
 
 

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS 
 

SCHOOL OF SCIENCE 
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION 

 
 

 
 
 

BSc THESIS 
 
 

Evaluating Taint Analysis Tools for JavaScript 
 
 
 

Marios G. Papamichalopoulos 
 
 
 
 
 
 
 
 
 

Supervisors: Dimitris Mitropoulos, Adjunct Faculty 
Alexis Delis, Professor 

 
 

 
 
 
 
 
 

ATHENS 
 

JULY 2019  
 



 
 

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ 
 

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 

 
 

 
 
 

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ 
 
 

Αξιολογώντας Εργαλεία Ανάλυσης JavaScript 
Προγραμμάτων 

 
 
 

Μάριος Γ. Παπαμιχαλόπουλος 
 
 
 
 
 

 
 

 
Επιβλέποντες: Δημήτρης Μητρόπουλος, Επισκέπτης Καθηγητής 

Αλέξης Δελής, Καθηγητής 
 

 
 
 
 
 
 
 

ΑΘΗΝΑ 
 

ΙΟΥΛΙΟΣ 2019 
  



 
 
 

BSc THESIS 
 
 

Evaluating Taint Analysis Tools for JavaScript 
 
 
 

Marios G. Papamichalopoulos 
S.N.: 1115201400149 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUPERVISORS: Dimitris Mitropoulos, Adjunct Faculty 
Alexis Delis, Professor 

 
  



 
 

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ 
 
 

Αξιολογώντας Εργαλεία Ανάλυσης JavaScript Προγραμμάτων 
 
 
 

Μάριος Γ. Παπαμιχαλόπουλος 
Α.Μ.: 1115201400149 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ΕΠΙΒΛΕΠΟΝΤΕΣ: Δημήτρης Μητρόπουλος, Επισκέπτης Καθηγητής 
Αλέξης Δελής, Καθηγητής 

 



ABSTRACT 
 

In the context of this BSc thesis, we have examined a number of scientific tools that 
perform taint analysis for programs written in the JavaScript programming language. 

Taint analysis is defined as a type of analysis which concludes if points of the program 
that act as entry points for sensitive data are dangerous for the application, by tracking 
the flow of such data throughout the program. Such points are called taint sources. 

Specifically, taint analysis marks as tainted the variables which have been affected by 
user input and tracks them until they reach a sensitive method, called sink. If a tainted 
variable reaches such a point, without being properly sanitized first, a vulnerability is 
reported. Tainting is the association of some kind of label or mark to sensitive data that 
allows the tracking of their flow throughout the program as well as the propagation of 
taint to the variables they come across. 

The purpose of this research is the thorough research of scientific tools that perform 
such kind of analyses for programs written in JavaScript. We hereby present a 
collection of frameworks and approaches, which developers and enterprises may 
incorporate to their defense arsenal, for the inspection of the client-side code of their 
web applications, thus negating possible web attacks.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SUBJECT AREA: Taint Analysis  
KEYWORDS:   Security, JavaScript, Client-side Vulnerabilities, Static Taint Analysis, 

Dynamic Taint Analysis 



ΠΕΡΙΛΗΨΗ 
 
Η παρούσα μελέτη που διεξήχθη μέσα στα πλαίσια Πτυχιακής Εργασίας περιλαμβάνει 
την καταγραφή επιστημονικών εργαλείων που πραγματοποιούν taint analysis στην 
προγραμματιστική γλώσσα JavaScript. 

Το taint analysis ορίζεται ως ένα είδος ανάλυσης, το οποίο συμπεραίνει αν τα σημεία 
του προγράμματος που ενεργούν ως σημεία εισαγωγής ευαίσθητων δεδομένων 
αποτελούν κίνδυνο για την εφαρμογή, παρατηρώντας τη ροή τέτοιων δεδομένων μέσα 
στο πρόγραμμα. Τέτοια σημεία ονομάζονται πηγές (taint sources). 

Συγκεκριμένα, ένα taint analysis χαρακτηρίζει ως «στιγματισμένες» (tainted) τις 
μεταβλητές που έχουν επηρεαστεί από δεδομένα που εισάγει ο χρήστης και τις 
ιχνηλατεί μέχρι να δει αν φτάνουν σε κάποια ευπαθή μέθοδο, που ονομάζεται 
καταβόθρα (sink). Αν μία αμαυρωμένη μεταβλητή εισέλθει σε ένα τέτοιο σημείο, χωρίς 
να έχει εξαγνιστεί (sanitize) πρώτα, τότε χαρακτηρίζεται ως ευπαθής. Ο στιγματισμός 
(tainting) είναι η συσχέτιση κάποιου είδους σημαδιού ή ετικέτας στα ευαίσθητα 
δεδομένα που επιτρέπει την ανίχνευση της ροής τους μέσα στο πρόγραμμα καθώς και 
την διάδοση της μόλυνσης (taint) σε μεταβλητές που συναντούν. 
Ο σκοπός αυτής της έρευνας είναι η διεξοδική έρευνα επιστημονικών εργαλείων που 
εκτελούν τέτοιου είδους αναλύσεις σε προγράμματα γραμμένα σε JavaScript. 
Παρουσιάζουμε μία συλλογή εργαλείων και προσεγγίσεων, που προγραμματιστές ή 
οργανισμοί μπορούν να ενσωματώσουν στο αμυντικό οπλοστάσιο τους για την 
επιθεώρηση του κώδικα της πλευράς πελάτη των διαδικτυακών εφαρμογών τους, 
αντικρούοντας, έτσι, πιθανές διαδικτυακές επιθέσεις. 
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PREFACE 
 

The basis of this research stemmed from my passion for Computer Security. During the 
spring semester, I took this subject and became thrilled of the fact that from someone’s 
mistake or misuse of programming libraries, an experienced attacker can wreak havoc 
to the application and to every person that utilizes its services. 

As the Web keeps expanding and becomes more embellished with scripts responsible 
for enhancing the User Experience, there will be a greater need to check for security 
violations. It is evident to find out frameworks that will help the work of the developers 
and enterprises. This was the idea leading to the conduction of this research. 

I would have never achieved this research had it not been for my professor, Dimitris 
Mitropoulos. As a teacher, he was able to impart his knowledge and passion for 
computer security to me and show me new techniques and ways, such as taint analysis. 
Also, I would like to thank my professor Alexis Delis for helping me and guiding me 
through all these years.  
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1. INTRODUCTION 

 
The general increase of web applications has changed the standards regarding user 
experience (UX). The World Wide Web (WWW) is structured by an abounding number 
of websites that provide many services and utilities to the users. This gives them the 
freedom to browse in multiple applications, when trying to perform a task, until they find 
one that fits their needs. This has led the enterprises and companies to upgrade the UX 
using JavaScript scripts, in order to appeal the customers and increase their profit. 

Why would someone choose JavaScript over another programming language? 
JavaScript has become prevalent concerning client-side code among web developers 
because of some of its key characteristics. These are its ease of use, flexibility and 
power. A Web developer does not need to precompile their code or install a plugin. 
They have the ability to test their scripts immediately and manipulate the Hypertext 
Markup Language (HTML) Document Object Model (DOM). In addition to this, there are 
a lot of extra libraries built on top of JavaScript, providing even more diversity and ease 
for the code writers. 

The upgrade of UX has one major drawback. The extra code, added in the web 
application to ensure this property, may become responsible for potential security 
violations. Not only can a malicious user easily map the infrastructure of the application, 
but they can also find vulnerabilities which originate from inexperienced developers 
using JavaScript libraries incorrectly. A really experienced attacker can take advantage 
of these two and perform a series of attacks, with the most common being Cross-Site 
Scripting (XSS) [17] and a variety of Injections [18] [19].  

According to the Top 10 Application Security Risks [1] list, created by Open Web 
Application Security Project (OWASP) in 2017, Injections are the number 1 threats with 
XSS attacks following six ranks bellow them. 

Injections, as the name suggests, can trick the interpreter into executing unintended 
commands or accessing data without proper authorization. They can be really harmful 
to the server since an attacker can steal passwords, destroy databases, and forge new 
admin accounts to the application. 

XSS flaws occur when the application uses untrusted data in a web page without proper 
sanitization or updates an existing web page with user-supplied data using a browser 
API that can create HTML or JavaScript. XSS may occur in three different types; Stored 
XSS, Reflected XSS and DOM-based XSS [17]. Such attacks allow the execution of 
scripts in the victim’s browser which can hijack user sessions, deface websites or 
redirect the user to malicious websites. All in all, an XSS attack aims in violating the 
Same-origin Policy, which is a concept in the web application model stating that a web 
application cannot execute scripts coming from another source.   

Both of these attacks are based on the inexistent sanitization and validation of the user 
input. Especially, XSS, can be really dangerous, since its subtypes Reflected XSS and 
DOM based XSS may never reach the server validation code, so it is really hard for 
developers to realize that there is such a perilous security breach. 

As mentioned, a potential security violation may result in destroying the integrity of an 
enterprise and most importantly harm benign every day users of the platform. That is 
why it has become a necessity to create automatic tools that expose such Client-Side 
Vulnerabilities (CSV). Bearing that in mind we have investigated a large number of 
scientific papers that present tools or approaches that perform a type of analysis, called 
taint analysis on the JavaScript language. 
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These tools share a common approach. They observe the entry points of sensitive 
information; they track the flow of data entering from such points throughout the 
program and report the potential security violations. In more depth, a taint analysis 
marks the unsanitized variables, which have been influenced by the user input, as 
“tainted” and tracks their flow to ensure they do not reach a vulnerable method or 
function that exposes them to the user. If they do, they are dangerous for the integrity of 
the program. In the analysis, the entry points are called taint sources and the exit points 
are called sinks. In most of the papers we have analyzed, a sanitization function 
between a taint source and a sink is called downgrader.  

 

Figure 1: Taint Analysis Visualization 

In order to explain the processes done by the frameworks and compare their differences 
we need to provide an explanation of some key types of analyses and how they 
operate, for example data-flow analysis. Also, we need to explain key data structures 
like the Abstract Syntax Tree (AST). Aho, et al [15] provide a very thorough description 
for these techniques. 

1.1 Static vs Dynamic Analysis 

We provide a brief description of static analysis frameworks and their differences with 
dynamic frameworks. 

A static analysis or static code analysis is an analysis performed to the source code of 
the program after it has been compiled.  A dynamic program analysis performs the 
analysis when the program is running by injecting instrumentation code to the subject 
program. 

Respectively, static taint analysis and dynamic taint analysis are analyses focusing on 
exposing vulnerabilities on the application. 

1.2 Data-Flow Analysis 

Data-flow analysis refers to a set of techniques used to produce information regarding 
the flow of data along the execution of a program. It is mostly used for the optimization 
of a program during its compiling phase, since techniques like dead code elimination 
rely on the flow of a variable’s value to conclude if it affects other variables or not. 
Likewise, it is used for the understanding of a program, like what type a function has or 
what is the resource usage in the program analyzed. This type of data-flow analysis is 
the one tools performing taint analysis use. 

In a few words, data-flow analysis is important in the frameworks we are examining 
because it is the analysis responsible for finding the vulnerabilities. By tracking a 
dangerous untrusted input throughout the program, a tool can find out if it is a potential 
threat by reaching a sink. 
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1.3 Pointer Analysis 

Pointer analysis is performed by a set of techniques used to pinpoint the variables or 
memory addresses, heap references or pointers point to during the execution of a 
program. It is a very important static code analysis part in the static taint analysis tools, 
due to the reference-type objects assignments which may propagate taint. Such tricky 
examples can be seen in the Section 2 of the thesis. The tools we describe take care of 
them successfully.  

1.4 Interprocedural vs Intraprocedural Analysis 

Procedures are what we know as functions. In the terms of Object-Oriented 
Programming (OOP) procedures are known as methods. 

Most compiler optimizations are performed on procedures one at a time. Such analyses 
are known as intraprocedural analyses. They assume that an invocation of a procedure 
may result in the worst possible result regarding the state of the variables or the stack. 
They are pessimistic analyses, since they assume the worst possible side effects.  

An interprocedural analysis, though, performs on the whole program, examining 
information flow from the caller to the callee and back. It enabled more precise analysis 
information by using calling relationships among the procedures, through a Call Graph. 
It is used in the taint analysis process in some frameworks, like for example 
ANDROMEDA, detecting some tainted cases related to reference-type objects. It makes 
them the most complex among the two and thus the most accurate. 

