
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Declarative type inference and SSA transformation of Android
applications

Ilias M. Tsatiris

Supervisors: Yannis Smaragdakis, Professor NKUA
George Fourtounis, Research Associate NKUA

ATHENS
JUNE 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Δηλωτική εξαγωγή τύπων και μετασχηματισμός εφαρμογών
Android σε SSA μορφή

Ηλίας Μ. Τσατίρης

Επιβλέποντες: Γιάννης Σμαραγδάκης, Καθηγητής ΕΚΠΑ
Γιώργος Φουρτούνης, Ερευνητικός συνεργάτης ΕΚΠΑ

ΑΘΗΝΑ
ΙΟΥΝΙΟΣ 2019

BSc THESIS

Declarative type inference and SSA transformation of Android applications

Ilias M. Tsatiris
R.N.: 1115201500162

SUPERVISORS: Yannis Smaragdakis, Professor NKUA
George Fourtounis, Research Associate NKUA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Δηλωτική εξαγωγή τύπων και μετασχηματισμός εφαρμογών Android σε SSA μορφή

Ηλίας Μ. Τσατίρης
Α.Μ.: 1115201500162

ΕΠΙΒΛΕΠΟΝΤΕΣ: Γιάννης Σμαραγδάκης, Καθηγητής ΕΚΠΑ
Γιώργος Φουρτούνης, Ερευνητικός συνεργάτης ΕΚΠΑ

ABSTRACT

Android is everywhere: frommobile devices and TVs to more recently automobile infotain-
ment systems. This widespread use of the Android OSmakes application analysis ever so
important, in order to optimize the application performance and system resource usage.

Static Single Assignment (SSA) is a convenient normalized program representation that
can simplify several static analyses. However, the underlying DEX bytecode of an Anrdroid
application does not have the SSA property, and further processing of the program must
be done in order to obtain it. Moreover, DEX bytecode provides almost no explicit type
information for the program’s variables, limiting the accuracy of the analyses.

In this thesis, we develop a Datalog program that transforms an Android application into
SSA form, effectively extending the functionality of the DEX fact generation front end of
the D framework. Additionally, we present a type inference algorithm, to resolve the
types of the variables that the SSA transformation produced.

SUBJECT AREA: Static Program Analysis and Program Transformation

KEYWORDS: static program analysis, program transformation, framework, dex
bytecode, type inference

ΠΕΡΙΛΗΨΗ

To Android είναι παντού: από τις κινητές συσκευές και τις τηλεοράσεις, μέχρι πιο πρό-
σφατα στις κεντρικές κονσόλες των αυτοκινήτων. Αυτή η ευρεία χρήση του λειτουργικού
Android καθιστά την ανάλυση εφαρμογών όλο και πιο σημαντική, προκειμένου να βελτι-
στοποιήσουμε την απόδοση τους και την κατανάλωση πόρων του συστήματος.

Το Static Single Assignment (SSA) είναι μια βολική κανονικοποιημένη αναπαράσταση
προγράμματος η οποία μπορεί να απλοποιήσει αρκετές στατικές αναλύσεις. Ωστόσο, το
υποκείμενο DEX bytecode μιας εφαρμογής Android δεν έχει την ιδιότητα SSA, και απαι-
τείται περαιτέρω επεξεργασία προκειμένου να την αποκτήσει. Ακόμη, το DEX bytecode
περέχει μηδαμινή ρητή πληροφορία τύπων για τις μεταβλητές του προγράμματος, περιο-
ρίζοντας έτσι την ακρίβεια των αναλύσεων.

Σε αυτή την πτυχιακή εργασία, αναπτύσουμε ένα πρόγραμμα Datalog το οποίο μετασχη-
ματίζει μια εφαρμογή Android σε SSA μορφή, επεκτείνοντας ουσιαστικά την λειτουργικό-
τητα του εμπρόσθιου τμήματος του D που παράγει DEX facts. Περαιτέρω, παρουσιά-
ζουμε έναν αλγόριθμο εξαγωγής τύπων, προκειμένου να παράξουμε πληροφορία τύπων
για τις μεταβλητές που ο μετασχηματισμός μας παρήγαγε.

ΠΕΡΙΟΧΗ ΑΝΤΙΚΕΙΜΕΝΟΥ: Στατική ανάλυση προγραμμάτων και μετασχηματισμός
προγραμμάτων

ΛΕΞΕΙΣ-ΚΛΕΙΔΙΑ: στατική ανάλυση προγραμμάτων, μετασχηματισμός προγραμμά-
των, framework, dex bytecode, εξαγωγή τύπων

To my parents Roxani and Mihalis,
and my brother Manos.

ACKNOWLEDGMENTS

I’d like to thank my supervisors, Yannis Smaragdakis and George Fourtounis, for coming
up with the thesis topic, and giving me the opportunity to work on such an interesting
project. Their work ethic and attitude is admirable, to say the least.

I’d also like to thank the rest of the PLAST lab, for the insight and help they provided
whenever I needed assistance.

June 2019

CONTENTS

1. INTRODUCTION . 13

2. BACKGROUND . 14

2.1 Android platform . 14

2.2 Dalvik bytecode . 15
2.2.1 General design . 15
2.2.2 Smali and example code . 15

2.3 SSA Form . 18

2.4 Doop Framework . 19

3. SSA TRANSFORMATION . 21

3.1 Introduction . 21

3.2 Basic concepts . 21
3.2.1 Basic Blocks and Control Flow Graphs . 21
3.2.2 Dominators and related concepts . 22

3.3 The SSA transformation algorithm . 23
3.3.1 Overview . 23

3.4 Datalog rules for SSA Transformation . 24
3.4.1 Variable renaming . 24
3.4.2 Placement of φ functions . 26
3.4.3 Instruction ordering . 30
3.4.4 Output fact generation . 34

4. TYPE INFERENCE . 35

4.1 Introduction . 35

4.2 Fundamental concepts . 35
4.2.1 Types and related structures . 35
4.2.2 Common poset operations . 36
4.2.3 Program instructions and constraints . 36

4.3 The type inference algorithm . 38
4.3.1 Gathering the constraints . 38
4.3.2 Combining the constraints . 40
4.3.3 Primitives . 43

5. EXPERIMENTAL EVALUATION . 48

6. CONCLUSIONS . 50

ACRONYMS AND ABBREVIATIONS . 51

REFERENCES . 52

LIST OF FIGURES

Figure 1: Structure of an Android Package (APK) 14

Figure 2: Simple Java program to demo Java to DEX compilation 16

Figure 3: Smali code example . 16

Figure 4: Smali code example (cont.) . 17

Figure 5: Example of a control flow graph for listing 10 22

Figure 6: Defintion of dominance frontier . 22

Figure 7: Definition of iterated dominance frontier 23

Figure 8: Control Flow Graph of Figure 5 after SSA translation. 24

Figure 9: The Hasse diagram of a simple type hierarchy 36

Figure 10: Subytype constraint inference rules 37

Figure 11: Infernce rules for local assignments 38

Figure 12: Iterative computation of the Upper Bound Set 41

Figure 13: The poset for the 32-bit primitives 44

Figure 14: The poset for the 64-bit primitives 44

LIST OF TABLES

Table 1: Input vs output facts of our SSA Transformation 48

Table 2: Percentage of variables assigned to some type 48

Table 3: Execution times of our Datalog program 49

Declarative type inference and SSA transformation of Android applications

1. INTRODUCTION
Static program analysis is the analysis of computer programs in order to comprehend their
structure and extract information about all possible executions. Static analysis typically
inspects only the program text (in source or inermediate code). Rice’s theorem tells us
that all non trivial properties of programs are undecidable, thus static analysis frameworks
aim to give an accurate approximation to the problem they are tackling.

Doop is a declarative pointer/taint analysis framework for Java programs, which can also
analyse Android applications. A typical Android app consists of a single (.apk) file, that
contains, among other files, Dalvik Executables (.dex). Doop’s dex frontend transforms
the input dex files into relations (sets of tuples), in order to perform the analysis in Datalog:
a declarative programming language that has found great success inmany fields, including
program analysis. Even though Doop’s dex front end outputs valid input facts, they neither
are in SSA form nor have their types been fully resolved.

Our goal is to extend the Doop dex fact generation pipeline, by implementing an SSA
transformation and type inference algorithm in Datalog. Our algorithm will preprocess the
input facts before the actual analysis is run, thus solving the problem that was described
above.

The rest of the thesis is organized as follows:

1. In chapter 2, we provide an overview of the Android environment, the Dalvik bytecode,
SSA Form and the Doop framework.

2. In chapter 3, we introduce the core Datalog rules of the transformation program.

3. In chapter 4, we introduce the core Datalog rules of the type inference section of our
algorithm.

4. In chapter 5, we present our experimental results.

5. In chapter 6, we conclude this thesis.

I. Tsatiris 13

Declarative type inference and SSA transformation of Android applications

2. BACKGROUND
2.1 Android platform
Android [5] is an open source software stack developed by Google, based on the Linux
Kernel. Even though it is predominately used in phones, it was created to support a
wide range of mobile devices, all of which are quite limited in terms of performance and
resources, like battery life and storage.

The use of the Linux kernel as the basis of the Android stack means that Android is a
stable and secure platform, since the Linux kernel is being researched and maintained by
thousands of developers.

Since Android version 5.0, every application runs in its own instance of the Android Run-
time (ART). ART and its the predecessor Dalvik were created specifically for the Android
project. Their role is to manage multiple virtual machines on low-memory devices. Both
ART and Dalvik execute DEX files, a bytecode format that is optimized to minimize the
application’s memory usage. ART [7] offers many improvements over Dalvik, such as
improved garbage collection, ahead-of-time compilation and better debugging support.

Android Applications are usually developed in a language that runs on the JVM [6], mainly
Java and more recently Kotlin. The sources are compiled to Java bytecode, and with the
help of the dx tool, which is part of the official Android SDK build tools, they get compiled
to Dalvik bytecode that the ART is able to execute. Android also allows developers to
write native code in languages like C and C++, with the help of the Native Development
Kit (NDK) that Android provides [15]. The DEX files, native code, libraries and the related
metadata are all packed together in an APK file (Application Package), an archive that
contains all the contents of an Android Application, and is used for their distribution and
installation.

