDGLFPVPVEQIDGLLEQIDGLLPVVEQIDGLLIEQIDGLLIVGLLIFPVLG
QGLLIFPVLLLIFPVLQIQILLIFPVLLIFPVLQIDQIDLIFPVLIFPVLQIDGQIDGIFPVLFPVLQIDGLQIDGLFPYLPVLQIDGLLQIDGLLPVLVLQID
GLLIQIDGLLIVLLQIDGLLIFQIDGLLIFLLLIFPYVLIIILLIFPYLILIFPYVLIIDIDLIFPVLIIFPYVLIIDGIDGIFPYLIFPVLIIDGLIDGLFPVLIP
VLIIDGLLIDGLLPVLIVLIIDGLLIIDGLLIVLILIIDGLLIFIDGLLIFLIIIDGLLIFPIDGLLIFPILIFPVLIFPDDLIFPVLIPIFPYLIPDGDGIFPY
LIPFPVLIPDGLDGLFPVLIPPYLIPDGLLDGLLPYVLIPYLIPDGLLIDGLLIVLIPLIPDGLLIFDGLLIFLIPIPDGLLIFPDGLLIFPIPPDGLLIFPVDG
LLIFPVPIFPVLIPLGGIFPVLIPLFPVLIPLGLGLFPVLIPLPVLIPLGLLGLLPVLIPLVLIPLGLLIGLLIVLIPLLIPLGLLIFGLLIFLIPLIPLGLLT
FPGLLIFPIPLPLGLLIFPVGLLIFPVPLLGLLIFPVLGLLIFPVLLPVLIPLLLLLLPVLIPLLVLIPLLLLTILLIVLIPLLLIPLLLLIFLLIFLIPLLIPL
LLLTIFPLLIFPIPLLPLLLLIFPVLLIFPVPLLLLLLIFPVLLLIFPVLLLLLLIFPVLILLIFPVLILPVLIPLLGLLPVLIPLLGVLIPLLGLILIVLIPLL
GLIPLLGLIFLIFLIPLLGIPLLGLIFPLIFPIPLLGPLLGLIFPYLIFPVPLLGLLGLIFPVLLIFPVLLLGLGLIFPVLILIFPVLILGGLIFPVLIPLIFP
VLIPGVLIPLLGSIIVLIPLLGSLIPLLGSIFIFLIPLLGSIPLLGSIFPIFPIPLLGSPLLGSIFPVIFPYPLLGSLLGSIFPYLIFPVLLLGSLGSIFPVLI
IFPVLILGSGSIFPVLIPIFPVLIPGSSIFPVLIPLIFPYLIPLSLIPLLGSLFFLIPLLGSLIPLLGSLFPFPIPLLGSLPLLGSLFPVFPYPLLGSLLLGSL
FPVLFPVLLLGSLLGSLFPVLIFPVLILGSLGSLFPVLIPFPVLIPGSLSLFPYLIPLFPYLIPLSLLFPYLIPLLFPVLIPLLLIPLLGSLGPPIPLLGSLGP
LLGSLGPVPVPLLGSLGLLGSLGPVLPVLLLGSLGLGSLGPVLIPYVLILGSLGGSLGPVLIPPVLIPGSLGSLGPVLIPLPYVLIPLSLGLGPVLIPLLPVLIPL
LLGGPVLIPLLGPVLIPLLGGPLLGSLGMVVPLLGSLGMLLGSLGMVLVLLLGSLGMLGSLGMVLIVLIL GSLGMGSLGMYVLIPVLIPGSLGMSLGMVLIPLYVL
IPLSLGMLGMVLIPLLVLIPLLLGMGMVLIPLLGVLIPLLGGMMVLIPLLGSVLIPLLGSM"