1.5 Call Graphs 

Call Graphs describe the calls between procedures throughout the program.  These 
relations are represented by a graph. Precisely, a call graph is a set of nodes and edges 
where nodes describe the procedures and edges describe the invocation of them. 

 

Figure 2: Simple Call Graph Visualization 

1.6 Intermediate Representation 

The front-end of a compiler constructs an intermediate representation (IR) of the source 
program, which the back-end uses to produce the final program. In a few words, IR is 
the link between both ends of the compiler. In a taint analysis for JavaScript, the front-



Evaluating Taint Analysis Tools for JavaScript 

M. Papamichalopoulos   18 

end is JavaScript and parts of HTML while the back-end is the one doing the analysis. 
The two most important IRs are: 

 Trees, Abstract Syntax Trees (AST). An AST is a tree representation of the 
structure of the source code of a program. During the syntax analysis, there are 
created nodes in the syntax tree to represent important programming and data 
structures. 

 Linear representations, three-address-code (TAC or 3AC). On the other hand, 
3AC is a sequence of steps of the program. Compared to the AST there is no 
hierarchy in the structure. This representation is used for the optimization of the 
code, by breaking the program into blocks of 3AC to sequence of instructions 
without branches. No instruction can have more than one operator at its right 

side. For example, an expression like 𝑥 + 𝑦 + 𝑧 has to be translated into a 

sequence of two three-address instructions, where t1 and t2 are compiler 

generated names: 

 

Figure 3: 3AC/TAC example of two operators in expression 

Other representations worth noting are Control-Flow Graphs (CFG) and Static-Single 
Assignment form (SSA): 

 CFG as the name states is a graph denoting all the paths that might be traversed 
through a program execution.  

 SSA is an intermediate representation that is similar to the TAC IR. However, 
assignments in SSA are performed with variables with distinct names; hence the 
term static single assignment. This method of assigning exclusive names for 

each variable results in a problem when having an if-then-else statement. If 

a variable is part of both branches of an if-then-else statement and then that 

variable is assigned in another part of the program, what is the name it should 
have so that SSA is accomplished? Let’s illustrate this with a simple example: 

 

As we can observe from the left part of Figure 4, at the assignment in line 7, 

since variables in SSA form have different names, variable y would not know 

which to choose for its assignment, between the x_1 and x_2. This is solved by 

a notational convention combining the two definitions of x. 

1. if (cond) { 

2.  x_1 = 1; 

3. } else { 

4.  x_2 = 2; 

5. } 

6.  

7. x_3 = o(x_1, x_2); 
8. y = x_3 + 1; 

1. if (cond) { 

2.  x = 1; 

3. } else { 

4.  x = 2; 

5. } 

6.  
7. y = x + 1; 

Figure 4: SSA issue and solution 
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Tools choose different IR for their solutions. They make sure that the ones they choose 
match their approach. It is common to have more than one IR for an analysis. 

1.7 Paper Organization 

We have separated our findings in four major categories, based on the type of the 
analysis the frameworks perform:  

 The Section 1 refers to tools based on static taint analysis frameworks. 

 The Section 2 of this thesis, respectively, presents tools based on dynamic taint 
analysis frameworks. 

 The Section 4 of the research introduces the combination of both types of 
analyses into a hybrid taint analysis, including both static and dynamic taint 
analysis. 

 The Section 5 makes a reference to frameworks that perform taint analysis in a 
different way than the standards. We believe they are worth mentioning since 
they provide an alternative approach. 

 The Section 6 of this thesis, at last, presents the conclusions made throughout 
our research. 

Additionally, in the first two sections, Section 1 and Section 2, we have added tools 
that perform analyses in general and are the foundation for other taint analysis tools. 
These are T.J. Watson Libraries for Analysis [3], Jalangi [4] and Jalangi2 [5]. One can 
build a custom taint checker on these frameworks, since they provide the necessary 
mechanisms. We felt it was essential to present them in this research, since the reader 
can adopt a solid background and understand more clearly how the frameworks that 
use them operate. 

In Figure 5, we present a map for the scientific tools and approaches we are going to 
describe in the thesis: 
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Figure 5: Thesis map 

Bear in mind that JavaScript is a really difficult language to model because of its 

dynamic features (e.g. eval, new operator). Most of the taint analysis tools 

successfully confront them but there are cases of false warnings.  



Evaluating Taint Analysis Tools for JavaScript 

M. Papamichalopoulos   21 

2. STATIC TAINT ANALYSIS TOOLS 

 

We have identified three tools matching this category. In general, static analysis is a 
method of debugging by automatically examining source code before a program is run. 
Subsequently, static taint analysis is a method of exposing vulnerabilities in the program 
by evaluating its source code before it is executed. 

Static analysis provides three major benefits, speed, depth and accuracy. Manual code 
reviewing for developers can be time consuming and error prone. By using automated 
tools, not only can developers find errors in their code, but they can also find their exact 
location since most static analysis tools pinpoint them. In a similar manner, they can 
cover every possible code execution path there is, which is something that manually 
may take absurd amount of time. 

On the other hand, static analysis frameworks for JavaScript due to the flexible and 
dynamic nature of the language are short on number and provide a fair amount of false 
warnings. As mentioned, it is really difficult to model JavaScript for analysis without 
having some misleading alarms. 

Before describing the frameworks, it would be wise to explain some key terms that 
influence static analyses and are responsible for the majority of the false warnings 
formed by a taint analysis: 

 Context insensitivity: The analysis does not take into account the context when 
invoking a method. Hence, it merges together different execution contexts of the 
same method [2].  

In the following example, there is a function called id which echoes back its input. 

Also, there are two variables y1 and y2. It can be observed that the first variable 

is assigned a simple benign string, while the second one is assigned user’s input. 

Context-insensitive static taint analyses will handle y1 as untrusted and produce a 

warning for potential vulnerability coming from the document.write sink. That will 

happen because of the merging of two different contexts to one. As a result, the 
analysis assumes that function id may pose a threat in general, due to the fact 

that it returns an untrusted value, that being of user input y2. 

There is clearly no vulnerability on the above code since the function 
document.write takes as a parameter the variable y1 which is comprised by a 

completely safe string. 

 Flow insensitivity: The analysis does not consider the order of the memory 
updates and instead calculates all possible memory update orders. The 
instruction sequence is not taken into account [2].  

 

1. function id(x) { 

2.  return x; 

3. } 

4.  

5. var y1 = id("hello"); 

6. var y2 = id(prompt()); 

7. document.write(y1); 

 
Figure 6: Context insensitivity example 
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In Figure 7, like the previous example, function document.write is called with a 

completely harmful parameter, that being x.f. Because of flow insensitivity not 

tracking the correct order of updates and the fact that at the beginning of the code 
snippet the property f of object x was assigned untrusted (user) input, the 

analysis produces a false warning of a potential security breach. 

 Path insensitivity: The analysis does not take into consideration the path 
conditions by neglecting the code based on the result of conditional branches. 
Instead, it assumes that all the paths in the Control-Flow Graph (CFG) are 
feasible. 

Such an example can be seen in Figure 8: 

In the above if–then-else statement depending on the value of variable y, 

variable x is either assigned as user input or as a parameter to document.write. 

That means that there is no way variable x can be given user input and also act 

as a parameter for the sink function.  

In a path insensitivity analysis, the conditions do not matter so the analysis 
assumes that function document.write is a sink even though only one path from 

the branch can be traversed at a time depending on variable y’s value. 

2.1  General Frameworks 

Following, we are going to describe the T.J. Watson Libraries for Analysis, a powerful 
framework that provides the foundation for the static analysis of the static and hybrid 
taint analysis tools described in the thesis. Its key features and the fact that is publicly 
available as an open-source framework have made it prevalent on the sector of static 
analysis. 

2.1.1 T. J. Watson Libraries for Analysis – WALA 

The WALA framework [3] [24] is a static analysis tool developed by IBM. Originally, its 
front-end was solely designed to analyze Java bytecode, but it expanded for JavaScript 
as well. 

 

1. var x; 

2. x.f = prompt(); 

3. x.f = " "; 

4. document.write(x.f); 
 

Figure 7: Flow insensitivity example 

 

1. var x = ""; 

2. var y = 5; 

 

3. if (y === 5) { 

4.   x = prompt(); 

5. } else { 

6.   document.write(x); 

7. }  
 

Figure 8: Path Insensitivity Example 
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It is an open-source framework under Eclipse Public License available on Github1 and it 
is characterized as one of the best tool for static analysis. It was donated to the 
community by IBM in 2006. 

WALA provides a set of libraries for the sake of interprocedural data-flow analysis. In 
order to do so, its operation is comprised by three steps: 

1. Construct a class hierarchy, by reading the source code into memory and keep 
valuable information describing the types. This produces the analysis scope, 
meaning what is going to be analyzed. This step is used for the analysis of a 
Java program. 

2. On-the-fly call graph construction for the execution of a pointer analysis using the 
appropriate data structures (call graph nodes – CGNode objects) the framework 

provides. The nodes of the call graph are representing the corresponding 
methods and its edges are representing the target procedures to be called. In 
case of a pointer analysis, the tool automatically constructs a call graph before 
performing a customizable flow-insensitive Andersen-style pointer analysis. 

3. Performing the subject analysis over the call graph deriving from Step 2. 

The analysis performed by WALA can be highly customized by the user by modifying 
the CallGraph API (CGNode objects) and PointerAnalysis API (PointerKey), which 

are mentioned in the WALA documentation. We feel that describing the way those APIs 
exactly work does not correspond with the purpose of this subject thesis and thus we do 
not analyze them. 

For the analysis mentioned above, WALA utilizes the open-source JavaScript engine 
Rhino2, which is managed by the Mozilla Foundation3, in order to parse JavaScript and 
create Abstract Syntax Trees for the analysis. Likewise, for the sake of fetching HTML 
code it adopts the Jericho HTML parser4. 

For the IR, WALA’s structure is composed by three key types of representations: 

 TAC 

 CFG 

 A fully-pruned SSA form. 

Following, we are going to describe the way WALA handles JavaScript’s complex 
features to produce its Intermediate Representation without errors so it can successfully 
construct the static representation of the program. The taint analyses tools which rely on 
WALA for their static analysis extend some of its approaches. For example, a 
framework may change the way WALA is treating the JavaScript prototypes using the 
customization it provides in its documentation. Another framework may leave the default 
manipulation of prototypes.  

2.1.1.1  Prototype Chain 

JavaScript is a prototype-based language [20]. All objects in JavaScript are instances of 
Object, except for the primitives. That means all the objects in JavaScript inherit the 

properties and methods from Object.prototype. 

                                            
1
 https://github.com/wala/WALA [Accessed: 4 July 2019] 

2
 https://github.com/mozilla/rhino [Accessed: 4 July 2019] 

3
 https://foundation.mozilla.org/en/ [Accessed: 4 July 2019] 

4
 http://jericho.htmlparser.net/docs/index.html [Accessed: 4 July 2019] 

https://github.com/wala/WALA
https://github.com/mozilla/rhino
https://foundation.mozilla.org/en/
http://jericho.htmlparser.net/docs/index.html
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For example, in Figure 9, function x has a property called prototype that may 

include its properties and methods. In case an object is created out of that function x, 

it inherits the methods and properties of the function. 

 

Figure 9: Function's prototype example 

Every prototype object may have another prototype object as its prototype. The 
mechanism of the language allowing an object to traverse from its private prototype 
object to the object the private prototype has as its prototype until it reaches null, in 
order to collect properties, it is missing, is called prototype chaining. An example of the 
prototype chain process is presented in Figure 10. 

 

Figure 10: Prototype Chain Process 

 

2.1.1.2 Object Creation 

Manipulating the new operator in JavaScript is different than in the OOP Languages.  

The semantics of the new operator are dynamic and flexible, since in JavaScript what 
follows the operator is an expression and not a constant. Such a case is seen in Figure 
11 below: 
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In the example, variable unknown can be either an Object or an Array depending on 

the conditional cond of the if-then-else statement. 

WALA handles the new operator as a dynamic dispatch. The expression following the 

operator is constructed as a first-class function, hence new is translated to a special 

method call on its argument. 

2.1.1.3 Lexical Scoping 

JavaScript allows variables which are located inside a method to be accessed and 
assigned a different value from methods which are inside its body. It has two interesting 
properties regarding scopes, Hoisting and Closure. 