A typical APK file has the following structure [18]:

app.apk

META-INF

MANIFEST.MF

CERT.RSA

CERT.SF

lib

armeabi

armeabi-v7a

arm64-v8a

x86

x86_64

mips

res

assets

AndroidManifest.xml

classes.dex

resources.arsc

Figure 1: Structure of an Android Package (APK)

I. Tsatiris 14

Declarative type inference and SSA transformation of Android applications

META-INF the directory that contains application metadata.

lib the directory containing libraries as well as user native
code compiled to architecture-specific binaries.

res the directory containing resources not compiled into resources.arsc

assets the directory containing the apps assets

AndroidManifest.xml file containing additional application metadata

classes.dex file containing all the classes in the application
source compiled to dex bytecode format

resources.arsc file containing some precompiled resources

2.2 Dalvik bytecode
As mentioned before, every application runs in its own instance of the Android Runtime
(ART) or Dalvik VM depending on the Android version. Both of these runtimes execute
Dalvik Executable files which contain Dalvik bytecode.

Due to the importance of the DEX format and Dalvik bytecode, we will give a brief overview
of the basic characteristics of the Dalvik runtime, with an emphasis on the underlying
bytecode.

2.2.1 General design
Themachinemodel of Dalvik bytecode is designed in a way that is similar to a real architec-
ture. [12] Unlike the Java VM, it is a register based VM, thus fewer but more complex
commands are typically needed to perform a given task.

When used for primitive type values, like ints and floats, registers are 32-bit. For 64-
bit values such as double or long, adjacent registers are paired. When used as object
references, registers are sufficiently wide to hold exactly one reference.

Some instructions are type-general, meaning that they are not limited to a specific type.
For example a 32-bit move instruction may be used to move any 32-bit value from one
register to another, no matter the type that either the source or the destination register
holds. This means that a register in Dalvik bytecode may be associated with multiple
types that may not be related. Our SSA transformation and type inference, which are
discussed later in this thesis, aim to resolve this issue.

Finally, Dalvik does not have a dedicated null constant to represent null references, but
uses the value 0 instead, which further complicates the type resolution issues that were
mentioned above.

2.2.2 Smali and example code
Dalvik Executables are binary files in a format that the Dalvik VM can easily read and
execute. However this means that the format is unreadable by humans. Smali/baksmali
is an assembler/disassembler for the dex format. Its syntax is similar to a competing
tool, dedexer. Dissasembling a Dalvik file is useful when trying to reverse engineer an
application, or, in our case, when debugging program transformers that operate at the
bytecode level.

I. Tsatiris 15

Declarative type inference and SSA transformation of Android applications

The whole process of disassembling the dex file contained in an apk file, is handled quite
nicely by the apktool utility [16].

Lets give a code example:

package Demo;

import java.io.*;

public class Main {
public static void main(String[] args) {

int i = 0;

String a = null;

a = new String("Demo");

if (i == 0)
System.out.println(a);

if (a != null)
System.out.println(a);

}
}

Figure 2: Simple Java program to demo Java to DEX compilation

We can then compile the program with javac, and use dx on the .class files to create an
.apk file. All our Java code has been compiled into Dalvik bytecode and is contained within
the classes.dex file inside the .apk.

Finally we can use apktool on the apk, to decompile the Dalvik bytecode into smali, so
that we can inspect the result of the compilation.

.class public LDemo/Main;

.super Ljava/lang/Object;

.source "Main.java"

direct methods
.method public constructor <init>()V

.locals 0

.prologue

.line 5
invoke-direct {p0}, Ljava/lang/Object;-><init>()V

return-void
.end method

Figure 3: Smali code example

I. Tsatiris 16

Declarative type inference and SSA transformation of Android applications

.method public static main([Ljava/lang/String;)V
.locals 3
.param p0, "args" # [Ljava/lang/String;

.prologue

.line 7
const/4 v1, 0x0

.line 9

.local v1, "i":I
const/4 v0, 0x0

.line 11

.local v0, "a":Ljava/lang/String;
new-instance v0, Ljava/lang/String;

.end local v0 # "a":Ljava/lang/String;
const-string v2, "Demo"

invoke-direct {v0, v2}, Ljava/lang/String;-><init>(Ljava/lang/String;)V

.line 13

.restart local v0 # "a":Ljava/lang/String;
if-nez v1, :cond_0

.line 14
sget-object v2, Ljava/lang/System;->out:Ljava/io/PrintStream;

invoke-virtual {v2, v0},
Ljava/io/PrintStream;->println(Ljava/lang/String;)V

.line 16
:cond_0
if-eqz v0, :cond_1

.line 17
sget-object v2, Ljava/lang/System;->out:Ljava/io/PrintStream;

invoke-virtual {v2, v0},
Ljava/io/PrintStream;->println(Ljava/lang/String;)V

.line 18
:cond_1
return-void

.end method

Figure 4: Smali code example (cont.)

Even though at first glance it might seem like there is explicit type info for the registers
through the .local directives, these are just debug symbols and are typically absent from
production APKs.

I. Tsatiris 17

Declarative type inference and SSA transformation of Android applications

2.3 SSA Form
Static Single Assignment (SSA) is a form of Intermediate Representation code that enables
and enhances various code optimizations [1] and static analyses.

The basic property of SSA Form that differentiates it from typical three address code is
the fact that the left-hand sides of all assignments are distinct: no variable gets assigned
twice. For example:

Listing 1: Three address code snippet
x = 1
y = 2
x = x + y

Listing 2: Three address code in SSA Form
x1 = 1
y1 = 2
x2 = x1 + y1

Even though the above propertymight seem sufficient, a problem arises whenwe introduce
control flow:

Listing 3: Control flow without SSA
1 if (c) then
2 x = 1
3 else
4 x = 2
5

6 y = x

Listing 4: Control flow in SSA Form
1 if (c) then
2 x1 = 1
3 else
4 x2 = 2
5

6 y = x?

The problem here is that we don’t know statically (assuming no constant propagation
can be done) which control flow path the execution will follow, thus we don’t know which
definition of x to assign to y. To solve this problem, SSA introduces the φ function that
combines two (or more) definitions of a variable and returns the correct one, based on the
control flow path that was taken to reach the φ assignment statement. With the use of this
function, or example will now become:

Listing 5: Control flow in SSA Form with Phi function
1 if (c) then
2 x1 = 1
3 else
4 x2 = 2
5 x3 = φ(x1, x2)
6 y = x3

In this example, φ returns x1 if the control flow went through line 2, else it returns x2.

The key simplifier is that for most static analyses it makes no difference whether the control
flow followed the “then” or the “else” branch: both branches need to be covered. Therefore
the φ function has a very simple semantics in the context of the analysis.

I. Tsatiris 18

Declarative type inference and SSA transformation of Android applications

To see how SSA can assist in program optimization lets examine the following code
snippet [17]:

Listing 6: Reaching definition
1 y = 1
2 x = y
3 y = 2
4 z = x + y

Listing 7: Reaching definition with SSA
Form

1 y1 = 1
2 x1 = y1
3 y2 = 2
4 z1 = x1 + y2

In the simple three address code version, in order for the optimizer to find which value of x
and y is being used in each statement that references these registers, reaching definition
analysis would have to be performed.

However, in SSA form this decision is instant. This follows from the fact that use-def chains
in SSA contain a single element.

In the context of static analysis, and more specifically pointer analysis, SSA form may be
used to increase the precision of the analysis that is performed by making it flow sensitive,
without needing to change the prexisting logic of the analysis [3].

2.4 Doop Framework
Static analysis is the analysis of software through examination of its source code, without
executing it. This is in contrast to dynamic analysis, which is performed at runtime. There
are many types of static analysis; one of them is Pointer Analysis.

Pointer analysis attempts to answer the following question: what is the set of objects that a
variable may point to, under all possible executions? The solution to this problem provides
us with a static model of the heap that can, in turn, be used in other static analyses, as
well as in code optimisation. A simple example of the value of static analysis in code
optimisation is the following:

Listing 8: Constant propagation with pointers
1 z = 1
2 p = &z
3 *p = 2
4 k = z + 4

In order for the optimizer to perform constant propagation on the above snippet, it must
first perform pointer analysis on the code, albeit a simple one in our example, through
which it will undestand that p points to z, and will propagate the updated value of z in the
addition expression at line (4) [13].

Many Pointer Analysis tools and frameworks have been developed. For the rest of this
section, we will specifically discuss D , since we aim to extend its functionality. D
is a static analysis framework for Java programs, emphasising Pointer Analysis.

The various pointer analysis algorithms are expressed in Datalog, a declarative logic
programming language, andmore specificaly in the Souffle and LogiQL dialects [4]. Datalog

I. Tsatiris 19

Declarative type inference and SSA transformation of Android applications

is a syntactic subset of Prolog, with one of the main differences being the lack of functional
symbols, which has the implication that domains remain finite. This fact, in conjunction with
some other important semantic properties of the Datalog programs (stratified negation,
total domain ordering) guarantee that all Datalog programs terminate.

It should be noted, however, that extensions that have beenmade in both the Souffle [8, 11]
and LogiQL [10] dialects (e.g., the ability to extend the domain with the introduction of
functional predicates), make the language Turing equivalent and thus program termination
can no longer be guaranteed [8, 11].

The first step that D needs to take is to transform the input program into a set of
relations that will be given as input to the Datalog program. For this purpose, Doop utilises
the Soot Framework [9] which, among other purposes, can be used to generate facts in
Jimple, a typed 3-address intermediate representation language. D can also handle
Android programs with the use of Dexpler, the Android submodule of Soot.

These facts are then given as input to the analysis algorithm, expressed in Datalog. In
the case of Souffle, the Datalog specification is first compiled into an equivalent C++
program. Assuming the relations Alloc(var, heap, meth), Move(to, from) that represent
heap allocations and moves respectively, as well as the self-descriptive relation
VarPointsTo(var, heap), a simple Datalog pointer analysis algorithm would be the following
transitive closure computation:

Listing 9: Simple Datalog pointer analysis rules
1 VarPointsTo(to, heap) :- Move(to, from), VarPointsTo(from, heap).
2 VarPointsTo(to, heap) :- Alloc(to, heap, _).

The input facts (e.g. Move, Alloc) define the Extensional Database (EDB), whereas the
facts that are produced by our rules (e.g. VarPointsTo), define the Intentional Database
(IDB).

Even though the above examplemight seem simple, Datalog has been proven very valuable
in the field of program analysis and especially pointer analysis. This can be attributed to
two factors:

1. Mutual recursion, which is extremely prevalent in pointer analysis, is a lot easier
to express in logic programming languages and especially Datalog, as the order of
execution of the various rules does not matter, due to its fully declarative nature.

2. Datalog is very close to formal logic, which allows researchers to reason about their
programs at almost the same level as the underlying mathematical formulations.

I. Tsatiris 20

Declarative type inference and SSA transformation of Android applications

3. SSA TRANSFORMATION
3.1 Introduction
In this section, we will provide an algorithm in Datalog for transforming a set of input facts
generated by the D front end of Doop, into SSA Form. First we will overview some
basic concepts that are important for the understanding of our algorithm, and then will go
over the core Datalog rules of our SSA Transformer.

