/20 [\
(= | =)

HELLENIC REPUBLIC S| 2
National and Kapodistrian 3 4
University of Athens "ALEXANDER FLEMING"

Biomedical Sciences Research Center

DIPLOMA THESIS:

DEVELOPMENT OF INTEGRATIVE STATISTICAL ALGORITHMS
FOR THE ANALYSIS OF GENE EXPRESSION DATA.

DIONYSIOS FANIDIS
ID number 20170227

SUPERVISOR:

Pantelis Hatzis, PhD, Researcher B’
B.S.R.C Alexander Fleming

ATHENS 2019



MSc Diploma Thesis — Dionysios Fanidis

Supervisor

Co-Supervisor

Thesis committee member A’

Thesis committee member B’

Pantelis Hatzis, PhD, Researcer B’, BSRC Alexander Fleming

Panagiotis Moulos, PhD, BSRC Alexander Fleming

Despoina Sanoudou, PhD, Associate Professor,
4rth Department of Internal Medicine, Medical School,
National and Kapodistrian University of Athens

Aristotelis Chatziioannou, Researcher B’, National Hellenic
Research Foundation



MSc Diploma Thesis — Dionysios Fanidis

To Elena



MSc Diploma Thesis — Dionysios Fanidis

Table of Contents
PTOLOZUE ...t 7
F N o 1 2T PP P RO URR PR 8
1. INTRODUCTION ....oiiiiiiiiiesieeie ettt ettt ettt nnes 9
L.1 RNA-SEQUENCING ... vveeiuiiieiiiiiesiiiessiitessitee et e sbee s ssbeesssbeessibeessnbeesssseesnsseesssneesnneeens 9
1.2 Applications of RNA-seq teChNOlOZY ....cccvviiiiiiiiiiiiiiiiiciie e 9
1.3 Handling of systematic variability ...........cccerrieiiiiiniiiiiiieseec e 9
1.4 More RNA-S€q DEA DISES ......coiuveiiiiiiiieiiiiieiieie e 12
1.5 Modeling RINA-S€Q COUNLS .....cuviiuieiiiiiiiieiiisresieenie et 12
1.6 metaseqR and PANDORA .........coooiiiiiiieiic e 15
1.7 ATm and CONITDULIONS .....vvviivieiieiieesiee e 15
2. METHODS ...ttt 17
2.1 metaseqR2 integrated p-value combination algorithms............ccccecviiiininnnnnne 17
2.2 RNA-SEQ AAtaSELS....vvieiiiieiiiieiiiieiiie et siie ettt e bbe s e e s e e snnee e snes 18
2.3 New statistical analysis tools and model organism selection criteria................ 19
2.4 SIMUIAtION dALA ...eoivviiiiiiiicie e 19
2.5 PerfOrmance MELIICS .....iuiiiueeiieeieesieeenieesiteateeseeete et esbeestee st saaeebe e reeeneee e 19
2.6 Hierarchical CIUSTETING ........voviiiiiiieiiiie e 20
2.7 PA INPUL PIEPATALION. .....vviiiiiieiiiieiiieesiee e siree e sibe e sbre et e s e s e e b e e snneeeanes 21
B RESULT S ettt e b e e e nae e nn e e ne e s ane e 22
3.1 PANDORA versus other metaseqR2-implemented statistical analysis tools
PEITOTMANCE (1) .o e 22
3.2 PANDORA versus other metaseqR2-implemented statistical analysis tools
PEIfOrmMAanCe (I1) .....cocueiiiiiiieii e 25
3.3 Effects of different normalization methods upon downstream DEA.................. 27
3.4 Gene length propagation into PA. ... 29
3.5 DEA Of INCRINAS. ..eoiiiiiiieie ettt 30
3.6 metaseqR2 tools concordance analysis using three different biotype designs. .33
4. DISCUSSION ...ttt sttt ettt sbe e anbe e beesnbeesneeabeesnnens 38
5. REFERENCES ...ttt 41
6. APPENDIX L....iiiiiiiiieii ettt sttt e nre s 44
T APPENAIX L ..oiiiiiiiiiiii 58
8 APPENAIX TIL ..ot 70



MSc Diploma Thesis — Dionysios Fanidis

Table of Main Figures
Simulation Data Figures
Figure 1: False Discovery Curves (FDC) using raw p-values after EDASeq

NOTMALIZATION. ..ot n e e ennne s 22
Figure 2: Area under the ROC curve (AUC) using raw p-values after Edaseq
NOTMALIZATION. ..ot e e e e ennee s 23
Figure 3: False Discovery Rate (FDR) using adjusted p-values after EDASeq
NOTMALIZATION. ..ot n e e sreennee s 24
Figure 4: Fi-score (precision-sensitivity tradeoff) using raw p-values after EDASeq
NOTMALIZATION. ..vviiiiiee st et e st e st s e e e e e st e e e ss e e e sseeeesseeeasseeanseeeenseeeanneeeas 25

Real Data Figures
Figure 5: ROC and F1-score analysis of real datasets using raw p-values after
EDASEq NOTMAlIZATION. 1.iiiuvviiiiiiieiiiee sttt e e e et e e snnee e 26

Different Normalization Methods Figures
Figure 6:ROC analysis for DESeq and TMM normalized simulation data............. 28
Figure 7: Fl-score analysis for DESeq and TMM normalized simulation data .......... 28

Gene Length Propagation into Pathway Analysis Figures
Figure 8: Investigation of gene length bias presence within the human-based

SIMUIATION AALASEL.....cvviiiieiiiiiie et 29
Figure 9: Kolmogorov-Smirnov analysis for all unique pathway genes and unique
1eading €dEE GENES. ...c.uveeeeeiiiieitie et 30

DEA of IncRNAs - Simulation Figures
Figure 10: False Discovery Curves (FDC) using raw p-values after EDASeq

NOTINAIIZATION. ..ottt sttt e e e e e nne e anneesnee s 31
Figure 11: False Discovery Rate (FDR) using adjusted p-values after EDASeq
NOTIMNAIIZATION. ..ottt et be e e e e nneeanneennee s 32
Figure 12: Fl-score (precision-sensitivity tradeoff) using raw p-values after EDASeq
NOTINALIZATION. ..ottt ettt et e e e e e nne e nbeennee s 33

metaseqR2 Tools Concordance Figures

Figure 13: Number of DEGs per tool and biotype, using unadjusted p-values. .......... 34
Figure 14: Biotype representativeness ratio, using unadjusted p-values. .................... 34
Figure 15: Mean overlap proportion of DEGs for each tool and biotype scheme, using
UNAdJUSLEd P-VAIUCS. ....oovviiiiiiiiii i 35
Figure 16: Mean DEG ranking correlation between DEA tools for all biotype scheme,
using UNadjusted P-ValUES. ......c.oiiviiiiiiiicii e 36
Figure 17: Hierarchical clustering of tools’ concordance analysis using z-scores

calculated from individual metrics applied. ..........ccooeiiiiiiiiiiiii s 36
Figure 18: Hierarchical clustering of tools’ concordance analysis using z-scores

calculated from individual metrics applied. ..........ccooeiiiiiiiiiiiii s 37
Figure 19: Hierarchical clustering of tools’ concordance analysis using z-scores

calculated from individual metrics applied. ..........ccocoviiiiiiiiiii s 37


file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227100
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227100
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227101
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227101
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227102
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227102
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227103
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227103
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227104
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227104
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227105
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227106
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227107
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227107
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227108
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227108
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227109
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227109
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227110
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227110
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227111
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227111
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227112
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227113
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227114
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227114
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227115
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227115
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227116
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227116
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227117
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227117
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227118
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalTextBeforeCorrections_2_PM.docx%23_Toc12227118

MSc Diploma Thesis — Dionysios Fanidis

Table of Appendix | Figures
Supplementary Figure 1: metaseqR2 Workflow. .........ccoccviviiiiiiiiii e, 44

Simulation Data Figures
Supplementary Figure 2: False Discovery Curves (FDC) usign adjusted p-values after

EDASEq NOTMAlIZATION. 1.iiuvviiiiiiieiiie ettt e et e e sbee e naee e 45
Supplementary Figure 3: Area under the ROC curve (AUC) using adjusted p-values
and EDASeq nOrmaliZation. ..........ccooveriiiiiiiiniiiii e 46
Supplementary Figure 4: False Discovery Tradeoff (FDT) using raw p-values after
EDASEq nOrmaliZation. .........cccoieiiiiiiiiieiiisii et 47
Supplementary Figure 5: Fi-score (precision-sensitivity tradeoff) using adjusted p-
values after EDASeq normalization...........cocveiieiiiiiiieiiiic e 48
Supplementary Figure 6: False Negative Curves (FNC) using raw p-values after
EDASEq nOrmaliZation. .........cccoiveiiiiiiiiiisiisieesie e 49
Supplementary Figure 7: False Negative Curves (FNC) using adjusted p-values after
EDASEq NOImMAaliZAtiON. .....cvveuviiiiiiiiiiiiiesie st 50
Supplementary Figure 8: FN, FP and TP hits for all datasets, simulated replicate
designs and statistical analysis methods using unadjusted p-values.............ccccooevenee. 51
Real Data Figures

Supplementary Figure 9: ROC and F1-score analysis of real datasets using adjusted
p-values after EDASEQ. ...ccvoiiiiiiiie e 52

DEA of IncRNAs - Simulation Figures

Supplementary Figure 10: False Discovery Curves (FDC) using adjusted p-values
after EDASeq NOrmaliZation. .........c.oiveiiiiiinieiiiiie et 53
Supplementary Figure 11: False Discovery Curves (FDC) using adjusted p-values of
all simulated genes after EDASeq normalization. ............c.ccovvviiiiiiiiiiiienicicnen 53
Supplementary Figure 12: F1-score (precision-sensitivity tradeoff) using adjusted p-
values after EDASeq normalization...........cccvoieiimioiieiiescsee e 54

metaseqR2 Tools Concordance Figures

Supplementary Figure 13: Number of DEGs per tool and biotype, using adjusted p-
values after EDASeq normalization. 54

Supplementary Figure 14: Biotype representativeness ratio, using adjusted p-values

after EDASeq normalization. ...........c.ccoiiieiiiiiiiic e 55
Supplementary Figure 15: Mean overlap proportion of DEGs for each tool and
biotype scheme, using adjusted p-values and EDASeq normalization........................ 55
Supplementary Figure 16: Mean DEG ranking correlation between DEA tools for all
biotype scheme, using adjusted p-values after EDASeq normalization. ..................... 56
Supplementary Figure 17: Hierarchical clustering of tools’ concordance analysis using
z-scores calculated from individual metrics applied...........cccooeiiiiiiiiiiics 56
Supplementary Figure 18: Hierarchical clustering of tools’ concordance analysis using
z-scores calculated from individual metrics applied...........cccooeiiiiiiiiniiiiics 57
Supplementary Figure 19: Hierarchical clustering of tools’ concordance analysis using
z-scores calculated from individual metrics applied...........cccooeiiiiiiiiiiiicis 57


file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289803
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289804
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289804
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289805
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289805
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289806
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289806
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289807
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289807
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289808
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289808
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289809
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289809
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289810
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289810
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289811
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289811
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289812
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289812
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289813
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289813
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289814
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289814
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289815
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289815
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289816
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289816
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289817
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289817
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289818
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289818
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289819
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289819
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289820
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289820
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289821
file:///C:/M.Sc.%20Molecular%20Biomedicine/Dip/FinalText_2ndCorrectionsRound.docx%23_Toc12289821

MSc Diploma Thesis — Dionysios Fanidis

Prologue

This MSc thesis entitled “Development of integrative statistical algorithms for the analysis of gene
expression data” was conducted at Dr. Panagiotis Moulos laboratory, Biomedical Sciences Research
Center Alexander Fleming, as part of the International MSc in Molecular Biomedicine, Department of
Medicine, UOA and BSRC Alexander Fleming.

First of all, I would like to give Dr. P. Moulos my heartfelt thanks for trusting me with this Bioinformatics
topic, for his valuable help and advice whenever I needed him throughout this thesis elaboration, as well
as for our excellent collaboration. I really feel like I have stepped on the shoulders of a giant!

Moreover, I owe thanks to Dr. Pantelis Hatzis for his supervision and his willing character to assist me
with everything that [ needed. In particular I must gratefully acknowledge him for recommending me to
Dr. Moulos for the first time.

