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Abstract

The present thesis investigates the interaction of a charged particle with a finite amplitude, dispers-
ing electrostatic wave-packet in a uniformly magnetized plasma. We begin with the introduction
of Hamiltonian perturbation theory which consists our main tool throughout this thesis in order to
examine the various phenomena when a wave-particle interaction takes place. As a result, we con-
tinue with the application of Hamiltonian perturbation theory to various examples of wave-particle
interactions in order for the reader to familiarize with the Hamiltonian formulation. The setup
of our case is presented thoroughly in the fourth chapter where the large amplitude wave-packet
decomposes to an ensemble of different amplitude electrostatic waves. From this point on, using
both Hamiltonian and kinetic descriptions we are able to examine the interaction especially for the
trapped particles regime which has never been treated analytically in the presence of a magnetic
field. Finally we try to connect the perturbation theory formalism with the kinetic equations that
describe the collective transport phenomena. Our formulation as well as our results can be applied
to many other physical problems which fall into the same category, such as electrostatic turbulence
and electromagnetic wave-particle interaction.
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Extended Abstract in Greek

Η παρούσα διπλωματική εργασία εξετάζει την αλληλεπίδραση ενός φορτισμένου σωματιδίου με μεγάλου

πλάτους ηλεκτροστατικό κυματοπακέτο σε ομογενες μαγνητισμένο πλάσμα. Με σκόπο η συγκεκριμένη

εργασία να είναι αυτοσυνεπής, στο Πρώτο Κεφάλαιο παρουσιάζεται αναλυτικά η Κανονική Θεωρία Δια-

ταραχών η οποία θα αποτελέσει βασικό εργαλείο στην Χαμιλτονιανή αντιμετώπιση των προβλημάτων

που σχετίζονται με την αλληλεπίδραση σωματιδίων με κύματα σε γενικότερο πλαίσιο. Με την λογική

αυτή, στο Δεύτερο Κεφάλαιο εφαρμόζουμε τις τεχνικές της θεωρίας διαταραχών σε διαφορετικά είδη

αλληλεπίδρασης κυμάτων και σωματιδιών. Ο βασικός μας στόχος σε αυτό το στάδιο είναι να ανα-

πραράγουμε και να επεκτείνουμε βασικές ερευνητικές εργασίες που έχουν πραγματοποιηθεί κατά το

παρελθόν. Μέσα στα δύο πρώτα αυτά κεφάλαια ο αναγνώστης εισάγεται στον Χαμιλτονιανό φορμαλι-

σμό και έρχεται σε επαφή με την μεθοδολογία αντιμετώπισης κλασσικών περιτπώσεων αλληλεπίδρασης

σωματιδίου με κύμα. Με αυτόν τον τρόπο θέλουμε να δώσουμε στον αναγώστη την ικανότητα να

διακρίνει και να κατανοήσει τις διαφορές και τις επεκτάσεις της δικής μας θεώρησης σε σχέση με τις

ήδη υπάρχοντες. Στο Τρίτο Κεφάλαιο λοιπόν παρουσιάζεται διεξοδικά η θεώρηση και ο φορμαλισμός

που ακολουθείται για την Χαμιλτονιανή κατασκευή της αλληλεπίδρασης του μεγάλου πλάτους κυμα-

τοπακέτου με το σωματίδιο υπό την παρουσία του μαγνητικού πεδίου. Η θεώρηση μας αποσκοπεί

στην μελέτη της επίδραση της διασποράς του κυματοπακέτου στην αλληλεπίδραση του σωματιδίου με

μια συλλογής κυμάτων με διαφορετικά πλάτη τα οποία συνθέτουν το κυματοπακέτο υπό την παρουσία

του μαγνητικού πεδίου. Η επίδραση του μεγάλου πλάτους δημιουργεί την δυνατοτητα το σωματιδιο

να είναι παγιδευμενο μεσα σε ενα δυναμικό μη γραμμικού ταλαντωτή και σε εκείνη την περιοχή του

φασικού χώρου επικεντρώνουμε την προσοχή μας όπου υπάρχουν έκδηλα μη γραμμικά φαινόμενα τα

οποία σχετίζονται άμεσα με την διασπορά. Στην συνέχεια προσπαθούμε να συνδέσουμε τον φορμαλισμό

της Κανονικής Θεωρίας Διαταραχών με τις κινητικές εξισώσεις προσπαθώντας να μεταβούμε απο το

ένα σωματίδιο σε εναν πληθυσμό σωματιδίων με σκοπό να πάρουμε αποτλέσματα για την συνάρτηση

κατανομής των σωματιδίων που αλληλεπιδρούν πλέον με κύμα μέσα στο πλάσμα. Τέλος στο Πέμπτο

Κεφάλαιο παρουσιάζουμε ενδεικτικά τα συμπεράσματα μας και περιγράφουμε τα σημεία της δουλειάς

μας τα οποία χρείζουν περεταίρω γενίκευσης.
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Chapter 1

Introduction

The presence of coherent electromagnetic waves and their interaction with charged particles are
ubiquitous phenomena in plasmas that are encountered in space as well as in laboratory fusion
devices, dictating many aspects of energy transport. As an illustration, we can refer to tokamak
plasma heating by Low Hybrid waves and RF waves, Alfvén waves heating the solar corona, modi-
fication of the distribution function of the charged particles and electromagnetic turbulence.
Subsequently, due to the significant aforementioned importance of the phenomenon, wave-particle
interaction has been widely studied in the combined framework of Hamiltonian dynamical systems
theory and plasma physics. The first works [1][2] considered a particle under the influence of an
electrostatic potential perturbed from a single weak electrostatic wave in the absence of magnetic
field in one direction and their goal was to investigate the stochastic instability of a perturbed non-
linear oscillator (pendulum). Similar attempts [3][4] have been also proposed with the difference
that they inducted adiabatic modulation in the amplitude of the one degree of freedom oscillator
in order to examine the transient development of the stochastic instability. While the previous
works are characterized by the absence of the magnetic field all four of them consider a finite am-
plitude potential capable of trapping particles. On the other hand, the classical works of Smith
and Karney [5][6][7][8] introduced a uniform magnetic field in the Hamiltonian of a free particle
as well as a perturbation that consisted of a small amplitude electrostatic wave which is treated
in the framework of first order Hamiltonian perturbation theory in respect to the wave amplitude.
Those works consentrate in applying the stochastic instability effect to examine and control the
ion heating in fusion devices. The development of a chaotic domain in the phase space caused by
resonance overlapping when the amplitude of the perturbing wave is no longer small, and the first
order perturbation theory breaks down. Moreover the works of Smith and Karney investigate the
dynamics of the system in the off-resonance case while Fukuyama [9] deals with the same problem
in the on-resonance case.
More recent publications [10][11][12] have taken into consideration a more realistic scenario, investi-
gating the interaction of a free particle in a uniform magnetic field with multiple electrostatic waves
of small amplitude with the intention of extracting specific conditions for the optimal manipulation
of the coherent ion heating in tokamaks. Now, second order Hamiltonian perturbation theory has
been applied in order to extract non-linear conditions for the coherent acceleration of the ions while
there is no trapping regions in the unperturbed system. Furthermore, wave-particle interactions
have been extended for the case of particles interacting with a magnetically excited Alfvén wave in
[13][14]. Alfvén waves are present in every astrophysical and fusion plasma configuration, thus play
significant role in the energy transport. The final step towards the understanding of wave-particle
interaction has been made in [15][16], where the interaction of a free particle with a coherent solitary
electrostatic wave-packet has examined in the case of small modulation of the envelope of the wave
packet.
Taking all the previous realizations into consideration we were motivated to combine all the im-
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CHAPTER 1. INTRODUCTION

portant elements of the aforementioned publications and try to treat the most general problem.
As a result, the present thesis regards the interaction of a charged particle with an electrostatic
periodic wave packet which is consisted from multiple electrostatic waves with different amplitude
magnitudes in a uniform magnetic field. In addition, we examine the role of dispersion of the wave
packet in the interaction and the way it regulates the energy transport. As such, the structure of
this thesis consists of three different parts. Firstly, we introduce the Hamiltonian formulation of
perturbation theory and then represent and reproduce the main techniques and results that have
been introduced by the classical works. Then, we proceed to the investigation of our case where
a particle interacts with a dispersing periodic wave packet that decomposes with specific ordering
into a finite amplitude wave and multiple electrostatic waves of smaller amplitude(perturbation
strength). Finally we connect the results from the Hamiltonian formulation for one particle to the
collective behaviour of a particle population in a collision-less plasma.
Specifically, in Chapter 1 we present the powerful methods of Canonical Perturbation Theory which
consists the cornerstone of our analysis in the next chapters. Following Chapter 2, we introduce
the reader to wave-particle interaction applying the techniques of Chapter 1. The treatment of our
problem begins in Chapter 3 and concludes in Chapter 4 with the collective dynamics of particles
in plasma. Final remarks and conclusion of our work has included in Chapter 5.
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Chapter 2

Canonical Perturbation Theory

2.1 Classical Perturbation Theory

Most multidimensional systems are not integrable. However, for systems that differ slightly from
integrable ones, one can attempt to obtain solutions to a specific degree of accuracy by an expansion
of the generating function in powers of the small parameterε and then solve the Hamilton-Jacobi
equation for each power. Throughout this Chapter we have used the same notation and formalism
with [17].
We consider an autonomous Hamiltonian with N degrees of freedom of the form

H = H0(J) + εH1(J ,θ) (2.1.1)

The unperturbed Hamiltonian H0 is in action-angle form and its dynamics is governed by the
following simple equations

J = J0 (2.1.2)

θ = θ0 + ω(t− t0) (2.1.3)

ω =
∂H0

∂J
(2.1.4)

The symbol ω just represents the pseudo-vector of the canonical frequencies defined from ωi = ∂H0

∂Ji
.

We consider that the H1 part is multiply periodic function of the angles, so that we can expand it
in Fourier Series.

H1 =
∑
n

H1n(J)ein·θ (2.1.5)

Where
n · θ = n1θ1 + n2θ2 + ...+ nNθN

We seek a near identity transformation to new variables J̄ , θ̄ for which the new Hamiltonian K is
a function only of J̄ . In that way the new system is approximately integrable up to a certain order
of accuracy. Using the mixed variable generating function W (J̄ ,θ) we expand W and K in power
series of ε

W = J̄θ + ε
∑
n

W1n(J̄)ein·θ + ... (2.1.6)

K = K0 + εK1 + ... (2.1.7)
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CHAPTER 2. CANONICAL PERTURBATION THEORY

The mixed relations between the new and the old generalized coordinates are given by

Ji =
∂W

∂θi
= J̄i + ε

∂W1

∂θi
+ ... (2.1.8)

θ̄i =
∂W

∂J̄i
= θ + ε

∂W1

∂J̄i
+ ... (2.1.9)

It is convenient to express the old variables in terms of the new variables which is relatively easy
to first order

Ji = J̄i + ε
∂W1(J̄ , θ̄)

∂θ̄i
+ ... (2.1.10)

θi = θ̄i − ε
∂W1(J̄ , θ̄)

∂J̄i
+ ... (2.1.11)

Therefore, from the Hamiltonian transformation theory we obtain

K(J̄ , θ̄) = H(Ji(J̄ , θ̄), θi(J̄ , θ̄)) (2.1.12)

We expand the right hand side of the equation (2.1.12) using the relations (2.1.10),(2.1.11), and
equating the same order terms with equation (2.7) we obtain

K0(J̄) = H0(J̄) (2.1.13)

K1 = ω(J̄)
∂W1(J̄ , θ̄)

∂θ
+H1(J̄ , θ̄) (2.1.14)

ω(J̄) =
∂H0(J̄)

∂J̄
(2.1.15)

The goal of this transformation is to suitably select the W1 part of the generating function in (2.1.6)
in order to eliminate the θ̄ dependence from the K1 part of the new Hamiltonian resulting to an
approximately integrable K Hamiltonian.
We introduce the average part of H1 as

〈H1〉 =
1

(2π)N

∫
H1(J̄ , θ̄) dN θ̄ (2.1.16)

In that way the oscillating part of the H1 is described as

{H1} = H1 − 〈H1〉 (2.1.17)

As a result, from equations (2.14) and (2.16) we have

K1 = 〈H1〉 (2.1.18)

ω(J̄)
∂W1(J̄ , θ̄)

∂θ
= −{H1} (2.1.19)

Consequently, the new integrable Hamiltonian K has the to first order the form

K = H0(J̄) + ε〈H1(J̄ , θ̄)〉 (2.1.20)
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CHAPTER 2. CANONICAL PERTURBATION THEORY

Equation (2.19) produces the W1 part of the generating function. The solution for W1 involves
integration over the unperturbed orbits since

dW1

dt
=
∂W1

∂t
+
∂W1

∂θ̄

dθ̄

dt
+
∂W1

∂J̄

dJ̄

dt
(2.1.21)

Moreover, since the K system is integrable up to this order, from Hamilton’s equation we get

dθ̄

dt
=
∂K

∂J̄
= ω̄(J̄) = ω + ε

∂K1

∂J̄
(2.1.22)

dJ̄

dt
= −∂K

∂θ̄
= 0 (2.1.23)

Combining equations (2.1.19) and (2.1.21)-(2.1.23) together with the fact that the system is au-
tonomous we get to zero order

W1 = −
∫
t

{H1(J̄ , θ̄(t′))} dt′ (2.1.24)

An alternative way of finding the W1 is from relations (2.1.5),(2.1.6) and (2.1.19) to integrate the
Fourier series term by term in order to obtain that the generating function W1 finally is

W = J̄θ + εi
∑
n 6=0

H1n(J̄)

nω(J̄)
einθ (2.1.25)

The form of the W generating function is an asymptotic expansion which as we said before has
to be close in the identity transformation in order to suitably describe the slightly distorted KAM
surfaces due to the effects of the perturbation. In that manner, the asymptotic form converges when∣∣H1n(J̄)

∣∣ ≤ ∣∣nω(J̄)
∣∣ (2.1.26)

Inequality (2.1.26) defines the action space where the invariants of the unperturbed system H0(J)
are slightly distorted. On the other hand, when this condition is not satisfied then the phase space
is strongly distorted and the invariants of the motion break down, giving rise to resonances.
In general the resonance condition is described by

nω(J) = 0 (2.1.27)

In perturbation theory the existence of small denominators-resonances represent a physical as well
as a mathematical difficulty that has to bypassed by the techniques of the next section.
For the sake of complicity we note that when the Hamiltonian H is non autonomous the perturbation
theory steps are in principle the same since in the extended phase space of N +1 degrees of freedom
the pair (−H, t) represents conjugate pair of canonical variables. As a result, the time dependent
perturbation theory posses a time dependent Fourier component as well as an extra time derivative
in equations (2.1.5),(2.1.6) and (2.1.14) respectively.
We conclude this section by computing the new invariants of the K Hamiltonian system. Those
invariants to first order describe the phase space adequately when we are sufficiently far form the
resonances.

J̄i = Ji − εi
∑
n6=0

niH1n(J)

nω(J)
einθ (2.1.28)
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CHAPTER 2. CANONICAL PERTURBATION THEORY

2.2 Secular Perturbation Theory

Near a resonance in the unperturbed Hamiltonian a resonant denominator appears in the first order
perturbation theory of the previous section. The resonant variables can be removed through a new
canonical transformation. Then, a new invariant is discovered which in turn breaks down if the
perturbation is large enough and secondary resonances appear. The way that secondary resonances
destroy the modified invariant, mirroring that the original resonances destroy the invariant we have
derived from the classical perturbation theory.
We start again from the Hamiltonian H of the form

H = H0(J) + εH1(J ,θ) (2.2.1)

We restrict our investigation to two degrees of freedom for simplicity but the same techniques and
results apply to higher dimensions. Again the (J ,θ) variables are the action-angle variables of the
integrable system H0 and H1 is periodic in θ

H1 =
∑
l,m

Hl,m(J)einθ (2.2.2)

The integer vector n has the form n = (l,m) and nθ = lθ1 +mθ2 as in the previous section.
As we have seen, the classical perturbation theory breaks down when resonances occur between the
unperturbed frequencies. Specifically, if a resonance exists between the unperturbed frequencies
then we can have

ω1

ω2

=
r

s
(2.2.3)

The r, s are integers and ω1(J) = ∂H0

∂J1
and ω2(J) = ∂H0

∂J2
. Relation (2.2.3) can represent either a

primary resonance of the system or a secondary resonance created be the harmonics of the oscillation
island that is generated from the primary resonance.
In either case, we can apply a transformation that eliminates one of the original actions through
the generating function

W = (rθ1 − sθ2)Ĵ1 + θ2Ĵ2 (2.2.4)

The transformation relations from the old (J ,θ) to the new variables (Ĵ , θ̂) are

J1 =
∂W

∂θ1

= rĴ1 (2.2.5)

J2 =
∂W

∂θ2

= Ĵ2 − sĴ1 (2.2.6)

θ̂1 =
∂W

∂Ĵ1

= rθ1 − sθ2 (2.2.7)

θ̂2 =
∂W

∂Ĵ2

= θ2 (2.2.8)

The new coordinates put the observer in a rotating frame. The form of the generating function
allows us the freedom to choose which of the original variables to leave unchanged. The choice
is considered by which of the original angles (θ1, θ2) is slower. Here we assume that the θ̇2 is
the slower of the two angles, hence we select the W generating function in order that angle to
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CHAPTER 2. CANONICAL PERTURBATION THEORY

remain unchanged. Subsequently, through the equations (2.2.5)-(2.2.8) the original Hamiltonian is
transformed to

Ĥ = Ĥ0(Ĵ) + εĤ1(Ĵ , θ̂) (2.2.9)

Ĥ1 =
∑
l,m

Hl,m(Ĵ) exp

{
i

r
[lθ̂1 + (ls+mr)θ̂2]

}
(2.2.10)

Near a resonance from the relation (1.2.3) and (1.2.7) and the Hamilton equations we obtain to
first order

˙̂
θ1 = rθ̇1 − sθ̇2 = r

∂H

∂J1

− s∂H
∂J2

= rω1 − sω2 +O(ε) ∼ O(ε) (2.2.11)

As a result, while for the original variables θ̇1 > θ̇2 in the rotating frame near the resonance we

have
˙̂
θ1 <<

˙̂
θ2. In that sense the fast θ̂2 oscillations will not affect the motion and we can average

the Ĥ system over θ̂2 in order to obtain the transform Hamiltonian H̄

H̄ = H̄0(Ĵ) + εH̄1(Ĵ , θ̂1) (2.2.12)

Where

H̄0 = Ĥ0(Ĵ) (2.2.13)

H̄1 = 〈Ĥ1(Ĵ , θ̂)〉θ̂2 =
∞∑

p=−∞

H−pr,ps(Ĵ)e−ipθ̂1 (2.2.14)

Averaging the equation (2.2.10) over θ̂2 the only non zero term is defined for those l/m which it is
valid that

ls+mr = 0 (2.2.15)

In that way, we define a p = m
s

and from the previous (2.2.15) we have l = −pr and m = ps.