 Hoisting [21]: A variable can be declared after it is used. Hoisting moves all the 
declarations of the variables to the top of the current scope, which can be a 
function or a script. 

 Closure [22]: A feature where an inner function has access to the variables of an 
outer function. 

The code snippet in Figure 12 refers to a working example where function bar can 

successfully access variable x which is in the scope of function foo and perform 

instructions without getting an error. 

In order to retain this mechanism, the analysis performed is flow insensitive; meaning 
the instruction sequence in the program is not taken into account. 

 

1. function foo(p) { 

2.  var x = p; 

3.  function bar() { 

4.   var y = x + 2; 

5.   x = y + 1; 

6.  } 

7. } 

8.  

9. var z = foo(2);  
 

Figure 12: Example of Lexical Scoping 

Figure 11: New operator issue example 

 

1. var x; 

2.  

3. if (cond) { 

4.  x = Object; 

5. } else { 

6.  x = Array; 

7. } 

8.  

9. var unknown = new x(); 
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2.1.1.4  Arguments Array 

The arguments array [23] is an Array-like object that can be accessed within a 
JavaScript function in order to refer to the value of a parameter given. It is not an Array 

object because it is lacking basic Array methods. There are two cases regarding the 

arguments array, depending on the arbitrary number of parameters the function is 
called. 

The first case refers to a function being called with less number of parameters than its 
arguments. The rest of the parameters get the value undefined, like in Figure 13:  

In the opposite case, portrayed in Figure 14, when the function is called with more 
arguments than its parameters, the parameters can be accessed through its 
arguments.array.  

Figure 14: More parameters given than declared 

WALA models the arguments array as an actual array. It creates one with length equal 
to the parameters given. Accessing an element is a regular array access. 

2.1.1.5 Copy Propagation 

Copy propagation is an optimization technique used in compilers. It replaces the targets 
of direct assignments to their values, because such instructions do not have an actual 
meaning or they may have effect on others. For example, in the following Figure 15, the 
variable x is replaced by its value, due to the fact that it does not form a meaningful 

instruction. 

 
Figure 15: Copy Propagation example 

This is achieved by constructing the IR with the use of SSA so the analysis is simplified. 

2.2 ACTARUS 

The IBM’s ACTARUS framework [6] is a static taint analysis commercial tool based on 
IBM’s WALA static analysis framework. The algorithm used in ACTARUS is available in 

console: 

1 

2 

3 

 

1. const foo = function (x, y) { 

2.   console.log(arguments[0]); 

3.   console.log(arguments[1]); 

4.   console.log(arguments[2]); 

5. } 

6.  

7. foo(1,2,3); 

console: 

1 
undefined 

1. const foo = function (x, y) { 

2.   console.log(arguments[0]); 

3.   console.log(arguments[1]); 

4. } 

5.  
6. foo(1); 

Figure 13: Less parameters given than declared 
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IBM’s Rational AppScan Source pack5. IBM also provides an open-source security test 
suite6 that ACTARUS passes with flying colors. 

2.2.1  Approach 

ACTARUS is relied on an on-demand driven taint analysis approach. It’s process 
consists of two phases: 

 Building the static representation of the program using WALA. This stage is 
composed by the construction of a call graph and the execution of a pointer 
analysis on the whole program, using the Andersen analysis library in WALA. It is 
essential to find the relationship between the variables and the procedures. The 
fact that object properties in JavaScript can act as taint sources makes a 
complete call graph representation and point-to analysis essential for the analysis. 

 Completing the taint analysis process, by searching for taint sources in the 
program which may become entry points for the injection of malicious code and 
tracking the flow of untrusted input data entering from such points. This is done by 
an interprocedural data-flow analysis. The framework traverses the call graph 
starting from taint sources and reaching the sinks. 

In more detail, the taint analysis process is based on an expansion of the Reps-
Horwitz-Sagiv (RHS) algorithm [14], which transforms a data-flow problem in to a 
graph-reachability problem solved in polynomial time, using the notion of access 
paths. 

Building the static representation of a JavaScript program can run into multiple 
problems and become a difficult procedure. ACTARUS extends some of WALA’s 
techniques eliminating the problems that arise by JavaScript’s dynamic features. 
ACTARUS does not model the method eval. The remaining of this section presents a 

thorough description of these techniques. 

2.2.1.1 Prototype Chain 

ACTARUS models this process in its Intermediate Representation (IR) by rewriting the 
property accesses into a loop, as seen at the Figure 16 below. In this specific case the 
property access is x = y.a. 

It can be deducted from the example, that in order for variable x to access the property 

a of variable y, it checks for variable y’s prototypes and goes higher up the chain, until it 

cannot find any more (reaches null pointer). 

This is only for property accesses. If a value is assigned to a property that does not 
exist, a new property is created and there is no need to perform property-chain lookup. 

                                            
5
 https://www.ibm.com/us-en/marketplace/ibm-appscan-source/details [Accessed: 4 July 2019] 

6
 https://researcher.watson.ibm.com/researcher/view_page.php?id=1598 [Accessed: 4 July 2019] 

 

1. var p = y; 

2.  

3. do { 

4.  x = p.a; 

5.  p = p.__proto__; 

6. } while (!defined(x)) 

 

Figure 16: ACTARUS property access loop 

https://www.ibm.com/us-en/marketplace/ibm-appscan-source/details
https://researcher.watson.ibm.com/researcher/view_page.php?id=1598
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2.2.1.2 Object Creations 

The method followed in the framework is similar to the solution WALA uses. However, 
WALA’s modeling of the new operator introduces a problem concerning the dynamic 

nature of the language. For example, depending on the number of arguments given and 
their type when allocating an Object, there can be several cases. Giving the parameter 

true can result in creating a Boolean object, giving the parameter null can result in 

creating an empty Object. 

For this reason, ACTARUS is relied on a custom dispatch, which given for example the 
new operator, it directs these new expressions to the appropriate methods, in order to 

implement the correct semantics based on the parameters given.  

2.2.1.3 Lexical Scoping 

ACTARUS represents the variables of a program in Static Single Assignment, which 
means that every variable in the IR is assigned only once. By converting the code on 
the left of Figure 17 to its corresponding IR all the variables are replaced by their 
identifier concatenated with the number of times they have appeared in the program. 
For example, in line 2 variable x is encountered for the first time, so its representation in 

SSA is x_1.  

In order to preserve the SSA form for the lexical scoped variables, there are two 
methods used, LexicalRead and LexicalWrite. Whenever there is a need to access 

variables from functions inside or outside the local scope of the function, depending on 
the type of the instruction, if that is a read or a write, the methods LexicalWrite and 

LexicalRead are invoked respectively. 

For example, in line 4 of the left part of the Figure 17, there is the instruction var y=x+2. 

This instruction is inside function bar which is inside function foo and is trying to 

access variable x that is declared outside of its local scope. Because of that, in the right 

part of the Figure 17 there is a LexicalRead statement that precedes the assignment 

of variable y. 

Subsequently, the instruction in line 5 at the left part of Figure 17 is replaced by a 
LexicalWrite invocation. 

2.2.2  Taint Analysis 

Given a graph G, the taint analysis that ACTARUS performs is separated in two phases: 

 Traversing G, so the tool can find the sources, sinks and sanitizers. Sanitizers 
are methods that transform the input data to harmless output data which are 

1. function foo(p) { 

2.   var x = p; 

3.   function bar() { 

4.    var y = x + 2; 

5.     x = y + 1; 

6.   } 

7. } 

8.  

9. var z = foo(2); 
 

1. function foo(p) { 

2.   var x_1 = p; 

3.   function bar() { 

4.     x_2 = LexicalRead(x, foo); 

5.     var y_1 = x_2 + 2; 

6.     LexicalWrite(x, foo, y_2 + 1); 

7.   } 

8. } 

9.  
10. var z_1 = foo(2); 

Figure 17: Lexical Scoping SSA form example 
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ready to be executed by sinks without resulting in any possible harm for the 
program. 

 An interprocedural data-flow analysis that begins from the sources, in order to 
verify if the data which begin their flow from the sources end up in sinks, without 
traversing first from a sanitizer. 

ACTARUS, instead of explicitly modeling the entire heap which can become really 
expensive in terms of memory and time, only tracks information relevant for taint 
propagation. That is tracking local variables and field dereferences which may lead to 
untrusted data. 

 

Figure 18: ACTARUS semantics 

That is done by performing an interprocedural data-flow analysis relying upon the idea 
of access path, to evaluate the expression in a program state as described in Figure 

18. An access path < 𝑣, < 𝑓1, … , 𝑓𝑛 ≫ is a pair of a local variable v of the set ρ mapped 

to its field identifiers 𝑓1, … , 𝑓𝑛 from the set h of the program, denoting a heap location. In 
case a variable v has no identifiers, the access path becomes < 𝜈, 𝜀 >, where 𝜀 denotes 
the empty sequence.  

Access paths evaluate to the object 𝑜, or ⊥ if there are intermediate null dereferences or 

there is no object o in the path. This is done by dereferencing the field identifiers 𝑓1, … , 𝑓𝑛 of the object pointed by v. With that way the set of all access paths evaluate to 

object o and so the flows through the heap can be handled. This is useful for the taint 
analysis because access paths help it track the taint propagation during the analysis by 
examining the set of paths that evaluate to untrusted values. 

However, due to the unbounded storeless representation of the heap dealing with 
recursive data structures or heap cycles can lead to access paths being way too long. If 
their size is not bounded the framework cannot assure termination or it may be time 
consuming, spending valuable time and resources. 

Because of this issue, there is a bound k indicating the length of the tracked access 
paths for the static analysis. If an access path’s length is greater than k it is then 
approximated/widened by replacing its suffix, beyond the first k field identifiers, by a 

special symbol, ‘*’. In practice, the setting 𝑘 =  5 seems to produce the best results. 

The on-demand driven analysis performed by ACTARUS lies in the initialization of 
access paths. They are instantiated only when they are associated with a taint 
instruction or taint in general. When ACTARUS exposes a taint source, it automatically 
marks the access paths which refer to this instruction and are associated with the given 
taint source.  

The extra mechanism that ACTARUS has planted in the standard RHS algorithm is 
related with the alias relations in the heap. Below we will describe two taint analysis 
examples. The first one presents a simple case. The second one points out a corner 
case standard RHS fails to detect, while the RHS enhanced ACTARUS successfully 
points it out. 
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2.2.2.1 Example 1 

In this code snippet, there is not a reference-type assignment that can lead to a wrong 
estimation of the vulnerabilities in the program. 

In line 5, variable p is assigned user input through the sink method prompt. 

Immediately, someone can deduct that variable a is a taint source, because adding 

malicious code to the user input causes an XSS attack. That is how the framework 

produces the tainted access path < 𝑎, 𝜀 >, since object a has no field properties. 

Continuing the process, the values of the variables a and b become parameters for the 

method set. The relational summary is easily deducted to be < 𝑦, 𝜀 > → < 𝑧, 𝑓 >, since 

the value of variable y is inserted in the property f of the variable z.  That means that it 

just propagates taint from one parameter to the property of the other parameter.  

Returning from the function set it is concluded that the path < 𝑏, 𝑓 > is also tainted 

along with < 𝑎, 𝜀 >, which leads to an exact result. This can be seen from running the 
code, since the user input appears in the console. 

2.2.2.2 Example 2 

Now we are going to look into a different example that the traditional RHS algorithm 
would miss. ACTARUS’s RHS enhanced algorithm, does not though. 

The example is similar to the one distributed before except for one part. In the setf 

method there is a variable x. Variable x is assigned a field identifier of an object, which 

is a reference type object and not a primitive. That means that it stores the memory 

 

1. function swapf(y, z) { 

2.  z.f = y; 

3. } 

4.  

5. var a = prompt(); 

6. var b = { }; 

7. swapf(a, b); 

8.  

9. console.log(b.f); 

 
Figure 19: RHS algorithm example 

 
1. function set(y, z) { 

2.  var x = z.c; 

3.  x.f = y; 

4. } 

5.  

6. var a = prompt(); 

7. var b = { c: {} }; 

8. setf(a, b); 

9.  

10. console.log(b.c.f); 

 

Figure 20: Enhanced RHS algorithm example 
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location of the property c of object z. As a result at the next instruction in line 3, where 

in the property f of object x is assigned the value of variable y, a new property f for 

object b is created holding the user input. 