3.2 Basic concepts
3.2.1 Basic Blocks and Control Flow Graphs
In the context of compiler design [1], basic blocks are maximal code sequences that are
contiguous and which are consistent with the following constraints:

• Control flow may only enter at the first instruction of a basic block.

• Control flow may not exit the block by halting or branching, with the exception of its
last instruction.

Once our program has been partitioned into basic blocks, we can proceed to the construction
of the control flow graph.

Control Flow Graphs are a form of program representation with graph notation. The nodes
are the basic blocks of the program and the edges represent the control flow between the
blocks. More specificaly, the control flow graph contains an edge from basic block A to
basic block B, if, and only if, the last instruction of A can be followed by the first instruction
of B. In this case, we say that A is a predecessor of B and that B is a successor of A.

It is common in literature that two additional basic blocks are added, called S and
E [1]. These do not contain any executable instructions and are used to represent the
starting and exit points of our program respectively. For any control flow graph:

• There is a single edge connecting the S node with the basic block that contains
the first instruction of the program.

• If a basic block B contains a possible terminal instruction, then there is an edge from
B to E

Let’s give an example:

Listing 10: A simple code segment
1 x = 15
2 y = 1
3 if (x < 1) goto (8)
4 y = y + 1
5 x = x - 1
6 if (x > 0) goto (3)
7 goto (9)
8 print y
9 end program

The Control Flow Graph of the above program can be seen below:

I. Tsatiris 21

Declarative type inference and SSA transformation of Android applications

Start

x = 15
y = 1

if (x < 1)

print(y)

y = y + 1
x = x− 1
if (x > 0)

Exit

Figure 5: Example of a control flow graph for listing 10

3.2.2 Dominators and related concepts
We will now define a series of relations that are important for the SSA Transformation
algorithm.

All the relations defined below are related to Control Flow Graphs:

• We say that n dominates m, and we write n dom m, if, and only if, every path from
the S node to m goes through n. It is easy to observe that the dominace relation
is reflexive and transitive.

• We say that n strictly dominatesm, and wewrite n sdomm, if, and only if, n dominates
m and n is not equal to m

• Finally, we define the dominance frontier of a node x, DF (x), as the set of all nodes
n such that x dominates a predecessor of n, but n does not strictly dominate n [2].

The latter can be expressed more formally and compactly using set notation:

DF (x) = {n | (∃m ∈ Pred(n) : x dom m) ∧ ¬(x sdom n)}

Figure 6: Defintion of dominance frontier

As we will see, the dominance frontier will prove to be extremely valuable for our algorithm.

I. Tsatiris 22

Declarative type inference and SSA transformation of Android applications

3.3 The SSA transformation algorithm
We are now ready to introduce an algorithm that performs the SSA Transformation. We
will give a high level overview of the algorithm and then go over the core Datalog rules of
our implementation.

3.3.1 Overview
When translating to SSA Form, one would follow a process that resembles the following
steps:

1. Rename the left hand side of every assignment to use unique variable names (e.g.
by subindexing).

2. Place φ functions wherever they are needed.

3. Update all instructions to use the new variables that were created, either due to
the renaming of step 1, or due to the introduction of new assignments due to the φ

functions of step 2.

Regarding these steps:

• Step 1 is relatively straight forward, as it only involves variable renaming and we
only need to make sure that the new identifiers are unique.

• Step 2 is the crux of the transformation. There aremultiple algorithms for determining
where to place φ functions. For example, one could naively introduce φ functions
at each confluence point of our CFG, even though variable merging might not be
actually needed.

• Step 3 requires some analysis to find the reaching definition of each variable (variable
versions) at every program point.

Translation of a procedure to an SSA form with a minimal number of φ functions can be
accomplished with the use of dominace frontiers [2].

We expand the definition of the dominance frontier to sets of control flow graph nodes,
as the union of the dominance frontiers of each node in S. Formally:

DF (S) =
∪

x∈S

DF (x)

We also define the iterated dominace frontier DF+() as [2]:

DF+(S) = lim
i→∞

DF i(S)

where

DF 1(S) = DF (S)

DF i+1(S) = DF (S ∪DF i(S))

Figure 7: Definition of iterated dominance frontier

If S is the set of nodes that contain assignments to variable x, then DF+(S) is exactly the
set of nodes where a φ function for x is needed [2].

I. Tsatiris 23

Declarative type inference and SSA transformation of Android applications

Applying the SSA translation as defined above on the control flow graph of Figure 5 would
yield the following CFG:

Start

x1 = 15
y1 = 1

if (x1 < 1)

print(y1)

y3 = φ(y1, y2)
x3 = φ(x1, x2)
y2 = y3 + 1
x2 = x3 − 1
if (x2 >)

Exit

Figure 8: Control Flow Graph of Figure 5 after SSA translation.

3.4 Datalog rules for SSA Transformation
Having covered the basics of the SSA translation, we will now provide a series of Datalog
rules that implement the core logic of the transformation. In the following rules, there will
be some Datalog predicates that will not be explained in depth. These are either self-
explanatory or already implemented in the D framework.

We will split the rules into sections that follow the steps we described above for SSA
translation. However, more stepsmight be needed, since the above process is not extensive
and does not cover some technicalities.

3.4.1 Variable renaming
SSA Form requires that the LHS of every assignment is a unique version of the original
variable. In the examples we provided above this was accomplished by subindexing the
destination variable of each assign statement with a unique index. The Datalog rule that
implements the renaming is the following:

Listing 11: Datalog rule for variable renaming
1 SSA_AssignToOriginal(?instr, ?to),
2 SSA_Alias(?ssa_name, ?to),
3 SSA_AssignDetails(?instr, ?to, ?index, ?ssa_name, ?method) :-
4 Instruction_Index(?instr, ?index),
5 AssignInstruction_To(?instr, ?to),
6 Instruction_Method(?instr, ?method),
7 ?ssa_name = cat(?to, cat("_", to_string(?index))).

I. Tsatiris 24

Declarative type inference and SSA transformation of Android applications

The SSA_AssignDetails predicate associates an assignment instruction (?instr), relevant
info (?index, ?method) and the original target variable (?to) with a new target variable
(?ssa_name), that is a unique renaming of the original, by following the scheme:

?ssa_name =?to_?index

In essence, our new variable name is the original with an underscore and the instruction’s
index appended to it. This is indeed unique, thus our renaming is valid, and satisfies the
SSA property. The reason we choose this renaming strategy over the seemingly simpler
increasing counter appoach that is usually found in the literature, is purely a matter of ease
of implementation, since the index is immediately available and no further computation is
required.

As for the other two predicates in the head of the rule, SSA_Alias keeps track of the various
renamings of an original variable (e.g. (x1, x), (x2, x)), while SSA_AssignToOriginal, is
merely a syntatic convenience. Both of these predicates are quite useful and are used
extensively in the rest of our logic.

This rule covers almost all assignment instructions, due to the AssignInstruction_To predicate.
However, there are some extra cases that need to be accounted for, more specifically:

• Instance field loads (LoadInstanceField)

• Static field loads (LoadStaticField)

• Array loads (LoadArrayIndex)

• Return value assignment (AssignReturnValue)

• Exception variables of handlers (ExceptionHandler)

However, the handling of these cases is almost identical, so we will not include the relevant
rules.

We also rename the method parameters, following the following renaming scheme:

?ssa_param =?param_0

For completeness, we include the relevant rules without further explaination due to their
simplicity:

Listing 12: Datalog rules for this and formal parameter renaming
1 // Method formal params.
2 SSA_Alias(cat(?original, cat("_", "0")), ?original),
3 SSA_FormalParam(?index, ?method, cat(?original, cat("_", "0"))) :-
4 FormalParam(?index, ?method, ?original).
5

6 // Method this var.
7 SSA_Alias(cat(?original, cat("_", "0")), ?original),
8 SSA_ThisVar(?method, cat(?original, cat("_", "0"))) :-
9 ThisVar(?method, ?original).

With the above rules we have produced unique names for each assignment instruction in
our program, thus satisfying one of the two basic properties of SSA Form.

I. Tsatiris 25

Declarative type inference and SSA transformation of Android applications

3.4.2 Placement of φ functions
Since our implementation uses the DF+ relation (Figure 7) to decide where to place φ

functions, wewill first need to define some basic predicates for strict dominance, dominance
frontiers and iterated dominance frontiers. In the following rules, we will use the
PredecessorBB 1 predicate which provides us with basic block predecessor information
and the Dominates predicate which represents the dominance relation between basic
blocks, both of which are already implemeneted in the D framework.

For the strict dominance relation, we have the following straightforward implementation:

Listing 13: Datalog rule for strict dominance relation
1 // Simple implementation of the mathematical definition of strict
2 // domination.
3 StrictlyDominates(?dominator, ?block) :-
4 Dominates(?dominator, ?block),
5 ?dominator != ?block.

For our dominance frontier rule, we just translate our mathematical definition of Figure 6
in Datalog. The transition is seamless, since our definition was given as a first order logic
formula:

Listing 14: Datalog rule for the dominance frontier
1 DominanceFrontier(?dBlock, ?block) :-
2 PredecessorBB(?pred, ?block),
3 Dominates(?dBlock, ?pred),
4 !StrictlyDominates(?dBlock, ?block).

Having defined the above rules, we are ready to provide the Datalog rule that computes
the iterated dominance frontier. This calculation is performed on sets of variables, where
each set, e.g. Sx ⊆ V , contains all the nodes that contain an assignment to variable x in
the original program. The rules are as follows:

Listing 15: Datalog rule for the iterated dominance frontier
1 // Base case
2 DFPlus(?dBlock, ?block, ?var) :-
3 ContainsAssignment(?dBlock, ?var),
4 DominanceFrontier(?dBlock, ?block).
5

6 // Recurse
7 DFPlus(?block, ?dfblock, ?var) :-
8 DFPlus(?block, ?block_1, ?var),
9 DominanceFrontier(?block_1, ?dfblock).

Following our definition of the iterated dominance frontier (Figure 7), the first rule implements
the base case (DF 1) while the second rule implements the recursive definition of DF i+1.

These twoDatalog rules provide a succinct solution to this fixpoint computation. Imperative
approaches that are provided in the literature [2] are harder to follow, since the implemen-
tation language is much different than the mathematical language in which the algorithm
was described.

1In the actual implementation, the predicate is named MayPredecessorBBModuloThrow

I. Tsatiris 26

Declarative type inference and SSA transformation of Android applications

Now that we know where functions are needed, we can start producing the φ assigment
instructions. The first step in this process is to create a unique LHS for the assignment,
which is accomplished with the help of the PhiAssign rule:

Listing 16: Datalog rule for phi assignments
1 SSA_Alias(?phi_var, ?var),
2 PhiAssign(?phi_var, ?block) :-
3 DFPlus(_, ?block, ?var),
4 Instruction_Index(?block, ?index),
5 ?phi_var = cat(cat(?var, "_phi_"), to_string(?index)).

