
Topological Quantum Computation

Ioannis Kolotouros

July 8, 2019



Contents

1 Introduction 2

2 Eisestein Integers and Honeycomb Lattice Hamiltonian 6

3 Gapped and Gapless phases 24

4 Discrete gauge theories and Quantum double 31

5 Quantum computation using anyons 42

6 Fibonacci Anyons 49

1



Chapter 1

Introduction

The idea of quantum computers go back in 1982 when Richard Feynman [1]
thought that certain many-body quantum Hamiltonians could be simulated ex-
ponentially faster on a quantum computer than they could be on a classical
computer. Simulations of large scale quantum many-body Hamiltonians are es-
sentially hopeless on classical computers because of the exponentially-large size
of the Hilbert space. Having the ability to manipulate an exponentially-large
Hilbert space, may also enable progress in the solution of lattice gauge the-
ory and quantum chromodynamics and help understand the strogly-interacting
nuclear forces.

Another pioneer in quantum computation was Peter Shor [2] who lighted the
fire in quantum computing research not only inside but also outside the physics
community. In 1994, he invented an algorithm that could find the prime factors
of an m digit number in a length of time ∼ m2 logm log logm, much faster than
the classic algorithm of a classical computer that would need ∼ exp(m1/3) time.
Since many encryption schemes depend on the difficulty of finding the solution
to problems similar to finding the prime factors of a large number, there is
an obvious application of a quantum computer which is of great and applied
interest.

The computation is based on three steps: initialization, unitary evolution
and measurement. We are equipped with a Hilbert space H and assume that
we can initialize the system in a known state |ψ0⟩ . Then we unitary evolve the
system in a final state U(t) |Ψ0⟩ with dU/dt = iH(t)U(t)/h and H(t) the Hamil-
tonian of the system. We require that we have control over this Hamiltonian so
that U(t) can be any unitary transformation we desire. Finally, we measure the
state of the system at the end of the evolution and the whole process is called
Quantum Computation.[3,35]

Although quantum computers have shown a great promise for solving effi-
ciently exponentially hard problems, they are not easy to build as the biggest
obstacle is posed by errors which would invariably happen during the computa-
tion. In a classical computer errors are typically corrected through redudancies
i.e. by keeping multiple copies of information and checking against these copies.
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In a quantum computer, however, the situation is much complex as every time
we measure an intermediate quantum state during the computation to see if an
error has occured, we collapse the wavefunction and thus destroy the superpo-
sition and ruin the calculation

There are two major sources of error. First there is decoherence. These
are randoms errors caused by the interaction between the quantum computer
and the enviroment. Second, even if the system is protected from decoherence,
it is almost certain that all operations performed on the quantum information
during its processing will be imperfect. These errors will accumulate over the
duration of the computation, eventually causing failure. Thus we need to build
a quantum computer that is fault-tolerant.

Topological quantum computation is an approach of processing fault-tolerant
quantum information using exotic quasiparticles, called anyons.[5-10,24,25] Due
to their exotic statistical behaviour, they exhibit non-trivial quantum evolutions
that are described by topology, i.e. the evolution depends solely if another anyon
encircles them or not and not by the trajectory itself. While from the first sight
it might look like an obscure way of manipulating quantum information it is
linked to quantum error correction, the algorithmic means we have in dealing
with errors during quantum computation. In a sense, anyonic quantum comput-
ers implement quantum error-correction at the hardware level, thus becoming
resilient to control errors and erroneous perturbations. Suppose our system is
characterized by the ideal conditions of zero temprature and infinite anyons
seperation, then the states in the fusion space have three very appealing prop-
erties.
(i) All the states are perfectly degenerate.
(ii) They are indistinguishable by local operations.
(iii) They can coherently evolved by braiding anyons.
The system is immune to local perturbations because the operation performed
depends only on the topology of the braid. The state of the system is encoded
nonlocally and can only be measured by actually fusing the anyons and not by
local interactions which makes the states resistan� to decoherence. Errors could
only occur under unlikely local perturbations to the hamiltionian that would
create unwanted anyons and propagate them around the encoding ones.

Suppose we have a system of n identical particles in a three spatial and one
time dimension world. The wavefunction that describe the multiparticle state
has two possible symmetries. It is either symmetric under the exchange of two
particles, and we call these particles bosons, or it is antisymmetric and we call the
particles fermions. Under two consecutive exchanges the process is equivalent to
the process where one particles transports around the other. In three dimensions
transporting a particle around another is topologically equivalent to the process
where no particle moves at all.

Suppose we consider all possible trajectories in 3+ 1 dimensions which take
the n particles from initial positions R1, R2, ...Rn at time ti to final positions
R1, R2, ...Rn at time tf . If the particles are distinguishable then all trajectories
can be deformed into the trajectory in which the particles do not move at
all. If the particles are indistinguishable then the different trajectories fall into
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topological classes corresponding to the elements of the permutation group Sn

with each element of the group specifying how the initial positions are permuted
to obtain the final positions. Fermions and bosons correspond to the only one
dimensional irreducible representation of Sn.

In a two dimensional system though any particle loop that encircles another
particle cannot be deformed to a point without cutting through the other par-
ticle. So when two particles are exchanged twice in a clockwise manner their
trajectory involves a non trivial winding and the system does not necessarily
come back to the same state.

Suppose we have two identical particles in two dimensions. Then when
one particle is exchanged in a counterclockwise manner with the other, the
wavefunction acquires a phase

ψ(r1, r2) → eiϕψ(r1, r2) (1.1)

The phase is not ±1 because after a second counterclockwise exchange where
the particles return to their initial positions the final state is not the same as
the initial.

ψ(r1, r2) → e2iϕψ(r1, r2) (1.2)

The special cases θ = 0, π correspond to bosons and fermions. Particles with dif-
ferent values of statistical angle θ are called anyons.[11] The topological classes
of trajectories which take these particles from initial positions R1, R2, ..., Rn to
final positions R1, R2, ...Rn are in one to one correspondace with the elements
of the braid group Bn.

The braid group is infinite and thus it has an infinite number of irreducible
representations. Idistinguishable particles that transform as a one-dimensional
representation of the braid group are said to be abelian anyons and if they
transform as nonabelian representations of higher dimension they are said to be
nonabelian anyons.

Another important concept that will be useful in our analysis is the Aharonov-
Bohm effect. That is, when an electric charge q is adiabatically transported
counteclockwise around a flux Φ, the wavefunction of the charge acquires a
topological phase eiqΦ. It is topological because the only thing that matters is
the winding number i.e. the number of times the charge encircles the flux and
not the type of it’s trajecory.

Plan of the Thesis
In chapter 1 we begin with a brief introduction on how anyons and their topolog-
ical properties can be used for fault tolerant quantum computation. In chapter
2 we examine the symmetries of the hexagonal lattice, place spin 1/2 particles
in each site, let them interact with a Kitaev’s honeycomb lattice Hamiltonian
and find that in a special case it allows the existence of abelian anyons. In chap-
ter 3 we add a small perturbation that breaks the time reversal symmetry of
the model creating an energy gap. This gap is sufficient for nonabelian anyons
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whose fusion states can be used for creating the encoding computational states.
Moreover, in chapter 4 we work on a continuous gauge theory broken down to
the finite group S3, find the anyons of the model, construct the quantum double
D(S3) and derive the fusion rules. Finally in chapter 5 and 6 we prove how
to construct the fundamental gates with a nonabelian superconductor and with
Fibonacci anyons repsectively and how measurements can be done to achieve
universal quantum computation.
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Chapter 2

Eisestein Integers and
Honeycomb Lattice
Hamiltonian

Equipped with a hexagonal lattice, we place spin-1/2 particles in each vertex
and let them interact with Kitaev’s Hamiltonian [4]

H = −Jx
∑

x−links

σx
i σ

x
j − Jy

∑
y−links

σy
i σ

y
j − Jz

∑
z−links

σz
i σ

z
j (2.1)

with σα
i , Jα, α = x, y, z denoting the Pauli matrices of the i-th particle and

the strength of the interaction respectively. Two particles i,j connected with
a specific link, for example x, will interact with the corresponding term in the
Hamiltonian : −Jxσx

i σ
x
j . We want to examine the symmetries of our system.

For that purpose we introduce the Eisenstein integers.
Eisestein integers are numbers of the form Z(ω) = m + nω with m,n ∈ Z

and ω = ei2π/3 which can be written as Z = (m,n). If Z1 = m1 + n1ω,

Figure 2.1
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Z2 = m2 + n2ω are two Eisenstein integers, then they satisfy the relations:

Z1 + Z2 = (m1 +m2, n1 + n2)

Z1Z2 = (m1m2 − n1n2,m1n2 +m2n1 − n1n2)
(2.2)

It is easy to see that ω3 = 1 so we can define the norm of an Eisestein integer
as

|m+ nω|2 = (m+ nω)(m+ nω̄) ⇒
|m+ nω|2 = m2 + n2 −mn

(2.3)

We can construct a hexagonal lattice by susbstracting all the Eisestein integers
which satisfy (m+n−2)mod3 = 0 and connect the lines between all the nearest
neighbors. There are two type of vertices.

Type 1, (m+ n)mod3 = 0 : White Circles
Type 2, (m+ n− 1)mod3 = 0 : Black Circles

(2.4)

In the infinite lattice above there are permutations that leave the lattice
invariant. The allowed permutations are 2p+qω, p+2qω, −p+qω with p, q ∈ Z,
but each one can be written as a linear combination of the other two. The
permutations form a group with elements

Tp,q = p(2 + ω) + q(−1 + ω) = (2p− q) + ω(p+ q) with p,q∈ Z (2.5)

under the ordinary addition.

Theorem 2.0.1. If Tp,q = [(2p− q) + (p+ q)ω : p, q ∈ Z] and
Σm,n = [m+ nω : m,n ∈ Z, (m+ n)mod3 = 0] then Tp,q = Σm,n.
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Proof. Suppose z = (2p− q)+ (p+ q)ω ∈ Z, then 2p− q+ p+ q = 3p = 0mod3
so z ∈ Σm,n.
If now z ∈ Σm,n, then z = m + nω with m + n = 0mod3 ⇒ m = 3p − n. If
q = n − p then m = 3p − n = 3p − q + p = 2p − q which means that z can be
written as z = (2p− q) + (p+ q)ω ∈ Tp,q so Tp,q = Σm,n.

