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ABSTRACT

In recent years, there have been major improvements in computer vision tasks such as
image  classification  and  object  detection,  both  in  accuracy  and  performance.  This
improvement can be attributed to two factors, large labeled image datasets such as
ImageNet that have been available for the last few years, and the rise of convolutional
neural networks, which can benefit from these datasets, that have a near human level
performance in these tasks.

In  this  Thesis,  we  will  implement  and  use  VGGNet,  a  deep  Convolutional  Neural
Network that was submitted to the ImageNet Challenge 2014. More specifically, we will
use two of its variants, VGG16 and VGG19 in order to detect and provide bounding
boxes for vehicles found in CCTV footage. For this task, we will go through the training
process  of  the  two  Neural  Networks,  compare  two  different  methods  for  providing
Region Proposals to the networks, Sliding Windows and Selective Search, and use two
different ways to see how well our object detection system works, Accuracy and mean
Average Precision.

SUBJECT AREA: Deep Learning 

KEYWORDS:  VGGNet,  Object  Detection,  Convolutional  Neural  Networks,  Selective

Search, Sliding Windows, Image processing



ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια, έχουν σημειωθεί σημαντικές βελτιώσεις σε διάφορους τομείς της
μηχανικής  όρασης,  όπως  η  αναγνώριση  και  ο  εντοπισμός  αντικειμένων,  τόσο  σε
ακρίβεια  όσο  και  σε  απόδοση.  Αυτή  η  βελτίωση  μπορεί  να  αποδοθεί  σε  δύο
παράγοντες, μεγάλα κατηγοριοποιημένα σύνολα εικόνων όπως το ImageNet που είναι
διαθέσιμα τα τελευταία χρόνια, και η άνοδος των Συνελικτικών Νευρωνικών Δικτύων
που μπορούν να επωφεληθούν από αυτά τα μεγάλα σύνολα δεδομένων και που έχουν
ακρίβεια  συγκρίσιμη  με  αυτήν  ανθρώπων  σε  προβλήματα  μηχανικής  όρασης.

Στην παρούσα εργασία θα υλοποιήσουμε το VGGNet, ένα βαθύ Συνελικτικό Νευρωνικό
Δίκτυο  που  υποβλήθηκε  στο  ImageNet  Challenge  2014.  Ειδικότερα,  θα
χρησιμοποιήσουμε δύο από τις μορφές του, VGG16 και VGG19, για να ανιχνεύσουμε
και να παράγουμε πλαίσια οριοθέτησης για οχήματα που βρίσκονται σε εικόνες από
CCTV  υλικό.  Θα  περιγράψουμε  την  διαδικασία  εκπαίδευσης  των  δύο  Νευρωνικών
Δικτύων, θα συγκρίνουμε δύο διαφορετικές μεθόδους για την παροχή πλαισίων στα δύο
δίκτυα,  τα  Sliding Windows και  την Selective Search και  θα χρησιμοποιήσουμε δύο
διαφορετικούς τρόπους για  να δούμε  πόσο καλά λειτουργεί  το  σύστημα ανίχνευσης
αντικειμένων μας, ακρίβεια (Accuracy) και mean Average Precision.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Βαθιά Μάθηση 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ:  VGG-Net,  Ανίχνευση Αντικειμένων, Συνελικτικά Νευρωνικά  Δίκτυα,

Επιλεκτική Αναζήτηση, Συρόμενα Παράθυρα, Επεξεργασία Εικόνας
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1. INTRODUCTION

1.1 Background

Computer vision has been an interesting topic where many improvements have been
made  in  the  last  few  years.  Machine  Learning  methods  and  more  recently,  Deep
Learning models have been used for image classification and object detection, with the
first one meaning that we’re retrieving a label describing an object and the later one
meaning that we’re finding one or more bounding boxes of objects inside one image,
while even image segmentation, which means assigning parts of an image on a pixel
per pixel level to objects has become possible.

Part  of  these  improvements  can  be  attributed  to  two  factors.  The  first  one  is  the
appearance of large training datasets such as ImageNet[2], which contains images in
the range of several millions of images which is significantly higher compared to the size
of other well known image datasets, such as Caltech-101/256[4,5] and CIFAR-10/100[6]
which are in the range of tens of thousands.

The second factor is the vast improvements that have been made through various Deep
Learning models, and more specifically Convolutional Neural Networks. Having access
to  datasets  with  millions  of  labeled  images  of  real-world  settings  and  objects  has
allowed to  design and successfully  train  models of  increased depth and complexity
which  can  perform better  compared  to  other  methods  on  complex  computer  vision
tasks, where their accuracy and performance can even be compared to that of humans.

1.2 Related Work

As mentioned above, the ImageNet[2] dataset has played an important role in computer
vision since through that, many new Deep Learning models have been designed, tested
and  distributed.  More  specifically,  the  ImageNet  Large  Scale  Visual  Recognition
Challenege (ILSVRC)[3]  is  an  annual  contest  where  software  programs compete  in
image classification and object detection tasks. For the classification task, submitted
solutions are used to  classify  images from a total  of  1000 classes with  one of  the
metrics used to rank the programs being the top-5 error rate, meaning that if one of the
top 5 predictions per image, or in other words, one of the 5 predicted labels with the
highest probability, is the correct one, then that specific prediction is considered correct.

The first  Deep Learning model  that  significantly  outperformed all  other  solutions on
ILSVRC[3] was AlexNet[7], a deep Convolutional Neural Network that got the first place
in 2012. It was one of the first models to take advantage of large training datasets and
the high performance of modern GPUs and it managed to reduce the top-5 error rate
from 25.2%, which was the lowest error rate from 2011, to just 15.3%. It consists of 8
layers, 5 convolutional and 3 fully connected and it utilized several techniques in order
to improve the results and reduce overfitting such as using ReLU, Softmax Pooling and
Dropout  layers  and  artificially  enlarging  the  training  dataset  through  various  image
transformations.

In  2013,  ZFNet[8]  got  the  first  place  of  ILSVRC with  a  top-5  error  rate  of  14.8%.
ZFNet[8] was based on AlexNet[7] and it managed to improve the results by tweaking
and optimizing the hyper parameters of AlexNet[7].

In 2014, GoogleNet[9] won ILSVRC[3] with a top-5 error rate of 6.67%. It consists of 22
layers, but due to the fact that it relies on very small convolutions, it has a significantly
lower number of parameters compared to other networks. As an example, AlexNet[7]
has 60 million parameters, while GoogleNet[9] has only 4 million parameters.

V. Sakkas 16
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In 2015, ResNet[10] won ILSVRC[3] with a top-5 error rate of just 3.57% which can
even beat human level performance on the ImageNet[2] dataset. This was possible by
introducing  the  concept  of  skip  connection  which  allowed  to  design  much  deeper
models without introducing issues in training such as the vanishing gradient problem. In
fact, one version of ResNet[10] consists of a total of 152 layers, which is several times
larger compared to models that were introduced in the previous years.

Although, more models have been introduced in more recent  years, both for image
classification and for object detection, such as YoloNet[11], we won’t be focusing on
them  in  this  thesis.  Instead,  the  main  focus  will  be  on  VGGNet[1],  another  deep
Convolutional Neural Network that was introduced in ILSVRC 2014[3] and managed to
get second place on the classification task with a top-5 error rate of 7.3%.

