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Εισαγωγή

΄Ενας moduli functor F από μια κατηγορία C → Sets είναι ένας συναρτητής από

μια κατηγορία (schemes, sheaves, μορφισμών μεταξύ τους, αναπαραστάσεων) στην

κατηγορία των συνόλων, ώστε ο F να στέλνει οικογένειες αντικειμένων της C
πάνω από μια βάση B σε ένα στοιχείο της κλάσης ισοδυναμίας των αντικειμένων

πάνω από το B. ΄Ενα moduli πρόβλημα λέγεται fine όταν ο μοδυλι συναρτητής

είναι representable, δηλαδή όταν υπάρχει ένα scheme X και ένας ισομορφισμός

συναρτητών hX ∼= F . ΄Οπου ο hX είναι ο συναρτητής που στέλνει το αντικείμενο

T στο σύνολο Hom(T,X), των μορφισμών T → X της κατηγορίας C και την

απεικόνιση f : T1 → T2 στην απεικόνιση

hx(T2) 3 h2 7→ h1 = h2 ◦ f ∈ hX(T1)

μέσω του διαγράμματος

T1
h1 //

f

��

X

T2

h2

>>

Η ύπαρξη ενός τέτοιου ισομορφισμού, σημαίνει ότι για οποιαδήποτε αντικείμενα

Ti, Tj και συναρτήσεις fij : Ti → Tj , υπάρχει μία συμβατή οικογένεια ισομορφι-

σμών φi τέτοια ώστε το ακόλουθο διάγραμμα να μετατίθεται

hX(Tj)
φj //

hX(fi,j)

��

F (Tj)

F (fi,j)

��
hX(Ti)

φi // F (Ti)

΄Ενα από τα κλασσικά moduli προβλήματα είναι το moduli πρόβλημα των καμπυλών

δεδομένου γένους g. Αυτός ο moduli συναρτητής απεικονίζει κάθε οικογένεια

σχετικών καμπυλώνX → T πάνω από ένα σςηεμε T , στην κλάση ισομορφίας τους,

όπου δύο οικογένειες X1,X2 είναι ισόμορφες όταν υπάρχει ένας ισομορφισμός φ
τέτοιος ώστε το παρακάτω διάγραμμα να μετατίθεται

X1
φ //

  

X2

~~
T
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Γεωμετρικά, οι καμπύλες πάνω από το Speck, όπου το k είναι αλγεβρικά κλειστό

σώμα, αντιστοιχούν στα σημεία του X, αφού η απεικόνιση X → Speck αντιστοιχεί

σε στοιχείο του συνόλου hX(Speck) = Speck,X), δηλαδή σε ένα γεωμετρικό

σημείο του X. Δυστυχώς, η ύπαρξη αυτομορφισμών καμπυλών, εμποδίζει τον

μοδυλι συναρτητη από το να είναι representable. Για παράδειγμα αν C είναι μια

αλγεβρική καμπύλη με κάποιον μη τετριμμένο αυτομορφισμό φ, τότε έχουμε το

ακόλουθο διάγραμμα

C
φ //

��

C

��
Speck

id // Speck

Η σπουδαιότητα του παραπάνω παραδείγματος έγκειται στο ότι η απεικόνιση id :
Speck → Speck δεν περιγράφει την απεικόνιση των οικογενειών. Ως ένα ακόμα

παράδειγμα θα δείξουμε ότι ο moduli συναρτητής των ελλειπτικών καμπυλών δεν

είναι representable. Μια ελλειπτική καμπύλη πάνω από το C είναι μια λεία προβο-

λική καμπύλη E, μαζί με ένα σταθεροποιημένο σημείο e ∈ E. Χρησιμοποιώντας το

Θεώρημα Riemann-Roch σε συνδυασμό με την θεωρία διαμόρφωσης των τεσσά-

ρων σημείων διακλάδωσης της διπλής επικάλυψης E → P1
, μπορούμε να δείξουμε

ότι κάθε ελλειπτική καμπύλη μπορεί να περιγραφεί από τα σημεία μηδενισμού του

ομογενούς πολυωνύμου

Y 2Z −X(X − Z)(X − λZ),

Σε αυτό το μοντέλο το κλειστό σημείο e έχει προβολικές συντεταγμένες e = [0 :
1 : 0], και λ ∈ A1 − {0, 1}. Το πολυώνυμο αυτό ορίζει μια οικογένεια

E → A1 − {0, 1},

πάνω από την τρυπημένη αφινική ευθεία, συνεπώς το A1−{0, 1} μπορεί να θεωρηθεί

ως χώρος παραμέτρων για την οικογένεια. Η αναπαράσταση μια κλάσης ισομορφίας

ως ίνα δεν είναι μοναδική, υπάρχει μια δράση της συμμετρικής ομάδας S3 στο

A1−{0, 1} η οποία παράγεται από τους αυτομορφισμούς λ 7→ 1/λ, λ 7→ 1/(1−λ).
Αν θέλουμε να παραμετρήσουμε ελλειπτικές καμπύλες χωρίς να κάποια προβολική

εμφύτευση πρέπει να θεωρήσουμε το πηλίκο A1 − {0, 1} προς την δράση αυτή

της S3. Ο χώρος που θα καταλήξουμε είναι ο δακτύλιος των αναλλοίωτων του

C[λ]λ(λ−1) που είναι η j-ευθεία, με

j = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
.

Υπάρχει μια αντιστοιχία μεταξύ των κλάσεων ισομορφισμού ελλειπτικών καμπυλών

πάνω από το C και των μιγαδικών αριθμών j ∈ C. Ωστόσο η αφινική ευθεία A1

δεν αποτελεί ένα fine moduli χώρο για τις ελλειπτικές καμπύλες. Πράγματι, έστω

μια οικογένεια ελλειπτικών καμπυλών Et ορισμένη πάνω από το A1−{0}, η οποία

δίνεται από την εξίσωση

Y 2Z = X3 − tZ3.

Για κάθε t όλες οι ίνες έχουν σταθερή j-αναλλοίωτη ίση με το 0. ΄Εστω ότι το

A1
αναπαριστά τις ελλειπτικές καμπύλες, τότε η παραπάνω οικογένεια θα πρέπει

να αντιστοιχεί στον σταθερό μορφισμό (A1 − {0}) → A1
j . ΄Ομως η ελλειπτική
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καμπύλη E0 : Y 2Z = X3−Z3
έχει επίσης j-αναλλοίωτη 0. Συνεπώς η οικογένεια

Et θα είναι τετριμμένη και ίση με E0× (A1−{0}). Ωστόσο αυτό δεν είναι αληθές,

πάνω από το function field C(t) οι οικογένειες Et και (A1−{0}) γίνονται ισόμορφες

πάνω από την επέκταση C(t1/6).
Υπάρχουν διάφορες τεχνικές που μας επιτρέπουν να καταστήσουμε ένα μοδυλι

πρόβλημα representable, όπως για παράδειγμα η εισαγωγή της έννοιας των αλγε-

βρικών χώρων και των stacks, ή αλλάζοντας την έννοια της ισομορφίας. Αν μας

επιτρέπεται μια υπεραπλούστευση, μπορούμε να πούμε πως ένας τρόπος να ορι-

στούν τα stacks ενός moduli χώρου καμπυλών είναι να ορίσουμε την κατηγορία

με αντικείμενα τις proper smooth οικογένειες X → S, των οποίων οι ίνες είναι

συνεκτικές καμπύλες δεδομένου γένους.

Η θεωρία παραμορφώσεων (Deformation theory) από την άλλη προέρχεται α-

πό την δουλεία των Kodaira και Spencer πάνω σε μιγαδικές πολλαπλότητες. Ο

Grothendieck μετέφερε την θεωρία αυτή στην γλώσσα των Schemes. Μπορούμε

να πούμε ότι η θεωρία παραμορφώσεων είναι η διαχείριση ενός moduli προβλή-

ματος τοπικά, όπου μελετούνται οικογένειες πάνω από το φάσμα τοπικών Artin
δακτυλίων. ΄Ενας δακτύλιος του Artin είναι εξ ορισμού ένας δακτύλιος στον ο-

ποίο κάθε φθίνουσα ακολουθία ιδεωδών του τερματίζει ύστερα από πεπερασμένα

βήματα. ΄Ενα από τα πιο απλά παραδείγματα (που δεν είναι σώμα) είναι ο δακτύλιος

k[ε]/〈ε2〉, όπου το ε αποτελεί ένα απειροστό βαθμού 2 με την έννοια ότι ε2 = 0.
Στη δημοσίευση του ο Schlessinger μας παρέχει την γλώσσα και τα εργαλεία να

χειριστούμε τα απειροστά σαν στοιχεία του ‘εφαπτόμενου χώρου’ και λύνει την

αντίστοιχη συνήθη διαφορική εξίσωση μέσω τυπικών δυναμοσειρών δακτυλίων.