If we rotate the lattice by an angle of 2π/3 or by 4π/3 then every element
on the lattice is multiplied by ω and ω2 = −ω − 1 respectively. It is easy to
see that if an Eisestein integer z1 = m1 + n1 belongs in the lattice, therefore
(m1 + n1 − 2)mod3 ̸= 0, then after a rotation it will still belong in the lattice
with (m′

1 + n′1 − 2)mod3 ̸= 0.
Every element on the lattice is characterized by two integers (m,n) so we can
define a basis on the two 2 dimension vector space. We can either work on
Eisestein basis with elements [

m
n

]
or work on Standard basis with elements[

m− n/2√
3n/2

]
The Matrix that transforms a vector from Eisestein basis to Standard basis is

U =

[
1

√
3/3

0 2
√
3/3

]
and therefore the matrix that transforms an Eisenstein vector to a Standard
vector is

U−1 =

[
1 −1/2

0
√
3/2

]
The reflection through an axis with unit vector n̂ is defined as the matrix

Pn̂ = |n̂⟩ ⟨n̂| − 1 =

[
2nxnx − 1 2nxny
2nynx 2nyny − 1

]
(2.6)

that multiplies a standard vector. The reflection matrix on Eisestein basis can
be calculated by

PEis
n̂ = UPn̂U

−1 (2.7)
There are 3 reflections in the hexagonal lattice that leave it invariant as it can
be seen above. On (a) axis the unit vector is â = 1/2x̂+

√
3/3ŷ so

Pâ =
1

2

[
−1

√
3√

3 1

]
On (b) axis the unit vector is b̂ = x̂ so

Pb̂ =

[
1 0
0 −1

]
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and finally on (c) axis the unit vector is ĉ = −1/2x̂+
√
3/2ŷ so

Pĉ =
1

2

[
−1 −

√
3

−
√
3 1

]
All three reflection matrices satisfy the relation det[Pn̂] = −1 and P 2

n̂ = 1. The
action of these matrices on the elements of the lattice is :

Pâ

[
m
n

]
=

[
n−m/2√

3m/2

]
Pb̂

[
m
n

]
=

[
m− n/2

−
√
3n/2

]
Pĉ

[
m
n

]
=

[
−m/2− n/2

−
√
3m/2 +

√
3n

] (2.8)

So putting all the transformations together and using Eisestein notation:

Pâ : m+ nω → n+mω

Pb̂ : m+ nω → (m− n)− nω

Pĉ : m+ nω → −m+ (n−m)ω

Rω : m+ nω → −n+ (m− n)ω

Rω2 : m+ nω → (n−m)−mω

(2.9)

If the lattice is not infinite then there are no permutations that leave the lattice
invariant but only rotations and reflections. The symmetry transformations
form a Group G = [e, Pa, Pb, Pc, Rω, Rω2 ] where e means that we apply no
transformation. We can calculate the multiplication table of the Group:

G e Rω Rω2 Pâ Pb̂ Pĉ

e e Rω Rω2 Pâ Pb̂ Pĉ

Rω Rω Rω2 e Pb̂ Pĉ Pâ

Rω2 Rω2 e Rω Pĉ Pâ Pb̂
Pâ Pâ Pĉ Pb̂ e Rω2 Rω

Pb̂ Pb̂ Pâ Pĉ Rω e Rω2

Pĉ Pĉ Pb̂ Pâ Rω2 Rω e

Moreover the subgroups of G are :

H1 = [e, Pâ] ,H2 =
[
e, Pb̂

]
H3 = [e, Pĉ] ,H4 = [e,Rω, Rω2 ]

(2.10)

with H4 being the only normal subgroup ⇒ gH4 = H4g, ∀g ∈ G. The conjugacy
classes are:

C1 = [e] , C2 =
[
Pâ, Pb̂, Pĉ

]
C3 = [Rω, Rω2 ]

(2.11)
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The group G is isomorphic to the group S3, the group of permutations of three
objects, G ∼= S3. To be precise:

e→ e,Rω → (123), Rω2 → (132)

Pâ → (12), Pb̂ → (23), Pĉ → (13)
(2.12)

It is known that if dk is the dimension of an irreducible representation and |G|
is the order of the group, then

n∑
k=1

= d2k = |G| (2.13)

There is always the one dimensional irreducible representation, Γ1, where every
element is mapped to unity, so knowing that the number of irreducible repre-
sentations is equal to the number of the conjugacy classes of the group then the
solution in the above equation is:

d1 = 1, d2 = 1, d3 = 2 (2.14)

The matrices Pâ, Pb̂, Pĉ represent reflections so their determinant is equal to −1
but on the contrary, Rω and Rω2 represent rotations and thus have determinant
1. So the other 1 dimensional irreducible representation, Γ2, is:

[e,Rω, Rω2 ] → [1][
Pâ, Pb̂, Pĉ

]
→ [−1]

(2.15)

To determine the two dimensional irreducible representation, Γ3, we use the fact
that G ∼= S3 and S3 being the group describing the symmetries of an equilateral
triangle. The rotation matrix in the standard (x, y) basis is:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
By setting θ = 2π/3 and θ = 4π/3 we can calculate R(2π/3) = R[(123)] and
R(4π/3) = R[(132)] respectively.

R[(123)] =
1

2

[
−1

√
3√

3 −1

]
R[(132)] =

1

2

[
−1

√
3

−
√
3 −1

] (2.16)

Moreover, (12),(23),(13) represent reflections. Setting

R[(23)] =

[
a b
c d

]
along with conditions:

R[(23)]

[
−1/2√
3/2

]
=

[
−1/2

−
√
3/2

]
R[(23)]

[
1
0

]
=

[
1
0

] (2.17)
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we find that
R[(23)] =

[
1 0
0 −1

]
(2.18)

But representations respect the group multiplications. So, if (123)(23) = (13)
then R[(12)]R[(23)] = R[(13)].

R[(13)] = R[(123)]R[(23)] =
1

2

[
−1

√
3√

3 1

]
R[(12)] = R[(132)]R[(23)] =

1

2

[
−1 −

√
3

−
√
3 1

] (2.19)

which is exactly the form of the reflection matrices we calculated above. So the
2 dimensional irreducible representation of G is:

e =

[
1 0
0 1

]
Rω =

1

2

[
−1

√
3√

3 −1

]
Rω2 =

1

2

[
−1

√
3

−
√
3 −1

]
Pâ =

1

2

[
−1

√
3√

3 1

]
Pb̂ =

1

2

[
1 0
0 −1

]
Pĉ =

1

2

[
−1 −

√
3

−
√
3 1

] (2.20)

To complete our analysis we can construct the character table of G

C1 C2 C3

Γ1 1 1 1
Γ2 1 −1 1
Γ3 2 0 −2

with the columns and and lines of the table beeing orthogonal.
The Hamiltonian repsects the symmetry group G along with time reversal

symmetry. We define the operator

Kα
jk = σα

j σ
α
k with α the type of link that connects jk (2.21)

and the plaquette operator

Wp = σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6 (2.22)

with the enumeration done as in (2.2). It is easy to see that

K12K23K34K45K56K61 = σz
1σ

z
2σ

x
2σ

x
3σ

y
3σ

y
4σ

z
4σ

z
5σ

x
5σ

x
6σ

y
6σ

y
1

⇒Wp = K12K23K34K45K56K61

(2.23)

Squarring the plaquette operator: WpWp = σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6σ

x
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6 = I,

so the operator Wp has eigevalues ±1 with high degeneracy. Precisely, the
operators Wp are 64×64 matrices with 32 eigenvalues +1 and 32 eigevalues −1.
The plaquette operators acting on different plaquettes p,p′ clearly commute
since they act on different spaces.

[Wp,W
′
p] = 0 ∀ p, p′ (2.24)
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Figure 2.2

The Hamiltonian can be expressed with Kα
jk operators as:

H = −Jx
∑

x−links

Kx
jk − Jy

∑
y−links

Ky
jk − Jz

∑
z−links

Kz
jk (2.25)

and using fact that
[
Kα

jk,Wp

]
= 0 ∀ Kα

jk we conclude that the plaquette oper-
ators commute with the Hamiltonian

[H,Wp] = 0 ∀ p (2.26)

For an infinite hexagonal lattice every vertex belongs in three plaquettes and
every plaquette has 6 vertices. So we actually have 2 vertices per plaquette. We
can divide the total Hilbert space L into sectors:

L = LW1

⊕
LW2

⊕
...LWm (2.27)

So if n is the number of vertices, the Hilbert space can be divided in n/2 sectors
of dimension n/2 where in each sector the Wp operators have eigenvalues ±1. A
system with n fermionic modes can be described by the creation and annihilation
operators α†

k, αk with k = 1, ..., n. We introduce two fermionic modes a1,i and
a2,i for every spin-1/2 particle in each site. By taking linear combinations of
creation and annihilation operators we define new operators:

c2k+1 = αk + α†
k

c2k =
αk − α†

k

i

(2.28)

The operators above satisfy c†2k = c2k, c†2k+1 = c2k+1, cjcl = −clcj if j ̸= l, i.e.
the particles are their own antiarticles and are called Majorana Operators. We
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define:
bx ≡ c1 ⇒ bx = a1 + a†1

by ≡ c2 ⇒ by = i
(
a†1 − a1

)
bz ≡ c3 ⇒ bz = a2 + a†2

c ≡ c4 ⇒ c = i
(
a†2 − a2

) (2.29)

with the above operators anticommuting. The following step is to represent
Spin operators with Majorana operators. Every spin-1/2 particle has its own
two dimensional space, so the 4 Majorana fermions have a four dimensional
space. For the correspondance to be consice we ought to remone 2 fermionic
states. The operators σi act on the Physical Space Mi of each particle, on
contrary to Majorana operators which act on M̃ ,the Extended space. We make
the choice that when a fermion is the |↑⟩ state with σz = 1/2 then the modes
a1,i, a2,i are empty and when the fermion is in |↓⟩ state with σz = −1/2 then
the modes are full. So

|↑⟩ = |00⟩ |↓⟩ = |11⟩

with a1,i |00⟩ = a2,i |00⟩ = 0 and |11⟩ = a†1,ia
†
2i
|00⟩

(2.30)

We ”throw out” the states with just one of the fermionic modes full: |01⟩, |10⟩.
We need an operator that will act on states that belong in the extended space
and restrict us on the physical space. For that, we define the operator:

Di = bxi b
y
i b

z
i ci (2.31)

The operator can be brought in the form:

bxi b
y
i b

z
i ci = i(a†1,i − a1,i)(a2,i + a†2,i)i(a1,i + a†1,i)

⇒ bxi b
y
i b

z
i ci = (1− 2a†1,ia1,i)(1− 2α†

2,ia2,i)

⇒ Di = (1− 2a†1,ia1,i)(1− 2α†
2,ia2,i)

(2.32)

If |Ψ⟩ = |00⟩ then Di |00⟩ = |00⟩ and if |Ψ⟩ = |11⟩ then Di |11⟩ = |11⟩. But
if the operator Di act on the |10⟩ and |01⟩ states, then Di |Ψ⟩ = − |Ψ⟩. For the
representation to be faithfull:

|Ψ⟩ ∈ L if and only if Di |Ψ⟩ = |Ψ⟩ for every i (2.33)

The next step is to represent Pauli Matrices σx, σy, σz on the Physical space
with new σ̃x, σ̃y, σ̃z on the extended space L̃ with the condition that when the
new Pauli operators σ̃x, σ̃y, σ̃z are restricted on the Physical subspace they will
satisfy the same algrbraic relations with σx, σy, σz. We make the identification:

σ̃a
i = ibai ci for a = x, y, z (2.34)

The Pauli matrices commute with the operator Di, [Di, σ̃
a
i ] = 0. If a = x then

[Di, σ
x
i ] = [bxi b

y
i b

z
i ci, ib

x
i ci] =

bxi b
y
i b

z
i ciib

x
i ci − ibxi cib

x
i b

y
i b

z
i ci = 0

(2.35)
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If for example a state |ξ⟩ ∈ L then under the action of σ̃a it will still belong in
L. So the action of σ̃x, σ̃y, σ̃z preserves the subspace L. Moreover iσ̃x

i σ̃
y
i σ̃

z
i =

iibxi ciib
y
i ciib

z
i ci = bxi b

y
i b

z
i ci = Di. But on the physical subspace, Di = I, so the

algebra of the Pauli matrices is satisfied:

iσ̃x
i σ̃

y
i σ̃

z
i = I (2.36)

We need to express the new Hamiltonian using the above operators. We evaluate
the product K̃a

ij = σ̃a
i σ̃

a
j :

σ̃a
i σ̃

a
j = ibai ciib

a
j cj = −i(ibai baj )cicj = −iûaijcicj (2.37)

where
ûaij = ibai b

a
j (2.38)

are link operators because they depend on the type of link that connects the two
different sites i,j. They are antisymmetric ûaij = −ûaji, hermitian and square to
unity (ûaij)

2 = (bai )
2(baj )

