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ABSTRACT

CClyzer is a tool that aims to provide a complete points-to analysis on LLVM bitcode
while, at the same time, providing context-sensitivity variance. While it was originally
implemented by making use of the LogicBlox Datalog engine and the LogiQL dialect, in
this documentation we present our work of porting CClyzer to a new Datalog engine-
Souffle. Studying the analysis CClyzer provides on C/C++ LLVM bitcode, we believe
Souffle is a tool that enhances CClyzer’s logic in order to minimize analysis running
times. Our evaluation shows promising results as the analysis running time is minimized
by 95% on small programs while parallel execution adds an average speedup of 1.29
for bigger workloads.

SUBJECT AREA: Static program analysis 

KEYWORDS:  static  program analysis,  cclyzer,  souffle,  structure-sensitivity,  context-

sensitivity, llvm



ΠΕΡΙΛΗΨΗ

To CClyzer  είναι  ένα  εργαλείο  το  οποίο  έχει  σκοπό να  παρέχει  μια  ολοκληρωμένη
ανάλυση δεικτών σε κώδικα LLVM και σε συνάρτηση με μεταβαλλόμενη ακρίβεια ως
προς την ιεραρχία κλήσεων κάθε μεθόδου.  Ενώ αρχικά υλοποιήθηκε με  χρήση της
LogicBlox μηχανής για τη γλώσσα Datalog και τη διάλεκτο LogiQL, σε αυτή την εργασία
παρουσιάζουμε  την  μεταφορά  του  CClyzer  σε  ένα  νέο  περιβάλλον  για  εκτέλεση
προγραμμάτων σε Datalog, το Souffle. Μελετώντας την ανάλυση την οποία προσφέρει
το CClyzer σε LLVM bitcode που προκύπτει από πηγαίο κώδικα γλώσσας C και C++,
πιστεύουμε  ότι  το  Souffle  αποτελεί  πολύτιμο  εργαλείο  στην  ενίσχυση  της  λογικής
λειτουργίας του CClyzer με τελικό στόχο την ελαχιστοποίηση του χρόνου εκτέλεσης της
ανάλυσης. Οι μετρήσεις μας δείχνουν ενθαρρυντικά αποτελέσματα καθώς ο συνολικός
χρόνος εκτέλεσης της ανάλυσης μειώνεται  κατά 95% για μικρά προγράμματα ενώ η
εκτέλεση με τη χρήση παραλληλίας προσφέρει, κατά μέσο όρο, 29% επιτάχυνση για
μεγαλύτερα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ:  Στατική ανάλυση προγραμμάτων

ΛΕΞΕΙΣ  ΚΛΕΙΔΙΑ:  στατική  ανάλυση  προγραμμάτων,  cclyzer,  souffle,  δομική

ευαισθησία, ευαισθησία συμφραζόμενων, llvm
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PREFACE

This documentation constitutes our search on how static analysis programs, written in
Datalog,  can  be  optimized  using  engines  that  take  advantage  of  parallelism.  More
specifically we examine how our static analysis tool behaves on two different engines
while presenting their respective differences. It was developed as a Master Thesis on
the  Department  of  Informatics  and  Telecommunications  of  the  National  and
Kapodistrian  University  of  Athens,  under  the  supervision  of  Professor  Yannis
Smaragdakis and PhD Candidate Tony Antoniadis.



Performance optimization on Declarative Points-to Analysis using the Souffle Datalog Engine

1. INTRODUCTION

Datalog is a declarative language used to define relations between various entities we
use in our analysis. It is considered an ideal option to describe the rules in a program
analysis because of its expressiveness and functionality. In Datalog we define rules in
the form of:

That(...) ← This(...) .

This is a rule that may be used to describe the expression “If This(...), then That(...)”.
This(...) is considered to be the body of the rule, a relation which the engine checks for
existence in our knowledge base. If in fact This(...) is true then Datalog will also add the
rule’s head—That(...)—in our knowledge base. In Datalog we use entities as arguments
in the rules we declare. For example: That(x) :- This(x). Here we conclude that if This(x)
is  true  then  That(x)  should  also  be  true,  “x”  being  a  variable/entity  in  our  Datalog
program. We may also define rules such as: A(x) :- B(x), C(x). Which in turn describes
that for A(x) to be true, we need both B and C to be true for the same variable “x”.
Obviously, we can also describe the union of two rules with the following example:

A(x) ←B(x). (1) A(x) ← B(x) ; C(x). (2)
A(x) ←C(x).

