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ABSTRACT 
 

The identification of spliced peptides has garnered significant interest in the recent 
years due to their role in the function of adaptive immune system, especially in the 
context of cancer. Spliced peptides are composed from protein fragments originally 
distant in the parental protein. Splicing takes place in the proteasome, a protein 
complex in the cell that regulates the concentration of unneeded, damaged or 
pathogenic proteins. Proteolysis results in the degradation of proteins to smaller 
peptides of 7-12 amino acids that are either further degraded into amino-acids for the 
composition of new proteins or transferred onto the cell surface to be recognized by the 
immune system. Those peptides where believed to be only linear fragments of the 
parental proteins, however recent studies proved otherwise. They can derive from 
distant peptidic fragments of a protein sequence. 

The experimental identification of spliced peptides requires Mass Spectrometry (MS) 
analysis and computational software that matches the spectra to theoretical peptides. 
The latter process requires a proteome or peptide database containing the sequences 
assumed to be present in the experiment. However, there are no readily available 
computational solutions to construct a complete spliced-peptides database. Therefore, 
the database construction should be implemented by the user who conducts a related 
experiment. 

The current thesis aims to overcome this computational gap. We developed a 
methodology, implemented as an R package, that enables the user to construct a 
custom spliced-peptide database, save it in a convenient file format according to MS 
analysis software requirements and reduce its size to occupy less disc space and speed 
up the analysis process. Additionally, the database computing can be parallelized for 
optimized speed. Lastly, identified peptides from spectra matching can be searched 
against the database to verify their origin and estimate the false discovery rate (FDR). 

 

 

 

 

 

 

 

SUBJECT AREA: Computational Proteomics  

KEYWORDS: spliced peptides, immune system, autoimmune diseases, peptide 

database, R package 



ΠΔΡΙΛΗΦΗ 
 

H αλαγλώξηζε ησλ ζπλαξκνζκέλσλ πεπηηδίσλ (spliced peptides) έρεη θεξδίζεη έληνλν 
εξεπλεηηθό ελδηαθέξνλ ηα ηειεπηαία ρξόληα ιόγσ ηνπ θαηαιπηηθνύ ηνπο ξόινπ ζηελ 
ιεηηνπξγία ηνπ αλνζνπνηεηηθνύ ζπζηήκαηνο θαη ζε κία πιεζώξα απηνάλνζσλ 
λνζεκάησλ, εηδηθόηεξα ηνπ θαξθίλνπ. Τα ζπλαξκνζκέλα πεπηίδηα πξνθύπηνπλ από ηελ 
έλσζε απνκαθξπζκέλσλ πξσηετληθώλ ηκεκάησλ ζην πξσηεάζσκα, ην νπνίν 
αλαιακβάλεη ηελ απνξύζκηζε άρξεζησλ, επηβιαβώλ ή θαηεζηξακκέλσλ πξσηετλώλ ζην 
θύηηαξν. Μέζσ ηεο πξσηεόιπζεο επηηπγράλεηαη ε δηάζπαζε ησλ πξσηετληθώλ κνξίσλ 
ζε κηθξόηεξεο πεπηηδηθέο αιπζίδεο 7-12 ακηλνμέσλ νη νπνίεο είηε νδεγνύλ ζε 
αλαθύθισζε ησλ ακηλνμέσλ γηα ζύλζεζε λέσλ πξσηετλώλ είηε κεηαθέξνληαη ζηελ 
επηθάλεηα ηνπ θπηηάξνπ γηα λα αλαγλσξηζηνύλ από ην αλνζνπνηεηηθό ζύζηεκα. Τα 
πεπηίδηα απηά, πξόζθαηα απνδείρζεθε όηη δελ είλαη απνθιεηζηηθά ζπλερόκελεο 
ακηλνμηθέο αιπζίδεο ηεο γνληθήο πξσηεΐλεο αιιά κπνξνύλ λα πξνθύςνπλ από 
απνκαθξπζκέλα κεηαμύ ηνπο πεπηηδηθά ηκήκαηα. 

Η πεηξακαηηθή  δηαδηθαζία ηεο αλαγλώξηζήο ησλ ζπξξακκέλσλ πεπηηδίσλ απαηηεί ηελ 
ρξήζε θαζκαηνκεηξίαο κάδαο (Mass Spectrometry, MS) θαη κία ζεηξά από 
ππνινγηζηηθά εξγαιεία ηα νπνία ζηνρεύνπλ ζηελ ηαπηνπνίεζε ησλ θαζκάησλ. Γηα ηηο 
ππνινγηζηηθέο δηαδηθαζίεο απαηηείηαη ε ρξήζε κίαο βάζεο δεδνκέλσλ πνπ πεξηιακβάλεη 
όιεο ηηο πξσηετληθέο αθνινπζίεο πνπ αλακέλεηαη λα είλαη παξνύζεο ζην πείξακα. Τα 
ππάξρνληα ππνινγηζηηθά εξγαιεία κέρξη ζήκεξα, δελ πξνβιέπνπλ ηελ δεκηνπξγία κηαο 
νινθιεξσκέλεο βάζεο ζπλαξκνζκέλσλ πεπηηδίσλ γηα κία δεδνκέλε βάζε πξσηετλώλ. 
Σπλεπώο ε δηαδηθαζία ηεο δεκηνπξγίαο ηεο κεηαθέξεηαη ζηνλ ρξήζηε πνπ ζέιεη λα 
ρξεζηκνπνηήζεη ηα ζπγθεθξηκέλα εξγαιεία γηα ηελ αλάιπζε ηνπ πεηξάκαηόο ηνπ.  

Σηελ παξνύζα εξγαζία, αλαπηύρζεθε κία κεζνδνινγία ε νπνία επηηξέπεη ζηνλ ρξήζηε 
λα δεκηνπξγήζεη κία βάζε ζπλαξκνζκέλσλ πεπηηδίσλ πξνζαξκνζκέλε ζηηο αλάγθεο 
ηνπ πεηξάκαηνο. Δπηπιένλ δίλεη ηελ επηινγή ηεο πξνζαξκνζκέλεο κνξθνπνίεζεο ηεο 
βάζεο αλάινγα κε ηηο απαηηήζεηο ηνπ ινγηζκηθνύ πνπ ρξεζηκνπνηείηαη γηα ηελ 
ηαπηνπνίεζε ησλ πεπηηδίσλ, ηε δπλαηόηεηα ηνπ πεξηνξηζκνύ ηνπ κεγέζνπο ηεο θαη ηελ 
παξαιιεινπνίεζε ηεο δηαδηθαζίαο γηα κέγηζηε ηαρύηεηα εθηέιεζεο. Τέινο δίλεη ηε 
δπλαηόηεηα ζην ρξήζηε λα αλαδεηήζεη ηα ηαπηνπνηεκέλα πεπηίδηα πίζσ ζηε βάζε ώζηε 
λα εμαθξηβσζεί ε πξνέιεπζή ηνπο αιιά θαη λα εθηηκεζεί ην πνζνζηό ησλ ςεπδώο 
ζεηηθώλ απνηειεζκάησλ. Ο αιγόξηζκνο έρεη πινπνηεζεί ζε κνξθή R παθέηνπ. 

 

 

 

ΘΔΜΑΣΙΚΗ ΠΔΡΙΟΥΗ: Υπνινγηζηηθή Βηνινγία, Πξσηενκηθή  

ΛΔΞΔΙ ΚΛΔΙΓΙΑ: ζπλαξκνζκέλα πεπηίδηα, αλνζνπνηεηηθό ζύζηεκα, απηνάλνζα 

λνζήκαηα, βάζε πεπηηδίσλ, παθέην R 
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INTRODUCTION 

1.1 Thesis purpose 

The current thesis was an effort of overcoming a methodological gap that exists in 
computational proteomics, regarding the experimental identification of spliced peptides. 
The splicing process of proteins in the proteasome is a relatively new but novel finding. 
This concept being so new might be a reason why computational solutions for 
identification are not yet readily available or complete.  