PhiAssign tells us that a φ assignment for the original variable ?var with LHS ?phi_var will
be placed at the start of ?block. The naming scheme for the new variable that is introduced
is:

?phi_var =?var_phi_?index

However, in order to produce the actual φ assignment instructions, more information is
required. Specifically, we need to know the reaching definitions at the start of the basic
block where the φ assigment will be placed. First we introduce the ReachingDef rules, on
a case by case basis:

Listing 17: Datalog rule for ReachinDef: Case 1
1 // Case 1
2 ReachingDef(?insn, ?ssa_var, ?origin) :-
3 BasicBlockBegin(?insn),
4 ExistsDefInPhiHeader(?insn, ?ssa_var, ?origin).

If ?insn is the first instruction in a basic block and a φ assignment for ?origin exists in the
Phi Header, then that is the reaching definition for ?origin at insn. A Phi Header is the set
of φ assignments at the start of a basic block.

Listing 18: Datalog rule for ReachinDef: Case 2
1 // Case 2
2 ReachingDef(?insn, ?ssa_var, ?origin) :-
3 BasicBlockOutDefs(?pred, ?ssa_var, ?origin),
4 PredecessorBB(?pred, ?insn),
5 BasicBlockBegin(?insn),
6 !ExistsDefInPhiHeader(?insn, _, ?origin).

If ?insn is the first instruction in a basic block, there is an out def ?ssa_var for ?origin in a
predecessor and there is no φ assignment for origin in the Phi Header, then ?ssa_var is
the reaching definition for origin.

Note that ?ssa_var must be the same for all predecessor blocks. Otherwise a φ instruction
would be present and case 1 would hold instead.

I. Tsatiris 27

Declarative type inference and SSA transformation of Android applications

Listing 19: Datalog rule for ReachinDef: Case 3
1 // Case 3
2 ReachingDef(?insn, ?ssa_var, ?origin) :-
3 ReachingDef(?prev, ?ssa_var, ?origin),
4 PrevInSameBasicBlock(?insn, ?prev),
5 !SSA_AssignToOriginal(?prev, ?origin).

If ?ssa_var is the reaching defintion for origin at the previous instruction and the previous
instruction is not an assignment to ?origin, then ?ssa_var is the reaching definition at ?insn
for origin.

Listing 20: Datalog rule for ReachinDef: Case 4
1 // Case 4
2 ReachingDef(?insn, ?ssa_var, ?origin) :-
3 PrevInSameBasicBlock(?insn, ?prev),
4 SSA_AssignDetails(?prev, _, _, ?ssa_var, _),
5 SSA_Alias(?ssa_var, ?origin).

If the previous instruction is an assignment to ?origin with LHS ?ssa_var, then ?ssa_var
is the reaching definition at ?insn for origin.

Listing 21: Datalog rule for ReachinDef: Case 5
1 // Case 5
2 ReachingDef(?insn, ?ssa_var, ?origin) :-
3 Instruction_Index(?insn, 1),
4 Instruction_Method(?insn, ?method),
5 (SSA_FormalParam(_, ?method, ?ssa_var);
6 SSA_ThisVar(?method, ?ssa_var)),
7 SSA_Alias(?ssa_var, ?origin),
8 !ExistsDefInPhiHeader(?insn, _, ?origin).

Finally, if ?insn is the first instruction in ?method, there is a formal parameter or ”this”
var ?ssa_var for origin and there is no φ assignment for origin in the Phi Header, then
?ssa_var is the reaching definition for origin.

With the above rules, we have computed the reaching definitions at every instruction.

For completeness we include the definition of some helper predicates:

Listing 22: Datalog rule for ExistsDefInPhiHeader
1 ExistsDefInPhiHeader(?insn, ?ssa_var, ?origin) :-
2 BasicBlockHead(?insn, ?head),
3 PhiAssign(?ssa_var, ?head),
4 SSA_Alias(?ssa_var, ?origin).

I. Tsatiris 28

Declarative type inference and SSA transformation of Android applications

Listing 23: Datalog rules for BasicBlockOutDefs
1 BasicBlockOutDefs(?block, ?ssa_var, ?origin) :-
2 ReachingDef(?end, ?ssa_var, ?origin),
3 BasicBlockTail(?block, ?end),
4 !SSA_AssignToOriginal(?end, ?origin).
5

6 BasicBlockOutDefs(?block, ?ssa_var, ?origin) :-
7 BasicBlockTail(?block, ?end),
8 SSA_AssignDetails(?end, _, _, ?ssa_var, _),
9 SSA_Alias(?ssa_var, ?origin).

Finally, we include the definition of InDefs, which tells us which definitions are reaching
the start of a basic block, above the PhiHeader. This is the union of the out defs of all
predecessors and the formal parameters in the special case of the first instruction of a
method. The following rules implement exactly that:

Listing 24: Datalog rules for InDefs
1 InDefs(?insn, ?ssa_var, ?origin) :-
2 BasicBlockOutDefs(?pred, ?ssa_var, ?origin),
3 PredecessorBB(?pred, ?insn),
4 BasicBlockBegin(?insn).
5

6 InDefs(?insn, ?ssa_var, ?origin) :-
7 Instruction_Index(?insn, 1),
8 Instruction_Method(?insn, ?method),
9 (SSA_FormalParam(_, ?method, ?ssa_var);

10 SSA_ThisVar(?method, ?ssa_var)),
11 SSA_Alias(?ssa_var, ?origin).

We are now ready to provide the Datalog rule that introduces the actual φ assignments.
It should be noted however, that since our intermediate representation does not have an
instruction for φ assignments, wewill emulate them by producingmultiple virtual assignments.
These are refered to as PhiPseudoAssign instructions in our program. For example:

1

2 x3 = φ(x1, x2)
1 x3 = x1
2 x3 = x2

This is semantically incorrect from an execution standpoint. However, since our end goal is
performing pointer analysis, this is a simple solution that does not require the modification
of our intermediate language. Alternatively, one could introduce a special φ instruction for
this purpose, similar to a Move instruction [3].

I. Tsatiris 29

Declarative type inference and SSA transformation of Android applications

Having made this clarification, here is the rule for calculating the PhiPseudoAssign instru-
ctions:

Listing 25: Datalog rule for virtual phi assignments
1 PhiPseudoAssign(?phi_var, ?phi_arg, ?dst_block, ?pseudoname) :-
2 PhiAssign(?phi_var, _, ?dst_block),
3 InDefs(?dst_block, ?phi_arg, ?origin_var),
4 SSA_Alias(?phi_var, ?origin_var),
5 ?pseudoname = cat(?phi_var, cat("_", ?phi_arg)).

The logic is straightforward: If we have decided that a PhiAssign will be placed at the
start of ?dst_block with LHS ?phi_var, and there is an InDef ?phi_arg such that ?phi_var
and ?phi_arg are versions of the same original variable ?origin_var, then create a virtual
assignment of the form:

?phi_var =?phi_arg

Pseudoname is just a unique identifier for the virtual φ assignments and does not have
any special meaning.

3.4.3 Instruction ordering
Having created all virtual assignments for our φ instructions, the next step is to ”connect”
themwith the rest of the instuctions. More specifically, we need to create a new ordering on
our instructions, since the introduction of the new instructions has invalidated any previous
ordering, and any instruction indexes that are used are no longer correct.

First we define some concepts used in our algorithm:

• A PhiChunk consists of a set of contiguous virtual φ assigments (PhiPseudoAssign)
to the same LHS variable.

• A PhiHeader of a block B consists of a set of contiguous PhiChunks that will be
placed at the start of B.

To order the instructions, we will calculate a new predicate SSANext(?prev, ?next) which
states the obvious: instruction ?next is the sucessor of ?prev. After this, the calculation of
the new instruction indexes becomes a trivial task.

In our calculation of SSANext, we will follow a bottom-up approach:

1. We order and connect the virtual φ assignments, to form PhiChunks.

2. We order and connect the PhiChunks, to form PhiHeaders.

3. We connect the PhiHeaders with the rest of the instructions.

Let us define the following ordering predicates for our own convenience:

1 ExistsPseudoAssignBetween(?prev, ?next) :-
2 PhiPseudoAssign(?phi, _, ?block, ?prev),
3 PhiPseudoAssign(?phi, _, ?block, ?next),
4 PhiPseudoAssign(?phi, _, ?block, ?mid),
5 ord(?prev) < ord(?next),
6 ord(?prev) < ord(?mid),
7 ord(?mid) < ord(?next).

I. Tsatiris 30

Declarative type inference and SSA transformation of Android applications

A virtual assignment ?mid exists between ?prev and ?next, if all of them are virtual assignments
to the same variable ?phi, are in the same block and it holds that:

ord(?prev) < ord(?mid) < ord(?next)

Ord [8] is a built-in ordering functional symbol for strings that is included in Souffle. The
details of this ordering are unimportant, other than the fact that

s1 ̸= s2 ⇒ ord(s1) ̸= ord(s2)

We also define a similar predicate for PhiChunks:

1 ExistsPhiChunkBetween(?prev, ?next) :-
2 PhiPseudoAssign(?prev, _, ?block, _),
3 PhiPseudoAssign(?next, _, ?block, _),
4 PhiPseudoAssign(?mid, _, ?block, _),
5 ord(?prev) < ord(?next),
6 ord(?prev) < ord(?mid),
7 ord(?mid) < ord(?next).

We are now ready to connect our virtual assignments and form PhiChunks. The follwing
rule implements exactly that:

Listing 26: Datalog rule for ordering the virtual phi assignments in a PhiChunk
1 SSANext(?prev, ?next),
2 PhiChunkNext(?prev, ?next) :-
3 PhiPseudoAssign(?chunk, _, ?block, ?prev),
4 PhiPseudoAssign(?chunk, _, ?block, ?next),
5 ord(?prev) < ord(?next),
6 !ExistsPseudoAssignBetween(?prev, ?next).

If ?prev and ?next are both virtual φ assignments, it holds that ord(?prev) < ord(?next) and
there is no virtual assignment between them then ?next follows ?prev inside the PhiChunk
(PhiChunkNext) as well as in the global ordering of the instructions (SSANext).

Next we provide two rules that are related to the structure of the PhiChunks, specifically
their start and end instructions:

1 PhiChunkStart(?phi_chunk, ?start) :-
2 PhiPseudoAssign(?phi_chunk, _, _, ?start),
3 !PhiChunkNext(_, ?start).

A virtual assignment ?start is the first instruction of it’s ?phi_chunk, if there is no previous
instruction in the PhiChunk.

