

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Evaluating Taint Analysis Tools for JavaScript

Marios G. Papamichalopoulos

Supervisors: Dimitris Mitropoulos, Adjunct Faculty
Alexis Delis, Professor

ATHENS

JULY 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Αξιολογώντας Εργαλεία Ανάλυσης JavaScript
Προγραμμάτων

Μάριος Γ. Παπαμιχαλόπουλος

Επιβλέποντες: Δημήτρης Μητρόπουλος, Επισκέπτης Καθηγητής

Αλέξης Δελής, Καθηγητής

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2019

BSc THESIS

Evaluating Taint Analysis Tools for JavaScript

Marios G. Papamichalopoulos
S.N.: 1115201400149

SUPERVISORS: Dimitris Mitropoulos, Adjunct Faculty
Alexis Delis, Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Αξιολογώντας Εργαλεία Ανάλυσης JavaScript Προγραμμάτων

Μάριος Γ. Παπαμιχαλόπουλος
Α.Μ.: 1115201400149

ΕΠΙΒΛΕΠΟΝΤΕΣ: Δημήτρης Μητρόπουλος, Επισκέπτης Καθηγητής
Αλέξης Δελής, Καθηγητής

ABSTRACT

In the context of this BSc thesis, we have examined a number of scientific tools that
perform taint analysis for programs written in the JavaScript programming language.

Taint analysis is defined as a type of analysis which concludes if points of the program
that act as entry points for sensitive data are dangerous for the application, by tracking
the flow of such data throughout the program. Such points are called taint sources.

Specifically, taint analysis marks as tainted the variables which have been affected by
user input and tracks them until they reach a sensitive method, called sink. If a tainted
variable reaches such a point, without being properly sanitized first, a vulnerability is
reported. Tainting is the association of some kind of label or mark to sensitive data that
allows the tracking of their flow throughout the program as well as the propagation of
taint to the variables they come across.

The purpose of this research is the thorough research of scientific tools that perform
such kind of analyses for programs written in JavaScript. We hereby present a
collection of frameworks and approaches, which developers and enterprises may
incorporate to their defense arsenal, for the inspection of the client-side code of their
web applications, thus negating possible web attacks.

SUBJECT AREA: Taint Analysis
KEYWORDS: Security, JavaScript, Client-side Vulnerabilities, Static Taint Analysis,

Dynamic Taint Analysis

ΠΕΡΙΛΗΨΗ

Η παρούσα μελέτη που διεξήχθη μέσα στα πλαίσια Πτυχιακής Εργασίας περιλαμβάνει
την καταγραφή επιστημονικών εργαλείων που πραγματοποιούν taint analysis στην
προγραμματιστική γλώσσα JavaScript.

Το taint analysis ορίζεται ως ένα είδος ανάλυσης, το οποίο συμπεραίνει αν τα σημεία
του προγράμματος που ενεργούν ως σημεία εισαγωγής ευαίσθητων δεδομένων
αποτελούν κίνδυνο για την εφαρμογή, παρατηρώντας τη ροή τέτοιων δεδομένων μέσα
στο πρόγραμμα. Τέτοια σημεία ονομάζονται πηγές (taint sources).