$Proteinl_dsp2

[1] "GLIGEGPEQPEQGLIGEAGLIGEAPEQEQGLIGEAHGL IGEAHEQQGLIGEAHGGL IGEAHGQAHGPEQILILIAHGPEQIHGPEQILIGLIGHGPEQT
GPEQILIGELIGEGPEQIPEQILIGEALIGEAPEQIEQILIGEAHLIGEAHEQIQILIGEAHGL IGEAHGQIILIGEAHGPLIGEAHGP IAHGPEQIDI IAHGP
EQIDHGPEQIDIGIGHGPEQIDGPEQIDIGE IGEGPEQIDPEQIDIGEAIGEAPEQIDEQIDIGEAHIGEAHEQIDQIDIGEAHGIGEAHGQIDIDIGEAHGPT
GEAHGPIDDIGEAHGPE IGEAHGPEDHGPEQIDGGGHGPEQI DGGPEQIDGGEGE GPEQIDGPEQIDGGEAGEAPEQIDGEQIDGGEAHGEAHEQIDGOIDGGE
AHGGEAHGQIDGIDGGEAHGPGEAHGP IDGDGGEAHGPEGEAHGPEDGGGEAHGPEQGEAHGPEQGGPEQIDGL EEGPEQIDGLPEQIDGLEAEAPEQIDGLEQ
IDGLEAHEAHEQIDGLQIDGLEAHGEAHGQIDGL IDGLEAHGPEAHGPIDGL DGLEAHGPEEAHGPE DGLGLEAHGPEQEAHGPEQGLLEAHGPEQIEAHGPEQ
ILPEQIDGLLAAPEQIDGLLEQIDGLLAHAHEQIDGLLOIDGLLAHGAHGOIDGLL IDGLLAHGPAHGPIDGLL DGLLAHGPEAHGPEDGLLGLLAHGPEQAHG
PEQGLLLLAHGPEQIAHGPEQILLLAHGPEQIDAHGPEQIDLEQIDGLLIHHEQIDGLLIQIDGLL IHGHGQIDGLL IIDGLLIHGPHGPIDGLLIDGLL IHGP
EHGPEDGLLIGLLIHGPEQHGPEQGLLILL IHGPEQIHGPEQILLILIHGPEQIDHGPEQIDL ITHGPEQIDGHGPEQIDGIQIDGLLIFGGQIDGLLIFIDGL
LIFGPGPIDGLLIFDGLLIFGPEGPEDGLLIFGLLIFGPEQGPEQGLLIFLLIFGPEQIGPEQILLIFLIFGPEQIDGPEQIDLIFIFGPEQIDGGPEQIDGIF
FGPEQIDGLGPEQIDGLFIDGLLIFPPPIDGLLIFPDGLLIFPPEPEDGLLIFPGLLIFFPEQPEQGLLIFPLLIFPPEQIPEQILLIFPLIFFPEQIDPEQID
LIFPIFPPEQIDGPEQIDGIFPFPPEQIDGLPEQIDGLFPPPEQIDGLLPEQIDGLLPDGLLIFPVEEDGLLIFPVGLL IFPVEQEQGLL IFPVLLIFPVEQIE
QILLIFPV"

$Proteinl_dsp3

[1] "ICPKGLIGEPKGLIGEIKKGLIGEIKPIKPKGLIGEGLIGEIKPCIKPCGLIGELIGEIKPCPIKPCPLIGEIGEIKPCPKIKPCPKIGEGEIKPCPKG
IKPCPKGGEEIKPCPKGL IKPCPKGLEPKGL IGEAKKGL IGEAKPKPKGLIGEAGL IGEAKPCKPCGLIGEALIGEAKPCPKPCPLIGEAIGEAKPCPKKPCPK
IGEAGEAKPCPKGKPCPKGGEAEAKPC PKGLKPCPKGLEAAKPCPKGL IKPCPKGL TAKGLIGEAHPGLIGEAHPCPCGLIGEAHL IGEAHPCPPCPLIGEAHT
GEAHPCPKPCPKIGEAHGEAHPCPKGPCPKGGEAHEAHPCPKGLPCPKGLEAHAHPCPKGLIPCPKGL IAHHPCPKGL IGPCPKGL IGHGL IGEAHGCCGL IGE
AHGL IGEAHGCPCPLIGEAHGIGEAHGC PKCPK IGEAHGGEAHGC PKGCPKGGE AHGEAHGC PKGLC PKGLEAHGAHGC PKGLICPKGL IAHGHGCPKGLIGCP
KGLIGHGGCPKGLIGECPKGLIGEGLIGEAHGPPPLIGEAHGP IGEAHGPPKPK IGEAHGPGEAHGPPKGPKGGEAHGPEAHGPPKGLPKGLEAHGPAHGPPKG
LIPKGLIAHGPHGPPKGL IGPKGL IGHGPGPPKGLIGEPKGL IGEGPPPKGL IGEAPKGL IGEAPIGEAHGPEKK IGEAHGPEGEAHGPEKGKGGEAHGPEEAH
GPEKGLKGLEAHGPEAHGPEKGL IKGL IAHGPEHGPEKGL IGKGLIGHGPEGPEKGLIGEKGL IGEGPEPEKGL IGEAKGL IGEAPEEKGL IGEAHKGL IGEAH
EAHGPEQGLIGL TAHGPEQHGPEQGLIGGL IGHGPEQGPEQGLIGE"