1 PhiChunkEnd(?phi_chunk, ?end) :-
2 PhiPseudoAssign(?phi_chunk, _, _, ?end),
3 !PhiChunkNext(?end, _).

A virtual assignment ?end is the last instruction of its ?phi_chunk, if there is no instruction
following it in the PhiChunk.

I. Tsatiris 31

Declarative type inference and SSA transformation of Android applications

Now we will provide the rule that orders the PhiChunks and forms PhiHeaders:

Listing 27: Datalog rule for ordering the PhiChunks in a PhiHeader
1 SSANext(?prev_end, ?next_start),
2 PhiHeaderNext(?prev, ?next) :-
3 PhiPseudoAssign(?prev, _, ?phi_header, _),
4 PhiPseudoAssign(?next, _, ?phi_header, _),
5 PhiChunkEnd(?prev, ?prev_end),
6 PhiChunkStart(?next, ?next_start),
7 ord(?prev) < ord(?next),
8 !ExistsPhiChunkBetween(?prev, ?next).

The logic is quite similar to the rule that handles virtual assignments and forms PhiChunks.
The main differnece is in the way SSANext is handled. More specifically, if we decided
that PhiChunks ?prev and ?next are ordered in their containing PhiHeader as their name
suggests, then the end instruction of ?prev (?prev_end) is followed by the start instruction
of ?next (?next_start) in the global ordering of the instructions.

Building on top of the PhiHeaderNext predicate we define the following rules:

Listing 28: Datalog rules for finding the start and end instructions of PhiHeaders
1 PhiHeaderStart(?phi_header, ?start) :-
2 PhiPseudoAssign(?start_chunk, _, ?phi_header, _),
3 PhiChunkStart(?start_chunk, ?start),
4 !PhiHeaderNext(_, ?start_chunk).
5

6 SSANext(?end, ?phi_header),
7 PhiHeaderEnd(?phi_header, ?end) :-
8 PhiPseudoAssign(?end_chunk, _, ?phi_header, _),
9 PhiChunkEnd(?end_chunk, ?end),

10 !PhiHeaderNext(?end_chunk, _).

These rules calculate the first and last instructions of a PhiHeader respectively. In the
calculation of PhiHeaderEnd, we additionally connect the ?end instruction of the PhiHeader
with the first instruction of the block, which is ?phi_header. This is due to the fact that in
our implementation a PhiHeader construct is uniquely identified by the head instruction of
the basic block on top of which it is placed.

So far we have linked all instructions locally inside the PhiHeaders, as well as the last
instructions of the PhiHeaders with the head of their block. All that is left to do is take care
of the rest of the instructions inside the basic blocks. This is handled by the following two
rules:

1 SSANext(?prev, ?next) :-
2 Instruction_Next(?prev, ?old_next),
3 PhiHeaderStart(?old_next, ?next).
4

5 SSANext(?prev, ?next) :-
6 Instruction_Next(?prev, ?next),
7 !PhiHeaderStart(?next, _).

I. Tsatiris 32

Declarative type inference and SSA transformation of Android applications

The cases they cover are the following:

1. If ?prev is followed by ?old_next in the original ordering and ?old_next was the head
instruction of the block for which we calculated a PhiHeader with first instruction
?next, then link prev and next.

2. If the ?prev is followed by ?next in the original ordering and either ?next is the head
of a block that does not have a PhiHeader (thus was not modified locally with virtual
assignments) or is not the head of a block, then the original ordering still holds.

Our ordering of the instructions is now complete. We can now proceed with the calculation
of the new instruction indexes:

Listing 29: Datalog rules for instruction indexing
1 SSA_InstructionIndex(?insn, 1) :-
2 isInstruction(?insn),
3 !SSANext(_, ?insn).
4

5 SSA_InstructionIndex(?insn, ?index + 1) :-
6 SSA_InstructionIndex(?prev, ?index),
7 SSANext(?prev, ?insn).

This calculation is trivial; we start from the first instructions of each method, giving them
index 1, and we recursively calculate the rest of the indexes by following SSANext.

We also provide two useful rules, NewIndexMapping and NewBBStart. The first one
provides us with a mapping between old and new instruction indexes, while the second
one gives us the index of the new basic block head instruction, since φ nodes may have
changed it.

1 NewIndexMapping(?old, ?new, ?method) :-
2 Instruction_Index(?insn, ?old),
3 Instruction_Method(?insn, ?method),
4 SSA_InstructionIndex(?insn, ?new).

Listing 30: Datalog rules to calculate new basic block start index
1 NewBBStart(?old, ?new, ?method) :-
2 NewIndexMapping(?old, ?new, ?method),
3 Instruction_Index(?insn, ?old),
4 Instruction_Method(?insn, ?method),
5 BasicBlockBegin(?insn),
6 !PhiHeaderStart(?insn, _).
7

8 NewBBStart(?old, ?new, ?method) :-
9 Instruction_Method(?insn_old, ?method),

10 Instruction_Index(?insn_old, ?old),
11 PhiHeaderStart(?insn_old, ?insn_new),
12 SSA_InstructionIndex(?insn_new, ?new).

I. Tsatiris 33

Declarative type inference and SSA transformation of Android applications

3.4.4 Output fact generation
For the final step of our transformation algorithm, we need a rule per input relation. These
rules will take care of merging all the information that was calculated in the previous steps,
such as reaching variable definitions and new instruction indexes and produce the output
facts.

Let’s review the rule that is responsible for rewriting local assignments:

Listing 31: Datalog rules AssignLocal fact rewritting
1 RewriteAssignLocal(?insn, ?index, ?to, ?from, ?inmethod) :-
2 isAssignLocal_Insn(?instr),
3 SSA_AssignDetails(?insn, _, _, ?to, ?inmethod),
4 SSA_InstructionIndex(?insn, ?index),
5 AssignLocal_From(?insn, ?from_origin),
6 ReachingDef(?insn, ?from, ?from_origin).
7

8 RewriteAssignLocal(?insnid, ?index, ?to, ?from, ?inmethod) :-
9 PhiPseudoAssign(?to, ?from, ?block, ?insn),

10 Instruction_Method(?block, ?inmethod),
11 SSA_InstructionIndex(?insn, ?index),
12 ?insnid = cat(?inmethod, cat("/phiassign/instruction",

to_string(?index))).

The basic idea is the following: If ?insn is a local assign, and we decided that ?to is the
new SSA name for the LHS, we have a new ?index, and the RHS ?from is the reaching
definition at ?insn for the original RHS ?from_origin, then generate an output fact for local
assignments (RewriteLocalAssign) that combines all this information.

The second rule takes care of the virtual φ assignments that we introduced, which are
local assignments in our IR.

Finally, lets review the rewrite rule for a branch instruction and specifically for an If instruction:

Listing 32: Datalog rules for If fact rewritting
1 RewriteIf(?insn, ?index, ?to, ?inmethod) :-
2 isIf_Insn(?insn),
3 SSA_InstructionIndex(?insn, ?index),
4 Instruction_Method(?insn, ?inmethod),
5 If_Target(?insn, ?old_to),
6 NewBBStart(?old_to, ?to, ?inmethod).

The core logic is the same. However, since If instructions have the index of the jump
target, we need to take the updated index, which is done with the NewBBStart predicate.
Note that using NewIndexMapping would not be correct in the general case, since the jump
targets are essentially the first instruction in a basic block and these may have changed
due to the introduction of φ nodes.

This concludes our SSA transformation algorithm. The rest of the fact rewrite rules will
be elided, however the two cases we covered should be more than enough to provide the
reader with the general pattern these rules follow.

I. Tsatiris 34

Declarative type inference and SSA transformation of Android applications

4. TYPE INFERENCE
4.1 Introduction
In this section, we will provide a type inference algorithm in Datalog. Themotivation behind
the development of such an algorithm is the lack of explicit type information in the Dalvik
bytecode format.

We start by going over some fundamental concepts, followed by a high level overview
of our algorithm. Finally, we will provide the core Datalog rules of our implementation.

4.2 Fundamental concepts
In this section we will provide an overview of the core mathematical structures that are
related to our algorithm and type inference in general. Understanding these concepts, at
least intuitively, is important for the understanding of the main ideas in our algorithm.

4.2.1 Types and related structures
Let T be the sets of all types. In the scope of our algorithm one may think of this set as
the set containing types that are found in the input program.

Let ≤ be a binary relation over T , such that:

t1 ≤ t2 ⇔ t1 is a subtype of t2
The ≤ binary relation has the following properties:

1. ∀t ∈ T : t ≤ t (reflexivity)
2. ∀t1, t2 ∈ T : t1 ≤ t2 ∧ t2 ≤ t1 ⇒ t1 = t2 (antisymmetry)
3. ∀t1, t2, t3 ∈ T : t1 ≤ t2 ∧ t2 ≤ t3 ⇒ t1 ≤ t3 (transitivity)

Thus, ≤ over T forms a partial order, called the Partial Order of Types.

Finally T has a least element⊥ and greatest element⊤. More formally these two elements
have the following properties:

1. ∀t ∈ T : t ≤ ⊤

2. ∀t ∈ T : ⊥ ≤ t

In the context of Java programs, and more specifically reference types, java.lang.Object

is the ⊤ element and the null type (type of the null contant) is the ⊥ element.

A useful visualization for partially ordered sets are Hasse diagrams. For example, the
following class hierarchy

1 class A {}
2

3 interface I1 {}
4 interface I2 {}
5

6 class B implements I1, I2 {}
7 class C implements I1, I2 {}

can be visualized with the following Hasse diagram:

I. Tsatiris 35

Declarative type inference and SSA transformation of Android applications

Object

A I1 I2

B C

null_type

Figure 9: The Hasse diagram of a simple type hierarchy

A typing t is a function t : V → T , that maps variables to types. Any type inference for
local variables aims to compute a valid typing.

A valid typing is a typing that is consistent with a set of constraints that the program
instructions impose on the variables they use and define. In our alogrithm, these constraints
take the form of subtype/supertype constraints.