2 = I since (σa)2 = (bai )
2 = I. The Hamiltonian thus

can be expressed as

H̃ = −Jx
∑

x−links

(−i)ûxijcicj − Jy
∑

y−links

(−i)ûyijcicj − Jz
∑

z−links

(−i)ûzijcicj

H̃ =
i

2

∑
i,j

Jaij
û
aij

ij cicj

(2.39)
or

H̃ =
i

4

∑
i,j

Âijcicj (2.40)

where

Âij =

{
2Jαij

û
aij

ij if j and k are connected
0 otherwise

(2.41)

The Hamiltonian commutes with the operator Di:

[
H̃,Di

]
=

 i
4

∑
jk

Âjkcjck, ib
x
i b

y
i b

z
i ci

 =

=
i

4

∑
j,k

Âjkckcjib
x
i b

y
i b

z
i ci − ibxi b

y
i b

z
i ci
∑
j,k

Âjkcjck = 0

(2.42)

so we can diagonalise the Hamiltonian and restrict on the states where Di |Ψ⟩ =
|Ψ⟩. Furthermore, [

H̃, ûaij

]
= 0 (2.43)

Just like we did before we can divide L in subspaces of ûaij of fixed eigenvalues
uaij = ±1, L̃ = ⊕uL̃u with summation over all fixed values of uajk. Thus,
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the operators Âjk can be replaced by numbers and the hamiltonian becomes
H̃u = i

4

∑
i,j Aijcicj , a more familiar one. It describes free fermions. But there

is a catch. The operators ûaij do not commute with the operators Di, but rather
they anticommute:

{Di, û
a
ij} = {bxi b

y
i b

z
i ci, ib

a
i b

a
j } =

ibxi b
y
i b

z
i ciib

a
i b

a
j + ibxi b

a
j ib

x
i b

y
i b

z
i ciib

x
i b

y
i = 0

(2.44)

The L̃u subspace is not gauge invariant since acting with the gauge operator
Di on a vertex i, changes the sign of the eigenvalues of the link operators that
connect the i vertex with the other 3 j vertices. So the states

∣∣∣Ψ̃u

⟩
do not belong

to the physical space. We can construct the gauge invariant state |Ψw⟩ ∈ L

|Ψw⟩ =
∏
i

(
1 +Di

2

) ∣∣∣Ψ̃u

⟩
∈ L (2.45)

The plaquette operators can be written as

ˆ̃Wp = σ̃x
1 σ̃

y
2 σ̃

z
3 σ̃

x
4 σ̃

y
5 σ̃

z
6 =

∏
(i,j)∈p

ûaij (2.46)

So the eigenvalues of the plaquette operators are the product of the eigenvalues
of the link operators that span the boundary of the plaquette p.

Wp =
∏

(j,k)∈∂P

uajk (2.47)

But since
[
W̃p, H̃

]
= 0 and

[
W̃p, Di

]
= 0 we can still express the Hamiltonian

as H̃ = i
4

∑
i,j Aijcicj . Acting with Di still changes the sign of uaij but in such

way that their product, and thus the eigevalues Wp, remain constant. To be
precise, acting with Di on a specific vertex i changes the sign of the three links
connected to i. But only the two them belong in the same plaquette. So the
action Di leave the Wp’s invariant. We will interpret the eigenvalues of the
plaquette operators as the magnetic flux. If Wp = −1 then the plaquette will
carry a vortex. We define the fermionic path operator:

W (j0, ..., jn) = Kjn,jn−1
...Kj,j0 =

(
n∏

s=1

−iûajs,js−1

)
cnc0 (2.48)

We can see that the fermionic path operator for the sites belonging on the
boundary of a plaquette is the plaquette operator Wp. If the path forms a
closed loop then it is called Wilson loop.

We will work on the special case where |Jx|,|Jy| ≪ |Jz| and Jz > 0. We
write the Hamiltonian as

H = H0 + V (2.49)
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with
H0 = −Jz

∑
z−links

σz
i σ

z
j

V = −Jx
∑

x−links

σx
i σ

x
j − Jy

∑
y−links

σy
i σ

y
j

(2.50)

and treat V as a perturbation. The ground state |Ψ0⟩ of the unperturbed
Hamiltonian is:

H0 |Ψ0⟩ = Eo |Ψ0⟩ ⇒ −Jz
∑

z−links

σz
i σ

z
j |Ψ0⟩ = E0 |Ψ0⟩ (2.51)

so E0 = −NJz with N, the number of unit cells. The ground state is highly
degenerate, with degeneracy 2N . Each particles in a unit cell can be either |↑↑⟩
or |↓↓⟩.We define P0 : Leff → L the projector operator that projects the
perturbed states in the space L where the ground states reside. We will denote
the states that span the groundspace of H0 as{∣∣∣m(0)

⟩ }
with m = 1, 2, ..., 2N (2.52)

so the projector operator is

P0 =
∑

m∈L0

∣∣∣m(0)
⟩⟨

m(0)
∣∣∣ (2.53)

The projector operator that projects us out of the L0 is

P1 = I − P0 =
∑
h/∈L0

|h⟩ ⟨h| (2.54)

With the projection operators satisfying:
P 2
0 = P0, P

2
1 = P1,

P0P1 = P1P0 = 0, P0 + P1 = 1
(2.55)

We will use Bloch’s Perturbation theory to find an effective Hamiltonian such
that, for |a⟩ , |b⟩ ∈ L0

⟨a|H0 |b⟩ = λ ⟨a|H(1)
eff |b⟩+ λ2 ⟨a|H(2)

eff |b⟩+ λ3 ⟨a|H(3)
eff |b⟩+ λ4 ⟨a|H(4)

eff |b⟩+ ...
(2.56)

On first term on perturbation theory:

⟨a|H(1)
eff |b⟩ = ⟨a|P0V P0 |b⟩ = 0 (2.57)

because V is not diagonal on the Hamiltonian basis, so when V acts on a state
|b⟩ ∈ L0 it excites it in another state |n⟩ /∈ L0. On second term:

⟨a|H(2)
eff |b⟩ = ⟨a|P0V P1(E0 −H0)

−1P0 |b⟩

⟨a|V
∑

|h⟩/∈L0

|h⟩ ⟨h| (E0 −H0)
−1

∑
|h⟩/∈L0

|h⟩ ⟨h|V |b⟩ =

∑
|h⟩/∈L0

⟨a|V |h⟩ ⟨h|V |b⟩
Eo − Eh

(2.58)

16



We can see that an excited state achieved by acting on a ground state once will
have an energy difference E0 − Eh = 4Jz so on second term

∑
|h⟩/∈L0

⟨a|V |h⟩ ⟨h|V |b⟩
Eo − Eh

= −
∑

x−links

J2
x

4Jz
−

∑
y−links

J2
y

4Jz
= −N

J2
x + J2

y

4Jz
(2.59)

and so

⟨a|H(2)
eff |b⟩ = ⟨a| I

(
−N

J2
x + J2

y

4Jz

)
|b⟩ = −N

J2
x + J2

y

4Jz
δab (2.60)

which means that initializing the system on a ground state, then the interaction
V , on second term cannot transform the initial state in a different state of
the groundspace of the Hamiltonian. It will only add an energy difference.
Continuing on the third term of the effective Hamiltonian:

H
(3)
eff = P0V P1(E0 −H0)

−1P1V P1(E0 −H0)
−1P1V P0 (2.61)

But acting with the interaction on a ground state three consecutive times can-
not return the system on a ground state of the groundspace. So on the third
term H

(3)
eff = 0 and we can generelise this result that odd terms of the effective

hamiltonian have zero contribution i.e. H(n)
eff = for n = odd. The most impor-

tant term in the effective Hamiltonian is the fourth term as we will show below.
Calculating the fourth term gives us:

H
(4)
eff = P0V P1(E0−H0)

−1P1V P1(E0−H0)
−1P1V P1(E0−H0)

−1P1V P0 (2.62)

and the matrix element is

⟨a|H(4)
eff |b⟩ =

∑
h1 /∈L0

∑
h2 /∈L0

∑
h3 /∈L0

⟨a|V |h1⟩ ⟨h1|V |h2⟩ ⟨h2|V |h3⟩ ⟨h3|V |b⟩
(Eo − Eh1)(Eo − Eh2)(Eo − Eh3)

(2.63)
Although for the full calculation we need to calculate many terms we are only
interested on the case where we start on an initial ground state but end up on a
different ground state. Suppose we have this part of the lattice. The interaction
can be written for this part as

V = v1 + v2 + v3 + v4 = −Jxσx
1σ

x
2 − Jyσ

y
2σ

y
3 − Jxσ

x
4σ

x
5 − Jyσ

y
5σ

y
6 (2.64)

Let
|a⟩ = |↑1↓6↑2↑7↓3↓4↑5↑8⟩
|b⟩ = |↑1↑6↑2↑7↑3↑4↑5↑8⟩

(2.65)

We know that
σx |↑⟩ = |↓⟩ σx |↓⟩ = |↑⟩

σy |↑⟩ = i |↓⟩ σy |↓⟩ = −i |↑⟩
(2.66)
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We will calculate

⟨a|H(4)
eff |b⟩ =

∑
h1 /∈L0

∑
h2 /∈L0

∑
h3 /∈L0

⟨a|V |h1⟩ ⟨h1|V |h2⟩ ⟨h2|V |h3⟩ ⟨h3|V |b⟩
(Eo − Eh1

)(Eo − Eh2
)(Eo − Eh3

)

(2.67)
First, we will calculate the terms where vi appears only once. For a cyclic
translation of vi we have

|h1⟩ = |↑1↓6↓2↑7↓3↓4↑5↑8⟩ , E0 − Eh1 = −4Jz

|h2⟩ = |↑1↓6↑2↑7↑3↓4↑5↑8⟩ , E0 − Eh2 = −4Jz

|h3⟩ = |↑1↓6↑2↑7↑3↑4↓5↑8⟩ , E0 − Eh3 = −4Jz

(2.68)

Computing the matrix elements:

⟨a| v1 |h1⟩ = ⟨↓1↑2| (−Jxσx
1σ

x
2 ) |↑1↓2⟩ = −Jx

⟨h1| v2 |h2⟩ = ⟨↓2↓3| (−Jyσy
2σ

y
3 ) |↑2↑3⟩ = Jy

⟨h2| v3 |h3⟩ = ⟨↓4↑5| (−Jxσx
4σ

x
5 ) |↑4↓5⟩ = −Jx

⟨h3| v4 |b⟩ = ⟨↓5↓2 6| (−Jyσy
5σ

y
6 ) |↑5↑6⟩ = Jy

(2.69)

So ∑
h1 /∈L0

∑
h2 /∈L0

∑
h3 /∈L0

⟨a|V |h1⟩ ⟨h1|V |h2⟩ ⟨h2|V |h3⟩ ⟨h3|V |b⟩
(Eo − Eh1)(Eo − Eh2)(Eo − Eh3)

= −
J2
xJ

2
y

64J3
z

(2.70)

Due to the symmetry of the hexagonal lattice all the above terms have the same
contribution

v1v2v3v4, v4v3v2v1

v2v3v4v1, v3v2v1v4

v3v4v1v2, v2v1v4v3

v4v1v2v3, v1v4v3v2

(2.71)

So the total contribution of these 8 terms is 8(−J2
xJ

2
y

64J3
z
). If we make the same cal-

culations and use the symmetries of the hexagonal lattice, the total contribution
of the 24 terms is

−8
J2
xJ

2
y

64J3
z

+ 8
J2
xJ

2
y

64J3
z

− 8
J2
xJ

2
y

128J3
z

= −
J2
xJ

2
y

16J3
z

(2.72)