Figure 3.6 Decoy sequences of spliced peptides when peptide-blocks format is used

3.2.6 Output files in automated process

Output files are automatically saved only in the automated process. If functions are
used separately the user needs to save the database in the desired format manually.

Every file saved corresponds to one and only one sequence in the input list provided.
By default, each protein’s spliced peptides database (spliced, non-spliced, decoy) is
saved as an .rds file with title “sp_protein.rds” where protein is the unique Uniprot name.
Those files are needed for the step 3.1.8 where the hits are searched against each
database.

If output to blocks is chosen, each database is also saved in FASTA format as
mentioned in section 3.1.5 and 3.1.6. For a combined search method (as described in
section 2.3.1) all files of decoy proteins and all files of target databases need to be
concatenated together in one text file.

A.E. Konstantinou 33

Algorithm for the construction of spliced-peptides database

3.2.7 Searching the hits

This step requires that an MS analysis software of choice has been used to match the

database peptides. All the peptides that were found as hits should be included in one
vector.

To search the candidate peptides against all the databases, we call:

>find_hits(x, data, DB, Nmer)
Where:

e X is a character vector containing the peptides (each element is a peptide)

e datais the exact same Uniprot file in FASTA format that was used to create the
database

e DB a character value or character vector indicating which database should be
searched. Possible values are “SP” for spliced peptide data base and “NSP” for
non-spliced. For each database both target and decoy is searched.

e Nmer is a vector with the minimum and maximum Nmer. For example for Nmer=
¢(9,10) the peptide-hits will be searched against 9mer and 10mer databases.

This returns a data frame of four columns: the first column contains the input peptides,
the second the database that each peptide was found (spliced or non-spliced), the third
indicates if it was in the target or the decoy and the fourth the indexes of the amino-
acids in the parental protein. Obviously the fourth column has no value for the peptides
that were found in decoy databases. Peptides that were not found anywhere will have
NA values in all columns.

A.E. Konstantinou 34

Algorithm for the construction of spliced-peptides database

4. BENCHMARKING AND SYSTEM SPECIFICATION

4.1 System information

In this chapter we present a rough estimation of the execution time for each heavily
computational task in the algorithm. The system on which the algorithm was tested is
listed below:

Operating system: Windows 10
RStudio Version: 1.1.463

R Version: 3.5.1 (2018-07-02)
CPU: AMD Ryzen 5 2400g, 3600 MHz
RAM: 16 GB, 3200 MHz

4.2 Benchmarking: Settings and results

All tests are performed in serial and parallel mode for a group of 1010 proteins which is
equal to 1/20 of the total human proteome. For parallel processing we use three
physical CPU cores and six logical. The group of proteins follows the original
proteome’s length distribution, which was found to be lognormal, as shown in figure 4.1
(excluding two unusually large proteins: Q8WZ42|TITIN. HUMAN and
Q8WXI7[MUC16HUMAN of 34350 and 14507 amino acids respectively). This way we
ensure that for every additional 1010 proteins group that follows the same lognormal
distribution, the execution time will increase linearly. Longer lengths of proteins increase
the runtime also linearly. The automated process and all separate functions are
benchmarked. We also test different lengths of proteins to illustrate the linear
relationship between length and execution time. Additionally, we benchmark the speed
gain for every additional cpu core used in parallelization.