Returning from the function setf the relational summary deducts that the access 

paths < 𝑎, 𝜀 > and < 𝑏, 𝑐. 𝑓 > are tainted. The hypothesis is correct since in the console 
appears what the user wrote. 

The problem that led to the enhanced RHS algorithm is the fact that when a reference 
type value, an object, is copied to another variable, what gets copied is the memory 
address and not the value itself. Objects are copied by reference. So when another 
property is created by a variable pointing there, even by a local method variable as 
shown below, the property does not get deleted. Thus, whenever a taint flows into an 
access path, ACTARUS calls a function responsible for tracking alias relations and then 
proceeds with the basic RHS algorithm. 

It is worth noting that when a property of an object is tainted, ACTARUS does not mark 
the whole object as tainted but only the actual part that is. 

2.3  ANDROMEDA 

The ANDROMEDA framework [7], like ACTARUS, is based upon the IBM’s open-
source WALA tool and its basic approach is tracking sensitive information, using a 
demand-driver analysis, without building a representation for the whole program. It 
calculates the propagation of data flow on-demand. Along with ACTARUS, 
ANDROMEDA is available as part of the IBM’s Security AppScan Source pack7. It is 
able analyze applications written in Java, .NET and JavaScript, in contrast to 
ACTARUS’s JavaScript. 

A thorough comparison between ANDROMEDA and ACTARUS is presented at the 
conclusion of this thesis, in Section 6.6. 

2.3.1  Approach 

The process starts by building a call graph representation of the whole program based 
on an intraprocedural type inference. Also, when there is a need to estimate an alias 
relationship, which is caused by vulnerable data flow in the heap, the tool performs an 
on-demand alias resolution. With that way there is no need for a complete pointer 
analysis. 

This has led to: 

 A proper, rapid and efficient analysis of large code applications, since only a 
fraction of them needs to be examined. 

 The prospect of incremental analysis. Incremental analysis allows the efficient 
reexamination of the application after a part of its code has changed. This can 
happen because of a property of the framework to track vulnerable data flows 
locally or on-demand, separating the parts of the program that have taken part in 
the analysis from the newly added code. To conclude, when a part of the code 
changes, the framework does need to redo its data-flow analysis from the 
beginning, but in the exact specific parts that changed. 

In ACTARUS, the framework tracks the sources, downgraders and sinks through the 
graph using the RHS enhanced algorithm. By using the path relations it deducts the 
taint propagation between the variables. ANDROMEDA absents from a complete 

                                            
7
 https://www.ibm.com/us-en/marketplace/ibm-appscan-source/details [Accessed: 4 July 2019] 

https://www.ibm.com/us-en/marketplace/ibm-appscan-source/details
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representation of the program. Instead, it uses lazy data structures for its analysis. 
There lies their key distinction. 

2.3.2  Taint Analysis 

ANDROMEDA uses three data structures throughout its analysis. These are a call 
graph, a type hierarchy and data propagation graph. Instead of building the 
representation for the whole program, ANDROMEDA employs greedy/lazy methods to 
construct these data structures so it can perform the analysis. 

The analysis starts with the assignment of the web application as input to the algorithm. 
Then, the framework computes the type hierarchy of the application, by using 
techniques for caching and demand evaluation. For the construction of the call-graph it 
utilizes an oracle which deducts if the call graph needs to expand or not, based on the 
calling methods and the taint source methods, capturing only the data it regards as 
valuable. This oracle is based on control-flow reachability within the type-hierarchy 
graph. 

ANDROMEDA’s taint analysis flow representation is similar to the one ACTARUS uses, 
that being using the notion of access paths. It takes as input a web application, along 
with the libraries used, and it performs a data-flow analysis based on a set of security 
rules. The access paths need to abide by them. 

The security rules used in ANDROMEDA consist of a triplet < 𝑆𝑟𝑐, 𝐷𝑤𝑛, 𝑆𝑛𝑘 >, 

where 𝑆𝑟𝑐, 𝐷𝑤𝑛 and 𝑆𝑛𝑘 are the sources, downgraders and sinks respectively in the 
program to be analyzed. A vulnerability is reported when in a security rule data flows 
from a source to a sink without having a downgrader between them. This is where the 
tool focuses and thus the turn on-demand driven analysis. 

 

Figure 21: ANDROMEDA’s concrete semantics 

A state of the program 𝜎 = < 𝛦, 𝛨 >  𝜖 𝑆𝑡𝑎𝑡𝑒𝑠 =  𝐸𝑛𝑣 𝑥 𝐻𝑒𝑎𝑝  points from variables to 
their values and from object fields to their values respectively. In order to track security 
facts, there is an instrumentation of the above concrete semantics to maintain access 
paths. An access path is a symbolic representation of a heap location represented as a 

sequence 𝑥. 𝑓1 …  𝑓𝑛 of field identifiers (𝐹𝑙𝑑𝐼𝑑) rooted at a local variable (𝑉𝑎𝑟𝐼𝑑), 
meaning an element in 𝑉𝑎𝑟𝐼𝑑 𝑥 (𝐹𝑙𝑑𝐼𝑑) ∗. For example, access path x.g denotes the 

heap location of property g of the object x. 

The access paths are needed in order to extend the state of the program to an 

instrumented concrete state which is now a triple, 𝜎 = < 𝛦, 𝛨, 𝛵 > where 𝑇 is a set of 
tainted access paths. The semantic rules for updating 𝑇 in case of an assignment or 
field-read statement are similar to ACTARUS. Whenever a tainted value is assigned to 
another variable, the later one is marked as tainted. In case of object properties, only 
the property is regarded as tainted and not the object with all its property fields. 

Using access paths can lead to the same issues ACTARUS had regarding the storeless 
representation of the heap. ANDROMEDA solves these issues as ACTARUS, by using 
a technique called access path widening. We have already described that technique in 
Section 2.2.2. 
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2.3.2.1 On-Demand Aliasing 

The analysis is performing an on-demand alias analysis whenever untrusted data flows 
into a property of an object. It is a lot similar to the issue ACTARUS describes regarding 
the RHS algorithm, which would not take into account reference type object 
assignments like the one explained in Example 2. 

On-demand aliasing occurs whenever there is a corner case. In particular, whenever 
there is an instruction assigning a variable to a property of an object, ANDROMEDA 
traverses the control flow graph backwards searching for aliases of the object. A simple 
example of this feature will be explained in the section below. 

 

 

Figure 22: On-demand aliasing example 

In the above example, set  𝑇 has an already tainted access path. Variable x is assigned 

a property of another object that means it is pointing to the memory address of the 
property c of object z.  

Reaching the second instruction triggers the on-demand analysis. Its steps are the ones 
written on red font. Because of this assignment and because of object x pointing to the 

memory address of z.c, the property f of the property c of object z has become 

tainted. ANDROMEDA successfully returns backwards to the graph to pinpoint any alias 
relations of x finding the first instruction and deducting that z.c.f is correctly tainted. 

2.3.2.2 Change Impact Analysis (CIA) 

The CIA algorithm is the one responsible for the feature of incremental analysis. In more 
detail, it examines all the layers of the data structures of ANDROMEDA. In case of a 
code change in a compilation unit, it resolves the differences between the two versions. 
It does that by exposing all the points of the program that have been affected and 
modifies the data structures using them appropriately. For example, a code change may 
result in a modification of the call graph, while the type hierarchy stays intact. 
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3. DYNAMIC TAINT ANALYSIS TOOLS 

Both types of analyses, either that is a static or a dynamic taint analysis, detect 
vulnerabilities in the subject code. The big difference is where they find problems in the 
development lifecycle. As mentioned, static taint analysis identifies vulnerabilities before 
you run a program by examining the source code. On the other hand, dynamic taint 
analysis adds instrumentation to the program so it can reach conclusions regarding the 
taint propagation during the execution. 

Even though their goal is the same, they tend to find errors in code that the other 
cannot. There are defects that a dynamic taint analysis can miss, the static one can 
detect successfully and vice-versa. 

This taint analysis category comprises of a sole framework. 

3.1  General Frameworks 

In the following we are going to describe the two versions of the Jalangi framework and 
its key aspects. It is used for the basis instrumentation of the dynamic taint analysis tool 
presented in the ending of the section, due to its unique mechanic which allows the 
proper dynamic analysis of a program. 

3.1.1 Jalangi 

The Jalangi framework [4] is an open-source dynamic analysis framework for the 
JavaScript language available in Github8. It is a platform-independent framework, 
meaning that its design is not relied on browsers or JavaScript engines. This design 
does not require the continuous maintenance of the framework in case of a browser 
update and it is not tied to a particular engine. Had it been tied to a browser, whenever 
there was an update it would need to be updated as well. In contrast to this, the analysis 
can be performed in any machine, desktop or cloud. 

The tool is no longer supported but it is still available. We discuss it to explain some key 
features there are used to its updated version Jalangi2 and also mention the fact that 
there is a simple taint checker implemented within. It combines two basic approaches: 

 Selective record-replay: This mechanism allows the user to record a specific 
part of the program and execute it again (replay).  This can be really useful to a 
person performing an analysis since he can thoroughly examine an unexpected 
behavior. 

 Shadow values: This mechanism allows the storage of useful information about 
an actual value in the program.  Every value in the program can be associated 
with a shadow one. 

3.1.1.1 Selective record-replay 

As the name indicated this technique is divided into two phases, the record and the 
replay. During the record phase, the whole application is being executed along with the 
instrumented parts of the program the user has added for his analysis. During the replay 
phase, only the parts of the program that the user has added instrumented code get 
replayed. The native functions and the uninstrumented parts do not. 

This division in two phases allows their distinct execution. One can run the record 
process on one platform and then the replay process on another platform. For example, 
someone whose computer is not that powerful and the application they want to process 

                                            
8
 https://github.com/SRA-SiliconValley/jalangi [Accessed: 4 July 2019] 

https://github.com/SRA-SiliconValley/jalangi


Evaluating Taint Analysis Tools for JavaScript 

M. Papamichalopoulos   35 

is demanding, can run the record process through a cloud machine with higher 
capabilities and then complete the record-replay process with his desktop machine. 

As mentioned, the replay phase does not track uninstrumented code or native functions 
executing. Instrumented functions that get called inside that code pose a demanding 
problem for the framework. Jalangi records each object and function with a unique 
numerical identifier. Also, it records the explicit calls to the instrumented functions which 
are invoked by functions whose code is not taking place in the replay process. 

Since the replay phase only executes a fraction of the program, it needs to load the 
correct values so the user can successfully replay their instrumented code. Jalangi 
makes use of the shadow memory in order to address this problem. During the record 
phase, the framework keeps track of the memory loads taking place only inside the 
instrumented code. If during that process Jalangi finds out that the values it has 
recorded in the shadow memory for its variables are different than the ones at the end 
of the process, due to uninstrumented code or native functions in between changing the 
values of variables, it records them for the next phase. 

In order to achieve this, the instrumentation taking place during the replay phase uses 
the function sync, which makes sure that in the end of the record process the actual 

value of a variable and the value of its shadow variable are not mismatched. With this 
way, the values loaded for the replay process are sure to be correct. 

3.1.1.2 Shadow Memory 

The shadow values and shadow execution play a major role in the vector of a dynamic 
taint analysis. They are the ones responsible for propagating the taint and holding taint 
information. For example, Jalangi when noticing a taint source it saves the fact that it is 
vulnerable input and that it can propagate taint in its corresponding shadow value. 
Hence, whenever it comes into contact with other variables, it makes sure they are 
marked as tainted too. 

As mentioned, the instrumentation of the application is performed during the record 
phase of the analysis. The same applies to the shadow execution, since it is a form of 
instrumentation defined by the user. 

The core of the shadow execution is associated with the object AnnotatedValue. This 

object has two fields, one for storing the actual value of a variable and another one for 
storing the shadow value of a variable, meaning extra information for it. 

 
Figure 23: The AnnotatedValue object 

For example, if during a taint analysis and user input method is encountered, the actual 
value of the method can be replaced by a user defined annotated value. This can be 
done by creating a new AnnotatedValue object which has two methods, one returning 

the actual value field of the object and the other one returning the shadow value field of 
the object. 

Jalangi makes sure built-in JavaScript methods are performed on the actual values 
even if they are replaced by user defined annotated values, by injected the appropriate 
instrumentation code.  
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3.1.2  Jalangi2 

Jalangi’s advanced version is Jalangi2 [5]. Like its predecessor, it is an open-source 
dynamic analysis tools that can also be used in a hybrid analysis. Its code can be found 
on Github9. It can handle all the dynamic features of the JavaScript language. The key 
difference with Jalangi is the removal of the record-replay mechanism. 