Συγκεκριμένα στο Κεφάλαιο 1 εισάγουμε τις κατηγορίες που θα χρησιμοποιή-

σουμε, τον Zariski εφαπτόμενο χώρο και πως να τον ορίσουμε για συναρτητές και

τα διαφορικά Kähler. Στο Κεφάλαιο 2 ορίζουμε την έννοια της small extension
(μικρής επεκτάσης), την έννοια smoothness και τέλος το κεντρικό αποτέλεσμα, το

Θεώρημα του Schlessinger. Στο τελευταίο κεφάλαιο αποδεικνύουμε με την χρή-

ση του Θεωρήματος του Schlessinger ότι ο Picard συναρτητής και ο συναρτητής

παραμόρφωσης είναι pro-representable.

Αθήνα Μάρτιος 2019.





Introduction

A moduli functor F from a category C → Sets is a functor from a category
(schemes, sheaves,morphisms between them, representations) to the category of
sets, so that F it sends families of objects of C over a base B to the element
of equivalence class of objects over B. A moduli problem is called fine when
the moduli functor is representable, that is there is a scheme X and an isomor-
phism of functors hX ∼= F . The functor hX is the functor sending T to the set
Hom(T,X), of morphisms of schemes T → X, and the map f : T1 → T2 to the
map

hX(T2) 3 h2 7→ h1 = h2 ◦ f ∈ hx(T1)

by the diagram

T1
h1 //

f

��

X

T2

h2

>>

The existence of an isomorphism hX ∼= F , means that for every objects Ti, Tj
and functions fi,j : Ti → Tj , there is a compatible set of isomorphisms φi so
that the following diagram is commutative

hX(Tj)
φj //

hX(fi,j)

��

F (Tj)

F (fi,j)

��
hX(Ti)

φi // F (Ti)

One of the classical moduli problems is the moduli problem of curves of genus
g. This moduli functor to any family of relative curves X → T over a scheme
T assigns the isomorphy class of it, where two families X1,X2 are isomorphic
when there is an isomorphism φ making the following diagram commutative:

X1
φ //

  

X2

~~
T

Geometrically curves over Speck, where k is an algebraically closed field k,
correspond to points of X, since the structure map X → Speck corresponds to
an element in the set hX(Speck) = Hom(Speck,X) i.e. a geometric point of X.
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Unfortunately, the existence of automorphisms of curves, prevents the mod-
uli functor to be representable. For example if C is an algebraic curve which
admits a non-trivial automorphism φ, then we have the diagram

C
φ //

��

C

��
Speck

id // Speck

The importance of the above example is that the map id : Speck → Speck does
not describe the map of the families.

As an other example we will show that the moduli space of elliptic curves
is not representable. An elliptic curve over C is a smooth projective curve E,
together with a selected closed point e ∈ E. As an application of Riemann-Roch
theorem we can show that any elliptic curve can be described as the zero locus
of the homogeneous polynomial

Y 2Z −X(X − Z)(X − λZ),

using also the theory of configuration of the four ramification points of the two
cover E → P1. In this model the closed point e has projective coordinates
e = [0 : 1 : 0], and λ ∈ A1 − {0, 1}. This polynomial defines a family

E → A1 − {0, 1},

over the punctured affine line, so that A1−{0, 1} can be thought as a parameter
space for the family. The representation of an isomorphy class as a fiber is not
unique, there is an action of the symmetric group S3 on A1 − {0, 1} generated
by the automorphisms λ 7→ 1/λ, λ 7→ 1/(1 − λ). If we want to parametrize
abstract elliptic curves without a projective embedding we have to consider the
quotient of A1 − {0, 1} modulo this S3 action. The resulting space is the ring
of invariants of C[λ]λ(λ−1) which is the j-line, where

j = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
.

There is a bijection between isomorphism classes of elliptic curves over C and
complex numbers j ∈ C. However the affine line A1 is not a fine moduli space
for elliptic curves.

Indeed, consider the family of elliptic curves Et defined over the affine line
A1 − {0} given by equation

Y 2Z = X3 − tZ3.

For all t all fibers have constant j-invariant equal to 0. If A1 was a scheme
representing elliptic curves, then the above given family should correspond to
the constant morphism (A1−{0})→ A1

j . The elliptic curve E0 : Y 2Z = X3−Z3

also has j-invariant 0. So the family Et should be trivial and equal to the fiber
product E0×(A1−{0}). However this is not true, over the function field C(t) the
families Et and (A1 − {0}) become isomorphic over the field extension C(t1/6).

There are various techniques which allows us to represent moduli problems,
for instance introducing algebraic spaces or stacks, or by altering the notion of
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equivalence in order to get rid of automorphisms of objects (introducing level
structure) etc. If we are allowed an oversimplification we can say that one of the
ways to define the stack of the moduli spaces of curves is to define a category
whose objects are proper smooth families X → S, whose fibers are connected
curves of given genus.

Deformation theory on the other hand originates from the work of Kodaira
and Spencer on complex analytic manifolds. This work was formalized and
translated into the language of schemes by Grothendieck. We can say that
deformation theory is a local treatment of the moduli functor problem where
families are considered only over spectra of local Artin rings. An Artin ring is
by definition a ring where decreasing sequences of ideals are terminating after
a finite number of steps. One of the easiest examples (which is not a field)
is the ring of dual numbers k[ε]/〈ε2〉. The quantity ε in the above example
is an infinitesimal of order 2 in the sense that ε2 = 0. The seminal article of
Schlessinger provides us with the language and tools to treat infinitesimals as
elements in the “tangent vector space” and also solve the corresponding ordinary
differential equations in terms of formal powerseries rings.

More precisely in Chapter 1 we introduce the categories that we will work,
the Zariksi tangent space and how to define it for a functor and the Kähler dif-
ferentials. In Chapter 2 we define the small extension, the notion of smoothness,
and finally the main result, Schlessinger’s Theorem. In the last Chapter we use
Schlessinger’s Theorem to prove that Picard functor and deformation functor
are pro-representable.

Athens March 2019.





Chapter 1

Basic Definitions

1.1 Coefficient-Λ-algebras

Definition 1.1.1. A Coefficient-ring is a complete, local, Noetherian ring A,
with residue field k ∼= A/mA

Definition 1.1.2. A Coefficient-ring homomorphism is a continuous ho-
momorphism φ : A′ → A, such that φ−1(mA) = mA′ and A/mA ∼= A′/mA′ (∼= k),
where A,A′ are Coefficient-rings.

Definition 1.1.3. Fix Λ a coefficient-ring with residue field k of characteristic
p.

(i) Denote by ĈΛ(A) the category whose objects are coefficient-Λ-algebras which
are endowed with a coefficient-Λ-algebra homomorphism to A.

(ii) Denote by CΛ(A) the full subcategory of ĈΛ(A) whose objects are artinian
coefficient-Λ-algebras.

(iii) An A-augmentation is a coefficient-Λ-algebra homomorphism to A.

Remark 1.1.4. If A is the residue field k we write ĈΛ and CΛ instead of ĈΛ(A)
and CΛ(A) respectively.

The reason for the “ˆ” notation is that any coefficient-ring A may be written
as the projective limit of Artinian rings.

A = proj.lim.A/(mA)n.

We call a functor F from and arbitrary category to sets, representable if
there is an object X such that F is isomorphic to the functor Y → Hom(X,Y ).
If we knew that a given functor F on the larger category ĈΛ is representable,
the representing coefficient-Λ-algebra, call it R is completely determined by the
restriction of the functor to the smaller category CΛ. This is true because,

Hom(R,A) = proj.lim. Hom(R,A/(mA)n).

Definition 1.1.5. We call a functor F continuous if:

F (A) = proj.lim. F (A/(mA)n),

for all coefficient-Λ-algebras A.
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We can see now that a continuous functor is determined by its restriction to
CΛ.

Definition 1.1.6. Schlessinger call a functor on the category CΛ pro-representable,
when is represented by objects of the larger category ĈΛ.

But we will discuss about representability later.

Definition 1.1.7. Let A,B,C be rings and let α : A → C and β : B → C
be ring maps. The fiber product is a ring denoted by A ×C B along with two
morphisms πA : A×C B → A and πB : A×C B → B, where απA = βπB, such
that given any ring W with morphisms to fA : W → A and fB : W → B, with
αfA = βfB, these morphisms factor through some unique W → A×C B.

W

A×C B

A B

C

fA fB
∃!

πBπA

α β

This is the categorical definition, in the case of rings, the fiber product is
the subset of A×B

A×C b = {(a, b) ∈ A×B | α(a) = β(b)}.

One of the reasons that we will use the “smaller” category CΛ, is that unlike
the category ĈΛ, fiber products always exists in CΛ, i.e. for A,A1 and A2 in CΛ
and morphisms A1 → A and A2 → A in CΛ, the fiber product A1 ×A A2 lies in
CΛ. Indeed, the ring A1×AA2 is Λ-algebra via the map Λ→ A1×AA2 induced
by the maps Λ→ A1 and Λ→ A1. It is a local ring with maximal ideal

mA1
×mA

mA2
= ker(A1 ×A A2 → k) (1.1)

Note that, since the residue field of Λ is k, the map (1.1) is surjective. Finally,
both A1 and A2 are Artin rings and so have finite length as Λ-modules. Hence
the ring A1×A2 has finite length as Λ-module and this hold for the Λ-submodule
A1 ×A A2, i.e. A1 ×A A2 is Artin ring.