I would also like to thank Prof. Despoina Sanoudou and Dr. Aristotelis Chatziioannou first of all for
accepting to participate in the composition of my MSc thesis committee and secondly for their interest in
the progress of my dissertation.

In addition, I thank Dr. Moulos laboratory members: Dr. Alexandros Dimopoulos (Elixir-GR post-doctoral
fellow), Marielena Georgaki (PhD candidate) and Popi Markopoulou (former lab member), along with
Dr. Dimitris Konstantopoulos (Post-Doctoral scientist, Dr. Fousteri lab), Alexandros Galaras (PhD
candidate; Dr. Hatzis lab) and Christos Tzaferis (PhD candidate; Prof. Kollias lab) for their support and
advice.

Finally, I am much obliged to my family and friends for helping me behind-the-scenes to complete another
step in my scientific career.



MSc Diploma Thesis — Dionysios Fanidis

Abstract

In the past few years, RNA-seq has become the technology of choice for monitoring gene expression at
massive scales. Although its benefits outmatch its potential pitfalls, RNA-seq exhibits certain technical
and systematic biases like every high-throughput technique. Such biases become more evident in real-life
experimental settings such as searching for a signature that differentiates healthy and disease tissues or
finding a set of genes whose expression significantly varies across a time-course or a drug dosage study.
In an attempt to confront RNA-seq data inherent biases, many different statistical analysis approaches
have been proposed, each one with its own advantages and drawbacks. Taking into consideration the
limited research dedicated in developing meta-analysis pipelines capable of ameliorating the results
yielded by individual methods, we hereby present metaseqR2, an upgraded version of the previously
released metaseqR Bioconductor package. Including some of the best performing and most popular
differential expression analysis statistical tools, as well as a new supported organism, metaseqR2 is an all-
in-one, powerful tool for RNA-seq data analysis. Moreover, we demonstrate that PANDORA, the main p-
value combination method behind the metaseqR2 package, not only continues to greatly perform under
metaseqR2 statistical environment, but it is also characterized by a very robust behavior under different
analysis pipelines. Finally, in the presence of RNA-seq biases such as the gene length bias and the recently
discovered bias in the detection of differentially expressed IncRNAs, PANDORA is probably the most
reliable solution to work with.
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1. INTRODUCTION

1.1 RNA-sequencing
Historical facts, wet lab protocol and following data analysis outline.

RNA-sequencing (RNA-seq) is a high-throughput method for sequencing RNA populations. It was first
applied on 2008 by three separate teams (Lister et al. 2008; Nagalakshmi et al. 2008; Mortazavi et al.
2008) and it gradually replaced microarrays in common laboratory practice due to demonstrating among
many other advantages higher resolution, lower noise and greater dynamic range (Z. Wang, Gerstein, and
Snyder 2009; Wu, Wang, and Wu 2013).

An RNA-seq protocol has two major steps: that of the wet and that of the dry lab. Beginning from the wet
lab, an RNA species population is isolated and reverse transcribed into cDNA. If the RNA molecules are
not prior to reverse transcription fragmented, then the cDNA molecules follow a fragmentation procedure
and vice versa. Subsequently, sequencing adapters are added to the cDNA fragments and library
amplification is performed or not according to sequencing technology used and/or experimenter’s needs
(Z. Wang, Gerstein, and Snyder 2009; Quail et al. 2012). Finally, short read sequencing takes place to
obtain either single- or paired-end reads (Z. Wang, Gerstein, and Snyder 2009).

These reads are the input of the subsequent computational analysis pipeline. After a first step of quality
control, reads are mapped to an available reference genome, transcriptome or exome (Han et al. 2015). In
the absence of a reference genome reads are de novo assembled so as to infer about the identity of the
expressed transcripts (Conesa et al. 2016). Finally, reads overlapping any genomic feature of interest are
bioinformatically quantified and a read counts table is delivered. The number of counted reads for each
genomic feature can then be used to estimate the feature’s true expression levels (Han et al. 2015). While,
the examined genomic feature can be a gene, transcript or exon, the same principles discussed apply for
all of them. Thus, for the rest of this dissertation thesis we will generally refer to them as the “gene” for
simplicity.

1.2 Applications of RNA-seq technology
Brief reference to existing applications.

Since its appearance, RNA-seq technology has been used in a great number of applications. For example,
the detection of alternative splicing, limited by former applied technologies, was achieved for the first
time thanks to RNA-seq (Mortazavi et al. 2008). Additionally, it has been used among other techniques to
identify tissue-specific alternative transcripts (E. T. Wang et al. 2008), to discover de novo transcripts
(Roberts et al. 2011), to detect and quantify allele-specific expression (Tuch et al. 2010). In addition, it
has been applied to find de novo gene fusion events in cancer cells (Edgren et al. 2011) and to report
statistically significant changes in gene expression between two or more conditions (control vs treatment,
health vs disease) and/or time-points. This latter application is called differential expression analysis
(DEA) and will be the current topic of interest in the present dissertation.

1l3 Handling of systematic variability:
Presentation of RNA-seq systematic biases and normalization methods

Despite the initial optimistic expectation that RNA-seq data would require minimal normalization (Z.
Wang, Gerstein, and Snyder 2009), there are a lot of confounding factors/biases introducing systematic
variability to the data that need to be taken into consideration before differential expression (DE) statistical
analysis is applied.
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To begin with, intra-sample sources of systematic variability include the gene length and the GC-content
bias. Gene length bias became obvious from the early steps of RNA-seq technology (Mortazavi et al.

2008). It describes the fact that longer genes have higher probabilities of being assigned more sequencing
reads than the shorter ones (Oshlack and Wakefield 2009). The more reads a gene has accumulated, the
higher its statistical power becomes and thus, the more probable it is to be called differentially expressed
even if it is not. Interestingly, it has been proposed that gene length bias is more intense when the actual
gene expression is low (Oshlack and Wakefield 2009) a finding partially replicated recently by (Yoon and
Nam 2017). As far as GC-content is concerned, it fluctuates not only between genes of a sample, as it is
usually assumed, but between samples as well (Pickrell et al. 2010) affecting DE analysis if left untreated

(Hansen, Irizarry, and Wu 2012). Finally, a group of normalization methods also alleviate less systematic
biases concerning transcript library composition. Genes of disproportionally large expression tend to
monopolize read counts in expense of less active genes, exactly as gene length bias does, leading to more
unreliable downstream DE results (read count bias) (Anders and Huber 2010; Robinson and Oshlack

2010; Bullard et al. 2010).

Between-sample biases should also be taken into consideration. For instance, samples sequenced deeper
than others (higher library size) are characterized by a larger count, making library size normalization
necessary for proper comparison of counts between the examined groups (Dillies et al. 2012).
Additionally, condition/tissue specific transcripts have the tendency to obscure real DE patterns between
samples and thus several analysis platforms focus mainly on housekeeping genes (Anders and Huber

2010).

Many normalization methods have been developed for the alleviation of such sources of variability and
each one of them takes in account different working assumptions. DEA tools may allow the use of more
than one normalization approaches either as they were originally proposed in literature or after tool
specific modifications, mainly for consistency reasons. In the current section we will focus on the
normalization methods implemented by RNA-seq analysis tools used for the purposes of this dissertation.

To begin with, the DESeq package has its own method of normalization driven by the assumption that in
biological samples, the vast majority of genes are not differentially expressed (Anders and Huber 2010).
It accounts for sequencing depth as well as for varying library composition (tissue/condition specific
genes) using sample-specific size factors computed with shared inter-sample information: the median of
the ratio of each sample’s read counts to the geometric mean of read counts across samples. By using the
median, DESeq normalization is less sensitive to library composition effects able to skew expression
patterns and with the use of the log it removes condition-specific genes to focus mainly on housekeeping
ones. Finally, the geometric mean applied makes the method unbiased to outliers.

DESeq?2 software (Love, Huber, and Anders 2014) implements the original DESeq normalization method
as well as two modifications of it, suitable for dealing with zero expression values. In addition, it supports
the integration of user-provided, gene-wise, size factors matrix, so as to compensate for more specific
intra-sample biases like GC-content bias.

Just like DESeq and DESeq2, edgeR’s TMM method proposed by Robinson and Oshlack (2010)
normalizes sample read counts for sequencing depth and library composition, while it lefts untreated other
types of biases, like GC-content and gene length bias, because they are assumed to be of relatively equal
effect across samples (Robinson and Oshlack 2010). TMM values (Trimmed Mean of M values) are used
to compute sample specific scaling factors, which are then multiplied with their respective library size to
give an effective library size that will be used in downstream analysis. As with DESeq normalization, it
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assumes that most genes in a sample are not differentially expressed and moreover, that the differentially
expressed ones are uniformly separated between the upregulated and downregulated groups. Notably,
edgeR accepts user-provided gene-wise normalization factors to adjust for intra-sample sources of
variance, while DESeq and the upper quartile (UQ) normalization method proposed by Bullard et al.
(2010) are also included as normalization alternatives (Anders and Huber 2010; Bullard et al. 2010).
Importantly, UQ method normalizes read count data for sequencing depth and expression outliers, by

matching the upper quartile of lane-specific, read count distributions (Bullard et al. 2010).

Unlike TMM method (Robinson and Oshlack 2010), NBPSeq assumes that relative frequency of gene
counts in respect of total library size (sum of library counts) alone is an effective approximation of gene

expression (Di et al. 2011). Due to the fact that relative frequencies of each sample must sum up to one,
they are computed based on “effective” library sizes: the real library size multiplied by a sample-specific
normalization factor, either computed as in DESeq package or provided by the user. Before effective
library sizes are computed, counts are downsampled in random to achieve equal active library sizes, a

necessary assumption for subsequent NBPSeq statistical testing (Di et al. 2011).

NOISeq package (Tarazona et al. 2015) provides three different normalization procedures: RPKM (Reads
Per Kilobase of exon model per Million mapped reads), UQ and TMM of edgeR package. RPKM was
introduced by one of the first papers that ever used RNA-seq technology for alleviating gene length bias

and differential sequencing depth between experimental conditions (Mortazavi et al. 2008). However, it
is noteworthy that scaling raw read counts by gene length alone was found insufficient as a method to

reduce gene length bias (Oshlack and Wakefield 2009; Bullard et al. 2010).

Initially launched in 2004 as a Bioconductor package for the analysis of microarray and PCR data, limma
was expanded in 2015 to support statistical analysis of RNA-seq data via voom() function (Gentleman et
al. 2004; Ritchie et al. 2015). However, no RNA-seq specific normalization method was developed. Thus,
the user is advised to use either a quartile normalization method of microarray logic or normalization
factors given by TMM method of the edgeR tool before statistical analysis takes place (Ritchie et al.
2015). For the record, quartile normalization has been shown to introduce undesirable intra-sample
variability (Dillies et al. 2012) and thus must better be avoided.

Three of the remaining packages used, provide RNA-seq normalization facilities already described. Thus,
baySeq (Hardcastle and Kelly 2009) uses sample-specific scaling factors given by the methods of (Bullard

et al. 2010) and (Robinson and Oshlack 2010); ABSSeq (Yang, Rosenstiel, and Schulenburg 2016)
includes the total read counts, DESeq, TMM, upper quartile and qtotal normalization procedures and

finally, DSS (Wu, Wang, and Wu 2013) includes the median of log ratio of counts (a TMM method
modification), UQ, total counts and the median counts method.

To conclude with, while the above tools use correction methods for the biases of library composition,
library size and gene length, the GC-content bias present in both intra- and inter-sample level is treated
only by the last tool used; EDASeq (Risso et al. 2011). More specifically, EDASeq performs two rounds
of normalization: a within-lane-specific to treat intra-sample biases and then a between-lane specific to
remove inter-lane biases. More specifically, GC-content normalization can be performed using any of
three proposed normalization methods. Loess, the default method, regresses log-scale gene counts to GC-
content using the loess robust local regression method, global scaling normalization bins genes according
to their sequence composition and then forces median or upper-quartile to be equal across bins and full-
quartile normalization after binning genes according to sequence composition, it then matches bin
distributions using a microarrays similar full quartile normalization. For between-lane normalization
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EDASeq uses either full quartile normalization (the default), median or the upper quartile approach of
(Bullard et al. 2010).