The idea behind VGGNet[1] was to improve the architecture of previous networks such
as AlexNet[7] by stacking more convolutional layers. This was made possible by using
smaller  convolutional  filters  compared  to  the  filter  size  that  was  used  on  previous
models. For that reason, VGGNet[1] uses almost entirely convolutional layers with a
filter size of 3×3, which is much smaller compared to the filter sizes of 7×7 or even
11×11 that were used in previous architectures such as AlexNet[7]. In fact, as explained
on the VGGNet paper[1] as well, stacking three convolutional filters of size 3×3 with a
stride step set to 1 can provide the same receptive field compared to a single 7×7 filter.
The  main  benefit  of  using  three  layers  instead  of  one  is  that  the  total  number  of
parameters is 3x(32C2) =   27C2 compared to 72C2 = 49C2, where  C is the number of
channels found on the convolutional layers. This helped create and test much deeper
architectures  compared  to  previous  ones,  which  performed  significantly  better  on
ILSVRC[3].

In total, six different configurations of VGGNet[1] were created, A to E, along with A-
LRN which is the same as A but with some additional normalization layers. The layer
information of all configurations can be seen on Table 1.

Table 1: VGGNet Configurations

A A-LRN  B C D E

11 weight
layers

11 weight
layers

 13 weight
layers

16 weight
layers 

16 weight
layers

19 weight
layers

Input (224×224 BGR image)

Conv3-64 Conv3-64

LRN

Conv3-64 

Conv3-64

Conv3-64 

Conv3-64

Conv3-64

Conv3-64

Conv3-64

Conv3-64

Maxpool

Conv3-128 Conv3-128 Conv3-128

Conv3-128 

Conv3-128

Conv3-128 

Conv3-128

Conv3-128

Conv3-128

Conv3-128

Maxpool

Conv3-256

Conv3-256

Conv3-256

Conv3-256

Conv3-256

Conv3-256

Conv3-256

Conv3-256

Conv1-256

Conv3-256

Conv3-256

Conv3-256

Conv3-256

Conv3-256

Conv3-256

V. Sakkas 17
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Conv3-256

Maxpool

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv1-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Maxpool

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv1-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Maxpool

FC-4096

FC-4096

FC-1000

Softmax

As  it  can  been  from Table  1,  all  configurations  follow  a  similar  format  since  each
configuration  was  based  on  the  previous  one,  but  with  more  convolutional  layers
stacked. This resulted in architectures ranging from 11 layers to 19 and from 133 million
parameters to 144 as it can be seen on Table 2.

Table 2: VGGNet Number of Parameters

A A-LRN  B C D E

133 million 133 million  133 million 134 million 138 million 144 million

V. Sakkas 18
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In more detail about the networks themselves, we can observe the following. They all
receive a 224×224 image as input, that gets processed by a stack of 3×3 convolutional
layers  which  are  separated  by  a  total  of  5  softmax  layers.  Afterwards,  two  fully
connected layers  with  4096 channels  each can be found,  followed by  another  fully
connected layer with 1000 channels, since the models were trained for a total of 1000
classes. The final layer in all configurations is a softmax layer.

In all configurations, the filter size of the convolutional layers is 3×3, with the exception
of configuration C where a filter size of 1×1 was also tested. The convolution stride is
set to 1 pixel. The pixel window for the maxpooling layers is 2×2 and the stride is also
set to 2. All hidden layers in the network are followed by ReLU (Rectified Linear Unit)
functions,  which  can  help  with  the  vanishing  gradient  problem  and  improve
performance.

We won’t be focusing on the training and evaluation procedure of the above networks,
since we’ll describe how those steps were achieved in our own pipeline for the purposes
of the this Thesis in Part 2. It should be noted, however, that the two best performing
configurations in ILSVRC[3] were D and E which we will be referring to as VGG16 and
VGG19 in the next parts. Specifically, VGG16 achieved a top-5 error rate of 7.2% and
VGG19 7.1%. The combined output of these models was also tested by averaging the
output of the softmax layer of the two networks, which achieved a top-5 error rate of
7.0%. Finally, a top-5 error rate of 6.8% was achieved, by combining again those two
configurations, but through a different training process.

1.3. Our Objective

The aim of this Thesis is to create a pipeline that utilizes VGGNet[1] in order to detect
vehicles found in CCTV footage, which is an object detection task since we need to
extract multiple bounding boxes and their labels, per image.

For the purposes of this Thesis, we will use the two best performing configurations of
VGGNet[1], VGG16 and VGG19. We will go through the data preparation, the training
process of those two networks, see how we can use a network trained for classification
for an object detection task through the extraction of region proposals with two different
methods,  Sliding  Windows  and  Selective  Search[12],  look  into  the  post-processing
steps required and, finally, evaluate our pipeline with two different metrics, accuracy and
mean Average Precision (mAP)[13].

V. Sakkas 19
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2. SYSTEM OVERVIEW

In this section, we will see in greater detail how the vehicle detection system works,
although most of the steps described below could be applied on different datasets and
object detection problems as well. Our pipeline was created in Python3 with the help of
Keras[14], a popular Deep Learning framework. All training and testing was done on an
Nvidia Tesla T4 GPU in order to speed up the calculations.

Dataset

2.1.1 Overview

As mentioned already, the dataset that we will be using is CCTV footage with the goal
of detecting all vehicles. More specifically, the dataset consists of 100.000 RGB images,
sized 704×576, meaning that although we’re not working with actual video footage, we
are using the video frames themselves.

Those images are taken from multiple different cameras and in various times throughout
multiple days. This results in a wide variety of different images, taken at different times
of the day, so our system should be able to detect vehicles in both daylight and in the
night. Additionally, the number of vehicles in the images can range from no vehicles to
tens of them included in a single image.

Due to  the  variety  in  camera positioning  and the  high speed of  vehicles  that  were
moving while some of the pictures were taken, the images contain vehicles from various
distances, meaning that some vehicle have lots of details present, while others cover
only  a  very  small  portion  of  the  total  image  and  can  even  be  shaky  due  to  their
movement.

Another important  thing to point  out  about  the images,  is that the different  weather
conditions can result in image distortions. For example, rain drops on the camera or the
sunlight hitting directly the camera can distort the image quality and make it harder to
distinguish the vehicles in it.

Finally, most of the images contain some labels on the four corners, which contain the
date,  time and day the image was taken along with the number of the specific camera
that used to take the image. This can also result in parts of vehicles being covered by
the label text.

From the above, we can see that there is high variety in the images of our dataset. A
few example images of the dataset can be seen on Image 1.

V. Sakkas 20
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2.1.2 Data Preparation

It is also important to explain how we will use the aforementioned images in order to
train our two Neural Networks. For our specific problem, which is detecting vehicles
from provided footage, it should be pointed out that specifying the exact category of the
vehicles is not important. Moreover, we do not aim to detect or provide bounding boxes
for any non vehicle objects detected in the images. For that reason, we’ll  prepare a
training dataset suitable for binary classification.

What this means is that we will train our two Neural Networks for just two classes. The
first one will represent all vehicles, and it is the positive class since it represents the
objects we want to detect and the second class will represent all non vehicles and will
be the negative class, since it contains objects that we do not care about detecting.

For the creation of the training dataset, two different sources were used. The first one is
a subset of the image dataset that we’re working with since we want our network to be
able to detect cars in situations like the ones described above. However, this dataset is
not labeled, meaning that a lot of manual work was required in order to collect a high
enough number of images. 