Proteolysis, which is the breakdown of proteins inside the cell and takes place inside the 
proteasome, results in peptidic sequences and serves several purposes. It might take 
place in post-translational process to activate a protein, to break down proteins from 
food to provide amino acids in the organism or to regulate the accumulation of 
unneeded proteins inside the cell. Here we focus on its critical role in the function of the 
adaptive immune system. 

A fraction of the peptides derived from the breakdown of proteins is transferred onto the 
cell surface to act as flags for the immune system. When peptides derived from viral, 
tumoral or pathogenic proteins and processes are recognized, the cells displaying those 
peptides are destroyed. Till very recently, epitopes found on the cell surface had been 
believed to be only continuous fragments of proteins. However this changed when 
several peptides composed of distant fragments, called spliced-peptides, were 
identified.  

The process of identifying peptides in an experiment includes Mass Spectrometry 
analysis which results in spectra of masses and probabilistic matching of those spectra 
to actual peptidic sequences. The latter step requires a theoretical database of the 
proteins or peptides assumed to be present in the experiment. 

Computational software available for proteomics is not yet configured to compute the 
vast databases associated with spliced-peptides. Here we developed ProteoSplicer, an 
R package that enables the user to construct and further process a custom spliced-
peptide database and finish the downstream analysis by identifying the matched 
peptides back in the database, while requiring minimum knowledge of programming. It 
is developed in accordance with Liepe’s described workflow [8]. It is compatible with any 
type of system configuration and operating system and developed to execute in a 
reasonable amount of time. The processes are parallelized to use as many cpu cores 
the user wants to dedicate.  

 

The following computational tasks can be performed: 

 Construction of custom spliced peptide database for varying peptides lengths 
and intervening sequences lengths. 
 

 Reduction of the database by filtering out peptides that are not potential 
candidates according to their mass, with user defined tolerance of filtering. 
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 Construction of decoy databases using reliable methods known in the current 
literature. 
 

 Identification of matched peptides in the database. 

 

1.2 Thesis structure 

In Chapter 2. the background of the subject is explained. We describe the concept of 
peptide splicing and its importance in the current knowledge of immune system function. 
We provide all the literature available that has focused on the identification of spliced 
peptides and its methodology. We also mention in an introductory manner the current 
computational tools that exist for this purpose. 

In Chapter 3 we explain in depth every technical aspect of the algorithm. We provide a 
guide on how the user can run the algorithm step by step, how each function works and 
what outputs are computed. 

In Chapter 4 we benchmark all the heavily computational tasks and provide an accurate 
estimation of execution time, depending on the parameters and the length of database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Algorithm for the construction of spliced-peptides database 

A.E. Konstantinou                                                                                                                                                                                 11 

 

2. BACKGROUND 

2.1 Peptides and the immune system 

The proteasome is a protein complex responsible for degradation of damaged or 
unneeded proteins inside the cell. Those proteins are tagged with another small protein, 
ubiquitin, by ubiquitin ligases. This signals the degradation process which results in 
small peptides of around 7-12 amino-acids.  

A fraction of those peptides is transferred into the lumen of the Endoplasmatic 
Reticulum (ER) by a transporter associated with antigen processing (TAP) [1]. There, 
they are loaded onto major histocompatibility complex (MHC) class 1 molecules (also 
called human leukocyte antigen, HLA) which then exit the ER and reach the cell 
surface. As a result, peptides originating from tumoral or viral proteins are displayed on 
the surface of the cell by MHC and, as the immune system constantly monitors cellular 
integrity, CD8 cytolytic T lymphocytes (CTL) recognize those peptides and destroy the 
cell marked by them [2].  

Thus, the presence of epitopes on the cell surface of eukaryotic organisms is the major 
mechanism through which pathogens, tumoral activity and any kind of malfunctioning is 
identified. 

 

2.1.2 Peptide splicing in the proteasome 

Antigenic peptides recognized by CTL, has been believed to originate only from linear 
fragments of the parental proteins. However, peptides composed of distant protein 
fragments assembled together by a new peptide bond, have been recently identified 
although considered to be a rare event.  This process of peptide splicing has been 
shown to take place in the proteasome. Most of them fall within the usual length range 
of 8-12 amino-acids, as the average length of proteasome generated peptides is 11 
amino acids, however spliced peptides of a longer amino-acid chain have been 
identified as well. 

The first spliced peptide was discovered by Hanada K. et al .who showed that a CTL 
clone recognized a peptide derived from FGF-5 protein and generated by protein 
splicing, when it was targeted towards a renal cell carcinoma [3]. Despite its unusual 
length (40 amino-acids) it was shown later to be produced by the proteasome [4]. 
Vigneron et al. also identified a second peptide composed by two non-linear fragments 
of the melanoma differentiation antigen gp100 [4] and then a third peptide containing 
two fragments of the SP110 protein, spliced together in the reverse order than the 
original sequence [5]. All splicing reactions have been shown to take place in the 
proteasome by transpeptidation and the intervening sequence between the fragments 
ranged from 4 to 40 amino acids. Vigneron et al. tested the efficiency of the splicing 
over different lengths of the intervening sequence and observed that the longer the 
length, the lower the efficiency of the splicing process [6]. Moreover, they showed that 
splicing with fragments from different parental proteins hardly ever occurred as it is 
highly unlikely that two distinct protein substrates can be degraded simultaneously in 
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the same proteasome[6]. The same group, recently identified a fifth antigenic spliced 
peptide originated from protein gp100 [7]. 

 

2.1.3 A Computational approach 

In principle, a spliced peptide could occur via transpeptidation between any two protein 
fragments released through proteolysis. As expected, the list of all the possible splicing 
combinations for a given proteome database can become vast. However, until recently, 
only few spliced peptides have been in vitro identified. This could be the result of two 
limitations: the availability of specific CTL directed against spliced peptides and the lack 
of a spliced peptide database. Mass spectrometry software used for matching ions is 
limited to produce only linear protein fragments.  

Liepe et al. developed an analytical strategy that could handle the vast spliced-peptide 
database derived from the human proteome and analyzed the HLA cass 1 
immunopeptidome of three unrelated cell lines. They concluded to the observation that 
around one quarter of the total number of the peptides found at the cell surface, was 
represented by spliced peptides. They account for one-fourth in terms of abundance 
and one-third in terms of diversity [8]. Espe cially in the case of melanoma-associated 
epitopes, they reported that the abundance of spliced peptides was comparable to that 
of the non-spliced.  

In previous studies, it was suggested that the generation of spliced-peptides might rely 
on specific underlying mechanisms. One of them might be the preference for specific 
peptide sequences [4] [5] [9] [10]. However the limited findings could not draw any 
conclusions with sufficient statistical power. This large pool of spliced peptides, obtained 
in Liepe et al. study, resolved this issue. It was observed that there were no differences 
in the frequencies of the parental proteins of all the antigenic epitopes, no significant 
preference for specific antigens generating non-spliced versus spliced peptides, no 
difference in peptide length distribution between spliced and non-spliced and, finally, no 
preference for specific intervening sequence length within the fragments of spliced 
peptides. The peptides’ motifs were also studied to determine whether there is a 
specific binding affinity to HLA-I molecules. Spliced peptides found to be non-
compatible with HLA-A and HLA-B variants which was also supported in previous 
peptide-splicing analysis [11]. 

In addition, it was found that several proteins were represented only through spliced 
peptides rather than linear epitopes suggesting that, those proteins, may fail to produce 
linear fragments with binding motifs to HLA molecules. Antigen targeting only through 
non-spliced peptides may be limited due to sequence restrictions, thus, peptide splicing 
mechanism might be an evolutionary mechanism to combat this. 