Here (1) and (2) describe the expression “A is true for x, if either B or C is true for x”. It
is worth mentioning that while (1) is the standard way of describing a union in Datalog,
(2) is also acceptable by Souffle as a syntactic feature and we may use it to describe
small,  non-complex rules in  our  analysis.  We may declare many rules such as the
previous  examples.  These  will,  in  turn,  be  evaluated  multiple  times  with  each  one
expanding  our  knowledge  base.  When  a  fix-point  is  reached  the  evaluation  will
terminate and we may examine our final results.

The rest of the thesis is organized as follows:
 In Chapter 2 we present some background on CClyzer, Souffle and the LogicBlox

Datalog Engine
 In Chapter  3 we introduce the differences, both in technical and dialect-level,

between our comparing implementations on each of the engines; Souffle and
LogicBlox.

 In Chapter 4 we perform all of our evaluations and comparisons for CClyzer both
in Souffle and LogicBlox and discuss the design details that support them.

 In Chapter 5 we summarize our conclusions.

C.Zisis 12
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2. CCLYZER, SOUFFLE AND THE LOGICBLOX DATALOG
ENGINE

2.1 CClyzer

CClyzer [1] is a tool providing static analyses written in Datalog, applying over LLVM IR
(an intermediate language for a popular compiler family) produced by C/C++ programs.
Its  initial  implementation  uses  the  LogicBlox  Datalog  Engine,  adopting  the  LogiQL
language  and  was  written  in  three  variants  to  implement  multiple  levels  of  context
sensitivity. Currently it supports:

 context insensitivity,
 1-call-site sensitivity with a heap context,
 2-call-site sensitivity with a heap context.

Our implementation aims to support all the three aforementioned variants to provide the
same precision levels as the original implementation in LogiQL; the dialect LogicBlox
uses.  At  the  same  time  we  aim  to  achieve  much  higher  performance  in  terms  of
execution  time,  taking  advantage  of  parallelism  and  to  provide  enough  context
abstractions for one analysis to support interchangable context sensitivity.

Context sensitivity aside, CClyzer provides a structure sensitive points-to [2] analysis for
C/C++  LLVM  bitcode  that  recovers  much  of  the  available  high-level  structure
information of types and objects, by applying two key techniques:
(1) It records the type of each abstract object whenever this is available. Such cases
include the usual appearance of stack allocations, global variables and calls to default
or user-defined constructors through the call of the new() method in C++. In cases when
the type is not readily available (as is the case with malloc() method in C), the analysis
creates multiple abstract objects for each type the allocated object could have.
(2) It creates separate abstract objects that represent:

a)  The fields  of  objects  of  either  struct  or  class  type.  In  this  sense,  given an
abstract object O with type T, the analysis will  create objects O.fi  for each i-th field
defined in type T.

b) The (statically present) constant indices of arrays, resulting in a limited form of
array-sensitivity. Given an abstract array object, called A with size S, the analysis will
create objects A[i] for each i with value 0 to S-1 and a new object called A[*] to account
for all unknown indices met. These usually include variable values or expressions in the
array’s index, that cannot be determined before runtime.

2.2 The two engines

LogicBlox as well as Souffle programs, act as databases that contain both a relational
schema and its data. In particular, databases hold collections of facts, each of which is
concerned with a predicate. In logic, predicates are either properties that may be held
by individual variables or relationships that may apply between multiple entities. In a
database,  a collection of facts  associated with  a predicate is  called that  predicate's
population. Sometimes the distinction between the logical predicate and its population is
glossed over by referring to the stored predicate population simply as a predicate. In the
following sections we discuss differences between the two, to better understand each
functionality and dialect.

C.Zisis 13
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2.3 LogicBlox Datalog Engine

The LogicBlox Datalog Engine acts as a database manager that evaluates and expands
upon its knowledge base. The initial facts constitute the extensional database (EDB).
After they are inserted in the knowledge base, the logic defined within the program’s
Datalog rules is executed until a fix-point is reached. The knowledge base is expanded
with the new facts produced composing our intensional database (IDB). These in turn,
create  new  relations  between  already  imported  entities  or  newly  created  abstract
objects. A subset of those relations, which the program defines as output, is exported as
long as its entities are in human-readable form. 