The above arguments can easily be executed in the case Jz > 0. We have

σx
1σ

y
6 |↑1↑6⟩ = i |↓1↓6⟩

σx
2σ

y
2 |↑2↑7⟩ = i |↑2↑7⟩

σy
3σ

x
4 |↑3↑4⟩ = i |↓3↓4⟩

σy
5σ

x
5 |↑5↑8⟩ = −i |↑5↑8⟩

(2.73)
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Figure 2.3

so if we visualize the spins of a z-bond as one, as seen on figure (2.3), then we
can easily make the correspondance

σx
1σ

y
6 = σy

16 ≡ σy
left

σx
2σ

y
2 = iσz

27 ≡ iσz
up

σy
3σ

x
4 = σy

34 ≡ σy
right

σy
5σ

x
5 = −iσz

58 ≡ −iσz
down

(2.74)

So the effective hamiltonian on 4th term is

⟨a|H(4)
eff |b⟩ = ⟨a|

(
−
J2
xJ

2
y

16J3
z

∑
p

σy
leftσ

y
rightσ

z
upσ

z
down

)
|b⟩ (2.75)

We define a new operator

Qp = σy
left(p)σ

y
right(p)σ

z
up(p)σ

z
down(p) (2.76)

So the lattice has been transformed as seen in (2.3). We construct a new square
lattice, Λ′ and the Hamiltonian becomes

Heff = −
J2
xJ

2
y

16|Jz|3

 ∑
vertices

Qs +
∑

plaquettes

Qp

 (2.77)

Clearly the translational symmetry of our original model is now lost. We make
a transformation U on the Hamiltonian

U =
∏

horizontal links

Xj

∏
vertical links

Yk (2.78)
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Figure 2.4

and bring it in a more familiar form:

H ′
eff = UHeffU

† = −
J2
xJ

2
y

16|Jz|3

 ∑
vertices

As +
∑

plaquettes

Bp


Heff = −

J2
xJ

2
y

16|Jz|3

 ∑
vertices

As +
∑

plaquettes

Bp

 (2.79)

where
As = σx

s,1σ
x
s,2σ

x
s,3σ

x
s,4 =

∏
j∈star(s)

σx
s,j

Bp = σz
p,1σ

z
p,2σ

z
p,3σ

z
p,4 =

∏
j∈plaquette(p)

σz
p,j

(2.80)

The operators As and Bp commute, [As, Bp] = 0 because a star (s) and a pla-
quette (p) can either have two or none common particles. Hence they commute
with the Hamiltonian

[H,As] = [H,Bp] = 0 ∀s, p (2.81)
It’s clear that the operators As,Bp have eigenavalues ±1. We define the ground
state |Ψ⟩

|Ψ⟩ =
∏
s

1√
2
(I +As) |↑↑ ... ↑⟩ (2.82)

with As |Ψ⟩ = |Ψ⟩ and Bp |Ψ⟩ = |Ψ⟩. The excited states arise when one of the
operators has an eigenvalue −1. These will be the positions of the anyons. We
want to find out how can we generate anyons. We can use the anticommutation
relations:

{As, σ
z
s,j} = 0, {Bp, σ

x
p,j} = 0 (2.83)

If |ξ⟩ = σz
s,i |Ψ⟩ then As |ξ⟩ = −σz

s,i |Ψ⟩ = − |ξ⟩. The quasipartices that created
by the action of the operator As with eigenvalue −1 are e-type anyons and we
will refer to them as electric charges.

|es, ek⟩ = σz
i |Ψ⟩ (2.84)
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Figure 2.5

The indices s,k point the position of the quasiparticles. They ”live” on the
different vertices s,k. Similarly acting with an operator Bp we can generate
m-type anyons and we will refer to them as magnetic vortices i.e. quasiparticles
with eigenvalue Bp = −1.

|mp,mk⟩ = σx
i |Ψ⟩ (2.85)

The magnetic vortices lie inside the different plaquettes p,k. We can visualize
it as living inside the dual lattice.

Acting with both of the operators gives as a new state |ξ′⟩ = σx
p,iσ

z
s,i |Ψ⟩ with

eigenvalues As = −1 and Bp = −1. We interpret this as a third type anyon,
ϵ-anyon, composite of the two others.

|ϵ, ϵ⟩ = σx
p,iσ

z
s,i |Ψ⟩ (2.86)

These three along with the vacuum,(1), are the superselection sectors of our
model. Acting twice with the same operator gives eigenvalue +1 so the fusion
rules put together are:

m×m = e× e = ϵ× ϵ = 1

m× e = ϵ,m× ϵ = e, e× ϵ = m
(2.87)

The anyon model is nonabelian as there is only one specific outcome for the
fusion of any two different anyons. We would like to see the statistical behaviour
of our model. We can transport the anyons on the lattice with concsecutive
actions of the operators σx,σz. Every loop of σz actions can be written as a
product of Bp’s and every loop of σx as a product of As operators.

In order ot exchange two e anyons we need to act with σz operators and the
operators must form a loop.

So if |Ψi⟩ is the initial state, the final state will be |Ψf ⟩ = f(Bp) |Ψi⟩ with
f beeing some function of the operators Bp. But the Bp’s act on plaquettes
without an m anyon. So the final state is identical to the initial state and thus
e are bosons with respect to themselves. The same stands for the magnetic
vortices. We want to rotate an e particle around an m. In order to have an m
anyon in the lattice we must have acted with some operators Cσx on the ground
state |Ψ⟩. The same stands for e. So the initital state is |Ψi⟩ = CσxCσz |Ψ⟩. In
order to transport the e anyon and bring it to the original position we must act
with a series of σz operators which form a loop and call the product of them as
Lσz . But Lσz and Cσx have just one spin in common so LσzCσx = −CσxLσz .
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Figure 2.6

Figure 2.7

Figure 2.8
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Figure 2.9

Thus |Ψf ⟩ = Lσz |Ψi⟩ = − |Ψi⟩ and thus rotating an e around an m gives
a −1. Continuing with the statistics of ϵ particles we want to exchange two
ϵ particles. Each ϵ particle consists of one e and one m. Each e anyon must
transport by π around the m of the other ϵ. This is topologicaly equivalent
with rotating just the one e around m by 2π. So the exchange of two ϵ’s
gives a factor −1 so the ϵ’s are fermions with repsect to themselves. Tracing
back we see that the e’s and m’s live on different rows of the hexagonal lattice
We see that anyons can exist in the exotic phase where Jz is much bigger
than Jx,Jy. But there is a problem. The fusion space of an abelian anyon
model is one dimensional and thus we cannot construct the universal gates and
achieve universal quantum computation with abelian anyons. This can only
be done if the model is nonabelian and the fusion space V c

ab has dimension
dimV c

ab = N c
ab > 1 and so possible fusion states can serve as qubits.
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Chapter 3

Gapped and Gapless phases

But, which is the ground state of our model? There is a beautiful theorem by
proved Lieb [30] that states that the minimum energy is achieved by the vortex
free configuration and that is for wp = 1. So we may assume that uajk = 1.
According to the first chapter we can ”move” on the lattice using 3 Eisenstein
integers, s1 = 1 s2 = ω, s3 = −ω−1 or written as vectors in the standard (x, y)
basis:

s⃗1 = (1, 0)

s⃗2 = (−1

2
,

√
3

2
)

s⃗3 = (−1

2
,−

√
3

2
)

(3.1)

We employ a Fourier transform on the operators ci and cj :

ci = cr⃗ =
1

2N

∑
p⃗

e−ip⃗r⃗cp⃗

cj = cr⃗′ =
1

2N

∑
p⃗′

e−ip⃗′r⃗′cp⃗′

(3.2)

with the restriction that r⃗′ = r⃗ + s⃗a, a = 1, 2, 3. We drop tildes and write the
Hamiltonian as:

H =
i

4

∑
r⃗

2cr⃗(Jzcr⃗+s⃗1 + Jxcr⃗+s⃗2 + Jycr⃗+s⃗3)+

i

4

∑
r⃗

(−2)cr⃗(Jzcr⃗−s⃗1 + Jxcr⃗−s⃗2 + Jycr⃗−s⃗3)

=
i

4

∑
p⃗′

∑
a=1,2,3

2Jae
−ip⃗′s⃗ac−p⃗′cp⃗′ + h.c

(3.3)
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By definition, c−p⃗ = c†p⃗ and if:

c̃p⃗ = e−iπ/4cp⃗

c̃′p⃗ = eiπ/4c′p⃗

f(p⃗) =
∑

a=1,2,3

= 2Jae
−ip⃗s⃗a

(3.4)

then the Hamiltonian is written

H =
1

4

∑
p⃗

[
c̃p⃗ c̃′p⃗

] [ 0 f(p⃗)
f∗(p⃗) 0

] [
c̃p⃗
c̃′p⃗

]
(3.5)

We define the 1-particle Hamiltonian as:

H(p⃗) =

[
0 f(p⃗)

f∗(p⃗) 0

]
(3.6)

The spectrum of the Hamiltonian is

ϵ(p⃗) = ± |f(p⃗)|
ϵ(p⃗) = ± 2|Jxe−ip⃗s⃗2 + Jye

−ip⃗s⃗3 + Jze
−ip⃗s⃗1 |

(3.7)

We want to examine if the spectrum allows fermi points i.e. points (px, py) with
eigenvalues ϵ = 0. Thus, there must be p⃗ = (px, py) that satisfy:

Jxe
−ip⃗s⃗2 + Jye

−ip⃗s⃗3 + Jze
−ip⃗s⃗1 = 0 (3.8)

This equation represents three vectors in the complex plane. In order for the
sum of three vectors to be zero, they must form a triangle and so the length of
it’s sides must satisfy the triangular inequalities:

|Jx| ≤ |Jy|+ |Jz|, |Jy| ≤ |Jx|+ |Jz|, |Jz| ≤ |Jx|+ |Jy| (3.9)

Going back to (3.7), we have to find (px, py) that satisfy:

Jxcos

(
−px

2
+

√
3py
2

)
+ Jycos

(
−px

2
−

√
3py
2

)
+ Jzcospx = 0

Jxsin

(
−px

2
+

√
3py
2

)
+ Jysin

(
−px

2
−

√
3py
2

)
+ Jzsinpx = 0

(3.10)

After calculations the fermi points are:

py = ±
√
3

2
arccos

(
J2
z − J2

x − J2
y

2JxJy

)

px = ±2

3
arccos

(
J2
z − J2

y − J2
x

2JxJy

) (3.11)
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Figure 3.1

In the special case where Jx = Jy = Jz = J , the energy eigenvalues become

ϵ(p⃗) = ±J
2

√
1 + 4cos2

√
3py
2

+ 4cos
3px
2
cos

√
3py
2

(3.12)

The figure is shown above. There are infinite fermi points and spectrum is
gapless.