Since for the Hamiltonian H̄ the angle θ̂2 is cyclic we have that

Ĵ2 = constant (2.2.16)

In fact, the Ĵ2 is an adiabatic invariant of the Hamiltonian in (2.2.9) and represents a combined
invariant as can be seen in relation (2.2.6).

Ĵ2 = J2 +
s

r
J1 = constant (2.2.17)

In the hat coordinates the invariant near the resonance is very different for the off-resonance case
that we have obtained from classical perturbation theory. For secondary resonances, where s >> r
the modified invariant Ĵ2 is just a multiple of the unperturbed zero order invariant J1.
The Hamiltonian H̄ in (2.2.12) is integrable since it is autonomous and the dynamics can be exam-
ined in the Ĵ1 − θ̂1 phase plane.
We proceed to find the stationary points Ĵ10, θ̂10 in the Ĵ1 − θ̂1 phase plane by

∂H̄

∂Ĵ1

∣∣∣∣
Ĵ10

= 0 (2.2.18)

∂H̄

∂θ̂1

∣∣∣∣
θ̂10

= 0 (2.2.19)
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CHAPTER 2. CANONICAL PERTURBATION THEORY

The Fourier amplitudes H−pr,ps(Ĵ) in (2.2.24) as we will discuss in the next chapters fall rapidly as
p increases, as such we are going to describe the integrable motion be keeping only the p = −1, 0, 1
terms with H−r,s = Hr,−s. As a result the H̄ Hamiltonian has the form

H̄ = Ĥ0(Ĵ) + εH0,0(Ĵ) + 2εHr,−s(Ĵ) cos θ̂1 (2.2.20)

The combination of (2.2.19)-(2.2.20) provide us with the location of the fixed points

∂Ĥ0

∂Ĵ10

+ ε
∂H0,0

∂Ĵ10

+ 2ε
∂Hr,−s

∂Ĵ10

cos θ̂10 = 0 (2.2.21)

−2εHr,−s sin θ̂10 = 0 (2.2.22)

Equation (2.2.22) has the solutions θ̂10 = 0, π. Therefore, the relation (2.2.21) with the resonance
condition (2.2.3) becomes

ε
∂H0,0

∂Ĵ10

± 2ε
∂Hr,−s

∂Ĵ10

= 0 (2.2.23)

Now we distinct two different cases:
• If the resonance condition (2.2.3) of the unperturbed Hamiltonian H0 is satisfied only for particular
values of J1, J2 then the H0 is accidentally degenerate and is transformed to rotating system to Ĥ0

witch is a function of both Ĵ1, Ĵ2

Ĥ0 = Ĥ0(Ĵ1, Ĵ2) (2.2.24)

• If the resonance condition (2.2.3) is satisfied for all values of J1, J2 then the Hamiltonian H0 is
intrinsically degenerate. The only way for the relation (2.2.3) to be met for all J1, J2 is the H0 to
has the form

H0 = H0(sJ1 + rJ2) (2.2.25)

Then, from the rotating transformation relations (2.2.5) and (2.2.6) we obtain

Ĥ0 = ĤO(Ĵ2) (2.2.26)

For accidental degeneracy,using Hamilton’s equations for H̄ and (2.2.20) we obtain

˙̂
J1 = −2εHr,−s(Ĵ) sin θ̂1 = O(εHr,−s) (2.2.27)

˙̂
θ1 = O(1) (2.2.28)

Hence, it is valid to expand Hamiltonian H̄ in (2.2.20) around the stationary point Ĵ10 but not
around θ̂10

Ĥ0(Ĵ) = Ĥ0(Ĵ10) +
∂Ĥ0

∂Ĵ10

∆Ĵ1 +
1

2

∂2Ĥ0

∂Ĵ2
10

(∆Ĵ1)2 (2.2.29)

H0,0(Ĵ) = H0,0(Ĵ10) +
∂H0,0

∂Ĵ10

∆Ĵ1 (2.2.30)

Hr,−s(Ĵ) = Hr,−s(Ĵ10) +
∂Hr,−s

∂Ĵ10

∆Ĵ1 (2.2.31)

12
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Where
∆Ĵ1 = Ĵ1 − Ĵ10 (2.2.32)

Substituting relations (2.22.9)-(2.2.30) to (2.2.20) and using equation (2.2.21) we finally obtain to
second order the Hamiltonian that describe the motion near a resonance

∆H̄ =
1

2
G(∆Ĵ1)2 − F cos θ̂1 (2.2.33)

G(Ĵ10) =
∂2Ĥ0

∂Ĵ2
10

(2.2.34)

F (Ĵ10) = −2εHr,−s(Ĵ10) (2.2.35)

This is a significant result, that proposes that the motion near a resonance is alike of the pendulum
with the characteristic regions of libration, separatrix and rotation motion. Consequently the ∆H̄
Hamiltonian is usually referred as a the standard Hamiltonian. The frequency of the libration
motion near the stable θ̂10 = 0 fixed point is slow and it is given when FG > 0 from

ω̂1 =
√
FG = O[(εHr,−s)

1/2] (2.2.36)

The maximum excursion ∆Ĵ1max is given by half the separatrix width

∆Ĵ1max = 2

(
F

G

)1/2

= O[(εHr,−s)
1/2] (2.2.37)

Thus for accidental degeneracy both the width of the resonance and the frequency of the libration
motion are small of order O(ε).
For intrinsic degeneracy we proceed analogously bu due to the fact that Ĥ0 has the form of (2.2.26)
the relations (2.2.27) and (2.2.28) become

˙̂
J1 = O(εHr,−s) (2.2.38)

˙̂
θ1 = O(εH0,0, εHr,−s) (2.2.39)

In contrast with the accidental degeneracy, here
˙̂
J1 and

˙̂
θ1 are of the same order, as such we must

Taylor expand the modified equation (2.2.20) around both Ĵ10 and θ̂10 = 0 with ∆θ̂1 = θ̂1

Ĥ0(Ĵ) = Ĥ0(Ĵ2) = constant (2.2.40)

H0,0(Ĵ) = H0,0(Ĵ10) +
∂H0,0

∂Ĵ10

∆Ĵ1 +
1

2

∂2Ĥ0,0

∂Ĵ2
10

(∆Ĵ1)2 (2.2.41)

Hr,−s(Ĵ) = Hr,−s(Ĵ10) +
∂Hr,−s

∂Ĵ10

∆Ĵ1 +
1

2

∂2Ĥr,−s

∂Ĵ2
10

(∆Ĵ1)2 (2.2.42)

cos θ̂1 = 1− 1

2
(∆θ̂1)2 (2.2.43)

13
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As a result, ignoring the constant terms the standard Hamiltonian in first order in ε has the form

∆H̄ =
1

2
G(∆Ĵ1)2 − 1

2
(∆θ̂1)2 (2.2.44)

G = ε
∂2Ĥ0,0

∂Ĵ2
10

+ 2ε
∂2Ĥr,−s

∂Ĵ2
10

(2.2.45)

F = −2εHr,−s (2.2.46)

The frequency near the elliptic point θ̂10 = 0 now is

ω̂1 =
√
FG = O(ε) (2.2.47)

Hence, in the intrinsic degeneracy the libration frequency is very small compared to the accidental
degeneracy. On the other hand the width of the resonance is large compared to the accidental case.

∆Ĵ1max = 2

(
F

G

)1/2

= O(1) (2.2.48)

To conclude this section we will report that if ε is not sufficiently small then secondary resonances
appear in the Hamiltonian of (2.2.9) that can destroy the adiabatic invariant Ĵ2. These resonances
appear from the overlapping of the primary resonances in the Ĵ1 − θ̂1 phase space and can be
removed in analogous way with the primary resonances that we have just described.

2.3 Lie Perturbation Theory

In general, there are many physical problems where the previous techniques have to carried out to
higher order. For instance, in the calculation of the ponderomotive force the first order calculation
gives zero, so we have to calculate the next non-zero term which is of second order [17]. Carrying
out higher order expansion using the classical procedures that we have described can be extremely
difficult. That difficulty arises for the fact that in classical perturbation theory, the generating
function from the old variables (J ,θ) to the new ones (J̄ , θ̄), has a mixed variable form W (J̄ ,θ).
As a consequence, the transformation appears in mixed form as well and that is the reason why
expressions to second order and above are extremely lengthy to be derived.
In contrast to the classical perturbation theory, Lie perturbation theory is based on Lie transforms
which act on functions as operators and not in variables.
Starting from an autonomous system let x = (p, q) be a vector of generalized coordinates in the
phase space. We consider a function w(x̄, ε) called Lie generating function that satisfies the equation

dx̄

dε
= [x̄, w] (2.3.1)

Equation (2.3.1) describes Hamilton’s equations in the form of a Poisson Bracket [ ] with the role
of Hamiltonian the Lie generating function w and the parameter ε as time. In that way equation
(2.3.1) generates a canonical transformation for any ε of the form

x̄ = x̄(x, ε) (2.3.2)

In addition, we introduce the evolution operator T which acts on any function g at the transformed
point x̄(x, ε) producing a new function f evaluated at the original point x.

f = Tg (2.3.3)

14
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Then
f(x) = g(x̄(x, ε)) (2.3.4)

As a result of (2.3.2),(2.3.3) and (2.3.4) when the g function is the identity function we obtain the
representation of the transformation in terms of T

x̄ = Tx (2.3.5)

Again we have to highlight that the operator T is a functional operator in (2.3.3) and not the
variable operator of (2.3.2). Assuming in a first case (2.3.2) we have deducted (2.3.5) as a result of
the functional nature of T .
In order to evaluate the transformation T we introduce the Lie operator L

L = [w, ] (2.3.6)

Combining relations (2.3.1),(2.3.5) and (2.3.6) we obtain the differential equation for T

dT

dε
= −TL (2.3.7)

The differential equation (2.3.7) has the solution

T = exp

{
−
∫ ε

L(ε′) dε′
}

(2.3.8)

Thus, for any canonical transformation generated by the function w dictated by (2.3.1) the new
Hamiltonian K has to be

K(x̄(x, ε)) = H(x) (2.3.9)

As such, applying the definition (2.3.3) of the operator T we have

K = T−1H (2.3.10)

Now we want to generalise our results to time dependent Hamiltonian. For non autonomous systems
w, T, L are explicit functions of time, then equations (2.3.1)-(2.3.8) are still valid. On the contrary,
equation (2.3.10) is wrong and must be replaced [18] by the expression

K = T−1H + T−1

∫ ε

0

T (ε′)
∂w(ε′)

∂t
dε′ (2.3.11)

Equations (2.3.6) and (2.3.8) provide complete description of the canonical transformations using
Lie generating functions w.
Expanding w,L, T,H,K in powers of ε we derive perturbation series [19] that every order has to
evaluated.

w =
∞∑
n=0

εnwn+1 (2.3.12)

L =
∞∑
n=0

εnLn+1 (2.3.13)

T =
∞∑
n=0

εnTn (2.3.14)

H =
∞∑
n=0

εnHn (2.3.15)

15
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K =
∞∑
n=0

εnKn (2.3.16)

As a result from (2.3.6) we obtain
Ln = [wn, ] (2.3.17)

Combining relations (2.3.7),(2.3.13) and (2.3.14) and equating order by order we obtain the recursion
relation for Tn

Tn = − 1

n

n−1∑
m=0

TmLn−m (2.3.18)

In fact, since T0 = I the identity operator we can have from (2.3.18) the expression of Tn in terms
of all orders of Ln. Finally, for the inverse operator T−1 with TT−1 = T−1T = I ⇒ T−1

0 = I we
have

dT−1

dε
= LT−1 (2.3.19)

T−1
n = − 1

n

n−1∑
m=0

Ln−mT
−1
m (2.3.20)

Therefore,

T1 = −L1 (2.3.21a)

T2 = −1

2
L2 +

1

2
L2

1 (2.3.21b)

T3 = −1

3
L3 +

1

6
L2L1 +

1

3
L1L2 −

1

6
L3

1 (2.3.21c)

T−1
1 = L1 (2.3.22a)

T−1
2 =

1

2
L2 +

1

2
L2

1 (2.3.22b)

T−1
3 =

1

3
L+ 3 +

1

6
L1L2 +

1

3
L2L1 = +

1

6
L3

1 (2.3.22c)

In order to obtain the equations for the wn we multiply (2.3.11) with T and then we differentiate
with respect to ε

∂T

∂ε
K + T

∂K

∂ε
=
∂H

∂ε
+ T

∂w

∂ε
(2.3.23)

Using equation (1.3.7) with (dT
dε
→ ∂T

∂ε
) due to the explicit dependence and multiplying by T−1 we

obtain
∂w

∂t
=
∂K

∂ε
− LK − T−1∂H

∂ε
(2.3.24)

Inserting in (2.3.24) the series expansions (2.3.12)-(2.3.16) and equating the same powers we obtain
in nth order

∂wn
∂t

= nKn −
n−1∑
m=0

Ln−mKm −
n∑

m=1

mT−1
n−mHm (2.3.25)
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Manipulating equation (2.3.25), providing us with

D0wn = n(Kn −Hn)−
n−1∑
m−1

(Ln−mKm +mT−1
n−mHm) (2.3.26)

The operator D0 is the total time derivative along the unperturbed orbits of H0 much like in the
classical perturbation theory.

D0 =
∂

∂t
+ [ , H0] (2.3.27)

Thus, the equations for the wn parts of the generating function are

D0w1 = K1 −H1 (2.3.28a)

D0w2 = 2(K2 −H2)− L1(K1 +H1) (2.3.28b)

D0w3 = 3(K3 −H3 − L1(K2 + 2H2)− L2(K1 +
1

2
H1)− 1

2
L2

1H1 (2.3.28c)

Equations (2.3.28) characterized be the same set of variables since as we said before the operator
T is a functional operator, as such the variables are dummy symbols in those equations. Solving
equations (2.3.28) is extremely easier due to the dummy variables dependence. As in the classical
theory the K Hamiltonian in every equation is selected properly in order to vanish any secular
terms. In that way the new Hamiltonian K is expressed in the new coordinates just by changing
x→ x̄.
Finally, the generating Lie function w displays the same issues as far the resonances are concerned
with the generating functions in classical perturbation theory.

