NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

VentusNet: Deep Learning for Wind Speed prediction

Charalambos E.Tzamos

Supervisor: loannis Emiris, Professor

ATHENS
MAY 2019

EONIKO KAI KAMOAIZTPIAKO NMANEMIZTHMIO AOGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NMAHPO®OPIKHZ KAI THAENIKOINQNIQN

NTYXIAKH EPTAZIA

VentusNet: Deep Learning for Wind Speed prediction

XapdAaptrog E.T¢apog

EmBAéTwyv: lwavvng Epipng, KaBnyntig

AGHNA
MAIOX 2019

BSc THESIS

VentusNet: Deep Learning for Wind Speed prediction

Charalambos E.Tzamos
S.N.: 1115201400314

SUPERVISOR: loannis Emiris, Professor

ENIBAENQN:

NTYXIAKH EPTrAZIA

VentusNet: Deep Learning for Wind Speed prediction

XapdAaptrog E.T{apog
A.M.: 1115201400314

lwdvvng Epipng, KaBnyntrg

ABSTRACT

In this thesis, we develop a deep neural network architecture based on recurrent layers
in order to forecast wind speed sequences. Our network’s input is a conjunction of wind
measurements and wind speed forecasts from another model. We analyse our data into
time series so that, we capitalise on the temporal nature of our data and the recurrent
layers. Mean absolute error, mean squared error and the logarithm of the hyperbolic
cosine are used as the evaluation metrics of our model. Based on our experimental results,
we show that our model achieves to improve that model’s forecast whose forecasts are
used as features on our model’s input.

SUBJECT AREA: Artificial neural networks

KEYWORDS: Wind speed prediction, artificial neural networks, recurrent networks, time
series, deep learning

NEPIAHWH

2Tnv TTapouoa TITUXIOKN €pyacia, avatTTUoOUNE Hia BaBid apXITEKTOVIKA VEUPWVIKWY Ol-
KTUWV Baciouévn o€ recurrent OTPWHPPATA JE OKOTTO TNV TTPORAEWN akoAouBiwy TaxuTn-
TaG avépou. H €icodog Tou BIKTUOU Pag gival EVag ouvOUAOUOG UETPOEWY AVEUOU KAl
TTPORAEWEWV TaXUTNTAS AVEPOU ATTO AAAO poVvTEAO. AvaAUOUUE Ta BEDOUEVA UAG OE XPO-
VOAOVYIKEG O€IPEG £TOI WOTE VA ETTWPEANBOUPE ATTO TA XPOVIKA QUON TwV BEDOUEVWV PG
Kal Ta recurrent oTpwupaTta. To oo atTOAUTO OPAAUQ, TO HECO TETPAYWVIKO OQAANQ Kal
0 AoydpiBuog Tou UTTEPRBOAIKOU CUVNUITOVOU XPNOIKOTTOIOUVTAl WG METPIKES AgIOAOYNONG
TOU POVTEAOU Pag. BAoEl TwV ATTOTEAEOUATWY PaAG, OEiXVOUNE OTI TO JOVTEANO PAG ETTITUYXA-
VEI VO BEATIWOEI TIG TIPOPAEWEIG TOU HOVTEAOU TOU OTTOIOU OI TTPOBAEWEIC XPNCIUOTTOIOUVTAI
WG XOPAKTNPIOTIKO OTNV €i0000 TOU PHOVTEAOU HOG.

OEMATIKH NEPIOXH: Texvntd veupwvika dikTua

AEZEIZ KAEIAIA: MpoBAewn TaxuTNTAG aVvEPOU, TEXVNTA VEUPWVIKA diKTUA, recurrent
OikTUQ, XPOVOAOYIKEG O€IpEG, BaBIG udbnon

ACKNOWLEDGEMENTS

| would like to thank Professor loannis Emiris, my thesis supervisor, for his guidance and
useful critiques of this thesis. | would also like to thank Emmanouil Christoforou and lason

Theodorakopoulos, for their assistance in keeping my progress on schedule and for their
valuable suggestions during the development of this thesis.