1.4 More RNA-seq DEA biases
Gene length bias & pathway analysis; IncRNA bias.

Unfortunately, gene length bias described at the beginning of section 1.3 does not affect only DEA, but
has been reported in many independent publications such as (Oshlack and Wakefield 2009; Young et al.

2010) to propagate into subsequent Pathway Analysis (referred hereafter as PA), too.

In short, PA (aka functional enrichment analysis of pathways) is a computational procedure used to make
sense out of high-throughput sequencing technology results. For example, a list of thousands of
differentially expressed genes (DEG) cannot be interpreted if not previously organized in a human friendly
format using PA. Note that the term “pathway” as used in PA does not have the strict, classical meaning
of a molecular pathway, but rather the more loose definition of a functional biological entity consisted of
several pathway components such as genes (Garcia-Campos, Espinal-Enriquez, and Hernandez-Lemus
2015). Components’ interaction define pathways’ functionality and all pathways can be organized in a
super-complex network. Although different kind of pathways and PA methods exist, they all have the
same main objective: given the high-throughput sequencing data and a list of pathways, to explore whether
there are statistically significant functionality patterns in the high-throughput data examined (Garcia-

Campos, Espinal-Enriquez, and Hernandez-Lemus 2015).

As far as the gene-length bias—PA connection is concerned, pathways that contain many genes longer than
average tend to be called enriched more often that the rest, when gene length bias is present in the RNA-
seq dataset (Oshlack and Wakefield 2009). Interestingly, the bias is present even when using different PA
tools and/or pathway databases (Gao et al. 2011; Oshlack and Wakefield 2009) introducing the need to
take it seriously into consideration.

Finally, another RNA-seq bias affecting DEA is the IncRNA bias. In particular, it was very recently shown
that IncRNAs and low expression genes in general are under-represented by RNA-seq DEA algorithms
due to low read counts, high noise levels and condition specific expression (Assefa et al. 2018). This is
why the majority of these tools propose the filtering of such genomic features before downstream analysis
is performed, a step that inhibits the analysis of almost 70% of a cells transcriptome.

1.5 Modeling RNA-seq counts
Statistical approaches to describe RNA-seq counts data.

Due to the fact that any RNA-seq experiment contains a finite number of replicates, the read counts of
each condition must be modeled, parametrically or not, in order to calculate the statistics needed for
downstream DE hypothesis testing.

One of the first distributions used for this purpose was the Poisson distribution (Bloom et al. 2009), as its
core assumption that counts’ mean (1) equals their variance (¢°) (u = 6*) was witnessed to hold true for
RNA-seq technical replicates (Marioni et al. 2008). However, it was already proven for SAGE (Serial
Analysis of Gene Expression) and later on for RNA-seq data as well, that a Poisson distribution accounts
only for sequencing noise and not for biological or technical sources of variability (Baggerly et al. 2004;
Lu, Tomfohr, and Kepler 2005). Consequently, data modeled by such a distribution are overdispersed (u
< 6%) and analysis’ results are not reliable.
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A very popular alternative to the Poisson modeling is the Negative Binomial (NB) distribution. Being
described by two parameters, NB(j,6%), it enables for read count modeling without constraining their

variance range (Anders and Huber 2010) and has been shown to apply reliably even for data that are not
actually NB distributed (Lu, Tomfohr, and Kepler 2005). On the other hand, it introduces an uncertainty

of both x and ¢° estimation for small biological replicate numbers (Di et al. 2011). To account for it or for
any other RNA-seq data statistical analysis bias, like the big log fold change (LFC) variability of low

count genes (Yang, Rosenstiel, and Schulenburg 2016), NB distribution’s parameters are estimated by
each tool under different assumptions and working hypotheses.

In addition to the NB, normal and non-parametric distributions are also used. First of all, continuous data
statistics are exploited in order to alleviate several drawbacks of discrete statistics describing RNA-seq
data, such as the less tractable count distributions statistics theory, the difficulty of NB distributions to
adapt to data with different degrees of heterogeneity and the limited number of available statistical

analysis tools (Law et al. 2014). Moreover, non-parametric approaches are mainly applied to cover cases
where assumptions made about NB distribution parameters does not hold true, as well as in order to better

handle transcriptomic features with very low count reads (Tarazona et al. 2011).

This section is dedicated to a brief presentation of the RNA-seq data DEA approaches used for the
purposes of the current dissertation. For simplicity reasons, when referring to read counts, normalized
read counts will be implied, except otherwise stated. A more detailed description of statistics employed
by each tool can be found to the respective publications.

To begin with, the DESeq method assume that genes with the same read counts have the same variance,
by letting raw gene-wise variance to be a smooth function of the condition’s mean gene counts (Anders

and Huber 2010). While this global dispersion trend allows sharing information across genes to increase
statistical analysis power given small sample sizes (Anders and Huber 2010), it does not take into account

gene-wise expression variability (McCarthy, Chen, and Smyth 2012). At last, both x« and ¢ (dispersion)
are dependent to a sample-wise size factor s calculated as explained in the previous section, to normalize

for systematic biases (Anders and Huber 2010).

Being DESeq’s successor, DESeq2 extends its predecessor's main modeling ideas (Love, Huber, and

Anders 2014). At first, a Generalized Linear Model (GLM) following NB distribution is fitted to each
gene offering the ability to analyze complex experimental designs. Furthermore, gene-wise ¢ is shrunk
towards the values reported by u-¢ linear regression fitted as proposed by DESeq (Anders and Huber

2010). To accommodate sample size and distance from the reported trend, an empirical Bayesian model
is used to regulate ¢ shrinkage degree. An empirical Bayes method is also used to shrink log-Fold-Change
(logFC) values and reduce FPs for genes of inadequate information.

edgeR, initially a Bioconductor package used for DEA of SAGE data, is one of the first tools published
to use the NB distribution for statistical description of RNA-seq read counts (Robinson, McCarthy, and

Smyth 2009). edgeR computes NB’s dispersion using a maximum likelihood method and then, in order
to tackle with small replicate sizes it uses the empirical Bayes method of (Robinson and Smyth 2007) to

shrink gene-wise dispersion values towards a common ¢ value (Robinson, McCarthy, and Smyth 2009).
Alternatively, it enables the shrinkage of ¢ towards a common “trend” allowing gene-specific dispersion
variation. In 2012 edgeR was expanded with the addition of generalized linear models (GLM) so that it

can also address complex experimental designs (McCarthy, Chen, and Smyth 2012).
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Hardcastle et al. proposed in 2009 the baySeq method (Hardcastle and Kelly 2009). As its name implies,
baySeq estimates NB models’ prior and posterior probabilities using an empirical Bayes method, while
NB parameters are estimated by a quasi-likelihood approach that takes into account gene-specific
variability. At the time of its publication, baySeq was the only high-performing tool that could handle
DEA between more than two experimental conditions. As an exchange for its good performance, baySeq
algorithm is more computationally intensive when compared with other tools (Hardcastle and Kelly 2009;

Zhang et al. 2017).

A more general, over-parameterized version of the commonly used NB distribution is implemented in the
NBPseq package (Di et al. 2011). NBP introduces an additional parameter a to the classical NB model,
allowing for an increased flexibility in the description of dispersion’s dependency from the mean.
Statistical testing for DE is performed by a modification of Robinson’s and Smyth’s exact test (Robinson
and Smyth 2007, 2008).

Similarly to DESeq2, the DSS package team developed their own Bayesian model to shrink NB dispersion
parameter and thus estimate more precisely large variations in data heteroskedastisity (aka gene-specific
dispersion) (Wu, Wang, and Wu 2013). Prior ¢ probabilities are derived from a log-normal distribution
while posteriors are obtained from maximizing an approximate of the original conditional posterior
distribution. At last, as a hypothesis testing a Wald test is used.

The last of the NB based tools used in this project applies a rather different approach in terms of measuring
and testing for DE. While other tools like DESeq, DESeq2 and edgeR use the difference of the mean
counts between two conditions when testing for DE, ABSSeq uses the absolute difference in read counts

instead (Yang, Rosenstiel, and Schulenburg 2016). Thus, it is this absolute difference that is modeled as
NB. Furthermore, To take account of small replicate number biases, ABSSeq adds pseudocounts to real
data based on gene-specific dispersion, a process in which mean and variance relationship is established
as proposed in DESeq package (Anders and Huber 2010). Notably, the most important feature of ABSSeq
is its ability to reduce FPs for low count genes by shrinking logFC towards the mean, a method conditioned
by both expression levels and gene-specific dispersion. The difference between DESeq2’s and ABSSeq’s
logFC shrinkage is that the latter uses p-values to do so, a strategy that does not affect the number of

significant DE genes reported (Yang, Rosenstiel, and Schulenburg 2016).

NOISeq and limma-voom are an exception to the rule making use of non-parametric and normal
distribution statistics, respectively to model RNA-seq read counts. More specifically, after computing the
log ratio (M) and the read counts absolute difference (D) for each gene between the two conditions of
interest, NOISeq compares these two statistics with M’ and D’ noise distributions to infer for DE
(Tarazona et al. 2011). Noise threshold for both metrics is empirically computed by intra-conditionally
contrasting read counts of either real (NOIseq-real) or simulated data (NOIseq-sim). Finally, because
statistics of continuous distributions is better established than that of discrete data, voom algorithm
processes read counts so as to be compatible with the limma microarray analysis method (Law et al. 2014).
At first, read counts are used to estimate a condition-wide smooth u-o° trend for each gene and then the
fitted curve is used to compute sample-specific gene variance values, which are then embodied into an
inverse weight for each count value. At last, weights are passed along with read counts into limma’s linear
modeling procedure.
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1.6 metaseqR and PANDORA
Basic concept and brief description.

While there is such a wealth of RNA-seq DEA tools, to our knowledge there is not much active research
on meta-analysis algorithms that could combine individual tools’ assets. However, given methods’
differential performance under various experimental circumstances (Franck et al. 2013; Soneson and

Delorenzi 2013), the development of method-combination tools becomes almost imperative.

In an attempt to explore such an approach, Moulos and Hatzis created PANDORA (PerformANce Driven
scOring of RNA-seq stAtistics), a weighted p-value combination algorithm implemented in the metaseqR

Bioconductor package (Moulos and Hatzis 2015). metaseqR is an easy to use, powerful RNA-seq DEA
tool, that combines multiple normalization methods with six DE statistical analysis tools, six meta-
analysis algorithms and a comprehensive, self-explanatory report. Normalization and subsequent
statistical analysis methods can be chosen at will by the user. In addition, further facilities are offered like
gene-level, exon-level or 3’ UTR-level read quantification (used for analysis of data generated by Lexogen
QuantSeq 3’ mRNA-Seq), creation of simulated data based on given real ones and easy access to any of
the five supported (Homo sapiens, Pan troglodytes, Mus musculus, Drosophila melanogaster and
Arabidopsis thaliana) model organisms.

Interestingly, during statistical analysis performance examination of metaseqR methods using both
simulated and real datasets, PANDORA was shown to behave if not better at least equally well with the
top performing DEA algorithms for all metrics. In particular, PANDORA had the best precision-sensitivity

trade-off among all algorithms as measured by the Fi-score (Moulos and Hatzis 2015). These data is proof
of concept that indeed meta-analysis tools for DEA of RNA-seq data must be more actively developed.

1.7 Aim and contributions
Dissertation’s objectives.

Embracing the idea of meta-analysis power to boost RNA-seq DEA and wanting to further compare the
behavior of PANDORA with that of other tools under DEA biases potentially “lurking” within a real
dataset, we set out to:

e Upgrade metaseqR into metaseqR2 by incorporating more statistical analysis tools and supported
model organisms.
e Examine metaseqR2 implemented statistical analysis methods’ performance under:
o real data-based simulated datasets of various configurations
o real datasets coupled with experimental validation such as qPCR and spike-ins
o different normalization procedures applied
o gene length and IncRNA biases presence.

As aresult, we deliver metaseqR2, an up-to-date RNA-seq DEA package. Among others, it includes three
new DEA tools (DESeq2, ABSSeq and DSS) and PANDORA weights for six different model species.
Furthermore, we provide the results of an extended metaseqR2 tools evaluation based on various
computational experiments. In brief, based on both simulation and real dataset analysis results,
PANDORA presents in most cases the best precision-sensitivity tradeoff and is also among others
characterized by the capability of simultaneously controlling both FPs and FNs at an adequate level.
Additionally, PANDORA behaves robustly when coupled with different normalization methods.