We add an extra term in the hamiltonian

H2 = −K
∑
i,j,k

σx
i σ

y
j σ

z
k (3.13)

where K is the effective magnetic field. Every plaquette contributes 6 terms∑
{i,j,k}∈p

σx
i σ

y
j σ

z
k = σx

1σ
z
2σ

y
3 + σy

2σ
x
3σ

z
4 + σz

3σ
y
4σ

x
5 + σx

4σ
z
5σ

y
6 + σy

5σ
x
6σ

z
1 + σz

6σ
y
1σ

x
2

(3.14)
We added this term because it breaks the time-reversal symmetry and preserves
the excact solvability of the model. We have

σx
i σ

y
j σ

z
k = ibxi ciib

y
j cjib

z
kck = ibxi b

x
kib

y
j b

y
kib

x
kb

y
kb

z
kck =⇒

σx
i σ

y
j σ

z
k = −iûxikû

y
jkDkcicj

(3.15)

But Dk = 1 on the physical subspace and thus

σx
i σ

y
j σ

z
k = −iûxikû

y
jkcicj (3.16)

The hamiltonian is now written

Heff =
i

4

∑
{i,j}

(
2Jij ûijcicj +

2ki

4

∑
k

ûiK ûjkcicj

)
=
i

4

∑
{i,j}

Aijcicj (3.17)
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Figure 3.2

with
Aij = 2Jij ûij + 2K

∑
k

ûikûjk (3.18)

Thus the effective hamiltonian is shown in figure (3.2) The arrow → is just a
notation for the matrix ûjk which is +1 if it points from j to k and −1 otherwise.
We define 99K in the same way. If we employ again the Fourier transform in
(3.2) then the second part of the hamiltonian becomes

H2 =
i

4

∑
r⃗

∑
p⃗

∑
p⃗′

2K

2N

(
e−ip⃗′n⃗1 − e−ip⃗′n⃗2 + eip⃗

′(n⃗1−n⃗2) + e−ip⃗′n⃗1 + eip⃗
′n⃗2 − e−ip⃗′(n⃗1−n⃗2)

)
=
iK

2

∑
p⃗

1

2i
[− sin(p⃗n⃗1) + sin(p⃗n⃗2) + sin p⃗(n⃗1 − n⃗2)]

(3.19)
The vectors are

n⃗1 = s⃗2 − s⃗3 =
(
0,
√
3
)

n⃗2 = −s⃗1 + s⃗3 =

(
−3

2
,−

√
3

2

)

n⃗1 − n⃗2 =

(
3

2
,

√
3

2

) (3.20)

and we define

∆(p⃗) = 4K (− sin(p⃗n⃗1) + sin(p⃗n⃗2) + sin p⃗(n⃗1 − n⃗2)) (3.21)

If we use the relation (3.4) then

H2 =
i

4

∑
p⃗

∆(p⃗)
(
c̃†p⃗c̃p⃗ − c̃′

†
p⃗c̃

′
p⃗

)
(3.22)

So the effective hamiltonian is now written

H =
1

4

∑
p⃗

[
c̃p⃗ c̃′p⃗

] [∆(p⃗) f(p⃗)
f∗(p⃗) −∆(p⃗)

] [
c̃p⃗
c̃′p⃗

]
(3.23)
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Figure 3.3

This new extra term modifies the energy spectrum. To be precise it creates an
energy gap

∆ = 6
√
3K (3.24)

around the Fermi points between the valence and conductance bands.
The starting point is this: if ν(the Chern number) is odd then each vortex

carries an unpaired majorana mode. In our model the Chern number is equal
to 1. We consider a Majorana operator γi at a specific position. Consider
2n spatially well-seperated Majoranas γ1, ..., γ2n. Since a Majorana degree of
freedom is halp a fermionic degree of freedom, one can combine them to give
rise to full fermions

aj =
1

2
(γ2j−1 + iγ2j) (3.25)

The majorana operator satisfies

γi = γ†i

γ2i = 1
(3.26)

Let us take 4 localised majorana fermions γ1, ..., γ4. We can combine these 4
Majorana fermions in two different ways as seen in the figure (3.4).

z1 =
1

2
(γ1 + iγ2), z2 =

1

2
(γ3 + iγ4)

w1 =
1

2
(γ1 + iγ3), w2 =

1

2
(γ2 + iγ4)

(3.27)

They satisfy the anticommutation relations

{γi, γj} = 2δij

{zi, z†i } = 1, {wi, w
†
i } = 1

(3.28)

It does not make sense to talk about Majorana number since it is identically one
i.e. γ†i γi = 1. Similarly, γiγ†i = 1. Thus in the traditional sense, the Majorana
mode is empty and fulled at the same time. However is possible to speak of
the number of states |ni⟩, which are the eigenstates of the number operator
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Figure 3.4

ni = a†iai, i = 1, ..n. In terms of Majorana operators, these number operators
are given by

ni = a†iai =
1

2
(1 + iγ2j−1γ2j−1) (3.29)

So in general for spatially seperated Majorana fermions, the way to re-write
them in terms of traditional fermions is non-unique. These 2 different ways of
grouping the Majorana fermions are not independent as

{z1, w1} =
1

2
(3.30)

The population states are given by |ij⟩ = |i⟩z1 ⊗ |j⟩z2 with i, j = 0, 1 and i is
the population of the z1 and j the population of z2. The operators z†i zi, w

†
iwi

project on the zero population states while ziz†i , wiw
†
i project on the states with

populated modes. We are interested in the |00⟩z/w, |11⟩z/w states. The states
|00⟩z, |11⟩z satisfy

z†1z1 |00⟩z = 0, z1z
†
1 |00⟩z = |00⟩z

z†1z1 |11⟩z = |11⟩z , z1z
†
1 |11⟩z = 0

(3.31)

As the operators w1 and z1 do not anticommute we can find what is the z
population of the state (2w†

1w1 − 1) |00⟩z.

z†1z1(2w
†
1w1 − 1) |00⟩z = (2w†

1w1 − 1) |00⟩z (3.32)

and so
|11⟩z = (2w†

1w1 − 1) |00⟩z (3.33)
Rewriting the above equation

|11⟩w =
√
2w†

1w1 |00⟩z =
1√
2
(|00⟩z + |11⟩z) (3.34)

and with the same way

|00⟩w =
√
2w1w

†
1 |11⟩z = − 1√

2
(|00⟩z − |11⟩z) (3.35)
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and so z and w bases are related by the transformation matrix

F =
1

2

[
−1 1
1 1

]
(3.36)

This matrix is the F matrix of the Ising model. We can continue our calculation
and find that the phase factor θ = π/8, that of the Ising model. So we are led
to the conclusion that a vortex carrying an unpaired majorana mode is just one
of the superselection sectors, denoted by σ. The others are ϵ (fermions) and 1
(vacuum). If two vortices fuse, then they either annihilate completely or leave
a fermion behind

σ× σ = 1 + ϵ (3.37)

The complete set of the fusion rules is

σ× ϵ = ϵ

ϵ× ϵ = 1

σ× σ = 1 + ϵ

(3.38)

This model of anyons is called Ising anyons and it clearly nonabelian. Thus it
can be used for quantum computation. The basis vectors that can serve as our
computational basis are |ψσσ

1 ⟩ and |ψσσ
ϵ ⟩.
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Chapter 4

Discrete gauge theories and
Quantum double

Let us consider a continuous gauge theory that is spotaneously broken down
to a finite nonabelian group G in in two spatial dimensions. This nonabelian
superconductor cointains particles that carry magnetic flux, called fluxons, that
take values in a nonabelian finite group G and electric charges that are the
unitary irreducible representations of the group G [12,13]. Particles that carry
flux and charge are called dyons and they are labeled by a group element of G
and an irreducible representation of the normalizer group of the group element.

Let a be an irreducible representation of G whose dimension is denoted by
|a|. The represenation acts on a vector space spanned by vectors

|a, i⟩ , i = 1, ..., |a| (4.1)

When a charge a is trasported around a closed path whick encircles a magnetic
flux b ∈ G then the basis vectors trasform according to

|a, i⟩′ =
|a|∑
j

Da
ij(b) |a, j⟩ (4.2)

So given a number of charges we can attach labels to all fluxes as long as the
representation |a| is faithful. Suppose that I use my standard charges to measure
the flux of each particle and that I assign the group elements b1, b2, ..., bn in each
particle. But what if someone else asked to verify my assignments given the same
charges but had transported them around another flux g ∈ G. The he would
assign the group elements gb1g−1, gb2g

−1, ..., gbkg
−1. We would agree only on

the thing that each particle will be assigned a group element which belongs in
the same conjugacy class. So the fluxons belonging in the same conjugacy class
are regarded as indistinguishable particles. Given a number of fluxons we will
measure the total flux from right to left, so given a pair |a, b⟩, it’s total flux is
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ab. We define the R-matrix which acts on the space of two fluxons, exchanges
them counterclockwise and conserves the total flux of the pair as

R |a, b⟩ =
∣∣aba−1, a

⟩
(4.3)

The clockwise exchange is defined as

R−1 |a, b⟩ =
∣∣b, b−1ab

⟩
(4.4)

Two consecutive counterclockwise exchanges is the monodromy operator

R2 |a, b⟩ =
∣∣(ab)a(ab)−1, (ab)b(ab)−1

⟩
(4.5)

We can see that both of the fluxes are conjugated by (ab). An important
observation is taking R to an arbitrary power n is:

Rn |a, b⟩ =

{∣∣(ab)n
2 a(ab)−

n
2 , (ab)

n
2 b(ab)−

n
2

⟩
n even∣∣∣(ab)n−1

2 aba−1(ab)−
n−1
2 , (ab)

n−1
2 a(ab)−

n−1
2

⟩
n odd

(4.6)

Theorem 4.0.1. Let fluxons take values on a finite group G. Then the R-matrix
to the power of the least common multiple of the order of the group elements
times two equals the identity.

This is an important observation due to the fact that the system of two
fluxons does not keep on braiding but gets unbraided after a finite number
of exchanges. R acts a representation of the truncated colored braid group
P (n,m). We will return to that briefly.

Let the fluxes take values on the permutation group S3. The permutation
group is of order |S3| = 6 and consists of the elements

S3 = {e, (123), (132), (12), (23), (13)} (4.7)

The conjugacy classes are

C1 = {e}
C2 = {(123), (132)} 3-cycles
C3 = {(12), (23), (13)} 2-cycles

(4.8)

The R matrix is shown in the figure below.
We want to know what happens when a particle carries a flux labeled by

a group element but also carries an internal charge. Let the particles whose
charge we want to measure is in the flux/charge eigenstate

|flux, charge⟩ = |b, u⟩ (4.9)

Let the initial state of the 2-particle system be |a, b⟩. Then if we transport the
flux b around a counterclockwise then

R2 |b, a⟩ =
∣∣(ab)a(ab)−1, (ab)b(ab)−1

⟩
=
∣∣(ab)a(ab)−1, (aba−1

⟩
(4.10)
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Figure 4.1

So the flux/charge eigestate transformed as

R2 |b, u⟩ =
∣∣aba−1,Γ(a)u

⟩
(4.11)

Because that transformation of conjugation may be implemented as an addi-
tional internal charge we need global transformations gbg−1 with g ∈b N , with
bN the normalizer group of the flux b. So the internal charges we can assign to
a flux h are the unitary irreducible representations of the the normalizer group
hN So each particle that can occur in an nonabelian superconductor can be
labeled by the conjugacy class of the flux CA and the irreducible representation
of the normalizer group of the flux a. These are the superselection sectors of
the theory as these properties are conserved under all local physical processes.
We can define the dimension of the sector

d(CA,a) = |a||CA| (4.12)

as well the total dimension D, which is the sum over all conjugacy classes and
all representations of the normalizer groups.

D2 =
∑
a

∑
CA

d2(CA,a) = |G|2 (4.13)

An important observation is that the normalizer groups of the elements that
belong in the same conjugacy class are isomorphic. In order to find the su-
perselection sectors for S3 we need to find the representations of the normalizer
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groups. There are 3 conjugacy classes so we have to find three normalizer groups.

N(e) = S3

N(123) = {e, (123), (132)} ∼= Z3

N(12) = {e, (12)} ∼= N(23) ∼= N(13) ∼= Z2

(4.14)

Z3 has 3 conjugacy classes and thus 3 irreducible representations of dimension
1. We can costruct the character table:

CZ3
1 CZ3

2 CZ3
3

ρ1 1 1 1
ρ2 1 e2πi/3 e4πi/3

ρ3 1 e4πi/3 e2πi/3

Z2 has 2 irreducible representations of dimension 1.