V. Sakkas 21
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The vehicle images were collected by taking a subset of the dataset, manually adding
bounding boxes and then extracting those images. Considering the wide variety of the
dataset, it is important to have a high number of training images that can represent a
high number of real world scenarios. For that reason, a total of 5000 images of vehicles
were extracted.  Of  course,  it  should be pointed out  that  an even higher  number of
training images could have been extracted, but due to the amount of time required to
manually  extract  those  images,  we  decided  not  to  continue  expanding  the  training
dataset this way.

Instead, in order to further increase the size and variety of the vehicles in the training
dataset, we used the Stanford Cars Dataset[15]. This dataset contains a total of 16.815
images split into 196 classes. Since we do not care about the classes defined in the
Stanford Cars Dataset[15], we simply added a subset of this dataset into our own. More
specifically, we added an additional 2000 images to our own training dataset. It should
also be mentioned that the Stanford Cars Dataset contains images that  are usually
more high resolution compared to the ones that were manually extracted. Although all
images will be resized to 224×224, a step that is described later, having images that are
more clear can help with the training process and improve the feature extraction for the
vehicle class.

Looking at Image 2 and Image 3, the difference between the vehicles found in our own
dataset and in the Stanford Card Dataset[15] becomes immediately apparent. Even so,
the addition of those extra images can help the training process and reduce overfitting.

V. Sakkas 22
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The second part of the training dataset is the non vehicles. Due to the vagueness of this
category, many ways of creating such training dataset could be used. What we did is to
collect a set of images similar to the ones that we might find in a testing dataset or in a
real world scenario, excluding though all vehicles. Since we already added labels to a
significant subset of the original dataset with the images from the CCTV footage, we
can now use an algorithm called Selective Search[12]  on those images in  order  to
extract certain regions out of it. Selective Search[12] is described in a next section, but
for now it should be mentioned that it is one of the region proposal methods used during
testing, so using the same method in order to construct the training dataset for non
vehicles  can  make  a  good  strategy.  After  we  receive  the  region  proposals  from
Selective Search[12], we can then use the labels that were manually added in order to
get rid of any images containing vehicles or even parts of vehicles. The result is the
second part of our training dataset containing all the non vehicles. 

Although it  is  not  apparent  from the  above description,  due to  the  high  number  of
regions received from Selective Search[12], and due to the fact that the non vehicle
objects we can run into during testing can have a very high variance, the non vehicles
class of our training dataset has a much higher number of images compared to the
vehicles class. Specifically, our training dataset contains 40000 images of non vehicles,
which is almost 7 times as many as the vehicle images. This means that our training
dataset is imbalanced and that could result in problems during the training of the neural
networks. This, however, can easily be tackled by setting weights to the two classes in
order  to  counter  balance the different  in  number of  images,  while  also keeping the
benefits of having a high variety of non vehicle images.

V. Sakkas 23
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We can also see from Image 4 some of the non vehicle images of the training dataset.
Some of the non vehicle objects can be traffic signs, parts of the road, traffic lights and
even the labels that are found on the corners of the images. We can expect to find
similar images during testing as well.

Training

2.2.1 Finetuning VGGNet

As mentioned already, for this Thesis, we will be focusing on two of the six VGGNet[1]
configurations, VGG16 and VGG19, since those two were the best performing ones in
ILSVRC[3]. However, due to the high number of parameters that those two networks
have,  with  VGG16  having  138  million  parameters  and  VGG19  having  144  million
parameters, and in combination with the relatively low number of images in our training
dataset  it  is  not  feasible  to  train  those  Neural  Networks  entirely  from  scratch.
Additionally,  training  Neural  Networks with  such a high number  of  parameters from
scratch requires a high amount of epochs and thus becomes very time consuming. For
those reasons, we looked instead into finetuning the two networks.

What this means is that we first load some other weight files into the layers of VGG16
and  VGG19.  Those  weights  were  extracted  by  training  the  two  networks  with  the
ImageNet Dataset[2], which is significantly larger compared to our own training dataset
and can provide a good starting point for finetuning the two networks for our own task.

Before, however, we can begin the finetuning process, a change is required on both
networks.  As  described  above,  the  last  fully  connected  layer  of  all  VGGNet[1]
configurations contains 1000 channels. That is because the training dataset that was
used to train those networks contains a total of 1000 classes. Since our own training
dataset contains only 2 classes, we remove that layer and instead replace it one fully
connected layer that only contains 2 channels. The rest of the layers in both networks,
including the softmax layer that is right after our new fully connected layer, remain the
same as before.

Moreover, for the finetuning process, one choice needs to be made. That is, the amount
of  layers  to  be  finetuned,  meaning  that  we  can  pick  which  layers’  weights  will  be
updated during our own training process and which ones will retain their values from the
weights that we load from the pre-trained models. Although it is fairly common to update
the weights of only some of the last layers of a Neural Network, we instead opted to
finetune all layers, both convolutional and fully connected. This is because, while we
were evaluating the training process, we concluded that finetuning all layers provides
better  results  compared  to  finetuning  only  some  of  them.  This  actually  comes  in
agreement with the original VGGNet Paper[1], where the models that were trained with
ImageNet[2]  were finetuned with additional training datasets in order to evaluate the
performance of those models for other tasks as well.
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Regarding the training parameters that were used, they are mostly similar to the ones
used to train the original VGGNet[1] on ImageNet[2]. The main differences is the initial
learning rate that was set to 10-3 instead of 10-2 and the batch size that was set to 64
instead of 256. The first one was set to a lower value so that we can still retain the
values of the weights that were loaded during the finetuning process, since otherwise a
higher learning rate would result in completely overriding those values and resulting in
our models being unable to benefit from using the weights from the pretrained models.
As  for  the  batch  size,  there  is  no  actual  reasoning  behind  this  change  other  than
memory limitations. Even so, the lower batch size was still high enough to be able to
finetune the two models. As for the rest of the parameters, momentum was set to 0.9,
the dropout ratio was set to 0.5 and the weight decay was set to 5×10 -4. We also set the
class weight  ratio to be 1/7 so that  we counter the issue of  having an unbalanced
training dataset and successfully train the models for both classes without overfitting.

Although we used Stochastic Gradient Descent (SGD) as the optimizer for the training
process, but  we also tested the Adam optimizer[16].  We noticed,  however,  that  our
trained networks failed to  generalize when trained with  the Adam optimizer[16]  and
thus, we ended up training our final models with SGD and the parameters that were
mentioned  above.  It  seems,  from  related  research,  that  adaptive  methods  cannot
generalize well enough for somewhat simple problems, such as binary classification,
which would explain why using SGD provided better results during training[17].

2.2.2 Preprocessing

The preprocessing of the images before we provide them to the Neural Networks, is the
same as the one that was done on the original, pre-trained models. We first calculate
the mean RGB value for the training dataset, by using all  the pixels per each color
channel and substract it from the image, so that it can have both positive and negative
values. By centering the values of the images around zero, we improve and speedup
the training process. We additionally divide all values in the images by 255 so that the
values are now set between -1 and 1 as using floats instead of integers values can help
improve the performance and accuracy of calculations during the training process of the
two Neural Networks. We also convert the images from RGB to BGR since that was the
format that was used for the initial training in the VGG Paper[1]. Finally, all images are
converted to 224×224, since that was the same size that was used during the initial
training. Additionally, before each epoch, we apply some data augmentation techniques
on the entire training dataset through certain transformations such as horizontal flipping,
small shifts in RGB values and brightness of the images and taking random crops from
the images in order to increase the variety of the dataset and reduce overfitting.