2.4 The Souffle Engine

Souffle  [3] is  short  for  “Systematic,  Ontological,  Undiscovered  Fact  Finding  Logic
Engine” and is a variant of Datalog for tool designers crafting static analyses. Each
program is transformed to a relational algebra machine applying a Futamura Projection
on  the  semi-naive  evaluation  scheme  and  the  IDB.  The  relational  algebra  is  then
compiled into  a highly  templatized C++ parallel  optimized source code and in  turn,
executable. The compiled program then reads facts from a disk-based format, executes
the IDB logic and outputs the results in the same disk-based format as the EDB.

C.Zisis 14
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3. TECHNICAL IMPLEMENTATION DIFFERENCES

3.1 Execution

The semantics of  the LogicBlox Datalog system  [4] allow it  to interleave declarative
evaluation  with  imperative  execution.  The LogicBlox  engine was created to  support
delta logic; the addition and removal of facts from the database’s population. Before the
transaction performing such an update commits,  each rule’s  logic and population is
evaluated incrementally, in order to maintain consistency in the database. This delta
logic is used in order to edit facts in our analyses and thus the engine favors serialized
execution in order to support it.
In contrast, Souffle operates as a batch processor of tuples, in a disk-based format.
Predicates are read in, computation is performed, and the program determines which
“output” predicates will be exported. However, Souffle does not provide a way to retract
tuples from a  relation  during  execution,  nor  a  way to  keep a  state of  computation,
incrementally  change  inputs,  and  re-evaluate.  It  mainly  focuses  on  shared-memory
parallelism to take advantage of multithreading, in order to minimize run-time. However,
the LogicBlox implementation of CClyzer uses delta logic only to import initial facts. In
fact,  it  can  easily  be  replaced  with  Souffle’s  default  import  mechanism without  the
constraint of serial execution.

3.2 Rules and constraints

A rule to fill a predicate with facts, in LogiQL, may be written as:

A(x) ← B(x).

Here the ← symbol  separates the established facts of  predicate B from the not-yet
evaluated facts of predicate A. However another symbol exists. We may write down a
rule such as:

A(x) → B(x).

We mainly use the → symbol to express constraints in the sense that “If A(x) is true, it is
impossible for B(x) to not be true”. Here → maps each entity (i.e., variable x) from the
body to the head side essentially acting as a function. The engine, then, will detect at
run-time any attempt to violate the functional constraint.
On the other hand,  Souffle deals with these symbols in a different  way. To write  a
declarative rule between two predicates in Souffle we have to write: 

A(x) :- B(x). 

Here  :-  is  the  symbol  that  define  rules  between  relations  and  there  is  no  inherent
mechanism  to  support  constraints.  However,  we  may  simulate  the  constraint
mechanism using a different mechanism provided by Souffle. Since we use constraints
mainly for debugging, we define the predicate schema_sanity(). We then append it to
the body of any rule that participates in the analysis for the sole purpose of testing.
While schema_sanity() is inserted in our knowledge base, these rules will produce any

C.Zisis 15
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output  that  violates  our  constraints.  To  understand  its  use,  we  give  the  following
example:

A(x) :- schema_sanity(), !B(x).

In this case the engine will append any x for which B(x) is false into the population of
predicate A. If such a result is found it will be exported as a warning that the restriction
set was not met during execution to inform the developer of logical errors. Of course, in
this case we have to define any possible violation instead of the constraint.

3.3 Type system

LogiQL is a strongly-typed language with dynamic tagging of types. While every value
has a unique “principal” type, this type is unknown to the programmer, since the engine
is  responsible  for  the  creation  of  entities.  For  each  entity,  we  do  not  have  any
information about its type or contents. The only exception to this rule are our initially
inserted variables in predicates that act as reference to each entity participating in the
evaluation of the IDB logic.  Each of these values can be queried (e.g., in a rule body) to
retrieve its type (which is unique, per strong typing). For example:

A(x) → .

While the above declaration, defines a constraint, x is not bounded by anything. There is
no  information  given  about  how A entities  are  represented  in-memory.  The  LogiQL
engine will  handle the internal representation automatically.  However,  while inserting
our initial facts we know the values populating each predicate.

A(x), referenceA(x:s) -> string(s).