Liepe et al. managed to circumvent the previously mentioned computational limitations 
by creating a custom, theoretical, spliced peptides database [8] .To reduce the size of 
this database:  

(i) the intervening sequence between two fragments was at most 25 amino-acids;  

(ii) the range of peptide length was 9-12 amino acids as those constitute the 
large majority of HLA-I immunopeptidome;  
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(iii) post translational modifications of the peptides were ignored;  

(iv) spliced peptides derived from fragments of two distinct proteins were 
excluded;  

(v) theoretical peptides with computed molecular weights not equal to the 
masses detected in the experiment, where filtered out of the database.  

The workflow of the identification of all peptides eluted from the HLA-1 molecules 
consisted of the following steps, as described in the supplementary file: 

1. Extraction of all the spliced and non-spliced, 9 to 12 amino-acids, peptides from 
the human proteome database. The database of the spliced peptides included all 
possible protein-fragments combination, in both normal (N-terminal splice-
reactant to C-terminal splice reactant) and reverse order, for intervening 
sequence lengths of 1 to 25 amino-acids.  
 

2. Computation of the molecular weights for all entries in both non-spliced and 
spliced databases. 
 

3. Extraction of the precursor masses from the Mass Spectrometry analysis, in 
order to obtain an experimental mass list.  
 

4. The entries in non-spliced and spliced databases obtained from step 1. that had 
a molecular weight equal to at least one entry in the experimental mass list were 
kept in the database (using 3 ppm tolerance). 
 

5. Transformation of both databases into FASTA format, with a structure that 
followed human proteome. That was several peptides each time bound together 
in a sequence of adequate length to form a protein block.  
 

6. Construction of a decoy for each database by randomizing their protein 
sequences. 

 

7. All databases (spliced, non-spliced, decoys) merged into one. This was used as 
the input in a MS search engine (Mascot) along with the raw data from the MS 
experiment. In the search engine, the protein entries provided, were cut into 
peptides again, either randomly or by rule, and matched via probabilistic rules to 
the ions provided in the experimental data, providing a list of peptides that were 
the best candidates. 
 

8. The candidate matched peptides were then searched against the non-spliced, 
spliced and decoy databases with the peptide entries (obtained from step 1.), in 
order to determine if they were actual peptides and not decoys or sequences 
containing two separate peptide fragments as a result of the stitching step. 
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2.2 Computational tools in Proteomics 
 

Proteomics is the study of all proteins in a biological system. Usually the interest is held 
for specific biological events or conditions, for example the protein expression, in variety 
and abundance, during cell mitosis or in tumor cells. To identify and quantify protein and 
peptide molecules, the most common analytical technique used is a combination of 
tandem Mass Spectrometry (MS/MS) and sequence database searching. 
 
A mass spectrometer ionizes the chemical species provided in the sample and sorts the 
ions based on their mass-to-charge (m/z) ratio. In the case of a protein sample, the 
molecules undergo a random fragmentation resulting in smaller and charged amino-acid 
chains. Each one of them provides a mass spectrum, a plot of the ion signal as a 
function to the m/z ratio.  In order to match the spectra obtained to an amino-acid 
sequence and, therefore, to the best protein candidate, specialized MS analysis 
software is needed. 
 
The peptide identification algorithms in MS software fall into two classes: de novo 
search and database search. The latter searches the spectra against a database that 
contains all the amino-acid sequences assumed to be present in the experimental 
sample. For each spectrum, it assembles a list of matched known peptide sequences 
through a scoring function. The peptide with highest score is considered the best match 
[12]. This is the most popular approach and numerous related software packages are 
available. Mascot, MaxQuant, Sequest , ProLuCID are a few popular examples. 
 
De novo search is usually based on graph theory, as it was first described by Bartels 
[13]. In this method peaks in the spectrum are transformed into graph vertices. If two 
vertices in this spectrum graph have the same mass difference of one or several amino 
acids, a directed edge is applied. Other methods have also been proposed, including:  

 
i) Composition of list with all possible peptides for a given spectrum and then 
matching each candidate’s theoretical spectrum to the experimental. The most 
similar spectrum is the most likely to be the right sequence [14][15] 
ii) Subsequencing.  A method which matches short sequences of peptides that 
represent only a part of the complete peptide. Sequences that match the 
fragment ions in the experimental spectrum are extended one by one amino-acid 
until the best match is found [16] [17]. 
iii) A method which displays all series of peaks differing by the mass of each 
amino-acid residue. Fragment ions that have the same mass differences of one 
amino acid are connected by lines. This can be helpful for manual de novo 
peptide sequencing. [18] 

 

In database search software each set of tandem mass (MS/MS) spectra, acquired from 
the mass spectrometer, is interrogated against a theoretical mass spectrum derived 
from peptides in the database. For each observed spectrum, candidate peptides are 
retrieved from the input database according to their theoretical mass so that it matches 
the precursor mass of the observed spectrum. As expected, if a database is large, many 
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candidate peptides will be identified. The pairing of a single input spectrum with a single 
candidate peptide is termed a peptide-spectrum match (PSM) and requires a scoring 
function which computes a specific score for each theoretical spectrum. Each software 
solution uses its unique scoring algorithm which should usually be a function of the total 
number of theoretical ions and the number of matching ions in the spectrum.  

In Figure 2.1 is the scoring algorithm representation of Andromeda search engine in 

Mascot [19]. 

 

Figure 2.1: Andromeda scoring algorithm [19] 
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2.3 Target-Decoy search strategy 
 

As described previously, the output of mass spectrometry analysis software indicates 
the most likely theoretical peptide matches to the input spectra. Those are then used to 
infer the parental protein sequence that was present in the biological sample. However 
there are several limitations interfering with the accuracy of the results; not all peptide 
species in a sample are represented in the search database; non-peptide species in 
the input spectra will be falsely given a peptide assignment and lastly, an incorrect 
candidate might, occasionally, be given the highest score in the candidate list. It is 
crucial that an extra step in the downstream analysis should be taken in order to 
distinguish the false positives and estimate their frequencies. Target decoy methods 
are powerful, yet simple tools for this purpose. 
 
There are five criteria a successful decoy database should meet [20]. 
 
1. There should be similar amino acid distributions to the target protein sequence. 
2. Similar protein length distribution to the input protein database. 
3. Similar numbers of proteins as target protein list. 
4. Similar numbers of predicted peptides. 
5. No peptides in common. 
 
There are several methods to construct a decoy: 
 
1. Reversed sequences. The simplest and most widely used method that produces 

the reversed sequences [21][22]. For example the decoy sequence for 
“ABCDEFGHIJKL” would be “LKJIHGFEDCBA”. As it switches the amino-carboxyl 
orientation of the protein’s amino-acids, the number of actual peptide sequences 
preserved is virtually zero. It is fairly simple to programmatically implement so it is 
easily replicable between different researchers. However, it is not a random 
database and does not represent a null random distribution which might be needed 
for certain peptide types. Nonetheless, it can easily be deduced that it meets all five 
criteria mentioned above [23]. 
 

2. Shuffled Proteins. Another reliable method which also has the stochastic properties 
lacking in the previous one [24]. In this method the amino-acids of a protein 
sequence are sampled and randomly rearranged. For example, in sequence 
“ABCDEFG” a possible decoy would be “CAGFDBE”. It is also very easily 
implemented programmatically and it preserves all the parental protein features 
meeting all the criteria described above. However redundancies and homologies 
between protein entries will not be preserved, resulting in a greater number of 
decoy peptides than originally present in the target sequence list [20]. 