It should be noted that even though virtually any CPU can run the algorithm, for
increased ranges of intervening sequences’ lengths more RAM is mandatory. Here, we
test on a conventional computer built of 16 GB RAM. The maximum range of
intervening sequence that can be comfortably handled at once is [1-100] amino-acids.
However, one can run the algorithm multiple times using different ranges when less
RAM is available. For example, a range of [1-100] can be separated in two or four
rounds of [1-25], [26-50], [51-75] and [76-100] taking virtually the same execution time.
It is shown in the following plots that intervening sequence length and execution time
are almost perfectly linearly correlated.

4.2.1 Automated process

We first benchmark the automated process where all functions are utilized, for 9mers
and different ranges of intervening sequence lengths. Execution time is almost identical
for any peptide length selected.

A.E. Konstantinou 35

Algorithm for the construction of spliced-peptides database

Human Proteome

Protein sample = 1010

00015
|

00010
|

Density

0.0005
|

0.0000
|
I

T T T T T
0 2000 4000 6000 8000

Figure 4.1 Protein length distributions

When multiple lengths are computed in the same run, the execution times are the
estimated times presented below multiplied by the number of different lengths. The
parameters used for the following benchmarking are specifically:

data = HUMANZ2016.FASTA

nmers= c¢(9,9)

isl = ¢(1,25), ¢(1,50), c(1,75), c(1,100)

target = “all’”

filter = TRUE

masslist = masslist.txt

tolerance =3

as.blocks= TRUE

. decoy = TRUE

10.ncores =6

=

©XNOORWON

The input file used to test the pipeline was Human proteome 2016 from Uniprot,
containing 20191 proteins that were separated in 20 groups of equal size and length
distribution. The mass list contained 330.000 elements (peptides). The results are
illustrated in figure 4.2

A.E. Konstantinou 36

Algorithm for the construction of spliced-peptides database

O
D_
=
o
@

c

c

=

o

c

v o |
- ©
o

@

u

4

c
o]
=,

Time in hours

Figure 4.2 : Automated process for 9mers on 1010 proteins using 6 logical cores. Execution time in x axis
versus intervening sequence length in y axis.

As illustrated, the longer the intervening sequence length in spliced peptides, the longer
the execution time. This is expected as much more fragment combinations are
computed in a given sequence for longer intervening AA chains. The relationship of
execution time and isl looks to be almost perfectly linear. The computational time for
non-spliced peptides is always fixed and virtually O.

Specifically, for intervening sequence length isl = [1:25] the elapsed time wast =
2,42 hours. For isl = [1:50] the elapsed time was t = 5,16 hours. For isl = [1:75] ,
t = 7,82 hours and for isl = [1:100], t = 10,32 hours. Thus, in a same computer build
using the same CPU power, the execution time for the complete human proteome data
base will be 20x the times listed.

A.E. Konstantinou 37

Algorithm for the construction of spliced-peptides database

We also benchmarked the procedure in serial versus parallel mode for the following
parameters:

data = HUMANZ2016.FASTA
nmers= c¢(9,9)

isl = c(1,25)

target = “all”

filter = TRUE

masslist = masslist.txt
tolerance = 3

as.blocks= FALSE

decoy = TRUE

=

©CPeNOOORAWDN

In figure 4.3 we illustrate the gain in speed when using 1, 2, 3, 4, 5 and 6 cores.