15



MSc Diploma Thesis — Dionysios Fanidis

Furthermore, as far as gene length bias is concerned, PANDORA is the tool that better controls its
propagation into subsequent pre-ranked PA. At the same time, while all metaseqR2 tools are biased during
DEA of IncRNAs, PANDORA is if not the best, one of the best performing statistical methods in the vast
majority of metrics calculated. At last but not least, data supporting an already existent hypothesis about
the exact nature of gene length bias are provided.

Conclusively, we propose the p-value combination method PANDORA as one of the best methods for
RNA-seq DEA, combining a very good performance with robust and reliable behavior under different
experimental conditions and RNA-seq technology inherent biases.
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2. METHODS

2.1 metaseqR?2 integrated p-value combination algorithms
Brief description of the p-value combination algorithms used.

metaseqR2 incorporates six different p-value combination algorithms. Given p-values from more than one
DEA tools for any gene i, a combined p-value (p;) is returned. In this section we will shortly describe
each p-value combination approach. Let p;; be the p-value for any gene i after application of the statistical
test j. For clarity reasons the term “p-value” will be defined more loosely to include the baySeq (/ —
posterior probability of differential expression) and NOISeq (I — g statistic) statistics. An in more depth
portrayal of the methods can be found in metaseqR publication (Moulos and Hatzis 2015).

Simes algorithm
If pi1, pi2, ..., pimare the p-values reported by m statistical analysis tools for a given gene i and pi«), pic2), ...,

piem) the same p-values ranked in an increasing order, then according to a modified Simes method the
probability:

P :mkin{pi(k)/k}, ke(l...m)
can be used either as an exact or an approximate combined p-value for all m tools’ (Simes 1986).

Union algorithm
Combined p-value is given by:

o = mjin{pij}, je(d...m)
For any examined gene i and a given p-value threshold (a), all significant p-values reported by m statistical
tools are taken into consideration. From them, the minimum p-value is returned as the combined p-value

in order to increase TPs in exchange for an also increased number of type I errors (FPs).

Intersection algorithm
Combined p-value is given by:

p; =m}ax{p”}, je(l..m)

For any examined gene i and a given p-value threshold (o) the intersection of the statistically significant
DE genes reported by m DEA tools is taken into consideration. From them, the maximum p-value is
returned as the combined p-value. As a result DEG list contains less type I errors at the cost of less TPs.

PANDORA algorithm
PANDORA'’s combined p-value is calculated by:

p = ﬁpﬂ‘”l, with iwj =1
j=1 j=1

where w; represents the weight attributed to j statistical algorithm performed. Weights can be either
automatically estimated using the area under the false discovery curve (AUFC) for the results of test j
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applied on a real dataset (see next formula) or can be user specified. In any case, weights must return a
unit’s sum.

ZAUFC]/AUFCj

i=1

i(iAUch/AUFCJ}

EANE

w, =

Fisher’s algorithm
Fisher’s method uses the f statistic (described from the following formula) to perform p-value
combination:

f = —Ziln P,
j=1

/f has been proven (Rddel 2007) to follow a chi-square distribution with 2m degrees of freedom and this
distribution is used to infer combination p-values. Notably, the initial method was developed to combine
p-values reported by a single tool after the analysis of multiple different datasets. However, the same
statistical concept applies as well in case of combining p-values returned by multiple DEA packages after
analysis of the same dataset.

Whitlock’s algorithm
Combined p-values are derived from the weighted Z statistic’s (Whitlock 2005) (following formula)

normal distribution.
Z' = _Elezj/ ’Elwf
j= j=

As with Fisher’s, Whitlock’s approach is also not designed for p-value combination across tools analyzing
the same dataset, but will be assumed as thus.

2.2 RNA-seq datasets
Brief description of the datasets used.

For the current MSc thesis nine different datasets were used. Seven out of them, the human (Homo
sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus), fruit-fly (Drosophila melanogaster),
arabidopsis (Arabidopsis thaliana), TagqMan and SEQC datasets are the ones also used by (Moulos and

Hatzis 2015).

Rat (Rattus norvegicus) dataset was generated by (Heyne et al. 2014) and is publicly available through
ArrayExpress, accession number ERP006055. The brains of 75 most tame and 75 most aggressive mice
against humans were selected for RNA-seq. The original dataset was subsetted and 15 mice from each
condition were kept. Each animal’s RNA-seq data were downloaded as several fastq files that were then
merged prior to two-round alignment against the rn6 (Rnor 6.0) rat genome build, using Hisat2 (Kim,
Langmead, and Salzberg 2015) and Bowtie2 (Langmead and Salzberg 2012) aligners via custom scripts.
RNA-seq data were quantified using metaseqR counting feature.

NGP-nutlin dataset was created by (Assefa et al. 2018) and can be found in GEO, GSE104756. It consists
of total RNA-seq data from five control and equal number of nutlin-3 treated human NGP neuroblastoma
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cell cultures. SRA files were downloaded and subsequently transformed into fastq files using the SRA
toolkit (http://ncbi.github.io/sra-tools/). Two-round alignment against the hg38 (GRCh38) human genome
build and subsequent quantification were carried out as for the rat dataset.

2.3 New statistical analysis tools and model organism selection criteria
Criteria applied for metaseqR2’s new tools and model organism literature selection.

Literature was reviewed for RNA-seq DEA statistical packages not included in metaseqR. 19 tools were
found and were further filtered according to the following criteria:

e proper maintenance (deposited into Bioconductor, version updates)

e metaseqR compatible (accept read counts table as input and be compatible with different
normalization algorithm’s output)

following the basic metaseqR concept (DEA between given biological conditions)

tested under various experimental conditions

at least as good performance as the metaseqR implemented individual DEA tools

popularity (number of Bioconductor downloads)

Only three of them, DESeq2 (Love, Huber, and Anders 2014), ABSSeq (Yang, Rosenstiel, and

Schulenburg 2016) and DSS (Wu, Wang, and Wu 2013) full-filled almost all standards and was thus
implemented in metaseqR2.

As far as the new model organisms are concerned, Rattus norvegicus was selected due to its extensive
laboratory use. For the selection of a proper dataset, replicate size was the main selection criterion, while
pairwise comparison of RNA-seq data was also required, as metaseqR2 is currently limited in examining
pairwise comparisons.

2.4 Simulation data
Description of all simulation data configurations.

All simulations used have similar configurations as in (Moulos and Hatzis 2015). More specifically, two
simulation designs of 10k genes and two conditions each were created using metaseqR2’s
make.sim.data.sd function, which uses real data to estimate NB parameters. In the first design, named 3x
replicate design (aka 3 replicates — balanced DEG), three biological replicates were assigned per
condition and 1k genes were set to be differentially expressed (half upregulated and half downregulated).
In the second one, named 7x replicate design (aka 7 replicates — unbalanced DEG), seven biological
replicates were developed per condition and 1.2k of the total genes were defined as differentially
expressed (700 up-regulated and 500 down-regulated).

For the gene-length bias propagation into PA simulation (Section 3.3), gene length bias was also
introduced into 3x and 7x replicate designs configurations.

Ten iterations were run for each of the above mentioned simulation designs and datasets.

2.5 Performance metrics
Metrics used for simulation/real dataset evaluation and IncRNA concordance analysis.

For the analysis of all simulated/real data, the metrics used by (Moulos and Hatzis 2015) were applied
over 10 simulations average output:
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e False discovery (FDC) and false negative curves (FNC) were used to record FPs and FNs
emergence, while traversing gene lists ranked in respect to their statistical significance from top
to bottom and bottom to top, respectively.

e ROC (Receiver Operating Characteristics) curves (and their respective area under the curve; AUC)
were created to visualize each methods ability to rank DEG ahead of non-DEGs.

e Fi-score (and the area under the Fi-score), as well as the ad hoc False Discovery Trade-off (FDT)
metric were applied to measure each method’s precision-sensitivity tradeoff.

Finally, ‘same-versus-same’ mock comparisons were used as a negative control for all individual and p-
value combination tools exactly as in (Moulos and Hatzis 2015).

For the purposes of metaseqR2’s tools concordance analysis based on the NGP-nutlin dataset (see Section
2.4), the following metrics were used:

e Number of DEG reported was used to examine each algorithm’s strictness or looseness with regard
to the others applied. Metric used as in (Assefa et al. 2018).

e Mean DEG overlap was used to examine the agreement between tools’ results. For its calculation,
the tool-wise proportion of common DEG was computed and then averaged across all comparisons
for any given tool. Metric used as in (Assefa et al. 2018).

e Mean DEG ranking correlation was used to infer about inter-tool DEG list consistency. For its
calculation, DEGs were ranked according to their p-value and ranked lists obtained were correlated
in a tool-wise manner using Spearman’s rank correlation statistic. The last was finally averaged
across all comparisons for any given tool. Metric inspired by (Assefa et al. 2018).

e Biotype representativeness is an ad hoc metric developed to investigate potential biotype over- or
under-representation in the final DEG lists. If b is a given biotype and G a subset of the examined
genes then biotype representativeness is computed as:

Y. DEG,
X DEGy,

ZGD/G

log
all

A positive representativeness ratio denotes biotype’s over-representation, while a negative value
denotes under-representation. The greater the deviation from zero, the bigger the existing bias is.
A zero value can be returned in two occasions: when a biotype is perfectly represented or when all
biotypes (namely all examined genes) are used (control).

All metrics of both simulation and concordance analysis evaluation were also calculated after p-value
adjustment under a Benjamini—Holchberg (BH) threshold of 0.05 (Benjamini and Hochberg 1995).
Adjustment was not performed for baySeq and NOISeq results, because they do not report a classical p-
value score (Hardcastle and Kelly 2009; Sonia Tarazona and Fernando Garc a-Alcalde 2011).

2.6 Hierarchical clustering
Concordance analysis summarization.

Hierarchical clustering was used to summarize and visualize in a human-readable fashion metaseqR2’s
tools concordance analysis results. For each of the respective four metrics applied (see Section 2.5) mean
values previously calculated were now used to compute tool- and metric- specific z-scores. Subsequent
hierarchical clustering using Ward’s criterion was based on the aforementioned z-scores. Inter-cluster
differences were measured by the squared Euclidean distances of their metric-specific z-score means.
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2.7 PA input preparation
Tool used, pathway list preparation, pre-ranked GSEA pipeline.

PA analysis, and more specifically pre-ranked GSEA (Gene Set Enrichment Analysis), was performed

using the fgsea (fast gsea) Bioconductor tool, release 3.9 (Sergushichev 2016). fgsea was selected due to
consistency with the other tools used (R-implemented), speed of analysis and because it provides the core

functions for other GSEA R packages like clusterProfiler (Yu et al. 2012).

For the pre-ranked GSEA analysis, a decreasing list of p-values transformed by their negative common
algorithm was fed to fgsea along with a custom developed (for consistency with the dataset’s genome
build) GO pathway list. The aforementioned pipeline was applied for all reported DEG lists.
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3. RESULTS

3.1 PANDORA versus other metaseqR2-implemented statistical analysis tools performance (I)
Simulated data

We evaluated the capability of metaseqR2-implemented statistical analysis methods to correctly report
DEGs using simulated data according to the 3x and 7x replicate designs (see Section 2.4) for the human,
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Figure 1: False
Discovery Curves
(FDC) using raw p-
values after EDASeq
normalization. FDCs
are summarized across
ten iterations for each
tool and simulation
design examining the
first 500 DEGs ranked
according to statistical
significance. The
calculated Area Under
each FDC (AUFC) can
be found at the bottom
right corner of each
plot. PANDORA is
consistently among the
best performing
algorithms. (significant
p-value threshold:
0.05, EDASeq
normalization)
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chimpanzee, mouse, arabidopsis, fruit-fly and rat datasets. EDASeq (default) was used as a common
normalization baseline for all tools, but another round of DEA after tool specific normalizations was also
realized (see Appendix II). Performance evaluation metrics (see Section 2.5) were calculated over 10
iterations for each simulation design—dataset combination.
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statistical significance. The calculated Area

Under each FDC (AUFC) can be found at . . .
the bottom right corner of each plot. Trends Figure 2: Area under the ROC curve (AUC) using raw p-values

remain the same after p-value adjustment after Edaseq normalization. AUC are summarized across ten
BH p-value threshold: 0.05, EDASe iterations for each tool and simulation design using unadjusted p-
( P q values. PANDORA and most other tools demonstrate an almost
excellent performance, with DESeq, NBPSeq, NOISeq and baySeq
being the exceptions. (significant p-value threshold: 0.05, EDASeq
normalization)

normalization)). From all p-value
corrections NOISeq was excluded for
reasons explained in (Soneson and
Delorenzi 2013).