 

3. Random Proteins. Sequences generated in a completely random manner. Amino 
acids and length sampling should follow the distribution that is normally found in 
actual proteins. Thus, for a given protein database, the frequency matrix of amino-
acids and the distribution of proteins’ lengths should be first estimated. For example 



Algorithm for the construction of spliced-peptides database 

A.E. Konstantinou                                                                                                                                                                                 17 

 

A random sequence using alphabet letters would be “AJTKROELHTEBBPEFWD”. 
However each letter has a specific probability to be chosen during sampling, 
according to the frequencies found in the original input sequence.  

 

4. Decoy peptides.  In all three previous methods, the decoy database consists of 
decoy proteins which then are “digested” into peptides by the MS analysis software 
used.  An alternative way is to generate decoy peptides by altering directly the 
peptides derived from the protein list (reversing or sampling) instead of the parental 
sequences. This way, the decoy peptides’ masses are the exact same as the 
peptides that the search engine will consider for matching. 

 

 

2.3.1 Separate versus composite database. 

There are two database search strategies when estimating the false positive rate once a 
decoy is constructed. Separate and combined search.  

One method is to supply the search engine with two separate databases: the target and 
the decoy. This way, each input spectrum is searched against two databases and has 
one target and one decoy best score. However this method can lead to an overly 
conservative interpretation of search results. Without competition between decoy and 
target sequences for the top-ranked score, it is likely that decoy sequences that partially 
match MS/MS spectra, will get a higher score compared to target-search hits. Also, all 
peptides that are below the score at which decoy hits outnumber target hits, are 
assumed to be incorrect. This way the false positive rate is overestimated [23]. 

It is generally accepted to construct one single database that consists of both target and 
decoy sequences and clearly annotating each sequence’s origin. In this approach, both 
target and decoy peptides compete each other for the best score and incorrect peptide 
matches will be randomly drawn from decoy and target sequences. 
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3. METHODOLOGY 

In this chapter, we explain the method that constructs the databases needed in the 
process of spliced-peptides identification and then describe step by step the 
implementation of the procedure. The databases obtained are useful when a database 
search algorithm (as described in chapter 2) is used to match experimental mass 
spectra to theoretical peptides. The pipeline follows the workflow of Liepe et al. [8], 
presented in the section 2.1.3.  

 

3.1 The Method 

In the spliced-peptide identification process, one major issue is the unavailability of a 

complete database, as its size can become quite large depending on the experiment 

and the peptide lengths needed to be studied. Therefore, it is mandatory that for any 

related experiment, the researcher constructs its own custom database. The following 

method has been developed to provide a custom spliced and non-spliced database, 

according to user parameters. The procedure consists of the following steps that are 

described in detail in section 3.2 : 

1. Construction of both spliced and non-spliced databases for a given proteome 

database. For each protein sequence, first all linear single fragments of the 

desired length are derived to obtain the non-spliced peptides. Then, all possible 

paired AA fragments combinations are computed according to a minimum and 

maximum intervening sequence to obtain the spliced-peptides database. If non-

spliced peptides also appear in the spliced database they are removed from the 

latter. 

2. Reduction of the obtained databases by filtering out the peptides whose 

molecular weights are not represented in the experimental mass list obtained 

from MS/MS analysis. This step might result in a significant reduction depending 

on the tolerance selected for filtering. 

3. Construction of spliced and non-spliced decoy databases. 

4. Saving all databases in two formats: i) lists of peptides along with their AA 

indices to their parental protein and ii) FASTA files of the peptides stitched 

together to resemble proteins. 

5. This is the last and separate step in the identification analysis: after using MS 

analysis/ database search software, the peptides that have been found to match 

the MS/MS spectra are searched against the spliced, non-spliced and decoy 

databases saved in step 4, in order to determine their origin. 
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3.2 Implementation of the procedure 

As the process has high computational requirements, it is parallelized, in order to exploit 
the full capabilities of available hardware and optimize speed. However, the option of 
running in serial mode is also available. Here we explain the method used and the 
challenges faced during the development.  

 

3.2.1 Automated process 

There are two options for running the workflow. Either one function is called that 
automatically performs all the tasks according to user’s settings requiring minimal user 
involvement, or each function is called separately and the user can have control of each 
task. The latter is useful when it would be best to create once a database that can be 
later used for different experiments.  

To initiate the automated process the following function is called: 

>create_database ( data, nmers, isl,  

                                 target, filter, masslist,  

                                 tolerance, as.blocks, decoy,     

                                 ncores )                    

The parameters are the following: 

1. data: the input file in FASTA format which contains all the proteins assumed to 

be present in the experiment. 

 

2. nmers(min, max) : a numeric pair including the minimum and maximum length 

of peptides. If peptides of a specific length should be produced, this length 

should be defined as the minimum and maximum, i.e. c(9,9) for peptides of 9 

amino-acids only. 

 

3. Isl (min, max) : intervening sequence length. Also a pair of the minimum and 

maximum of the sequence length that may intervene between two peptide 

fragments. 

 

4. target : a string variable with three possible values: “spliced” if only the spliced 

database is needed; “non-spliced” if only the non-spliced database is needed; 

“all” if both databases should be saved. 

 

5. filter : Boolean variable. If TRUE the database is reduced by filtering the entries 

according to their molecular weight and the experimental mass list provided by 

the user. 
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6. masslist (optional): a numeric vector containing all the ion masses found in the 

MS analysis. These can be obtained either from conversion of the raw spectra 

files or by MS analysis software that matches the masses to the proteome. 

 

7. tolerance(optional): numeric variable defining the tolerance in p.p.m. used to 

filter the peptides according to mass list provided.  

 

8. as.blocks: Boolean variable. If TRUE the dataset is also saved in FASTA format 

with a proteome structure (peptides stitched together to resemble proteins) 

 

9. decoy: Boolean variable. If TRUE a decoy database is also created using  

reverse or shuffled sequences. 

 

10.  ncores: Numeric variable defining the number of cores in the system or cluster 

to be used in parallel processing. When 𝑛𝑐𝑜𝑟𝑒𝑠 =  1 the process will be serial. 

 

The function first estimates the proteome length distribution and its parameters (mean 

and variance) which are used later on to sample protein lengths for generating peptide-

proteins (only when parameter as.blocks == TRUE). The distribution estimation 

excludes outliers, i.e. unusually large proteins that contain more than 20x the number of 

amino-acids than the median length.  

Afterwards, the proteome is assorted in groups of proteins of varying lengths that follow 

the original proteome distribution, so that every group accounts for roughly the same 

workload.  This is done by sorting ascending the proteins according to length and filling 

each group with protein 𝑝 = 𝑖 to protein 𝑝 = 𝑛 while in-between proteins are separated 

from one another by 𝑘 = 𝐾 proteins in the rank. For example, if we choose to have 20 

groups of proteins in a proteome of 20000 proteins then each group should contain 

1000 proteins, one protein every 20 in the sorted list. The first group gets the 

proteins    𝑝 = 1, 𝑝 = 21, 𝑝 =  41, 𝑝 =  61,… ., 𝑝 =  19981, the second group 𝑝 = 2,𝑝 =

22,𝑝 = 42,𝑝 = 62,… , 𝑝 =  19982 etc. This way all groups follow the length distribution of 

the proteome as illustrated in figure 3.1 
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Figure 3.1 Length distribution of proteome versus group of proteins 

 

This facilitates the monitoring and the runtime estimation of the process as all groups 

require equal computing time. Even though the algorithm has been optimized for speed, 

monitoring is especially useful when a single machine is used along with other 

processes and the database computing might need to be paused. The user can keep 

track of the groups that have already been processed and restart from the last 

processed protein group. The status of the process is printed in a .txt file in the same 

directory. 

In the last step, the function creates all folders and subfolders where the databases will 

be saved and gives initiation to the parallel computing. 