Example 1.1.8. If A = k[[x, y]] and B = k with morphisms to C = k[[x]], then
the fiber product A×C B doesn’t exist in ĈΛ.

A×C B k[[x, y]]

k k[[x]]

π

Indeed we can check that the fiber product is given by the subring k⊕yk[[x, y]] in
k[[x, y]], the maximal ideal is yk[[x, y]] and the Zariski tangent space (Definition
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1.2.2) identified with the k-vector space k[[x]] which is infinite dimensional, i.e.
the A×C B is not Noetherian.

Remark 1.1.9. Furthermore, if we require that the morphisms of the fiber prod-
uct are surjective, we can conclude that the fiber product exists in our category
(i.e. the fiber product is Noetherian).

Proposition 1.1.10. If A,B are Noetherian rings, with surjective morphisms
to ring C,

A×C B A

B C

πA

πB φ

ψ

then the fiber product A×C B is a Noetherian ring.

Proof. First we will prove that both πA and πB are surjectives. Indeed if a0 ∈ A
then φ(a0) ∈ C and because ψ is surjective there is b0 ∈ B such that φ(a0) =
ψ(b0). Hence (a0, b0) ∈ A ×C B and πA(a0, b0) = a0. Now we can easily check
that

kerπA ∩ kerπb = {0}.

Finally we claim that if R is ring and I1, . . . , In ⊆ R are ideals such that

I1 ∩ · · · ∩ In = {0}, (1.2)

and R/Ii is Noetherian for all i = 1, . . . , n, then R is Noetherian too. Indeed,
each R/Ii is Noetherian R-module and so R/I1 × · · · × R/In is Notherian R-
module. But the morphism

R→ R/I1 × · · · ×R/In,

is injective because of the (1.2) and so the R is Noetherian R-module, i.e. R is
Noetherian ring.

1.2 Zariski Tangent Space

Definition 1.2.1. Fix Λ a coefficient-ring and R a coefficient-Λ-algebra. We
define t∗R = t∗R/Λ the Zariski cotangent space,

t∗R
..= mR/((mR)2 + mΛ ·R).

Definition 1.2.2. So now we define the Zariski tangent space as,

tR ..= Homk−v.s(mR/(m
2
R + mΛ ·R), k).

Remark 1.2.3. Since R is Noetherian, t∗R is a finite dimensional k-vector
space.

Remark 1.2.4. By k[ε] we mean the ring in which ε2 = 0. So it is obvious
that,

k[ε] ∼= k ⊕ εk.
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Proposition 1.2.5. There is a natural isomorphism of k-vector spaces,

Homk−v.s.
(
mR/

(
m2
R + mΛ ·R

)
, k
) ∼= HomΛ−alg. (R, k[ε]) .

Proof. Since the maximal ideal of k[ε] has square zero, there is a bijection

HomΛ−alg.
(
R/
(
m2
R + mΛ ·R

)
, k[ε]

)
' HomΛ−alg. (R, k[ε]) . (1.3)

The short exact sequence

0→ mR → R→ R/mR → 0,

induces the short exact sequence

0→ mR/
(
m2
R + mΛ ·R

)
→ R/

(
m2
R + mΛ ·R

)
→ R/mR → 0

Since these are k-vector spaces, the sequence splits, and we have a decomposition
of Λ-algebras,

R/
(
m2
R + mΛ ·R

)
= k ⊕mR/

(
m2
R + mΛ ·R

)
.

Hence

HomΛ−alg.(k ⊕mR/
(
m2
R + mΛ ·R

)
, k ⊕ εk) ∼=

Homk−v.s.
(
mR/

(
m2
R + mΛ ·R

)
, k
)
.

(1.4)

(1.3) and (1.4), gives the result.

Definition 1.2.6. Let F : CΛ → Sets be any covariant functor such that, F (k)
consists of a single element. Then the Zariski tangent space of F , (denoted tF ),
is the set F (k[ε]).

In this generality, we can not have a natural k-vector space structure.

Remark 1.2.7. The idea is that we have an “addition” on,

k[ε]×k k[ε]
+−−→ k[ε]

(x⊕ y1 · ε, x⊕ y2 · ε) −→ x⊕ (y1 + y2) · ε.

Definition 1.2.8. We say that F satisfies the “Tangent space Hypothesis” (or
just (Tk)) when the mapping,

h : F (k[ε]×k k[ε])→ F (k[ε])× F (k[ε])

is a bijection (1-1).

Remark 1.2.9. If F satisfies the (Tk) we define ”vector-addition” in Zariski
tangent space tF ,

F (k[ε])× F (k[ε]) F (k[ε]× k[ε]) F (k[ε])

tF × tF tF

=

h−1 F (+)

=
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Now we will define more generally the Zariski tangent A-module. We can
make the analogous definitions but this time we will have A-module instead of
k-vector space.

Definition 1.2.10. Let F : CΛ(A) → Sets be any contravariant functor such
that, F (A) consists of a single element. Then we define the Zariski tangent
space as,

tF,A ..= F (A[ε]).

(A[ε] = A⊕ εA is as previously a free A-module of rank 2, where ε2 = 0.)

In this generality the previous ”Tangent space Hypothesis” is now,

Definition 1.2.11. (Tangent space Hypothesis)
We say that D satisfies the ”Tangent space Hypothesis” (or just (TA)) when the
mapping,

h : F (A[ε]×A A[ε])→ F (A[ε])× F (A[ε])

is a bijection (1− 1).

1.3 Kähler Differentials

Definition 1.3.1. (Kähler differentials)
Consider the homomorphism

φ : R⊗Λ R→ R∑
i

(ri ⊗ si)→
∑
i

risi,

and I = kerφ. The Kähler differentials is the pair (ΩR/Λ, d), where ΩR/Λ = I/I2

and a map

d : R→ ΩR/Λ

r → (1⊗ r)− (r ⊗ 1) .

There is a second definition for the Kähler differentials, that will be very
useful.

Second Definition 1.3.2. We define the module ΩR/Λ to be the free R-module
F generated by the symbols {dr, r ∈ R}, quotient with the R-submodule gener-
ated by all expressions of the form:

(i) dλ, for λ ∈ Λ.

(ii) d(r1 + r2)− dr1 − dr2, for r1, r2 ∈ R,

(iii) d(r1r2)− r1dr2 − r2dr1, for r1, r2 ∈ R,

The derivation
d : R→ ΩR/Λ,

is defined by sending r to dr.

Definition 1.3.3. If M is an R-module, a Λ-derivation is an Λ-module ho-
momorphism d : R→M which satisfies the following conditions,
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(i) d(λ) = 0, for λ ∈ Λ

(ii) d(r1r2) = r1d(r2)− r2d(r1), for r1, r2 ∈ R

The collection of Λ-derivations of R into an R-module M is denoted by DerΛ(R,M).

It is easy to check that DerΛ(R,M) is an R-submodule of HomΛ−mod(R,M)

Proposition 1.3.4. The module of Kähler differentials of R over Λ has the
following universal property. For any R-module M , and for any Λ-derivation,
d′ : R → M , there exists a unique R-module homomorphism f : ΩR/Λ → M ,
that makes the above diagram commutative,

R ΩR/Λ

M

d

d′
f

The proof of the Proposition 1.3.4 by using the Second Definition 1.3.2 is left
to the reader. For a proof with the Definition 1.3.1 and hence the equivalence
of two definitions, see [5].

Proposition 1.3.5. There is a canonical R-module isomorphism

HomR−mod(ΩR/Λ,M) ∼= DerΛ(R,M),

Proof. The isomorphism, is the map,

(φ : ΩR/Λ →M) 7→ (φ ◦ d : R→M),

with inverse, the map who sending a ψ ∈ DerΛ(R,M) to the unique R-module
homomorphism, that given from the universal property of the Kähler differen-
tials (Proposition 1.3.4).

Corollary 1.3.6. The functor from the category of modules over R to the cat-
egory of sets, which maps every R-module M to DerΛ(R,M) is representable by
the module of Kähler differentials

Example 1.3.7. For P = Λ[[x1, . . . , xn]], the module of Kähler differentials is
given by

ΩP/Λ ∼= ⊕ni=1P · dxi.

Using the Second Definition 1.3.2, if δ : P →M is a Λ-derivation, it is easy to
see that the unique homomorphism is the f : ΩP/Λ →M with f(dxi) = δ(xi).

Example 1.3.8. Let I ⊆ P be an ideal of P = Λ[[x1, . . . , xn]]. The ring P is
Noetherian and hence there are f1, . . . , fm ∈ P such that I = (f1, . . . , fm). Now
the Kähler differentials of R = P/I is,

ΩR/Λ ∼= (⊕ni=1R · dxi) /(df1, . . . , dfm).