Time in hours
25 2.0

2.0
|

1.5

1.0

Number of cores

Figure 4.3 Speed gain from parallel execution

A.E. Konstantinou 38

Algorithm for the construction of spliced-peptides database

4.2.2 Main database construction

Using the same parameters as in 4.2.1 we benchmark the database construction only,
for the same group of proteins. The database includes spliced and non-spliced peptides
only.

o
C’J_
—
o
oo

£

L

1=

[}

C

L o

D_(.D

i

u

i

£
o
=

Time in minutes

Figure 4.4: Main database construction for 9mers on 1010 proteins and 6 logical cores. Execution time in x
axis versus intervening sequence length in y axis.

Similar results as in the previous procedure, however execution time is much shorter
here. This is the least computationally intensive procedure.

For intervening sequence length isl = [1:25] the elapsed time was t = 5,03 minutes.
For isl = [1:50] the elapsed time was t = 9,92 minutes. For isl = [1:75] , t = 14,9
minutes and for isl = [1:100], t = 19,96 minutes.

A.E. Konstantinou 39

Algorithm for the construction of spliced-peptides database

We also tested the execution time of database computation versus increasing protein
lengths. The results are illustrated in figure 4.5.

12

10

Time in seconds

I I I I I
0 2000 4000 6000 8000

Protein length in AA

Figure 4.5: Execution time for different protein lengths. Protein length in x axis versus execution time in y
axis.

4.2.3 Filtering process

When the filtering is done separately, all Rdata files from the previous procedure are
loaded one by one. The filtering was done with 3ppm tolerance using randomly
generated mass lists of different lengths. We tested mass lists of length L =
[85000,170000, 260000, 350000] and no difference in execution time was observed. In
figure 4.6 we illustrate the change in execution time of the filtering process for different
protein lengths when running in one cpu core, using a mass list of 350000 rows

A.E. Konstantinou 40

Algorithm for the construction of spliced-peptides database

15 20 25
I

Filtering process in seconds
10

T T T I T T T
0 1000 2000 3000 4000 5000 6000

Protein length in AA

Figure 4.6: Filtering execution time for different protein lengths. Protein length in x axis versus execution
timeiny axis.

Specifically, single databases of peptides derived from small proteins of up to 1000
amino-acids need between 0.01 to 5 seconds to be filtered. A peptide database derived
from a long protein of 5000 amino-acids or more, needs 15 to 20 seconds reaching 60
seconds for unusual large proteins of 20000 or more amino-acids. Total execution time
for a group of 1010 proteins, 9mers and isl = [1,25] was t = 9,54 minutes, running on
6 logical cores.

4.2.4 Decoy database construction

Again, when decoys are constructed separately the Rdata files from procedure 4.2.2 are
loaded one by one. In figure 4.7 we illustrate the change in execution time of the decoy
construction process for different protein lengths when running in one cpu core, using
the reversed method. Once again, linearity is observed between protein length and
execution time. Execution time for 1010 proteins, 9mers peptides and isl = [1,25] on 6
logical cores was t = 14,2 minutes.

A.E. Konstantinou 41

Algorithm for the construction of spliced-peptides database

20 30 40
| |

Decoy construction in seconds

10

| | | | |
0 2000 4000 6000 8000

Protein length in AA

Figure 4.7: Decoy construction for different protein lengths. Protein length in x axis versus execution time in
y axis.

4.2.5 Outputto blocks

This is the most intensive and time consuming procedure. In figure 4.8 we illustrate the
change in execution time of the format conversion process for different protein lengths
when running in one cpu core. The relationship between execution time and protein
length looks to be exponential in this process. Due to the low frequency of long proteins
i.e. over 4000 amino-acids, in the proteome and, therefore, our sample, the plot line is
not smooth after the point x = 4000 on x axis. However if more long proteins where
present in the sample, the exponential trend would be clearly visible. Total execution
time for a group of 1010 proteins, 9mers andisl = [1,25] was t = 120,2 minutes,
running on 6 logical cores.

A.E. Konstantinou 42

Algorithm for the construction of spliced-peptides database

200 300 400 500
| | | |

Format conversion to blocks in seconds

100
|

| 1 | 1 |
0 2000 4000 6000 8000

Protein length in AA

Figure 4.8: Format conversion execution time for different protein lengths. Protein length in x axis versus
execution time in y axis.