Contents

1 INTRODUCTION

1.1 Wind Speed Forecasting
1.2 Artificial Neural Networks
13 TimeSeries e
14 RelatedWork e

2 METHODS

2.1 Multilayer Perceptrono
2.2 Convolutional Networks
2.3 RecurrentNetworkso

2.3.1 Simple RecurrentNetworks

2.3.2 Long Short-TermMemory
2.4 Stochastic Optimisation
25 0urModel L

3 DEEP LEARNING ON TIME SERIES

34 Temporallnputo
3.2 VentusNet Architecture,

4 EXPERIMENTS

41 Experiments L. e e e e
4.2 Space Complexity Analysis

5 CONCLUSIONS AND FUTURE WORK
ABBREVIATIONS - ACRONYMS
REFERENCES

1"
11
11
12
12

14
14
14
15
15
16
16
17

19
19
19

20
20
21

22
23
24

1.1

2.1
2.2

2.3

2.4

3.1

4.1

4.2

List of Figures

The graph representation of a simple Feed Forward neural net. The edges
have certain weights. Source: Wikipedia

Tanh activation function (left) and reLU activation function (right).
A representation that shows how a convolutional layer, working on smaller
and simpler parts of a matrix, extracts features about the task. Source:
Wikipedia e
The design of a RNN layer. € = {®1,..., T¢_1, Tty Tiy1, ..., T4} IS the input
vector and o is the output vector. Source: Wikipedia
The design of an LSTM layer. In the middle unit, we can see how a LSTM
unit (blue) operates. It is a visual representation of the above equations.
Source: Wikipedia

VentusNet. Time-distibuted dense (TD Dense). Additive zero-centered
Gaussian noise (AWGN). Concatenation layer (Conc.)

The plot of actual wind speed values (blue) and our model’s prediction (or-
ANGL). . . o e e e e
Forecasting results of VentusNet.

PREFACE

This thesis, titled “VentusNet: Deep Learning for Wind Speed prediction”, was written as a
part of undergraduate program of studies at the Department of Informatics and Telecom-
munications of the National and Kapodistrian University of Athens.

VentusNet: Deep Learning for Wind Speed prediction

1. INTRODUCTION

In this thesis, we explore deep neural architectures capable of predicting time sequences,
viz., wind speed sequences. We model our input as time series in order to exploit the
natural dependence of the elements on previous ones. In this section, we provide some
basic knowledge about our methods and related work.

1.1 Wind Speed Forecasting

Due to the necessity of using renewable energy sources, wind speed forecasting became
an important task. Many approaches have been proposed for such forecasting. Methods
that are based on mathematical models and equations which they use historical data of
exogenous variables, such as, humidity, temperature, atmospheric pressure, etc. to fore-
castwind speed. These models, in general, are not very efficient in terms of computational
cost. Also, there are models based on statistic approaches that use time series analysis,
spatial correlation, etc. For example, persistence and ARMA models, using data from
exogenous variables and wind speed data, all analysed into time series, they make good
quality short-term predictions. The spatial correlation models, take advantage of the rela-
tion between neighbouring sites, by using the neighbouring data as input to their model.
Finally, non-linear Neural Networks are frequently used for this task, along with time series
analysis. Due to the non-linearity, neural networks are suitable for the wind speed fore-
casting task, which is rather challenging, owing to the wind’s time series non-linear and
non-stationary nature.

1.2 Artificial Neural Networks

Artificial neural networks (ANN) are computational systems that are inspired by the Bio-
logical neural networks. These systems, instead of taking instruction on how to solve a
task, they “learn” how to solve it by getting examples. For example, in image recognition,
such networks might learn to identify the label of an image that contains a specific item by
analysing example images that are already manually labelled as 1 (contains the item) or
0. An ANN is a collection of artificial neurons or connected nodes that receive input and
produce output depending on the input, the weights and the activation function. They can
be represented as a directed, weighted graph (see Fig 1.2), where the neurons are the
vertices and the connections between them are the edges.