Συγκεκριμένα, ένα taint analysis χαρακτηρίζει ως «στιγματισμένες» (tainted) τις
μεταβλητές που έχουν επηρεαστεί από δεδομένα που εισάγει ο χρήστης και τις
ιχνηλατεί μέχρι να δει αν φτάνουν σε κάποια ευπαθή μέθοδο, που ονομάζεται
καταβόθρα (sink). Αν μία αμαυρωμένη μεταβλητή εισέλθει σε ένα τέτοιο σημείο, χωρίς
να έχει εξαγνιστεί (sanitize) πρώτα, τότε χαρακτηρίζεται ως ευπαθής. Ο στιγματισμός
(tainting) είναι η συσχέτιση κάποιου είδους σημαδιού ή ετικέτας στα ευαίσθητα
δεδομένα που επιτρέπει την ανίχνευση της ροής τους μέσα στο πρόγραμμα καθώς και
την διάδοση της μόλυνσης (taint) σε μεταβλητές που συναντούν.
Ο σκοπός αυτής της έρευνας είναι η διεξοδική έρευνα επιστημονικών εργαλείων που
εκτελούν τέτοιου είδους αναλύσεις σε προγράμματα γραμμένα σε JavaScript.
Παρουσιάζουμε μία συλλογή εργαλείων και προσεγγίσεων, που προγραμματιστές ή
οργανισμοί μπορούν να ενσωματώσουν στο αμυντικό οπλοστάσιο τους για την
επιθεώρηση του κώδικα της πλευράς πελάτη των διαδικτυακών εφαρμογών τους,
αντικρούοντας, έτσι, πιθανές διαδικτυακές επιθέσεις.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Taint Analysis
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ασφάλεια, JavaScript, Ευπάθειες πλευράς πελάτη, Static Taint

Analysis, Dynamic Taint Analysis

Dedicated to my family

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Mr. Dimitris Mitropoulos, for his guidance,
cooperation and valuable contribution and assistance for the completion of this thesis.