As far as receiver operating characteristic (ROC) analysis summarized across 10 simulations is concerned
(Figure 2), the majority of individual tools showed an adequate relationship between reported sensitivity
and specificity for the 3x replicate design. limma-voom, DESeq2 and DSS returned the bigger AUC, while
on the contrary DESeq returned one of the smallest AUC, an observation that validates the findings in
(Moulos and Hatzis 2015). Amid p-value combination algorithms, the poorer Intersection, whereas the
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remaining four performed equivalently well with the top performing individual tools. At last,
accumulating more replicates (7x replicate design) was beneficial for all tools except for NOISeq that
remained practically unaffected. DESeq, NBPSeq, NOISeq and baySeq were again characterized by the
smaller ROC analysis AUC. Trends remained the same after p-value adjustment under a BH threshold of
0.05. (Appendix I; Supplementary Figure 3).

As can be seen from the data in Figure 3, when examining False Discovery Rate (FDR) under a BH
threshold of 0.05, baySeq and Intersection report in all cases the smallest FDR score, an expected
phenomenon due to their inherent stringency.
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Figure 3: False Discovery Rate (FDR) using adjusted p-
values after EDASeq normalization. FDR is summarized

X . across ten iterations for each tool and simulation design at
ﬁndmgs’ False Discovery Trade’off ,(,FDT) a BH adjusted p-value threshold of 0.05. PANDORA and
analysis further proves PANDORA’s ability to  ABSSeq share in most cases the second best FDR score

find the golden ratio between precision and behind the stringent baySeq and Intersection methods.

sensitivity (Appendix I; Supplementary Figure 4).  NOISeq was excluded for reasons explained further above
(EDASeq normalization)

The most interesting aspect of the Fi-score

analysis, though, emerges from comparison of its values before and after p-value adjustment under a BH

threshold of 0.05 (Figure 4 versus Supplementary Figure 5; Appendix I). While most tools’ performance is

affected in a greater or lesser extend from p-value correction, PANDORA is perhaps the only DEA
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procedure that behaves robustly both before and after p-value adjustment, rendering itself a dependable

statistical analysis method to work with.

Finally, as would have been expected, methods highly capable in properly ranking FPs are not that capable
in ranking FNs’ below true hits (Figure I versus Supplementary Figure 6; Appendix I). For example while

limma-voom is in all datasets of the FDC’s
3x replicate design the tool that reports the
less FPs, in the FNC case it delivers the most
FNs for the human and Arabidopsis dataset
and the second most (below baySeq) for all
the other datasets. Strikingly, while similar
trends can also be witnessed for most tools,
they are not manifested to such an extent for
PANDORA, suggesting that it can
adequately control both FPs and FNs. Last
but not least, it must be noted that after p-
value adjustment with a BH threshold of
0.05, PANDORA performance significantly
ameliorates surpassing that of other tools
(Appendix 1, Supplementary Figure 7).

To conclude with, by taking into
consideration all the above simulation
evaluation metrics we can infer that
PANDORA is not only one of the best
performing DEA methods under different
organisms and dataset properties, but
perhaps the most robustly behaving one, too.

3.2 PANDORA versus other metaseqR2-
implemented statistical analysis tools
performance (II)

Real data

Evaluating tools’ performance under the
controlled “environment” of a simulation

does not account for all the confounding
factors that co-exist within a real dataset and
can possibly affect DEA results. For this reason
two real datasets, the SEQC and the TagMan
datasets, were also analyzed (see section 2.4
for more details) and the ROC and F-score
exploratory diagrams were plotted. It must be
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Figure 4: F-score (precision-sensitivity tradeoff) using

raw p-values after EDASeq normalization. F;-score
summarized across ten iterations for each tool and simulation
design, using unadjusted p-values. ABSSeq and PANDORA
present consistently the best precision-sensitivity tradeoff,

with only

a few exceptions. (significant p-value threshold:
0.05, EDASeq normalization)

noted that weights used for the analysis were the estimated ones from the human simulated dataset, in
order to avoid unwanted biases introduced by technical replicates. As with the simulated data analysis,
EDASeq was chosen as a global normalization procedure, but again, individual tools’ normalization
methods were also separately applied (see Appendix II).
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Figure 5: ROC and F1-score analysis of real datasets using raw p-values after EDASeq normalization (on the left and
right respectively). AUC can be found at the bottom right corner of the ROC figures. PANDORA shows an adequate
sensitivity-specificity relationship when examining the two real datasets. Its precision-specificity threshold is equally good
with that of the top performing tools for both datasets. (significant p-value threshold: 0.05, EDASeq normalization)

ROC analysis and Fi-score results for both datasets are depicted on Figure 5. Most AUCs, whilst prima
facie the same, do present some differences. For instance, DESeq has in both TagMan and ERCC data the
higher AUC and NOISeq along with baySeq the smaller ones, respectively. In addition, NBPSeq achieves
an equal to DESeq’s AUC when TagMan data are analyzed. PANDORA, although not the best method,
performs adequately well in both cases occupying a median AUC score in comparison with the rest of the
tools. From the other p-value combination methods, Fisher is constantly the worst performing one. Last
but not least, after p-value adjustment using a BH threshold of 0.05 (Appendix I; Supplementary Figure 8),
trends are kept the same.

Table 1. False Discovery Rates Approximation using three "'same versus same' comparisons.
(BH adjustment threshold 0.05; EDASeq normalization)

DESeq DESeq2 edgeR voom NBPSeq baySeq ABSSeq
SEQC_A 0,0239 <0,0001 0,0007 <0,0001 0,0177 <0,0001 <0,0001
SEQC B 0,0002 0,0002 0,0012 <0,0001 0,0019 0,0001 <0,0001
Chimpanzee 0,0028 0,0004 0,0004 <0,0001 0,003 <0,0001 <0,0001
DSS Simes Union Intersection PANDORA Fisher Whitlock
SEQC A 0,0029 0,0214 0,0355 <0,0001 0,0004 0,0588 0,0401
SEQC B 0,0003 0,0014 0,0048 <0,0001 <0,0001 0,0379 0,0104
Chimpanzee 0,0061 0,0033 0,0147 <0,0001 <0,0001 0,0744 0,0642

With regards to the TagMan data Fi-score, it is almost the same for the vast majority of DEA methods,
except for DESeq and Intersection that appear of poorer capability to achieve a good balance between
precision and sensitivity. On the other hand, Fi-score for the ERCC dataset is more variable with several
tools presenting slight differences among each other. Markedly, DESeq’s and Intersection’s substandard
performance is even worse than in the TagMan dataset. Not surprisingly, baySeq’s varying performance
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validates the simulated data reported previously (Figure 4). Finally, as was also seen for the ROC analysis,
Fi-score trends did not change under a p-value BH adjustment threshold of 0.05 (Appendix I;
Supplementary Figure 9).

Additionally to the ROC analysis and the Fi-score, the final metric computed is the approximate true False
Discovery Rates (aFDR) under a BH threshold of 0.05 for all methods applied except NOISeq for reasons
explained in (Soneson and Delorenzi 2013) (Table 1). aFDR rates were computed across tools using three
different “same versus same” mock analyses: one by using data from the real chimpanzee dataset and two
by splitting each SEQC dataset group (SEQC_A and SEQC_B) into two subgroups. Thus, from the results
summarized in Table 1 it is obvious that voom and ABSSeq, closely followed by baySeq and DESeq2 are
the best performing individual tools, while Intersection and PANDORA the first and second best from the
p-value combination methods, respectively.

Overall, these results suggest that most tools perform adequately well in both real dataset analyses and
that PANDORA behaves as good as the top performing algorithms, validating the simulation results of
the previous section.

3.3 Effects of different normalization methods upon downstream DEA.
Simulation data.

As already mentioned, normalization is one of the most crucial steps in DEA of RNA-seq data and a great
variety of methods have been developed to cope with this need. As most DEA tools suggest specific
normalization method(s) to be coupled with their implemented statistical analysis, it is logical to speculate
that there may be a dependence between them in order to attain optimal performance.

To address this hypothesis, we normalized in parallel simulated data of the human, chimpanzee, mouse,
fruitfly, arabidopsis and rat datasets with DESeq or TMM (edgeR) normalization algorithms, prior to
differential expression statistical analysis, performance evaluation and subsequent comparison with
EDASeq normalization results. It must be noted that baySeq statistical analysis was not coupled with
DESeq normalization due to extensive computational time required. For simplicity reasons only the F1-
score (Figure 7) and the area under the ROC curve (Figure 6) as computed after DESeq and TMM
normalization will be here described. All the other metrics’ figures created using the alternative two
normalizations can be found in Appendix IlI.

The comparison of Figure 7 with Figure 4 is revealing in several ways. First of all, it is obvious that TMM
is not as powerful as EDASeq or DESeq normalization methods in controlling outliers. Secondly, while
the general trends seem to remain generally stable between the three normalization approaches, there are
tools like ABSSeq that are tremendously affected by the normalization procedure chosen. On the contrary,
PANDORA is one of the few methods that performs robustly over all three normalization schemes. In
addition, PANDORA is not that heavily affected by outliers under TMM normalization.

A similar, but less intense dependence between normalization and statistical analysis methods can also be
observed when ROC analysis results (Figure 6) are compared with their EDASeq counterparts (Figure 2).

In summary, given metaseqR’s and metaseqR2’s concept of providing various normalization and

statistical analysis tools that can be differentially combined by the user during an analysis, PANDORA
might consist the safer DEA choice for most everyday RNA-seq data analyses.
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Figure 7: ROC analysis for DESeq and TMM normalized simulation data (on the left and right respectively)
across ten iterations for each tool and simulation design. (significant p-value threshold: 0.05)
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Figure 6: Fi-score analysis for DESeq and TMM normalized simulation data (on the left and right
respectively) across ten iterations for each tool and simulation design. In contrast to many tools like ABSSeq,
PANDORA behaves robustly under all three normalization procedures (significant p-value threshold: 0.05)
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3.4 Gene length propagation into PA.
Simulation data.

RNA-seq technology is prone to multiple bias sources. Gene length bias might be the first one recognized
by the scientific community and it has been shown to affect not only DEA itself, but also to propagate into
downstream PA (for more details see Section 1.4). While several tools, like these in (Young et al. 2010;
Gao et al. 2011; Mi et al. 2012), have been published to correct for this bias during PA, to our knowledge
there is no previous research on whether p-value combination algorithms like PANDORA, have the ability
to control gene length bias’s effects on PA.

With the aim of witnessing if the “corrected” DEG lists reported by metaseqR2-implemented p-value
combination methods are a more reliable “starting material” for PA, we simulated gene length bias using
the human dataset (see Section 2.4 for more details) and then, we performed DEA using newly estimated
tool-specific PANDORA weights (practically the same with the default ones). EDASeq normalization was
again globally applied.

Prior to continuing into PA, gene length bias’s existence at the DEA level should be validated. Thus, every
DEG list reported was first separated into 50 equal bins according to the binary logarithm of its genes’
length. Then the per bin mean gene length was plotted against each bin’s DEG percentage, in an attempt
to specify those simulation iterations where all tools were simultaneously affected by the bias (positive
loess curve’s slope accompanied by a p-value < 0.05 for each tool). Unfortunately, only a few simulation
iterations were significantly affected, leading us to continue our benchmarking with just one of them
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Figure 8: Investigation of gene length bias presence within the human-based simulation dataset. Genes
were binned into 50 groups by their length binary logarithm. On the x-axis each bin’s mean gene length is
depicted and on the y the per bin DEG percentage respectively. It is apparent that all tools are polarized towards
reporting more often longer genes as DE. (significant p-value threshold: 0.05)

belonging to the 3x replicate design. Figure 8, is created based on data derived from this iteration

Once pre-ranked GSEA was performed as described in Section 2.7, non-significantly over-represented
pathways (p-value > 0.05) were filtered out and the remaining ones undergone another filtering round to
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keep those characterized by a positive enrichment score (ES). Downstream analysis was based on the
assumption that if there is no length bias present, then the gene length distribution of the genes belonging
to significant pathways should be similar to the length distribution of all genes tested. Consequently,
unique pathway genes were kept and kernel densities of their log transformed length distributions were
calculated. The same process was also followed for all simulated genes of the respective iteration and the
distributions differences were quantified using the Kolmogorov-Smirnov test statistic (Figure 9). This
pipeline was in parallel applied for both all pathway genes and for only the pathways’ leading edge genes
so as to reveal any masking effects (leading edge genes are a pathway’s genes that contributed the most
at the establishment of this pathway’s enrichment within a given DEG list; therefore, they can be assumed
as of major biological importance).