On the other hand, it still retains the shadow memory mechanism but in a more 
advanced manner. There is a new shadow memory API that can be found on the 
documentation of Jalangi2. Expanding further into this API does not match the goals 
and targets of this thesis. The basic idea is the same as Jalangi with the exception of 
the way the shadow memory is manipulated by the user. 

The structure of Jalangi2 is seen below: 

 

Figure 24: Jalangi2 process 

3.1.2.1 Jalangi Instrumentation 

Takes as input the HTML and JavaScript code and produces the Source Information 
with the Instrumented Files. 

In more detail, during this process the framework takes the various instructions in the 
JavaScript program and adds instrumented code so it can process them in the Jalangi 
Runtime process happening later. 

3.1.2.2 Source Information 

During the instrumentation, Jalangi2 associates a unique instruction identifier iid to 
each instruction. Also, during the runtime it associates a unique script id to each script. 

                                            
9
 https://github.com/Samsung/jalangi2 [Accessed: 4 July 2019] 

https://github.com/Samsung/jalangi2
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The user can take advantage of such information while processing his Jalangi Callback 
functions by using the methods J$.getGlobalIID(iid) which returns the unique id of 

the expression and J$.iidToLocation(iid) which returns the location of the specified 

iid. 

3.1.2.3 Jalangi Runtime 

Takes as input the Instrumented Files and the User written Analysis and produces the 
Output of the analysis and a Trace which can be used for Offline Analysis. 

The User Analysis file notes the Jalangi Callback10 functions that take part in the 
analysis. The implementation of an analysis requires the implementation of several 
callback functions. Specifically, an analysis is declared when there are objects assigned 
to J$.analysis object, where each object defines the instrumentation code for a 

callback function. Whenever a condition or instruction in the program is executed the 
corresponding property of the analysis object is called. The user can define these 
properties as they prefer to deduct conclusions concerning his analysis. An analysis is 
always terminated by calling the endExecution callback function. 

Below we are going to present a simple analysis that shows how many times a for-loop 
was executed: 

In Figure 25 there is a dummy for-loop that does absolutely nothing. After its 

execution there is a message logged in the console. The analysis is customized by the 

implementation of the conditional callback function:  

                                            
10

 Jalangi Callback functions can be found in the jalangi2/docs/MyAnalysis.html in  the Github page 

 

1. for (var i=0; i<5; i++) {} 

2. console.log("Done doing absolutely nothing."); 

 

Figure 25: Dummy program 
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The analysis starts by assigning two properties to the J$.analysis object. Each 

property is represented by a callback function.  

The conditional takes as arguments the instruction identifier of the conditional 

examined. It records the id of the conditional and prints to the console the boolean 
values true or false based on the result evaluation of the condition. 

The endExecution does not take any arguments. It is called at the ending of the 

analysis in order to print the location of the conditional that took place. Normally, it is 
used to conclude some results about the analysis.  

The output printed when executing the above analysis is the following: 

 

Figure 27: Jalangi2 analysis example output 

3.1.2.4 Offline Analysis 

A useful mechanism in the framework that allows the users to analyze a previously 
captured Trace without requiring the analysis to start from the beginning and performing 
it offline. 

3.1.2.5 Output Visualization 

Takes the Source Information file and associates the output file with the exact locations 
in the program to produce a more precise analysis deduction. 

3.2  Ichnaea 

Ichnaea [8] is a platform-independent dynamic taint analysis tool based on the Jalangi2 
instrumentation framework. It handles the ECMAScript 5 language. Its platform-

 

1. (function(){ 

2.  var id; 

3.  J$.analysis = { 

4.  

5.   conditional : function (iid, result) { 

6.    id = J$.getGlobalIID(iid); 

7.  

8.    if (result) { 

9.     console.log("true"); 

10.   } else { 

11.    console.log("false"); 

12.   } 

13.  }, 

14. 

15.  endExecution : function () { 

16.   var location = J$.iidToLocation(id); 

17.   console.log("The boolean values were printed by the "   

18.    + "conditional callback function invoked at "  

19.    + "location: " + location + "."); 

20.  } 

21. }; 

22.}()); 

 
Figure 26: Jalangi analysis example 
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independent feature means there is no need to modify the JavaScript interpreter in 
order to keep track of the information flow analysis, just like Jalangi and Jalangi2. It can 
be used with any existing JavaScript engine. It was designed in order for developers to 
have in their possession a tool that they can use during the development of an 
application. 

As with the other tools described, the Ichnaea framework is not an open-source tool. It 
incarnates the approach presented on the remaining section. 

3.2.1  Approach 

The JavaScript source code to be analyzed is given as input to Ichnaea along with a 
configuration file called taint specification. This configuration file specifies the taint 
sources, tainted sinks and extra configurations.  

Specifically, the configuration file may specify the taint sources and sinks through a 
configuration parameter called taintSpec, which has two properties called sink and 

source that are arrays of properties to values. If someone for example wants to assign 

the method eval as a sink they will need to assign into the sink array of properties a 

property called name with the corresponding value eval. 

In addition to this, there can be other configuration parameters that enhance the 
analysis and provide useful features, such as: 

 taintNodeCommandLineInput. If set to true all the command line arguments 

given to the program are assumed they are tainted. 

 taintAllUserDefinedString. If set to true any user defined string will be 
treated as tainted data. 

 reportFlowLocation. If set to true the analysis will be able to report the location 

of the first tainted flow found. 

 reportAllFlows. If set to true the analysis will be able to report the location of 

all the flows found. 

After specifying the configuration file for the taint sources and sinks and with the help of 
Jalangi’s instrumentation, Ichnaea generates a sequence of instructions for an abstract 
stack machine. The abstract machine is implemented as a Domain Specific Language 
(DSL), meaning it is developed to meet the needs of the particular framework. 

The abstract machine includes operations among abstract values. Abstract values are 
strings representing locations, where each location is represented by the file’s name 
and the line’s number. Every abstract value is mapped to a local variable or object 
property. 

The abstract machine defines a set of operations described below: 

 push( ): pushes true or false to the stack indicating if the value is tainted or 

not. True means it is tainted, false it is not. 

 

1. Spec.taintSpec = { 

2.  "source" : [ {"name" : "prompt"} ], 

3.  "sink"   : [ {"name" : "eval"} ] 

4. }; 

 

Figure 28: Ichnaea taint specification example 
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 pop( ): pops off previously pushed taint of an expression and discards its value. 

 unaryop(op): pops off the stack, applies the unary operator op for the evaluation 

of an expression and then pushes the result back into the stack. 

 binaryop(op): pops off the two top elements of the stack, applies an operator 

op for the evaluation of the expression and then pushes the result back into the 

stack. 

 initvar(var): pops the stack and creates a new map entry for the local 

variable var according to the tainted value popped. 

 readvar(var): loads taint for the variable var and push it into the stack. 

 writevar(var): stores taint value on top of the stack into the variable var. 

 setvar(var, taint): stores tainted value taint into local variable var. 

 initproperty(obj, prop): pops the stack and initializes the property prop of 

an object obj according to the tainted value popped. 

 readproperty(obj, prop): loads taint for the property prop of an object obj 

and pushes it into the stack. 

 writeproperty(obj, prop): stores taint value on top of the stack into the 

property prop of an object obj. 

Instructions writevar and writeproperty are always followed by a pop method, since 

they do not pop a taint value from the top of the stack. Literals, functions and objects 
are never tainted. Hence, the generation of abstract stack machine instructions equal to 
a boolean false push in the stack.  

The instructions we described above provide a solid structure for the algorithm. 
Nonetheless, they do not cover all of JavaScript’s dynamic features, such for example 
eval. Let us see how such features are handled: 

 Arrays: The abstract stack machine handles arrays and objects as they were 
completely the same type. 

 Getters and setters: These read and writes are not handled as property read and 
writes as they are used. Instead, they are modeled as a function call. 

 Apply and Call: These functions are used to assign the this pointer to a function. 
Their difference is that apply gets an array of arguments, whereas call gets the 
arguments separated by comma. These functions are represented as a call to 
the function they are used. 

 eval: eval operations are regarded as sinks during the analysis. However, 

because of the taint specification extra configuration argument reportAllFlows 

described before; there is a need to examine the code inside an eval. The code 

eval needs to evaluate is treated as an additional script in the program and it is 

instrumented as if it was not inside it. 

 Exceptions: They are modeled with the declaration of the special variable 
_throw_. In more detail, when there is need to use a throw statement, the 

framework models it as writevar(‘_throw_’). Respectively, a catch statement 

is modeled by a readvar(‘_throw_’) in order to process the throw statement. 

 Arguments: Each access to this array object, which is available to all methods, is 
handled as an object access. 
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 Arguments in function calls: Calling a JavaScript function with less parameters 
than the arguments declared results in the missing parameters assigned the 
undefined value. In the analysis there are pushed false taint values in the stack. 

 Native functions: Native functions in JavaScript take callback functions as 
parameters. For that reason, in the taint analysis each native function is 
associated with its callback. 

Executing these instructions generated with the abstract machine produces a report for 
the taint flows of the application. The execution is performed by a JavaScript engine or 
browser. A portrayal of the process taking place in Ichnaea can be seen in the Figure 
29. 

What makes Ichnaea platform-independent is its ability to execute the generated 
abstract machine instructions in another platform than the one the application was 
developed, since it does not need a specially customized JavaScript engine or 
instrumented browser. 

 

 

Figure 29: Ichnaea's Structure 

3.2.2 Taint Analysis 

The instructions for the abstract stack machine are issued with the help of Jalangi’s 
shadow memory feature, enabling the association between object identifiers with 
objects and arrays. In the current implementation Jalangi2 is used.  
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To describe the way the instructions for the abstract machine are generated and how 
the framework understands a variable from a taint source reaches a sink we are going 
to examine an example. 

In the above example, a user gives as input an Internet Protocol (IP) address to a 
platform and then platform informs him if the host of the IP he gave is alive or not. This 
could be used to check if a website is available or not. Someone can observe that the 
above code snippet is vulnerable to a code injection, since it accepts user input without 
validation. If a user gave as input the following statement ‘127.0.0.1 && sudo rm –
rf /‘ they would get a message responding to his ping request and succeed in the 

deletion of the whole server’s files. 

Bear in mind that literals, functions and objects are never considered taint, after every 
writevar or writeproperty follows a pop and the instructions for the abstract machine 

are issued from the right to the left, meaning if there is an assignment, the instructions 
generated are first for its right part and then for the its left part. Also, there is a taint 
specification file setting the sink to be the command exec.  

The abstract machine instructions after the code instrumentation with the help of Jalangi 
would be the following: 

 

1. var child_process = require('child_process'); 

2. var array = ['ping']; 

3. array[1] = process.argv[2]; 

4. var command = array[0] + array[1]; 

5. child_process.exec( command, 

6.     function (err, stdout, stderr) 

7.     { 

8.      console.log('stdout: ' + stdout); 

9.      console.log('stderr: ' + stderr); 

10.     if (error !== null) { 

11.      console.log('exec error: ' + error); 

12.     } 

13.    }); 

 

Figure 30: Ichnaea sample program 
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Figure 31: Abstract stack instructions generated for the example 

As seen, the line 2 of the example generates five instructions. At first, a taint value for 
the literal ‘ping‘ is pushed. Then there is an initialization for the element 0 of the array 

obj7 and a push of a taint value for the array literal. Finishing up, the array object 

initialized is written to the variable array following up by a pop. 

The line 3 of the example is where the taint propagates. The element of the array 
array[1] is assigned with the user input argument given. It is handled as a taint 
source. That can be seen in line 14, where the exact location of the taint source is 

pushed to the property 1 of the object obj7 meaning the array[1] variable.  

In line 4 is where the variable command is assigned the string concatenation of the 
array elements array[0] and array[1].  Since array[1] has been tainted the taint 

needs to traverse to the command as well. Binaryop instruction by popping the stack 

twice and assigning the result back to it is responsible for that and succeeds, since in 

 
Line 2: 
 

1. push(false); 
2. initproperty('obj7', '0'); 
3. push(false); 
4. writevar('frame3:array'); 
5. pop(); 

 
Line 3: 
 

6. readvar('frame3:array'); 

7. push(false); 

8. readvar('frame5:process'); 
9. push(false); 
10. readproperty('obj9', 'argv'); 

11. push(false); 

12. readproperty('obj11', '2'); 

13. pop(); 

14. push('(example.js:3:12)'); 

15. writeproperty('obj7', '1'); 

16. pop(); 

 

 Line 4: 
 

17. readvar('frame3:array'); 

18. push(false); 

19. readproperty('obj7', 0); 

20. push(false); 

21. readproperty('obj7', 1); 

22. binaryop('+'); 

23. writevar('frame3:command'); 

24. pop(); 
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line 23 in the variable command is assigned the tainted source location which was 

pushed back in line 14 to the property 1 of the object array. 