We can check this easily, by using the universal property of the Káhler differen-
tials.
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Proposition 1.3.9. If R is a coefficient-Λ-algebra, we will show that ΩR/Λ⊗Rk
is isomorphic as k-vector space with the

t∗R/Λ
..= mR/(m

2
R + mΛ ·R).

Proof. We define φ : mR → ΩR/Λ ⊗ k, the morphsim that sends m ∈ mR to
d(m) ⊗ 1k, where d : R → ΩR/Λ is the universal Λ-derivation). It suffices to
prove that the next sequence is a short exact sequence of k-vector spaces.

0→ m2
R + mΛ ·R

ı
↪−→ mR

φ−→ ΩR/Λ ⊗R k → 0.

φ is surjective. Indeed, for an arbitrary (d(r)⊗ κ) ∈ ΩR/Λ⊗R k, with r ∈ R and
κ ∈ k, there are λ1, λ2 ∈ Λ and m ∈ mR such that r = λ11R +m, κ = λ21k.

d(r)⊗ κ = (λ1d(1R) + d(m))⊗ λ21k = λ2d(m)⊗ 1k = d(λ2m)⊗ 1k,

and λ2m ∈ mR.
φ is 1-1. Indeed, for m1,m2 ∈ mR µ ∈ mΛ and r ∈ R, d(m1m2) = d(m1)m2 +
d(m2)m1 and d(µr) = d(r)µ. Hence

φ(m1m2) = (d(m1)m2 + d(m2)m1)⊗ 1k =

= d(m1)⊗m21k + d(m2)⊗m11k = 0,

and
φ(µr) = d(r)µ⊗ 1k = d(r)⊗ µ1k = 0.

Finally for any x ∈ m2
R+mΛ ·R, there are mi,1,m1,2 ∈ mR, i = 1, . . . , n, µ ∈ mΛ

and r ∈ R such that
x =

∑
mi,1mi,2 + µr,

Thus φ(x) =
∑
φ(mi,1mi,2) + φ(µr) = 0, i.e. m2

R + mΛ · R ⊆ kerφ. The next
lemma completes the proof.

Lemma 1.3.10. For an arbitrary m0 ∈ mR\m2
R+mΛ ·R there is a Λ-derivation

D : R→ k, such that D(m0) is non zero.

Proof. First we will see that it suffices to define the derivation, for the elements
of the maximal ideal mR of R. Indeed, for an arbitrary r ∈ R there is λ ∈ Λ
such that πR(r) = πΛ(λ), and the next diagram commutes,

Λ R

k

ı

πΛ πR

i.e. πR(r) = πR(λ1R). It follows that there is m ∈ mR, such that r = λ1R +m,
and hence for any Λ-derivation δ,

δ(r) = δ(λ1R) + δ(m) = δ(m).

Since R is Artinian there are x1, . . . , xs ∈ mR, such that

mR/
(
m2
R + mΛ ·R

)
= (x1, . . . , xs) ,



8 · Basic Definitions

and x1, . . . , xs are independent over k. There are also y1, . . . , y` ∈ m2
R + mΛ,

such that
mR = (x1, . . . , xs, y1, . . . , y`) .

Hence there are ai, bi ∈ R such that m0 =
∑
aixi +

∑
biyi, and since m0 /∈

m2
R + mΛ, there is i0, such that ai0 is invertible.

D(m0) =
∑

D(aixi) +
∑

D(biyi) =
∑

D(aixi)

=
∑

D(ai)xi +D(xi)ai =
∑

aiD(xi).

It is obvious, that it suffices to define the derivation D only for the xi, and from
the independence of the xi we can choose arbitrary image for them.
We define D(xi0) = 1 and D(xj) = 0 for j 6= i0, and D(m0) = ai0 which is non
zero, since ai0 is invertible. The proof is complete.

Remark 1.3.11. Note that any R in ĈΛ is generated, as Λ-module, by the Λ
and the maximal ideal mR. We have already prove this in the last proof.

Remark 1.3.12. We can easily check that the tangent space tF,A is just the sub-
set of HomΛ−alg.(R,A[ε]) consisting of those Λ-algebra homomorphisms whose
composition with the projection A[ε]→ A is equal to ρ.

Proposition 1.3.13. Let F be a pro-representable functor. Let A ∈ ĈΛ and
ρ : R→ A a coefficient-Λ-algebra homomorphism which induces to A a structure
of R-algebra. Then we have a natural isomorphism of A-modules,

HomA−mod.(ΩR/Λ⊗̂RA,A) ∼= tF,A.

Proof. We have the ismorphisms,

HomA−mod.(ΩR/Λ⊗̂RA,A) ∼= HomR−mod.(ΩR/Λ, A)

HomR−mod.(ΩR/Λ, A) ∼= DerΛ(R,A).
(1.5)

Moreover there is a natural injection

ı : DerΛ(R,A) ↪→ HomΛ−alg.(R,A[ε]),

which sends a derivation δ to the homomorphism

ρδ : R→ A[ε]

r → ρ(r)⊕ ε · δ(r)

The injection ı identifies DerΛ(R,A) with the subset of HomΛ−alg.(R,A[ε]),
consisting of the homomorphisms such that composition with the projection
A[ε]→ A yields ρ : R→ A.

Remark 1.3.14. The proposition 1.3.9 is clearly a special case of the last propo-
sition.



Chapter 2

Schlessinger’s
Representability Theorem

2.1 Small Extensions

We start with a useful lemma, and then we will introduce the very useful notion
and some properties of the small extension.

Lemma 2.1.1. A morphism B → A in ĈΛ is surjective if and only if the induced
map t∗B → t∗A is surjective.

Proof. (⇐) If the morphism B → A is surjection, then obviously the induced
map on cotangent spaces is surjective.

(⇒) Conversely, we have the commutative diagram with exact rows,

0 mΛ ·A/
(
m2
A ∩mΛ ·A

)
mA/m

2
A t∗A 0

0 mΛ ·B/
(
m2
B ∩mΛ ·B

)
mB/m

2
B t∗B 0

α β γ

Since α and γ are surjections, β is also surjection. We need to prove that
Im (B → A) = A, by the Nakayama′s Lemma (since B is Artinian mB
is nilpotent) it suffices to show that

A = Im (B → A) + mB ·A.

From the Remark 1.3.11, it suffices to prove that the map mB ·A→ mA is
surjection. Using once more Nakayama′s Lemma we have to show that
the map

mBA/mBmA → mA/m
2
A

is surjection. We know that the next diagram is commutative,

mB/m
2
B mB ·A/mBmA mA/m

2
A.

β
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Since β is surjection, the proof is complete.

Definition 2.1.2. Let p : B → A be a surjection in CΛ,

• p is a small extension if kerp is a nonzero principal ideal (t) such that
mB · t = (0).

• p is essential if for any morphism q : C → B in CΛ such that pq is
surjective, it follows that q is surjective.

Lemma 2.1.3. Let f : B → A be a surjective morphism in CΛ. Then f can be
factored as a composition of small extensions.

Proof. The maximal ideal mB of B is nilpotent since B is Artin ring, say mnB = 0.
First we get a factorization

B → B/ker(f)mn−1
B → · · · → B/ker(f) ∼= A

of f into a composition of surjections whose kernels are annihilated by the
maximal ideal. Thus it suffices to prove the lemma when f itself is such a map.
In this case ker(f) is a k-vektor space, which has finite dimension. Take a basis
t1, . . . , tr of ker(f) as a k-vector space to get a factorization

B → B/(t1)→ · · · → B/(t1, . . . , tr) ∼= A

of f into a composition of small extensions.

Lemma 2.1.4. Let p : B → A be a surjection in CΛ. Then

(i) p is essential if and only if the induced map p∗ : t∗B → t∗A is an isomor-
phism.

(ii) If p is a small extension, the p is not essential if and only if p has a
section, i.e. a homomorphism

s : A→ B, with ps = 1A

Proof. (i) If p∗ is an isomorphism, then by Lemma 2.1.1, p is essential. Con-
versely let t1, . . . , tr be a basis of t∗A, and lift the ti, back to elements ti in
B. Set

C = Λ[t1, . . . , tr] ⊆ B.

Then p induces a surjection from C to A, since p is essential, C = B.
Thus dimk t

∗
B ≤ r = dimk t

∗
A, and hence t∗B

∼= t∗A.

(ii) If p has a section s, then s is not surjective, an so p is not essential. If p
is not essential, then the subring C constructed above, is proper subring
of B. Since length(B) = length (A) + 1, C is isomorphic to A. The
isomorphism C ' A yields the section.
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2.2 Functors of Artin rings

A functor of Artin rings is a covariant functor

F : CΛ → Sets.

Definition 2.2.1. Assuming that F is a covariant functor, a couple for F is a
pair (A, ξ), where A ∈ CΛ and ξ ∈ F (A). A morphism of couples u : (A, ξ) →
(A′, ξ′) is a morphism u : A→ A′ in CΛ such that F (u)(ξ) = ξ′.