For the training process, we split our dataset into parts, one that is for training, which
consists of 80% of the dataset and one for validation which consists of the other 20%.
The splitting was done in a way so that both the training and the validation datasets
have the same class ratio as the original dataset. This means that the training dataset
was made with 80% of the vehicles we had collected and 80% of the non vehicles.
Similarly, the validation dataset was made with 20% of the vehicles we had collected
and 20% of the non vehicles. This way, we can still use the class weight ratio that was
mentioned above for the training process.

2.2.3 Training Metrics
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During the training process, we calculated four metrics in order to evaluate the process,
the  accuracy  and  the  categorical  cross  entropy  loss  for  both  the  training  and  the
validation dataset. These metrics are used in order to determine how well our models
can classify the given datasets and to determine whether or not our model has avoided
overfitting so that it can be used on unseen data.

Both models were trained for a total of 20 epochs in order to avoid overfitting. On Figure
1 and Figure 2, we can see the metrics from training VGG16 and VGG19 respectively.
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From the two figures, we notice that all metrics stop improving at about 20 epochs for
both models,  which is  why we stop the training process there.  Since our validation
accuracy and validation loss metrics have both improved during the training process, we
can assume that  our  networks  have managed to  learn  important  features  from the
training dataset and have avoided overfitting so that we can use them to extract labels
from unseen data.

Region proposals

2.3.1 Need for Region Proposals

Now that the two Neural Networks have been trained, we need a way to use them in
order to extract bounding boxes instead of just labels. Since we want to detect multiple
vehicles  from  a  single  image  and  the  networks  that  we  trained  are  suited  for
classification, we cannot just provide the testing images as they are. What we can do
instead is to provide region proposals.

What this means is that we can extract parts of the testing images and provide them to
our trained networks in order to get a label for them. Since our networks are trained so
that they can identify vehicles, this means that if the extracted image is labeled as a
vehicle, we can use that information, along with its location of the region proposal on the
original testing image in order to draw the bounding box. This way, it becomes possible
to use a Neural Network trained for classification for object detection tasks.
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2.3.2 Sliding Windows

However,  what  becomes an  immediate  issue is  how we can actually  extract  those
region proposals. One simple way of doing so is through Sliding Windows. The way it
works is that we have a window, which is a subset of the whole image and a step size.
We move the window according to the step size vertically until we go from one side of
the  image  to  the  other.  We  then  place  the  window back  to  the  original  horizontal
position, but also move it vertically according to the step size and then start moving it
horizontally again. We continue this process until the whole image has been covered.
While the window is “sliding” on the image, we extract that part of the image and provide
it to the Neural Networks for classification.

Although what was described above is the typical way of using Sliding Windows, we
instead opted for a somewhat different method. The reasoning behind that is that we
wanted a better control of the size, aspect ratio and number of region proposals to be
extracted, while the step size itself  doesn’t not affect the results, since it’s merely a
parameter to be used for the extraction of the windows. The size and aspect ratio are
important  since  from the  training  dataset  we can  see  that  extracting  windows of  a
specific size and aspect ratio could help us extract better regions that have a higher
possibility  of  including  vehicles.  This  way,  we  can  reduce  the  number  of  region
proposals  to  classify,  improve performance and reduce the  potential  false  positives
during the classification of those regions.

Our modified version of Sliding Windows receives a list of numbers, which define one
side of the window, a list of aspect ratios and a number that defines how many region
proposals we would want to generate. We use those parameters to determine the step
size  that  would  be  needed  in  order  to  approximate  the  desired  number  of  region
proposals and then we generate windows from all combinations of sizes and aspect
ratios that we provided.

In order to calculate the step size,  we will  need certain parameters:  the number of
windows that we want to generate, a list of sizes which contains the size of one side of
the region proposals that we want to extract and a list of  ratios, which defines what
aspect ratios we want our regions proposals to have. For example, for sizes=[10] and
ratios=[[1,1],[1,2]] we will end up with a number of region proposals of sizes [10, 10] and
[10, 20].

The  calculation  of  the  step  size  per  each  window  size  that  was  provided,  is  the
following:

steps per window=⌊
number of windows

number of sizes × number of ratios
⌋

step sizes= [ ]

for size in sizes:

step sizes ⇐⌊ √ image height × image width
size × steps per window ⌋

2.3.3 Selective Search
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Although this modified method of Sliding Windows allows us to extract region proposals
in a more smart way, since we’re adjusting some of the parameters to our specific
problem we’re trying to solve, it’s still  a very simplistic way of getting those regions,
since  it  does  not  take  under  consideration  any  of  the  information  in  the  images
themselves.  Additionally,  Sliding  Windows  is  an  exhaustive  search  for  regions  and
generating proposals at various sizes and aspect ratios can quickly result to a very high
number of images to classify.

What we would prefer instead is a method of generating a small number of windows
that can successfully find the objects of interest within our images, which in our case is
vehicles. This method should also be able to generate region proposals at various sizes
and shapes without actually having to specify these parameters. It is important for such
method to  have a  high  recall  value,  so  that  our  Neural  Networks  can  successfully
classify  the  vehicles.  A  lower  recall  value  could  help  reduce  the  number  of  false
positives, but it would also impact negatively the accuracy of our system, so we would
prefer to avoid that. There are several such algorithms that can do what was described,
but we will be focusing on Selective Search[12].

Selective Search[12] is a region proposal algorithm designed to be fast and provide a
high recall value. It works by segmenting the provided image into very small regions and
then using certain criteria in order to combine those regions into larger ones, which can
then be used to retrieve bounding boxes. Those boxes are the region proposals that we
use.

In greater detail, Selective Search[12] first over-segments the image by using the graph-
based segmentation algorithm by Felzenzwalb and Huttenlocher[18]. Providing a great
segmentation result is not the goal of this method, since at this stage our objects of
interest, which are vehicles, are split  into many small  segments. However, Selective
Search[12] uses those generated segments as a starting point  and through multiple
iterations,  it  merges  adjacent  segments  based  on  certain  similarity  measures.
Eventually, larger segments which are actually objects found in the original image are
created. We can then convert those segments to bounding boxes, extract them and use
the trained Neural Networks to classify them.
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The similarity measures that Selective Search[12] uses in order to combine adjacent
segments are the following four:

1. Color  similarity:  A  color  histogram of  25  values  is  calculated  for  each  color
channel of the image. The histograms for all channels are then concatenated in
order to obtain a color descriptor with a total of 75 dimensions.

2. Texture  similarity:  Texture  features  are  calculated  by  extracting  Gaussian
derivatives at 8 orientations for each color channel. For each orientation and for
each color channel, a histogram of 10 values is computed resulting into a texture
descriptor with a total of a 240 dimensions.

3. Shape compatibility: Measures how well two regions fit into each other. If one
region fits into another region, we would want to merge them in order to fill any
gaps. If the regions are not adjacent, we do not want to merge them at all. 