C1 C2

ρ̃1 1 1
ρ̃2 1 −1

And S3 has three irreducible representations. Two with dimension one, Γ1 and
Γ2 which correspond to the trivial and the non-trivial and one with dimension
two, Γ3 So for the case G = S3, there are 8 particle types

Type F lux Charge Dimension

A e Γ1 1
B e Γ2 1
C e Γ3 2
D (123) ρ̃1 3
E (123) ρ̃2 3
F (12) ρ1 2
G (12) ρ2 2
H (12) ρ3 2

When two different particles are fused together the composite object can be
of various types and the fusion rules specify which types are possible. The
decomposition theorem can be used to decompose reducible representations of
a group into it’s irreducible components. But in our case every particle is labeled
by a conjugacy class and a representation of a specific normalizer group, not
the same for all particles. For this case, we are led to the construction of the
quantum double[14,15].

Quantum double or Drinfeld double, denoted by D(G) is a Hopf algebra:

D(G) = F (G)⊗ C[G] (4.15)

where G is a finite group, C[G] it’s group algebra, i.e. the complex vector space
with basis (eg)g∈G equipped with the product egeh = egh and F (G) the abelian
algebra of complex functions defined on G.
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The magnetic flux of a particle is given by the element g ∈ G and the
charges are the irreducible representations of the centralizer gN of the particle’s
flux g ∈ G . We can measure the flux by projecting it out with an operator Pg

and the charge with global transformations h ∈ gN ⊂ G that commute with
the flux g of the particle.

The elements spanning the quantum group D(G) are (Phg)g,h∈G. The pro-
jection operators satisfy the algebra:

PhPh′ = δh,h′Ph with h, h′ ∈ G (4.16)

The elements Ph, g do not commute:

gPh = Pghg−1g (4.17)

Combining the above relations we conclude that the algebra of the elements of
the quantum group is

PhgPh′g′ = δh,gh′g−1Ph(gg
′) (4.18)

Let {CA}, A = 1, .., C be the conjugacy classes of the group G with {C1} = {e}.
In every CA we choose an element Ah1 and define the normalizer of the element
Ah1:

NAh1
= {h ∈ G|hAh1 = Ah1h} (4.19)

The normalizers of the elements in the same conjugacy class are isomorphic so
we will denote NA the group NAh1

. Let Ax1, ...,
A xq a set of equivalence classes

of G/NA so that Ahi =
AxA1 h

A
i x

−1
i i.e.

Ah1 = AxA1 h
A
1 x

−1
1

Ah2 = AxA2 h
A
1 x

−1
2

...
Ahq = AxAq h

A
1 x

−1
q

(4.20)

We choose for convience Ax1 = e. So the conjugacy class CA can now be written
as

CA = {Ah1, ...,A hq} = {AxA1 hA1 x−1
1 , ...,A xAq h

A
1 x

−1
q } (4.21)

Let a be an irreducible representation of NA acting on a subspace VA with basis
vectors |avj⟩j=1,...,dima. We define the Hilbert space V A

a with basis vectors∣∣Ahi,a vj⟩i=1,...,q

j=1,...,dima
(4.22)

We are not interested in all the elements of the quantum double, but only on
the subalgebra BA of D(G) with elements

(Phg)h∈G,g∈NA
(4.23)
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Let ΠA
a the mapping from BA to V A

a such that

ΠA
a (Phg)

∣∣Ahi,a vj⟩ = δh,gAhig−1

∣∣gAhig−1, a(g̃)mj
avm

⟩
(4.24)

with g̃ = Ax−1
k g Axi ∈ NA. xk is defined in such way the g̃ is always in NA.

g̃Ah1 = Ah1g̃ ⇒ Ahk = gAhig
−1 (4.25)

The map ΠA
a satisfies the relation

ΠA
a (Phg)Π

A
a (Ph′g′) = ΠA

a (PhgPh′g′) (4.26)

so it is a representation of the quantum double. The representations satisfy the
orthogonality relation

1

|G|
∑

h∈G,g∈NA

tr(ΠA
a (Phg))tr(Π

B
β (Phg))

∗ = δA,Bδa, β (4.27)

with

tr(ΠA
a (Phg)) =

{
0 if h /∈ CA or hg ̸= hg

tr(a(g̃)) where g̃ = Ax−1
k g Axi ∈ NA

(4.28)

Let a be an irreducible representation of NAh, if h is in CA we will define a
representation ah of Nh by

ah(g̃) = a(x−1g̃x) where h = xAhx−1, g̃ ∈ Nh (4.29)

We will use the notation ρha(g̃) = tr(ah(g̃)). As a result

tr(ΠA
a (Phg)) =

{
0, if g /∈ CA or hg ̸= hg

ρha(g̃)
(4.30)

The superselection sectors are the couples (CA, a) where CA is the conjugacy
class and a is the irreducible representation of the normalizer of the element
that belongs in the congugacy class CA. We will denoted them as [ϕAa ] and call
them chiral sectors. We will show that the vectors that span the Hilbert space
V A
a have the same topological spin. We define the central element as

∑
h Phh.

Then

ΠA
a

(∑
h

Phh

)∣∣Ahi,a vj⟩ = ∣∣Ahi, a(Ah1)amjvm
⟩

(4.31)

Since Ah1 from it’s definition commutes with all the elements of NA then from
Schur’s lemma it will be proportional to the identity matrix of the Va subspace

a(Ah1) = e2πis(A,a)Ia (4.32)

so every sector (CA, a) has it’s own different value of topological spin.
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The Hilbert space that describes two sectors (CA, a) and (CB , β) is V A
a ⊗V B

β .
The extension of the action of the quantum double from the 1-particle states in
the 2-particles states is given by the comultiplication

∆(Phg) =
∑

h′h′′=h

Ph′g ⊗ Ph′′g (4.33)

The representation of the tensor product is∑
h′h′′=h

ΠA
a (Ph′g)⊗ΠB

β (Ph′′g) = ΠA
a ⊗ΠB

β (∆(Phg)) (4.34)

and can be decomposed on a direct sum of representations (ΠC
γ , V

C
γ ):

ΠA
a ⊗ΠB

β =
⊕
C,γ

NABγ
aβC ΠC

γ (4.35)

The coefficients NABγ
aβC are called fusion multiplicities.

An important aspect of the comultiplication is that it is coassociative :

(id⊕∆)∆(Phg) = (∆⊕ id)∆(Phg) =
∑

h′h′′h′′′=h

Ph′g ⊗ Ph′′g ⊗ Ph′′′g (4.36)

We define the R-matrix that acts on the Hilbert space of the tensor product of
fluxes that span the group G as

R =
∑

h,g∈G

Pge⊗ Phg (4.37)

It’s action on a state |a⟩ |b⟩ is

R |a⟩ |b⟩ =
∑

h,g∈G

δg,a |a⟩ ⊗ δh,gbg−1

∣∣gbg−1
⟩
= |a⟩

∣∣aba−1
⟩

(4.38)

But we have already mentioned that the R-matrix action on a state |a⟩ |b⟩ is

R |a⟩ |b⟩ =
∣∣aba−1

⟩
|a⟩ (4.39)

So we can redefine the R-matrix as

R = σ ◦
∑

h,g∈G

Pge⊗ Phg (4.40)

with the notation σ meaning σ ◦ |a⟩ |b⟩ = |b⟩ |a⟩.
The physical braid operator is defined so that it acts on the states belonging

in the Hilbert space V A
a ⊗ V B

β

RAB
aβ = σ ◦ (ΠA

a ⊗ΠB
β )R = σ ◦

∑
h,g∈G

ΠA
a (Pge)⊗ΠB

β (Phg) (4.41)
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Figure 4.2

The action of RAB
aβ is

RAB
aβ

∣∣Ahi,a vj⟩ ∣∣Bhm,β vn⟩ = ∣∣∣AhBi hAmh−1
i , β( ˜Ahi)ln

βvn

⟩ ∣∣Ahi,a vj⟩ (4.42)

The physical braid operator satisfies the quasitriangularity conditions:

R∆(Phg) = ∆(Phg)R

(id⊗∆)R = R2R1

(∆⊗ id)R = R1R2

(4.43)

with R1 and R2 satisfying the Yang-Baxter equation

R1R2R1 = R2R1R2 (4.44)

It is clear now that R is a homomorphism of the Braid group. The R operators
satisfy the equations of the generators of the Braid group:

RiRi+1Ri = Ri+1RiRi+1, i = 1, ..., n− 2

RiRj = RjRi, |i− j| ≥ 2
(4.45)

along with the condition
Rm = 1 (4.46)

where m is the least common multiple of the order of the elements of the group
times two. The groups satisfying the above equations are called Truncated Braid
Groups and it is clear that the system unbraids after a finite number of knots.
They are denoted as B(n,m) where n is the number of particles and m the
order of the generators.

Let (ΠA
a , V

A
a ) and (ΠB

β ) two irreducible representations of the quantum dou-
ble D(G). The representation of the tensor product (ΠA

a ⊕ ΠB
β , V

A
a ⊗ V B

β ) is
reducible

ΠA
a ⊗ΠB

β =
⊕
C,γ

NABγ
aβC ΠC

γ (4.47)
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with
NABγ

aβC =
1

G

∑
h,g∈G

tr[ΠA
a ⊗ΠB

β (∆(Phg))]tr[Π
C
γ (Phg)]

∗ (4.48)

These are the fusion rules. They determine which particles (CC , γ) can be
formulated by two particles (CA, a), (CB , β). We can define the modular S-
matrix:

SAB
aβ =

1

|G|
tr(RAB

aβ )−2

=
1

|G|
∑

Ahi ∈ CA,
B hj ∈ CB

[Ahi,
B hj ] = e

tr(a(Ax−1B
i hAj xi))

∗tr(β(Bx−1A
j hBi xj))

∗ (4.49)

For the case that G = S3 the S-Matrix is:

S =
1

6



1 1 2 3 3 2 2 2
1 1 2 −3 −3 2 2 2
2 2 4 0 0 −2 −2 −2
3 −3 0 3 −3 0 0 0
3 −3 0 −3 3 0 0 0
2 2 −2 0 0 4 −2 −2
2 2 −2 0 0 −2 −2 4
2 2 −2 0 0 −2 4 −2


(4.50)

Verlinde found a formula which produces the non-negative fusion multiplicities
from S-matrix [16,27-29].

NABγ
aβC =

∑
D,δ

SAD
aδ SBD

βδ (SCD
γδ )∗

SeD
0δ

(4.51)

So the fusion rules for our model is:
Fusion rules

A B C D E F G H
A A B C D E F G H
B B A C E D F G H
C C C A⊕B⊕C D⊕E D⊕E G⊕H F⊕H F⊕G
D D E D⊕E A⊕C⊕F⊕G⊕H B⊕C⊕F⊕G⊕H D⊕E D⊕E D⊕E
E E D D⊕E B⊕C⊕F⊕G⊕H A⊕C⊕F⊕G⊕H D⊕E D⊕E D⊕E
F F F G⊕H D⊕E D⊕E A⊕B⊕F H⊕C G⊕C
G G G F⊕H D⊕E D⊕E H⊕C A⊕B⊕G F⊕C
H H H F⊕G D⊕E D⊕E G⊕C F⊕C A⊕B⊕H

Let Π be a finite dimension representation of D(G) acting on a vector space
W . So

Π =
⊕
A,a

nA,aΠ
A
a (4.52)
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Figure 4.3

and there is a unique decomposition of W such that

W =
⊕
A,a

WA
a (4.53)

where

WA
a =

nA,a⊕
i=1

Wi with Wi
∼= V A

a (4.54)

WA
a are called isotypic components. We construct the projection operator PA

a ,
which projects in WA

a using the character’s orthogonality.