Finally, the instructions reach the sink exec which was specified to be one in the taint 

specification file. The taint report issues the exact location of the tainted flow. 

In case in our example line 4 was substituted with the native function reduce the 
instructions would be the following, since Ichnaea handles the native functions with 
nested callback functions successfully, given there is only one callback function inside 
it. 
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Figure 32: Abstract stack machine instruction using the native function reduce 

   

from the accumulator to the first argument 
of the callback function 
 
26. readvar('_accum_'); 

27. push(false); 

28. push(false); 

29. readproperty('obj7', '0'); 

 
body of the callback function 
 
30. push(false); 

31. push(false); 

32. readproperty('obj17', '0'); 

33. push(false); 

34. push(false); 

35. readproperty('obj17', '1'); 

36. binaryop('+'); 

37. writevar('_ret_'); 

38. pop(); 

 
from the return value of the callback 
function to the accumunlator 
 
39. readvar('_ret_'); 

40. writevar('_accum_'); 

41. pop(); 

 

from the accumulator to the return value of 
reduce 
 
42. readvar('_accum_'); 

43. writevar('_ret_'); 

44. pop(); 

 

Line 4: 
 
45. pop(); 

46. readvar('_ret_'); 

47. writevar('frame:command'); 
48. pop(); 

Line 2: 
 
1. push(false); 

2. initproperty('obj7', '0'); 

3. push(false); 

4. writevar('frame3:array'); 

5. pop(); 

 

Line 3: 
 
6. readvar('frame3:array'); 

7. push(false); 

8. readvar('frame5:process'); 

9. push(false); 

10. readproperty('obj9', 'argv'); 

11. push(false); 

12. readproperty('obj11', '2'); 

13. pop(); 

14. push('(example.js:3:12)'); 

15. writeproperty('obj7', '1'); 

16. pop(); 

 
Line 5: 
 
17. readvar('frame3:array'); 

18. push(false); 

19. readproperty('obj13', 'reduce'); 

20. push(false); 

21. push(false); 

22. push(false); 

 
from the second argument of reduce to the 
accumulator 
 
23. pop(); 

24. initvar('_accum_'); 
25. pop(); 



Evaluating Taint Analysis Tools for JavaScript 

M. Papamichalopoulos   46 

4. STATIC & DYNAMIC TAINT ANALYSIS TOOLS 

As we have presented, both types of tools have the same goal but operate in a different 
way. Hence, it is a good practice to integrate both analyses to form a hybrid taint 
analysis framework that uses static analysis for the thorough examination of the 
program and a dynamic analysis for the manipulation of the dynamic features of 
JavaScript.  

Following, we present a commercial framework and an approach we have found, that 
cover these thoughts. 

4.1  JavaScript Blended Analysis Framework 

4.1.1  Approach 

The JavaScript Blended Analysis framework (JSBAF) [9] was designed in order to 
combine both types of analyses, static and dynamic. Its static infrastructure was built on 
the IBM WALA open-source static analysis framework. The reasoning behind this 
approach is derived from the fact that dynamic analysis can detect flaws in the program 
that the static analysis misses, like for example a dangerous eval operation. The 
process taking place for this tool is composed by two phases, the dynamic and static 
ones. 

The first one is separated in two sub-phases: 

 

Figure 33: JSBAF's Dynamic Phase. 

 Test Selector: Chooses a subset from a set of tests that provide good coverage 
of the program given for processing, to achieve good analysis and in lower cost 
that using all the set. 

 Execution Selector: Collects run-time information for every test executed and 
produces a dynamic trace for each one of them. For example, function calls. 

Respectively the second one is separated in the phases described below: 

 

Figure 34: JSBAF's Static Phase. 

 Static Infrastructure: Analyzes the program. 

 Solution Integrator: Merges the data-flow solutions from different test traces 
into a program solution. Then decides if there should be more traces to analyze. 

The structure of the framework is portrayed by the Figure 35 below: 
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Figure 35: Structure of JSBAF 

Regarding its design, JSBAF performs dynamic analysis in each dynamic trace 
separately and it merges the results. Even though it would be faster to have a single 
uniform dynamic trace instead of multiple small ones, the designers chose this 
approach, because of its accuracy. 

As with ACTARUS, JSBAF handles some of the dynamic issues of the language that 
arise during static analysis. The rest, such as object creations, prototype chaining are 
modeled by default by IBM’s WALA framework. There can be solid improvements 
regarding their accuracy though. 

4.1.1.1 Eval 

A pure static analysis may miss eval expressions or approximate them in the worst 

case, due to the fact that they produce code at runtime. This dynamic generated code 
makes static analysis unsafe when analyzing JavaScript programs.  

In this specific framework, eval calls are being monitored by the Execution Collector 

during the dynamic phase of the analysis. The Execution Collector gathers them along 
with any code they produced and transfers them to the Static Infrastructure, which 
analyzes the program including the aftermath of the eval calls. 

4.1.1.2 Function Variadicity/Arguments Array 

Function Variadicity occurs when a function is called with a number of parameters that 
differ from its declaration. Static analyses ignore this property of the language, because 
the number of the parameters in which a function is called cannot be known before 
runtime. This problem is again assigned to the Execution Collector since it is able to 
detect the exact number of parameters for every function call.  

With this way, instructions that are based on the number of parameters given and don’t 
match with that number are pruned, with the pruning mechanism. Instead, static 
analysis would assume that the data flow could take any branch resulting in a false 
result. 

JSBAF’s pruning mechanism, knowing the arguments given at runtime presents a form 
of context sensitivity. A static analysis would assume that every branch is feasible.  
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Instead as shown in Figure 36 the variable input can take two values depending on 

the length of the arguments.array. So examining the number of arguments and 

finding the correct one depending on occasion can result in pruning the unnecessary 
code. 

4.1.2  Taint Analysis 

Continuing we are going to describe JSBAF’s phases in detail and see how they differ 
from pure static analyses, like ACTARUS. 

4.1.2.1 Dynamic Phase 

As mentioned, this phase of the framework is consisted of two processes. The 
Execution Selector, which is responsible for extracting the page traces, through the 
Trace Extractor and the Trace Selector, which is responsible for choosing the best page 
traces for analysis. 

The Execution collector relies on a specialized version of TracingSafari, an 
instrumented version of the open-source web browser engine WebKit11, developed for 
characterizing behavior of JavaScript programs. 

TracingSafari records the operations performed by the JavaScript’s interpreter of the 
Safari web browser including reads, writes, deletes, field adds. JSBAF’s 

dynamic phase requires human interaction. That is why the representation should affect 
the browser performance slightly. TracingSafari collects only the information that is 
essential for the taint analysis. 

To ensure the security of a website, web tester checks all the pages of the same 
domain. A web application’s operation may have code from different pages. The 
instructions gathered get separated in page traces, where each trace includes a series 
of instructions from the same page of the website. There is at least one trace for each 
page. 

A page trace consists of a dynamic call tree, recorded object creations, compile-time 
visible JavaScript source code and dynamically generated code including any executed 
library code. 

                                            
11

 https://webkit.org/ [Accessed: 4 July 2019] 

 

1. function variadicity_example() { 

2.  var input; 

3.  

4.  if(arguments.length === 0) { 

5.   input = null; 

6.  } else { 

7.   input = arguments[0]; 

8.  } 

9.  

10.  other_function(input); 

11. } 

 

Figure 36: Function variadicity example 

https://webkit.org/
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The Execution Collector records the exact number of parameters for each function 
called. The Trace Extractor is the one responsible for constructing the page traces for 
each web page.  

However, in a web application there might be similar pages. That results in similar page 
traces as well. JSBAF framework avoids checking such cases, since the results taken 
from examining them compared to the time spent are not satisfactory. 

This is where Trace Selector interferes by choosing the traces which differ the most and 
cover a large extent of the application. The traces chosen satisfy the following 
requirements by including: 

 Dynamically generated code. 

 Methods. 

 Object creations. 

Choosing which page traces prevail over others is assigned to different metrics 
developed by the framework. 

4.1.2.2 Static Phase 

The Static Phase is where the page traces are statically analyzed by the WALA 
framework. JSBAF’s Call Graph Builder is responsible for building a call graph for every 
page trace as a WALA data structure with pruned source code for each node. Since 
WALA cannot detect dynamically generated code, JSBAF has created the Code 
Collector to obtain that code from the page trace. Also, the Call Graph Builder applies 
pruning to the code of all functions as mentioned in the Function Variadicity handling.  

Below we are going to describe the static taint algorithm which detects the program for 
any integrity violation. It is divided in four steps: 

1. A pointer analysis for JavaScript performed in order to obtain aliases of objects in 
the program. This technique helps establish which pointers or heap references 
can point to which variables. There are a lot of corner cases that can be missed 
without examining the heap of the program, like the ones referenced in the 
examples given in ACTARUS and ANDROMEDA.  

2. Sources and sinks are automatically identified in the program: 

 A data source is called tainted when the user of an untrusted third party 
has control of its value. That is for example a user. The same for 
JavaScript functions from an untrusted third party. Taint sources like that 
can be JavaScript’s event handlers. 

 Every method that writes sensitive information is referred as a sink. 
Variables holding browser/user information are regarded as sensitive.  

3. A call-graph reachability analysis is performed to filter out any node that is not a 
direct call path from a method containing taint sources to a method containing 
sinks. The remaining nodes are called candidates. 

4. A performance of an interprocedural traversal of the call graph from each taint 
source to each sink, from the candidate nodes left out of the call-graph 
reachability analysis. At each encountered candidate method, an intraprocedural 
data dependence analysis is applied to track the tainted variables into candidate 
calls. If one argument of the call is tainted, we assume all the arguments are 
tainted as an optimization to avoid analysis of these methods. A taint propagation 
process to conclude the analysis. 
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4.2 An approach on XSS Prevention 

Due to the severity of XSS attacks, this paper [10] proposes a technique that tracks the 
information flow of sensitive information on the client-side. Monitoring the client-side of 
an application can eliminate all the types of XSS attacks.  

4.2.1 Approach 

In more detail, it uses the JavaScript engine of the browser to track the flowing of 
sensitive information, by using a dynamic taint analysis. However, since a dynamic taint 
analysis may miss taint propagation on some occasions, because of the fact that the 
attacker may be able to execute code that it does not cover, there are also some 
fractions of the code that are analyzed by a static taint analysis. The approach 
presented uses in its majority dynamic taint analysis and on-demand static taint 
analysis. 

The description of this taint analysis technique was incorporated into the Mozilla 
Firefox12 1.0 pre web browser. For the verification of the mechanism was used a web 
crawler based on Firefox and able to traverse the application and perform user actions. 

4.2.2  Taint Analysis 

As mentioned the taint analysis used in this approach is a hybrid variation combining a 
dynamic and static taint analysis. 

4.2.2.1  Dynamic Taint Analysis 

The dynamic taint analysis taking place in the hybrid analysis has the ability to track 
data-dependencies and control-dependencies to ensure correct taint propagation. That 
means that when there are assignment instructions where a tainted value is assigned to 
another value, that value becomes tainted too. The same happens, in case of 
operations like switch, if-then-else when they are based upon a tainted variable. 

The result is marked as tainted.  

A really experience attacker can try to sanitize tainted variables so he overpasses the 
dynamic taint analysis by using complex structures. For example, by creating a 
structure that decomposes a string to characters and then merges them back together.  

In the example in Figure 37 the attacker is trying to overcome both the dependencies 
mentioned. At first, they try to assign parts from a taint source to the properties of an 
array and then from that array they try to assign the characters of the cookie using a 
switch. 

By using data dependency, when the cookie string is assigned to the array, since on 

the right of the assignment is a tainted variable the array becomes tainted too. By using 
direct control dependencies, when the technique notices that both conditions are 
manufactured by a tainted variable all the results they produce are masked as tainted. 
That is why it is essential to track both types of dependencies accurately. 