We are trying to find lifts, so suppose that we have a surjection B → A and
a functor F : CΛ → Sets. Let α be an element of F (A) and suppose that we
want a lift of α in F (B). If there is a morphism of functors u : F → G, we have
the next commutative diagram.

F (B)

F (A)×G(A) G(B)

F (A) G(B)

G(A)

φ

If in addition, φ is surjection, it suffices to have lifts from G(A) to G(B). Indeed,
we first map α to u(A)(α) ∈ G(A), then lift the u(A)(α) to an element β ∈ G(B).
Now, the pair (α, β) is in F (A)×G(A)G(B), and by using that the φ is surjection,
we get an element ζ ∈ F (B) such that, φ(ζ) = (α, β). Clearly ζ is a lift of α.

Definition 2.2.2. A morphism of functors F → G is smooth if for any sur-
jection B → A in CΛ, the morphism

F (B)→ F (A)×G(A) G(B),

is surjective.

Remark 2.2.3. If F → G is a smooth morphism of functors, and a surjection
B → A, for a lift from F (A) to F (B) it suffices to have lifts from G(A) to
G(B).

We remind that a pro-representable functor, is a functor F : CΛ → k such
that, there exists a ring R in ĈΛ with

F (A) ∼= HomΛ−alg.(R,A).

Clearly any representable functor is a trivial example of pro-representable.

Example 2.2.4. For any ring R in ob(ĈΛ), we define the (pro-representable)
functor of Arting rings,

hR(A) = Hom(R,A).

When Λ is fixed, we will write hR instead of hR/Λ.
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Proposition 2.2.5. Let R→ S be a morphism in ĈΛ. Then hS → hR is smooth
if and only if S is a power series ring over R.

Proof. (⇒) Suppose hS → hR is smooth, pick x1, . . . , xn ∈ S, which induce a
basis of t∗S/R. If we set T = R[[X1, . . . , Xn]], we get a morphism u1 : S →
T/(m2

T+mR ·T ) of local R-algebras, obtained by mapping xi on the residue
class of Xi. By smoothness u1 lifts to u2 : S → T/m2

T . Indeed, we can
map the u1 in to an element ũ1 ∈ hR(m2

T +mR ·T ), obviously there is a lift
v1 ∈ hR(T/m2

T ) and finally by the smoothness, a lift of u1 in hS(T/m2
T ).

Thence u2 lifts to u3 : S → T/m3
T (Figure 2.2.6), ... etc. Thus we get a

u : S → T which, by choice of u1, induce an isomorphism of t∗S/R with
t∗T/R, so that u is surjection by the Lemma 2.1.1. Furthermore, if we choose

yi ∈ S such that u(yi) = Xi and produce a local morphism v : T → S of
R-algebras such that uv = 1T ; in particular v is an injection. Clearly v
induces a bijection on the cotangent spaces, so again by the Lemma 2.1.1
v is surjection. It follows that v is an isomorphism of T = R[[X1, . . . , Xn]]
with S.

(⇐) If S is a power series ring over R, then it is clear that hR → hS is smooth.

Figure 2.2.6.

hS(T/m3
T )

hS(T/m2
T ) hR(T/m3

T )

hS(t∗T/R) hR(T/m2
T )

hR(t∗T/R)

Proposition 2.2.7. (i) If F → G and G→ H are smooth, then the compo-
sition F → H is smooth.

(ii) If u : F → G and v : G→ H are morphisms such that u is surjective and
vu is smooth, then v is smooth.

(iii) If F → G and H → G are morphism such that F → G is smooth, then
F ×G H → H is smooth.

The proof of this proposition is completely formal and left to the reader.

2.3 Universal Elements

Assume we have an R in ob(ĈΛ). An element û ∈ F̂ (R), is called a formal
element of F . By definition û can be represented as a system of elements
un+1 ∈ F (R/mn+1), such that for every n ≥ 1, the map

F (R/mn+1)→ F (R/mn)
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induced by the projection R/mn+1 → R/m, sends un+1 7→ un.

Lemma 2.3.1. Let R ∈ ob(ĈΛ). There is a 1− 1 correspondence between F̂ (R)
and the set of morphism of functors {hR → F}.

Proof. Each formal element û ∈ F̂ (R) defined as, û = proj.lim.un, where un ∈
F (R/mn). Yoneda’s Lemma gives a morphism of functors

hR/mn → F,

for each un. The next commutative diagram

F (R/mn) {hR/mn → F}

F (R/mn+1) {hR/mn+1 → F}

induce a new commutative diagram

hR/mn hR/mn+1

F

Since for each A ∈ ob(CΛ)

hR/mn(A)→ hR/mn+1(A),

is a bijection for all but finitely many n, we may define hR(A)→ F (A) as,

lim
n→+∞

[hR/mn(A)→ F (A)].

Conversely, each morphism hR → F defines a formal element û ∈ F̂ (R), where
un ∈ F (R/mn) is the image of the projection R→ R/mn via the map

hR(R/mn)→ F (R/mn−1)

Definition 2.3.2. If R is in ob(CΛ) and û ∈ F̂ (R), we call (R, û) a formal
couple for F .

Definition 2.3.3. The differential

tR/Λ → tF

of the morphism hR → F defined by û is called the characteristic map of û
(or of the formal couple (R, û)) and denoted by dû.

Definition 2.3.4. If (R, û) is such that the induced morphism

hR → F

is an isomorphism, then F is pro-representable, and we also say that F is pro-
represented by the formal couple (R, û). In this case û is called a universal
formal element for F , and (R, û) is a universal formal couple.
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A universal formal couple seldom exists, we will therefore need to introduce
some weaker properties of a formal couple. We will now introduce the notions
of “verslity” and “semiversality”, which are slightly weaker that universality,
based on the notion of smooth functor.

Definition 2.3.5. Let F be a functor of Artin rings and R in ob(ĈΛ). A formal
element û ∈ F̂ (R) is called versal, if the morphism hR → F defined by û, is
smooth.

Definition 2.3.6. The formal element û is called semiuniversal if it is versal
and moreover, the differential tR/Λ → tF is bijective. Schlessinger calls the
formal couple (R, û) a (pro-representable) hull of F .

It is clear by the definitions that

û universal⇒ û semiuniversal⇒ û versal

2.4 Schlessinger’s Theorem

Suppose now that we have F a functor of Artin rings, A,A′, A′′ ∈ ob(CΛ) and a
diagram

A′ A′′

A

(2.1)

This diagram induces a new diagram

F (A′ ×A A′′)

F (A′)×F (A) F (A′′)

F (A′) F (A′′)

F (A)

α

(2.2)

Finally we get a map

α : F (A′ ×A A′′)→ F (A′)×F (A) F (A′′). (2.3)

So we have some properties that we seek for the map α. Namely,

(H0) For k = R/mR, F (k) consists of one element.

(H1) For every diagram (2.1), where A′′ → A is a small extension, the morphism
α in (2.3) is a surjection.

(H2) For every diagram (2.1), where A = k, A′′ = k[ε], the morphism α in (2.3)
is bijection.
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(H3) The set F (k[ε]) has a structure of finite dimensional k-vector space.

(H4) For every diagram (2.1), where A′ = A′′ and A′ → A and A′′ → A are
equal and small extensions, the morphism α in (2.3) is a bijection.

(H`) For every diagram (2.1), the morphism α in (2.3) is bijection.

Proposition 2.4.1. A pro-representable functor F satisfies the conditions (H0),
(H3) and (H`).

Proof. (H0) The set Hom(R,R/mR) contains only the caconical quotient map
R→ R/mR.

(H3) In the first chapter we have seen that

F (k[ε]) = HomΛ−alg.(R, k[ε]) = DerΛ(R, k) = tR/Λ.

So is the relative tangent space of R over Λ. Since R is Noetherian ring,
the tangent space is finite dimensional.

(H`) The proof is simple and left to the reader.

Remark 2.4.2. Note that (H1), (H2) and (H4) are special cases of the condition
(H`).

Corollary 2.4.3. A pro-representable functor F = hR satisfies the conditions
(H1), (H2) and (H4).

The next Lemma is just the Remark 1.2.9.

Lemma 2.4.4. If F is a functor of Artin rings satisfying (H0) and (H2) then
the set F (k[ε]) has a structure of k-vector space in a factorial way.

Grothendieck’s Theorem 2.4.5. Let F : CΛ → Sets be a covariant functor.
Then F is pro-representable if and only if F satisfies the conditions (H0), (H3)
and (H`).

A proof can be found in [6].

In contrast to this theorem, which requires the property (H`) i.e. check all
diagrams of the form (2.1), the theorem of Schlessinger artfully cuts down the
number of diagrams for which one must check.