PA
a =

dima

NA

∑
g,h∈G

tr(ΠA
a (Pgh))

∗Π(Pgh) (4.55)

Let KABC
aβγ be the projection of the isotypic component WC

γ on V A
a ⊗ V B

β

KABC
aβγ =

dimγ

NC

∑
gx=xg

ρghγ (x)∗ΠA
a (Pgx)⊗ΠB

β (Phx) (4.56)

It is proven that

KABC
aβγ RBA

βa R
AB
aβ = e2πi(s(C,γ)−s(A,a)−s(B,β))KABC

aβγ (4.57)

So acting with the monodromy operator and then fusing the two particles is
equivalent with fusing the two particles and then rotating the 2 particles clock-
wise by 2π and the composite object counterclockwise by 2π [26] as seen in
figure (4.3).

When two indistinguishable particles are exchanged then they are trans-
formed as a representation of the truncated braid group B(2,m). If the particles
though are dinstinguishable, they transform as a representation of the truncated
colored braid group P (2,m) with m/2 ∈ Z the order of the monodromy opera-
tor R2 of this particular system. So a system with n indistinguishable particles
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transform as the truncated colored braid group P (n,m) and if the particles are
distinguishable transform as the truncated braid group B(n.m). If the system
is composed of both distinguishable and indistinguishable then they transform
as the Partially Truncated Braid group.
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Chapter 5

Quantum computation
using anyons

In the case of a nonabelian superconductor, the fluxes take values in a nonabelian
finite group G. In a system of anyons there are 3 physical processes [17,18].

Pair creation and identification. We can create pair of particles from the
vacuum where every particle is characterized by it’s conjugacy class and the
irreducible representation of the normalizer group of the flux (CA, a). Particles
that either belong in a different conjugacy class or in a different represenation
of the normalizer group of the flux are distinguishable.

Pair annihilation. We can bring any two particles together and see if they
annihilate, and thus have trivial total flux and charge. We will call this process
destructive measurement.

Braiding. We can move the anyons in specific trajectories of our choice and
exchange particles.

The first thing we need to do in a system of anyons is to calibrate the fluxes.
Suppose we are given two pair of fluxes

∣∣a, a−1
⟩

and
∣∣b, b−1

⟩
and we want to

test if the pairs match. Consider a pair of particles each of which carries charge
but not flux such that the total charge of the pair is trivial. We will call them
chargeon-antichargeon and if the chargeon transforms as a unitary irreducible
represenation R of the group G acting on a vector space V with dimension
dimV = |R| then the antichargeon transforms as the conjugate irreducible rep-
resentation R̄ that combined with R gives the trivial representation. If {|R, i⟩}
is a basis of R then {

∣∣R̄, i⟩} can be chosen for R̄ so that the pair can be described
by the state

|0;R⟩ = 1

|R|

|R|∑
i=1

|R, i⟩ ⊗
∣∣R̄, i⟩ (5.1)

Imagine we create a pair of fluxes
∣∣a, a−1

⟩
and a pair of chargeon-antichargeon.

We wind the chargeon around the first member of the flux pair, so due to
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Bohm-Aharonov effect it’s state transforms as

|R, i⟩′ =
|R|∑
i

DR
ij(a) |R, j⟩ (5.2)

so the chargeon-antichargeon state becomes

|0;R⟩′ = 1

|R|

|R|∑
i=1

|R, i⟩′ ⊗
∣∣R̄, i⟩ = 1

|R|

|R|∑
i=1

DR
ij(a) |R, j⟩ ⊗

∣∣R̄, i⟩ (5.3)

We bring the members of the pair together and see if they annihilate. The
amplitude of the process is

⟨0;R|0;R⟩′ =
∑|R|

i=1D
R
ii (a)

dimR
=
χR(a)

|R|
(5.4)

so the probability they will annihilate is

Prob(0) =

∣∣∣∣χR(a)

|R|

∣∣∣∣2 (5.5)

So back to our case, and the two pair of fluxes. We wind the chargeon around the
first member of the first pair and then around the second member of the second
pair. The probability they will annihilate after the two consecutive exchanges
is

Prob(0) =

∣∣∣∣χR(b−1a)

|R|

∣∣∣∣2 (5.6)

which clearly is less than zero if b ̸= a. After a number of repetitions we can say
with high statistical confidence if the fluxes are different. We can sort in that
way all the different fluxes on seperate ”bins”. The next step is to label the fluxes
so that they match the group composition rules because the chance of getting
it right on the first random labeling is 1/(|G|!). Suppose we take 3 pairs from
3 different bins,

∣∣a, a−1
⟩
,
∣∣b, b−1

⟩
and

∣∣c, c−1
⟩

and we want to check whether
c = ab. We create again a chargeon-antichargeon pair and wind it first around
a, then b and then c−1 and then reunite the chargeon-antichargeon to see if it
annihilates. If ab = c then every time we bring the chargeon-antichargeon pair
together it will annihilate. We construct in that way a flux bureau of standards
and label the fluxes according to the group G that they take values. So given
an unkown pair of fluxes

∣∣d, d−1
⟩

we can use any of the labeled fluxes, suppose∣∣a, a−1
⟩
, repeat the above process and determine the flux d. We will call this

process projective flux measurement.
Suppose we have two pairs of fluxes

∣∣a, a−1
⟩

and
∣∣b, b−1

⟩
. If we transport the

pair of fluxes
∣∣a, a−1

⟩
counterclockwise around the first member of the second

pair, then the state transforms as∣∣a, a−1
⟩
→
∣∣bab−1, ba−1b−1

⟩
(5.7)
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This is the basic gate we can use and we will call it conjugation gate. Reca-
pitulating, the 3 basic processes are Projective flux measurement, Destructive
measurement and Conjugation gate.

Next step is to choose the computational basis. We make the choice

|n⟩ =
∣∣anba−n

⟩
⊗
∣∣anb−1a−n

⟩
0 ≤ n < d (5.8)

with d prime. Let the fluxes take values on a simple perfect group. Every simple
perfect group has even order so we can always find a group element a such that
a2 = 1 and thus work with qubits [19]. We choose two noncommuting elements
a,b of G such that a2 = 1 and we define the computational basis

|0⟩ =
∣∣b, b−1

⟩
|1⟩ =

∣∣aba−1, ab−1a−1
⟩ (5.9)

The matrix that executes the projective measurement is the Z-Pauli matix

Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ (5.10)

Z =

[
1 0
0 −1

]
(5.11)

The X-Pauli is defined as

X |0⟩ = |1⟩ , X |1⟩ = |0⟩ (5.12)

X =

[
0 1
1 0

]
(5.13)

The eigevectors of X in the computational basis are∣∣0̃⟩ = 1√
2
(|0⟩+ |1⟩) = 1√

2

(∣∣b, b−1
⟩
+
∣∣aba−1, ab−1a−1

⟩)
∣∣1̃⟩ = 1√

2
(|0⟩ − |1⟩) = 1√

2

(∣∣b, b−1
⟩
−
∣∣aba−1, ab−1a−1

⟩) (5.14)

Suppose we create a pair of fluxes from the vacuum. What is the state of
the pair? Suppose that the members of the pair belong in the conjugacy class
CA. They should not be carrying any conserved charges and so the state that
describes the pair is

|0;CA⟩ =
1√
|CA|

∑
g∈CA

∣∣g, g−1
⟩

(5.15)

That means that if we bring two members of a flux pair
∣∣g, g−1

⟩
together the

chance that they will annihilate is not 1 but 1/CA If the state of a pair is
∣∣1̃⟩

then the amplitude of the components of the pair to fuse in the vacuum is⟨
1̃
∣∣0;CA

⟩
= 0 (5.16)
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thus the will never fuse into the vacuum. On the other side taking the amplitude

⟨
0̃
∣∣0;CA

⟩
=

√
2

|CA|
(5.17)

and thus there is finite probability that they will fuse in the vacuum.
We can construct the states

∣∣0̃⟩. We begin by creating a pair in the state
|0;CA⟩ . If CA has just two elements then we are done. But if it has more
than two, we bring the pair near a calibrated pair

∣∣c, c−1
⟩

where c ∈ CA and
c ̸= b, aba1. If it doesn’t match

∣∣c, c−1
⟩

for every c ∈ CA then it must be
∣∣0̃⟩

It will be more convenient to denote the pairs
∣∣a, a−1

⟩
as |a⟩. Suppose

we have the 3 pair state |x, y, z⟩. We can wind the third pair clockwise or
counterclockwise around the first pair and execute the gate

|x, y, z⟩ →
∣∣x, y, xzx−1

⟩
, |x, y, z⟩ →

∣∣x, y, x−1zx
⟩

(5.18)

or do the same with the second pair

|x, y, z⟩ →
∣∣x, y, yzy−1

⟩
, |x, y, z⟩ →

∣∣x, y, y−1zy
⟩

(5.19)

or even borrow a pair of fluxes |c⟩ from the bureau of standards

|x, y, z⟩ →
∣∣x, y, czc−1

⟩
(5.20)

for every c ∈ G. So we can execute any gate of the form

|x, y, z⟩ →
∣∣x, y, f(x, y)zf(x, y)−1

⟩
(5.21)

where f(x, y) is a function with a product form .

Theorem 5.0.1. If G is a simple and perfect finite group then every function
f(g1, g2, ..., gn) can be expressed as a product of inputs {gi} their inverses {g−1

i }
and fixed elements of G any of which may appear multiple times in the product

The smallest simple and perfect group is A5 the group of even permutations
of five objects. Gottesman [20] has proved in his paper that for d prime being
able to apply products of X ′s and Z ′s plus a Toffoli is universal for quantum
computation.

The Toffoli gate is defined to act on a 3 qubit state as

|x, y, z⟩ → |x, y, z ⊕ xy⟩ (5.22)

so in case our case it can be written in a more convenient way as∣∣aiba−i, ajba−j , akba−k
⟩
→
∣∣aiba−i, ajba−j , aij+kba−ij−k

⟩
(5.23)

So, the Toffoli gate conjugates the third qubit by the function

f(aiba−1, ajba−j) = aij (5.24)
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Figure 5.1

Suppose we have 2 qubits with fluxes g1 and g2 with gi ∈ {b, aba−1}. We define
new variables g′i = gib

−1 ∈ {1, c} with c is defined as the commutator of a and
b

c ≡ [a, b] = aba−1b−1 (5.25)
We choose an element d such that it doesn’t commute with c and define f ≡
[c, d]. If we find two functions that can be written in a product form such that

h1(c) = d, h1(e) = 1

h2(f) = a, h2(e) = 1
(5.26)

then the Toffoli function can be written as

f(g1, g2) = h2 ([g
′
1, h1(g

′
2)]) (5.27)

Let the fluxes take values on A5. According to the above analysis we need an
element a such that a2 = e in order to work with qubits. We choose a = (12)(34).
Next we choose an element b that doesn’t commute with a, and d that doesn’t
commute with c ≡ [a, b]. We make the choice b = (345) and d = (234). The
computational basis is

|0⟩ = |b⟩ = |(345)⟩
|1⟩ =

∣∣aba−1
⟩
= |(435)⟩

(5.28)

So
h1(c) = d, h1(e) = 1

h2(f) = a, h2(e) = 1
(5.29)

It’s easy to see that two functions with these properties are

h1(g) = h2(g) = (521)g(125) (5.30)

So the Toffoli function is

f(g1, g2) = {(521)[g1(435), (521)g2(435)(125)](125)} ⇒
f(g1, g2) = {(521)g1(14325)g2(124)g−1

1 (15432)g−1
1 (521)}

(5.31)

So given 3 qubits |g1, g2, g3⟩, if we want to execute the Toffoli gate for the group
A5 all we have to do is to conjugate the third qubit by the above function
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f(g1, g2). This is the ”recipe” for the function f(g1, g2) that can be used for any
simple perfect group and it’s exact form can be found using the functions hi.