ANNs use optimisation algorithms to minimise (or maximise) an Objective function. Dur-
ing the training process of a network, the input is propagated layer by layer through the
network, until it reaches the output layer, where the output is compared with the desired
output, using a loss function. Propagating the error values from the output layer back
through the network, we get an associated error value for each neuron. The backpropaga-
tion algorithm uses the error values to calculate the gradient of the loss function. In order
to minimise the loss function, the optimiser uses the gradient to update the weights.

C. Tzamos 11

VentusNet: Deep Learning for Wind Speed prediction

Hidden

Input

Figure 1.1: The graph representation of a simple Feed Forward neural net. The edges have certain
weights. Source: Wikipedia

1.3 Time Series

In temporal data, values usually depend on previous ones. Therefore, in order to predict
future values, it is desired to know a number of previously observed values. As a time
series we denote a d-dimensional vector X that contains data in time order.

X =A{zy, 29, ..., 24}

Time series are used in statistics, signal processing, pattern recognition, weather forecast-
ing, etc. and also in any domain that involves temporal measurements. The goal of time
series analysis varies from forecasting and signal detection to classification and anomaly
detection.

1.4 Related Work

MLPs: Tao et al. in [7] develops a DBF (deep belief) architecture with 3 layers of 100, 200
and 300 nodes. They train their model using three month data from a wind station in Mon-
golia, sampled every 10 minutes, to predict the wind power of the future 48 hours. Using
MSE (mean squared error) and MAE (mean absolute error) to evaluate their model, they
note that the model shows stability from 6 to 24h which manifests that their architecture
is eligible to capture some of the hidden patterns of the wind series. In [8] they compare
3 ANN architectures (linear, backpropagation and radial basis) using data measurements
from North Dakota (US). Evaluating the results using MAE, RMSE (root mean squared
error) and MAPE (mean absolute percentage error), they conclude that there is not a su-
perior architecture amongst them as the results depend on the data. Alexiadis et al. [12]
instead of using the wind speed as input, they use the differences of wind speeds from
the moving averages. With this technique they achieve improvements of up to 13% over
persistence, while with the standard approach they achieve 9%. Sfetsos in [13, 14] com-
pared a number of methods, namely feed forward neural networks, radial basis function

C. Tzamos 12

VentusNet: Deep Learning for Wind Speed prediction

networks, traditional linear ARMA models, Elman network, Box-Jenkins model, ANFIS
models (Adaptive Network based Fuzzy Inference System), a neural logic network and
other linear models based on their ability to forecast hourly mean wind speed. The non-
linear models manifested RMSE (root mean squared error), which was better than any
of the linear methods. Regarding the one hour ahead forecast, the best model was the
neural logic network that incorporated Logic Rules, which produced an RMSE 4.9% lower
than the persistence approach.

CNNs: Several architectures that attempt to forecast wind speed and power using con-
volutional layers have been proposed, that also have promising results. [2, 3] use shal-
low CNN architectures to predict wind power, comparing them with other models, namely
Gaussian SVR, persistence and regression. Chiou-Jye Huang et al. in [5] propose a very
simple convolutional network which takes as input data from the previous 7 days (hourly)
and predicts the following 3 (hourly). Using MAE and RMSE as metrics to evaluate their
model, they achieve very high accuracy. They note that their proposed algorithm achieves
0.800227 and 0.999978, MAE and RMSE, respectively. The length of their dataset is one
year and they note that the wind speed of their data mostly falls at a range of 1.5 m/s to 4
m/s. They also mention that there are many cases where the wind speed is higher than 5
m/s or even exceeds 10 m/s.