17



Chapter 3

Wave-Particle Interactions

3.1 Hamiltonian Formulation

The aim of this chapter is to apply the techniques of perturbation theory in the framework of
Hamiltonian formulation for the wave-particle interaction problem treated in [5]-[8].
The unperturbed system consists of a gyrating charged particle in a uniform magnetic field and is
described by the unperturbed Hamiltonian

H0p =
1

2M

∣∣∣p− q

c
A
∣∣∣2 (3.1.1)

Where M is the mass of the particle,q is the charge and c the light velocity and the uniform magnetic
field is B0 = B0ẑ. The vector potential A(r) must satisfy the relation B0 = ∇×A, as such for
uniform magnetic field B0 we have the freedom to select the vector potential as

A = −B0yx̂ (3.1.2)

The velocity of the particle is v = (vx, vy, vz) whereas the canonical momentum with the aid of
(3.1.2) is

p = Mv +
q

c
A = (Mvx −MΩy,Mvy,Mvz) (3.1.3)

Where Ω is the gyration/cyclotron frequency defined by

Ω =
qB0

Mc
(3.1.4)

Thus, the Hamiltonian (3.1.1) is decomposed to

H0p =
p2
z

2M
+

p2
y

2M
+

1

2M
(px +MΩy)2 (3.1.5)

The equilibrium Hamiltonian (3.1.5) is conserved and integrable, therefore the motion of the particle
in completely tractable and characterized by a gyration perpendicular to B0 with frequency Ω and
a uniform motion along B0.
Now that we have defined the unperturbed motion we want to investigate what happens when a
wave interacts with the charged particle and the original motion is perturbed. For the rest of the
chapter the interacting wave/s will be electrostatic, except the last section where we will treat the
Alfvén wave interaction. As a result an electrostatic wave perturbation is defined by a potential

Φ = Φ0 sin
(
k‖z + k⊥y − ωt

)
(3.1.6)
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Potential (3.1.6) corresponds to a elliptically polarized electrostatic wave in the y − z plane of the
form

E = −∇Φ = −Φ0[k‖ cos
(
k‖z + k⊥y − ωt

)
ẑ + k⊥ cos

(
k‖z + k⊥y − ωt

)
ŷ] (3.1.7)

Without loss of generality we have assumed that the electrostatic wave propagates in the y − z
plane with k⊥ > 0 and obliquely to the magnetic field in an angle tan θ = k⊥

k‖
.

As a result the perturbed motion is defined by

H =
p2
z

2M
+

p2
y

2M
+

1

2M
(px +MΩy)2 + qΦ0 sin

(
k‖z + k⊥y − ωt

)
(3.1.8)

A convenient canonical transformation is the guiding center transformation which describes the
position of guiding center and the gyration of the particle about it, obtained from the generating
function

W = MΩ[
1

2
(y − Y )2 cotφ− xY ] (3.1.9)

The transformation then yields

tanφ =
vx
vy

(3.1.10a)

Y = y + ρ sinφ (3.1.10b)

X = x− ρ cosφ (3.1.10c)

px = −MΩY (3.1.10d)

py = −MΩρ cosφ (3.1.10e)

PY = MωX (3.1.10f)

Pφ =
Mc

q
µ =

1

2

Mv2
⊥

Ω
=

1

2
MΩρ2 (3.1.10g)

As we have mention before Ω is the gyration frequency, µ is the magnetic moment,φ is the gyration
angle, Pφ the angular momentum, ρ is the gyration radius and X, Y are the guiding center position.
Then the Hamiltonian (3.1.8) transforms to

H =
p2
z

2M
+ ΩPφ + qΦ0 sin

(
k‖z + k⊥Y − k⊥ρ sinφ− ωt

)
(3.1.11)

In Hamiltonian (3.1.11) we normalize time with the inverse of the gyro-frequency Ω of the ion,
distances to the inverse of the parallel wave vector k‖ and masses with particle’s mass M .

h =
p2
z

2
+ Pφ + ε sin(z + αY − αρ sinφ− νt) (3.1.12)

Where we have defined

ε =
qΦ0k

2
‖

MΩ2
=
(ωb

Ω

)2
(3.1.13)

ν =
ω

Ω
=
r

s
(3.1.14)
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The ωb frequency is the bounce frequency of the particle in the wave, ε is the perturbation strength,
α = k⊥

k‖
and the ν = r

s
parameter with r, s integers, defines the relation between the wave fre-

quency and the gyration frequency. Hamiltonian (3.1.12) is described by X, Y = constant, as such
transforming to the wave frame using the generating function

W = (z + αY − νt)Pψ + Y P ′Y (3.1.15)

As a result we have the following transformation equations

ψ = z + αY − νt (3.1.16a)

pz = Pψ (3.1.16b)

Y ′ = Y (3.1.16c)

P ′Y = PY (3.1.16d)

Substituting (3.1.16a)-(3.1.16d) to (3.1.12) the Hamiltonian is transformed to

h =
P 2
ψ

2
− νPψ + Pφ + ε sin(ψ − αρ sinφ) (3.1.17)

Finally we make a final transformation using the generating functionW = (PZ+ν)Z which generates
the relations

Pψ = PZ + ν (3.1.18a)

Z = ψ (3.1.18b)

Therefore, dropping the constant terms the Hamiltonian (3.1.17) takes the final form

h =
P 2
Z

2
+ Pφ + ε sin(Z − αρ sinφ) (3.1.19)

With
ρ =

√
2Pφ (3.1.20)

Hamiltonian (3.1.19) is autonomous, thus the energy is conserved, but not integrable and represents
a gyrating particle under the presence of a electrostatic wave. In this point it is important to
highlight that the perturbation amplitude strength ε of the wave has to be considered small for
Canonical perturbation theory to be applicable. Furthermore using the Jacobi-Anger relation we
obtain the Fourier decomposition of the sinusoidal term

e−iαρ sinφ =
∞∑

n=−∞

Jn(αρ)e−inφ (3.1.21)

h = h0 + εh1 (3.1.22)

h0 =
P 2
Z

2
+ Pφ (3.1.23)

h1 =
∞∑

n=−∞

Jn(αρ) sin(Z − nφ) (3.1.24)
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Equations (3.1.22)-(3.1.24) have the form of (2.2.1) and (2.2.2) with Hl,m = h1,n = Jn(αρ) where
Jn(αρ) is the Bessel function of integer n order. Consequently, the techniques and the results that
we have derived in the previous chapter are applicable to the study of the Hamiltonian (3.1.22) due
to the small amplitude perturbation amplitude ε. On the contrary, in Chapter 4 where our work
is presented, the existence of a finite amplitude wave in the h0 unperturbed Hamiltonian results to
different classes of particles with different characteristics.
Hamiltonian h is already expressed in the action-angles variables J = (PZ , Pφ),θ = (Z, φ) of the
unperturbed h0 that describes the gyro-motion of the ion. Whereas this formulation is very common
in most textbooks and classical papers that investigate the wave-particle interaction, our framework
posses the very important element of considering all the cases of the possible relationship between ω
and Ω [20] for the general case of an obliquely propagating wave through the relation ν = ω

Ω
= r

s
. In

that way, we cover the whole frequency spectrum from very low frequency waves (VLF) and Alfvén
waves in the magnetosphere to high frequency low hybrid waves and radio waves in fusion plasma.
Last but not least our method includes cases where ν 6∈ Z. In principle equation (3.1.14) along
with the respective resonance condition dictates the dynamics as well as the way that resonances
arise.
The first order resonance condition of Hamiltonian h is

PZ − n = 0 (3.1.25)

With ωZ = PZ and ωφ = 1 accordingly to equation (2.2.3). The resonance condition (3.1.25) in the
original variables using (3.1.16b) and (3.1.18a) takes the well documented form, called ion-cyclotron
resonance.

w1 = −
∫
h1

dt = (3.1.26)

Or
pz − ν − n = 0⇒ k‖vz − ν − n = 0 (3.1.27)

Relation (3.1.27) is the general resonance condition that takes into consideration the nature of the
perturbing electrostatic waves through the frequency spectrum. For instant for the case k‖ = 0
(intrinsic degeneracy) and super-harmonic wave ω > Ω with ν 6∈ Z ⇒ r

s
∈ Q, the resonance

condition (3.1.27) can not be satisfied. As a result, for sufficiently small ε, Lie perturbation theory
produce to first order smooth invariants of the perturbed motion. The gyro-motion is slightly
distorted and no stochastic phenomena are present. On the other hand, when the perturbation
strength increases, then second order Lie perturbation theory is needed to incorporate the non-
linear dynamics, while new resonance conditions appear. Thus, the present formulation contains
richer information about the nature of the interaction as well as about the transient shaping of the
phase space as we increase the perturbation strength compared to other investigations.
As we have seen in the previous chapter the resonance condition (3.1.27) can be be divided in two
different categories.
• For k‖ 6= 0 an accidental degeneracy occurs whenever resonance condition (3.1.27) is satisfied for
a series of n integer values for particles with different z-momentum.
• For k‖ = 0 the propagation is transverse to the magnetic field B0 and the system is intrinsically
degenerate, since whenever the resonance condition ν+n = 0 is met for specific integer n it is valid
for all values of pz.
In the next sections we will apply the formalism of secular and Lie perturbation theory in order
to derive important results about the nature of the dynamics for different frequency spectrum
electrostatic waves.
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3.2 Ion interaction with an Oblique Electrostatic Wave

In the present section we will investigate the interaction of oblique waves with ions. Due to the
fact that for k‖ 6= 0 there is accidental degeneracy, resonances appear for any value of ν in both
the super and sub harmonic cases. Oblique wave-ion interaction together with perpendicular wave
propagation are well documented [5]-[9],[17][20] due to the strong resulting chaotic heating of the
interacting ions which in turn has important application to the heating of the particles’ distribution
tail in fusion experiments.
We start from the autonomous normalized Hamiltonian, described in equations (3.1.22)-(3.1.24)
with k‖ 6= 0 and we follow the same steps as in the Section 2.2 of secular theory. For a single
resonance of l order in the rotating frame with weak perturbation ε << 1 we have

W = (Z − lφ)P̂Z + φP̂φ (3.2.1)

ĥ =
P̂ 2
Z

2
+ (P̂φ − lP̂Z) + ε

∞∑
n=−∞

Jn(αρ̂) sin (Ẑ − (n− l)φ̂) (3.2.2)

ρ̂ =

√
2(P̂φ − lP̂Z) (3.2.3)

Near a resonance variable Ẑ is slowly varying so we can average over the fast angle φ̂ and we obtain

h̄ =
P̂ 2
Z

2
+ (P̂φ − lP̂Z) + εJl(αρ̂) sin Ẑ (3.2.4)

With h̄ = constant and P̂φ = Pφ + lPZ = constant. The fixed points are given from analogous
expressions to (1.2.22) and (1.2.23)

Ẑ0 = ±π
2

(3.2.5)

P̂Z − l ± ε
∂Jl
∂P̂Z

= Pψ − ν − l ± ε
∂Jl
∂Pψ

= 0 (3.2.6)

Expanding h̄ around the stationary point P̂Z0 we obtain the standard Hamiltonian of the (2.2.33)
form near the lth resonance.

∆h̄ =
1

2
(∆P̂Z)2 + εJl(αρ̂) sin Ẑ (3.2.7)

A a result, the maximum half width of the lth resonance according to (2.2.37) is

∆P̂Zmax = 2|εJl(αρ̂)|1/2 (3.2.8)

Using the transformation relations (3.1.12)-(3.1.18), the width of the resonance in the velocity space
is

∆vzmax = 2

∣∣∣∣qΦ0Jl(αρ)

M

∣∣∣∣1/2 (3.2.9)

From equation (3.2.8) it is evident that increasing the perturbation strength ε the width of the
resonance also increases. Hence there is a lower perturbation amplitude threshold εth where two
neighboring resonances overlap and lead to stochastic motion of the ion. In that case our con-
siderations breaks down and the invariant P̂φ = Pφ + lPZ is destroyed or modified. In that case
we need to incorporate Lie perturbation theory to second order in order to include the non-linear
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effects of the increased ε. As we will see soon we will derive a second order non-linear resonance
condition associated with overlap of the primary resonances as well as an asymptotic expansion of
the invariant of the system.
We first begin with the evaluation of the lower perturbation amplitude εth for stochasticity using the
Chirikov criterion [21] which in fact states that when the separation between to adjacent resonances
is smaller that the sum of their widths then the overlap process is taking place.
The separation δ of two adjacent resonances l, l + 1 is given by the resonance condition (3.1.25)

δ = ∆PZ = 1⇒ δ = ∆vz =
Ω

k‖
(3.2.10)

Thus, the criterion for the onset of stochasticity combining (3.2.10) and (3.2.9) yields

2ε1/2(|Jl(αρ)|1/2 + |Jl+1(αρ)|1/2) = 1 (3.2.11)

Considering that |Jl(αρ)| ∼ |Jl+1(αρ)| then stochasticity appears when

ε > εth =
1

16|Jl(αρ)|
(3.2.12)

Now we proceed to second order Lie perturbation methods that have been sketched in Chapter 2
for the Hamiltonian h from equations (3.1.22)-(3.1.24).

D0w1 = K1 − h1 (3.2.13)

We choose K1 = 0 in order to examine the invariants of the motion away from the resonance
PZ = l = n. Therefore since K0 = h0 we have

K = K0 =
P̄Z
2

+ P̄φ (3.2.14)

Hamiltonian K is integrable and P̄Z , P̄φ = constants. In order to evaluate the motion away of the
resonance we need to find the generating function w1 given from equation (3.2.13).

w1 = −
∫
h1 dt =

∑
n6=l

Jn(αρ)
cos (Z − nφ)

PZ − n
(3.2.15)

As such the integral of motion far from the resonance of lth order through the operator transfor-
mation of relation (2.3.21a) to first order are

P̄Z = TPZ = PZ − ε
∂w1

∂Z
= PZ + ε

∑
n6=l

Jn(αρ)
sin (Z − nφ)

PZ − n
(3.2.16)

P̄φ = TPφ = Pφ − ε
∂w1

∂φ
= Pφ − ε

∑
n6=l

nJn(αρ)
sin (Z − nφ)

PZ − n
(3.2.17)

Our results results can be interpreted as follows. For small perturbation ε, near the lth resonance
the trapped particles in the resonance’s pendulum potential characterized by the integral P̂φ =
Pφ + lPZ = constant. Away of the separatrix ∆h̄ = 0 of the lth resonance, combining integrals
(3.2.16) and (3.2.17) for PZ = l + l0 we have that the motion is characterized by the same integral
I = Pφ+ lPZ = constant for n = l. As a result the is no significant acceleration of trapped particles
near the separatrix of the resonance to the free region.
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On the other hand, when the perturbation strength ε increases beyond the value εth a web is formed
connecting the low energy particles to unbounded high energy states. Another way to depict these
results is to consider the Hamiltonians in [3][4].

Ha =
p2

2
− A(εt) cos z (3.2.18)

Hb =
p2

2
+ A(εz) cos z (3.2.19)

Hamiltonians Ha, Hb describe the development of the phase space near a resonance through the
transition from small to large perturbation amplitude. Using adiabatic theory based on the elliptic
functions of the pendulum followed by a Lie transformation results to the logarithmic divergence
of the first order adiabatic invariant near the separatrix of the resonance due to the the stochastic
region that has started to develop around the unstable separatrix. Although stochastic motion
transports the low energetic ions near the resonance’s separatrix to the unbound phase space it is
described as a diffusion process, particles can become trapped and untapped from bouncing from
one resonance to another. The important role to the stochastic web is to connect the coherent
resonant islands with the chaotic region of the phase space where the ions can really accelerated
efficiently.
We now want to examine the consequences of the non-linearity, when the perturbation strength ε in
Hamiltonian h in (3.1.22)-(3.1.24) is large enough (ε ∼ εth) and the first order perturbation theory
breaks down, by extracting a non-linear resonance condition that corresponds to the overlap of the
resonances. Hence we need to carry out Lie perturbation theory to order ε2.
We proceed to find the non-linear resonance condition from the divergence of the w2 Lie generating
function setting K2 = 0 in equation (2.3.28b). We want investigate the dynamics away from primary
resonances in the overlapping phase space, as such equation (2.3.28.b) takes the form

D0w2 = −L1(K1 + h1) (3.2.20a)

h1 =
∞∑

n=−∞

Jn(αρ) sin(Z − nφ) (3.2.20b)

K1 = Jl(αρ) sin (Z − lφ) (3.2.20c)

L1 = [w1, ] (3.2.20d)

w1 =
∑
n6=l

Jn(αρ)
cos (Z − nφ)

PZ − n
(3.2.20e)

The resonance condition will be derived from the −L1h1 term since term −L1K1 has zero mean
value for ν 6= l. As a result we obtain

−L1h1 =
∑
n,m
n6=l

{Anm cos (m− n)φ+Bnm cos (2Z − (m+ n)φ)} (3.2.21)

Anm = −1

2

[
JmJn

(PZ − n)2
+
mJmJ ′n
PZ − n

+
J ′mJn
PZ − n

]
(3.2.22)

Bnm = −1

2

[
JmJn

(PZ − n)2
+
mJmJ ′n
PZ − n

− J
′
mJn

PZ − n

]
(3.2.23)

J ′ = ∂J (αρ)

∂Pφ
=

1

α
√

2Pφ

∂J (αρ)

∂ρ
(3.2.24)
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As a result the non-linear resonance conditions are

2PZ − (m+ n) = 0⇒ 2(pz − ν)− (m+ n) = 0⇒ k‖vz − ω =
m+ n

2
Ω (3.2.25)

And
m = n (3.2.26)

For m + n = 2λ resonance condition (2.2.25) is the same with the linear resonance (2.1.25). The
separation δ between two adjacent secondary resonances from (3.2.25) is

δ =
1

2
(3.2.27)

Thus, the secondary resonances are going to interact for εth,secondaries << 2εth,primaries and further
contribute to the development of chaotic domain in phase space [17][22].