Now that we constructed the Toffoli gate we can move to the next step. We
need to be able to apply products of X’s and Z’s i.e. XaZb. An important
observation is that

(XaZb)d = ωabd(d−1)/2XadZbd =

{
−Iab, if d = 2

I, if d=odd
(5.32)

with ω = e2πi/d. We work with qubits so ω = e2πi/2. The eigenvalues of
ZX = iY are

|0Y ⟩ =
1√
2
(|0⟩+ i |1⟩) = 1√

2

(
|b⟩+ i

∣∣aba−1
⟩)

|1Y ⟩ =
1√
2
(|0⟩ − i |1⟩) = 1√

2

(
|b⟩ − i

∣∣aba−1
⟩) (5.33)

The d = 2 case is invariant under complex conjugation and thus there is no way
of distinguishing the two eigenstates of ZX. Before we continue we need to refer
Kitaev’s phase estimation technique that refers that if we have an operator with
eigenvalues the dth roots of unity and if we apply a Controlled-U and measure
in the X basis is equivalent with measuring the operator U .

So suppose someone provides with a state

|Ψ⟩ = 1√
2
(|0⟩+ ω |1⟩) (5.34)

It could be any of the eigenvectors of ZX. We label it as the +i eigenstate. We
use Kitaev’s phase estimation techinique and act with control-ZX on the state∣∣0̃⟩ ⊗ |Ψ⟩ with

∣∣0̃⟩ as the control ancilla and |Ψ⟩ as the target. So the circuit
performs the transformation∣∣0̃⟩⊗ |Ψ⟩ → |Ψ⟩ ⊗ |Ψ⟩ (5.35)

So the copy of the second state occurs either way. This is quite helpful as we can
execute gates on the first qubit without employing a destructive measurement on
the second. We can always act with Z on |Ψ⟩ and construct the orthogonal state
|Φ⟩ = 1√

2
(|0⟩ − ω |Ψ⟩). Now that he have copied our state we can construct a

new contolled-ZX with the ancilla |Ψ⟩ as the control qubit and another |Ψ⟩ as
the target and then measure the first qubit in the X basis:

|Ψ⟩ ⊗ |Ψ⟩ →
∣∣1̃⟩⊗ |Ψ⟩ (5.36)

Doing the same thing with |Φ⟩ as the ancilla and then measurin again in the X
basis:

|Φ⟩ ⊗ |Ψ⟩ →
∣∣0̃⟩⊗ |Ψ⟩ (5.37)

so as long as we are consistent in using the same ancilla |Ψ⟩ we will have broken
the conjugation symmetry and have found a new way of labeling creating and

47



measuring eigenstates of ZX. But how we create the first state |Ψ⟩ ourselves?
If we want to prepare an eigestate of ZX = iY at random, it is equivalent for
the density matrix to be proportional to the identity

ρ =
1

2
I =

1

2
|0Y ⟩ ⟨0Y |+

1

2
|1Y ⟩ ⟨1Y | (5.38)

By using a controlled-NOT gate from a
∣∣0̃⟩ ancilla to |0⟩ ancilla we produce the

state
CNOT

(∣∣0̃⟩⊗ |0⟩
)
=

1√
2
(|0Y 1Y ⟩+ |1Y 0Y ⟩) (5.39)

So by tracing out one qubit of the bell state we have produced the desired |Ψ⟩.
Therefore we proved how to construct eigestates of ZX, X, Z and execute the
Toffoli gate and thus achieve universal quantum computation.
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Chapter 6

Fibonacci Anyons

Suppose we have a model of two different anyons. The first is the vacuum sector
labeled 0 and the second is the nontrivial label 1 with 1̄ = 1. There is only one
fusion rule

1× 1 = 0 + 1 (6.1)

The model is nonabelian as the nontrivial label 1 can fuse with itself in two
different ways. The topological Hilbert space that describes the fusion of n
different 1 anyons is denoted V b

1n with b ∈ {0, 1}. When we create anyons
from the vacuum, their total charge is trivial. So the Hilbert space of anyons
created from the vacuum is V 0

1n . We denote the dimension of the Hilbert space
dimV 0

1n = N0
1n = N0

n. The number N0
n, i.e. the dimension of the topological

Hilbert space, describes the different ways the anyons can fuse to the vacuum.
By creating the trees for each n we notice that every 0 must always be followed
by an 1. So if the first two anyons give us trivial total charge then the remaining
anyons can fuse with N0

n−2 different ways and if the fuse to 1 then the can fuse
with N0

n−1 different ways. So the numbers N0
n satisfy the recursion relation

N0
n = N0

n−1 +N0
n−2 (6.2)

The dimensions of the Hilbert space follow the Fibonacci sequence and that’s
why the model is called Fibonacci model [21-23]. One important thing we ob-
serve is that V 0

1111 is two dimensional and thus work with qubits. The two
different vectors that span V 0

1111 are seen below.
As we know fusion is associative. So if V d

abc is a Hilbert space then it can be
decomposed in two different ways

V d
abc = ⊕eV

e
ab ⊗ V d

ec = ⊕e′V
d
ae′ ⊗ V e′

bc (6.3)

What connects these two different decompositions is the F -matrix. Schemati-

49



Figure 6.1

Figure 6.2

cally: We can compute all the elements of the different F-matrices.

(abcd) = (1101) ⇒ (F 1
110)

1
1 = 1, (F 1

110)
1
0 = 0

(abcd) = (0000) ⇒ (F 0
000)

0
0 = 1, (F 0

000)
0
1 = 0

(abcd) = (1100) ⇒ (F 0
110)

0
1 = 1, (F 0

110)
0
0 = 0

(abcd) = (1110) ⇒ (F 0
111)

1
1 = 1, (F 0

111)
1
0 = 0

(abcd) = (1010) ⇒ (F 0
111)

1
1 = 1, (F 0

101)
1
0 = 0

(abcd) = (0111) ⇒ (F 1
011)

1
1 = 1, (F 1

011)
1
0 = 0

(abcd) = (0110) ⇒ (F 0
011)

1
0 = 1, (F 0

011)
1
1 = 0

(abcd) = (1011) ⇒ (F 1
101)

1
1 = 1, (F 1

101)
1
0 = 0

(6.4)

The case (abcd) = (1111) is not trivial. We need to calculate all the elements
of F 1

111 defined as

F 1
111 =

[
(F 1

111)
0
0 (F 1

111)
1
0

(F 1
111)

0
1 (F 1

111)
1
1

]
(6.5)

In order to find the matrix elements, we need the pentagon equation as seen 6.3.
Written as an equation

(F 5
12c)

d
a(F

5
a34)

c
b =

∑
e

(F d
234)

c
e(F

5
1e4)

d
b(F

b
123)

e
a (6.6)

50



Figure 6.3

Taking a = b = c = d = 1

[(F 1
111)

1
1]

2 = (F 1
111)

1
0(F

1
111)

0
1 + [(F 1

111)
1
1]

3 (6.7)

Then setting a = 0, b = c = d = 1

[(F 1
111)

1
1]

2 + (F 1
111)

0
0 = 1 (6.8)

Moreover, if b = c = 1, a = d = 0:

(F 1
111)

0
0 = (F 1

111)
0
1(F

1
111)

1
0 (6.9)

If Φ = 1+
√
5

2 is the golden mean then the matrix F 1
111 is

F 1
111 =

[
1
Φ

1√
Φ

1√
Φ

− 1
Φ

]
(6.10)

In the next step I will calculate R-matrix which is a map from V c
ba −→ V c

ab and
represents a counterclockwise exchange of two adjacent anyons. It is clear that
if the exchange includes an anyon which is the vacuum sector, then it will have
no physical consequence in the system. That is the phases below are all equal
to one.

R10
1 = 1, R01

1 = 1

R00
0 = 1

(6.11)
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Figure 6.4

Figure 6.5

The matrix R is clearly diagonal because an exchange of two anyons cannot
change the outcome of the fusion, that is R is of the form

R11 =

[
R11

0 0
0 R11

1

]
(6.12)

Just as in the case of F matrix in order to calculate the matrix elements we
need something analogous to the pentagon equation. There exists an equation
that includes the R and F matrices and is called hexagon equation.

R13
c (F 4

213)
c
aR

12
a =

∑
b

(F 4
231)

c
bR

1b
4 (F 4

123)
b
a (6.13)

We set c = a = 0

(R11
0 )2 =

1

Φ
+R11

1 (6.14)

and a = 0, c = 1

R11
1 R

11
0

1√
Φ

=
1

Φ
+R11

1

1

Φ3/2
(6.15)

The R matrix is
R11 =

[
e−4πi/5 0

0 e3πi/5

]
(6.16)

52



If we want to work with qubits then we will denote |0⟩ the state (a) in figure
(3.1) and |1⟩ the state (b). Let σ1 then counterclockwise exchange of the first
and second anyon and σ2 the counterclockwise exchange of the second and third.

σ1 |0⟩ = R11
0 |0⟩ = e−4πi/5 |0⟩

σ1 |1⟩ = R11
1 |1⟩ = e3πi/5 |1⟩

(6.17)

σ2 |0⟩ = (F 1
111)

0
0R

11
0 (F 1

111)
0
0 |0⟩+ (F 1

111)
0
1R

11
1 (F 1

111)
1
0 |0⟩

+(F 1
111)

0
0R

11
0 (F 1

111)
0
1 |1⟩+ (F 1

111)
0
1R

11
1 (F 1

111)
1
1 |1⟩

σ2 |1⟩ = (F 1
111)

1
0R

11
0 (F 1

111)
0
0 |0⟩+ (F 1

111)
1
1R

11
1 (F 1

111)
1
0 |0⟩

+(F 1
111)

1
1R

11
0 (F 1

111)
0
1 |1⟩+ (F 1

111)
1
1R

11
1 (F 1

111)
1
1 |1⟩

(6.18)

So the 2 σi matrices are

σ1 =

[
e−4πi/5 0

0 e3πi/5

]
, σ2 =

[
Φ−1e4πi/5 Φ−1/2e−3πi/5

Φ−1/2e−3πi/5 −Φ−1

]
(6.19)

These matrices are a representation of the braid group B3 whose image is
dense in SU(2). Therefore each braid can be simulated with arbitrary accuracy
by some finite braid. We can also use the inverse of each of the σi’s as the
opposite braid can be applied. From our analysis on previous chapters we
know that these matrices are actually representations of the truncated braid
group B(3,m). In the case of the Fibonacci, the σi’s are representations of the
truncated braid group B(3, 10). Moreover σ6

i = σ−4
i so the number of braids is

significantly reduced. If we want to construct two qubit gates then we need 8
Fibonacci anyons whose fusion space is 13-dimensional and whose image is dense
in SU(13) which of course includes the SU(4) that acts on the two encoded
qubits. Therefore, we can apply the Solovay-Kitaev theorem to conclude that
the universal gates of the circuit model can be simulated to accuracy ϵ with
braids of length poly(log(1/ϵ) and so a universal quantum computer can be
simulated efficiently using Fibonacci anyons.
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Conclusion
Putting everything together, we saw that topological quantum computatation is
of high interest because the way the information is manipulated is fault tolerant.
We discussed two different ways to achive universitality. One with anyons from a
discrete nonsolvable finite group and one with Fibonacci anyons. The difference
between these 2 models is that the first one needs intermediate measumerents
in contrast with the other where the measurements are done after the braids
are completed. We also discussed Kitaev’s honeycomb lattice model where we
introduced a perturbation that doesn’t preserve the time reversal symmetry,
creating an energy gap which allows the existence of nonabelian anyons. But
have anyons been observed? Experimental evidence for nonabelian anyons is
weak. The only promising lead seems to be the possible observation of Majorana
zero modes trapped at the ends of superconducting wires, as described by the
theoretical model of the Kitaev chain. Recent works show that the quantum
Hall states at filling factors 5/2 and 7/2 are expected to have Abelian charge
e/2 quasiparticles and non-Abelian charge e/4 quasiparticles.

w
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