RNNs: [4] proposes an RNN architecture with good results for short-term forecasts, us-
ing data from 57 meteo stations. Their proposed DL-STF (Deep Learning-based Spatio-
Temportal Forecasting) model achieves (in hourly forecasting for the next 6 hours) 1.18
and 1.62, MAE and RMSE, respectively. As test set, they use the time period from Janu-
ary 6, 2014 to February 20, 2014, which they claim to be the one with the most unsteady
wind conditions. [1] using NWP data for off-shore points to make mid-term predictions,
concludes that this RNN architecture has a lot of potentials with a high degree of fine-
tuning. The NMAE (normalised mean absolute error) of the persistence model on their
data ranges from 5.5% up to 32%, while that of their proposed model varies from 5.5% to
15.5%.

Unlike the above mentioned previous work, we build a deep neural network with multiple
RNN layers. Also, our input is consisted of both measurements and predictions from an-
other model.

C. Tzamos 13

VentusNet: Deep Learning for Wind Speed prediction

2. METHODS

2.1 Multilayer Perceptron

A multilayer perceptron is a class of Feed Forward ANN. Their goal is to approximate
some function f*, where a linear method cannot. It is consisted of at least three layers of
nodes: an input layer, a hidden layer and an output layer. Besides the input layer nodes,
each node is a neuron that uses a nonlinear activation function. Two common nonlinear
activation functions:

62u¢ -1

eQu,- + 1

+

y(u;) = tanh(u;) = and y(u;) =u; = max(0,u;)

Figure 2.1: Tanh activation function (left) and reLU activation function (right).

With nonlinear activation functions and a backpropagation algorithm that optimizes the
weights on each connection, a MLP can distinguish data that is not linearly separable.

2.2 Convolutional Networks

Convolutional networks are actually regularised versions of multilayer perceptrons. Both
networks are apt to overfitting data because of their fully-connectedness. In order to over-
come this problem, CNNs include a kind of regularisation. They take advantage of the
hierarchical pattern in data and construct more complex patterns using smaller and sim-
pler patterns.

CNNs work in matrices to extract features relevant to the task. These networks apply the
discrete convolution operation for finite matrices f, g (see equation (2.1)):

(f*9)(t) =) fla)g(t — a)da (2.1)

Such networks are most commonly used to process 2D or 3D image matrices (see Fig.
2.2).

S\

00O

Figure 2.2: A representation that shows how a convolutional layer, working on smaller and simpler
parts of a matrix, extracts features about the task. Source: Wikipedia

C. Tzamos 14

VentusNet: Deep Learning for Wind Speed prediction

2.3 Recurrent Networks

A Recurrent neural network is a class of artificial neural networks where the connections
between neurons build a directed graph along a temporal sequence. So, they take ad-
vantage of sequential data, in that, each output is a function of the previous elements
(see Fig. 2.3). That fact makes RNNs eligible to learn from patterns in the time series,
hence the prediction of the future. Unlike feed-forward neural networks, RNNs can use
their internal state to process sequences of inputs.

® @ ©
Cj- [:> l_}*[]\hw!v

TU fu

@@@

Figure 2.3: The design of a RNN layer. z = {z1,...,t—1, ®t, Tt+1, ..., Z4} i the input vector and o
is the output vector. Source: Wikipedia

There are many variations of recurrent networks. Elman and Jordan networks are two
of the variations of RNNs and they are known as simple recurrent networks (see section
2.3.1). Also there are more complex RNN architectures, such as LSTM and GRU.

2.3.1 Simple Recurrent Networks

Elman and Jordan networks are very similar to each other. The only difference between
these two networks is that the former uses as input for its extra set of units (context units),
the output of the hidden layer while the latter uses the output of the output layer.

Elman Network

Elman Network [10] processes the input vector x; and outputs the output vector 3, accord-
ing to the following equations:

ht = O'h<thL't + Uhhtfl + bh>
yr = oy (Wyhy + by)

where h, is the hidden layer vector, W, U and b are the parameter matrices and vector and
o, and o, are the activation functions.