                                            
12

 https://www.mozilla.org/el/firefox/new [Accessed: 4 July 2019] 

https://www.mozilla.org/el/firefox/new/
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The mechanism responsible for propagating the taint is locating on the JavaScript 
engine of the web browser. Specifically, a JavaScript program is parsed and compiled 
into bytecode which is then executed by the JavaScript engine’s interpreter. The engine 
is extended to understand when the result of a bytecode instruction could be tainted or 
not, by separating the instructions in four major categories where each category has its 
own rules regarding taint propagation: 

 Assignments: Whenever a tainted value is assigned to another variable’s value, 
the later one is marked as tainted. In case of object properties, when a field 
identifier of an object or an element of an array is tainted, the whole structure is 
marked tainted. That is so control-dependencies and function calls can 
propagate taint correctly. 

 Arithmetic and logic operations: The result of such operations is tainted when 
one variable taking part in the operation is tainted.  

 Control structures and loops: As mentioned before when a variable in the 
condition of such structures is tainted, every variable assigned value inside them 
is marked as tainted. In more detail, a tainted scope is wrapped around the 
control structure checking all the operations inside it marking the tainted 
variables according to the assignments taking place. 

 Function calls and eval: Functions called inside tainted scope are regarded as 
tainted. If one of the parameters is tainted then the associated arguments are 
tainted to. Everything that is assigned inside a tainted function or returned by it is 
marked as tainted. 

 

1. var cookie = document.cookie; 
2. var cookie_array = []; 

3.  
4. for(i=0; i<cookie.length; i++) { 
5.  cookie_array[i] = cookie[i]; 

6. } 
7.  
8. var duplicate = ''; 

9. for(i=0; i<cookie_array.length; i++) { 
10.  switch(cookie_array[i]) { 
11.   case 'a': duplicate += 'a'; 

12.    break; 
13.   case 'b': duplicate += 'b'; 
14.    break; 

15.   . 
16.   . 
17.   . 

18.  } 
19. } 
20.  

21. document.location =  
22.  'http://www.malicious.com/cookiestealer.php?cookie='  
23.  + duplicate; 

 

Figure 37: XSS attack trying to override data and control dependencies 
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The eval method is treated in a special manner. The arguments given to it are 

executed as a JavaScript program. If a parameter of it is tainted or the eval 

function itself is tainted, due to being called in a tainted scope, everything inside 
it is regarded as tainted. 

At last, another useful mechanic that the extended JavaScript engine has is that it 
manages another trick an attacker may use from his arsenal, that of DOM laundering. 
They can store a tainted variable into a DOM element and access it later, so the 
analysis will not be able to see through it and handle it as tainted. However, taint 
information is not lost when a variable leaves the JavaScript engine. So the attacker will 
not be able to trick the analysis. 

4.2.2.2  Static Taint Analysis 

As mentioned static taint analysis confronts issues that the dynamic taint analysis 
cannot track. Dynamic taint analysis cannot figure indirect control dependencies. Taking 
for example an if-then-else structure which is based on a tainted condition, 

operations taking place on the branch executed are the only ones marked as tainted, 
despite the tainted scope generated around the control structure. 

This can be abused strategically by an attacker by evaluating always a branch as false 
in order to not mark a critical value inside the branch as tainted and use it later in the 
program to update him on his operations.  

This kind of an attack is what produces the need of a static taint analysis to thoroughly 
check indirect control dependencies by examining all the possible paths in the condition. 
The attacker by taking advantage of the correlation between the variables correct and 

incorrect, which a dynamic taint analysis cannot trace, he is able to decrypt the 

cookie of the user. Instead of checking a character one by one he can also try and 
guess the cookie value or perform a binary search. The point is he can leak information 
out of the application to his cause. 

 

1. var cookie = document.cookie; 

2.  

3. var correct = false; 

4. var incorrect = false; 

5.  

6. if (cookie[0] == 'a') { 

7.   correct = true; 

8. } else { 

9.   incorrect = true; 

10.} 

11. 

12.if (correct === false) { 

13.  document.location =  

14.    'http://malicious.com/cookiedecryption.php?retry=true'; 

15.} 

16. 

17.if (incorrect === false) { 

18.  document.location =  

19.    'http://malicious.com/cookiedecryption.php?cookiechar=a'; 

20.} 

 
Figure 38: Cookie decryption by exploiting indirect control dependencies 
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To counter such an attack the technique performs a linear static analysis in every 
branch of a control structure whose condition is related to a tainted variable. Precisely, if 
the static linear analysis passes an instruction responsible for assigning values to 
another variable inside the bytecode tainted scope of the tainted control structure it 
taints the variable. 

Variables assigned inside such control structures, despite being executed or not, are 
considered vulnerable. In the previous example described such an analysis would 
characterize both variables as tainted and the attacker would not be able to leak 
information back to them.  

However, instructions responsible for assigning the properties of an object use the stack 
to designate their target object, due to JavaScript being a stack-based language. That 
has led to the making of a stack analysis which sole purpose is to estimate the elements 
inside the stack for every instruction in the program. This stack analysis is achieved 
using an intraprocedural data flow analysis. As explained in the Introduction Section an 
intraprocedural analysis performs the instructions one by one and simulates its potential 
results and assumes that the procedures invoked may alter all the visible variables. In 
this paper, the simulations of the instructions are performed on an abstract stack. 

In the implementation presented in the paper not all the bytecode instructions are 
correctly implemented to fit the process. Instructions like throw and safe have not been 

modeled. When the analysis tracks such instructions it automatically taints them. 
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5. OTHER TOOLS 

Besides the frameworks we have analyzed that perform taint analysis, we felt it would 
be delicate to describe some other tools we came across that have the exact same goal 
but operate in a different way than the taint analysis standards presented before.  

The first tool presented, employs an interesting test technique through fuzzing to the 
subject program while the second uses an API able to detect and sanitize the tainted 
input while the program is executing, so an attack is averted. 

5.1  FLAX 

The basic philosophy behind FLAX framework [11] is a type of dynamic analysis called 
tainted enhanced blackbox fuzzing. It is a hybrid technique combining the features of 
dynamic taint analysis and random fuzzing. Fuzzing or random black-box testing is a 
popular mechanism for testing applications. However, it doesn’t perform too well when it 
has a large number of inputs. 

In this approach it is used for creating tests which represent a Client-Side Vulnerability 
(CSV), confronting with this way the constraints of pure dynamic taint analysis. Some of 
the CSV it takes care are XSS, Command Injection, Cookie-sink vulnerabilities and 
Origin Mis-attribution. 

It is also worth mentioning, that this mechanism eliminates the false warnings which 
would result from a taint analysis tool. 

5.1.1  Taint Analysis 

The taint analysis the tool performs is divided in five steps: 

1. The application to be analyzed is executed. It is given a harmless input. The 
execution of it is operated in an instrumented browser resulting in the generation 
of a trace in JavaScript Simplified Instruction Language (JASIL). In a few words, 
the application is transformed to a JASIL IR trace appropriate for analysis. 

JASIL is an IR used to simplify the taint analysis, since it gets rid of the dynamic 
semantics of JavaScript by having a small set of operations that represent a 
subset of JavaScript’s most used semantics in applications. 

In order to downgrade the semantics of JavaScript and generate a JASIL trace, 
Webkit’s13 open-source JavaScript interpreter, which is the core of the Safari web 
browser14, got instrumented appropriately to translate the bytecode executing to 
JASIL form. Webkit’s interpreter was also used in the JSBAF framework. 

Complex functions and mechanisms in the language get downgraded to simpler 
ones along with accesses like for example property look ups, creating and 
destroying objects, which are handled by map of the JASIL form. This simplicity 
that JASIL provides is key for the dynamic taint analysis of a complex language 
such as JavaScript. 

FLAX is not platform-independent, since in order to produce the JASIL trace 
there is need of a special instrumented browser. 

2. Perform character-level dynamic taint analysis on the JASIL trace generated 
from step 1. The analysis tracks data flows from the input data to the critical sinks 
of the application and finds out which part of the initial benign data given to the 
application as input can be exploited. 

                                            
13

 https://webkit.org [Accessed: 4 July 2019] 
14

 https://safari.en.softonic.com [Accessed: 4 July 2019] 

https://webkit.org/
https://safari.en.softonic.com/
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FLAX categorizes sinks according to their resulting exploit in case someone 
injects malicious code. Its taint analysis is the like the ones have described 
throughout the thesis. It carefully tracks the flow of the variables that are affected 
from a taint source until they reach a sink. For such flows that do not get 
sanitized while traversing paths to sinks, the tool groups them to subject them to 
fuzzing. 

3. The statements dynamic taint analysis characterizes as potentially harmful are 

extracted into a program slice, called acceptor slice As. Such statements are the 

ones that effect data, which are arguments of a sink operation or are associated 
with the range of input characters that can be exploited according to the analysis.  

When the framework tracks such a sink, it goes backwards from the sink to the 

taint source and extracts the mentioned acceptor slice As. In order to continue to 

the next step, that of fuzzing, the acceptor slice is converted back to JavaScript 
from JASIL form. 

4. This step describes the other half of the process, the sink-aware random fuzzing. 

Each As is fuzzed to find a set of inputs that may exploit a vulnerability in the 

application. Acceptor slices As are created and analyzed instead of the whole 

program because of their reduced size. Fuzzing can focus only on a fraction of 
the program input. 

Specifically, the tool applies random inputs/tests on each acceptor slice As based 

on the kind of sink they are based on. As mentioned before, FLAX categorizes all 
the sinks based on the attack someone can perform by exploiting them. Hence 
the term sink-aware random fuzzing, since the tool generates the appropriate 
tests for each sink. 

5. Verify the inputs that the fuzzer produced for each acceptor slice. This process is 
done by performing the attacks on the web application. An oracle observing the 
attacks deduces the final results on whether the attacks were successful or not. If 
an attack was successful it notes it to the vulnerability report. 

A detailed snapshot of the framework and its analysis can be seen below: 

 

Figure 39: FLAX Analysis 

 



Evaluating Taint Analysis Tools for JavaScript 

M. Papamichalopoulos   56 

5.2  Precise Taint Tracking 

The approach presented in Precise Taint Tracking [12] refers to a method that expands 
coarse-grained taint tracking. It is based on another approach proposed by Nguyen-
Tuong[13] called precise tainting, a framework that replaces the standard PHP 
interpreter with a modified interpreter that precisely tracks taintedness and checks for 
dangerous content in uses of tainted data.  

Precise Taint Tracking tracks tainted input at the character level and gives the ability to 
the developer to sanitize the tainted strings and continue the execution of the 
application without the need to crash it. In more detail, it gives the opportunity to the 
library writers to sanitize data when developers misuse the libraries by performing bad 
programming techniques and on top of that warn them of their mistakes.  

For example, in case of an SQL Injection Attack, the programmer is alarmed of his bad 
use of JavaScript libraries concerning the manipulation of the SQL queries and at the 
same time the dangerous SQL input is sanitized at its tainted substrings by adding 
escapes. 

Firstly, there is presented an implementation of a coarse-grained taint tracking, the first 
technique implemented. Then using precise tainting the writers reached their final 
framework, precise taint tracking. 

5.2.1  Coarse-Grained Taint Tracking 

Coarse-grained taint tracking forms a robust approach for the taint analysis of script 
languages. Apart from tracking when one value is inserted in the program from outer 
untrusted sources it also aims in sanitizing such values on the runtime and producing 
warnings.  

The implementation presented is based on the open-source JavaScript engine written in 
Java, Rhino15 which is managed by the Mozilla Foundation16. For the tainting the 
technique appends a special character token at the end of the string which is 
considered dangerous. The Application Programming Interface for the analysis consists 
of three main functions: 

 taint(input): Takes a parameter input string input and applies a special 

token to the end of it to mark it as tainted. Returns a copy of the initial string. 

 isTainted(str): Returns true or false depending if the parameter str is 
tainted or not. 

 untaint(tainted): Untaints the parameter tainted string tainted and returns a 

copy of the string without the special token indicating that it is tainted. 

An example: 

The cookie taken by the user’s session is marked as tainted. Thus the console when 
calling the function isTainted on the variable cookie prints true. 