Lemma 2.4.6. Let F is a functor of Artin rings satisfying (H0), (H1) and
(H2) and π : A′ → A a small extension with kerπ = (t). Then the map

β : tF × F (A′)
α−1

−−→ F (k[ε]×k A′)
F (γ)−−−→ F (A′ ×A A′) −→ F (A′)×F (A) F (A′)

induced by the map

γ : k[ε]×k A′ → A′ ×A A′

(x+ yε, a′) 7→ (a′ + yt, a′)

is surjective. If in addition F satisfying (H4), β is bijection.
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Proof. (H2) gives that α : F (k[ε]×kA′)→ tF ×F (A′) is bijection and hence we
have the inverse map α−1. Since π is small extension, γ is bijection and so is the
F (γ). Finally, F (A′ ×A A′) → F (A′ ×A A′) is surjection by the (H1). For the
case that (H4) is satisfied just notice that F (A′×AA′)→ F (A′)×F (A) F (A′) is
bijection.

Remark 2.4.7. Furthermore, β induces a transitive group action of the vector
space tF on the set F (π)−1(η), where η ∈ F (A). First notice the commutative
diagram

k[ε]×k A′, A′ ×A A′

A′

where the vertical arrow is the “right” projection. Hence the above diagram is
commutative too.

F (k[ε])× F (A′)

F (k[ε]×k A′)

F (A′)

F (A′ ×A A′)

F (A′)×F (A) F (A′)

α−1

β F (γ)

i.e. if v ∈ tF and η′ ∈ F (A′) then

β(v, η′) = (τ(v, η′), η′).

The action is given by the map τ and it is transitive by the surjectivity of β. If
in addition F satisfyies (H4) the action is free.

Schlessinger’s Theorem 2.4.8. Let F : CΛ → Sets be a functor of Artin rings
satisfying condition (H0) (i.e. F (k) is singleton). Let A′ → A and A′′ → A be
homomorphisms in CΛ and let

α : F (A′ ×A A′′)→ F (A′)×F (A) F (A′′) (2.4)

be the natural map. Then

(i) F has a semiuniversal formal element if and only if it satisfies the condi-
tions: (H1), (H2) and (H3)

(ii) F has a universal element if and only if it also satisfies the additional
condition (H4).
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Proof. (i) Let’s assume that F has a semiuniversal formal element (R, û). Con-
sider a homomorphism f : A′ → A and a small extension π : A′′ → A,
both in CΛ, and let

(ξ′, ξ′′) ∈ F (A′)×F (A) F (A′′)

such that
ξ ..= F (f)(ξ′) = F (π)(ξ′′), ξ ∈ F (A).

By the versality of (R, û) the maps

hR(A′)→ F (A′)

hR(A′′)→ hR(A)×F (A) F (A′′) (2.5)

are surjections. Therefore there are

g′ ∈ hR(A′) and g′′ ∈ hR(A′′)

such that F̂ (g′)(û) = ξ′ and g′′ 7→ (fg′, ξ′′) under the map (2.5), i.e.

πg′′ = fg′ and F̂ (g′′)(û) = ξ′′.

Consequently

hR(A′) F (A′)

hR(A) F (A)

g′ ξ′

πg′′ = fg′ F̂ (fg′)(û) = ξ

F̂ (πg′′)(û) = ξ. Using now the morphism

g′ × g′′ : R→ A′ ×A A′′

we obtain an element ζ ..= F̂ (g′× g′′) ∈ F (A′×AA′′) , which by construc-
tion is α(ζ) = (ξ′, ξ′′), where α is the map (2.4). This proves that the map
α in (2.4) is surjection, i.e. (R, û) satisfying (H1).
If A′′ = k[ε] and A = k, obviously A′′ → A is a small extension and α in
(2.4) surjective. Let ζ1, ζ2 ∈ F (A′ ×k k[ε]) such that

α(ζ1) = α(ζ2) = (ξ′, ξ′′). (2.6)

Since (R, û) is semiuniversal

tR/Λ = hR(k[ε])→ F (k[ε]) = tF (2.7)

is bijective. By smoothness applied to the projection A′ ×k k[ε]→ A′,

hR(A′ ×k k[ε])→ hR(A′)×F (A′) F (A′ ×k k[ε])

is surjective. Choose now g′ as before, F̂ (g′)(û) = ξ′, since (2.6) both
(g′, ζ1), (g′, ζ2) belong to hR(A′) ×F (A′) F (A′ ×k k[ε]). Hence we obtain
two morphisms

g′ × gi : R→ A′ ×k k[ε], i = 1, 2
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such that F̂ (g′ × gi)(û) = ζi, i = 1, 2. It follows that F̂ (gi)(û) = ξ′′,
i = 1, 2. By the bijectivity of (2.7), g1 = g2 and hence ζ1 = ζ2, i.e. the
map α in 2.4 is bijective, and so (R, û) satisfying (H2).
Condition (H3) satisfied because the differential tR/Λ → tF is linear and
is a bijection by semiuniversality.

Conversely, let’s assume that F satisfies (H1), (H2), (H3). We will con-
struct a couple (R, û) by a projective system

{Rn | prn+1 : Rn+1 → Rn}n≥0

of Λ-algebras in CΛ, a sequence {un ∈ F (Rn)}n≥0 such that

F (prn+1)(un+1) = un, n ≥ 0,

and we will show that is a semiuniversal formal couple.
We take R0 = k and u0 ∈ F (k) the unique element. Let r = dimk(tF ),
{t1, . . . , tr} a basis of tF and S = Λ[[T1, . . . , Tr]] with maximal ideal mS ,
we set

R1 = S/(m2
S + mΛS).

Since we have R1
∼= k[ε] ×k · · · ×k k[ε], r times, by (H2) we deduce

that F (R1) = tF × · · · × tF , (r times), hence there exists u1 ∈ F (R1),
which induces a bijection between tR2/Λ and tF . Suppose we have found
(Rq−1, uq−1), where Rq−1 = S/Jq−1. In order to construct (Rq, uq), we
consider the family I of all ideal J ⊆ S such that,

(a) (mS)Jq−1 ⊆ J ⊆ Jq−1

(b) there is u ∈ F (S/J) with u 7→ uq−1 via the map F (S/J)→ F (Rq−1).

I is nonempty because Jq−1 ∈ I. We will choose Jq to be the minimal
element of I, therefore we need to prove that I has a minimal element.
Since the set I corresponds to a collection of finite vector subspaces of
Jq−1/((mS)Jq−1), it suffices to show that I is closed with respect to finite
intersections. Let J,K ∈ I and K = I ∩ J . Clearly J ∩ K satisfies the
condition (a). We may enlarge J , if necessary, so that J + K = Jq−1,
without changing the intersection J ∩K. Then

S/(J ∩K)→ S/J ×Rq S/K,

is an isomorphism. By (H1) the map

α : F (S/K)→ F (S/I)×F (Rq−1) F (S/J)

is surjective (see Remark 2.1.3), therefore there exists u ∈ F (S/K) such
that u 7→ uq−1, i.e. J ∩K satisfies condition (b) as well, hence J ∩K ∈ I.
We take Rq = S/Jq and uq ∈ F (Rq) an element which is mapped to uq−1.
By induction we have constructed a formal couple (R, û). We now show
that is a semiuniversal formal couple for F . First notice that tF ∼= tR by
choice of R1. Therefore we only have to prove versality. If π : A′ → A is
a small extension, we will show that the map

ûπ : hR(A′)→ hR(A)×F (A) F (A′),
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is surjective. Let (f, ξ′) ∈ hR(A) ×F (A) F (A′), i.e. F̂ (f)(û) = F (π)(ξ′).
We must find f ′ ∈ hR(A′) such that ûπ(f ′) = (f, ξ′). Let’s consider the
commutative diagram

hR(k[ε])× hR(A′) tF × F (A′)

hR(A′)×hR(A) hR(A′) F (A′)×F (A) F (A′)

β1 β2 (2.8)

where β1 is bijection and β2 surjection by the lemma (2.4.6). Assume
that we have f ′ satisfying condition πf ′ = f , then f ′ and ξ′ have the
same image in F (A) and so, if η′ ..= F̂ (f ′)(û),

(ξ′, η′) ∈ F (A′)×F (A) F (A′).

Hence there is v ∈ tF such that β2(v, η′) = (ξ′, η′). It follows that for
some f ′′ ∈ hR(A′).

(v, f ′) (v, η′)

(f ′′, f ′) (ξ′, η′)

Clearly πf ′′ = f , since f ′ and f ′′ have the same image in hR(A), hence

ûπ(f ′′) = (f, ξ′).

It follows that it suffices to find f ′ ∈ hR(A′) with πf ′ = f . Since A is
Artin ring there is q such that f factor as

R Rq A

f

fq

Then f ′ exists if and only if there exists φ which makes the following
diagram commutative,

Rq+1 A′

Rq A

φ

π

fq

(2.9)

In order to create a morphism Λ[[x]]→ A′, choose arbitrary yi ∈ π−1(ρ(Ti))
for each i = 1, . . . , r, where ρ is the composition of maps

Λ[[T1, . . . , TR]]→ Rq+1 and Rq+1 → A.