C. Tzamos 15

VentusNet: Deep Learning for Wind Speed prediction

Jordan Network

Similarly to the Elman network, Jordan network [11] processes the input vector z; and
outputs the output vector 3, according to the following equations:

hi = o, (Whay + Upye—1 + by)
Y = Uy(VVyht + by)

where h; is the hidden layer vector, W, U and b are the parameter matrices and vector and
o, and o, are the activation functions.

2.3.2 Long Short-Term Memory

A common LSTM [15, 16] unit is composed of a cell, an input gate, an output gate and a
forget gate (see Fig. 2.4). The cell remembers values over arbitrary time intervals and the
three gates control the flow of information into and out of the cell. LSTMs were developed
to overcome the problems of exploding and vanishing gradient that can be encountered
when training traditional RNNs. The equations below, show how an LSTM operates [16].

fe =0,(Wpxy + Urhy—1 + by)

iy = og(Wizy + Uihy—1 + b;)

o = 0,(Woxy + Ushy—1 + b,)

e = frocia+is0o.(Wery + Uchy 1 + b.)
hiy =00 Uh(Ct)

where z; € R? is the input vector to the unit, f, € R" is the forget gate’s activation vector,
i, € R" is the input gate’s activation vector, o, € R" is the output gate’s activation vector,
h, € R" is the output vector of the LSTM unit and ¢, € R” is the cell state vector. Also
W € R4 U ¢ R"" and b € R" are the weight matrices and bias vector parameters.
Apropos the activation functions, o4, 0. are hyperbolic tangent functions and o, is a sigmoid
function.

2.4 Stochastic Optimisation

To improve the performance of a deep neural network, its important to use an optimisation
algorithm. We choose to use the adaptive moment estimation (Adam) optimiser [9], which
is a stochastic gradient-based optimiser. The core of Adam optimiser [9] is described by
the following equations (2.2) - (2.7):

C. Tzamos 16

VentusNet: Deep Learning for Wind Speed prediction

9t = Vo fi(0i—1) (2.2)

me = Bi-me1+ (1= B1) - g (2.3)
vy =Py v+ (1= Ba) - g7 (2.4)
iy = < ’f‘tﬁ{ (2.5)

O = 11_)_}5 (2.6)

0, =0, , — \j‘v;t”fe (2.7)

where « is the stepsize, 1, 32 € [0, 1) are the exponential decay rates, f(6) is the stochastic
objective function and 6, is the initial parameter vector. Both 1st and 2nd moment vectors
my, vy are initialised to 0. Respectively, m;, v, are the bias-corrected moment estimates.
Also ¢? indicates the elementwise square g; ® g;.

®

!_STM unit

9

. —| Ceaheq |_" _"| Cep1Neyr| — -+

®
S
o

Figure 2.4: The design of an LSTM layer. In the middle unit, we can see how a LSTM unit (blue)
operates. It is a visual representation of the above equations. Source: Wikipedia

2.5 Our Model

In order to predict wind speed we select to exploit both pattern recognition and simulation
forecasting. WRF [6] as an NWP model, it is comprised of mathematical equations that
predict the behaviour of a physical system. So, as input we choose to use both meas-
urements and WRF predictions. The resolution of measurements and WRF predictions
is 1h. Consequently, for each day there are 24 measurements and 24 predictions. We
match every value in the measurement data, with the value of the next day, same hour in
the prediction data. The transformed data plus extra features such as wind direction, are
getting sliced into time series preserving the daily split. The final transformation plus some

C. Tzamos 17

VentusNet: Deep Learning for Wind Speed prediction

extra statistic features that are processed the same way, are the network’s input. Before
feeding our network the input, we normalise it, by rescaling each feature individually into
[—1,1] C R. A single input is consisted of multiple time series, one for each feature. Con-
suming such input, the network outputs t values - where ¢t > 24 is the window of the time
series - of which only 24 are kept, i.e. the prediction of the next 24h.