3.3 Ion Interaction with a Transverse Electrostatic Wave

We now head to the analysis for the transverse wave-particle interaction. Due to the intrinsic
degeneracy the relation of the wave frequency ω to gyro-frequency Ω expressed by ν parameter, has
important role in the nature of the interaction [7][8][17][20].
The normalized Hamiltonian h of the system is

h = Pφ + ε
∞∑

n=−∞

Jn(ρ) sin (nφ− νt) (3.3.1)

Where we have eliminated the constant momentum term px using the generating functions W =
(y− px0)p′y and W = (p′x + px0)x). Then the constant phase that is present in the sinusoidal term is

time absorbed. Finally the generating function W = y′2

2
cotφ has been used to obtain the guiding

center variables.
Hamiltonian (3.3.1) reveals the resonance condition which is characterized by intrinsic degeneracy.

n− ν = 0 (3.3.2)

Thus a resonance can appear on specific value of ν but for successive values of Pφ since it does not
depend from the action variable Pφ.
We will treat separately the case in which ν 6∈ Z and no primary resonances appear for sufficiently
small perturbation ε and the case where ν ∈ Z. The first case correspond to sub-harmonic and
super-harmonic waves while the second only to super-harmonic.

3.3.1 ν 6∈ Z Case

In this case the resonance condition (3.3.2) is not met. Thus we can choose K1 = 0 the first order
Lie perturbation theory.

K = K0 = h0 = P̄φ (3.3.3a)

D0w1 = −h1 (3.3.3b)

w1 =
∞∑

n=−∞

Jn(ρ)

n− ν
cos (nφ− νt) (3.3.3c)

P̄φ = Pφ + ε

∞∑
n=−∞

nJn(ρ)

n− ν
sin (nφ− νt) = constant (3.3.3d)
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We proceed to second order calculation when ε increases to strength. Again we want to find the
non-linear resonance condition first. In that manner we set K2 = 0 in (2.3.28b) and we obtain

D0w2 = −L1h1 (3.3.4)

Then

−L1h1 =
∞∑

n,m=−∞

[An,m cos ((n+m)φ− 2νt) +Bn,m cos (n−m)φ] (3.3.5)

With

An,m =
1

2(m− ν)

[
nJnJ ′m −mJmJ ′n

]
(3.3.6a)

bn,m =
1

2(m− ν)

[
nJnJ ′m +mJmJ ′n

]
(3.3.6b)

J ′ = ∂J (ρ)

∂Pφ
=

1

ρ

dJ (ρ)

dρ
(3.3.6c)

We can now evaluate the singular w2 from (3.3.4) and (3.3.5) and obtaining the non-linear resonance
conditions

w2 =
∞∑

n,m=−∞

[
An,m

n+m− 2ν
cos ((n+m)φ− 2νt) +

Bn,m

n−m
cos (n−m)φ

]
(3.3.7)

The resonance conditions are

n+m = 2ν (3.3.8)

n = m (3.3.9)

For sub-harmonic and super-harmonics waves with s = 2,(ν = r/s) the resonance condition can be
satisfied while for waves with s 6= 2 there are no resonances except when m = n.

3.3.2 ν ∈ Z Case

In contrast to the previous case, the first order resonance condition n = ν now can satisfied so we
proceed with secular perturbation theory.
At first we evaluate the w1 generating function by choosing an appropriate K1 term in order to
eliminate secularities in equation (1.3.28a) whereas the Hamiltonian h of the system is given from
(3.3.1). The divergent form of w1 is given in (3.3.3d) so we select K1 as

K1 = Jν(ρ) sin ν(φ− t) (3.3.10)

Then the smooth w1 is

w1 =
∞∑
n6=ν

Jn(ρ)

n− ν
cos (nφ− νt) (3.3.11)

The transformed Hamiltonian K is

K = P̄φ + εJν(ρ̄) sin ν(φ̄− t) (3.3.12)
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As we have mention in Section 2.3 Lie transforms concern functions and not variables, as such the
bar-variables are dummy variables, plain symbols. So we will drop the bars from the variables in
order to make the symbolism easier since we know that Hamiltonian K refers to the transformed
variables.
We now proceed to secular perturbation theory. Using the generating function W = (φ− t)νP̂φ we
obtain

φ̂ = ν(φ− t) (3.3.13a)

Pφ = νP̂φ (3.3.13b)

The Hamiltonian (2.3.12) the transforms to

K = εJν(ρ̂) sin φ̂ (3.3.14)

ρ̂ =

√
2νP̂φ (3.3.15)

Hamiltonian (3.3.14) is integrable since is autonomous with one degree of freedom. Therefore we
search for the fixed points (P̂φ0, φ̂0) given by the analogous equations (2.2.21) and (2.2.22).

εν

ρ̂

∂Jν(ρ̂)

∂ρ̂
sinφ = 0 (3.3.16)

εJν(ρ̂) cos φ̂ = 0 (3.3.17)

Thus the fixed points are

φ̂0 = ±π
2

(3.3.18)

∂Jν(ρ̂)

∂ρ̂

∣∣∣∣
ρ̂0

= 0 (3.3.19)

We expand (3.3.14) around both fixed points obtaining

sin φ̂ = 1− 1

2
(∆θ̂)2 (3.3.20)

Jν(ρ̂) = Jν(ρ̂0) +
1

2

∂2Jν(ρ̂)

∂ρ̂2
0

(∆ρ̂)2 (3.3.21)

The first order term in (3.3.21) is zero due to relation (3.3.19). Now we manipulate equation (3.3.21)
using the Bessel differential equation

ρ̂2
0

∂2Jν(ρ̂)

∂ρ̂2
0

+ ρ̂0
∂Jν(ρ̂)

∂ρ̂0

+ (ρ̂2
0 − ν2)Jν(ρ̂0) = 0 (3.3.22)

Again in (3.3.22) the middle term is zero due to (3.3.19). As a result combining (3.3.21) and (3.3.22)
we produce

Jν(ρ̂) = Jν(ρ̂0) + Jν(ρ̂0)
1

2

[(
ν

ρ̂0

)2

− 1

]
(∆ρ̂)2 (3.3.23)

Inserting relations (3.3.20) and (3.3.22) in the Hamiltonian in (3.3.14) we obtain the standard
Hamiltonian near an intrinsically degenerate resonance like (2.2.44).

K =
1

2
G(∆ρ̂)2 +

1

2
F (∆φ̂)2 (3.3.24)
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With

G = εJν(ρ̂0)

[(
ν

ρ̂0

)2

− 1

]
(3.3.25)

F = −εJν(ρ̂0) (3.3.26)

The maximum half width of the intrinsic resonance is

∆ρ̂max = 2

∣∣∣∣FG
∣∣∣∣1/2 =

2∣∣∣( νρ̂0 )2 − 1
∣∣∣1/2 (3.3.27)

Although the primary intrinsic resonances are independent of the perturbation strength ε, nonethe-
less when ν = ρ̂0 then ∆ρ̂max → ∞. As a result even in low perturbation strength when ν = ρ̂0

then the two primary resonances at φ̂0 = ±π
2

inevitably overlap, producing chaotic regions.

3.4 Ion Interaction with Multiple Electrostatic Waves

In this section we will briefly examine the presence of multiple electrostatic waves interacting with a
charged particle. This scenario is more realistic compared to the one wave case in both astrophysical
and fusion plasmas.
The Hamiltonian of the interaction in guiding center variables for a finite spectrum of oblique
electrostatic waves is

H =
p2
z

2
+ ΩPφ + q

N∑
i=1

Φ0 sin (ki‖z + ki⊥Y − kiρ sinφ− ωit) (3.4.1)

References [10]-[12] using second order Lie perturbation theory have proven that coherent acceler-
ation of an ion takes place for N = 2 when the non-linear beating of the waves is of the form

ν1 − ν2 = n with n ∈ Z (3.4.2)

With νi = ωi

Ω
and Ω is the gyro-frequency.

3.5 Ion Interaction with an Alfvén Wave

In this section we are going to investigate the interaction between an ion and an Alfvén wave.
Alfvén waves are magneto-hydrodynamic waves of fundamental nature that are present both in
fusion and astrophysical plasmas. The presence of Alfvén waves is associated with solar corona
heating and ion heating in tokamaks through chaotic heating in a similar way with the electrostatic
waves. Since Alfvén waves are sub-harmonic with ω < Ω, sufficient ion heating can be produced
when the amplitude of the wave is large, in other words if the magnetic perturbation is comparable
to the ambient magnetic field. In that way the adiabatic invariant of magnetic moment µ breaks
and the heating can be analogous to that of the oblique electrostatic wave case.
We begin by deriving the basic characteristics of Alfvén waves as magnetic excitations by per-
turbing an incompressible, static and infinite magnetic slab in the framework of Ideal Magneto-
Hydrodynamics [23].
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We consider a infinite,homogeneous, static, and incompressible plasma slab with density ρ0, pres-
sure P0 and magnetic field B0. We proceed by perturbing the equilibrium state, described by the
following equations

V = υ1 (3.5.1)

B = B0 + b1 (3.5.2)

The subscript 0 refer to the equilibrium values while the subscript 1 describe the perturbation.
The dynamics of the perturbed system are defined by the Ideal Magneto-Hydrodynamics equations
which are consisted of continuity and momentum equations together with Maxwell equations for
the magnetic field.

ρ0
dV

dt
=

(∇×B)×B
4π

(3.5.3a)

∂B

∂t
=∇× (V ×B) (3.5.3b)

∂B

∂t
=∇× (V ×B) (3.5.3c)

∇ · V = 0 (3.5.3d)

∇ ·B = 0 (3.5.3e)

Equations (3.5.3a)-(3.5.3d) are expressed in c.g.s unit system. Using equations (3.5.1),(3.5.2) and
considering that |B0| >> |b1| expressions (3.5.3a)-(3.5.3d) linearized to first order

ρ0
dυ1

dt
=

(∇× b1)×B0

4π
(3.5.4a)

∂b1

∂t
=∇× (υ1 ×B0) (3.5.4b)

∇ · υ1 = 0 (3.5.4c)

∇ · b1 = 0 (3.5.4d)

As a result, the solutions of (3.5.4a)-(3.5.4d) have the Fourier form

Aie
i(kr−ωt) (3.5.5)

Where Ai are the respective constant amplitudes of each perturbed variable. Substituting the
solutions (3.5.5) to (3.5.4a)-(3.5.4d) we obtain

−4πρ0ωυ1 = (k × b1)×B0 = (k ·B0)b1 − (B0 · b1)k (3.5.6a)

−ωb1 = k × (υ1 ×B0) = (k ·B0)υ1 − (k · υ1)B0 (3.5.6b)

k · υ1 = 0 (3.5.6c)

k · b1 = 0 (3.5.6d)

Multiplying (3.5.6a) with k and using (3.5.6c), (3.5.6d) we obtain

B0 · b1 = 0 (3.5.7)
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−ρ0ωυ1 =
(k ·B0)b1

4π
(3.5.8)

−ωb1 = (k ·B0)υ1 (3.5.9)

Equations (3.5.8) and (3.5.9) define that

ω2 =
(k ·B0)2

4πρ0

(3.5.10)

Vphase =
ω

k
= VA cos θ (3.5.11)

Consequently, Alfvén waves are magnetic fluctuations, transverse to the equilibrium magnetic field
B0 that propagate in an oblique direction (cos θ = k̂ · B̂0) with phase velocity given by (3.5.11).
The velocity VA is called Alfvén velocity.

VA =
B0√
4πρ0

(3.5.12)

We proceed now to the Hamiltonian formulation using the characteristics of Alfvén from equations
(3.5.7) and (3.5.11).
Likewise the previous section we choose the equilibrium magnetic field B0 = B0ẑ. Then from
equation (3.5.7) and (3.5.11) an Alfvénic magnetic fluctuation b1 has the form

b1 = b1x̂ sin (k‖z + k⊥y − ωt) (3.5.13)

ω = k‖VA < Ω (3.5.14)

In addition, for the magnetic perturbation must be valid that b1 =∇×A1. As such we choose

A1 =
b1

k‖
ŷ cos (k‖z + k⊥y − ωt) (3.5.15)

Again without loss of generality we confine our investigation in the z − y plane for the wave
propagation. The equilibrium Hamiltonian H0p for the gyro-motion of the particle is given by
(3.1.1) with

A0 = −B0yx̂ (3.5.16)

Subsequently the Hamiltonian of the interaction is formulated as

H =
1

2M

∣∣∣p− q

c
(A0 +A1)

∣∣∣2 (3.5.17)

Again we normalize distances with inverse of k‖, times with inverse of Ω, masses with the ion mass
M and magnetic fields with B0. The obtained normalized Hamiltonian from (3.5.17) is

h =
pz
2

+
1

2
(px + y)2 +

py
2
− b1py

B0

cos (z + αy − νt) +
1

2

( b1

B0

)2

cos2 (z + αy − νt) (3.5.18)

As before α = k⊥
k‖

. Furthermore from the condition |B0| >> |b1| we set the amplitude ε as

ε =
b1

B0

(3.5.19)

The time dependence of the vector potential A1 introduces a perturbing electric field

E1 = −∂A1

∂t
= −b1VAŷ sin (k‖z + k⊥y − ωt) (3.5.20)
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In order to eliminate the electric field we perform a transformation to the wave frame z − VAt
followed by the standard guiding center transform.

W =
1

2
(y − Y )2 cotφ− xY (3.5.21a)

W = ((z + αY − νt)Pψ + Y P ′Y (3.5.21b)

As a result,
ψ = z + αY − νt (3.5.22a)

pz = PΨ (3.5.22b)

py = −ρ cosφ (3.5.22c)

y = Y − ρ sinφ (3.5.22d)

Finally the Hamiltonian h takes the form

h = h0 + εh1 + ε2h2 (3.5.23)

h0 =
P 2
Z

2
+ Pφ (3.5.24)

h1 =
∞∑

n=−∞

ρJn(αρ) cosφ cos (PZ − nφ) (3.5.25)

h2 =
1

4

[
1 +

∞∑
n=−∞

Jn(αρ) cos 2(PZ − nφ)

]
(3.5.26)

We have used the transformation relations Pψ = PZ + ν and Z = ψ from (3.1.18a) and (3.1.18b)
along with the Jacobi-Anger expansion in (3.1.19). We can manipulate the h1 part in (3.5.25) using

cosφ cos (PZ − nφ) =
1

2
[cos (PZ − (n+ 1)φ) + cos (PZ − (n− 1)φ)] (3.5.27)

Then h1 takes the form

h1 =
1

2

∞∑
n=−∞

ρ[Jn−1(αρ) + Jn+1(αρ)] cos (PZ − nφ) (3.5.28)

Finally, we use the Bessel identity

Jn−1(αρ) + Jn+1(αρ) =
2n

αρ
Jn(αρ) (3.5.29)

The h1 has become

h1 =
1

α

∞∑
n=−∞

nJn(αρ) cos (PZ − nφ) (3.5.30)

It is quite impressive that equation (3.5.30) is of the same form with (3.2.20b) which corresponds
to the oblique electrostatic case. Therefore, even though the Alfvén wave is magnetically excited
interacts with the charged particles to first order in an identical way with the electrostatic case
in Section 3.1. The ion-cyclotron resonance PZ − n = 0 appears as the primary resonance of the
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interaction as well in the oblique electrostatic case.
Consequently it is possible for the sub-harmonic Alfvén waves with finite amplitude ε ∼ O(1) to
accelerate cold ions in the solar corona through stochastic processes (overlap of resonances). Then
the Maxwellian distribution tail will be heated up to a Lorentzian distribution characterized by
super-thermal tail. That kind of distribution function for electrons has been proven to sufficiently
accelerate the solar wind to the observable terminal velocities within the formulation of a kinetic
exospheric model without a-priori assumption for the thermal energy in the base of the corona since
heat energy is extracted from the model itself [24].
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Chapter 4

Non-Linear Interactions of Ions with
Electrostatic Wave Packets

4.1 Dispersive Wave Packets

In general, the waves either electromagnetic or electrostatic are not in the form of plane waves,
rather they are wave packets that are localized in space and could also be of finite duration in time.
This is commonly the case in fusion plasmas where the externally applied radio frequency waves
have a finite spatial extent, as well as in space plasmas, where Low Hybrid solitary structures occur
As a result, in the present chapter we investigate the realistic scenario of charged particle interaction
with a finite amplitude wave packet and not with a monochromatic electrostatic wave.
A space and time dependent signal f(r, t) can described through its Fourier Transform representa-
tion as

f(r, t) =
1

(2π)4

∫∫
f̃(k, ω)ei(kr−ωt) dkdω (4.1.1)

In most cases a non-vanishing f̃(k, ω) exists only for specific values of ω related to the values of k’s
as ω = ωdisp(k). In that way we can write

f̃(k, ω) = 2πf̃0(k)δ(ω − ωdisp(k)) (4.1.2)

As a result, equation (4.1.1) takes the form

f(r, t) =
1

(2π)3

∫
f̃0(k)ei(kr−ωdisp(k)t) dk (4.1.3)

Generally, we can assume that wave vectors k lie around a main wave vector k0, then it is true that
f̃0(k) = 0 when |k − k0| > δk. Expanding ωdisp(k) around k0 we obtain

ωdisp(k) = ωdisp(k0) +
∂ωdisp(k)

∂k

∣∣∣∣
k0

k′ +
1

2

∑
ij

∂2ωdisp(k)

∂ki∂kj

∣∣∣∣
k0

k′ik
′
j + ... (4.1.4)

k′ = k − k0 (4.1.5)

We set ωdisp(k0) = ω0 while second term in the expansion defines the group velocity

vg =
∂ωdisp(k)

∂k

∣∣∣∣
k0

(4.1.6)
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Through expansion (4.1.4) equation (4.1.3) reads

f(r, t) =
1

(2π)3

∫
g̃(k′, t)ei[(k

′+k0)r−(ω0+vgk
′)t] dk′ (4.1.7)

g̃(k′, t) = f̃0(k′ + k0) exp

{
− i

2

∑
ij

∂2ωdisp(k)

∂ki∂kj

∣∣∣∣
k0

k′ik
′
jt+ ...