As can be seen from Figure 9, when all unique pathway genes are taken into consideration, PANDORA
and edgeR followed by DESeq are the most capable tools in controlling gene length bias propagation into
PA, whereas voom, NOISeq and Simes are the worst performing ones among the individual and p-value
combination methods, respectively. Furthermore, when only leading edge genes are analyzed, more sharp
differences can be indeed observed. PANDORA again gives the most suitable DEG list to perform pre-
ranked GSEA with, whereas this time DSS, Intersection and baySeq are the worst ones.

Taken together, these results suggest that, although all metaseqR2-incorporated tools can be affected by
gene length bias that may be present in a dataset, some of them exhibit better bias handling leading to

more reliable PA results, when pre-ranked GSEA is performed.
03
i g g i

Figure 9: Kolmogorov-Smirnov analysis for all unique pathway genes and unique leading edge genes (left
and right respectively). Kolmogorov-Smirnov test reveals that PANDORA returns the most reliable DEG list to
use in pre-ranked GSEA, suggesting an advantage of our method against all others when gene length bias is
present. (significant p-value threshold: 0.05)
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3.5 DEA of IncRNAs.
Simulation data.

Apart from gene-length bias, another RNA-seq data analysis challenge has recently attracted the attention

of experts: that of IncRNA DEA (for more details see Section 1.4). In a recent publication, very popular
DEA algorithms (including metaseqR2-implemented ones) showed inferior ability to analyze IncRNAs’
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differential expression, while at the same time that of mRNAs was better approached. Towards,
investigating if IncRNAs are better represented on final DEG lists using PANDORA or any other
metaseqR2-incorporated tool, we performed DEA of NGP-nutlin-based simulation data and evaluated
performance of all tools for mRNAs and IncRNAs separately. No gene or exon filters were applied during
the analysis, as many IncRNAs would had been filtered out. Once again, EDASeq normalization was
applied.

To begin with, FDCs of all metaseqR2 tools under both simulation designs and RNA biotypes, as
illustrated in Figure 10, validate (Assefa et al. 2018) observation that IncRNAs are indeed underrepresented
during DEA (they are characterized by bigger AUFC with respect to mRNAs). However, it must be also
noted that relative tools’ performance is almost retained as previously reported (Figure 1) and that increase
of biological replicates number do somehow alleviate the bias. In addition, PANDORA is one of the best
performing tools for both biotypes and especially under the 3x replicate design. P-value adjustment using
a BH threshold of 0.05 results in no major changes (Appendix I; Supplementary Figure 10).

Commenting on the fact that AUFC scores in Figure 10 are much bigger than those reported in Figure 1 or
any other relative figure, we must highlight the fact that AUFC score is highly depended on the subset of
the original dataset analyzed. For example, if the whole dataset is taken into consideration (Appendix I;
Supplementary Figure 11) then AUFC scores are of the same order of magnitude with those reported in
Figure 1.
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Figure 10: False Discovery Curves (FDC) using raw p-values after EDASeq normalization. FDCs are
summarized across ten iterations for each tool and simulation design examining the first 500 DEGs ranked
according to statistical significance. The calculated Area Under each FDC (AUFC) can be found at the bottom
right corner of each plot. Performance was separately assayed for mRNAs and IncRNAs. Indeed all tools
performance is compromised when IncRNAs are analyzed.(significant p-value threshold: 0.05, EDASeq
normalization)
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Therefore, Figure 10 AUFC scores are intended only for relative comparisons between the two biotypes
and/or simulation designs, and must not be considered as proper metrics for inferring about general tools’
performance.

As far as FDR analysis is concerned (Figure 11), mRNA versus IncRNA differences are not that obvious
and more strikingly, some tools report a smaller, although more disperse, FDR score for IncRNAs than
for mRNAs (e.g. NBPSeq in 3x replicate design). Another very interesting observation is that in contrast
with most cases of Figure 3, PANDORA performs better than ABSSeq when seven biological replicates
are used. Finally, very low TP to (FP+FN) ratio rates of Intersection and baySeq is once again expected
for reasons explained in Section 3.1

Furthermore, adding to data reported in Figure 4, PANDORA not only continues to demonstrate an
excellent Fi-score along with ABSSeq for both biotypes, but it even surpasses that of its “competitor” in
the 3x replicate design (Figure 12). In all cases, second best from the individual tools comes edgeR and
Simes from the p-value combination ones. At last, given adjusted p-values (Appendix I; Supplementary
Figure 12), many tools’ performance is compromised. However, PANDORA demonstrates once more a
robust behavior that is especially apparent in the 7x replicate design of both biotypes.

To conclude with, the above data suggest that IncRNA bias is indeed present when analysis is performed
with the existent DEA algorithms. However, it is obvious that not all of them are affected with the same
severity and on the contrary there are even several methods, like edgeR, ABSSeq and PANDORA that are
capable of alleviating IncRNA bias at a sufficient degree.

mRNA IncRNA
0.5
w
0.4 a
T
5
=L
0.3 ]
]
o
o
0.2 £
Q
@®
-
0.1 m
. (o]
EOO
o .
o
2 05
=
=
0.4 3
: T
= L\E
o |2
o |®
0.3 = I e
c
I I: S
=3

0.2 . 2

: = = z

- = = . i g
= ‘ 2
—

0.1 : é . * =i o
I b4 E")
= & ; = = :

. ~

0.0 —_ - - —le
o - B T S S S
D‘Nﬂ:EGCfU‘LﬂmC:{E-‘ UNH_‘EB‘D‘B’MMA::<ES
@853 8E 228128 22538838 E 2 SIEiE 8
w v 5 3 4a >0 = o 2 = w e v 3 4 >4 = © 2 =
o w o m @ m ®» =2 olold T g W o m @ m w 2 ol0liL =
g 2 32 a1z £ a z 99« 212 H

a1 < sl <

el £l

L. .

Figure 11: False Discovery Rate (FDR) using adjusted p-values after EDASeq normalization. FDRs are
summarized across ten iterations for each tool and simulation design at a BH adjusted p-value threshold of 0.05.
In contrast with Figure 3 data PANDORA outperforms ABSSeq both for mRNA but most importantly for the
IncRNA biotype. (EDASeq normalization)
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Figure 12: F1-score (precision-sensitivity tradeoff) using raw p-values after EDASeq normalization. F;-
score is summarized across ten iterations for each tool and simulation design, using unadjusted p-values. ABSSeq
and PANDORA present in all cases the best precision-sensitivity tradeoff, with the later one even surpassing the
former in the 3x replicate design. (significant p-value threshold: 0.05, EDASeq normalization)

3.6 metaseqR2 tools concordance analysis using three different biotype designs.
Real data; individual metrics; hierarchical clustering.

After completing tools’ evaluation using NGP-nutlin simulated data we moved in the final project’s part
to check concordance between metaseqR2 statistical analysis methods deploying DEA results of the actual
NGP-nutlin dataset. Concordance analysis was performed in similar concept with that of (Assefa et al.
2018), applying the metrics described in Section 2.5.

When observing Figure 13, which depicts the number of DEG reported by each tool using unadjusted p-
values, it is apparent that DESeq, Intersection, and baySeq are the more strict methods while DSS, Union,
Fisher and Whitlock the most loose. PANDORA shows a median performance in all three biotype schemes
possibly allowing for a more realistic representation of the real gene expression. The same trends remain
after p-value adjustment, but the number of DEGs reported across all biotypes is globally reduced with
the exception of Union, Fisher and Whitlock (Appendix I; Supplementary Figure 13).

Biotype representation ratio (Figure 14) comes to support previous section results. More specifically, all
tools show a slight over-representation of mRNAs and a heavier under-representation of IncRNAs in the
finally reported DEG list (ratio above and below zero respectively). Both biotypes were used as a
successful formula control (see Section 2.5). Interestingly, whereas mRNA over-representation degree has
minor inter-method differences, the same does not apply for IncRNA results More specifically, being the
most permissive of all metaseqR2 tools, Union best represents differentially expressed IncRNAs in
expense of encompassing many FPs among the reported discoveries. On the other hand, in an attempt to
filter out as many FPs as possible, Intersection reports the smallest number of statistically significant DE
IncRNAs, followed closely by baySeq. PANDORA although not the best it demonstrates an adequate
IncRNA bias control.
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Figure 13: Number of DEGs per tool and biotype, using unadjusted p-values. PANDORA is neither too lose
nor too strict as a DEA tool, for all three biotype designs. (mMRNAs are represented by green, IncRNAs by blue and
both biotypes by orange dots; significant p-value threshold: 0.05, EDASeq normalization)
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Figure 14: Biotype representativeness ratio, using unadjusted p-values. While mRNAs are slightly over-
represented in all tools final DEG list, IncRNAs are heavily under-represented in all cases. (mRNAs are
represented by green, IncRNAs by blue and both biotypes by orange dots; significant p-value threshold: 0.05,
EDASeq normalization)
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Figure 15: Mean overlap proportion of DEGs for each tool and biotype scheme, using unadjusted p-
values. It is obvious that IncRNA results are more variable than these of mRNAs between examined methods.
PANDORA along with edgeR and secondly Simes show the best accordance with the rest of the tools for all
three biotype analyses. (mMRNAs are represented by green, IncRNAs by blue and both biotypes by orange dots;
significant p-value threshold: 0.05, EDASeq normalization)

Finally, after p-value adjustment (Appendix I; Supplementary Figure 14), all individual tools performance
declined with regard to IncRNAs’ analysis resulting in a subsequent drift of p-value combination methods
as well.

Further differences in tools’ behavior are shown when examining DEG list mean overlap proportion
(Figure 15), which suggests a more significant accordance between mRNAs reported as DE and a much
less one for IncRNAs. Reporting both biotypes concludes in a median overlap as expected. Notably,
PANDORA and edgeR followed by Simes have the more extensive mean overlap with all other tools while
DESeq and Intersection the more limited ones. After p-value correction, all tools DEG lists “experience”
a broader divergence from one another, but general trends remain the same (Appendix I; Supplementary
Figure 15).

The last metric used (that of mean ranking correlation) reveals that DEG ranking is highly variable among
tools with PANDORA showing the best and almost identical for all biotype schemes ranking correlation
degree, closely followed by that of edgeR (Figure 16). The more divergent individual tools” DEG rankings
comes from DESeq, whereas for the combination methods from Fisher. Strikingly, for some tools like
DESeq and DESeq2, ranking correlation is larger for IncRNAs than that for mRNAs, a phenomenon that
becomes more apparent and most importantly global using corrected p-values (Appendix I; Supplementary
Figure 16).