As loss function, we use the logarithm of the hyperbolic cosine (log-cosh) of the prediction
error (see equation 2.8). It is approximately equal to z%/2 for small = and to |z| — log 2
for large x. This means that “log-cosh” works mostly like the mean squared error (MSE,
see equation 2.9), but will not be so strongly affected by the occasional wildly incorrect
prediction.

logcosh(y,4) Z log (cosh (g; — v)) (2.8)
. 1 < .
mse(y,§) = — > (v = i)’ (2.9)
=1
mae(y, §) Z v — il (2.10)

We also evaluate our model using Mean Squared Error (MSE) and Mean Absolute Error
(MAE) (see equations 2.9, 2.10). In the above equations, as y and y we denote the ground
truth and the prediction, respectively.

C. Tzamos 18

VentusNet: Deep Learning for Wind Speed prediction

3. DEEP LEARNING ON TIME SERIES

3.1 Temporal Input

Our input is a vector of elements. Each element is a point in R¢. Each element is also a
sequence of measurements in time order. So, treating our data as time series, leads us to
use recurrent and time-distibuted layers into our model’s network. We also generate and
use features that give a different representation to our input.

(0 ifi=0

{ Xi J 1 X > X,

F(X,i) =

Xi—l .
— 1 if X, < X,;_

i

The above defined function F' : R" x Z —— 7Z (see equation 3.1) is the function that we
use to map some of our features in order to have a different representation of our data.
X € R" is the vector that contains the measurements and 0 < i < n is the index.

TD Dense

Bidirectional LSTM
128 units LSTM

Conc. Dense AWGN 64 units

LST™M
32 units

)

'
|

'

'

| input TD Dense Dense AWGN
\ transformation
'

'

'

'

\ —
'

'

'

'

'

'

'

Conc. Dense TD Dense

Y
n x 36 x 256
RN \
nx 36 x 64

'

output s
'
b *-{ nx36x1 :
'
'
'
'

J

nx36x38
nx36x38
|
2
nx 36 x64

.x36x64

/ h

o

nx 36 x 64

x 36 x 64
~
/ \\
n x 36 x 256
<
nx 36 x 64
.x36x64
I
n x 36 x 64
// S
AN
N\
W
nx36x128
nx 36 x 64
nx36x32

Dense (—
Maximum

Figure 3.1: VentusNet. Time-distibuted dense (TD Dense). Additive zero-centered Gaussian noise
(AWGN). Concatenation layer (Conc.)

3.2 VentusNet Architecture

Our network is a deep neural network. Its architecture is visualized in Fig 3.1. Taking
advantage of the natural order of the data, we first feed them to a time-distributed dense
layer and to a normal fully-connected dense layer afterwards. Time-distributed dense
applies a dense layer to every temporal slice of the input. Then we add some Gaussian
noise to the output in order to mitigate overfitting and give it as an input to a Bi-directional
LSTM layer. Bi-directional LSTM gives as output the concatenation of the output of an
LSTM and the output of an LSTM with reversed input. Using dense layers, our network
aggregates the information and gives it as input to a second LSTM layer. Afterwards, using
Maximum and Average layers after 2 parallel LSTM nodes, we aggregate the information
further. Finally, the flow goes to a third LSTM layer and then to a dense layer with 1 node
which is the output node.

C. Tzamos 19

VentusNet: Deep Learning for Wind Speed prediction

4. EXPERIMENTS

This chapter is divided into two parts. First, we show detailed experiments to account for
the choice of our network. Second, we analyse the space complexity of the network.

4.1 Experiments

The data that we test our network are real from wind farms. Our measurements have a lot
of missing data. In wind speed measurements we handle the missing data by replacing
the missing values with WRF wind speed predictions. In wind direction measurements
we deal with missing data by replacing each one of the missing values with the last not
missing value.

About our experiments, we trained the model on 380 samples, validated it on 43 samples
and tested it on 104 samples. We also used data from neighbour wind turbines, hence the
38 features. For each neighbour turbine we have the wind speed, the wind direction and
the WRF prediction. In Fig. 4.1 we can see the plot of both actual and predicted values.