}
(4.1.8)

Finally,

f(r, t) = ei(k0r−ωt)
1

(2π)3

∫
g̃(k′, t)eik

′(r−vgt) dk′ (4.1.9)

The integral of relation (4.1.9) is the spatial Fourier Transform of g(r − vgt, t), therefore

f(r, t) = g(r − vgt, t)ei(k0r−ωt) (4.1.10)

Equation (4.1.10) represents a plane wave with wave number k0 and frequency ω0 whose amplitude
is spatially and temporally modulated due to the envelope function = g(r−vgt, t). The carrier wave
travels with phase velocity vph and the envelope travels with group velocity vg whose expressions
are

vph =
ω0

|k0|2
k0 =

ωdisp(k0)

|k0|2
k0 (4.1.11)

vg =
∂ωdisp(k)

∂k

∣∣∣∣
k0

= ∇kωdisp(k)|k0 (4.1.12)

Thus, an interaction between a charged particle and a wave packet can be illustrated in the following
Hamiltonian [15][16]

H =
1

2M

∣∣∣p− q

c
A
∣∣∣2 + g(r − vgt, t) sin (k0r − ω0t) (4.1.13)

In this situation the particle can either interact with the envelope function non-resonantly and
coherently change his momentum due to the ponderomotive force or with the carrier wave resonantly
and accelerated through stochastic processes.
For short times provided by

t <

[
Max

∣∣∣∣∣∑
ij

∂2ωdisp(k)

∂ki∂kj

∣∣∣∣
k0

∣∣∣∣∣(δk)2

]−1

(4.1.14)

the quadratic terms in (4.1.4) can be neglected. Then g̃(k′, t) = f̃0(k′ + k0), as such the envelope
does not change shape (spreading) and the wave-packet is periodic. For larger times the higher order
terms in (4.1.4) become important and the envelope function spreads in space as it propagates with
vg, this is the case of solitary wave packet. Equation (4.1.14) suggests that when the spectrum of
the wave packet is narrow or equivalently when the wave packet is broad in space then it can be
characterized as periodic for all times.
We want to investigate those broad and large amplitude wave-packets by decompose them to discrete
components-plain waves. We begin by expanding the time and space dependent signal f(r, t) in
Fourier Series. Since we have not specify the form of f(r, t) this would be problematic for non-
periodic signals because the Fourier Series would not converge to f function outside the periodicity
range we have defined, even though f(r, t) is an analytic function in the whole real regime. That
difficulty can be bypassed by stating that in a tokamak, where toroidal symmetry exists, a particle
encounters many wave-packets and we are only interested to examine the first passage. That
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situation is perfectly reflected by the Fourier expansion where in the peridocity range the series
converges to the suitably truncated version fc(r, t) and outside of that range the series provides
us with periodic wave-packets. The dynamics of a first passage provided by the Fourier expansion
coincides with the dynamics of the wave-particle interaction as described in the beginning. In order
to include all the important dynamics of the original wave-packet to the truncated one we have to
select the periodicity range wide enough. A module of that range can be estimated from the width
in the arguments of the wave packet. As a result by selecting a periodicity of 2Li for the spatial
dependencies and 2T for the time dependence of appropriate order verifies that we have included
all the important attributes of the real wave packet in the truncated version.

fc(r, t) =
∞∑
n,m

f̃n,me
i(nr−mt) (4.1.15)

Equation (4.1.15) have derived by normalizing each spatial dependence with the corresponding
inverse wave number 1/Li and the time dependence with inverse frequency 1/T . The complex
Fourier coefficients f̃n,m are given from

f̃n,m =
1

16L1L2L3T

∫ L1

−L1

∫ L2

−L2

∫ L3

−L3

∫ T

−T
fc(r, t)e

−i(nr−mt) dr dt (4.1.16)

The Fourier coefficients in (4.1.15) are not equivalent [25] in magnitude and obey a specific ordering.
The Fourier expansion converges to the analytic f(r, t) in the set D = {[−L1, L1] × [−L2, L2] ×
[−L3, L3]× [−T, T ]}, then we know that for d ∈ D the Fourier terms will exponentially decay as∣∣∣f̃n,m∣∣∣ ≤ Ade

−(|n1d1|+|n2d2|+|n3d3|+|mdt|) (4.1.17)

The property of the exponential decay of Fourier coefficients provides us with a rule for grad-
ing the Fourier harmonics in groups of different order of smallness [25]. Specifically, by setting
(d1, d2, d3, dt) = (L1, L2, L3, T ) as an optimal value for any positive integer values of (K1, K2, K3, KT )
we can define the following classes of smallness

terms of order 0 ≤ |n|+ |m| ≤ mean[Ki, KT ] smallness O(A(e−(Kn)idi)0) (4.1.18)

terms of order mean[Ki, KT ] ≤ |n|+ |m| < 2mean[Ki, KT ] smallness O(A(e−(Knjs)idi)1)
(4.1.19)

Equations (4.1.18) and (4.1.19) reveal that the (n,m) values are not independent in a way that we
can define m = m(n) that obeys the ordering of magnitude of the Fourier coefficients. Choosing
parameter Ki, KT in a way to only one harmonic (n0,m0) be of zero Fourier order we have

fc(r, t) = f̃n0e
i(n0r−m0(n0)t) +

∑
(n,m)∈E

f̃ne
i(nr−m(n)t) (4.1.20)

Unlike the Fourier expansion of (4.1.15), relation (4.1.20) posses finite harmonic terms in set E
defined by equation (4.1.19) as well as ordered properly. We can write (4.1.20) as

fc(r, t) =

[
f̃n0 +

∑
(n,m)∈E

f̃ne
i((n−n0)r−(m(n)−m0(n0))t)

]
ei(n0r−m0(n0)t) (4.1.21)

Equation (4.1.21) is in principle the discrete counterpart to equation (4.1.9) by whiting

m(n) = m0(n0) + vg(n)(n− n0) (4.1.22)
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Where bold symbols are integer valued vectors in E and vg(n) is the group velocity defined as finite
difference. As a result we obtain

fc(r, t) =

[
f̃n0 +

∑
n′,∈E

f̃n′ei[n
′(r−vg(n′)t)]

]
ei(n0r−m0(n0)t) (4.1.23)

The series in the bracket represent a truncated Fourier Series version of the envelope function
gc(r − vgt). In the following sections we are interested to explore the interaction of a charged
particle with a discrete spectrum of planes waves with different and ordered amplitudes that form a
wave packet. In that way, we can naturally introduce the interaction of an ensemble of large ampli-
tude monochromatic wave accompanied by a finite number of narrow spectrum of lower amplitude
waves that form a broad wave packet with a charged particle. This representation of the interaction
coincides with the evidences of large-amplitude coherent electromagnetic and electrostatics waves
in the near-Earth space. Unlike the broad spectrum low amplitude waves occupying large coordi-
nate and time domains, these large amplitude waves represent various solitary structures such as
electrostatic solitons, Langmuir waves, Alfvén pulses, whistler wave packets, and Low-Hybrid wave
bursts. Similar large amplitude wave bursts were reproduced in fusion laboratory experiments [26].

4.2 Theoretical Hamiltonian Formulation

According to the previous realizations the Hamiltonian that we are going to investigate is

H =
1

2M

∣∣∣p− q

c
A
∣∣∣2 + qΦ0 sin (kr − ωt) +

N∑
n=1

qΦn sin (knr − ωnt+ ψn) (4.2.1)

In order to make our calculations easier we will assume that k = k‖ẑ, while kn = kn‖ẑ+ kn⊥ŷ. The
magnetic field is uniform B = B0ẑ and the particle charge is q.
We normalize distances with inverse of k‖, time with inverse of Ω and masses with ion mass M .
Finally we use the following transformations similarly to Section 3.1.

W = (z − νt+
π

2
)Pψ (4.2.2a)

W = (PZ + ν)Z (4.2.2b)

W =
1

2
(y − Y )2 cotφ− xY (4.2.2c)

Therefore the Hamiltonian in (4.2.1) takes the form

h =
P 2
Z

2
+ Pφ − A cosZ + A

N∑
n=1

∞∑
b=−∞

εnJm(αn⊥ρ) sin (αn‖Z − bφ− (νn − αn‖ν)t+ ψ) (4.2.3)

Where we have set

A =
qΦ0k

2
‖

MΩ2
=
(ωb

Ω

)2

(4.2.4a)

εn =
Φn

Φ0

(4.2.4b)

νn =
ωn
Ω

(4.2.4c)
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αn‖ =
kn‖
k‖

(4.2.4d)

αn⊥ =
kn⊥
k‖

(4.2.4e)

Equation (4.2.4b) is derived due to the ordering of the Fourier coefficients in (4.1.20) as such we can
set εn = ε and the standard Jacobi-Anger expansion for Bessel functions have been used. Equations
(4.2.4a) and (4.2.4b) constitute the cornerstone of our analysis and the reason why stands out from
the previous frameworks. The ordering ε in the third term of (4.2.3) is fixed due to the Fourier
ordering of (4.1.20) in respect to the amplitude A. In other words, while we can vary amplitude A
from large to small values, parameter ε guarantee us that the rest of the waves are small amplitude
compared to A. For instance, when A = 1/ε then εA = 1, compared to the smallness parameter
ε both perturbing terms are in the non linear regime but due to the fact that they will always
retain the same ordering between them, the application of perturbation theory of first order is
valid. In the present framework we want the trapping amplitude A to be large, so trapping can
occurred in the unperturbed motion. The second important aspect of our formulation reflects on
the νn − αn‖ν term which expresses the magnitude of dispersion in the wave packet. It is obvious
from equation (4.2.3) that the dispersion term defines how the resonances are formed as well as the
dynamics of the system. Constant terms have been either dropped out or absorbed in the phase
ψn. Hamiltonian (4.2.3) in contrast to the previous Chapter, represents a gyrating particle inside a
stationary electrostatic potential while interacting with perturbing electrostatic waves with varying
magnitude frequencies. As such, this Hamiltonian not only describes perfectly the electrostatic
turbulence but also determines the kind of turbulence through the magnitude of the dispersive
term νn − αn‖ν. Hence low frequency turbulence which is responsible for anomalous transport can
be obtained when νn − αn‖ν = O(ε).
In order to exploit the techniques of perturbation theory we have to express the integrable h0 part
of (4.2.3) in action angles variables (J ,θ).

h0 =
P 2
Z

2
+ Pφ − A cosZ (4.2.5)

The h0 Hamiltonian resembles that of a pendulum and the Pφ momentum is already the action of
the system. This is maybe the first time that Hamiltonian (4.2.5) is treated in the literature and
once more we have to point out that the trapping of the gyrating particles leads to development of
important non-linear phenomena [26]. The parameter which defines whether the particles gyrates
around the magnetic field freely or between two reflective points in z-axis is

m =
2A

h0 − Pφ + A
(4.2.6)

The first scenario described from m < 1 while the second one for m > 1 and we will consider each
one of them separately.
• For the free particle case m < 1 with −π ≤ Z ≤ π we have

Jr =
4

π

(A
m

)1/2

E(m) (4.2.7)

ωr =
∂h0

∂Jr
=
∂h0

∂m

∂m

∂Jr
= −2A

m2

∂m

∂Jr
= −2A

m2

(∂Jr
∂m

)−1

=
(A
m

)1/2 π

K(m)
(4.2.8)
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• For the trapped particle case m > 1 with −Z3c ≤ Z ≤ Z3c we have

Z3c = 2 arcsin
( 1√

m

)
(4.2.9)

Jl =
8

π
A1/2

[
E(1/m) +

(
1−m
m

)
K(1/m)

]
(4.2.10)

ωl =
∂h0

∂Jl
= 2A

∂(1/m)

∂Jl
= 2A

( ∂Jl
∂(1/m)

)−1

=
πA1/2

2K(1/m)
(4.2.11)

From the definition of m in equation (4.2.6) we can already express h0 in action variables without
even find the appropriate generating function for that transformation. As a result we obtain

h0 =

[
2

m(Ji)
− 1

]
A+ Pφ with i = r, l (4.2.12)

The generating function and the angle variables relations for free gyration m < 1 are

Wr(Jr, Jφ, Z, φ) = 4

(
A

m

)1/2

E(s|m) + Jφφ (4.2.13a)

s =
Z

2
(4.2.13b)

θr =
πu

K(m)
(4.2.13c)

u = F (s|m) (4.2.13d)

While for trapped gyration case m > 1

Wl(Jl, Jφ, Z, φ) = 4A1/2

[
E(s̃|1/m) +

(
1−m
m

)
K(s̃ | 1/m)

]
+ Jφφ (4.2.14a)

sin s̃ =
√
m sin s (4.2.14b)

θl =
πũ

2K(1/m)
(4.2.14c)

ũ = F (s̃|1/m) (4.2.14d)

Since we succeeded in expressing the integrable part in action variables now we have to express the
perturbation part h1 in (4.2.3) in the action-angle variables of the integrable system. This process
will be treated separately for each case.

4.2.1 m < 1 Case

In this case, the particle is not trapped in the large amplitude wave potential,due to the fact that
his total energy is greater than potential energy. The particle gyrates around the magnetic field
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interacting with the rest of the small amplitude waves. Thus it is expected for his unperturbed
motion to be non-periodic. Our goal is to express the variable Z as Z = Z(θr, Jr). Using the Jacobi
Elliptic Functions and their properties we obtain

Z = θr + 4
∞∑
s=1

xs
sin(sθr)

s
(4.2.15)

xs =
qs

1 + q2s
(4.2.16)

Substituting (4.2.15) in the h1 part of (4.2.3) we obtain a term that needs special treatment due to
its complexity.

exp

{
i4αn‖

∞∑
s=1

xs
sin(sθr)

s

}
= exp

{
i

∞∑
s=1

as(n) sin(sθr)

}
(4.2.17)

as(n) =
4αn‖
s

xs (4.2.18)

In order to exploit this term we will use a generalization of Bessel Functions, the Infinite variable
Bessel Functions of one index of integer order Jn({am}∞1 ). The convergence of the

∑∞
s=1 sas(n)

verifies the existence of such functions which admit the following expansion of the Jacobi-Anger
type

exp

{
i
∞∑
s=1

as(n) sin(sθr)

}
=

∞∑
l=−∞

Jl({as(n)}∞1 )eilθr (4.2.19)

As a result the h Hamiltonian in action angle variables for m < 1 takes the form

h = h0 + h1 (4.2.20)

h0 =

[
2

m(Jr)
− 1

]
A+ Jφ (4.2.21)

h1 = Aε
N∑
n=1

∑
b,l

Jb(αn⊥ρ)Jl({as(n)}∞1 ) sin ((αn‖ + l)θr − bφ− (νn − αn‖ν)t+ ψ) (4.2.22)

For ε << 1 Lie perturbation theory produces the singular first order w1 generating function for
K1 = 0

w1r = Aε

N∑
n=1

∑
b,l

Jb(αn⊥ρ)Jl({as(n)}∞1 )
cos ((αn‖ + l)θr − bφ− (νn − αn‖ν)t+ ψ)

R
(4.2.23)

Where R is the resonant denominator

R = (αn‖ + l)ωr − b− (νn − αn‖ν) (4.2.24)

Thus, the K Hamiltonian is integrable with

K = h0 =

[
2

m(J̄r)
− 1

]
A+ J̄φ (4.2.25)
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With

J̄r = Jr − ε
∂w1r

∂θr
(4.2.26)

J̄φ = Jφ − ε
∂w1r

∂φ
(4.2.27)

Invariants (4.2.26) and (4.2.27) diverge not only in the resonant points but also as we close out the
separatrix (m→ 1) since

lim
m→1

K(m) =
1

2
ln

(
16

1−m

)
(4.2.28)

The logarithmic divergence of the invariants near the seperatrix indicates a diffusion process where
particles cross this boundary multiple times changing their status from trapped to free and vice
versa. Let now consider the simple case where n = 1 and the particles are far from the separatrix
m << 1 then we have

h0 =
2A

m(Jr)
(4.2.29)

Moreover, only the fist term s = 1 has significant impact in equation (4.2.15) while the Nome q can
be written in the m << 1 limit as

q =
m

16
(4.2.30)

Then equation (4.2.15) transforms to

Z = θr +
m

4
sin θr (4.2.31)

Finally from relation (4.2.7) we obtain that

Jr = 2

(
A

m

)1/2

(4.2.32)

As a result, the Hamiltonian h in the limit m << 1 takes the form

h =
J2
r

2
+ Pφ + εA

∑
b,l

Jb(α1⊥ρ)Jl(α1‖
m

4
) sin ((α1‖ + l)θ − bφ− (ν1 − α1‖ν)t+ ψ) (4.2.33)