The interdependencies of functions are illustrated in figure 3.2 
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Figure 3.2: Illustration of workflow and interdependencies of functions 
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The majority of the computing work takes place within the splicer() which in turn calls all 
the functions needed for each individual task i.e. peptide database computation, filtering 
according to mass list, decoy construction and output management for a given protein. 
In splicer() all the steps described below (3.1.4 to 3.1.7) are automatically completed, 
deriving in reduced, filtered and ready to use spliced, non-spliced and decoy databases 
for a given protein. It is designed to be called within a serial or parallel process and 
includes the task of monitoring. 

In the next sections we explain how each function works, what it requires as input and 
what it returns as output.  

 

3.2.2 Protein catalyzing and splicing. 

The following functions are called for the peptides’ computation: 

>p_nonspliced(sequence, N)  and  

>p_spliced(sequence, N, isl) 

Where: 

 sequence is the input sequence in a vector of characters [“A”, “B”, “C”…],  

 N is the number of amino-acids for each peptide, 

 isl a vector of the minimum and maximum length intervening sequence.  

 

Both functions take as input one protein sequence at a time and one single numeric 
value for the peptide length. To compute peptides of multiple lengths, the functions 
should be called multiple times. For the next sections we assume that we have the 
sequence: 
 
MGLSGLLPILVPILLGDIQEPGHAEGILGKPCPKIKVE

> p_nonspliced(): 

It returns the non-spliced peptides (catalyzed peptides - CP). In a sequence of Ν amino-

acids there are 𝑁 –  𝑁𝑚𝑒𝑟 + 1 catalyzed peptides. Each peptide starts from amino-acid  

𝐴𝐴𝑖 where 𝑖 = 1, 2, 3,… ,𝑁 −𝑁𝑚𝑒𝑟 + 1 and ends at amino-acid 𝐴𝐴𝑗   𝑗 =  𝑁𝑚𝑒𝑟,𝑁𝑚𝑒𝑟 +

1, 𝑁𝑚𝑒𝑟 + 2, 𝑁𝑚𝑒𝑟 + 3… . . ,𝑁𝑚𝑒𝑟. 

For example, in the first part of our sequence we get the illustrated 9mer peptides: 
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The output is a list of two character vectors: one with all non-spliced peptides and one 

with the corresponding amino-acids indexes in the parental sequence. The index for 

each peptide is denoted by “ 𝑖, 𝑗 ”.  

>p_spliced()

The spliced peptides are computed by creating all possible combinations between two 

non-continuous amino-acid fragments for the given 𝑖𝑠𝑙 (𝑚𝑖𝑛,𝑚𝑎𝑥). Two given fragments 

are separated in the original sequence by at least 𝑖𝑠𝑙 (𝑚𝑖𝑛) and at most 𝑖𝑠𝑙 (𝑚𝑎𝑥) amino 

acids. To compute the first two peptides we start from the first amino-acid 𝐴𝐴1 in the 

protein sequence (first single AA fragment), skip 𝑖𝑠𝑙 (𝑚𝑖𝑛) amino-acids and merge it 

with 𝑁𝑚𝑒𝑟 − 1 continuous AA onward (second fragment). We get two Nmer spliced 

peptides; one by combining the fragments in normal order and one in reverse. To create 

the third and fourth peptide, we extend the first fragment by one amino-acid onward, i.e 

𝐴𝐴1,𝐴𝐴2, we skip 𝑖𝑠𝑙(𝑚𝑖𝑛) amino-acids starting from 𝐴𝐴3and we merge it with Nmer-2 

continuous AA onward 

After all fragment combinations for the 𝑖𝑠𝑙 (𝑚𝑖𝑛) are reached within the sequence(from 

𝐴𝐴1 𝑡𝑜 𝐴𝐴𝑁, the fragmentation starts again from 𝐴𝐴1 skips 𝑖𝑠𝑙 (𝑚𝑖𝑛 + 1) amino-acids 

and creates the second fragment with 𝑁𝑚𝑒𝑟 − 1 continuous AA onward. When all 

fragmentations for isl (min+1) and the starting point 𝐴𝐴1 are completed, the process is 

repeated starting from 𝐴𝐴2, and so forth. 

An illustrated example for 𝑁𝑚𝑒𝑟 = 9 and 𝑖𝑠𝑙 =  𝑐(1, 25) : 
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𝑺𝑷𝟏 = 𝑴𝑳𝑺𝑮𝑳𝑳𝑷𝑰𝑳 ,    𝑺𝑷𝟐 = 𝑳𝑺𝑮𝑳𝑳𝑷𝑰𝑳𝑴 

 

 

𝑺𝑷𝟑 = 𝑴𝑮𝑺𝑮𝑳𝑳𝑷𝑰𝑳 ,    𝑺𝑷𝟒 = 𝑺𝑮𝑳𝑳𝑷𝑰𝑳𝑴𝑮 

 

 

𝑺𝑷𝟓 = 𝑴𝑮𝑳𝑮𝑳𝑳𝑷𝑰𝑳 ,    𝑺𝑷𝟔 = 𝑮𝑳𝑳𝑷𝑰𝑳𝑴𝑮𝑳 

. 

. 

 

𝑺𝑷𝟏𝟓 = 𝑴𝑮𝑳𝑺𝑮𝑳𝑳𝑷𝑳 ,    𝑺𝑷𝟏𝟔 = 𝑳𝑴𝑮𝑳𝑺𝑮𝑳𝑳𝑷 

 

 

𝑺𝑷𝟏𝟕 = 𝑴𝑮𝑳𝑺𝑮𝑳𝑳𝑷𝑳 ,    𝑺𝑷𝟏𝟖 = 𝑳𝑴𝑮𝑳𝑺𝑮𝑳𝑳𝑷 (first peptide with starting point 𝐴𝐴2) 

. 

. 

. 

 

𝑺𝑷𝟒𝟕𝟗 = 𝑮𝑲𝑷𝑪𝑷𝑲𝑰𝑲𝑬 ,    𝑺𝑷𝟒𝟖𝟎 = 𝑬𝑮𝑲𝑷𝑪𝑷𝑲𝑰𝑲 (last peptides with 𝑖𝑠𝑙 = 1) 

1 

 

8 

 

2 

 

7 

 

3 

 

6 
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𝑺𝑷𝟒𝟖𝟏 = 𝑴𝑺𝑮𝑳𝑳𝑷𝑰𝑳𝑽 ,    𝑺𝑷𝟒𝟖𝟐 = 𝑺𝑮𝑳𝑳𝑷𝑰𝑳𝑽𝑴 (first peptides with 𝑖𝑠𝑙 = 2) 

 

. 

. 

 

 

𝑺𝑷𝟕𝟏𝟏𝟗 = 𝑴𝑮𝑳𝑺𝑮𝑳𝑳𝑷𝑷 ,    𝑺𝑷𝟕𝟏𝟐𝟎 = 𝑷𝑴𝑮𝑳𝑺𝑮𝑳𝑳𝑷 (last peptides with starting point 𝐴𝐴1 

and 𝑖𝑠𝑙 = 25) 

. 

. 

. 

 

𝑺𝑷𝟕𝟏𝟗𝟗 = 𝑳𝑳𝑷𝑰𝑳𝑽𝑷𝑭𝑬 ,    𝑺𝑷𝟕𝟐𝟎𝟎 = 𝑬𝑳𝑳𝑷𝑰𝑳𝑽𝑷𝑭 (last peptides with isl=25, last in the 

sequence) 

Again, the output is a list of two character vectors: one with all spliced peptides and one 

with indices. The index for each peptide is denoted as 𝑖1, 𝑗1__   𝑖2, 𝑗2 , where the first 
fragment starts at 𝑖1 and ends at 𝑗2 and the second fragment starts at 𝑖2 and ends at 𝑗2. 