Here, +A(“foo”) will create a new entity for A, other than “foo”. The predicate referenceA
acts  as  refmode;  a  reference  matching  the  newly  created  entity  x  with  “foo”,  while
decrlaring a constraint that binds s as a string.
Moreover, LogicBlox performs type inference so that most predicates do not need to
have their types of their variables declared, so long as the types of the variables can be
inferred by the predicates involved in the rules that populate them.
On the other hand, Souffle distinguishes symbols and numbers, but otherwise allows
constants to be used as values of any compatible type. The program’s execution carries
no dynamic type information and all predicates need to have full declarations.
In our next example we define the same rule in LogiQL and Souffle respectively:

LogiQL:
Context(?context) → .
FunctionDecl(?function) → .
ReachableContext(?context, ?function) → Context(?context), FunctionDecl(?function).

Souffle:
.type FunctionDecl
.type Context
.decl ReachableContext(?context: Context, ?function: FunctionDecl)

C.Zisis 16
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Note  that,  in  LogiQL,  by  making  use  of  the  type  inference  mechanism the  engine
provides we do not  have to  explicitly  define the type of  any argument.  The engine
defines it by recursively infering the definitions of each predicate participating in the right
side of the constraint.
In Souffle we have to define our types using .type and declare each type used in our
predicate  ReachableContext.  We  then  use  .decl  to  define  each  of  the  types  our
predicate is allowed to use. In this aspect, Souffle is able to warn us at compile-time
about any abnormalities observed in our program, regarding the types used. Moreover,
we have a type system that supports sub-typing, with our basic types being symbol
(character string) and number. We may introduce type hierarchies such as:

.type Instruction = symbol

.type CallInstruction = Instruction

describing that type Call-Instruction is a sub-type of Instruction which, in turn, is a sub-
type of symbol. Both hold the same basic information: Call-Instruction and Instruction
are  character  strings.  Finally,  this  makes  room  for  a  fully  functional  type-checking
system at compilation time.

3.4 Functional Predicates

LogiQL offers the use of a second kind of predicate called “functional predicates”. While
their syntax remains the same these are distinguished in their definition, as they use
square brackets instead of parentheses. The square brackets indicate the functional
nature of the relationship and its variables. We define the following functional predicate:

studentOf[name] = s → Student(name), School(s).

The  use  of  the  word  Of  in  the  name  of  the  predicate  emphasizes  the  connection
between a student and that student’s school. In contrast, to the functional approach we
may define a predicate such as:

isStudentOf(name, s) → Student(name), School(s).

Note that although isStudentOf and studentOf appear to serve the same purpose, there
is a subtle difference. Implicit in the student domain is the constraint that no student can
belong to two schools. Now we populate our functional predicate the same way we
would  do  with  a  classic  one;  by  defining  a  logic  or  adding  explicit  facts  to  the
relationship. However LogiQL offers a third way to populate functional predicates.

3.5 Constructors

Normally, calling studentOf in a rule’s body, with an empty school domain would result
in an empty head. But LogiQL offers a default mechanism for the construction of new
entities. To utilize this we have to define our functional predicate as a constructor. We
do this by writing:

lang:constructor(`studentOf).
studentOf[name] = s → Student(name).

C.Zisis 17
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By transfering our constructor from body to head, we invoke its construction mechanism
by which it produces a new school s.

studentOf[name] = s ← Student(name).

In this example a new and unique School s is produced for every student. Again, since
our  variable s  does not  participate in  the constraint,  the engine will  will  handle  the
internal  representation  automatically  .In  this  sense,  each  of  the  students  in  our
database  belongs  to  a  different  school  unless  we  have  any  information  to  prove
otherwise. Although the default mechanism creates new school entities, these can not
serve as output values. They need to be re-matched through a series of rules, with our
initially inserted, printable ones. Nevertheless, we are forced to trust LogiQL’s default
construction mechanism of new entities to match our already established variables.
On the other hand, Souffle supports only tuple constructors. We may create new entities
by managing character strings or number variables in order to create either tuples or
variables of the same type. In case we want to introduce a new entity at the head of a
rule we are forced to also include it’s creation logic in the body of the same rule. For
example:

studentOf(?name,?school):-
student(?name),
?school = concatenate(“schoolOf”, ?name).

In this example we achieve the same functionality as our equivalent LogiQL rule above
with the main difference that we now control the creation logic of our new ?school entity.
Here we know that ?school is a string which reads “schoolOf” and the name of the
student. We could also use tuples to create our entities the following way:

studentOf(?name, ?school):-
student(?name),
?school = [?name].