CONTENTS

PREFACE ... 14

1. INTRODUCTION .. 15

1.1 Static vs Dynamic Analysis .. 16

1.2 Data-Flow Analysis .. 16

1.3 Pointer Analysis ... 17

1.4 Interprocedural vs Intraprocedural Analysis .. 17

1.5 Call Graphs ... 17

1.6 Intermediate Representation .. 17

1.7 Paper Organization .. 19

2. STATIC TAINT ANALYSIS TOOLS... 21

2.1 General Frameworks ... 22

2.1.1 T. J. Watson Libraries for Analysis – WALA ... 22

2.2 ACTARUS ... 26

2.2.1 Approach ... 27

2.2.2 Taint Analysis .. 28

2.3 ANDROMEDA ... 31

2.3.1 Approach ... 31

2.3.2 Taint Analysis .. 32

3. DYNAMIC TAINT ANALYSIS TOOLS ... 34

3.1 General Frameworks ... 34

3.1.1 Jalangi ... 34

3.1.2 Jalangi2 ... 36

3.2 Ichnaea .. 38

3.2.1 Approach ... 39

3.2.2 Taint Analysis .. 41

4. STATIC & DYNAMIC TAINT ANALYSIS TOOLS ... 46

4.1 JavaScript Blended Analysis Framework ... 46

4.1.1 Approach ... 46

4.1.2 Taint Analysis .. 48

4.2 An approach on XSS Prevention .. 50

4.2.1 Approach ... 50

4.2.2 Taint Analysis .. 50

5. OTHER TOOLS ... 54

5.1 FLAX .. 54

5.1.1 Taint Analysis .. 54

5.2 Precise Taint Tracking .. 56

5.2.1 Coarse-Grained Taint Tracking ... 56

5.2.2 Extending Coarse-Grained Taint Tracking .. 57

6. CONCLUSIONS ... 59

6.1 General Conclusions ... 59

6.2 Attacks .. 60

6.3 JavaScript feature extension .. 61

6.4 Platform-independency ... 61

6.5 Availability .. 62

6.6 ACTARUS vs ANDROMEDA ... 63

6.7 Conclusion ... 64

TABLE OF TERMINOLOGY ... 65

ABBREVIATIONS – ACRONYMS .. 66

REFERENCES .. 67

LIST OF FIGURES

Figure 1: Taint Analysis Visualization .. 15

Figure 2: Simple Call Graph Visualization ... 16

Figure 3: 3AC/TAC example of two operators in expression ... 17

Figure 4: SSA issue and solution ... 17

Figure 5: Thesis map ... 19

Figure 6: Context insensitivity example ... 20

Figure 7: Flow insensitivity example .. 21

Figure 8: Path Insensitivity Example .. 21

Figure 9: Function's prototype example ... 23

Figure 10: Prototype Chain Process .. 23

Figure 11: New operator issue example .. 24

Figure 12: Example of Lexical Scoping ... 24

Figure 13: Less parameters given than declared ... 25

Figure 14: More parameters given than declared .. 25

Figure 15: Copy Propagation example .. 25

Figure 16: ACTARUS property access loop .. 26

Figure 17: Lexical Scoping SSA form example .. 27

Figure 18: ACTARUS semantics ... 28

Figure 19: RHS algorithm example .. 29

Figure 20: Enhanced RHS algorithm example ... 29

Figure 21: ANDROMEDA’s concrete semantics .. 31

Figure 22: On-demand aliasing example ... 32

Figure 23: The AnnotatedValue object .. 34

Figure 24: Jalangi2 process... 35

Figure 25: Dummy program ... 36

Figure 26: Jalangi analysis example .. 37

Figure 27: Jalangi2 analysis example output ... 37

Figure 28: Ichnaea taint specification example .. 38

Figure 29: Ichnaea's Structure ... 40

Figure 30: Ichnaea sample program .. 41

Figure 31: Abstract stack instructions generated for the example 42

Figure 32: Abstract stack machine instruction using the native function reduce 44

Figure 33: JSBAF's Dynamic Phase. ... 45

Figure 34: JSBAF's Static Phase. .. 45

Figure 35: Structure of JSBAF ... 46

Figure 36: Function variadicity example .. 47

Figure 37: XSS attack trying to override data and control dependencies 50

Figure 38: Cookie decryption by exploiting indirect control dependencies 51

Figure 39: FLAX Analysis .. 54

Figure 40: Coarse-grained taint tracking example ... 55

Figure 41: Issue Regarding Coarse-Grained Taint Tracking ... 56

Figure 42: Precise Taint Tracking managing an SQL Injection attempt 57

Figure 43: Escaping the UserName given ... 57

Figure 44: Result query after escaping the UserName given .. 57

Figure 45: Console output executing the example ... 57

LIST OF TABLES

Table 1: Frameworks’ categories ... 60

Table 2: Base analysis frameworks for the taint analysis .. 60

Table 3: Attacks successfully handled by each framework .. 61

Table 4: Extension of the JavaScript features for the WALA-based frameworks 61

Table 5: Platform-independency .. 62

Table 6: JavaScript engines that each platform-dependent framework uses 62

Table 7: Available frameworks to the public .. 63

Table 8: ACTARUS vs ANDROMEDA ... 63

Table 9: Similarities between ACTARUS and ANDROMEDA.. 64

PREFACE

The basis of this research stemmed from my passion for Computer Security. During the
spring semester, I took this subject and became thrilled of the fact that from someone’s
mistake or misuse of programming libraries, an experienced attacker can wreak havoc
to the application and to every person that utilizes its services.

As the Web keeps expanding and becomes more embellished with scripts responsible
for enhancing the User Experience, there will be a greater need to check for security
violations. It is evident to find out frameworks that will help the work of the developers
and enterprises. This was the idea leading to the conduction of this research.

I would have never achieved this research had it not been for my professor, Dimitris
Mitropoulos. As a teacher, he was able to impart his knowledge and passion for
computer security to me and show me new techniques and ways, such as taint analysis.
Also, I would like to thank my professor Alexis Delis for helping me and guiding me
through all these years.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 15

1. INTRODUCTION

The general increase of web applications has changed the standards regarding user
experience (UX). The World Wide Web (WWW) is structured by an abounding number
of websites that provide many services and utilities to the users. This gives them the
freedom to browse in multiple applications, when trying to perform a task, until they find
one that fits their needs. This has led the enterprises and companies to upgrade the UX
using JavaScript scripts, in order to appeal the customers and increase their profit.

Why would someone choose JavaScript over another programming language?
JavaScript has become prevalent concerning client-side code among web developers
because of some of its key characteristics. These are its ease of use, flexibility and
power. A Web developer does not need to precompile their code or install a plugin.
They have the ability to test their scripts immediately and manipulate the Hypertext
Markup Language (HTML) Document Object Model (DOM). In addition to this, there are
a lot of extra libraries built on top of JavaScript, providing even more diversity and ease
for the code writers.