Hamiltonian h in (4.2.33) represents a free particle gyration perturbed by a wave packet. When
there is no dispersion (ν1 − α1‖ν) = 0 we obtain a modified the ion-cyclotron resonance condition

(α1‖ + l)Jr − b = 0 (4.2.34)

In the following we will highlight the important attributes of resonance condition

(α1‖ + l)Jr − b− (ν1 − α1‖ν) = 0 (4.2.35)

In general resonance condition (4.2.35) suggests accidental degeneracy in the system which in fact
depends from the magnitude of the dispersion term (ν1 − α1‖ν). From equation (4.2.32) for m <<
1 ∼ O(ε) then Jr ∼ O( 1

ε1/2
). For instance, for large dispersion the resonance condition (4.2.35) can

be satisfied only for large integer values of w. Moreover for α1‖ + l = 0 the the system develops a
transition from accidental degeneracy to intrinsic degeneracy. Resonances in the high energy region
of phase space suggest an unbounded chaotic domain available for the particle to accelerated due
to overlap condition.
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Hamiltonian h in (4.2.33) contains rich information about the dynamics of the m << 1 system that
must also exist in the general case.
For α1‖ = 0⇒ k1‖ = 0 then the Hamiltonian (4.2.33) takes the form

h =
J2
r

2
+ Pφ − εA

∑
b

Jb(α1⊥ρ) sin (bφ+ ν1t− ψ) (4.2.36)

Hamiltonian (4.2.36) is essential the Hamiltonian (3.3.1) of a transverse electrostatic wave interact-
ing with a free gyrating particle as we have studied in Section 2.3, with the amplitude parameter
being exactly the εA of (4.2.36).
For α1‖ 6= 0 since m << 1 we can use the expansion of the Bessel function

Jl(α1‖
m

4
) =

1

Γ(l + 1)

(
α1‖m

8

)l
for l > 0 (4.2.37)

J−l(α1‖
m

4
) =

(−1)l

Γ(l + 1)

(
α1‖m

8

)l
for l > 0 (4.2.38)

As a result for m << 1 the most important terms in the h1 part of (4.2.33) are given for l = −1, 0, 1
and the Hamiltonian takes the form

h = h0 + h1 (4.2.39a)

h0 =
J2
r

2
+ Pφ (4.2.39b)

h1 = εA
∑
b

l=−1,0,1

Jb(α1⊥ρ)Jl(α1‖
m

4
) sin ((α1‖ + l)θ − bφ− (ν1 − α1‖ν)t+ ψ) (4.2.39c)

Finally from the relation Jr = Jr(m) in (4.2.32), (4.2.39c) and (4.2.37)-(4.2.38) we obtain that

h1 = h1a + h1β (4.2.40)

h1a = εA
∑
b

Jb(α1⊥ρ) sin (α1‖θ − bφ− (ν1 − α1‖ν)t+ ψ) (4.2.41)

h1β =
εα1‖A

2

2J2
r

∑
b

l=−1,1

lJb(α1⊥ρ) sin ((α1‖ + l)θ − bφ− (ν1 − α1‖ν)t+ ψ) (4.2.42)

Equation (4.2.42) reveals the ordering of a second order force compared to the interaction proposed
from h1a in (4.2.41). Specifically, the combined amplitude εA is exactly the same with that of the
plane wave-ion interaction in Chapter 3.
As a result the interaction of a particle with a plane oblique electrostatic wave corresponds to a
sub-case m << 1 for the non-linear interaction of a particle with an electrostatic wave packet to
first order in trapping strength A. Setting A = 1, the h1a part indicates the interaction with a
plane electrostatic wave which is of order ε. On the other hand, the magnitude of the h1β term
is varying due to the dependence from the action Jr, since this expression is valid for m << 1
considering m ∼ ε the interaction proposed from h1β is of order ε2. This is a significant result that
reveals that for a free particle the main interaction includes the carrier wave of the wave packet
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while the interaction proposed by h1β is of second order. Subsequently, it is reasonable to proceed to
the examination of the dominant way of interaction between the free particle and the wave packet
which is through the resonant interaction with the carrier wave of the wave packet.
Therefore, if the resonance condition α1‖Jr − b − (ν1 − α1‖ν) = 0 defined by relation (4.2.41) is
satisfied for the integer b0 then from first order Lie perturbation theory we choose K1 in order to
eliminate the secularity in the w1 generating function

K1 = εAJw0(α1⊥ρ) sin (α1‖θr − w0φ− (ν1 − α1‖ν)t+ ψ) (4.2.43)

The new transformed Hamiltonian K is

K = K0 +K1 (4.2.44)

K0 =
J2
r

2
+ Pφ (4.2.45)

K1 = εAJb0(α1⊥ρ) sin (α1‖θr − b0φ− (ν1 − α1‖ν)t+ ψ) (4.2.46)

We transform to the rotating frame in order to derive the standard Hamiltonian near the accidental
resonance.

W = (α1‖θr − b0φ− (ν1 − α1‖ν)t+ ψ)Ĵr + φP̂φ (4.2.47a)

θ̂r = α1‖θr − b0φ− (ν1 − α1‖ν)t+ ψ (4.2.47b)

Jr = α1‖Ĵr (4.2.47c)

Pφ = −b0Ĵr + P̂φ (4.2.47d)

ρ̂ =

√
2(P̂φ +−b0Ĵr) (4.2.47e)

Using transformations (4.2.47a)-(4.2.47e) to (4.2.45) and (4.2.46) we obtain

K0 = α2
1‖
Ĵ2
r

2
− (b0 + ν1 − α1‖ν)Ĵr + P̂φ (4.2.48)

K1 = εAJb0(α1⊥ρ̂) sin θ̂r (4.2.49)

The result of the removal of the resonance is that Hamiltonian K = K0 +K1 from equations (4.2.45)
and (4.2.46) is integrable. The fixed points in the Ĵr − θ̂r plane are

∂K

∂Ĵr

∣∣∣∣
Ĵr0

= 0 (4.2.50)

∂K

∂θ̂r

∣∣∣∣
θ̂r0

= 0⇒ θ̂r0 = ±π
2

(4.2.51)

Expanding Hamiltonian K around the Ĵr0, together with the fixed point equation (4.2.48) and
dropping constant terms we produce to first order the standard Hamiltonian near the resonance

K = α2
1‖(∆Ĵr)

2 + εAJw0(α1⊥ρ̂) sin θ̂r (4.2.52)
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Thus the maximum half width of the resonance is

∆Ĵrmax = 2

∣∣∣∣∣εAJb0(α1⊥ρ̂)

α2
1‖

∣∣∣∣∣
1/2

(4.2.53)

Using the Chirikov criterion [21] in an analogous way like (3.2.9) and (3.2.10) together with the
resonance condition (4.2.35) for l = 0 we obtain the trapping amplitude Ath, above which resonance
overlapping occurs.

Ath =
1

16ε|Jb0(α1⊥ρ̂0|)
(4.2.54)

Equation (4.2.55) defines the magnitude of the non linearity in order for a chaotic web to be formed
into the upper energy domain of phase space as Ath ∼ 1/ε. In particular for m << 1 the phase
space exhibits distant resonant islands due to the accidental degeneracy condition of (4.2.35), when
satisfied for l 6= (−1, 0, 1). Specifically when the resonance happens for l = 0 then the combined
εAth threshold is exactly the same with the threshold amplitude in equation (3.2.12) for the one
wave. Therefore, around the resonance region characterized by l0 = 0 a stochastic web could be
evident while the rest of the high energy phase space exhibits distant islands. On the other hand
when α1‖ + l = 0, then intrinsic degeneracy takes place and the resonance condition is

b+ (ν1 − α1‖ν) = 0 (4.2.55)

Due to the intrinsic degeneracy it is possible the phase space between the distance accidental
resonant islands to be altered. Finally if α1‖ 6∈ Z then only accidental resonances occur in the
system.

4.2.2 m > 1 Case

In contrast to the previous case the particle now is trapped in the potential while gyrates around
the magnetic field. The Z = Z(θl, Jl) relation is given from

Z = 4
∞∑
s+ 1

2

xs
sin(2sθl)

s
(4.2.56)

Thus using the previous relations we obtain

h = h0 + h1 (4.2.57)

h0 =

[
2

m(Jl)
− 1

]
A+ Jφ (4.2.58)

h1 = Aε
N∑
n=1

∑
b,l

Jb(αn⊥ρ)Jl({as(n)}∞
s+ 1

2
) sin (lθl − bφ− (νn − αn‖ν)t+ ψ) (4.2.59)

Similarly with the previous, the first order generating function which provide us with the position
of the resonances is

w1l = Aε
N∑
n=1

∑
b,l

Jw(αn⊥ρ)Jl({as(n)}∞
s+ 1

2
)
sin (lθl − bφ− (νn − αn‖ν)t+ ψ)

R
(4.2.60)

Again the resonance condition is given from

R = lωl − b− (νn − αn‖ν) = 0 (4.2.61)
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The transformed integrable new Hamiltonian K has the form

K = h0 =

[
2

m(J̄l)
− 1

]
A+ J̄φ (4.2.62)

As we close out the separatrix m → 1 the invariants J̄l and J̄φ logarithmically diverge as in the
m < 1 case. It is of great interest to examine if strongly trapped particles m >> 1 can find their
way to higher energies. As before we select only one n = 1 linear wave.
When m >> 1⇒ 1

m
<< 1 thus the h0 part in (4.2.58) becomes

h0 = −A+ Pφ (4.2.63)

Equation (4.2.63) reveals that for strongly trapped particles the bounce motion is negligible com-
pared to the gyro-motion, but from equation (4.2.11) ωl = A1/2. As such, we must first express
Jl(m) from (4.2.10) and then insert it into the h0 term dropping the constant −A term from the
Hamiltonian.

h0 = A1/2Jl + Pφ (4.2.64)

Furthermore since 1
m
<< 1 the first important term in equation (4.2.56) is for s = 1

2

q =
1

16m
(4.2.65)

Z =
2√
m

sin θl (4.2.66)

Hence, the h1 part in (4.2.59) can be written as

h1 = Aε
∑
b,l

Jb(α1⊥ρ)Jl(
2α1‖√
m

) sin (lθl − bφ− (ν1 − α1‖ν)t+ ψ) (4.2.67)

From equation (4.2.10) for Jl expanding E(1/m) and K(1/m) to first order for the limiting case
1
m
<< 1 we obtain

Jl =
2A1/2

m
(4.2.68)

Thus, h1 has the form

h1 = Aε
∑
b,l

Jb(α1⊥ρ)Jl
( 2α1‖Jl

1/2

(2A1/2)1/2

)
sin (lθl − bφ− (ν1 − α1‖ν)t+ ψ) (4.2.69)

The resonance condition for the system takes the form

lA1/2 − b− (νn − α1‖ν) = 0 (4.2.70)

The resonance condition in (4.2.70) for the strongly trapped particle, proposes intrinsic degeneracy
for the system while includes the trapping strength A as a primary element of the resonance exis-
tence. Additionally, the dispersion magnitude plays significant role in the way the resonances formed
along with A. The resonance condition (4.2.70) can be fulfilled in both cases where (νn−α1‖ν) 6∈ Z
and (νn−α1‖ν) ∈ Z according to the values of A1/2. The strong trapping of the particles is reflected
in the Jl Bessel term which can be expanded as before

Jl>0

( 2√
m

)
=

1

Γ(l + 1)

(
1√
m

)l
(4.2.71)

J−l
( 2√

m

)
= (−1)lJl>0

( 1√
m

)l
(4.2.72)
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In that way only the l = −1, 0, 1 terms contribute to the sum of in (4.2.69) and the h1 part can be
written

h1 = h1a + h1b (4.2.73)

h1a = −εAα1‖
∑
b

Jb(α1⊥ρ) sin (bφ+ (ν1 − α1‖ν)t− ψ) (4.2.74)

h1β = εA3/4α1‖

(
Jl
2

)1/2 ∑
b

l=−1,1

lJb(α1⊥ρ) sin (lθl − bφ− (ν1 − α1‖ν)t+ ψ) (4.2.75)

Equation (4.2.74) proposes that the interaction of a deeply trapped particle with the wave packet
can be described with the interaction with a plane wave to order ε. The same result have been
obtained from equation (4.2.41) for the free particle. The important difference between the two
cases, reflects on equation (4.2.42). For A = 1 and 1

m
∼ ε the interaction defined by h1β is of order

ε3/2 in contrast to equation (4.2.42) where it was of order ε2. As a result in order examine possible
energy gain or loss for the trapped particle we need to take account both parts h1a, h1β in equations
(4.2.75) and (4.2.76). As we have expected the qualitative differences of our work with the rest of
the aforementioned references are pointed out in the apparent non-linear interaction between the
particle and the wave-packet in the trapping phase space.
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Chapter 5

Collective Particle Dynamics and
Transport

5.1 Averaged Action Variations

Aside from the stochastic acceleration a particle can also be accelerated or decelerated in the phase
space without the existence of a threshold in perturbation strength. The Lie perturbation theory
provides us with the ability to systematically evaluate the variation in the action variables due to
coherent dynamics.
The evolution of the a well behaved function f(z) expressed in the action angle phase space z =
(J ,θ, t) is given by

f(z) = SH(t)f(z0) (5.1.1)

Where SH(t) is the time evolution operator defined from the solutions of the equations of motion
from the Hamiltonian H = H0(J) + H1(z) of the system. In general the time evolution operator
is very difficult to computed especially for the non integrable systems that we have been examin-
ing. On the other hand, the Lie perturbation theory provides us with the capability to simplify
the new Hamiltonian of the system K through equations (2.3.28a)-(2.3.28c) by selecting properly
K1, K2, ... = 0 in order to obtain an integrable system that depends only from the new variables J̄ .
Then the new variables J̄ are the new actions of the system and the equation of motion as well as
the new time evolution operator SK(t) is easily evaluated.

H = H0(J) +H1(z)
Lie transform−−−−−−−−→ K(J̄) (5.1.2)

J̄ = J̄0 = constant (5.1.3)

θ̄ = θ̄0 + ωK(J̄0)(t− t0) (5.1.4)

f̄(z̄) = SK(t)f(z̄0) = f [J̄0, θ̄0 + ωK(J̄0)(t− t0), t] (5.1.5)

As we have mentioned before ωK(J̄0) symbolizes the frequencies for each J̄i with ωK(J̄0) = ∇J̄K|J̄0
.

In order to transform back to the original variables we exploit the Lie operator definition (2.3.3)
and equation (5.1.5)

f(z) = Tf(z̄) = T (z0)SK(t)f(z̄0) = T (z0, t0)SK(t)T−1(z0)f(z0) (5.1.6)

It is important to mention that the Lie evolution operators have been evaluated in the finite time
interval [t0, t] where wi(z0) = 0 so that T (z0) = I. The SK operator now acts on T−1(z0) Lie
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operator as defined form equation (5.1.5). As a result the evolution of f(z0) from equation (5.1.6)
in the time interval [t1, t2] is

f(z)t2 = T−1[J t1 ,θt1 + ωK(J t1)(t2 − t1), t2]f(z)t1 (5.1.7)

Where we have defined f(z)t = f(z(t)).
So far, our formulation was conducted for the motion of one particle in the presence of a perturba-
tion defined by the Hamiltonian H = H0(J)+H1(z). In order to realistically describe the dynamics
in a plasma we need to expand our results to many particles case.
According to equation (5.1.2) the new Hamiltonian of the system through Lie perturbation method,for
one particle, is K = K(J̄). Assuming that the plasma is collision-less which is a valid assumption
for both fusion and space plasma physics then the distribution function f̄(z̄) for the one particle is
the same with the distribution function for a collection of particles in a collision-less plasma which
has to obey Vlasov equation

∂f̄(z̄)

∂t
+ [f̄(z̄), K(J̄)] = 0 (5.1.8)

The form of Vlasov equation (5.1.8) suggests that any function f̄(z̄) that depends from the integrals
of Hamiltonian K is a solution, thus from equation (5.1.3) any function f̄(J̄) is a solution to the
Vlasov equation that dictates the collective particle behaviour in a collision-less plasma. As a
result, relation (5.1.6) through the Lie operator, transfers us to the collective particle dynamics of
the original system H when we choose f(z) = J . Then, we can use (5.1.7) to evaluate the variation
in the actions for the time interval [t1, t2] to second order as

∆Jn = Jn(t2)− Jn(t1) = (L1 +
1

2
L2 +

1

2
L2

1)Jn(t1) (5.1.9)

Relations (2.3.22a) and (2.3.22b) have been used for the expansion of T−1 operator and the index
n cores ponds to the conjugate angle variable, thus n = {(r, l), φ}. We define the average of any
dynamical variable ζ of the system as in equation (2.1.16)

〈ζ〉 =
1

(2π)2

∫∫
ζ dθdφ (5.1.10)

Averaging equation (5.1.9) we obtain the averaged variation of the original action of the system

〈∆Jn〉 = 〈[w1, Jn]〉+
1

2
〈[w2, Jn]〉+

1

2
〈[w1[w1, Jn]]〉 (5.1.11)