Tuples in Souffle  are exported after passing through an indexing system. Their final
value cannot be read, as they appear as integers in each output file, but otherwise still
hold all relational information.

What’s  more,  we  may  use  built-in  predicates  that  help  us  determine  basic  string
(concatenation, sub-string, match regular expression, equality, length etc.) or arithmetic
(addition, multiplication, division, comparison etc.) operations as well as conversion of
one type to another. There is an argument to be made that this method either gives
more workload or control to the programmer, but not only it keeps our entity population
at bay, it also discards the overhead of rematching newly created variables with old
ones (as is the case with LogicBlox) since these can be exported. Also, we expose our
creation logic as many times, the calculations needed to create our new entities, may be
simpler than the one a LogiQL constructor uses.

3.6 Context sensitivity implementation

In LogiQL the same analysis is written differently for each context sensitivity. Given a
context variant, we create an abstract object for each series of reachable call/invoke
instructions to assume the role of a given examined context. We achieve this by utilizing

C.Zisis 18
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the functional constructor predicates LogiQL offers. For better understanding we give
the following example for a 1-call-site-sensitive analysis:

context_new[Instruction]= newContext → call_instruction(Instruction).
lang:constructor(`context_new).
context_new[Instruction] = newContext ←

call_instruction(Instruction).

The  above  rule  creates  a  new  entity  newContext  for  each  Instruction  in  our
call_instruction  predicate.  As  we  have  already  seen,  our  functional  constructor
predicates create a new value for each parameter inserted as input. The above rule
inserts the entire population of call_instruction as arguments for our functional predicate
context_new. This in turn creates new entities, in order for them to be considered a
subset of the contexts used in our analysis. For example:

context_new[Instruction] = Context,
reachable_method(Context, Method) ←

call_instruction_calls_method(Instruction, Method).

Here, our predicate context_new plays the role of a general constructor. It increases its
population each time it receives a new entity as an argument. Of course it goes without
saying that if called for the same entity, at different parts of the program, it will produce
the same value. 
In  addition,  the  definition  of  context_new  constructor  changes  for  different  context
sensitivity variants. For example in the 2-call-site context variant its definition and logic
will transform as follows:

context_new[Instruction1, Instruction2]= newContext → 
call_instruction(Instruction1),  call_instruction(Instruction2).

lang:constructor(`context_new).

context_new[Instruction1,Instruction2] = newContext ←
call_instruction(Instruction1),
instruction_in_method(Instruction1, Method),
call_instruction_calls_method(Instruction2, Method).

Here, the size of arguments for our constructor changes for different context-sensitivity
and so  does the  type of  our  newContext  variable.  This  prevents  us  from writing  a
universal logic for all context-sensitivity variants.
CClyzer aims to support multiple variants of context-sensitivity modularly. So in Souffle,
we implement CClyzer to serve as an analysis that utilizes abstractions in regard to
context-sensitivity.  This  means  that  the  core  pointer  analysis  remains  the  same
regardless  of  context-sensitivity  variant.  What  changes  is  the  part  of  the  logic  that
creates  a new context,  depending on the  specified  variant.  Essentially,  our  context
creation rules are implemented in such a way that they are considered a black box
regarding the rest of our analysis. However, to implement a construction mechanism
that works as explained, we cannot make use of tuple constructors in a direct way. For
example:
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.type Instruction,

.type Context = [Instruction]
context_new(Instruction, Context),
reachable_method(Context, Method) :-

call_instruction_calls_method(Instruction, Method),
Context = [Instruction].

This is an example of the context creation logic directly participating in our 1-call-site
sensitive analysis. We would have to change this rule for CClyzer’s insensitive and 2-
call-site sensitive analysis, respectively in the following examples:

.type Instruction

.type Context
context_new(Context),
reachable_method(Context, Method) :-

function_declaration(Method),
Context = “<<emptyContext>>”.

___________

.type Instruction,

.type Context = [Instruction, Instruction]
context_new(PreviousInstruction, Instruction, Context),
reachable_method(Context, Method) :-

call_instruction_calls_method(Instruction, Method),
instruction_in_function(Instruction, CallerFunction),
call_instruction_calls_method(PreviousInstruction, CallerFunc),
Context = [PreviousInstruction, Instruction].