4. Size similarity: Helps ensure that region proposals at all scales are formed at all
parts of the image. Without this measure, a single region would be combined with
all  the  smaller  adjacent  regions  one  by  one  and  hence  region  proposals  at
multiple scales would only be generated at this location.

The final similarity measure is a linear combination of the above four metrics. Selective
Search[12] can also be further customized through three parameters:

1. Sigma: Affects the results of the segmentation step.

2. Base K: Affects the size of the first segments.

3. K increment: Affects how segments of larger sizes are created.

Since  the  above  three  parameters  can  greatly  affect  how  Selective  Search[12]
generates region proposals, we needed to set values that would provide a high recall
value for our specific dataset. For that purpose, we used Selective Search[12] on the
entire training dataset in order to extract region proposals. We then used Intersection
over Union (IoU), a metric that is described later, which can help us compare the region
proposals with the vehicles that were manually labeled and see if there is an overlap
between those regions.

We  eventually  set  sigma  to  0.9,  base  K  to  50  and  the  K  increment  to  250  since
Selective  Search[12]  with  those  parameters  managed  to  detect  about  99%  of  all
vehicles in our  training dataset.  Since the testing dataset  is  derived from the same
camera footage, we can expect Selective Search provide similar accuracy on that as
well.

2.4 Non Maximum Suppression

By  using  Selective  Search[12],  we  now  have  an  efficient  way  of  providing  region
proposals that can include most of the vehicles, so our trained models can now classify
them. After we receive the results from the networks, we can use the results of the
softmax layer in order to add a label to each region proposal by picking the class with
the highest confidence value. However, at this stage, another issue becomes apparent,
both with Selective Search[12] and even with Sliding Windows, depending on the step
size. The issue is that our region proposal methods can provide a lot of overlapping
windows, meaning that our networks could classify the same vehicle multiple times and
thus lead to a high number of false positives. This means that in order to solve this
issue, we need a way to remove overlapping images.
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Non Maximum Suppresion  (NMS) is  a  popular  way of  doing  so.  What  we do is  to
provide all regions of the vehicle class to it, along with the position of those regions in
the original image and the confidence metric that we received from the softmax layer of
our networks. We then start iterating over all the regions and we use Intersection over
Union (IoU) in order to find which of those regions are overlapping.

IoU is simply a ratio where the numerator is the area of overlap between two regions
and the denominator is the area of union between the same two regions. A value of 0
means that the two regions are not overlapping at all, while a value of 1 would obviously
mean that the two regions are identical. Any values in-between can show us how much
overlap there is between the two regions.

For NMS, we will  consider that two regions have a high IoU value when it’s 0.5 or
above. When that happens, we compare the confidence between the two overlapping
regions and remove the one with the lower value. This process continues until there are
no more regions with an IoU equal or higher than 0.5. After NMS is completed, we now
have our predictions for the testing dataset,  but without any overlaps.

Evaluation

2.5.1 Testing Dataset

Up until  this  point,  we  only  described  how our  object  detection  system works,  the
challenges  that  we  faced  and how we tackled  them.  We need,  however,  a  testing
dataset  and  certain  metrics  in  order  to  be  able  to  actually  evaluate  how  well  the
described system works.

In order to create the testing dataset, we took 250 images from the original dataset, and
manually labeled all  the vehicles found on them in order to be able to evaluate the
accuracy of our object detection system.

For the creation of the testing dataset, we tried picking images that could be able to
represent  as much of  the whole dataset  as possible,  meaning that  the final  testing
dataset  contains  images from many different  times of  the  day,  at  different  weather
conditions and the number of vehicles ranging from none to over a dozen.

This way, we can certain that if our object detection system works well enough on the
testing dataset, it would also be able to generalize enough so that it could be used for
real, unlabeled data.

2.5.2 Accuracy

Now that we have described the testing dataset, we also need some metrics to be used
along with it. The first metric to use is the Accuracy for the vehicle detection. Since there
is a limited number of vehicles to detect, we want to calculate a percentage that shows
us how many of those vehicles our system managed to detect. A low recall measure in
our region proposal algorithms or a high number of false negatives in our networks
could negatively affect accuracy.
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In order to calculate the accuracy, we use the list of regions that were classified from
the neural networks afters it’s been filtered by NMS. We then we go through each of the
vehicle  predictions  and  the  ground  truth  labels  and  calculate  the  IoU.  After  the
calculation of the IoU, we need to set a threshold and compare the calculated value with
that in order to decide whether the prediction can be considered as a correct prediction.
A low threshold can result in our predictions having a relatively low overlap with the
ground truth regions, but a very high threshold could significantly reduce the calculated
by considering as correct predictions only those that have a very high overlap with the
equivalent ground truth regions. For our testing, we considered 0.5 a balanced value for
the threshold. An IoU of 0.5 means that the prediction covers 50% of the surface of the
ground truth region while the ground truth region also covers 50% of the surface of the
prediction.

Going back to the calculation of the Accuracy, if a prediction has an IoU higher than 0.5
we  consider  it  correct,  but  we  do  not  use  the  same  prediction  for  other  vehicles,
meaning that each prediction can only be matched with one ground truth region. This
makes sense, since we want each prediction to include exactly one vehicle.

2.5.3 Mean Average Precision

Although the Accuracy can help us see how many vehicles our system can detect, it
does not give us any indication of how many false positives were done, or how our
system handles non vehicle region proposals. For that purpose, we need another metric
that  can  provide  us  with  additional  information.  This  can  be  achieved  with  mean
Average Precision (mAP)[13], a common metric for evaluating object detection models
that has also been used in the PASCAL VOC Challenge[13], a known challenge for
object detection.

In order to calculate the mean Average Precision[13], the following steps are applied:

1. We separate the vehicle and non vehicle predictions that we receive from the two
Neural Networks and apply NMS on each of them to remove the overlapping
predictions.
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2. We now need to calculate the true positives and false positives for the vehicles.
In order to do that, we first sort the vehicle predictions based on the confidence
value that we received from the softmax layer of the Νeural Νetworks. This way,
when we match a prediction with a ground truth label, we give higher priority to
the ones with a higher confidence. We then go through each vehicle prediction
and we calculate the IoU between the prediction and each ground truth region,
while storing in a list all the predictions that the IoU has a value that is higher
than our threshold. For mAP[13], the threshold is the same as the one we used
for accuracy, so it’s set to 0.5. When we find a vehicle prediction that has an IoU
over 0.5, but that ground truth region has been matched already to a prediction
with a higher confidence, we instead count that prediction as a false positive.
Additionally, any predictions that did not match any of the ground truth labels are
also counted as false positives. At the end, the matched vehicle predictions are
the true positives, while the rest are the false positives. It should be noted, that
during the NMS step, we calculate IoU between predictions in order to avoid
overlaps. However, during this step, we calculate the IoU between a prediction
and the ground truth labels. It is possible that two predictions have a low IoU
value  between  them,  but  both  of  them have  an  IoU that  is  higher  than  our
threshold,  meaning  that  even  though  we  removed  many  overlapping  regions
during the NMS step, we could still end up with multiple regions overlapping the
same ground truth label.