For example, for the first spliced peptide 𝑆𝑃1 the index will be 1,1 _ 3,10, meaning  that 

the first fragment starts and ends at amino-acid 𝐴𝐴1, and the second fragment starts at 
𝐴𝐴3 and ends at 𝐴𝐴10 . 

Both functions are implemented in C++ and return a non-reduced database which may 
contain duplicates. As an extra step non-unique peptides should be removed manually 
and non-spliced should be removed from spliced database. For the next steps, lists 
should be translated into data frames of two columns (one with peptides, the other with 
indices) as shown in figure 3.3:  

isl = 25  

isl = 25  
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Figure 3.3 Output samples of non-spliced and spliced peptides  

 

3.2.3 Filtering 

As previously explained, the complete databases can become vast occupying large disc 
space. It is advised to reduce the database entries to only those which are actual 
candidates, if the experimental masses are available. To start the filtering process we 
call: 

>mass_filter(D, masslist, tolerance) 

Where: 

 D is a data frame of the format shown in figure 3.3 containing the peptides to be 

filtered 

 masslist is a numeric vector containing all the ion masses found in the MS 
analysis 

 tolerance is a numerical value in parts per million 

The function computes the molecular weight (mw) for each peptide and a range with 
minimum and maximum weight according to tolerance. Tolerance of 3 ppm will result in 
the range( 𝑚𝑤 −𝑚𝑤 ∗ 1,5 ∗ 10−6 , 𝑚𝑤 + 𝑚𝑤 ∗ 1,5 ∗ 10−6  ). This range is stored as a 



Algorithm for the construction of spliced-peptides database 

A.E. Konstantinou                                                                                                                                                                                 28 

 

minimum and a maximum column in the 𝐷. If at least one mass entry from the masslist 
vector falls within a peptide’s molecular weight range, this peptide shall remain in the 
database. 

To efficiently implement that, the masslist and the peptide data frame D are sorted 
ascending according to molecular weight. The mass list is reduced to contain equal or 
greater values than the first element of the minimum MW column and equal or less 
values than the last element of maximum MW column. Now instead of searching each 
mass entry within the whole molecular weight column, we search until the queried mass 
in masslist is larger than the maximum weight of a peptide in the D. 

Let’s assume we have two indices: 𝑖 for indexing the peptide dataframe rows and 𝑗 for 
the masslist elements. Both indices start at 1. 

Preprocessing:  

i) Compute columns 𝑚𝑤,𝑚𝑤.𝑚𝑖𝑛 and 𝑚𝑤.𝑚𝑎𝑥 for each peptide in 𝐷  
ii) Sort 𝐷 according to 𝑚𝑤 ascending. Sort 𝑚𝑎𝑠𝑠𝑙𝑖𝑠𝑡 ascending 

iii) Remove elements in 𝑚𝑎𝑠𝑠𝑙𝑖𝑠𝑡  if  𝑗 ≤ 𝑚𝑤.𝑚𝑖𝑛1 

iv) Remove elements in 𝑚𝑎𝑠𝑠𝑙𝑖𝑠𝑡 if  𝑗 ≥ 𝑚𝑤.𝑚𝑎𝑥𝑛  

Now, by default, the following are always true: 

1. 𝑚𝑤.𝑚𝑖𝑛𝑖 ≤  𝑚𝑤.𝑚𝑖𝑛𝑖+1 

2. 𝑚𝑤.𝑚𝑎𝑥𝑖 ≤  𝑚𝑤.𝑚𝑎𝑥𝑖+1 
3. 𝑗1 ≥  𝑚𝑤.𝑚𝑖𝑛1 

Then, the control flow for filtering is as below: 

A) If the current 𝑗 value is equal or less than the current 𝑖𝑚𝑎𝑥  value we go through the 
following conditions, else we remove current 𝑖 element and move to the next: 

i) If 𝑗 element is within 𝑚𝑖𝑛𝑖 and 𝑚𝑎𝑥𝑖 , the 𝑖 element is kept in the database 
and we move to the next 𝑖 ( 𝑗 remains the same) and start again at  i). 

ii) If 𝑗 element is greater than  𝑚𝑎𝑥𝑖  , the 𝑖 element is removed from the 

database and we move to the next 𝑖 ( 𝑗 remains the same) and start again at 
i). 

iii) If, and only if, the 𝑗 element is smaller than 𝑚𝑖𝑛𝑖 then we move to the next 𝑗 
element and exit at A). 
 

For example, let’s assume that the first elements in the sorted peptide data frame 
(where SP1 column contains the theoretical peptides, SP2 the AA indexes, MW the 
computed molecular weight ,min-max the MW range) and mass list are as shown in 
Figure 3.4 and represented by i and j indexes respectively. 
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Figure 3.4 Samples of data frame 𝑫 and vector 𝒎𝒂𝒔𝒔𝒍𝒊𝒔𝒕 for the filtering process 
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The element 𝑗1 in mass list is 783,3514. It is within the peptide 𝑖1 MW range, so the 

peptide is marked as “K” (Keep) and move to  𝑖2. Due to sorting, whatever the current 
peptide is, the next peptide in the list will have either the same MW value or greater, 

thus its 𝑚𝑖𝑛,𝑚𝑎𝑥 range will be either the same or shifted to the right in the numerical 
scale.  

The 𝑖2 element is equal to 𝑖1  so it is also a “K” and we move to  𝑖3. The 𝑗1 is lower than 
the 𝑚𝑤.𝑚𝑖𝑛 and 𝑚𝑤.𝑚𝑎𝑥 of 𝑖3 so we need to move to 𝑗2  which is still lower than 𝑖3. This 

also applies for the next rows so we keep moving in 𝑗 column until we arrive at  𝑗650  . 
This is within the MW range of  𝑖3  so we mark peptide 𝑖3 as a “K”. Same applies for  𝑖4.  

For element 𝑖5 we need to skip many rows of 𝑗 to get to a 𝑗 element of similar value. We 

keep moving in 𝑗 column until we get to 𝑗 3416   which is within 𝑖5 MW range, we mark 𝑖5 

as a “K” and we keep moving on in 𝑖 list 

When we get to 𝑖 17   and as we are still increasing the 𝑗 ( condition A.iii.) , we get to 

𝑗 6051   which is greater than the 𝑚𝑤.𝑚𝑖𝑛  but also greater than 𝑚𝑤.𝑚𝑎𝑥 of 𝑖17  .   This 
peptide is, thus, not represented in the masslist so we mark it as an “R” (remove) and 

move to 𝑖18   which equal to 𝑖17  and removed as well.   

Getting to 𝑖19   we enter again in condition iii) and we start moving on 𝑗 list until we either 
get a match or 𝑗 exceeds a 𝑚𝑤. max   𝑖 element so we start moving in the 𝑖 list. 

This way it’s not needed to search the whole mass list against each individual peptide in 
the database. Instead, we go through both lists simultaneously, saving a lot of time. 

This part of the algorithm is implemented in C++ for optimized speed. 

 

3.2.4 Output in protein format 

Before calling the main function that returns the database in the desired format, we 
need to estimate the distribution of the current proteome database. We call: 
>Distrifit( data, d) 

Where: 

 Data is the input proteome database in FASTA format 

 d is a string variable indicating the distribution to be fitted, “lognormal” or 
“gamma” 

This returns a vector of the distribution parameters i.e. mean and variance in the case of 
a log-normal distribution, k and ζ in the case of a gamma distribution. This step, 
however, can be performed manually by the user who should choose a distribution that 
best describes the data. In any case, this step is only complementary and reduction in 
accuracy of fitting will not alter the results of the downstream analysis in any way. 