The upgrade of UX has one major drawback. The extra code, added in the web
application to ensure this property, may become responsible for potential security
violations. Not only can a malicious user easily map the infrastructure of the application,
but they can also find vulnerabilities which originate from inexperienced developers
using JavaScript libraries incorrectly. A really experienced attacker can take advantage
of these two and perform a series of attacks, with the most common being Cross-Site
Scripting (XSS) [17] and a variety of Injections [18] [19].

According to the Top 10 Application Security Risks [1] list, created by Open Web
Application Security Project (OWASP) in 2017, Injections are the number 1 threats with
XSS attacks following six ranks bellow them.

Injections, as the name suggests, can trick the interpreter into executing unintended
commands or accessing data without proper authorization. They can be really harmful
to the server since an attacker can steal passwords, destroy databases, and forge new
admin accounts to the application.

XSS flaws occur when the application uses untrusted data in a web page without proper
sanitization or updates an existing web page with user-supplied data using a browser
API that can create HTML or JavaScript. XSS may occur in three different types; Stored
XSS, Reflected XSS and DOM-based XSS [17]. Such attacks allow the execution of
scripts in the victim’s browser which can hijack user sessions, deface websites or
redirect the user to malicious websites. All in all, an XSS attack aims in violating the
Same-origin Policy, which is a concept in the web application model stating that a web
application cannot execute scripts coming from another source.

Both of these attacks are based on the inexistent sanitization and validation of the user
input. Especially, XSS, can be really dangerous, since its subtypes Reflected XSS and
DOM based XSS may never reach the server validation code, so it is really hard for
developers to realize that there is such a perilous security breach.

As mentioned, a potential security violation may result in destroying the integrity of an
enterprise and most importantly harm benign every day users of the platform. That is
why it has become a necessity to create automatic tools that expose such Client-Side
Vulnerabilities (CSV). Bearing that in mind we have investigated a large number of
scientific papers that present tools or approaches that perform a type of analysis, called
taint analysis on the JavaScript language.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 16

These tools share a common approach. They observe the entry points of sensitive
information; they track the flow of data entering from such points throughout the
program and report the potential security violations. In more depth, a taint analysis
marks the unsanitized variables, which have been influenced by the user input, as
“tainted” and tracks their flow to ensure they do not reach a vulnerable method or
function that exposes them to the user. If they do, they are dangerous for the integrity of
the program. In the analysis, the entry points are called taint sources and the exit points
are called sinks. In most of the papers we have analyzed, a sanitization function
between a taint source and a sink is called downgrader.

Figure 1: Taint Analysis Visualization

In order to explain the processes done by the frameworks and compare their differences
we need to provide an explanation of some key types of analyses and how they
operate, for example data-flow analysis. Also, we need to explain key data structures
like the Abstract Syntax Tree (AST). Aho, et al [15] provide a very thorough description
for these techniques.

1.1 Static vs Dynamic Analysis

We provide a brief description of static analysis frameworks and their differences with
dynamic frameworks.

A static analysis or static code analysis is an analysis performed to the source code of
the program after it has been compiled. A dynamic program analysis performs the
analysis when the program is running by injecting instrumentation code to the subject
program.

Respectively, static taint analysis and dynamic taint analysis are analyses focusing on
exposing vulnerabilities on the application.

1.2 Data-Flow Analysis

Data-flow analysis refers to a set of techniques used to produce information regarding
the flow of data along the execution of a program. It is mostly used for the optimization
of a program during its compiling phase, since techniques like dead code elimination
rely on the flow of a variable’s value to conclude if it affects other variables or not.
Likewise, it is used for the understanding of a program, like what type a function has or
what is the resource usage in the program analyzed. This type of data-flow analysis is
the one tools performing taint analysis use.