4.2.2 Common poset operations
Two operations that are useful when dealing with posets are the Least Common Ancestor
and the Greatest Common Predecessor.
Let (P,≤) be a poset. The Least Common Ancestor is a function lca : P × P → 2P , such
that:

lca(x, y) = minimal(z|x ≤ z ∧ y ≤ z)

where minimal(·) are the minimal elements of a poset.
More formally, let (P,≤) be a poset. The minimal elements of S ≤ P is the set:

{x| ̸ ∃y ∈ S : x ≤ y}

Similarly, we define the GreatestCommonDecendant to be a function gcd : P × P → 2P ,
such that:

gcd(x, y) = maximal(z|z ≤ x ∧ z ≤ y)

where maximal(·) are the maximal elements of a poset:

{x| ̸ ∃y ∈ S : y ≤ x}

4.2.3 Program instructions and constraints
Program instructions impose upper and lower bounds to the static types of variables that
are involved. Lets consider the following code segment, written in a Java-like language:

1 <untyped> x;
2 x = new A();
3 f(x); // void f(B)

I. Tsatiris 36

Declarative type inference and SSA transformation of Android applications

From the snippet above, we can infer that the static type of x must be a supertype of
A. Thus, if t is the typing that our type inference algorithm calculcates, then it must hold
that t(x) ≥ A. Additionally, the static type of b must be a subtype of B, since f takes an
argument of type B: B ≤ t(x).

Similar constraints are imposed by any instruction that uses or defines variables. These
constraints can be expressed compactly in the form of inference rules:

x := new T ();
HeapAlloc

T ≤ t(x)

[f(. . .) : T0] x := f(. . .);
AssignReturn

T0 ≤ t(x)

[f(T1, T2, . . . , Tn) : T0] f(x1, x2, . . . , xn); ActualParam
t(x1) ≤ T1, t(x2) ≤ T2, . . . , t(xn) ≤ Tn

[f(T1, T2, . . . , Tn) : T0] f(x1, x2, . . . , xn) : T0{. . .} FormalParam
T1 ≤ t(x1) ≤ T1, T2 ≤ t(x2) ≤ T2, . . . , Tn ≤ t(xn) ≤ Tn

catch(T x)
Catch

T ≤ t(x) ≤ T

[f(. . .) : T0] f(. . .) : T0{. . . return x; . . .}
AssignReturn

t(x) ≤ T0

x := y → T.f : Tf InstanceLoad
Tf ≤ t(x), t(y) ≤ T

x := T.f : Tf StaticLoad
Tf ≤ t(x)

y → T.f : Tf := x
InstanceStore

t(x) ≤ Tf , t(y) ≤ T

T.f : Tf := x
StaticStore

t(x) ≤ Tf

Figure 10: Subytype constraint inference rules

The above inference rules capture constraints where the lower or upper bound of the
constraint is fixed. Instructions where this is not true, like local assignments, could be
modeled in a similar fashion:

x := y
LocalAssign

t(y) ≤ t(x)

Note that both sides of the constraints are ”unresolved” - they are both a function of the
typing t we are trying to compute. This might be fine from a mathematical standpoint
however, for reasons related to the implementation of our algorithm, it is convienient that
we handle such cases differently.

For this reason, we introduce a new binary relation ⊑, such that:

∀x, y ∈ V x := y ⇒ y ⊑ x

I. Tsatiris 37

Declarative type inference and SSA transformation of Android applications

The inference rules for local assignments are the following:

x ⊑ y t(y) ≤ T
LocalAssign Upper

t(x) ≤ T

y ⊑ x T ≤ t(y)
LocalAssign Lower

T ≤ t(x)

Figure 11: Infernce rules for local assignments

Intuitively, assignments transfer constraints between the variables: upper bounds of the
LHS become upper bounds of the RHS and lower bounds of the RHS become lower
bounds of the LHS.

Array loads and stores are handled similarly, with a bit more complicated logic similar
to that of instance loads and stores:

x := y[·] t(x) ≤ T
ArrayLoad Upper

t(y) ≤ T [·]

x := y[·] T [·] ≤ t(y)
ArrayLoad Lower

T ≤ t(x)

y[·] := x t(y) ≤ T [·]
ArrayStore Upper

t(x) ≤ T

y[·] := x t(x) ≤ T
ArrayStore Lower

T [·] ≤ t(y)

4.3 The type inference algorithm
We will now go over our type inference algorithm. The algorithm could be roughly split
into the following steps:

1. For each variable, gather the subtype constraints that the program instructions impose
on them.

2. For each variable, combine its constraints to find a set of compatible types.

3. For each variable, output a type for it, by choosing a type from the set that was
calculated during step 2.

At the end of this chapter, we will discuss the challenges that primitive types introduce to
a subtype-based algorithm like ours (especially for Dalvik bytecode) and the solution we
provided to this problem.

4.3.1 Gathering the constraints
The first step of our algorithm consists of finding and encoding the various constraints
that the instructions place on the program’s variables. As we discussed in the previous
section, instructions impose subtyping constraints on the variables involved in them. More
specifically, they impose upper and lower bounds on t(v), where t is the typing our algorithm
aims to compute.

These constraints have already been expressed in the form of inference rules at Figure 10.
Since our algorithm is written in Datalog, the inference rules are almost identical to their

I. Tsatiris 38

Declarative type inference and SSA transformation of Android applications

Datalog counterparts, modulo some implementation and intermediate language details.

In order to encode these constraints we will need two predicates:

• UpperBoundTypeForConstraint(?var, ?type, ?instr): Instruction ?instr imposes the
constraint: t(?var) ≤?type.

• LowerBoundTypeForConstraint(?var, ?type, ?instr): Instruction ?instr imposes the
constraint: ?type ≤ t(?var).

We will also need two additional predicates:

• UpperConstraintForVar(?var, ?instr): Instruction ?instr imposes an upper bound
constraint on variable ?var.

• LowerConstraintForVar(?var, ?instr): Instruction ?instr imposes an lower bound constraint
on variable ?var.

The usefulness of the the last two predicates will become clear in the next section.

Wewill provide the implementation of some inference rules from Figure 10. In the following
snippets wewill use the same intermediate language as the one in our SSA Transformation
algorithm. Since the objective of this thesis is both SSA transformation and type inference,
we will use the output facts of our SSA algorithm as input, instead of the original ones.

As our first example, lets examine the rule that handles heap allocations:

Listing 33: Datalog rule for HeapAlloc type constraint
1 LowerConstraintForVar(?to, ?insn),
2 LowerBoundTypeForConstraint(?to, ?type, ?insn) :-
3 RewriteAssignHeapAllocation(?insn, _, ?heap, ?to, _, _),
4 HeapAllocation_Type(?heap, ?type).

Similarly for formal method parameters:

Listing 34: Datalog rule for FormalParam type constraint
1 // Static type of formal params is known.
2 HasKnownType(cat(?var, "_init"), ?var, ?type) :-
3 SSA_FormalParam(_, _, ?var),
4 SSA_Alias(?var, ?var_origin),
5 Var_Type(?var_origin, ?type).

For FormalParams and ThisVars, we use the predicate HasKnownType. This is because
we know the type of a method’s formal parameters from its signature, thus we use this
special predicate to signify this knowledge to the inference engine of our algorithm and
avoid unneeded computation.

Note the use of the Var_Type predicate; currently the dex frontend outputs type information
for formal parameters but not for other variables. We take advantage of this fact to simplify
our rule.

I. Tsatiris 39

Declarative type inference and SSA transformation of Android applications

Finally, we will show how local assignments are handled. As we mentioned in a previous
segment, we need to introduce the notion of an abstract constraint:

1 Assign(?stmt, ?var1, ?var2) :-
2 RewriteAssignLocal(?stmt, _, ?var1, ?var2, _).
3

4 AbstractConstraint(?var_sup, ?var_sub) :-
5 Assign(_, ?var_sup, ?var_sub).

Having defined the rules for abstract constraints, we can now provide the Datalog rules
that implement the inference rules specified at Figure 11:

Listing 35: Datalog rule for abstract type constraint
1 LowerConstraintForVar(?var, ?stmt),
2 LowerBoundTypeForConstraint(?var, ?type, ?stmt) :-
3 AbstractConstraint(?var, ?var_other),
4 LowerBoundTypeForConstraint(?var_other, ?type, ?stmt).
5

6 UpperConstraintForVar(?var, ?stmt),
7 UpperBoundTypeForConstraint(?var, ?type, ?stmt) :-
8 AbstractConstraint(?var_other, ?var),
9 UpperBoundTypeForConstraint(?var_other, ?type, ?stmt).

The Datalog rules for the rest of the inference rules of Figure 10 follow a similar pattern
with the ones above, and are elided for simplicity.

4.3.2 Combining the constraints
Now that all constraints have been encoded, we need to process them in order to compute
a set of valid types Tv for each variable v.

Recall that constraints are split into upper (v ≤ ·) and lower (· ≤ v) bound constraints.
The way our algorithm works is by computing an Upper Bound Set (Uv) and a Lower
Bound Set (Lv) for every variable v. We can then compute Tv as:

Tv = {t|u ∈ Uv ∧ l ∈ Lv ∧ l ≤ t ≤ u}

Intuitively, Uv and Lv give us an upper and a lower bound, such that every type that is ”in
between” respects all upper bound constraints on the type of v.

Viewing the computation of Tv from a satisfiability standpoint provides us with a better
insight on how to go about combining the constraints. More specifically, let Iv0 , Iv1 , . . . Ivn
be the instructions that impose some upper bound constraint on v under some arbitrary
ordering. Then the upper constraints on a variable v form a logical formula:

Cv
upper = Cv

0 ∧ Cv
1 ∧ . . . ∧ Cv

n

where Ci is a disjunction of the upper bound constraints (v ≤ ·) that Ii imposes on v. In
most cases these disjunctions will contain exactly one term. However, our handling of
primitives may require up to three terms in the disjunction in some cases. We will expand
more on this in the relevant section.

I. Tsatiris 40

Declarative type inference and SSA transformation of Android applications

A natural way to construct the upper bound set of v, Uv, is to iterate over the constraints
and use the gcd function. Taking into account the CNF formulation above, our apporach
is to iterate over the Ci, ”lowering” the upper bound set on each step.

More specifically, let Iv0 , Iv1 , . . . Ivn be an ordering of the instructions that impose some upper
bound constraint on v. With const(Ii, v) we will denote the set of upper bound constraints
that Ii imposes on variable v. For example, if we have that Cv

i = v ≤ t1 ∨ v ≤ t2 then
const(Ii, v) = {t1, t2}. We define the iterative process:

U0
v = const(I0, v)

U i+1
v =

∪
gcd(x, y),where x ∈ Ui, y ∈ const(Ii+1, v)

Figure 12: Iterative computation of the Upper Bound Set

Then the set Uv is exactly Un
v .

To implement this in Datalog, one first needs to define an ordering similar to the one
defined above. This is achieved with the following rules:

Listing 36: Datalog rules for constraint ordering
1 NotFirstUpperConstraintForVar(?var, ?stmt) :-
2 UpperConstraintForVar(?var, ?stmt),
3 UpperConstraintForVar(?var, ?stmt2),
4 ord(?stmt2) < ord(?stmt).
5

6 NotLastUpperConstraintForVar(?var, ?stmt) :-
7 UpperConstraintForVar(?var, ?stmt),
8 UpperConstraintForVar(?var, ?stmt2),
9 ord(?stmt2) > ord(?stmt).