Then the format conversion process can start. In this step, the peptides are stitched 
together into peptide-blocks to resemble proteins. After obtaining a peptide data frame 
(as in figure 3.1) we call: 
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>create_blocks(x, title, pep.type,fit, nmer)   

Where: 

  x is a dataframe which has in the first column all the peptides to be stitched 

 title  is the title of the original protein, needed for annotation 

 pep.type is the peptide type (spliced or non-spliced), needed for annotation 

 fit is the output of Distrfit() function. A list containing a vector with a character 
element which indicates the distribution, and a numerical vector of the distribution 
parameters from which the protein lengths will be sampled. 

 Nmer  is the peptide sequence length. 

A random log normal or gamma generator is used to sample one thousand values from 
the distribution of choice. Each value corresponds to the length of the current peptide-

block. For example, if the first value in the vector is 𝑁1 = 900 then 
900

𝑁𝑚𝑒𝑟
=

900

9
= 100  

peptides will be used in the first peptide-block. If the peptide list contains 1000 peptides 

then the first 100 will be stitched together leaving behind 900 peptides. Thus, for the 

second peptide-block the index starts from peptide 101 and uses 𝑁2 peptides, i.e the 
second value in the sampled vector. If the peptide list is so large that more that 1000 
blocks are needed thus exceeding the length of the vector, then the index of the 
sampled vector starts again at  𝑁1.  This, however, does not happen often so it is 
preferable to keep the sample vector reasonably short than allocating useless elements 
that occupy RAM and slow down the process. 

Let’s assume we have already called the p_spliced() function which returned a list of 
spliced peptides and transformed it into a data frame.  
After calling the create_blocks() function the returned list includes all peptide-blocks 
composed by spliced peptides derived from Protein1, as shown in Figure 3.5 . 

 

3.2.5 Decoy database 

To obtain a decoy database of peptides from the current protein, the function 
create_decoy() is called : 

>create_decoy(x, title, pep.type, method) 

Where: 

 x is a character vector of peptides or a list of peptide sequences in peptide-block 
format. 

 title is the title of the protein for annotation 

 pep.type is the type of peptides (spliced or non-spliced) for annotation 

 method is a string variable indicating the decoy method to be used. Possible 
values are “rev” for reverse sequences or “shf” for shuffled sequences 
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The output is either in peptide-blocks format or a vector of peptides depending on the 
input format. Two methods are available to construct a decoy: reverse and shuffled (as 
described in section 2.3). 

For example, let’s assume we have already called the create_blocks() function which 
returned those peptides in protein format as shown in Figure 3.5 . To get the reverse-
decoy sequences that correspond to Protein1, we need to call create_decoy( x, 
title=”Protein1”, pep.type= “SP”, method= “rev”) .The Figure 3.6 illustrates the list output 

when reversed method is chosen. 

Each protein’s spliced peptides produce a separate file of decoy sequences. For 
Protein1 a FASTA file with title “Protein1_dSP.txt” is saved. Each decoy peptide-block is 
annotated with an index number (1, 2, 3 etc).  

 

Figure 3.5: Output to peptide-blocks format for Protein1 
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3.2.6 Output files in automated process 

Output files are automatically saved only in the automated process. If functions are 
used separately the user needs to save the database in the desired format manually. 

Every file saved corresponds to one and only one sequence in the input list provided. 
By default, each protein’s spliced peptides database (spliced, non-spliced, decoy) is 
saved as an .rds file with title “sp_protein.rds” where protein is the unique Uniprot name. 
Those files are needed for the step 3.1.8 where the hits are searched against each 
database. 

If output to blocks is chosen, each database is also saved in FASTA format as 
mentioned in section 3.1.5 and 3.1.6. For a combined search method (as described in 
section 2.3.1) all files of decoy proteins and all files of target databases need to be 
concatenated together in one text file. 

Figure 3.6 Decoy sequences of spliced peptides when peptide-blocks format is used 
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3.2.7 Searching the hits 

This step requires that an MS analysis software of choice has been used to match the 
database peptides. All the peptides that were found as hits should be included in one 
vector. 
To search the candidate peptides against all the databases, we call: 
 
>find_hits(x, data, DB, Nmer ) 

Where: 

 x is a character vector containing the peptides (each element is a peptide) 

 data is the exact same Uniprot file in FASTA format that was used to create the 
database 

 DB a character value or character vector indicating which database should be 
searched. Possible values are “SP” for spliced peptide data base and “NSP” for 
non-spliced. For each database both target and decoy is searched. 

 Nmer is a vector with the minimum and maximum Nmer. For example for Nmer= 
c(9,10) the peptide-hits will be searched against 9mer and 10mer databases. 

This returns a data frame of four columns: the first column contains the input peptides, 
the second the database that each peptide was found (spliced or non-spliced),  the third 
indicates if it was in the target or the decoy and the fourth the indexes of the amino-
acids in the parental protein. Obviously the fourth column has no value for the peptides 
that were found in decoy databases. Peptides that were not found anywhere will have 
NA values in all columns. 
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4. BENCHMARKING AND SYSTEM SPECIFICATION 
 

4.1 System information 

In this chapter we present a rough estimation of the execution time for each heavily 
computational task in the algorithm.  The system on which the algorithm was tested is 
listed below:  

Operating system:    Windows 10 
RStudio Version:      1.1.463 
R Version:                3.5.1 (2018-07-02) 
CPU:                         AMD Ryzen 5 2400g, 3600 MHz 
RAM:                        16 GB, 3200 MHz 

 

4.2 Benchmarking: Settings and results 

All tests are performed in serial and parallel mode for a group of 1010 proteins which is 
equal to 1/20 of the total human proteome. For parallel processing we use three 
physical CPU cores and six logical. The group of proteins follows the original 
proteome’s length distribution, which was found to be lognormal, as shown in figure 4.1 

(excluding two unusually large proteins: Q8WZ42|TITIN_HUMAN and 
Q8WXI7|MUC16HUMAN of 34350 and 14507 amino acids respectively). This way we 
ensure that for every additional 1010 proteins group that follows the same lognormal 
distribution, the execution time will increase linearly. Longer lengths of proteins increase 
the runtime also linearly. The automated process and all separate functions are 
benchmarked. We also test different lengths of proteins to illustrate the linear 
relationship between length and execution time. Additionally, we benchmark the speed 
gain for every additional cpu core used in parallelization.  

It should be noted that even though virtually any CPU can run the algorithm, for 
increased ranges of intervening sequences’ lengths more RAM is mandatory. Here, we 
test on a conventional computer built of 16 GB RAM. The maximum range of 
intervening sequence that can be comfortably handled at once is [1-100] amino-acids. 
However, one can run the algorithm multiple times using different ranges when less 
RAM is available. For example, a range of [1-100] can be separated in two or four 
rounds of [1-25], [26-50], [51-75] and [76-100] taking virtually the same execution time. 
It is shown in the following plots that intervening sequence length and execution time 
are almost perfectly linearly correlated. 

 

4.2.1 Automated process 

We first benchmark the automated process where all functions are utilized, for 9mers 
and different ranges of intervening sequence lengths. Execution time is almost identical 
for any peptide length selected. 
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Figure 4.1 Protein length distributions 

When multiple lengths are computed in the same run, the execution times are the 
estimated times presented below multiplied by the number of different lengths. The 
parameters used for the following benchmarking are specifically:  

1. data = HUMAN2016.FASTA 

2. nmers= c(9,9) 

3. isl = c(1,25), c(1,50), c(1,75), c(1,100) 

4. target = “all” 

5. filter = TRUE 

6. masslist = masslist.txt 

7. tolerance = 3 

8. as.blocks= TRUE 

9. decoy = TRUE 

10. ncores = 6 

The input file used to test the pipeline was Human proteome 2016 from Uniprot, 

containing 20191 proteins that were separated in 20 groups of equal size and length 

distribution. The mass list contained 330.000 elements (peptides). The results are 

illustrated in figure 4.2  
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Figure 4.2 : Automated process for 9mers on 1010 proteins using 6 logical cores. Execution time in x axis 
versus intervening sequence length in y axis.  