25 1
20 4
15 1

10 1 r

g f LV el

I} 10!1]1} 15[II} 2001} 25{”}
time {h)

wind speed im/s)

—— ground truth predicted

Figure 4.1: The plot of actual wind speed values (blue) and our model’s prediction (orange).

With our proposed architecture and an input of 38 features, we achieve ~ 1.65 MAE and
~ 5.30 MSE. Although, we had better MAE using less features, i.e. wind speed, wind dir-
ection, WRF prediction and 2 statistical features, and also a slightly different architecture,
the results were instable and overfitting was encountered in certain cases. Also, by us-
ing neighbouring data we describe the problem even better and the model might behave
better with a larger dataset. Based on the results, our model beats both persistence and
WRF models, where the former achieves ~ 3.56 MAE and the latter achieves ~ 1.90 MAE
on the test data. The output of our persistence model for a certain time step ¢ in a day, is
the previous day’s measurement for the same time step .

The above results are based on experiments where the time series’ window size is set
to 36. Taking 36 time steps instead of 24, doesn’'t make quite a difference to the mean
absolute error, but it still improves it. Additionally, with a larger dataset, the 36-timestep
model might find some hidden patterns in the data that the 24-timestep model cannot.

In Fig. 4.2 we provide results of our model compared with the actual measurements with
a different zoom.

C. Tzamos 20

VentusNet: Deep Learning for Wind Speed prediction

2000
14 A
17.5 1
121 15.0
z w
E 107 £ 125
= =
& B T 100
=}
@ &
2 6] T 75
= =
5.0
4
251
2
T T T T T T T T T 00) T T T T T T T T T
7o 1925 1750 1775 1800 1825 1850 1875 1900 900 950 1000 1050 1100 1150 1200 1250 1300
time {h) time (h)
—— ground truth predicted —— ground truth predicted]
(a) (b)
12 1 16 1
14 4
% 107
E W 12 A
= E
= —_
L 84 o 10 A
o L5
& &
= WA
£ |
2 b
44 a1
i 2
T T T T T T T T T
1400 1425 1450 1475 1500 1525 1550 1575 1600 T T T T T T T T T
time (A} 2000 2025 2050 2075 2100 2125 2150 2175 2200
time {h)
— ground truth predicted — ground truth predicted
(c) (d)

Figure 4.2: Forecasting results of VentusNet.

4.2 Space Complexity Analysis

The space complexity (humber of parameters in the network) of our VentusNet is 0.3 M
parameters. The Bidirectional LSTM is the major contributor on the space complexity by
having approximately the 2/3 of the total parameters of the network. Although our network
is very efficient in terms of #param in the network, it outputs good quality predictions.

C. Tzamos 21

VentusNet: Deep Learning for Wind Speed prediction

5. CONCLUSIONS AND FUTURE WORK

In this thesis, we propose a deep neural network VentusNet for wind speed forecasting.
We analyse our data into time series and use recurrent networks to exploit the temporal
neture of our data. Also we use WRF wind speed prediction as input to our model. Ventus-
Net predicts the following 24h based on the previous 36h. As for the future work, adding
convolutional layers to the network’s architecture or analysing the input in a different way
could improve the results. A custom loss function that is strongly affected by incorrect
prediction on high values and less affected by incorrect predictions on low values, would
improve the model, as the high values are more important than the low ones. Additionally,
using the differences of wind speeds from the moving averages instead of the wind speed,
would make the input data have a simpler representation. Also, having more data to train
and test the model would specify more precisely the effectiveness of the model.

C. Tzamos 22

VentusNet: Deep Learning for Wind Speed prediction

C. Tzamos

ABBREVIATIONS - ACRONYMS

ANN Artificial Neural Network

RNN Recurrent Neural Network

MLP MultiLayer Perceptron

LSTM Long Short-Term Memory
ARMA AutoRegressive Moving Average
CNN Convolutional Neural Network
SVR Support Vector Regression

NWP Numerical Weather Prediction

23

VentusNet: Deep Learning for Wind Speed prediction

BIBLIOGRAPHY

[1] Balluff, S., Bendfeld, J., & Krauter, S. Short term wind and energy prediction for offshore wind farms
using neural networks. 2015 Int. Conf. on Renewable Energy Research and Applications (ICRERA),
pp. 379-382, 2015.