A.E. Konstantinou 43

Algorithm for the construction of spliced-peptides database

5. CONCLUSION

The experimental analysis of spliced peptides has garnered significant interest in the
recent years. More and more studies prove their definitive contribution to immune
system function and the many ramifications of this finding, such as vaccine design,
immunotherapy and autoimmune diseases therapy.

To overcome the computational limitations due to lack of an equivalent software
solution, we developed ProteoSplicer, a pipeline to initiate the process of spliced-
peptides identification. Splicer creates custom spliced and non-spliced peptides
databases which are mandatory when using MS/MS analysis software, as well as their
decoys. We explained thoroughly in chapter 3 how it works, function by function and
benchmarked it in chapter 4. It is an open source pipeline and accessible at Github
platform.

Several challenges were faced during the development of the algorithm and the
implementation of an A to Z identification analysis. The greatest issue was the
execution time when large proteome databases were used or the complete spliced
peptide databases were needed. For this we implemented speed optimization
techniques in R, and C++ scripts for the most intensive tasks. However, there is still
room for improvements as it can get quite slow when large parameters are used.
Nonetheless, this issue can be overcome with extra computing power, by either using
more cores or more powerful CPU.

Another issue was the unavailability of a simple and specific database search engine
software solution. Software for MS analysis is very complex with several features and,
usually, not open source. The complexity of their design might arise many different
issues for different users, ranging from system compatibility to hardware inadequacy.
Spliced peptides databases being so large are even more troublesome to analyze with
the open source software available. As the core scoring algorithm that is used to match
peptides to experimental spectra is less complex, a far less complex solution could be
implemented, like an R package. A future plan of this package is to include a scoring
algorithm for matching theoretical peptides to experimental MS/MS spectra that is
simple and specific to the spliced-peptides identification process.

A.E. Konstantinou 44

Algorithm for the construction of spliced-peptides database

ANNEX |
Required packages
The algorithm is dependent on the following R packages:

1. “Seqinr” [25]
2. “Rcpp” [26][27][28]
3. “Foreach” [29]
4. “doSnow” [29]
5. “Peptides” [30]

6. “MASS” [31]
Each of these packages should be installed and loaded before running any script.

All scripts for running the algorithm can be found at:
https://github.com/alevk/ProteoSplicer

A.E. Konstantinou

45

Algorithm for the construction of spliced-peptides database

REFERENCES

[1] Androlewicz, M. J., Anderson, K. S., and Cresswell, P. (1993) Evidence that transporters
associated with antigen processing translocate a major histocompatibility complex class I-binding
peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc. Natl. Acad. Sci.
U.S.A. 90, 9130-9134

[2] Vigneron N et al.(2017) “Peptide splicing by the proteasome®. The journal of biological
Chemistry. 292(51):21170-21179

[3] Hanada, K., Yewdell, J. W., and Yang, J. C. (2004) Immune recognition of a human renal cancer
antigen through post-translational protein splicing. Nature 427, 252-256.

[4] Vigneron, N. et al. (2004) An antigenic peptide produced by peptide splicing in the proteasome.
Science 304, 587-590

[5] Warren, E. H. et al. (2006) An antigen produced by splicing of noncontiguous peptides in the
reverse order. Science 313, 1444-1447.

[6] Dalet, A., Vigneron, N. et al.. (2010) Splicing of distant peptide fragments occurs in the
proteasome by transpeptidation and produces the spliced antigenic peptide derived from
fibroblast growth factor-5. J. Immunol. 184, 3016-3024

[7] Michaux, A et al. (2014) A Spliced Antigenic Peptide Comprising a Single Spliced Amino Acid Is
Produced in the Proteasome by Reverse Splicing of a Longer Peptide Fragment followed by
Trimming. J. Immunol. 192, 1962-1971

[8] J.Liepe et al. (2016) A large fraction of HLA class | ligands are proteasome-generated spliced
peptides

[9] F.Ebstein et al.(2016) Proteasomes generate spliced epitopes by two different mechanisms and
as efficiently as non-spliced epitopes. Scientific Reports 2016;6: 24032

[10] K.Textoris-Taube et al. (2015) The T210M Substitution in the HLA-a*02:01 gpl00 Epitope
Strongly Affects Overall Proteasomal Cleavage Site Usage and Antigen Processing.