Note that this not only changes each rule in our analysis significantly, it also requires
changes in the type system as well as different declaration for each of our predicates.
To overcome this obstacle we follow a different path. We create two different predicates
to replace context_new predicate: context_request and context_response. Our thinking
is to create a universal declaration for context_request, indifferent to sensitivity in our
analysis. For the time being we define this declaration to be:

.decl context_request(callerCtx:Context, invoc: ContextItem)

Now  in  each  of  our  rules  with  a  head  that  contains  context_new,  we  replace
context_new with context_request.  Note that context_request only participates in the
head of each rule that is common among all analyses.
Our rules dedicated only to context-sensitivity are isolated from the rest of the analysis.
Among them we define our context_response predicate.

.decl context_response(callerCtx:Context, invoc: ContextItem, ctx: Context)

Our predicate context_response has the same declaration as context_request with an
additional  last  argument  that  serves  as  our  newly  constructed  context.  For  each
different sensitivity in our program, we define rules to populate our context_response by
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duplicating the first  two arguments of context_request  and then declaring a logic  to
utilize said arguments, in order to initialize our last argument, the one that serves as our
newly constructed context. To visualize this process we give a simplified example of
how  a  LogiQL  context_new  population  rule  is  transferred  in  Souffle  using  our
context_request – context_response method:

LogiQL:
context_new[CallerCtx, EntityA] = newContext,
Target(newContext, Method) ←

Examine1(EntityA, Method),
Examine2(EntityA, CallerCtx).

Souffle:
context_request(callerCtx, EntityA),
Target_Intermediate(callerCtx, EntityA, Method) :-

Examine1(EntityA, Method),
Examine2(EntityA, callerCtx).

Target(newContext, Method) :-
Target_Intermediate(callerCtx, EntityA, Method),
context_response(callerCtx, EntityA, newContext).

Then  a  context_response  rule  would  be  declared,  separated  from  the  rest  of  our
analysis as follows:

context_response(callerCtx, EntityA, newContext) :-
context_request(callerCtx, EntityA),
newContext = (…) callerCtx (…) EntityA.

In LogiQL, Examine1 & Examine2 populate Target, after context_new has created our
new context. In Souffle, Examine1 & Examine2 populate context_request, along with an
intermediate  predicate  we  define  as  Target_Intermediate.  Then  context_response
creates  our  new  context  and  finally,  Target  is  filled  by  the  resulting  population  of
Target_Intermediate & context_response.
In our context-related part of the analysis, not only are the rules implemented differently
for  each  context-sensitivity  but  types  also  change  depending  on  the  quantity  of
information  each  variable  needs  to  hold.  In  an  insensitive  analysis,  for  example,  a
context is just a character string with the value “<<emptyContext>>” while in a 2-call-
sensitive  analysis  a  context  is  declared  as  a  tuple  of  two  separate  invocations.
Implementation-wise, this affects only our context-related part of the analysis. The rest
of our program need only transfer a context-variable between a rule’s body and head
without ever touching its contents.
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4. EVALUATION

4.1 Comparison

We evaluate each implementation of CClyzer both on Souffle and the LogicBlox Datalog
engine with execution time as our metric. Since we use the same fact generator on both
implementations, we discard this time from the following comparison.
Souffle provides two different modes of execution. A compiled C++ parallel program and
a direct interpreter.  The interpreter is the default  option when invoking Souffle as a
command line tool. When Souffle is invoked in interpreter mode, the parser translates
the Datalog program to a RAM program, and executes the RAM program on-the-fly. For
computationally  intensive  Datalog  programs,  the  interpretation  is  slower  than  the
compilation to C++. However, the interpreter has no costs for compiling a RAM program
to C++ and invoking the C++ compiler, which is expensive for larger programs (in the
order of minutes).
All  experiments  are  run  on  an  Intel(R)  Xeon(R)  CPU  E5-2667  v2  3.30GHz  CPU
machine with 256GB of RAM. 16 CPU cores are available, or 32 with hyperthreading.
We also run our experiments for all variations of context-sensitivity, in order to observe
how it affects runtime.
Below  we  show  a  direct  comparison  between  Souffle’s  Interpreter,  Souffle  (single-
thread) and LogiQL run on the bitcode of 100 Unix core utilities, ordered by Souffle
times .