3. We also  need to  calculate  the  true  positives  and false  positives  for  the  non
vehicles.  The  process  for  doing  that  is  similar  to  the  one  described  for  the
vehicles, but with a few subtle, but important, changes.  We first sort the non
vehicle  predictions based on the confidence value that  we received from the
softmax layer of  the  Νeural  Νetworks.  We then go through each non vehicle
prediction and we calculate the IoU between the prediction and each ground truth
region, while storing in a list all the predictions that the IoU has a value that is
higher than 0.5, which is our set threshold. This time, when we find a non vehicle
prediction  that  has  an  IoU over  0.5,  and  that  ground  truth  region  has  been
matched already,  we store it  on the same list,  unlike before with  the vehicle
predictions.  At  the  end,  the  matched  non  vehicle  predictions,  are  all  false
positives,  since  our  ground  truth  labels  contains  only  vehicles,  while  the
predictions that were not matched with any of the ground truth regions are the
true positives.

4. We then calculate the Average Precision (AP) for the vehicles and non vehicles
the following way, where TP are the true positives for either the vehicle class or
the non vehicle class and FP is the false positives:

AP=
TP

TP+FP

5. Finally, mAP[13] can be calculated by simply averaging the vehicle AP and non
vehicle AP, meaning that in our case, it simply is:

mAP=
Vehicle AP + Non Vehicle AP

2

It becomes obvious from the above, that  mAP[13] can help us evaluate how well our
system  works  by  giving  us  an  overview  of  both  classes.  Since  it  takes  under
consideration both true positives and false positives, a high Accuracy, but low mAP[13]
would indicate that our system results in too many false positives for the vehicle class.
By combining the two metrics, we can have a better understanding of the weakness of
our system, which is important for improving it.
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Finally, another metric of interest is how long our system takes to detect vehicles from a
single image. Although this does not help us evaluate the performance of the system, it
can help us compare the various benchmarks that we did on both performance and time
efficiency.  It  becomes  especially  useful  when  comparing  the  two  different  region
proposal methods, Sliding Windows and Selective Search[12].
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3. BENCHMARKS

In this section, we’re going to describe various benchmarks, present the results, explain
them and offer solutions and suggestions. For the various benchmarks, we will use the
finetuned  VGG16  and  VGG19  networks  with  both  Sliding  Windows  and  Selective
Search[12] for region proposals. We will also look into combining the output of VGG16
and VGG19, in a setup similar to the found in the original VGG Paper[1], which we will
be calling FusionNet.

3.1 Sliding Windows and VGGNet

We will start by using our version of Sliding Windows as the region proposal algorithm,
along with VGG16 and then with VGG19 as the classifiers of our system.

For Sliding Windows, we will first try using with 70×70 windows and about 3000 regions
proposals, since we saw during initial testing that most vehicles in the training dataset
were close to that size and with an aspect ratio that is close to 1:1. We will also try using
42×42 and 96×96 along with 70×70 as those two extra sizes were also commonly found
in  the  training  dataset.  The  aspect  ratio  will  remain  the  same  for  the  second
configuration of Sliding Windows, but the number of generated region proposals will get
increased to 9000 in order to keep the step size the same and generate the same
number of windows per size as with the first configuration. Finally, we will test Sliding
Windows with the same set of windows, but with 1:1, 1:2 ans 2:1 aspect ratios, which,
based again on the training dataset, should help us detect more vehicles during testing.
In order to keep the same number of region proposals per size, we also increase the
number of regions to generate to 27000.

On Table 3, we can see the Accuracy, mAP[13] and required time to classify all region
proposals per image for the aforementioned configurations with VGG16.

Table 3: Sliding Windows and VGG16

Regions Accuracy  mAP@0.5 Time

~3000 39.78  66.13  14s

~9000 59.67 58.77 40s

~27000 81.57 57.79 122s

On Table 4, we can see the Accuracy, mAP[13] and required time to classify all region
proposals per image for the aforementioned configurations with VGG19.

Table 4: Sliding Windows and VGG19

Regions Accuracy  mAP@0.5 Time

~3000 37.09  67.58 17s 

~9000 59.13 60.2 48s

~27000 80.67 58.95 143s
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From our metrics with Sliding Windows, we can observe a few things. Firstly, we see
that  the  first  two  configurations,  with  3000  and  9000  regions  provided  a  very  low
Accuracy value, with the first one failing to find even half of the vehicles from our test
dataset. This can be attributed to the low recall value of Sliding Windows, since even
when we use specific window sizes by examining our training dataset, we still couldn’t
find many of the vehicles with our region proposal algorithm. On the other hand, our
third  configuration  with  27000  region  proposals  managed  to  achieve  a  fairly  high
accuracy, since both VGG16 and VGG19 scored above 80%, thanks to the high amount
of region proposals with different sizes and ratios.

Regarding the performance of the models themselves, we see that the mean Average
Precision[13] is relatively low for all configurations and for both models. This is probably
due to the fact that our Sliding Windows algorithm has a low recall value, meaning that
many of the region proposals are of non vehicle objects and thus the true positives are
low, while the false positives are potentially increased. This can be confirmed by looking
at how mAP[13] gets even lower when we provide a higher number of region proposals.
Specifically, considering the fact that the vehicles that can be found in a single image
are at most a couple of dozens, generating a total of 27000 region proposals is a very
high number, meaning that many of those regions are either non vehicles or overlapping
vehicles. This can very easily lead to a very high number of false positives, which is why
although we see our accuracy increase, the mean Average Precision is in fact dropping.

Additionally, by looking at our two different models, we notice that there are some small
differences. VGG16 consistently provides a higher accuracy, while VGG19 provides a
higher mAP[13]. Although, the models were trained on the same dataset, the difference
in  their  architecture  and  the  slight  differences  that  could  result  from  the  image
transformations that we applied on every training epoch, mean that we can’t expect the
result of these two models to be identical. From the metrics we have so far, we notice
that VGG16 can detect more vehicles, at the cost of more false positives, while VGG19
is less likely to predict that a region is indeed a vehicle.

Finally, from our time metric, we can see that the time required to detect vehicles from
just one image is rapidly increasing when moving from one configuration, while VGG19,
as expected due to its higher number of layers and complexity, is consistently slower
than VGG16. This makes it obvious that using the best configuration of Sliding Windows
is any real world scenario is not feasible, since a waiting time of about 2 minutes for a
single frame would make the system impractical to use on a video source, even with
more powerful hardware than what was used for testing. 

3.2 Selective Search and VGGNet

As we saw above, Sliding Windows failed to deliver good results on all three metrics
that we used. Using a small number of region proposals might be somewhat fast, but it
comes at the cost of  having a low Accuracy. Increasing the number of regions can
provide  a  good  accuracy,  but  it  reduces  the  mean  Average  Precision[13]  and
significantly increases the time required to retrieve the results.

We will now look into using Selective Search[12] as the region proposal algorithm in
order to improve both Accuracy and mAP[13] while also reducing the amount of regions
to classify, meaning that we expect our system to be much faster compared to using
Sliding Windows.
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We will use both the Fast and the Quality versions of Selective Search[12]. The first
one, as the name implies, offers better performance, but has a lower recall value and
thus provides a lower number of region proposals. For both versions, we will be testing
with 1000, 2000 and 3000 regions proposals.

Regarding those numbers, there are two things to point out. First, we didn’t use the Fast
version of Selective Search[12] with more than 3000 regions since during our testing we
noticed that Selective Search[12] did not generate as many region proposals for any of
the testing images. As for the Quality version of Selective Search[12], although for some
images it generated as many as 10000 region proposals, using more than 3000 regions
did not improve the accuracy in our initial testing, while it lead to an increase in false
positives due to the increased number of overlapping regions and non vehicle regions.