We are interested to employ equation (5.1.11) in evaluating the coherent dynamics of the strongly
trapped particle which described in equations (4.2.63),(4.2.74) and (4.2.75). Due to the fact that
both h1α and h1b are periodic in θl, φ variables in equations (4.2.74) and (4.2.75) then the generating
Lie function w1 would be periodic as well. As a result we obtain

〈[w1, Jn]〉 = 〈[w2, Jn]〉 = 0 (5.1.12)

Finally integrating by parts the third non-zero term in relation (5.1.11) we get

〈∆Jn〉 =
1

2

∂

∂Jn

〈(
∂w1

∂n

)2〉
(5.1.13)

The averaged variation of the actions for a particle collection due to a complete interaction with
the wave packet is obtained in the limit w1(t1 → −∞, t2 →∞). Equation (5.1.13) is very powerful
since it evaluates the averaged variations to second order in ε with the aid only of the first order
generating function w1.
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5.2 Coherent Dynamics of Strongly Trapped Particles

Using the results from Section 5.1 we want to examine the possible transport of the strongly trapped
particles interacting with the wave packet through Hamiltonian terms h1α and h1b in equations
(4.2.74) and (4.2.75). We choose to examine the strongly trapped particles in order to highlight the
non-linear interaction and the finite amplitude wave component that leads to trapping. Moreover it
is of great interest to examine the dispersion condition for the strong trapped particles to gain energy
in order to switch on the unbounded phase space plane where they can stochastically accelerated.
As a result of equation (5.1.13) using (4.2.74) and (4.2.75) results to

〈∆Jl〉 =
ε2A3/2

8
α2

1‖

∑
b

J 2
b (α1⊥ρ)

[
1

(A1/2 − b− p)2
+

1

(A1/2 + b+ p)2

]
(5.2.1)

In equation (5.2.1) we have set p = ν1 − α1‖ν and we have dropped periodically time fluctuating
terms since we want a complete interaction.
In order to examine the coherent acceleration in the trapped region we have to stay sufficiently far
from the resonance conditions A1/2 ± b± p = 0. In that way we distinct two different cases.
• When A1/2 ∈ Z then it always exists b0 ∈ Z such that A1/2 ± b0 = 0. As a result, the condition
for coherent acceleration to take place is

ε2A3/2α2
1‖J 2

b0
(α1⊥ρ)

8p2
≥ 1 (5.2.2)

Therefore, the dispersion magnitude p has to be

0 < p ≤
∣∣∣∣εA3/4α1‖Jb0(α1⊥ρ)

2
√

2

∣∣∣∣ ≤ εA3/4α1‖

2
√

2
(5.2.3)

The second inequality is a very crude estimation since Bessel functions fall off rapidly, and is
accurate only for small values of b0. Equation (5.2.3) has two important consequences. Firstly
when A → 0 then we have only one, small amplitude wave and coherent acceleration can not be
achieved, particles can only gain energy stochastically as it has examined in Chapter 2. Secondly,
the stronger the non-linear trapping amplitude A is the larger the values of b0 satisfy the relation
A1/2±b±p = 0, but in the same time the Bessel function Jb0 has fallen extremely rapidly, according
to the asymptotic form [27]

Jb0(α1⊥ρ) ∼ 1√
2πb0

(
eα1⊥ρ

2b0

)b0
(5.2.4)

Hence coherent acceleration can not be achieved in the very large A1/2 trapping amplitude limit.
Only through resonant acceleration the particles can find their way to the unbounded phase space.
In general, the upper limit in relation (5.2.3) is smaller than ε provide us with the information that
only for small dispersion p ≤ ε it is possible for the particles to coherently gain energy.
•When A1/2 6∈ Z then we can express it as A1/2 = I +D where I and D is the integer and decimal
part of A1/2. Hence, there is always exists b0 ∈ Z such that I ± b0 = 0. As a result, the inequality
that defines the magnitude of dispersion capable to observe coherent acceleration is

0 < |D ± p| ≤
∣∣∣∣εA3/4α1‖Jb0(α1⊥ρ)

2
√

2

∣∣∣∣ ≤ εA3/4α1‖

2
√

2
(5.2.5)

Equation (5.2.5) reveals that coherent acceleration can be proposed only when the magnitude of
dispersion p is near the decimal value D so that 0.1 ≤ p < 1. Finally, since strongly trapped
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particles characterized from 1
m
<< 1 then from equation (4.2.68) we obtain that the Jl action of

those particles must obey
Jl << 2A1/2 (5.2.6)

Stronger amplitude A translates to larger phase space available for trapping. Next, we proceed to
the visualization of our results for the different cases. For A = 1 from equation (5.2.6) the domain

Figure 5.1: Averaged action variation 〈∆Jl〉 over Pφ for trapping amplitude strength A = 1, ε = 0.01
and α1⊥ = α1‖ = 1 for different values of dispersion p compared to the dispersion threshold value
pth provided in equation (5.2.3). (a) p = 0.001, (b) p = 0.0035, (c) p = 0.1.

of the strongly trapped particles is characterized by Jl << 2. As a result, Figure 5.1 proposes that
there is significant Jl momentum transport in case (a) which represents the domain p < pth ' 0.0035.
Specifically, the Jl momentum variation exhibits a peak for low angular momentum values Pφ < 10
while the acceleration is still persistent in higher Pφ values as it gradually wears off in strength
compared to the first peak. In case (b) where p = pth we can barely consider important variation
around the first peak. Finally for p > pth strongly trapped particles cannot accelerated coherently.
Similar results are proposed when A = 10 but now the dispersion threshold pth is defined from
equation (5.2.5) and the domain of strongly trapped particles is Jl << 2

√
10. Moreover, according

to Figure 5.2 when A = 10 the Pφ domain that strong coherent acceleration appears, has shifted
to higher Pφ values compared to the A = 1 case. Figure 5.3(a) reveals that coherent momentum Jl
transfer is achieved only for large values of Pφ momentum since the first accelerating peak is met
around Pφ = 70 in contrast to cases A = 1, 10. The momentum transfer still exhibits a persistent
”periodic” nature as in the previous. In case (b) we cannot consider any acceleration because we
have overestimated the true value of pth from equation (5.2.3). Finally, in Figure 5.4 we verify that
not only the primary Jl transport peak has shifted to even greater gyro-radius than before but also
that the width of the peak broadens as we move from low to greater trapping amplitudes A.
This particular behaviour of the coherent Jl acceleration can be explained through the formalism of
the previous chapter. The unperturbed Hamiltonian h0 for the strongly trapped particles is given
from equation (4.2.64) as h0 = A1/2Jl + Pφ. As a result, the angular momentum must have the
same ordering with the bounce momentum Jl.

Pφ ∼ A1/2Jl (5.2.7)
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Figure 5.2: Averaged action variation 〈∆Jl〉 over Pφ for trapping amplitude strength A = 10,
ε = 0.01 and α1⊥ = α1‖ = 1 for different values of dispersion p compared to the dispersion threshold
value pth provided in equation (5.2.5). (a) p = 0.16, (b) p = 0.14, (c) p = 0.1.

Figure 5.3: Averaged action variation 〈∆Jl〉 over Pφ for trapping amplitude strength A = 100,
ε = 0.01 and α1⊥ = α1‖ = 1 for different values of dispersion p compared to the dispersion threshold
value pth provided in equation (5.2.3). (a) p = 0.01, (b) p = 0.11, (c) p = 0.8.

In addition the Jl momentum of the strongly trapped particles is given in equation (5.2.6) Jl <<
2A1/2. Therefore equation (5.2.7) reads

A1/2Jl ∼ Pφ << 2A (5.2.8)
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Equation (5.2.8) explains the behaviour of 〈∆Jl〉 variation in respect with Pφ momentum. As we

Figure 5.4: Averaged action variation 〈∆Jl〉 over Pφ for trapping amplitude strength A = 150,
ε = 0.01 and α1⊥ = α1‖ = 1 for different values of dispersion p compared to the dispersion threshold
value pth provided in equation (5.2.5). (a) p = 0.2, (b) p = 0.1, (c) p = 1.

increase the trapping strength A the Pφ momentum has to increase as well in order to be comparable
to A1/2Jl. In the same time the Jl domain of trapped particles has expanded due to the increased
trapping strength A and that leads to wider accepted values of Pφ momentum. For instance when
A = 100 for a trapped particle with Jl = 1 equation (5.2.8) proposes that 10 ∼ Pφ << 200 while
from Figure 5.2 the peak of the strongest acceleration is Pφ ' 70 and the width of the strongest
accelerating curve is characterized by 40 ≤ Pφ ≤ 90. Consequently our simplified analytical insight
explains adequately the Jl acceleration.
The importance of our results concerning the mean variation 〈∆Jl〉 is of great significance because
by adjusting the amplitude A we can select the range of gyro-radius of the particles that we want
to enhance their Jl momentum.
In the same manner as before for the Pφ variation we obtain

〈∆Pφ〉 =
(εAα1‖)

2

2ρ

∑
b

b2Jb(α1⊥ρ)
∂Jb
∂ρ

[
1

(b+ p)2
+

Jl
2A1/2(A1/2 − b− p)2

+
Jl

2A1/2(A1/2 + b+ p)2

]
(5.2.9)

One significant difference between equations (5.2.9) and (5.2.1) is that in the h1a term in (4.2.74)
participates in the mean variation of the Pφ momentum. In addition relation (5.2.9) depends from
both Jl, Pφ actions of the system. Analytical estimation of the behavior of 〈∆Pφ〉 is difficult due to
the dependence from the derivative of the Bessel function ∂Jb

∂ρ
which can only evaluated from the

recurrence relation [27]
∂Jb
∂ρ

=
b

α1⊥ρ
Jb(α1⊥ρ)− Jb+1(α1⊥ρ) (5.2.10)

As a result, we will examine possible acceleration with various combinations of A, p through the
〈∆Pφ〉 = 〈∆Pφ〉(Jl, Pφ) surface.
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(a) p=0.01 (b) p=0.01 (c) p=0.001

Figure 5.5: Averaged action variation 〈∆Pφ〉 over Pφ and Jl for trapping amplitude strength A = 1,
ε = 0.01 and α1⊥ = α1‖ = 1 for different values of dispersion p. The range of Jl has selected from
equation (5.2.6).

Figures 5.5a-5.5c reveal that for A = 1, with the trapped particles characterized from Jl << 2 and
small dispersion p ' 0.001 leads to significant gyro-acceleration of the trapped particles even for
small Pφ values. In that way the magnetic moment breaks down as an invariant and the ensemble
of the trapped particles is heated.
On the other hand the behaviour of 〈∆Pφ〉 is very different from that of 〈∆Jl〉 in larger trapping
amplitudes. In particular, Figures 5.6a-5.6c propose that Pφ acceleration is only possible around
the Jl = 20 even for small initial values of Pφ. But, for A = 100 the allowed domain of Jl for
the strongly trapped particles is Jl << 20. As a result strongly trapped particles cannot gyro-
accelerated coherently for large trapping strength A and only the ”weakly” trapped particles can
feel the acceleration. This an important realization since the coherent acceleration of the weakly
trapped particles can synergies with the stochastic area around the separatrix of the perturbed
pendulum Hamiltonian. Strickly speaking in order to examine the exact acceleration of the weakly
trapped particles we must refine our formulation in Chapter 4 by keeping more terms in the 1/m
expansions in order to adequately describe larger portion of the trapped phase space.

(a) p=0.01 (b) p=0.01 (c) p=0.005

Figure 5.6: Averaged action variation 〈∆Pφ〉 over Pφ and Jl for trapping amplitude strength A =
100, ε = 0.01 and α1⊥ = α1‖ = 1 for different values of dispersion p. The range of Jl has selected
from equation (5.2.6).

In conclusion, it is obvious that both mean angle variations 〈∆Pφ〉 and 〈∆Jl〉 propose a selective
nature of momentum transport for p < 1 of the trapped particles in plasma. The transferred
momentum Jl in the strongly trapped particles depends from a low pth dispersion threshold given
from relations (2.5.3) and (2.5.5). The selective nature of Jl accelerations reflects on the fact that for
stronger trapping amplitude A the allowed domain of the initial Pφ values for which the acceleration
occurs is increased as it shifts to higher values. On the contrary the Pφ transferred momentum is
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also constrained from a dispersion threshold but as the amplitude A increases it is present only to
the weakly trapped particles.
These transport properties enables us to manipulate the properties of the waves suitably in order to
heat up specific particle populations in a fusion plasma and possibly heal any detected instabilities.

5.3 Hierarchy of Kinetic Equations

5.3.1 Approximate Solutions of Vlasov Equation

In this Section we are going to exploit the Lie perturbation theory in order evaluate approximate
expansion for the evaluation of the distribution function of a population of particles in plasma.
The general formalism of the Hamiltonian that describes the interaction between an ion and elec-
tromagnetic waves as we have already encountered is

H = H0(J) +H1(J ,θ, t) (5.3.1)

Where H1 is periodic over some angles. From the Lie transformation theory we have

x̄ = Tx (5.3.2)

The T operator to first order has the form

T = T0 + T1 = I − [w1, ] (5.3.3)

Then the transformation from the old action-angle variables z = (J ,θ) to the new variables z̄ =
(J̄ , θ̄) is given from

J̄ = J − ∂w1

∂θ
(5.3.4)

θ̄ = θ − ∂w1

∂J
(5.3.5)

In order to evaluate the new variables in (5.3.4) and (5.3.5) we need the Lie generating function w1

which we obtain by substituting K1 = 0 in equation (2.3.28a). In that way, the new integrable to
first order system has the form K = K0 = H0(J̄).
The Vlassov equation for the K Hamiltonian is

∂f̄

∂t
+ [f̄ , K] = 0 (5.3.6)

Since the plasma is collision-less as we have already mentioned the distribution function in the phase
space of one charged particle corresponds to the distribution function of the whole population. We
will return to this statement later in order to highlight the significance of it.
The HamiltonianK is time independent, so the solution of the Vlassov must have the form f̄ = f̄(J̄).
For instance it can be Maxwellian

f̄(J̄) =
( M

2πkBT

)
exp

{
−M J̄

2

2kBT

}
(5.3.7)

Due to the fact that the T operator acts on functions using relation (5.3.3) we obtain the first order
approximation in the distribution function f(J ,θ, t) in the (J ,θ) space as

f(z) = T f̄(J̄) = f̄(J)− ∂w1

∂θ

∂f̄(J)

∂J
= f0(J) + f1(z) (5.3.8)
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Where we have set z = (J ,θ, t).
The distribution function f(z) = f0(J) + f1(z) satisfies to first order the Vlassov equation of the
original system

∂f

∂t
+ [f,H] = 0 (5.3.9)

Equation (5.3.7) is very important since we have derived the first order correction of distribution
function f(z) in a self-contained manner in action angle variables without any linearazation proce-
dures of the electromagnetic fields as in [28]. All the important dynamics of Hamiltonian H that
have been embed in w1 they have also transferred in the f1 part of the distribution function. As
a result the distribution function in (5.3.7) retains all the characteristics of the initial Hamiltonian
H = H0+H1. Moreover, due to the collision-less nature of the plasma the transition to the collective
distribution function has achieved without any Markovian statistical assumption. The Markovian
assumption is contrary to the dynamical behavior of particles interacting with coherent waves. The
particles phase space is a mix of chaotic and coherent motions with islands of coherent motion em-
bedded within chaotic regions. Also, the phase space is bounded and near the boundaries, or near
islands, particles can get stuck and undergo coherent, correlated, motion for times very much longer
than an interaction time. Furthermore, in practice, particles do not continuously interact with the
same spectrum of waves, either because the waves evolve in time or because the waves are spatially
confined. Particles undergoing multiple transits are likely to drift away from the location where the
previous interaction took place. This occurs in tokamaks where the radio frequency waves used for
heating and current drive are localized over part of the plasma [29].
In general we can approximate the solution of the Vlassov equation to the same order with the
perturbation order of the operator T .