10

11 LaterUpperConstraintForVar(?var, ?stmt, ?stmtLater) :-
12 UpperConstraintForVar(?var, ?stmt),
13 UpperConstraintForVar(?var, ?stmtLater),
14 ord(?stmtLater) > ord(?stmt).
15

16 NextUpperConstraintForVar(?var, ?stmt, ?stmtNext) :-
17 LaterUpperConstraintForVar(?var, ?stmt, ?stmtNext),
18 ?stmtNextOrd = min ord(?stmtLater) : LaterUpperConstraintForVar(?var,

?stmt, ?stmtLater),
19 ord(?stmtNext) = ?stmtNextOrd.
20

21 FirstUpperConstraintForVar(?var, ?stmt) :-
22 UpperConstraintForVar(?var, ?stmt),
23 !NotFirstUpperConstraintForVar(?var, ?stmt).

The first two rules are there to make our definition easier:

• A constraint from ?stmt for ?var is not the first upper constraint if there exists a
constraint from some ?stmt2, such that ord(?stmt2) < ord(?stmt).

• Similarly for NotLastUpperConstraintForVar.

I. Tsatiris 41

Declarative type inference and SSA transformation of Android applications

Having defined these, the rest is straightforward. In the following explanation, we will
assume that ?var is fixed:

• A constraint ?stmt is the first, if there is a constraint and it is not not the first (making
use of our auxiliary relation).

• A constraint ?stmtLater follows ?stmt in the ordering, if it holds that ord(?stmt) <

ord(?stmtLater).

• A constraint ?stmtNext follows ?stmt immediately, if it is after ?stmt and has the
minimum ord out of all constraints that are after ?stmt.

After the implementation of the constraint ordering has been provided, we can move to the
crux of the algorithm: the implementation of the iterative computation that we described
above.

Listing 37: Calculation of upper bound set
1 UpperBoundTypeForAllConstraints(?var, ?type) :-
2 HasKnownType(_, ?var, ?type).
3

4 UpperBoundTypeUpToConstraint(?var, ?type, ?stmt) :-
5 !HasKnownType(_, ?var, _),
6 UpperBoundTypeForConstraint(?var, ?type, ?stmt),
7 FirstUpperConstraintForVar(?var, ?stmt).
8

9 UpperBoundTypeUpToConstraint(?var, ?type, ?stmt) :-
10 UpperBoundTypeUpToConstraint(?var, ?typeBefore, ?stmtPrev),
11 NextUpperConstraintForVar(?var, ?stmtPrev, ?stmt),
12 UpperBoundTypeForConstraint(?var, ?typeCur, ?stmt),
13 GreatestCommonDescendant(?typeBefore, ?typeCur, ?type).
14

15 UpperBoundTypeForAllConstraints(?var, ?type) :-
16 UpperBoundTypeUpToConstraint(?var, ?type, ?stmt),
17 !NextUpperConstraintForVar(?var, ?stmt, _).

The first rule is just a shortcut: if we are sure about the static type of some variable, like
formal parameters, then there is no reason to go through this process. Note how the rest
of the rules correspond to the different cases of the process defined at Figure 12. The last
rule is the output of the computation: Uv = Un

v .

The rules for the Lower Bound Set Lv follow the same pattern. First the constraints are
ordered, then iterated over. The main difference is the use of the lca function instead of
the gcd, since we are trying to ”raise” the lower bound.

Having computed both Lv and Uv we may now calculate Tv. This is straightforward, since
we have already expressed the relation between TV and the lower and upper bound sets
above:

Listing 38: Calculation of upper bound set
1 TypeCompatibleWithAllConstraints(?var, ?type) :-
2 LowerBoundTypeForAllConstraints(?var, ?lowerType),
3 UpperBoundTypeForAllConstraints(?var, ?upperType),
4 TypeBetween(?upperType, ?lowerType, ?type).

I. Tsatiris 42

Declarative type inference and SSA transformation of Android applications

We are now ready to output our typing t(·). All that we need to do is choose some type tv
from Tv for each variable v and set t(v) = tv.

The choice method could be an arbitrary (even random) function that selects an element
from a set. In our implementation, our choice function selects the type that minimizes
ord(·). In Datalog:

Listing 39: Output rule of our type inference rule
1 SSA_TypeOrd(?var, ?minTypeOrd) :-
2 ExistsNonGuardType(?var),
3 ?minTypeOrd = min ord(?t) : NonGuardCompatibleTypes(?var, ?t).
4

5 SSA_Type(?var, ?minType) :-
6 isType(?minType),
7 ?minTypeOrd = ord(?minType),
8 SSA_TypeOrd(?var, ?minTypeOrd).

The rule above is a bit more involved due to the special handling of primitives as will be
explained in the next section.

The advantage of such an approach, and any deterministic choice function in general, is
that it has the following property:

Lemma 4.1 Let v0, v1, . . . , vn be variables that are involved in an assignment cycle C. For
example:

v1 = v2; v2 = v3; v3 = v1;

If the choice function is deterministic, then t(vi) = t(vj), vi, vj ∈ C.

Intuitively what the above lemma says is that all variables involved in an assignment cycle
will get mapped to the same type.

4.3.3 Primitives
So far we have only discussed how our type inference algorithm handles reference types.
This is because reference types have clear semantics about subtyping, unlike primitives
where such a relation is not well defined.

One could model the subtype relation between primitive types based on which implicit
conversions and promotions can be performed. For example, in Java, int can be implicitly
converted to long, thus one may assume that int ≤ long. This might be a good approach
for Java bytecode, however this is not entirely true for Dalvik.

The main problem arises from the fact that the Dalvik VM uses 32-bit registers and 64-bit
are represented as register pairs. Thus assigning an int to a long (to the first register of
the pair to be exact), would not pass bytecode verification.

Moreover, 32-bit integer types (boolean, short, int etc) seem to be interchangeable, as
many binary and unary operations can be performed to all of them. Finally, the lack of
a dedicated null constant and the use of 0 instead, causes ambiguity when encoutering
assignments such as v = 0 : under no further context, t(v) could either be a reference type
(t(v) ≤ Object) or any 32-bit primitive type (assuming that 64-bit primitives have special
constant assignment instructions).

I. Tsatiris 43

Declarative type inference and SSA transformation of Android applications

It is clear from the previous examples that additional logic needs to be added in order
to handle primitives. More specifically, we need to expand our type poset in order to
introduce some kind of subtyping relation between the primitives. In our implementation
we added two additional posets, ending up with a ”forest”:

prim32⊤

int32⊤

floatint short char byte boolean

int32⊥

prim32⊥

Figure 13: The poset for the 32-bit primitives

prim64⊤

doublelong

prim64⊥

Figure 14: The poset for the 64-bit primitives

Each variable v will now be kickstarted with an initial set of constraints (called global in
our implementation):

Cv
global =

null_type ≤ t(v) ≤ Object ∨ prim32⊥ ≤ t(v) ≤ prim32⊤ ∨ prim64⊥ ≤ t(v) ≤ prim64⊤

In simpler words, at the beginning of our algorithm all we can assert about the type of each
variable is that it’s either a reference type, a 32-bit primitive or a 64-bit primitive.

Similarly, whenever we encounter an assignment Ii : v = 0, we will assert that

Upper bound : Cv
i = t(v) ≤ Object ∨ t(v) ≤ prim32⊤

Lower bound : Cv
i = null_type ≤ t(v) ∨ prim32⊥ ≤ t(v)

This is expressed quite easily in Datalog:

Listing 40: Constant assignment constraint rule
1 ConstraintForVar(?to, ?insn),
2 LowerConstraintForVar(?to, ?insn),
3 LowerBoundTypeForConstraint(?to, ?type, ?insn) :-
4 SSA_AssignNumConstant(?insn, ?to, _, _),
5 StatementType(?insn, _, "32bit"),
6 isPrimitive32Bottom(?type).

I. Tsatiris 44

Declarative type inference and SSA transformation of Android applications

1 ConstraintForVar(?to, ?insn),
2 LowerConstraintForVar(?to, ?insn),
3 LowerBoundTypeForConstraint(?to, "null_type", ?insn) :-
4 SSA_AssignNumConstant(?insn, ?to, "0", _),
5 StatementType(?insn, _, "32bit").

The first rule states that if we have a 32-bit constant assignment to ?to, then

prim32⊥ ≤ t(?to)

The second rule takes care of the special case where the constant is 0, asserting that
null_type ≤ t(?to). Note that, whenever the second rule is activated, the first rule is also
activated. This means that, in the special case where the constant is 0, we will get the
desired disjunction. Otherwise, only the first rule will be activated.

The StatementType predicate is a helper predicate that we output during the fact-generation
step, to help us determine the type of the various binary and unary operations. The first
argument indicates the instruction, the second the input type, and the third the output type
of the instruction. For example, the unary operation int-to-long has input type int and
output type long. In the snippet above, 32bit means that ?insn deals with 32-bit quantities.

Observe how we only give a lower bound on the variables, and not both upper and lower,
as the formulas above suggest. This is fine, since the upper bound ”counterpart” already
exists as a result of the global constraints, and introducing it again would be redundant.

All that is left to do regarding the primitive constraints, is to encode the upper and lower
bound constraints that the various binary and unary operations impose. First we define
some helper predicates for our own convenience:

1 PrimOp(?insn, ?to, ?from) :-
2 RewriteAssignUnop(?insn, _, ?to, _),
3 RewriteAssignOperFrom(?insn, _, ?from).
4

5 PrimOp(?insn, ?to, ?from) :-
6 RewriteAssignBinop(?insn, _, ?to, _),
7 RewriteAssignOperFrom(?insn, _, ?from).

PrimOp basically unifies the input and output arguments of the binary and unary operators
into a single predicate.

We will go over the case when either the input or the output argument of PrimOp has
type ”int32”:

1 Integer32Constraint(?to, ?insn) :-
2 PrimOp(?insn, ?to, _),
3 StatementType(?insn, _, "int32").
4

5 Integer32Constraint(?from, ?insn) :-
6 PrimOp(?insn, _, ?from),
7 StatementType(?insn, "int32", _).

I. Tsatiris 45

Declarative type inference and SSA transformation of Android applications

1 ConstraintForVar(?var, ?insn),
2 UpperConstraintForVar(?var, ?insn),
3 UpperBoundTypeForConstraint(?var, ?type, ?insn) :-
4 Integer32Constraint(?var, ?insn),
5 isInt32Top(?type).
6

7 ConstraintForVar(?var, ?insn),
8 LowerConstraintForVar(?var, ?insn),
9 LowerBoundTypeForConstraint(?var, ?type, ?insn) :-

10 Integer32Constraint(?var, ?insn),
11 isInt32Bottom(?type).

The fist two rules state that a variable will be subect to integer32 constraints, if it is either
the input or the output of a PrimOp whose corresponding argument type is ”int32”. It
should be clarified that in our implementation, ”int32” means all 32-bit integer types, as
they are defined in our prim32 poset.