In a few words, data-flow analysis is important in the frameworks we are examining
because it is the analysis responsible for finding the vulnerabilities. By tracking a
dangerous untrusted input throughout the program, a tool can find out if it is a potential
threat by reaching a sink.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 17

1.3 Pointer Analysis

Pointer analysis is performed by a set of techniques used to pinpoint the variables or
memory addresses, heap references or pointers point to during the execution of a
program. It is a very important static code analysis part in the static taint analysis tools,
due to the reference-type objects assignments which may propagate taint. Such tricky
examples can be seen in the Section 2 of the thesis. The tools we describe take care of
them successfully.

1.4 Interprocedural vs Intraprocedural Analysis

Procedures are what we know as functions. In the terms of Object-Oriented
Programming (OOP) procedures are known as methods.

Most compiler optimizations are performed on procedures one at a time. Such analyses
are known as intraprocedural analyses. They assume that an invocation of a procedure
may result in the worst possible result regarding the state of the variables or the stack.
They are pessimistic analyses, since they assume the worst possible side effects.

An interprocedural analysis, though, performs on the whole program, examining
information flow from the caller to the callee and back. It enabled more precise analysis
information by using calling relationships among the procedures, through a Call Graph.
It is used in the taint analysis process in some frameworks, like for example
ANDROMEDA, detecting some tainted cases related to reference-type objects. It makes
them the most complex among the two and thus the most accurate.

1.5 Call Graphs

Call Graphs describe the calls between procedures throughout the program. These
relations are represented by a graph. Precisely, a call graph is a set of nodes and edges
where nodes describe the procedures and edges describe the invocation of them.

Figure 2: Simple Call Graph Visualization

1.6 Intermediate Representation

The front-end of a compiler constructs an intermediate representation (IR) of the source
program, which the back-end uses to produce the final program. In a few words, IR is
the link between both ends of the compiler. In a taint analysis for JavaScript, the front-

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 18

end is JavaScript and parts of HTML while the back-end is the one doing the analysis.
The two most important IRs are:

 Trees, Abstract Syntax Trees (AST). An AST is a tree representation of the
structure of the source code of a program. During the syntax analysis, there are
created nodes in the syntax tree to represent important programming and data
structures.

 Linear representations, three-address-code (TAC or 3AC). On the other hand,
3AC is a sequence of steps of the program. Compared to the AST there is no
hierarchy in the structure. This representation is used for the optimization of the
code, by breaking the program into blocks of 3AC to sequence of instructions
without branches. No instruction can have more than one operator at its right

side. For example, an expression like 𝑥 + 𝑦 + 𝑧 has to be translated into a

sequence of two three-address instructions, where t1 and t2 are compiler

generated names:

Figure 3: 3AC/TAC example of two operators in expression

Other representations worth noting are Control-Flow Graphs (CFG) and Static-Single
Assignment form (SSA):

 CFG as the name states is a graph denoting all the paths that might be traversed
through a program execution.

 SSA is an intermediate representation that is similar to the TAC IR. However,
assignments in SSA are performed with variables with distinct names; hence the
term static single assignment. This method of assigning exclusive names for

each variable results in a problem when having an if-then-else statement. If

a variable is part of both branches of an if-then-else statement and then that

variable is assigned in another part of the program, what is the name it should
have so that SSA is accomplished? Let’s illustrate this with a simple example:

As we can observe from the left part of Figure 4, at the assignment in line 7,

since variables in SSA form have different names, variable y would not know

which to choose for its assignment, between the x_1 and x_2. This is solved by

a notational convention combining the two definitions of x.

1. if (cond) {

2. x_1 = 1;

3. } else {

4. x_2 = 2;

5. }

6.

7. x_3 = o(x_1, x_2);
8. y = x_3 + 1;

1. if (cond) {

2. x = 1;

3. } else {

4. x = 2;

5. }

6.
7. y = x + 1;

Figure 4: SSA issue and solution

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 19

Tools choose different IR for their solutions. They make sure that the ones they choose
match their approach. It is common to have more than one IR for an analysis.

1.7 Paper Organization

We have separated our findings in four major categories, based on the type of the
analysis the frameworks perform:

 The Section 1 refers to tools based on static taint analysis frameworks.