Lastly, in order to summarize concordance analysis results we performed hierarchical clustering of
individual metrics’ output in a similar way with that in (Assefa et al. 2018) (see Section 2.6). Dendrograms
using raw p-values are presented in Figure 17 to 19 and the respective ones after p-value adjustment are
shown in Appendix I Supplementary Figure 17 to 19.
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Figure 16: Mean DEG ranking correlation between DEA tools for all biotype scheme, using unadjusted p-
values. Interestingly, IncRNAs ranking is more comprehensive than that of mRNAs for some tools including
PANDORA, which also displays an excellent and almost identical degree or ranking correlation with other tools
results. (mMRNAs are represented by green, IncRNAs by blue and both biotypes by orange dots; significant p-
value threshold: 0.05, EDASeq normalization)
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What is first of all shown by hierarchical clustering is that PANDORA always groups along with the same
four or five individual methods: DESeq2, edgeR, voom, NBPSeq and ABSSeq. Simes is also part of this
particular group. Secondly, DSS, Whitlock and Union form another cluster that constantly appears
separate from all others. Finally, p-value correction gives no different results as compared to unadjusted
ones, with the only exception of voom grouping together with DSS, Whitlock and Union in the IncRNA

biotype (Figure 19 versus Appendix I; Supplementary Figure 17).
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Figure 17: Hierarchical clustering of tools’ concordance analysis using z-scores calculated from
individual metrics applied. Both mRNA and IncRNA biotype scheme is here examined. (significant p-value
threshold: 0.05, EDASeq normalization)
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Conclusively, IncRNAs bias is evident for all metaseqR2 analysis tools. However, PANDORA’s results
are the most consistent and if not the best it is always among the best ones for all biotype designs (mRNAs,
mRNASs-IncRNAs and IncRNAs).
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Figure 18: Hierarchical clustering of tools’ concordance analysis using z-scores calculated from individual
metrics applied. mRNA biotype scheme is here examined. (significant p-value threshold: 0.05, EDASeq
normalization)
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Figure 19: Hierarchical clustering of tools’ concordance analysis using z-scores calculated from individual
metrics applied. IncRNA biotype scheme is here examined. (significant p-value threshold: 0.05, EDASeq
normalization)
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4. DISCUSSION

RNA-seq has largely replaced previously used microarray technology in everyday laboratory practice due
to both higher fidelity of results reported and to a wider range of possible applications. Unfortunately,
RNA-seq data analysis has proven to be no less complicated than that of predecessor technologies as both
extensive raw data normalization and sophisticated statistical analysis methods are required to tackle with
“lurking” biases. More specifically, for the DE statistical analysis of RNA-seq data between two or more
conditions and/or time series, many different approaches have been proposed for over one decade, but not
enough effort has been invested for the development of combined approaches in the field.

Thus, in this dissertation thesis we focused on the upgrade of metaseqR, a powerful package for DEA of
RNA-seq data, that apart from the individual methods included, it also allows access to 6 different p-value
combination processes and several normalization methods. Furthermore, because PANDORA, one of the
metaseqR-implemented p-value combination algorithms that was developed by our laboratory, had
already shown enhanced performance in contrast to many other individual tools, further research on its
behavior under different biases has been conducted.

To begin with, metaseqR2, the new package developed, includes three new statistical analysis tools:
DESeq2, ABSSeq and DSS, which were chosen instead of many others due to proper maintenance,
superior performance and compatibility with respect to the rest of individual tools shipped with metaseqR.
Additionally, the list of supported organisms by computing PANDORA weights for Rattus norvegicus.

Next, by performing simulation studies based on six real datasets with two experimental configurations
each, we observed that our PANDORA method is one of the best tools in ranking properly FP and FN
relatively to TP and TN hits respectively. Most interestingly, it is also one of the few approaches that can
achieve a good tradeoff between true and false hits at an adequate level. At the same time, ROC analysis
placed PANDORA among the top performing tools, too. In addition, FDR score calculation using
Benjamini- Hochberg corrected p-values showed that PANDORA along with ABSSeq and voom report
an importantly small number of FPs with respect to total discoveries. On the other hand, the very good
FDR control levels achieved by baySeq and Intersection can be first of all attributed to their inherent
stringency and secondly it is not adequate in distinguishing these tools from the rest, if examined along
with other metrics describing their general behavior and accuracy levels. Lastly, complementary to one
another, results of the F; and the FDT measurements suggested a most promising precision-sensitivity
tradeoff reported by PANDORA, ABSSeq and DESeq as well.

Eventually, real data analysis was performed for two datasets that bear qgPCR or spike-in data as functional
validation of the computationally reported differential gene expression. Via ROC analysis of both datasets,
PANDORA demonstrated an adequate, sensitivity-specificity relationship, whereas its Fi-score was
among the best delivered. Interestingly, baySeq, Intersection and even DESeq were characterized by an
inferior precision-specificity tradeoff value especially for the ERCC spike-in dataset, a phenomenon
consistent with these reported by (Moulos and Hatzis 2015). Finally, using three “same versus same”
mock comparisons PANDORA along with voom, ABSSeq, baySeq and Intersection proved to have an
amazing true FDR, which is even more important for the first three methods given their higher than baySeq
and Intersection performance in other metrics.

Additionally, in order to assess consistency of results delivered by each metaseqR2 method after the
application of different normalization procedures, we performed in parallel DEA of the previously
reported simulation data after three different normalization methods: EDASeq (default), DESeq and TMM
(of edgeR package). These three procedures were particularly chosen due to their popularity among
bioinformaticians/ computational biologists (personal literature observation), as well as due to their
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superior performance relatively to the other metaseqR2-offered normalization methods, like RPKM,
quantile and total count (Dillies et al. 2012). Unexpectedly, while precision-specificity tradeoff of many
tools such as ABSSeq, showed a high dependence on the normalization algorithm applied, PANDORA
performed very robustly under all three normalization methods and experimental designs. Thereby, it
proved itself to be a reliable solution for DEA in general and especially under metaseqR2’s concept of
enabling normalization and statistical analysis algorithms to be combined by the user at will. Finally, this
experiment indicates once more the importance of proper normalization before RNA-seq DEA, in
agreement with many previous researches such as (Dillies et al. 2012).

Afterwards, driven by literature findings indicating gene length bias propagation into PA, we set to
investigate the possibility of this bias being controlled by any of the metaseqR2-implemented tools.
Commenting on our choice to investigate gene length bias as it is presented in the PA results, we would
like to stress out the fact that RNA-seq data are characterized by relatively large levels of underlying
noise, as most high-throughput techniques. This noise is not completely eliminated even at the level of
having come up with a short-list of differentially expressed genes through the usage of appropriate
algorithms. Hence, making use of a DEG list directly may not have been the most appropriate approach
for studying the bias. On the other hand, being able to check gene length bias handling in the context of a
biologically important group of genes, like the ones reported by GSEA, is less noise dependent and might
constitute a better option for such an investigation.

Thus, after simulating gene length bias using the human dataset, we first of all searched for simulation
iterations where all thirteen tools were significantly affected by the bias. Unfortunately, too few iterations
fulfilled this criterion. This phenomenon although prima facie awkward could be possibly in agreement
with the findings of (Yoon and Nam 2017). Briefly, Yoon and his colleagues propose that gene length bias
is only a small source of the total observed RNA-seq data variability and that it is specifically introduced
when NB modelling is used for the analysis. Consequently, if a dataset’s replicates are independent
biological entities, huge inter-sample variability will mask gene length bias and the latter will not be
detectable. However, in the opposite case where replicates are genetically identical (or similarly technical),
inter-replicate variability will be low and gene length bias will then become noticeable. The above
observations could, thus, probably explain why our simulations, which were created by estimating NB
distribution parameters from the real human dataset (which contains different individuals as biological
replicates), demonstrate the prior reported behavior. Finally, the fact that almost all previous publications
investigating the same topic use technical and/or genetically identical replicates to show existence of gene
length bias, further supports our hypothesis (Oshlack and Wakefield 2009; Gao et al. 2011; Mi et al. 2012)
and poses a question to whether gene length bias correction is indeed necessary when independent
biological entities are examined.

In order to continue research on the topic we focused on one of the 3x replicate design iterations for which
all tools’ results were significantly biased. GSEA was chosen as a PA method for consistency reasons with
most previous publications (Gao et al. 2011; Mi et al. 2012), while the pre-ranked option was selected
because we wanted genes to be ranked according to their p-value, the statistic where PANDORA and the
other combination methods do act. At last, according to Kolmogorov-Smirnov test, we suggest that
PANDORA as well as DESeq and Simes methods somehow alleviate bias’s propagation into pre-ranked
GSEA. Yet, these data must be interpreted with caution due to lacking replication.

The next and final step of our investigation focused on the suggestion that IncRNAs are underrepresented
during DEA, in contrast for example with mRNAs, due to the formers’ small expression levels (Assefa et
al. 2018). Initially, we analyzed simulated data of the NGP-nutlin dataset, so as to find that while all tools
are indeed underrepresenting IncRNAs in consistence with (Assefa et al. 2018) findings, some of them
like PANDORA and/or ABSSeq show superior performance in the great majority of estimated metrics for

39



MSc Diploma Thesis — Dionysios Fanidis

both mRNAs and IncRNAs. Notably, PANDORA showed once again an excellent precision-sensitivity
tradeoff (Fi-score) and an also very competitive AUFC validating our first simulations’ data.

Then, we performed a metaseqR2-supported tools concordance analysis based on the true NGP-nutlin
dataset. Again PANDORA, although affected by IncRNA bias along with all other methods, proved itself
a very reliable and trustworthy tool to work with (moderate DEG number calling, adequate IncRNA
representation, great mean ranking correlation and one of the best mean DEG overlaps with the rest of the
methods). Another observation made during concordance analysis was also surprising: IncRNAs mean
ranking correlation was for some tools better than that of mRNAs, a phenomenon that became obvious
for all tools after p-value correction. A possible explanation for this specific result would be the fact that
the analyzed dataset contained less IncRNAs than mRNAs (almost half in numbers) thus augmenting the
probabilities of the tools to achieve more similar IncRNA rankings with one another.

Hierarchical clustering was applied to summarize concordance analysis results. In particular, DESeq2
systematic clustering with PANDORA, edgeR, voom, ABSSeq and/or NBPSeq is partially consistent with
the observations made in (Assefa et al. 2018), where DESeq2, edgeR and voom were again found in the
same dendrogram’s group. Particularly, PANDORA’s clustering behavior can be attributed to the fact that
top performing tools such as the aforementioned four are generally assigned big weights that “drift”
PANDORA with them during the clustering process.

Summarizing all the above, metaseqR2 is an up-to-date, powerful tool for DEA of RNA-seq data. From
the fifteen different statistical analysis methods included, PANDORA performs collectively better than
most others and demonstrates a more robust performance, too. In addition, it must be noted that by using
weights from all metaseqR2-implemented individual statistical analysis tools, PANDORA performs if not
better (AUFC, aFDR, Fi-score with adjusted p-values) at least as good as with the weights of its previous
environment of implementation (Moulos and Hatzis 2015). Furthermore, when RNA-seq biases like gene
length and IncRNA bias are present, as well as when different normalization methods are applied,
PANDORA is again one of the most reliable options to choose. Hence, it could conceivably be
hypothesized that PANDORA is also beneficial for controlling read count and low count biases as well,
since they are practically no different than the here examined gene length and IncRNA biases, respectively
(Young et al. 2010; Assefa et al. 2018). At the end, as meta-analysis approaches to DEA of RNA-seq data
seem most promising, further studies on the field are recommended so as to obtain an “enhanced resolution
picture” of the true differences in gene expression patterns.

Taken together, all computational experiments conducted in the current MSc thesis points towards
PANDORA as the best choice for DEA of RNA-seq data, not only because of its overall very good
performance, but also due to its robustness and reliability. PANDORA is implemented in metaseqR2
package, which also offers access to many distinct analysis tools and to a user-friendly, self-explanatory
report.
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6. APPENDIX I

Simulated and real data evaluation supplementary figures using EDASeq normalization.