Figure 1: Context-Insenstive Analysis running times (sec.)
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Figure 2: 1-Call-Site+Heap Sensitive Analysis running times (sec.)

Figure 3: 2-Call-Site+Heap Sensitive Analysis running times (sec.)

The interpreter, although being close to the initial implementation, is not a consistent
competitor as it  performs in a negative manner for heavier workloads. On the other
hand, the Souffle engine achieves an average of 95% acceleration in comparison to
CClyzer’s initial LogicBlox implementation.
However,  we aim to  achieve higher  performance in  terms of  execution time,  taking
advantage of parallelism. To demonstrate this, we have to perform our analysis on a
heavier  workload.  For  that  purpose,  we compile  a  subset  of  Google’s  open-source

C.Zisis 23



Performance optimization on Declarative Points-to Analysis using the Souffle Datalog Engine

Chromium-web-browser  source  code  in  LLVM  bitcode,  in  order  to  evaluate  how
parallelism affects our analysis’ performance.
In the following section, we compare execution time for 1,2,4,8 and 16 threads on the
same machine for all context variations.

Figure 4: Running Time on different # of Threads for each Context-Sensitivity Variant (min.)

Table 1: Running Time on different # of Threads for each Context-Sensitivity Variant

Chromium

(in minutes) 1-Thread 2-Threads 4-Threads 8-Threads 16-Threads

2-Call+Heap 76 62 60 62 55

1-Call+Heap 77 59 54 59 58

Insensitive 77 60 54 58 58

Here,  our  running  time  reaches  its  lowest  point  in  the  4-thread  execution  with  an
acceleration of 29.87% in comparison to single-thread execution.

4.2 Discussion

Regarding our last comparison and differences between the two dialects and engines,
there are some factors we are obliged to reference:

 Tweaking context sensitivity in each implementation requires it to be compiled
again. This time has been significantly reduced in recent updates of Souffle but
still  holds a constant  overhead of  3  to  5 minutes over  the LogicBlox engine.
There is a point to be made in also comparing compilation times between the two
engines but already compiled analyses can be reused for any dataset without
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any modifications. For the majority of use cases where the analysis is run for
multiple datasets compilation is not considered a relevant variable.

 Populating  EDB facts  work  differently  for  each  engine.  While  Souffle  directly
imports facts from a file-based format, LogicBlox creates and populates a fully
functional database. Each engine then exports their results in the same format.
Because LogicBlox acts as a database that stores all intermediate relations we
consider  it  fair  for  our  Souffle  implementation  to  also  export  all  its  relations,
assuring identical results. Depending on the intended use of these results one
may  choose  to  prefer  the  database  format  of  LogicBlox  or  the  additionally
reduced execution time of Souffle by exporting only facts to be examined.

 LogicBlox forces a strict  type-system with dynamic tagging of types during its
execution. In order for LogiQL to support constructors with newly created entities
this process is essential for type inference. In Souffle, explicitly declaring types
and their creation logic along with type checking during compilation, renders the
need for such a system obsolete in the use case of our analysis.

 In its core, Souffle proves to be a fierce competitor  to the LogicBlox Datalog
engine, with up to 95% acceleration of run-time for our analysis with an additional
29%  speed-up  when  taking  advantage  of  its  built-in  optimized  parallelism
mechanism.
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5. CONCLUSION

As static  program analyses create more and more  opportunities for  automating  the
process  of  code  optimization,  it  is  imperative  to  search  for  solutions  that  offer
acceleration of this process. Considering the vast and continuous growth of source code
a  modern  application  goes  under,  such  analyses  constitute  valuable  assets  in  the
recognition of thresholds in compilation, execution and security of a modern application.
Souffle is an engine that proves that “less is more” using its efficient declarative dialect,
multiple optimization configurations, continuous evolution and adaptability to encourage
building  more  complex  analyses,  while  discarding  processes  that  may  require
redundant computing effort.  At the same time, by taking advantage of parallelism, it
promises to make use of modern computer systems in their full potential. We believe
that CClyzer is a tool that may still profit a great degree from further research of the
engine’s available and future optimization features.
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ABBREVIATIONS - ACRONYMS

EDB Extensional Database

IDB Intensional Database

LLVM originally: Low Level Virtual Machine, no longer an acronym

LogiQL Logic Query Language

Souffle Systematic Ontological Undiscovered Fact Finding Logic Engine
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