 

As illustrated, the longer the intervening sequence length in spliced peptides, the longer 
the execution time. This is expected as much more fragment combinations are 
computed in a given sequence for longer intervening AA chains. The relationship of 
execution time and isl looks to be almost perfectly linear. The computational time for 
non-spliced peptides is always fixed and virtually 0. 

Specifically, for intervening sequence length 𝑖𝑠𝑙 =  [1: 25] the elapsed time was 𝑡 =
2,42 ℎ𝑜𝑢𝑟𝑠. For 𝑖𝑠𝑙 = [1: 50] the elapsed time was 𝑡 = 5,16 hours. For 𝑖𝑠𝑙 =  [1: 75] , 

𝑡 =  7,82 hours and for 𝑖𝑠𝑙 = [1: 100], 𝑡 =  10,32 hours.  Thus, in a same computer build 
using the same CPU power, the execution time for the complete human proteome data 
base will be 20x the times listed. 
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We also benchmarked the procedure in serial versus parallel mode for the following 
parameters:  

1. data = HUMAN2016.FASTA 

2. nmers= c(9,9) 

3. isl = c(1,25) 

4. target = “all” 

5. filter = TRUE 

6. masslist = masslist.txt 

7. tolerance = 3 

8. as.blocks= FALSE 

9. decoy = TRUE 

In figure 4.3 we illustrate the gain in speed when using 1, 2, 3, 4, 5 and 6 cores. 

 

 

Figure 4.3 Speed gain from parallel execution 
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4.2.2 Main database construction  

Using the same parameters as in 4.2.1 we benchmark the database construction only, 

for the same group of proteins. The database includes spliced and non-spliced peptides 

only. 

 

Figure 4.4:  Main database construction for 9mers on 1010 proteins and 6 logical cores. Execution time in x 
axis versus intervening sequence length in y axis.  

 

Similar results as in the previous procedure, however execution time is much shorter 
here. This is the least computationally intensive procedure. 

For intervening sequence length 𝑖𝑠𝑙 =  [1: 25] the elapsed time was 𝑡 = 5,03 minutes. 

For 𝑖𝑠𝑙 = [1: 50] the elapsed time was 𝑡 = 9,92 minutes. For 𝑖𝑠𝑙 =  [1: 75] , 𝑡 =  14,9 

minutes and for 𝑖𝑠𝑙 = [1: 100], 𝑡 =  19,96 minutes.   
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We also tested the execution time of database computation versus increasing protein 

lengths. The results are illustrated in figure 4.5. 

 

Figure 4.5: Execution time for different protein lengths. Protein length in x axis versus execution time in y 
axis. 

4.2.3 Filtering process 

When the filtering is done separately, all Rdata files from the previous procedure are 
loaded one by one. The filtering was done with 3ppm tolerance using randomly 
generated mass lists of different lengths. We tested mass lists of length 𝐿 =
[85000, 170000, 260000, 350000] and no difference in execution time was observed. In 
figure 4.6 we illustrate the change in execution time of the filtering process for different 

protein lengths when running in one cpu core, using a mass list of 350000 rows 
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Figure 4.6: Filtering execution time for different protein lengths. Protein length in x axis versus execution 
time in y axis. 

 

Specifically, single databases of peptides derived from small proteins of up to 1000 
amino-acids need between 0.01 to 5 seconds to be filtered. A peptide database derived 
from a long protein of 5000 amino-acids or more, needs 15 to 20 seconds reaching 60 
seconds for unusual large proteins of 20000 or more amino-acids. Total execution time 
for a group of 1010 proteins, 9𝑚𝑒𝑟𝑠 and 𝑖𝑠𝑙 =  [1,25]  was 𝑡 =  9,54 minutes, running on 
6 logical cores.  

 

4.2.4 Decoy database construction 

Again, when decoys are constructed separately the Rdata files from procedure 4.2.2 are 
loaded one by one. In figure 4.7 we illustrate the change in execution time of the decoy 

construction process for different protein lengths when running in one cpu core, using 
the reversed method. Once again, linearity is observed between protein length and 
execution time. Execution time for 1010 proteins, 9𝑚𝑒𝑟𝑠 peptides and 𝑖𝑠𝑙 =  [1,25]  on 6 

logical cores was 𝑡 = 14,2 minutes. 
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Figure 4.7: Decoy construction for different protein lengths. Protein length in x axis versus execution time in 
y axis. 

 

4.2.5 Output to blocks 

This is the most intensive and time consuming procedure. In figure 4.8 we illustrate the 
change in execution time of the format conversion process for different protein lengths 
when running in one cpu core. The relationship between execution time and protein 
length looks to be exponential in this process. Due to the low frequency of long proteins 
i.e. over 4000 amino-acids, in the proteome and, therefore, our sample, the plot line is 
not smooth after the point 𝑥 =  4000 on 𝑥 axis. However if more long proteins where 
present in the sample, the exponential trend would be clearly visible. Total execution 
time for a group of 1010 proteins, 9𝑚𝑒𝑟𝑠 and 𝑖𝑠𝑙 =  [1,25]  was 𝑡 =  120,2 minutes, 

running on 6 logical cores.  
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Figure 4.8: Format conversion execution time for different protein lengths. Protein length in x axis versus 
execution time in y axis. 
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5. CONCLUSION 
 

The experimental analysis of spliced peptides has garnered significant interest in the 
recent years. More and more studies prove their definitive contribution to immune 
system function and the many ramifications of this finding, such as vaccine design, 
immunotherapy and autoimmune diseases therapy. 

To overcome the computational limitations due to lack of an equivalent software 
solution, we developed ProteoSplicer, a pipeline to initiate the process of spliced-
peptides identification. Splicer creates custom spliced and non-spliced peptides 
databases which are mandatory when using MS/MS analysis software, as well as their 
decoys. We explained thoroughly in chapter 3 how it works, function by function and 
benchmarked it in chapter 4. It is an open source pipeline and accessible at Github 
platform. 

Several challenges were faced during the development of the algorithm and the 
implementation of an A to Z identification analysis. The greatest issue was the 
execution time when large proteome databases were used or the complete spliced 
peptide databases were needed. For this we implemented speed optimization 
techniques in R, and C++ scripts for the most intensive tasks. However, there is still 
room for improvements as it can get quite slow when large parameters are used. 
Nonetheless, this issue can be overcome with extra computing power, by either using 
more cores or more powerful CPU.  

Another issue was the unavailability of a simple and specific database search engine 
software solution. Software for MS analysis is very complex with several features and, 
usually, not open source. The complexity of their design might arise many different 
issues for different users, ranging from system compatibility to hardware inadequacy. 
Spliced peptides databases being so large are even more troublesome to analyze with 
the open source software available. As the core scoring algorithm that is used to match 
peptides to experimental spectra is less complex, a far less complex solution could be 
implemented, like an R package. A future plan of this package is to include a scoring 
algorithm for matching theoretical peptides to experimental MS/MS spectra that is 
simple and specific to the spliced-peptides identification process. 
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ANNEX I 

Required packages 

The algorithm is dependent on the following R packages:  

1. “Seqinr”      [25] 

 

2. “Rcpp”        [26][27][28] 

 

3. “Foreach”   [29] 

 

4. “doSnow”   [29] 

 

5. “Peptides”  [30] 

 

6. “MASS”      [31] 

Each of these packages should be installed and loaded before running any script. 

All scripts for running the algorithm can be found at: 

https://github.com/alevk/ProteoSplicer 
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