We get a morphism given by Ti 7→ yi. This morphism induce the commu-
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tative diagram

Λ[[T1, . . . , Tr]]

Rq+1 ×A A′

Rq+1 A′

Rq A

g

π′

π

fq

First notice that, since π is small extension, π′ is small extension too.
If π′ is essential, then g must be surjective and hence

Rq+1 ×A A′ ∼= Λ[[T1, . . . , Tr]]/I,

for some I ⊆ Λ[[T1, . . . , Tr]]. Obviously I ⊆ Jq+1 and since π′ is small
extension mSJq+1 ⊆ I. Moreover the map

F (Rq+1 ×A A′)→ F (Rq+1)×F (A) F (A′),

is surjective by (H1) and hence there is u ∈ F (Rq+1 ×A A′) inducing
uq+1 ∈ F (Rq+1), which inducing uq ∈ F (Rq). it follows that I ∈ I, and
by the minimality of Jq+1 in I, Jq+1 ⊆ I. But π′ is a small extension and
has non zero kernel, hence I ⊂ Jq+1 which is a contradiction.
So π′ is not essential and by the lemma 2.1.4 (ii), π′ has a section

s : Rq+1 → Rq+1 ×A A′.

It follows that the map Rq+1
s−−→ Rq+1 ×A A′ → A′ makes the diagram

(2.9) commutative and proves that the (R, û) is semiuniversal.

(ii) If F is pro-representable then, as already proved, satisfies conditions (H1),
(H2), (H3) and (H4).
Conversely, suppose F satisfies (H1) through (H4). By the first part of
the theorem we have that (R, û) is a semiuniversal formal couple of F .
We will prove that is universal by showing that for every A in CΛ the map

hR → F (A)

induced by û is bijective. We will proceed by induction on dimk(A).
Let π : A′ → A be a small extension. The inductive hypothesis gives,
hR(A) ∼= F (A). By the veraslity, the map

ûπ : hR(A′)→ hR(A)×F (A) F (A′) ∼= F (A′),

is surjective. Assume u′1, u
′
2 ∈ hR such that

ûπ(u′i) = η′ ∈ F (A′), i = 1, 2. (2.10)
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and we will prove that u′1 = u′2. By (2.10) and the commutative diagram

hR(A′) F (A′)

hR(A) F (A)
∼=

it follows that both u′1, u
′
2 have the same image via the map hR(A′) →

hR(A). Hence there is x ∈ tR such that τ(x, u′1) = u′2 (see 2.4.7) and
clearly there is y ∈ tR such that τ(y, u′1) = u′1. The pairs (x, u′1) and
(y, u′2) fit in diagram (2.8) as follows,

(x, u′1) (x, η′)

(u′2, u
′
1) (η′, η′)

β1 β2

(y, u′1) (y, η′)

(u′1, u
′
1) (η′, η′)

β1 β2

Note that tR ∼= tF by semiuniversality. The maps β1, β2 are both bijective
by the lemma 2.4.6, consequently x = y and finally u′1 = u′2.

Remark 2.4.9. In other words, in Schlessinger’s language, a functor of Artin
rings such that F (k) consists of a single element, has a hull if and only if
satisfying (H1), (H2), (H3). Furthermore F is pro-representable if and only if
it also satisfying (H4).





Chapter 3

Examples

3.1 The Picard functor

We remind that, for a scheme X, Pic(X) = H1(X,O∗X) the group of isomor-
phism classes of invertible sheaves on X. Now suppose X is a scheme over
SpecΛ. For an A in CΛ we define,

XA
..= X ×SpecΛ SpecA.

We fix η0 ∈ Pic(Xk) and let P(A) be the set of of those η in Pic(A) such that
η ⊗A k = η0. We claim that P is pro-representable under suitable conditions.
We will first prove two lemmas on flatness, following Schlessinger.

Lemma 3.1.1. Let A be a ring, J a nilpotent ideal in A and

u : M → N,

a homomorphism of A-modules, with N flat over A. If u : M/JM
∼=−−→ N/JN

is an isomorphism, then f is also an isomorphsim.

Proof. Let K = coker u and tensor the exact sequence

M → N → K → 0,

with A/J . Then K/JK = 0 and Nakayama’s lemma for nilpotent ideals implies
that K = 0. Now let K ′ = ker u and tensor the exact sequence

0→ K ′ →M → N → 0

with A/J . By the flatness of N we get K ′ = 0, so that u is an isomorphism.

Lemma 3.1.2. Consider a commutative diagram

N M ′′

M ′ M

B A′′

A′ A

p′

p′′

u′′

u′
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of compatible ring and module homomorphsims, where

B = A′ ×A A′′ and N = M ′ ×M M ′′.

Suppose

(i) M ′ is free over A′ and M ′′ is free over A′′,

(ii) A′′/J
∼=−−→ A is an isomorphism, where J is a nilpotent ideal of A′′,

(iii) u′ induces an isomorphism M ′ ⊗A′ A
∼=−−→M , and similarly for u′′.

Then N is flat over B and p′ induces an isomorphsim N ⊗B A′
∼=−−→M ′, respec-

tively p′′ an isomorphism N ⊗B A′′
∼=−−→M ′′.

Remark 3.1.3. Over an Artin local ring, flat modules are free (Lemma A.0.5),
so the lemma above it suffices for our purposes.

Proof. First choose a basis {xi}i∈I for M ′. We can now see, using the (iii), that
{u′(xi)}i∈I form a basis for M , and so is free. Choosing x′′i ∈ (u′′)−1(u′(xi)),
i.e. u′′(x′′i ) = u′(x′i), we get a homomorphism

∑
A′′x′′i → M ′′ of A′′-modules,

whose reduction modulo the ideal J is an isomorphism. By the Lemma 3.1.1
it follows that M ′′ is free on generators x′′i . Finally it is easily to check that
N is free on generators x′i × x′′i , and that the projections on the factors induce
isomorphsims.

Corollary 3.1.4. With the same notations as above, let L be a B-module with
a commutative diagram

L

M ′ M ′′

M

q′

q′′

where q′ induces L⊗B A′
∼=−−→ M ′. Then the canonical morphism q′ × q′′ is an

isomorphism.

Let A and B be two rings, we call a homomorphism φ : A → B flat, if φ
makes the B a flat A-module. Let X and Y be two schemes and f : X → Y a
morphism of schemes. We say that f is flat if the induced homomorphism on
every stalk is a flat homomorphism. If X is a scheme over SpecΛ we say that
X is flat over Λ if the morphism between them is flat.

Proposition 3.1.5. Let X be a scheme over SpecΛ and assume that

(i) X is flat over Λ,

(ii) A
∼=−−→ H0(XA,OXA

) is isomorphism for each A in CΛ,

(iii) dimkH
1(Xk,OXk

) <∞.
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Then P is pro-representable by a pro-couple (R, ξ).

Proof. Let u′ : (A′, η′) → (A, η), u′′ : (A′′, η′′) → (A, η) be morphisms of
couples, where u′′ is a surjection. Let L,L′, L′′ be corresponding invertible
sheaves on Y = XA, X

′ = XA and X ′′ = XA. Then we have morphisms

p′ : L′ → L and p′′ : L′′ → L, (3.1)

of sheaves on the sp(X0), compatible with OX′ → OY , OX′′ → OY . The
morphsims in (3.1) induce isomorphisms

L′ ⊗A′ A
∼=−−→ L and L′′ ⊗A′ A

∼=−−→ L.

Let B = A′ ×A A′′ and let Z = XB , then we have a commutative diagram

OZ

OX′ OX′′

OY

of sheaves on sp(X0). Thus there is a canonical isomorphism

OZ
∼=−−→ OX′ ×OX

O′′X .

Hence N = L′ ×L L′′ is a sheaf on Z which is invertible, and by the Lemma
3.1.2, the projections of N on L′ and L′′ induce isomorphisms

N ⊗B A′
∼=−−→ L′ and N ⊗B A′′

∼=−−→ L′′.

If now M is another invertible sheaf on Z for which there exist isomorphisms

M ⊗B A′
∼=−−→ L′ and M ⊗B A′′

∼=−−→ L′′,

we have morphisms q′ : M → L′ and q′′ : M → L′′, which induce the isomor-
phisms and thus a commutative diagram

M

L′ L′′

L L

q′ q′′

p′ p′′
θ

Where θ is the automorphism of L given by the composition

L
∼=−−→ L′ ⊗A′ A

∼=−−→M ⊗B A
∼=−−→ L′′ ⊗A′ A

∼=−−→ L.
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By hypothesis (ii), θ is multiplication by some unit a ∈ A. Lifting a back to a′′

in A′′, we can take a′′q′′ instead of q′′, so the diagram changing to

M

L′ L′′

L

It follows that M
∼=−−→ N is an isomorphism. We have therefore proved that

P(A′ ×A A′′) ∼= P(A′)×P(A) P(A′′), for any surjection A′′ → A in C.
Finally, if Y = Xk[ε], we have OY = OX0

⊕ εOX0
, so there is an exact sequence

0→ OX0 → O∗Y → O∗X0
→ 1

where the morphism OX0
→ O∗Y maps f 7→ 1 + εf . Hence

P(k[ε]) ∼= ker
(
H1(X0,O∗Y )→ H1(X0,O∗X0

)
) ∼= H1(X0,OX0)

which has finite dimension by (iii).