Having cleared that up, the meaning of the last two rules should be evident, as they
basically define what integer32 constraints are: if a variable is subject to integer32 constraints,
then it’s type will reside between int32⊤ and int32⊥.

More formally:
int32⊥ ≤ t(?var) ≤ int32⊤

Other PrimOps are implemented similarly.

Finally, we must modify our choice function. This is necessary, since we introduced virtual
types, which we don’t want to include in the output of our algorithm.

First, let us introduce some helper predicates:

1 ExistsNonGuardType(?var),
2 NonGuardCompatibleTypes(?var, ?type) :-
3 TypeCompatibleWithAllConstraints(?var, ?type),
4 !isGuardPrimitive(?type).

In our implementation, virtual primitives are refered to as GuardPrimitives.

ExistsNonGuardType encodes the information that for variable v, it holds that Tv\Guard ̸=
∅, or more intuitively that there is a non-guard type in Tv, while NonGuardCompatibleTypes
computes Tv\Guard.

I. Tsatiris 46

Declarative type inference and SSA transformation of Android applications

Finally, we use these rules to implement the new SSA_Type rules:

Listing 41: SSA_Type rules for primitives
1 SSA_TypeOrd(?var, ?minTypeOrd) :-
2 ExistsNonGuardType(?var),
3 ?minTypeOrd = min ord(?t) : NonGuardCompatibleTypes(?var, ?t).
4

5 SSA_Type(?var, ?minType) :-
6 NonGuardCompatibleTypes(?var, ?minType),
7 SSA_TypeOrd(?var, ?minTypeOrd),
8 ?minTypeOrd = ord(?minType).
9

10 SSA_Type(?var, "int") :-
11 TypeCompatibleWithAllConstraints(?var, _),
12 !ExistsNonGuardType(?var).

SSA_TypeOrd selects for each variable v the type t ∈ Tv\Guard that minimizes ord(·).

The computation of SSA_Type can be described as follows:

• If Tv\Guard ̸= ∅, then choose the type with the minimum ord from Tv\Guard.

• Otherwise, if Tv ̸= ∅, then Tv contains only virtual types. In this case, default to int.

Defaulting to int is just a heuristic to avoid outputing no type in the case that all candidate
types are virtual.

This concludes our type inference algorithm.

Observe how the core of our type inference algorithm is language agnostic. As long as the
language supports subtype polymorphism, the iteration and combination of the constraints
will remain the same. The only parts that one would need to change is the encoding of the
subtype constraints, and of any language specific heuristics that can aid the type inference
algorithm, just like we did with primitives.

I. Tsatiris 47

Declarative type inference and SSA transformation of Android applications

5. EXPERIMENTAL EVALUATION
In this section, we will evaluate the performance of our SSA transformation and type
inference algorithm. All our measurements here are performed only on application facts,
without android platform facts. This is due to the fact that the DEX front end is currently
under development, and doesn’t support platform fact generation yet.

The machine we run these experiments on features an Intel Xeon E5-2667 with 256 GB
of RAM.

First we will compare the amount of core input and output facts, that is all the facts
excluding LocalAssign, Var-Type and Var-Declaring, as these are obviously a lot more
post SSA transformation and type inference.

Table 1: Input vs output facts of our SSA Transformation

APK Core input facts Core output facts Core in / Core out (%) Input AssignLocal Output AssignLocal
androidterm-1.0.70 70678 69947 99% 1260 6632
facebook_lite-85.0.0 1123546 1110702 99% 6771 109072
instagram-10.5.1 3168133 3138016 99% 32408 239512
signal-4.12.3 5441749 5392720 99% 62697 391715

From the above table we make the following observations:

• Most input facts are preserved after the SSA transformation. The small loss of facts
(1%) is due to some inaccuracies in the modeling of the CFG that disables variable
liveness information from reaching instructions in exception handlers, causing the
relevant fact rewrite rules to fail.

• Our SSA transformation introduces a large number of new local assignments. This
is to be expected, but the increase is still a bit high. In our transformation we
didn’t attempt to produce minimal SSA form, which could possibly avoid a lot of
unnecessary assignments.

Next we will observe how our type inference algorithm performs, by comparing the amount
of variables mapped to some type vs the number of variables declared in the program:

Table 2: Percentage of variables assigned to some type

APK Declared variables Type-assigned variables %
androidterm-1.0.70 14817 10847 73%
facebook_lite-85.0.0 243900 171251 70%
instagram-10.5.1 660725 463590 70%
signal-4.12.3 1111922 821686 73%

The performance of our type inference algorithm is significantly hindered by the fact that
the DEX front end does not currently output platform facts. Many methods take arguments
whose type is defined in the platform (e.g android.os.*), return such types or call platform
methods. However, as the platform facts are not present, the subtype relation does not
contain any records regarding the hierarchy of platform types. This prevents our algorithm
from outputing a type for a variable that is constrained by a platform type.

The addition of platform facts should provide a significant boost in the performance of our
type inference algorithm. For example, we estimate that the facebook_lite percentage will

I. Tsatiris 48

Declarative type inference and SSA transformation of Android applications

increase from 70% to at least 87%. Moreover, our primitive heuristics might be inaccurate
and thus negatively affect our algorithm.

Finally, we include a table with some execution times:

Table 3: Execution times of our Datalog program

APK SSA SSA + Type Inference
androidterm-1.0.70 0s 0s
facebook_lite-85.0.0 11s 17s
instagram-10.5.1 36s 70s
signal-4.12.3 49s 107s

It is evident that for smaller programs, the SSA transformation dominates the running time
of our implementation, while the opposite is true for larger workloads.

I. Tsatiris 49

Declarative type inference and SSA transformation of Android applications

6. CONCLUSIONS
SSA form and type information are important for the accuracy of many static analyses.
D ’s in-house DEX front end produces facts that are not in SSA form and doesn’t
perform any type inference to resolve the types of the input program’s variables. In this
thesis, we were able to provide a succint Datalog program that transforms the front end
facts into SSA form and perform type inference, effectively extending the functionality of
D ’s DEX front end.

There are several ways this work could be extended further:

1. More accurately modeling the CFG and more specifically exception handlers, for
reasons discussed in the Evaluation Section 5.

2. Improving and re-examining the heuristics that we introduced in our type inference
algorithm.

3. A formal proof of correctness for the SSA transformation.

4. A formal investigation of the completeness and soundness characteristics of our
type inference algorithm. What are the shortcomings of our approach with respect
to these two properties?

5. Further experimentation when full facts (app and platform) are available.

I. Tsatiris 50

Declarative type inference and SSA transformation of Android applications

ACRONYMS AND ABBREVIATIONS
SDK Software Development Kit
NDK Native Development Kit
APK Application Package
JVM Java Virtual Machine
VM Virtual Machine
ART Android Runtime
DEX Dalvik Executable
EDB Extensional Database
IDB Intensional Database
CFG Control Flow Graph
SSA Static Single Assignment
GCD Greatest Common Decendant
LCA Least Common Ancestor

I. Tsatiris 51

Declarative type inference and SSA transformation of Android applications

REFERENCES
[1] Aho, Alfred V. and Lam, Monica S. and Sethi, Ravi and Ullman (2006), Jeffrey D., Compilers:

Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA

[2] Steven S. Muchnick (1998), Advanced Compiler Design and Implementation, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[3] Yannis Smaragdakis and George Balatsouras (2015), ”Pointer Analysis”, Foundations and Trends®
in Programming Languages: Vol. 2: No. 1, pp 1-69

[4] Doop Project Repository [Online]
https://bitbucket.org/yanniss/doop

[5] Android Platform Architecture [Online]
https://developer.android.com/guide/platform/

[6] Android Application Fundamentals [Online]
https://developer.android.com/guide/components/fundamentals

[7] Android Art and Dalvik [Online]
https://source.android.com/devices/tech/dalvik

[8] Souffle Home [Online]
https://souffle-lang.github.io/

[9] Soot Home [Online]
https://github.com/Sable/soot

[10] LogicBlox Home [Online]
https://developer.logicblox.com/technology/

[11] Souffle Datalog [Online]
https://souffle-lang.github.io/docs/datalog/

[12] DEX Format [Online]
https://source.android.com/devices/tech/dalvik/dalvik-bytecode

[13] Pointer Analysis Lecture Notes [Online]
https://www.cs.cmu.edu/~aldrich/courses/15-819O-13sp/resources/pointer.pdf

[14] Doop Tutorial, PLDI 2015 [Online]
https://plast-lab.github.io/doop-pldi15-tutorial/

[15] Android NDK [Online]
https://developer.android.com/ndk/guides/

[16] Apktool [Online]
https://ibotpeaches.github.io/Apktool/

[17] SSA Form Wikipedia [Online]
https://en.wikipedia.org/wiki/Static_single_assignment_form

[18] Android APK [Online]
https://en.wikipedia.org/wiki/Android_application_package

I. Tsatiris 52

https://bitbucket.org/yanniss/doop
https://developer.android.com/guide/platform/
https://developer.android.com/guide/components/fundamentals
https://source.android.com/devices/tech/dalvik
https://souffle-lang.github.io/
https://github.com/Sable/soot
https://developer.logicblox.com/technology/
https://souffle-lang.github.io/docs/datalog/
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://www.cs.cmu.edu/~aldrich/courses/15-819O-13sp/resources/pointer.pdf
https://plast-lab.github.io/doop-pldi15-tutorial/
https://developer.android.com/ndk/guides/
https://ibotpeaches.github.io/Apktool/
https://en.wikipedia.org/wiki/Static_single_assignment_form
https://en.wikipedia.org/wiki/Android_application_package

	Introduction
	Background
	Android platform
	Dalvik bytecode
	General design
	Smali and example code

	SSA Form
	Doop Framework

	SSA Transformation
	Introduction
	Basic concepts
	Basic Blocks and Control Flow Graphs
	Dominators and related concepts

	The SSA transformation algorithm
	Overview

	Datalog rules for SSA Transformation
	Variable renaming
	Placement of functions
	Instruction ordering
	Output fact generation

	Type inference
	Introduction
	Fundamental concepts
	Types and related structures
	Common poset operations
	Program instructions and constraints

	The type inference algorithm
	Gathering the constraints
	Combining the constraints
	Primitives

	Experimental Evaluation
	Conclusions
	Acronyms and Abbreviations
	References