On Table 5, we can see the Accuracy, mAP[13] and required time to classify all region
proposals per image for the aforementioned configurations with VGG16.

Table 5: Selective Search (Fast) and VGG16

Regions Accuracy  mAP@0.5 Time

1000 56.45 80.37 6s  + 4s

2000 75.8 74.86 11s + 4s

3000 80.1 72.24 15s + 4s

On Table 6, we can see the Accuracy, mAP[13] and required time to classify all region
proposals per image for the aforementioned configurations with VGG19.

Table 6: Selective Search (Fast) and VGG19

Regions Accuracy  mAP@0.5 Time

1000 59.67  82.12  7s + 4s

2000 72.35 75.16 13s + 4s

3000 77.9 73.3 19s + 4s

On Table 7, we can see the Accuracy, mAP[13] and required time to classify all region
proposals per image for the aforementioned configurations with VGG16.

Table 7: Selective Search (Quality) and VGG16

Regions Accuracy  mAP@0.5 Time

1000 63.58 81.9 6s  + 9s

2000 78.94 76.27 11s + 9s
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3000 82.01 73.8 15s + 9s

On Table 8, we can see the Accuracy, mAP[13] and required time to classify all region
proposals per image for the aforementioned configurations with VGG19.

Table 8: Selective Search (Quality) and VGG19

Regions Accuracy  mAP@0.5 Time

1000 65.74 82.3 7s  + 9s

2000 77.94 77.62 13s + 9s

3000 83.55 74.29 19s + 9s
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From our metrics with Selective Search[12] we can observe a few things. Firstly, we see
that the first configuration, with just  1000 regions provided a relatively low accuracy
value, but with the highest mAP[13] we’ve seen so far. This can be attributed to the high
recall value of Selective Search[12], since even with a much smaller number of region
proposals compared to Sliding Windows, we can achieve much better results. In fact,
our  system  with  Selective  Search[13]  and  just  1000  region  proposals  managed  to
achieve a similar or higher Accuracy compared to the second configuration of Sliding
Windows, which used a total of 9000 region proposals.

On the other hand,  our second and third configurations with 2000 and 3000 region
proposals respectively, managed to achieve a high accuracy, with the later one coming
close or even surpassing the accuracy of the best configurations that were tested with
Sliding Windows. This shows us, that by using a region proposal algorithm that can take
advantage of the actual content of the image in order to generate regions, can provide
similar accuracy compared to exhaustive methods such as Sliding Windows, even when
the amount of generated regions is several times smaller.

The above, can also help improve the mean Average Precision[13] of our system. More
specifically, we can see that mAP[13] has a fairly high value for all configurations and
for  both  models.  This  can  once  again  be  attributed  to  the  high  recall  of  Selective
Search[12],  since by  generating  a much smaller  number  of  region  proposals  which
contain a high number of vehicles, we can increase the accuracy of our system while
also significantly decrease the potential number of false positives.

However, similarly to the Sliding Windows results, we notice again that although the
accuracy is increasing when we increase the number of generated region proposals,
mAP[13] is actually getting lower. The reasoning behind this is the same, as before. By
classifying more images, where only a subset of them contains vehicles, we increase
the number of false positives and thus reduce the value of mAP[13]. The reason why
Selective Search[12] can give us a much higher mAP[13] is because it can generate a
much smaller number of region proposals and thus we end up with less overlapping
vehicles and non vehicles. 

Additionally, by looking at our two different models, we notice that there are some small
differences, which are similar to the ones we found when we tested our system with
Sliding  Windows.  VGG16  consistently  provides  a  higher  accuracy,  while  VGG19
provides a higher mAP[13]. Once again, this difference can be attributed to the different
architecture of the two Neural Networks and the small difference during training due to
the data augmentation techniques that we used.

We also notice that the Quality variant of Selective Search[12], although much slower,
provides a somewhat higher Accuracy and mAP[13]. This is expected as the Quality
version of Selective Search[12] is supposed to provide a higher recall value, meaning
that our regions proposals, although being the same in terms of numbers compared to
the Fast version, contain a higher number of vehicles, thus allowing our model to detect
more  vehicles  and  provide  less  false  positives.  Despite  its  increased  overhead,  it
becomes clear that in terms of Accuracy and mean Average Precision[13], the Quality
version  of  Selection  Search[12]  provides  the  best  results  of  all  region  proposals
algorithms and configurations that we’ve tested so far.
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Finally, from our time metric, we can see that the time required to detect vehicles from
just one image is significantly increasing when moving from one configuration, while
VGG19, as expected due to its higher number of layers and complexity, is consistently
slower  than  VGG16.  We  also  notice  that  Selective  Search[12],  and  especially  the
Quality variant, adds a noticeable overhead that wasn’t present when we used Sliding
Windows, which is a much simpler algorithm to execute. Despite that,  however,  we
notice that although our system still cannot handle real time data, it is significantly faster
than when we use Sliding Windows,  with some configurations being nearly  5 times
faster. This, while also taking under consideration the fact that with Selective Search[12]
we  managed  to  achieve  a  higher  Accuracy  and  a  much  better  mAP[13],  makes
Selective Search[12] a more suitable region proposal method for our object detection
system.

3.3 Selective Search and FusionNet

Since Selective Search[12] provides better Accuracy and mean Average Precision[13]
compared to Sliding Windows, while also improving the classification time by generating
less region proposals, we will now look into further improving the results by combining
the output of  the two Neural Networks. This is done by averaging the output of the
softmax layer of the two networks and using that as the final result. This process does
not require retraining our two networks, so we can reuse the ones that were trained and
tested already. The idea behind this is that by combining the output of the two networks,
the accuracy increases while the number of false positives can also drop, due to the
complementarity of the models. It is also common to combine the output of even more
models, or train the same architecture on different subsets of a training dataset, but due
to the time required to train and test multiple models, we did not test more complex
combinations of our models.

For our testing with FusionNet, we chose not to use Sliding Windows, since it offers a
much lower  mAP[13]  compared to  Selective  Search[12]  while  also  requiring  a  high
amount of time in order to be tested. Instead, we used Selective Search[12], both the
Fast and the Quality variants.

On Table 9, we can see the accuracy, mAP[13] and required time to classify all region
proposals per image for the aforementioned configurations with FusionNet.

Table 9: Selective Search (Fast) and FusionNet

Regions Accuracy  mAP@0.5 Time

1000 61.79 83.31 13s + 4s

2000 77.62 76.91 24s + 4s

3000 82.16 74.49 33s + 4s
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On Table 10, we can see the accuracy, mAP[13] and required time to classify all region
proposals per image for the aforementioned configurations with FusionNet.

Table 10: Selective Search (Quality) and FusionNet

Regions Accuracy  mAP@0.5 Time

1000 64.65 83.82 13s  + 9s

2000 80.16 78.95 24s + 9s

3000 84.87 75.68 33s + 9s
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From our metrics with FusionNet, we can, once again, observe a few things. Firstly, just
like before, we notice that using a lower number of region proposals results in a lower
accuracy, but a higher mAP.[13] We also notice that both Accuracy and mAP[13] are
higher when we use the Quality version of Selective Search[12] instead of the Fast one.
These observations are consistent with previous benchmarks, since we’re using the
same region proposal algorithm with the same parameters.