3.2 Deformations of curves

A deformation of a smooth curve X over the spectrum of a local ring Spec(R)
is a proper flat morphism φ : X → Spec(R) together with an isomorphism of X
with the scheme theoretic fiber of X over the maximal ideal m of R, that is

X ∼= X0 = X ⊗SpecR Spec(R/m).

Definition 3.2.1. A morphism of finite type φ : X → S between Noetherian
schemes is proper when for every discrete valuation ring R with fraction field
k and every square of morphisms

Spec(k) X

Spec(R) S

φ

there is a unique morphism Spec(R)→ X fitting into the diagram.

We can consider the deformation functor DefX of curves with automorphisms
from the category of local Artin algebras to the category of sets:

DefX(A) = {deformations of X over A/isomorphisms},

where two deformations Xi → SpecA, i = 1, 2 are considered to be isomorphic
if they fit in a commutative diagramm

X1
φ

∼=
//

##

X2

{{
SpecA
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Given a deformation Y → Spec(A) and a morphism A → B, then we can
define the induced deformation Y ×Spec(A) Spec(B)→ Spec(B) in terms of the
commutative diagram

Y ×Spec(A) Spec(B) //

��

Y

��
Spec(B) // Spec(A)

In this way a notion of morphisms of deformations can be defined.

Theorem 3.2.2. For any curve X the functor DefX satisfy H1, H2, H3, H4 of
Schlessinger theorem.

Proof. Consider the morphisms of couples (A′, η′) → (A, η) and (A′′, η′′) →
(A, η), where A′′ → A is a surjection. Let X ′, Y,X ′′ be deformations in the
equivalence class of η′, η, η′′ respectively and consider the diagram

X ′ X ′′

Y
u′

``

u′′

==

Then there is a prescheme Z, flat over A′ ×A A′′, the sum of X ′ and X ′′ under
Y , in the category of preschemes. The closed immersions X → Y → Z give Z a
structure of deformation ofX over A′×AA′′ such that the following commutative
diagram of deformations

Z

X ′
. �

p′
>>

X ′′

p′′
aa

Y
u′

``

u′′

==

This proves that

DefX(A′ ×A A′′)→ DefX(A′)×DefX(A) DefX(A′′)

is surjective, for every surjection A′′ → A. Therefore the condition H1 is satis-
fied.

Suppose that W is a deformation over B, inducing the deformations X ′ and
X ′′. There is a commutative diagram of deformations,

W

X ′

q′
44

X ′′

q′′
jj

Y
u′

ee

Y
θoo u′′

99
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where θ is the composition

Y

∼=
��

θ // Y

X ′ ⊗Spec(A′) Spec(A)
∼= // W ⊗Spec(B) Spec(A) // X ′′ ⊗Spec(A′) Spec(A)

∼=

OO

If θ can be lifted to an automorphism of θ′ of X ′, such that θ′u′ = u′θ then q′

can be replaced with q′θ′ and then W
∼=→ Z. For the special case A = k, Y = X,

θ = Id this lifting θ′ exists and condition (H2) is satisfied.
For the condition H4: consider a morphism of couples p : (A′, η′) → (A, η),

where p is a small extension. For a morphism B → A, let DefηX(B) denote the
set of ζ ∈ DefX(B) such that ζ ⊗B A = η. Select a deformation Y ′ in the class
of η′. We will prove that the following are equivalent:

(i) DefηX(A′ ×A A′)
∼=−→ DefηX(A′)×DefηX(A′)

(ii) Every automorphism of the deformation Y = Y ′ ⊗A′ A is induced by an
automorphism of the deformation Y ′.

We first prove that (i)⇒ (ii). Consider the induced morphism of deformations
u : Y → Y ′. If θ is an automorphism of Y , then we can construct deformations
Z,W over A′ ×A A′ to give “sum diagrams” of deformations.

Z

Y ′

>>

Y ′

``

Y

uθ

``

u

>>

W

Y ′

>>

Y ′

``

Y

u

``

u

>>

The deformations Z,W have isomorphic projections on both factors, there is an

isomorphism ρ : Z
∼=−→ W , which induces automorphisms θ1, θ2 of Y ′ and an

automorphism φ of Y such that

θ1uθ = uφ, θ2u = uφ.

Therefore, uθ = θ−1
1 θ2u and θ−1

1 θ2 induces θ.
Now we will prove (ii) ⇒ (i). From (ii) for I = kerp follows that tF ⊗ I

acts freely on η′, that is (η′)σ = η′ implies σ = 0. Since the action of tF ⊗ I
on DefηX(A′) is transitive, the space DefηX(A′) is a principal homogeneous space
under tF ⊗ I, which is equivalent to (i).

We will now prove the finiteness condition H3. Since X is smooth over k
one can prove using Chech cohomology [4] that

tDefX
∼= H1(X,Θ),

where Θ is the tangent sheaf of the curve X and by Serre-Duality and Riemann-
Roch theorem has dimension equal to

dimkH
1(X,Θ) = dimkH

0(X,Ω⊗2) = 3(g − 1).
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Flat Modules

Definition A.0.1. An R-module M is called flat if for every short exact sequece

0→ N1 → N2 → N3 → 0,

the induced sequence

0→M ⊗R N1 →M ⊗R N2 →M ⊗R N3 → 0,

is also exact.

We call a functor F between categories of modules left exact if for every
exact sequence 0 → N1 → N2 → N3 the sequence 0 → F (N1) → F (N2) →
F (N3), similarly right exact and exact when is both right and left exact. So
the above definition is that the functor FM which sends an R-module N to the
R-module FM (N) = M ⊗R N is exact. Since the FM is always right exact (for
a proof see [1]), flatness is actually that FM is left exact, i.e. a way to say that
for every injection N1 → N2 the induced homomorphism M ⊗RN1 →M ⊗RN2

is an injection.

Remark A.0.2. (i) Note that if M,N are two R-modules and S an R-submodule
of N , in general M ⊗R S is not a submodule of M ⊗R N . You can check
this for example by taking M = Z/2Z, N = Q and S = Z.

(ii) Similarly, if φ : N → N ′ is an R-module homomorphism, we can guarantee
a surjection

Im Id⊗R Imφ→ Im(Id⊗ ψ) ⊆M ′ ⊗R N ′

but not always a bijection. So in general we cannot identify Im Id⊗R Imφ
with Im(Id⊗ φ).

Nevertheless if we require that FM maps injections to injections, i.e. M ⊗R
S → M ⊗R N is an injection whenever S → N is an injection, it is immediate
that we do not have “strange” situations as above.

Proposition A.0.3. An R-module M is flat if and only if for every injection
N → N ′ the map M ⊗R N →M ⊗R N ′ is an injection.
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Proof. The “only if” is obvious. For the “if” let

0 −→ N1
u1−→ N2

u2−→ N3,

be an exact sequence. First notice that u1 is monomorphism and hence the
induced homomorphism Id⊗u1 : M ⊗RN1 →M ⊗RN2 is an injection. Thus it
remains to show that Im(Id⊗u1) = ker(Id⊗u2). Let m⊗u1(a) be an arbitrary
element of Im(Id⊗ u1), where a ∈ N1, then

(Id⊗ u2)(m⊗ u2(a)) = m⊗ u2(u1(a)) = m⊗ 0,

i.e. m⊗ u1(a) is in ker(Id⊗ u2). Using again the hypothesis we conclude that

M ⊗R (N2/ker(u2))→M ⊗R N3,

is an injection. Since M ⊗R (N2/ker(u2)) ∼= (M ⊗R N2) / (M ⊗R ker(u2)), it
follows that ker(Id⊗ u2) ⊆M ⊗R ker(u2) = M ⊗R Im(u1) = Im(Id⊗ u1).

Example A.0.4. (i) Free modules are flat. Indeed suppose M is a free R-
module, i.e. M ∼=

⊕
i∈I R. Let N → N ′ be a monomorphism of R-

modules and we want to prove that M ⊗R N → M ⊗R N ′ Note first that
M ⊗N =

⊕
i∈I R⊗R N =

⊕
i∈I N , so we want to prove that⊕
i∈I

N →
⊕
i∈I

N ′

is monomorphism, but this is clear when N → N ′ is monomorphism.

(ii) Projective modules are flat. Indeed let P be a projective module and recall
that tensor products commute with direct sums. It follows that a module is
flat if and only if each summand is flat. Since any projective module is a
direct summand of a free module (you can check this immediate using the
universal property of projective modules) every projective module is flat.

Lemma A.0.5. Let R be an Artin local ring and let M be an R-module. Then
M is flat over R if and only if R is a free R-module.

Proof. Assume that M is a flat module. Since M/mM is an R/m-module, i.e.
a vector space, we can choose mi ∈ M for all i ∈ I, such that the elements
mi ∈ M/mM forms a basis over the residue field. Let F =

⊕
i∈I R a free

R-module. It is clear that the induced homomorphism M/mM → F/mF is a
bijection. Finally using that R is Artin ring we conclude that m is nilpotent
and Lemma 3.1.1 completes the proof.
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