                                            
15

 https://github.com/mozilla/rhino [Accessed: 4 July 2019] 
16

 https://foundation.mozilla.org/en/ [Accessed: 4 July 2019] 

 

1. var cookie = taint(document.cookie); 
2. console.log(isTainted(cookie)); 

 

Figure 40: Coarse-grained taint tracking example 

https://github.com/mozilla/rhino
https://foundation.mozilla.org/en/
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5.2.2  Extending Coarse-Grained Taint Tracking 

What led to the precise taint tracking was the inadequacy of the coarse-grained taint 
tracking technique to detect which portions of the string are tainted. Instead, the whole 
string was tainted. Hence, in case a small benign part of the string was assigned to 
another variable that variable was regarded as tainted. In the example below, the value 

true is printed to the console, which is a false positive. 

For that cause, that implementation was extended to taint the values at a character 
level. Also, the API was extended to include two more functions: 

 taintedRegions(tainted): Returns an array of two numbers indicating the 

start and the end indexes of the tainted parts of the tainted input parameter 
tainted. 

 sanitize(tainted, callback): Allows the modification of the tainted string 

tainted by performing the function callback on it to each tainted region of the 

string. 

and extend the already implemented functions to be more delicate: 

 taint(input): Also, appends a list of the ranges of the tainted parts of the 

tainted input string input. 

 isTainted(str): Now, correctly returns true only if there are portions of the 

string str tainted. In contrast to the example presented before in the coarse-

grained taint tracking that presented a perfectly safe string as tainted. 

 untaint(tainted): Removes taint from the tainted string tainted by removing 

the special token at the end of the string along with the lists indicating the tainted 
regions. 

Let us see how the precise taint tracking may be used to track down an attempt on SQL 
Injection and sanitize it at the same time, without crashing the actual program: 

 

1. var cookie = taint(document.cookie); 

2. var msg = "Your cookie is: " + cookie; 

3. var sliced = msg.slice(0, 4); 

4. console.log(isTainted(sliced)); 

 

Figure 41: Issue Regarding Coarse-Grained Taint Tracking 
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In line 1, the variable name which is given by the user and put inside the query includes 

malicious code. The attacker is aiming to delete the whole table Users inside the 

database. Thus, in line 2 it is marked as tainted and at line 9 it is sanitized by replacing 
the single quotes with two single quotes, as show at the two figures below, Figure 43 
and Figure 44. Hence, a possible SQL injection attack would result in an SQL syntax 
error. 

 
Figure 43: Escaping the UserName given 

 
Figure 44: Result query after escaping the UserName given 

Executing the example produces the following output in the console which shows the 
correct tainting of parts of the string in contrast to the whole tainting the coarse-grained 
taint tracking would perform: 

 
Figure 45: Console output executing the example 

 

1. var name = "Bobby Drop Tables'; DROP TABLE Users; -- "; 
2. var tname = taint(name); 

3. var query = "SELECT * FROM Users WHERE UserName='" + tname + "';"; 
4.  
5. console.log(isTainted(query)); 

6. console.log(isTainted(query.substring(0, 36)); 
7. console.log(taintedRegions(query)); 
8.  

9. var safe = sanitize(query, function (str) { 
10.               return str.replace(/'/g, "''"); 
11.             }); 

12. console.log(isTainted(safe)); 

 

Figure 42: Precise Taint Tracking managing an SQL Injection attempt 



Evaluating Taint Analysis Tools for JavaScript 

M. Papamichalopoulos   59 

6. CONCLUSIONS 

The purpose of the thesis was executing multiple tests on the pool of taint analysis 
frameworks collected to measure their Accuracy in terms of simple and complicated 
attacks. However, the majority of the tools we have accumulated are commercial 
without option for trial, apart from ACTARUS and ANDROMEDA. Both of these are in 
the IBM’S Security AppScan Source for analysis pack. Unfortunately, we were not given 
access to the trial version and thus we could not perform test cases on any framework. 

Mitropoulos, et al [16] present a thorough classification of tools used to defend against 
web application attacks by analyzing each of them based on their: 

 Accuracy 

 Availability 

 Ease of use 

 Performance Overhead 

 Security 

 Detection Point 

Since we did not manage to get our hands on the tools we examined, we are unable to 
analyze them in terms of Accuracy, Ease of Use and Performance Overhead. In 
addition to that, the Detection Point is the same for every one of them, since taint 
analysis tracks vulnerable input on the client-side. 

Instead, we are going to emphasize on the differences on these frameworks. What does 
one do that the other fails to cover in the analysis, like for example handling the eval 
call? Which of them are platform-independent? Which of them are based on browsers? 

Thus, we group and analyze our frameworks in a similar manner to provide some 
conclusions out of our research.  

In our classification tables presented below, we only mention the taint analysis 
frameworks we have analyzed during the thesis and not techniques which have not 
been implemented in a tool, like for example the one presented in Section 4.2. Also, we 
have included the frameworks described in Section 5 to compare them with the pure 
taint analysis tools. At last, we do not include general frameworks like WALA and 
Jalangi, even though it is able to build a taint checker on them. 

6.1 General Conclusions 

In Table 1, we present the frameworks and in which categories they belong based on 
their taint analysis: 
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Table 1: Frameworks’ categories 

Frameworks Static Taint Analysis Dynamic Taint Analysis 

ACTARUS    

ANDROMEDA    

Ichnaea    

JSBAF     

FLAX    

Precise Taint Tracking    

 

In Table 2 we present the taint analysis tools along with the framework they base some 
of their key analyses taking place: 

Table 2: Base analysis frameworks for the taint analysis 

Frameworks Base Framework 

ACTARUS WALA 

ANDROMEDA WALA 

Ichnaea Jalangi 

JSBAF WALA 

FLAX - 

Precise Taint Tracking - 

 

As we can see, the majority of the frameworks use the IBM’s WALA static analysis tool. 
We believe that happens because of the fact that it is open-source, it is highly 
customizable and provides a sound and novel approach to the dynamic features of 
JavaScript. 

6.2 Attacks 

Each framework handles different kinds of attacks. All of them, though, are able to 
handle the most prevalent attacks performed on web applications, those being Cross-
Site Scripting and Injection attacks. In the Injections category we assume any type of 
injection with the most common being SQL Injection and Command Injection. 

Table 3 presents a detailed series of attacks each framework is able to negate: 
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Table 3: Attacks successfully handled by each framework 

Frameworks 
Cross-Site 
Scripting 

Injections 

Unvalidated 
Redirects 

and 
Forwards 

Log 
Forging 

Origin Mis-
attribution 

ACTARUS         

ANDROMEDA         

Ichnaea        

JSBAF        

FLAX         

Precise Taint 
Tracking 

       

6.3 JavaScript feature extension 

As mentioned on the Section 2.1.1, WALA takes care of the dynamic features of the 
JavaScript language, like prototype chains, object creations. Some of the tools using it 
for their static analysis decide to extend WALA’s approaches, whereas others leave it 
as is. In Table 4, we present the tools that extend WALA’s techniques. We are not sure 
how ANDROMEDA takes care of this matter, so we abstain from giving a false 
conclusion. 

Table 4: Extension of the JavaScript features for the WALA-based frameworks 

Frameworks Eval Call 
Arguments 

Array 
Prototype 

Chain 
Object  

Creation 
Lexical 
Scoping 

ACTARUS          

ANDROMEDA  -  -  -   -   - 

JSBAF        

6.4 Platform-independency 

Tools that are platform independent do not modify the JavaScript interpreter in order to 
keep track of the taint analysis. There is need of a special instrumented browser that 
helps the framework in its execution. Such frameworks are Jalangi and Ichnaea. These 
specifically do not use a modified engine. Because of this platform-independency 
feature, Jalangi has the ability to perform its two phase analysis in two different 
machines. 

The only taint analysis platform independent tool is Ichnaea due to the fact that its 
analysis relies on Jalangi. 

ACTARUS, JSBAF and ANDROMEDA are based on WALA, which uses the Rhino 
parser by Mozilla Foundation to parse JavaScript and other data. 

Platform independency is described in Table 5: 
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Table 5: Platform-independency 

Frameworks Platform-independent 

ACTARUS  

ANDROMEDA  

Ichnaea   

JSBAF  

FLAX  

Precise Taint Tracking  

 

The tools that are not platform-independent, in most cases, base their analysis in a 
modified browser/engine or they are tied to a particular engine. Specific engines are 
used for the dynamic phases of the frameworks performing dynamic taint analysis. A 
mapping for each framework and the engine they use/modify is presented in Table 6: 

Table 6: JavaScript engines that each platform-dependent framework uses 

Frameworks JavaScript Engine 

ACTARUS Rhino 

ANDROMEDA Rhino 

JSBAF Static: Rhino  Dynamic: WebKit 

FLAX WebKit 

Precise Taint Tracking Rhino 

6.5 Availability 

All the taint analysis tools we have analyzed are only for commercial use. The only form 
of availability is that of a trial version for the IBM’s Security AppScan Source for analysis 
package that includes the algorithms used for ACTARUS and ANDROMEDA. 

Tools that are publicly available are described in Table 7: 
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Table 7: Available frameworks to the public 

Frameworks Available 

ACTARUS   

ANDROMEDA   

Ichnaea  

JSBAF  

FLAX  

Precise Taint Tracking  

6.6 ACTARUS vs ANDROMEDA 

ACTARUS and ANDROMEDA are two frameworks both produced by IBM and 
integrated in the same security package. For that purpose, we would like to compare 
them and present the pros and cons for each one of them. They are both based on an 
on-demand driver taint analysis using the notion of access paths. However, they have 
key differences. A detailed comparison is presented in Table 8. 

Table 8: ACTARUS vs ANDROMEDA 

ACTARUS ANDROMEDA 

Constructing a call-graph representing  
the  whole program 

Constructing a call-graph using lazy 
methods and not representing the whole 
program 

Pointer analysis of the whole program On-demand aliasing when needed 

JavaScript front-end JavaScript, .Net, Java front-end 

- Incremental Analysis 

 

Despite their differences, the fact that they have been developed by the same company 
makes them have some major similarities. In addition to this, it should be noted that a 
group of people that contributed to the making of ACTARUS have also contributed to 
the making of the ANDROMEDA framework. In Table 9 we present their correlation. 



Evaluating Taint Analysis Tools for JavaScript 

M. Papamichalopoulos   64 

Table 9: Similarities between ACTARUS and ANDROMEDA 

Similarities 

On-demand driven taint analysis using access paths 

Context sensitive taint analysis 

Based on the IBM’s WALA static analysis framework 

Commercial products under the IBM’s Security AppScan Source for analysis  

6.7 Conclusion 

XSS and Injections vulnerabilities have become increasingly popular due to the 
extensive use of JavaScript in web applications. Even though such attacks can be 
easily eliminated, the developers still use wrong programming techniques for the 
developing of a web application. Since, to err is human we felt it was a necessity to 
present automated tools in the form of taint analysis to protect both benign users from 
their leak of private information and enterprises from harming their reputation beyond 
repair.  

Despite the fact that we were not able to measure their precision, we are optimistic that 
we have presented a thorough research and conclusions based on the resources we 
were given. In addition to this, we believe that we have demonstrated a comprehensive 
introduction to people who were not familiar to this technique until today. We hope 
sometime in the future; more researchers pick up taint analysis for analyzing JavaScript 
and produce sound techniques publicly available for a more secure Internet. 
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TABLE OF TERMINOLOGY 

Ξενόγλωσσος όρος Ελληνικός Όρος 

Client-side Πλευρά Πελάτη 

Tainted Στιγματισμένος 

Source Πηγή 

Sanitize Εξαγνίζω 

Sink Καταβόθρα 

Tainting Στιγματισμός 

Taint Μόλυνση 
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ABBREVIATIONS – ACRONYMS 

3AC Three Address Code 

API Application Programming Interface 

AST Abstract Syntax Tree 

CFA Control Flow Analysis 

CFG Control Flow Graph 

CIA Change Impact Analysis 

CSV Client-side Vulnerabilities 

DOM Document Object Model  

DSL Domain Specific Language 

HTML Hypertext Markup Language 

IP Internet Protocol 

IR Intermediate Representation 

JASIL JavaScript Simplified Instruction Language 

JS JavaScript 

JSBAF JavaScript Blended Analysis Framework 

OOP Object Oriented Programming 

OWASP Open Web Application Security Project 

RHS Reps-Horwitz-Sagiv 

SSA Static Single Assignment form 

SQL Structured Query Language 

TAC Three Address Code 

URL Uniform Resource Locator 

WALA T.J. Watson Libraries for Analysis 

WWW World Wide Web 
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