Note: In all BH p-value adjustments NOISeq is presented with its unadjusted p-value,
mainly for reasons of completeness.
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Supplementary Figure 1: metaseqR2 workflow.
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Supplementary Figure 2: False Discovery Curves (FDC) usign adjusted p-values after EDASeq
normalization. FDCs are summarized across ten iterations for each tool and simulation design examining the first
500 DEGs ranked according to statistical significance. The calculated Area Under each FDC (AUFC) can be found

at the bottom right corner of each plot. Trends remain the same after p-value adjustment. (BH p-value threshold:
0.05, EDASeq normalization)
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Supplementary Figure 3: Area under the ROC curve (AUC) using adjusted p-values and EDASeq normalization.
AUC are summarized across ten iterations for each tool and simulation design, using adjusted p-values. Trends remain the
same after p-value adjustment. (BH p-value threshold: 0.05, EDASeq normalization)
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Supplementary Figure 4: False Discovery Tradeoff (FDT) using raw p-values after EDASeq
normalization. FDT is summarized across ten iterations for each tool and simulation design using unadjusted
p-values. FDT analysis replicates PANDORA’s ability to favorably control TP versus FP and FN numbers.
(statistical significant threshold: 0.05, EDASeq normalization)
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Supplementary Figure S: Fi-score (precision-sensitivity tradeoff) using adjusted p-values after EDASeq
normalization. F;-score is summarized across ten simulations for each tool and simulation design, using adjusted p-
values. PANDORA demonstrates a robust F1-score both before (Figure 4) and after p-value adjustment. (BH p-value

threshold: 0.05, EDASeq normalization)
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Supplementary Figure 6: False Negative Curves (FNC) using raw p-values after EDASeq
normalization. FNCs are summarized across ten iterations for each tool and simulation design examining the
last 500 DEGs ranked according to statistical significance. The calculated Area Under each FDC (AUFC) can

be found at the top left or bottom right corner of each plot. Tools like voom that successfully control FPs
(Figure 1) cannot control FNs at the same time. PANDORA is one of the few exceptions that can
simultaneously control both FPs and FNs. (significant p-value threshold: 0.05, EDASeq normalization)
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Supplementary Figure 7: False Negative Curves (FNC) using adjusted p-values after EDASeq
normalization. FNCs are summarized across ten iterations for each tool and simulation design examining the
last 500 DEGs ranked according to statistical significance. The calculated Area Under each FDC (AUFC) can be
found at the top left or bottom right corner of each plot. PANDORA performance is much better when using
adjusted p-values. (BH p-value threshold: 0.05, EDASeq normalization)
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Supplementary Figure 8: FN, FP and TP hits for all datasets, simulated replicate designs and statistical
analysis methods using unadjusted p-values. (significant p-value threshold: 0.05, EDASeq normalization)
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Supplementary Figure 9: ROC and F1-score analysis of real datasets using adjusted p-values after

EDASeq (top and bottom respectively). AUC can be found at the bottom right corner of the ROC figures.

Trends are the same as before normalization for both ROC and F1-score analysis. DESeq’s, baySeq’s and

Intersection’s tools F1-score for the ERCC dataset is even more compromised than with the unadjusted p-
values. (BH p-value threshold: 0.05, EDASeq normalization)normalization
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Supplementary Figure 10: False Discovery Curves (FDC) using adjusted p-values after EDASeq normalization.
FDCs are summarized across ten iterations for each tool and simulation design examining the first 500 DEGs ranked
according to statistical significance. The calculated Area Under each FDC (AUFC) can be found at the bottom right corner
of each plot. p-value adjustment has no actual effect on AUFC of both biotypes and simulation configurations. (BH p-value
threshold: 0.05, EDASeq normalization)
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Supplementary Figure 11: False Discovery Curves (FDC) using adjusted p-values of all simulated genes after EDASeq
normalization. FDCs are summarized across ten iterations for each tool and simulation design examining the first 500 DEGs
ranked according to statistical significance. The calculated Area Under each FDC (AUFC) can be found at the bottom right
corner of each plot. When data are calculated for all simulated genes, AUFC values are of the same magnitude as in Figure 1.
(BH p-value threshold: 0.05, EDASeq normalization)
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Supplementary Figure 12: Fl-score (precision-sensitivity tradeoff) using adjusted p-values after EDASeq

normalization. Fi-score is summarized across ten iterations for each tool and simulation design, using adjusted

p-values. PANDORA behaves robustly in most cases relative to its score using unadjusted p-values (Figure 12).
(BH p-value threshold: 0.05, EDASeq normalization)
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Supplementary Figure 13: Number of DEGs per tool and biotype, using adjusted p-values after EDASeq
normalization. PANDORA is neither too lose nor too strict as a DEA tool, for all three biotype designs (mMRNAs
are represented by green, IncRNAs by blue and both biotypes by orange dots; BH p-value threshold: 0.05,
EDASeq normalization)
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normalization. While mRNAs are slightly over-represented in all tools final DEG list, IncRNAs are heavily under-
represented in all cases. All tools performance regarding IncRNAs is compromised following p-value adjustment.
(mRNAs are represented by green, IncRNAs by blue and both biotypes by orange dots; BH p-value threshold: 0.05,
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Supplementary Figure 15: Mean overlap proportion of DEGs for each tool and biotype scheme, using
adjusted p-values and EDASeq normalization. Trends are the same as those before p-value correction.
(mRNAs are represented by green, IncRNAs by blue and both biotypes by orange dots; BH p-value threshold:
0.05, EDASeq normalization)
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Supplementary Figure 16: Mean DEG ranking correlation between DEA tools for all biotype scheme, using
adjusted p-values after EDASeq normalization. While general trends remain the same, IncRNAs ranking
becomes better than that of mRNAs after p-value adjustment. NOISeq is not included for reasons explained in
(Soneson and Delorenzi 2013) and Fisher due to the big number of ties reported (mRNAs are represented by green,
IncRNAs by blue and both biotypes by orange dots; BH p-value threshold: 0.05, EDASeq normalization)
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Supplementary Figure 17: Hierarchical clustering of tools’ concordance analysis using z-scores calculated
from individual metrics applied. Both mRNA and IncRNA biotype scheme is here examined. NOISeq and Fisher
are not included for reasons explained in Sup. Figure 14 legend.

(BH p-value threshold: 0.05, EDASeq normalization)
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for reasons explained in Sup. Figure 14 legend.

(BH p-value threshold: 0.05, EDASeq normalization)
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Supplementary Figure 19: Hierarchical clustering of tools’ concordance analysis using z-scores calculated
from individual metrics applied. IncRNA biotype scheme is here examined. NOISeq and Fisher are not
included for reasons explained in Sup. Figure 14 legend.

(BH p-value threshold: 0.05, EDASeq normalization)
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7. Appendix II

Simulated and real data evaluation figures using each tools’ suggested normalization method.
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Supplementary Figure 20: False Discovery Curves (FDC) using raw p-values after each tool normalization FDCs are
summarized across ten iterations for each tool and simulation design examining the first 500 DEGs ranked according to
statistical significance. The calculated Area Under each FDC (AUFC) can be found at the bottom right corner of each plot.
(significant p-value threshold: 0.05, each tool normalization)
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Supplementary Figure 21: False Discovery Curves (FDC) using adjusted p-values after each tool normalization. FDCs
are summarized across ten iterations for each tool and simulation design examining the first 500 DEGs ranked according to

statistical significance. The calculated Area Under each FDC (AUFC) can be found at the bottom right corner of each plot. (BH
p-value threshold: 0.05, each tool normalization)
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Supplementary Figure 22: Area under the ROC curve (AUC) using raw p-values after each tool normalization. AUC
are summarized across ten iterations for each tool and simulation design using unadjusted p-values. (significant p-value
threshold: 0.05. each tool normalization)
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Supplementary Figure 23: Area under the ROC curve (AUC) using adjusted p-values after each tool normalization.
AUC are summarized across ten iterations for each tool and simulation design, using adjusted p-values. (BH p-value
threshold: 0.05, each tool normalization)
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Supplementary Figure 24: False Discovery Rate (FDR) summarized across ten iterations for each tool and simulation
design at a BH adjusted p-value threshold of 0.05. Intersection had no discoveries after p-value adjustment and thus it was
not included. NOISeq was excluded for reasons explained further above (each tool normalization)
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Supplementary Figure 25: Fi-score (precision-sensitivity tradeoff) using raw p-values after each tool normalization.
Fi-score is summarized across ten iterations for each tool and simulation design, using unadjusted p-values. (significant p-
value threshold: 0.05, each tool normalization)

63



MSc Diploma Thesis — Dionysios Fanidis

3 replicates - balanced DEG 7 replicates — unbalanced DEG
0.8- - L TTm TTT
i -—C e - + T - !
¢ O A 3 ¢
0.6 - , - T
= I :
o [3 = =l
= LI dj l =
044 ° .
-
0.2
E-h'l' - e +=—
0.8 — -+ [
&= P ==¢' == 2
0.6 - = - 3
= Tl ; - g
[} ry -
0.4+
*
—— ]
0.9 L 2 e g *"'-r—_._ T
| mm= L
903 E*¢ H5TTe B & =
g or{™ = -
? 0.6 #
T =
0.9 = - -'- _1-—-.-— -.-_-!—_— "'_—
- —-_—
0.8- o - T s . ?
L T T + E
0.7 e
0.6 -+
0.8 mal” -, ==
£ =-L-'- ® i T * EF_?_
0.6 - [— [ >
- -
a
0.4 ? = = IE-
- "
e = o
[ ]
0.2 # $
'.'——'.'_ -y —_—
sl = T = = - 4
0.71 = =
won s 2o > 0 = 6 Q9 2 = uwag Qa > 0 = 5 Q 8 =
ouwoe g8 8m ®2e0LE guWwo g 9 8o ©®29¢00L g
a z < 5 E 2 o =z < 3 E 2
= c

Supplementary Figure 26: F-score (precision-sensitivity tradeoff) using raw p-values after each tool
normalization. Fi-score is summarized across ten simulations for each tool and simulation design, using adjusted p-
values. (BH p-value threshold: 0.05, each tool normalization)
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Supplementary Figure 27: False Negative Curves (FNC) using raw p-values after each tool normalization. FNCs are
summarized across ten iterations for each tool and simulation design examining the last 500 DEGs ranked according to
statistical significance. The calculated Area Under each FDC (AUFC) can be found at the top left or bottom right corner of
each plot (significant p-value threshold: 0.05, each tool normalization)
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Supplementary Figure 28: False Negative Curves (FNC) using adjusted p-values after each tool normalization. FNCs
are summarized across ten iterations for each tool and simulation design examining the last 500 DEGs ranked according to
statistical significance. The calculated Area Under each FDC (AUFC) can be found at the top left or bottom right corner of

each plot (BH p-value threshold: 0.05, each tool normalization)
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Supplementary Figure 29: False Discovery Tradeoff (FDT) using raw p-values after each tool normalization. FDT is
summarized across ten iterations for each tool and simulation design using unadjusted p-values. (statistical significant
threshold: 0.05, each tool normalization)
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Supplementary Figure 30: ROC and F-score analysis of real datasets using raw p-values after each tool
normalization (top and bottom respectively). AUC can be found at the bottom right corner of the ROC figures.
(significant p-value threshold: 0.05, each tool normalization)
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Supplementary Figure 31: ROC and Fi-score analysis of real datasets using adjusted p-values after each tool
normalization (top and bottom respectively). AUC can be found at the bottom right corner of the ROC figures.
(BH p-value threshold: 0.05, each tool normalization)

69



MSc Diploma Thesis — Dionysios Fanidis

8. Appendix IIT

Simulated data evaluation figures using DESeq or TMM normalization.
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Supplementary Figure 32: False Discovery Curves (FDC) using raw p-values after DESeq normalization. FDCs are
summarized across ten iterations for each tool and simulation design examining the first 500 DEGs ranked according to
statistical significance. The calculated Area Under each FDC (AUFC) can be found at the bottom right corner of each plot.
(significant p-value threshold: 0.05, DESeq normalization)
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Supplementary Figure 33: False Discovery Curves (FDC) using raw p-values after TMM normalization. FDCs are
summarized across ten iterations for each tool and simulation design examining the first 500 DEGs ranked according to
statistical significance. The calculated Area Under each FDC (AUFC) can be found at the bottom right corner of each plot.
(significant p-value threshold: 0.05, TMM normalization)
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Supplementary Figure 34: False Discovery Rate (FDR) using raw p-values after DESeq normalization. FDR is
summarized across ten iterations for each tool and simulation design at a BH adjusted p-value threshold of 0.05. NOISeq
was excluded for reasons explained further above (DESeq tool normalization)
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Supplementary Figure 35: False Discovery Rate (FDR) using adjusted p-values after TMM normalization. FDR is
summarized across ten iterations for each tool and simulation design at a BH adjusted p-value threshold of 0.05. NOISeq
was excluded for reasons explained further above (TMM normalization)
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(significant p-value threshold: 0.05)
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Supplementary Figure 36: ROC analysis of real datasets using raw p-values after DESeq and TMM normalization
(top and bottom respectively). AUC can be found at the bottom right corner of the ROC figures.
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Supplementary Figure 36: Fi-score analysis of real datasets using raw p-values after DESeq and TMM normalization
(top and bottom respectively). (significant p-value threshold: 0.05)

75