5.3.2 Diffusion Equation

The main problem with solution (5.3.7) for the distribution function is that they are not smooth,
they have singular points that represent the resonant points in the phase space. As a result, the
charge density as well as the current that dictate the Maxwell equations exhibit singular behavior.
In order to solve the situation we use a coarse-grain form of f(z) by averaging over the angles θ

F (J , t) = 〈f(z)〉θ (5.3.10)

Due to periodic dependence of w1 from at least one angle the averaging of the distribution function
in (5.3.7) produces

F (J , t) = f0(J) (5.3.11)

Since the f0 is a Maxwellian given in relation (5.3.6) according to the previous discussion the
averaging method does not produce a satisfactory solution. In that way, we need to expand the Lie
operator T to second order as in Section 5.1 in order to have a non-zero contribution in f0 from the
averaging. Similarly to equations (5.1.11)-(5.1.13) we obtain

F (J , t) = f0(J)− 1

2

〈(
∂w1

∂θ

)2〉
∂2f̄(J)

∂J2 (5.3.12)

The distribution function F (J , t) is not a solution of the Vlassov equation. Therefore, such a
smooth, angle averaged distribution function cannot satisfy Vlassov but a different Fokker-Planck
type equation
In order to evaluate the equation for F (J , t) we use equation (5.1.7) in the [t, t+ ∆t] time interval
[29]

f(z)t+∆t = T−1[J t,θt + ωK(J t)∆t, t+ ∆t]f(z)t (5.3.13)
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As a result we can write

f(z)t+∆t − f(z)t = [T−1 − I][J t,θt + ωK(J t)∆t, t+ ∆t]f(z)t (5.3.14)

Dividing equation (5.3.13) with ∆t→ 0 we obtain

∂f(z)

∂t
=
∂[T−1 − I](z)

∂t
f(z) (5.3.15)

Equation (5.3.14) is an approximation to Vlassov equation to the same order of the T expansion.
Averaging equation (5.3.14) we get the evolution equation for F (J , t) since the average operator
commutes with the partial time derivative operator

∂F (J , t)

∂t
=
∂〈[T−1 − I](z)〉θ

∂t
F (J , t) (5.3.16)

Expanding operator T to second order we have the analogous results with those of equations (5.1.11)-
(5.1.13)

〈LnF (J , t)〉θ = 〈[wn(z), F (J , t)]〉θ = 〈∇θwn〉∇JF = 0 for n = 1, 2 (5.3.17)

On the other hand,
〈L2

1F (J , t)〉θ = ∇J ·[〈∇θw1∇θw1〉θ · ∇JF (J , t)] (5.3.18)

Again our results are accurate to second order using only the first order generating function w1.
Then, the evolution equation (5.3.15) takes the form

∂F (J , t)

∂t
= ∇J ·[D(J , t) · ∇JF (J , t)] (5.3.19)

Where D(J , t) is the generalized quasi-linear tensor [29] which has the form

D(J , t) =
1

2

∂〈∇θw1∇θw1〉θ
∂t

(5.3.20)

Setting F = J we obtain the results of Section 5.1. The diffusion tensor D(J , t) in time dependent
and non-singular since is derived from finite time interval perturbation theory. In fact the diffusion
tensor exhibits functional dependence of the form

R(Ω, t, t0) =
eiΩt − eiΩt0

iΩ
=

∫ t

t0

eiΩt dt (5.3.21)

Function R is smooth and localized around the resonances Ω = 0. Again, in the derivation of
the diffusion tensor we have included any Markovian assumption for the statistics of the particles.
The standard dependence of a singular diffusion tensor under Markovian statistical assumption
is obtained time interval ∆t → ∞. Then R = 2πδ(Ω) and the particles orbits are completely
decorrelated. But, as we have already figure, the phase space is non-homogeneous and regular
orbits characterized as quasi-periodic around resonant islands must be strongly correlated. As
such, a Markovian assumption cannot describe globally the phase space.
Finally, the methods we have described in Section 5.3 cannot globally applied to our problem of
charged particle interaction with electrostatic wave-packet since different action variables Jl, Jr
exist for different regions of phase space. Hence, we can only apply our conclusions for the kinetic
equations for each region (trapped, free) separately.
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Chapter 6

Conclusions and Future Research

In this final part we are going to sum up the results that have been produced over the Chapters 4
and 5 as well as to point out possible generalizations of our work as references for future research.
The most important elements of our research are the trapping amplitude A and the dispersion
magnitude p, both of them been introduced naturally with the assumption of an electrostatic, finite
amplitude, periodic wave packet. As we have mentioned this type of interaction not only generalizes
the electrostatic cases of Chapter 2 but also reflects the nature of the interactions in both fusion
and astrophysical plasmas.
As a result of our formulation the unperturbed gyro-motion of the particle can be constrained due
to the introduced trapping potential. On the other hand, if the particle is energetic enough then his
motion can be described to first order by free gyro-motion under the presence of a low amplitude
wave and falls on the cases that we have investigated in Chapter 2. Subsequently, it is of great
interest to investigate the dynamics of the trapped gyrating particle since it represents the low
energy spectrum of distribution function.
Since the plasma is collision-less our results for the dynamics of the one particle can be applied for a
collective behaviour of particles in plasma. As such we are in the position to examine the transport
properties of the trapped gyrating particles under different conditions of A and p.
Large values of dispersion p > 1 are associated with the resonant particle acceleration. On the other
hand, small values of p < 1 are contributing to coherent acceleration of the particles that connects
with anomalous transport. This particular realization comes from the sensitive and selective nature
of the mean action variations from the values of A, p.
Finally, we use the formalism of Lie perturbation theory in order to find approximate distribution
solutions of Vlassov equation as well as to extract a new Fokker-Planck type equation for the
system. Our results are not constrained from any statistical assumption and they are derived from
the dynamics of the system itself without any linearization.
In the end, possible topics and generalizations of our work as references for future research may
include:
• Non-uniform magnetic field for astrophysical plasmas, toroidal geometry magnetic field for fusion
plasmas.
• The presence of electromagnetic waves.
• The interaction with a finite amplitude solitary electrostatic wave packet.
• The co-existence of small amplitude electrostatic wave-packets.
• Advanced interpretation of the stochastic nature of the system.
• Global phase space description of diffusion equation and solutions of Vlassov equation.
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Appendix A

Jacobi Elliptic Functions in Pendulum

The Hamiltonian h0 in (3.2.5) resembles to that of a pendulum and has to be formulated in action-
angle variables suitable for perturbation theory. This procedure incorporates the Jacobi Elliptic
Functions and it will be presented in the following.
The Hamiltonian in (3.2.5) is

h0 =
P 2
Z

2
+ Pφ − A cosZ (A.1)

The action integral is given from

J =
1

2π

∮
PZ dZ (A.2)

With

PZ = ±
{

4A

m

[
1−m sin2 Z

2

]}1/2

(A.3)

m =
2A

E − Pφ + A
(A.4)

Parameter m defines the motion of the particle in the potential.
• For m < 1, the total energy of the particle E = h0 in larger than the maximum potential amplitude
A+ Pφ. Thus the particle ”rotates” freely either in the upper half plane or in the down half plane
of PZ − Z space according to the sign of (A.3).
• For m > 1, the total energy of the particle E = h0 in lesser than the maximum potential amplitude
A+ Pφ. Thus the particle ”librates” trapped in the potential, oscillating between |Z| ≤ Zc.
• For m = 1, the total energy of the particle E = h0 equals the maximum potential amplitude
A+ Pφ and the solutions represent the separatrices which connect the unstable equilibrium points
Z = ±π. and separates the rotation from the libration motion.
We will examine each motion separately.

A.1 Rotation

For the untapped particle case m < 1 with −π ≤ Z ≤ π for PZ > 0 we introduce the Complete
Elliptic integral of Second Kind E(m)

E(m) =

∫ π
2

0

(1−m sin2 ξ)1/2 dξ (A.1.1)
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Thus the action combining (A.2) and (A.3) is

Jr =
4

π

(
A

m

)1/2

E(m) (A.1.2)

In order to evaluate the conjugate angle variable of Jr we need to compute the generating function
Wr = Wr(Jr, Z) since Pφ is already and action for h0.

PZ =
∂Wr

∂Z
(A.1.3)

Wr =

∫ Z

0

PZ(m,Z ′) dZ ′ (A.1.4)

Now we introduce the Incomplete Integral of Second Kind E(s|m)

E(s|m) =

∫ s

0

(1−m sin2 ξ)1/2 dξ (A.1.5)

s =
Z

2
(A.1.6)

E(−s|m) = −E(s|m) (A.1.7)

Thus, the generating function Wr takes the form

Wr = ±4

(
A

m

)1/2

E(s|m) (A.1.8)

The conjugate angle variable θr is derived from

θr =
∂Wr

∂Jr
=
∂Wr

∂m

∂m

∂Jr
=
∂Wr

∂m

(∂Jr
∂m

)−1

(A.1.9)

In order to evaluate (A.1.9) we will exploit the following derivatives in respect with the parameter
x

dE(s|x
dx

=
1

2x
[E(s|x)− F (s|x)] (A.1.10a)

dE(x)

dx
=

1

2x
[E(x)−K(x)] (A.1.10b)

dF (s|x
dx

=
E(s|x)

2x(1− x)
− F (s|x)

2x
(A.1.10c)

dK(x)

dx
=

E(x)

2x(1− x)
− K(x)

2x
(A.1.10d)

In the previous relations we have produced the Complete Elliptic Integral of First Kind K(m) and
the Incomplete Elliptic Integral of First Kind F (s|m) defined as follows

F (s|m) =

∫ s

0

dξ

(1−m sin2 ξ)1/2
(A.1.11)

K(m) = F (s =
π

2
|m) (A.1.12)
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Thus, equation (A.1.9) provides us with

θr = ± πu

K(m)
(A.1.13)

With
u = F (s|m) (A.1.14)

Through the integral u we can define the Jacobi Elliptic Function pq(u|m) as

s = am(u|m) (A.1.15)

sin s = sn(u|m) (A.1.16)

cos s = cn(u|m) (A.1.17)

dn(u|m) =
dE(s|m)

dm
= (1−m sin2 s)1/2 (A.1.18)

The letters p, q in the Jacobi Elliptic Functions can be any two pf the letters s, c, d, n having a
simple zero at p and a simple pole in q. Similarly to expressions (A.1.15)-(A.1.18) we can define all
the pq(u|m) functions. The Hamiltonian h0 in the Jr, Pφ, θr action- angle variables is

h0 =

[
2

m(Jr)
− 1

]
A+ Pφ (A.1.19)

Now we seek the relation Z = Z(θr, Jr). From equation (A.1.16) we obtain that

sin s = sn(u|m)⇒ s = arcsin (sn(u|m)) (A.1.20)

Furthermore, ∫ u

0

dn(u|m) du = arcsin (sn(u|m)) (A.1.21)

We continue by expanding the dn(u|m) in Lamden Series in order to evaluate the integral in (A.1.21)

dn(u|m) =
π

2K(m)
+

2π

K(m)

∞∑
n=1

qn

1 + q2n
cos

(
nπu

K(m)

)
(A.1.22)

The Nome q(m) is defined as

q = q(m) = exp
[−πK ′(m)

K(m)

]
(A.1.23a)

K ′(m) =

∫ π
2

0

(1−m1 sin2 ξ)−1/2 dξ (A.1.23b)

m+m1 = 1 (A.1.23c)

While m is the parameter m1 is the complementary parameter of the elliptic functions. The inte-
gration of (A.1.22) combined with (A.1.21), (A.1.6) and (A.1.13) gives

Z = ±

[
θr + 4

∞∑
n=1

qn

1 + q2n

sin(nθr)

n

]
(A.1.24)
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A.2 Libration

For the trapped particle case m > 1 with −Zc ≤ Z ≤ Zc we have first to find the bounce points for
PZ = 0 using the equation in (A.3), as such

Zc = 2 arcsin

(
1√
m

)
(A.2.1)

Then the action integral in (A.2) takes the form

Jl =
2

π

(
4A

m

)1/2 ∫ Zc

−Zc

[
1−m sin2 Z

2

]1/2

dZ (A.2.2)

In contrast to previous case, now m > 1 and we cannot use the E(m) integral. In order to bypass
this difficulty we use the reciprocal transformation of the parameter m

sin
Z

2
=

1√
m

sin ξ (A.2.3)

Then (A.2.2) transforms to

Jl =
4A1/2

πm

∫ π
2

−π
2

cos2 ξ

(
1− 1

m
sin2 ξ

)−1/2

dξ (A.2.4)

The parameter of the Elliptic Integrals and Jacobi functions is 1
m
< 1 for m > 1. As a result the

action (A.2.4) is

Jl =
8A1/2

π

[
E(1/m)) +

(
1−m
m

)
K(1/m)

]
(A.2.5)

The generating function Wl of the transformation again from (A.1.4)

Wl = 2

(
A

m

)1/2 ∫ Z

0

[
1−m sin2 Z

′

2

]1/2

dZ ′ (A.2.6)

Again with the use of the reciprocal transformation we have

sin
Z ′

2
= sin s′ =

1√
m

sin ξ (A.2.7)

Wl =
4A1/2

m

∫ s̃

0

cos2 ξ
(

1− 1

m
sin2 ξ

)−1/2

dξ (A.2.8)

sin s̃ =
√
m sin s (A.2.9)

Then

Wl = 4A1/2

[
E(s̃|1/m) +

(
1−m
m

)
K(s̃|1/m)

]
(A.2.10)

It is now possible to extract the θl variable

θl =
∂Wl

∂Jl
=

∂Wl

∂(1/m)

∂(1/m)

∂Jl
=

∂Wl

∂(1/m)

(
∂Jl

∂(1/m)

)−1

(A.2.11)

θl =
πũ

2K(1/m)
(A.2.12)

ũ = F (s̃|1/m) (A.2.13)
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Again the Hamiltonian h0 has the same form as in the rotation case but the action now is Jl

h0 =

[
2

m(Jl)
− 1

]
A+ Pφ (A.2.14)

In order to complete the transformation we need the relation between Z and θl. We need to highlight
that the parameter of the functions now is 1/m and the amplitudes from the s̃. As a result

sin s̃ = sn(ũ|1/m) (A.2.15)

cos s̃ = cn(ũ|1/m) (A.2.16)

Moreover, it is valid that

dn(ũ|1/m) =

(
1− 1

m
sin2 s̃

)1/2

(A.2.17)

dn(ũ|1/m) = 1− 1

m
+

1

m
cn(ũ|1/m) (A.2.18)

Combining (A.2.15)-(A.2.18) we produce

cos s = (1− sin s)1/2 =

(
1− 1

m
sn(ũ|1/m)

)1/2

= dn(ũ|1/m)⇒ s = arccos(dn(ũ|1/m)) (A.2.19)

In addition ∫ ũ

0

cn(ũ|1/m) dũ = m1/2 arccos (dn(ũ|1/m)) (A.2.20)

Like the previous case we have to expand cn(ũ|1/m) in order to solve for s = z/2.

cn(ũ|1/m) =
2πm1/2

K(1/m)

∞∑
n+ 1

2

qn

1 + q2n
cos
( nπũ

K(1/m)

)
(A.2.21)

The Nome q is characterized by the dependence q = q(1/m) in contrast to the rotation case and
can defined as

q = q(1/m) = exp

[
−πK ′(1/m)

K(1/m)

]
(A.2.22a)

K ′(1/m) =

∫ π
2

0

(
1− 1

m1

sin2 ξ

)−1/2

dξ (A.2.22b)

1

m
+

1

m1

= 1 (A.2.22c)

Solving the integral (A.2.20) with the aid of (A.2.21) together with (A.2.19) and (A.2.12) we obtain

Z = 4
∞∑
n+ 1

2

qn

1 + q2n

sin(2nθl)

n
(A.2.23)
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Generalized Bessel Functions

Infinite variable Bessel Functions are the generalized extension of finite dimensional Bessel Functions
through the integral definition [30]

Jn({βm}) =
1

π

∫ π

0

cos(nθ − β1 sin θ − β2 sin 2θ − ...− βm sinmθ − ...) dθ (B.1)

Where {βm} are real and satisfying that the following series is convergent

∞∑
m=1

m|βm| <∞ (B.2)

Under those two assumptions the integral in (B.1) converges and ensures the existence of such
functions.
From Fourier Series we can expand a function f(θ) continuous, piece-wise smooth and periodic in
[−π, π] with f(−π) = f(π) as

f(θ) =
∞∑
−∞

cne
inθ =

α

2
+
∞∑
n=1

αn cosnθ +
∞∑
n=1

βn sinnθ (B.3)

If we consider functions with higher degree of smoothness then the following theorem holds for the
Fourier expansion.

Theorem 1 If a real function, f(θ) and its derivative, f (1)(θ) are continuous in [−π, π] with

f (l)(−π) = f (l)(π) for l = 0, 15 (B.4)

and the second derivative f (2) exists and is piece-wise continuous in [−π, π] then the series

∞∑
m=1

ml(|αm|+ |βm|) l = 0, 1 (B.5)

is convergent with {αm} and {βm} the Fourier coefficients of (B.3).

Finally if the function f(θ) is odd then f(±π) = 0 and {αm} = 0. As such, the Fourier sine coeffi-
cients, {βm}, of an arbitrary function of Theorem 1, which is odd, satisfy the existence conditions
for the infinite-dimensional Bessel functions, Jn({βm})
We are now interested to prove the Jacobi-Anger expansion of the form

exp

{
i

∞∑
m=1

βm sin(mθ)

}
=

∞∑
n=−∞

Jn({βm}∞1 )einθ (B.6)
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We expand the r.h.s of (B.6) in Fourier Series

exp

{
i
∞∑
m=1

βm sin(mθ)

}
=

∞∑
n=∞

einθcn({βm}) (B.7)

The Fourier coefficients are given from

cn =
1

2π

∫ π

−π
exp

{
i
∞∑
m=1

βm sin(mθ)

}
e−inθ dθ (B.8)

Taking into consideration the Euler formula and the parities of the sinusoidal functions we obtain

cn =
1

π

∫ π

0

cos

(
nθ −

∞∑
m=1

βm sin(mθ)

)
dθ (B.9)

But according to definition (B.1) we get that

cn = Jn({βm}) (B.10)

Subsequently, inserting (B.10) to equation (B.7) yields the Jacobi-Anger expansion of (B.6).
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