[11] Mishto M. et al (2012) Driving forces of proteasome-catalyzed peptide splicing in yeast and
humans. Moll Cell Proteomics Oct;11(10):1008-23

[12] Webb-Raobertson BJ, Cannon WR (2007) Current trends in computational inference from
mass spectrometry-based proteomics. Brief Bioinform Sep;8(5):304-17. Epub 2007 Jun 20

[13] Bartels Christian (1990) “Fast algorithm for peptide sequencing by mass spectroscopy”
Biological Mass Spectrometry 19(6): 363-368

[14] Sakurai, T.; Matsuo, T.; Matsuda, H.; Katakuse, |. (1984). "PAAS 3: A computer program to
determine probable sequence of peptides from mass spectrometric data". Biological Mass
Spectrometry. 11 (8): 396—-399

[15] Hamm, C. W.; Wilson, W. E.; Harvan, D. J. (1986). "Peptide sequencing program".
Bioinformatics. 2 (2): 115-118

A.E. Konstantinou 46

Algorithm for the construction of spliced-peptides database

[16] Siegel, MM; Bauman, N (1988). "An efficient algorithm for sequencing peptides using fast atom
bombardment mass spectral data". Biomedical & Environmental Mass Spectrometry. 15 (6):
333-43

[17] Johnson, RS; Biemann, K (1989). "Computer program (SEQPEP) to aid in the interpretation of
high-energy collision tandem mass spectra of peptides”. Biomedical & Environmental Mass
Spectrometry. 18 (11): 945-57

[18]Scoble et al. (1987). "A graphics display-oriented strategy for the amino acid sequencing of
peptides by tandem mass spectrometry". Fresenius' Zeitschrift fir Analytische Chemie. 327 (2):
239-245.

[19] Jurgen Cox et al. (2011) “Andromeda: A Peptide Search Engine Integrated into the MaxQuant
Environment”

[20]Joshua E.Elias and Steven P.Gygi (2010). Target-Decoy Search Strategy for Mass
Spectrometry-Based Proteomics. Methods Mol Biol. 2010; 604: 55-71.

[21]Moore RE, Young MK, Lee TD (2002) . Qscore: an algorithm for evaluating SEQUEST database
search results. J Am Soc Mass Spectrom. 2002; 13:378-86.

[22]Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003). Evaluation of multidimensional
chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein
analysis: the yeast proteome. J Proteome Res. 2003;2:43-50

[23] Elias JE, Gygi SP (2007). Target-decoy search strategy for increased confidence in large-scale
protein identifications by mass spectrometry. Nat Methods. 2007;4:207-14

[24]Kall L, Storey JD, MacCoss MJ, Noble WS (2008). Assigning significance to peptides identified
by tandem mass spectrometry using decoy databases. J Proteome Res. 2008;7:29-34.

[25] Charif, D. and Lobry, J.R. (2007)

[26] Dirk Eddelbuettel and Romain Francois (2011). Rcpp: Seamless R and C++ Integration. Journal
of Statistical Software, 40(8), 1-18

[27] Eddelbuettel, Dirk (2013) Seamless R and C++ Integration with Rcpp. Springer, New York.
ISBN 978-1-4614-6867-7.

[28] Dirk Eddelbuettel and James Joseph Balamuta (2017). Extending R with C++: A Brief
Introduction to Rcpp. PeerJ Preprints 5:3188v1

[29] Microsoft and Steve Weston (2017). foreach: Provides Foreach Looping Construct for R. R
package version 1.4.4.

[30] Osorio, D., Rondon-Villarreal, P. & Torres, R. (2015) Peptides: A package for data mining of
antimicrobial peptides. The R Journal. 7(1), 4-14

[31] Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition.
Springer, New York. ISBN 0-387-95457-0

A.E. Konstantinou 47