We also notice that, our FusionNet model can provide a slightly higher Accuracy and
mAP[13] for all configurations of both versions of Selective Search[12]. This comes in
agreement  with  the  opinion  shared  above,  that  combining  models  with  different
architectures  that  were  trained  under  somewhat  different  conditions  can  improve
classification results, since the averaging of the confidence values of the two models
can help eliminate false positives that one model  may do that  the other won’t.  The
difference in the results of each model becomes apparent when we notice that VGG16
provides  a  higher  Accuracy,  while  VGG19  provides  a  higher  mAP[13],  so  the
combination  of  the  results  of  the  two  networks  can  result  in  an  increase  of  the
confidence value of correct vehicle detections and a decrease of the confidence value
of incorrect vehicle detections, thus resulting in better metrics.

As  expected,  we  notice  the  required  time  for  the  object  detection  is  significantly
increased due to the overhead of Selective Search[12], but also because we have to
classify each batch of region proposals twice, once with VGG16 and once with VGG19.
Despite that, we notice that even when we use FusionNet, the total required time is
several times lower compared to the one from the Sliding Windows configurations and
only a few seconds slower compared to using only one Neural Network.

Finally, from the metrics that we saw, we can conclude that the best object detection
configuration is  using FusionNet  with  the Quality  version of  Selective Search[12]  at
3000 region proposals.  It  provides an Accuracy of 84.87% and a mAP[13] value of
75.68%. Although it is possible to get a better mAP value, it comes at the cost of greatly
reducing the Accuracy, which is why we’ll be using the aforementioned configuration for
our next part.

3.4 Comparison with state-of-the-art: YoloNet3

As mentioned at the beginning, several Deep Learning models have been designed and
published over the past years that are capable of either classifying images or detecting
objects inside an image.

Just like our system, many of these models utilize region proposal methods in order to
classify parts of the original image and provide labels and bounding boxes for those
regions.  One modern Deep Learning model  that  works differently  is  YoloNet[11]  an
object detection Neural Network that focuses on being fast by detecting objects from
single image instead of region proposals.

YoloNet[11] trains on whole images for the purpose of detecting objects and thus has a
better context during testing time regarding the appearance of objects within an image
and their background. As such, it learns generalizable representations of objects and
provides a lower number of false positives, while also being much faster compared to
more traditional architectures.

Although we won’t be focusing further more on the architecture of YoloNet[11], we will
use its latest version, YoloNet3[2], and compare it with our best object detection system
in order to have the opportunity of comparing our designed system with a state-of-the-
art, pretrained model suited for object detection.
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We won’t  look into training or finetuning YoloNet3[2],  as this is out  of  the scope of
Thesis. The pretrained model was trained using ImageNet for the purposes of object
detection. Since ImageNet[2] contains a high number of several that belong to vehicles,
such as “car”  and “truck”,  we can expect the pretrained YoloNet3[19] to be able to
detect vehicles from our testing dataset as well.

On Table 11, we can see the Accuracy, mAP[13] and required time for our best system
and YoloNet3[19].

Table 11: Comparison with YoloNet3

Model Accuracy mAP@0.5 Time

Our Model 84.87 75.68 41s

YoloNet3 93.56 89.78 <1s

As we can see, the pretrained YoloNet3[19] outperforms our model, both in Accuracy
and mean Average Precision[13], meaning that not it detects more vehicles, but it also
manages to do less false positives. Additionally, thanks to its architecture that does not
require generating region proposals, it is also much faster compared to our model since
it requires less than a second in order to detect vehicles from a single image.

Although it becomes obvious that in a real world scenario, YoloNet3[19] would be more
suitable to due the better metrics and faster performance, it was also noticed that in
certain cases it made false positives or missed vehicles. As we mentioned earlier where
we were describing the dataset that we worked with, the images are of low resolution
and many vehicles appear shaky due to their movements. Additionally, many vehicles
are partially hidden behind the labels that are found on the four corners of the images.
We noticed while comparing YoloNet3[19] with our model that failed to detect several
vehicles in those situations while it also made some false positives in case of low quality
images.

This shows that even though its overall  results are better than our model, there are
ways of potentially improving it even further. It’s apparent, that even though the original
training dataset contains a wide range of vehicle images,  they are not suitable to train a
model to handle some difficult situations and edge cases found in our testing dataset. It
is estimated that finetuning YoloNet3[19] with a training dataset similar to the one we
created for this Thesis would help improve its results for such cases.

In any case though, this comparison between VGGNet[1] and YoloNet3[19] showed us
how  much  Deep  Learning  models  have  improved  over  the  last  years,  since
YoloNet3[19] was published in 2018, just 4 years after VGGNet[1].

V. Sakkas 43



Deep Learning Techniques on Object Detection with Application on Vehicle Detection

4. CONCLUSION

In this Thesis,  we designed a system capable of detecting vehicles from images by
using VGGNet[1]. We created datasets for training, validation and testing and looked
into the proprocessing steps required for the images before they are provided to the
Neural Networks. We finetuned two of the VGGNet[1] variants, VGG16 and VGG19,
and optimized the training parameters in order to avoid overfitting. We also looked into
two different ways of providing region proposals to our trained models, Sliding Windows
and Selective Search[12]. We used NMS as a post processing step in order to reduce
the amount of false positives and evaluated our system with Accuracy and mAP[13].

We described the differences in the results between VGG16 and VGG19 and noticed
that Selective Search[12] provides better results both in Accuracy and mAP[13] with
less  region  proposals  compared  to  exhaustive  search  methods  such  as  Sliding
Windows. We also combined the output of the two training networks in order to further
improve the results of our system. Finally, we compared our best system a modern,
state-of-the-art Neural Network, suitable for object detection tasks, YoloNet3[19], which
confirmed our initial statement on the vast improvement in computer vision tasks thanks
to new and constantly better Deep Learning architectures being made and published.

Future directions include, but are not limited to, expanding our training dataset in order
to improve the training process of our networks, training more variations of VGG16 and
VGG19 by using subsets of our dataset and combining those models, thus creating a
system that uses more than one or two classifiers and testing different region proposal
algorithms that could provide a recall value similar to Selective Search[12], but with an
even lower number of region proposals in order to improve the classification time and
improve the mean Average Precision[13] of our system. Finally, some other steps could
include  using  our  system  on  different  object  detection  tasks  and  comparing  its
performance on those with its performance on vehicle detection and comparing our
system, with other modern Deep Learning models.
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TABLE OF TERMINOLOGY

Ξενόγλωσσος όρος Ελληνικός Όρος
Deep Learning Βαθιά Μάθηση
Ανίχνευση Αντικειμένων Object Detection
Συνελικτικά Νευρωνικά Δίκτυα Convolutional Neural Networks
Επιλεκτική Αναζήτηση Selective Search
Συρόμενα Παράθυρα Sliding Windows
Επεξεργασία Εικόνας Image Processing
Ακρίβεια Accuracy
Πλαίσια Οριοθέτησης Bounding Windows
Παροχή Πλαισίων Region Proposals
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ABBREVIATIONS - ACRONYMS

AP Average Precision

ILSVRC ImageNet Large Scale Visual Recognition Challenege

IoU Intersection over Union

mAP Mean Average Precision

NMS Non Maximum Suppresion

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent
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