[2] DMaz, D., Torres, A., & Dorronsoro, J. R. Deep neural networks for wind energy prediction. Rojas, .,
Joya, G., & Catal‘a, A, editors, Advances in Computational Intelligence, Springer International Publish-
ing, Cham, pp. 430-443, 2015

[3] Wang, H. Z, Li, G. G., Wang, G. B., Peng, J. C., Jiang, H., & Liu, Y. T. Deep learning based ensemble
approach for probabilistic wind power forecasting. Applied Energy, Vol. 188, pp. 56-70, 2017

[4] Ghaderi, A., Sanandaji, B. M., & Ghaderi, F. Deep forecast: Deep learning-based spatiotemporal fore-
casting. CoRR, Vol. abs/1707.08110, 2017

[5] Chiou-dye Huang & Ping-Huan Kuo A Short-Term Wind Speed Forecasting Model by Using Artificial
Neural Networks with Stochastic Optimization for Renewable Energy Systems. Energies 2018, 11,
2777; doi:10.3390/en11102777, 2018

[6] Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, Z. Liu, J. Berner, W. Wang, J. G. Powers, M. G.
Duda, D. M. Barker, & X.-Y. Huang A Description of the Advanced Research WRF Version 4. NCAR
Tech. Note NCAR/TN-556+STR, 145 pp., doi:10.5065/1dfh-6p97, 2019

[7]1 Tao, Y., Chen, H., & Qiu, C. Wind power prediction and pattern feature based on deep learning method.
IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1-4, 2014

[8] Li, G. & Shi, J. On comparing three artificial neural networks for wind speed forecasting. Applied Energy,
Vol. 87, No. 7, pp. 2313 — 2320, 2010

[9] Kingma, D.P., & Ba, J. Adam: A Method for Stochastic Optimization. Comput. Sci., 1-13, 2014.
[10] Elman, & Jeffrey L. Finding structure in time. Cognitive Science, 14, pp. 179-211, 1990.

[11] Michael I. Jordan. Serial order: A parallel distributed processing approach. Technical Report 8604,
Institute for Cognitive Science, University of California, San Diego, 1986.

[12] Alexiadis, M.C., P.S. Dokopoulos, H.S. Sahsamanoglou, & |.M. Manousaridis. Short-Term Forecasting
of Wind Speed and Related Electrical Power. Solar Energy 63, pp. 61-68, 1998

[13] Sfetsos, A. Time series forecasting of wind speed and solar radiation for renewable energy sources.
Ph.D. thesis Imperial College, UK, 1999

[14] Sfetsos, A. A comparison of various forecasting techniques applied to mean hourly wind speed time
series. Renewable Energy 21, pp. 23-35, 2000

[15] Sepp Hochreiter, & Jirgen Schmidhuber Long Short-term Memory. Neural computation, 9, 1735-80.
10.1162/neco.1997.9.8.1735, 1997

[16] Felix Gers, Jirgen Schmidhuber, & Fred Cummins Learning to forget: continual prediction with LSTM.
Proc. ICANN’99, IEE, London: 850-855, 1999

C. Tzamos 24

	CONTENTS
	INTRODUCTION
	Wind Speed Forecasting
	Artificial Neural Networks
	Time Series
	Related Work

	METHODS
	Multilayer Perceptron
	Convolutional Networks
	Recurrent Networks
	Simple Recurrent Networks
	Long Short-Term Memory

	Stochastic Optimisation
	Our Model

	DEEP LEARNING ON TIME SERIES
	Temporal Input
	VentusNet Architecture

	EXPERIMENTS
	Experiments
	Space Complexity Analysis

	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	REFERENCES