 The Section 2 of this thesis, respectively, presents tools based on dynamic taint
analysis frameworks.

 The Section 4 of the research introduces the combination of both types of
analyses into a hybrid taint analysis, including both static and dynamic taint
analysis.

 The Section 5 makes a reference to frameworks that perform taint analysis in a
different way than the standards. We believe they are worth mentioning since
they provide an alternative approach.

 The Section 6 of this thesis, at last, presents the conclusions made throughout
our research.

Additionally, in the first two sections, Section 1 and Section 2, we have added tools
that perform analyses in general and are the foundation for other taint analysis tools.
These are T.J. Watson Libraries for Analysis [3], Jalangi [4] and Jalangi2 [5]. One can
build a custom taint checker on these frameworks, since they provide the necessary
mechanisms. We felt it was essential to present them in this research, since the reader
can adopt a solid background and understand more clearly how the frameworks that
use them operate.

In Figure 5, we present a map for the scientific tools and approaches we are going to
describe in the thesis:

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 20

Figure 5: Thesis map

Bear in mind that JavaScript is a really difficult language to model because of its

dynamic features (e.g. eval, new operator). Most of the taint analysis tools

successfully confront them but there are cases of false warnings.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 21

2. STATIC TAINT ANALYSIS TOOLS

We have identified three tools matching this category. In general, static analysis is a
method of debugging by automatically examining source code before a program is run.
Subsequently, static taint analysis is a method of exposing vulnerabilities in the program
by evaluating its source code before it is executed.

Static analysis provides three major benefits, speed, depth and accuracy. Manual code
reviewing for developers can be time consuming and error prone. By using automated
tools, not only can developers find errors in their code, but they can also find their exact
location since most static analysis tools pinpoint them. In a similar manner, they can
cover every possible code execution path there is, which is something that manually
may take absurd amount of time.

On the other hand, static analysis frameworks for JavaScript due to the flexible and
dynamic nature of the language are short on number and provide a fair amount of false
warnings. As mentioned, it is really difficult to model JavaScript for analysis without
having some misleading alarms.

Before describing the frameworks, it would be wise to explain some key terms that
influence static analyses and are responsible for the majority of the false warnings
formed by a taint analysis:

 Context insensitivity: The analysis does not take into account the context when
invoking a method. Hence, it merges together different execution contexts of the
same method [2].

In the following example, there is a function called id which echoes back its input.

Also, there are two variables y1 and y2. It can be observed that the first variable

is assigned a simple benign string, while the second one is assigned user’s input.

Context-insensitive static taint analyses will handle y1 as untrusted and produce a

warning for potential vulnerability coming from the document.write sink. That will

happen because of the merging of two different contexts to one. As a result, the
analysis assumes that function id may pose a threat in general, due to the fact

that it returns an untrusted value, that being of user input y2.

There is clearly no vulnerability on the above code since the function
document.write takes as a parameter the variable y1 which is comprised by a

completely safe string.

 Flow insensitivity: The analysis does not consider the order of the memory
updates and instead calculates all possible memory update orders. The
instruction sequence is not taken into account [2].

1. function id(x) {

2. return x;

3. }

4.

5. var y1 = id("hello");

6. var y2 = id(prompt());

7. document.write(y1);

Figure 6: Context insensitivity example

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 22

In Figure 7, like the previous example, function document.write is called with a

completely harmful parameter, that being x.f. Because of flow insensitivity not

tracking the correct order of updates and the fact that at the beginning of the code
snippet the property f of object x was assigned untrusted (user) input, the

analysis produces a false warning of a potential security breach.

 Path insensitivity: The analysis does not take into consideration the path
conditions by neglecting the code based on the result of conditional branches.
Instead, it assumes that all the paths in the Control-Flow Graph (CFG) are
feasible.

Such an example can be seen in Figure 8:

In the above if–then-else statement depending on the value of variable y,

variable x is either assigned as user input or as a parameter to document.write.

That means that there is no way variable x can be given user input and also act

as a parameter for the sink function.

In a path insensitivity analysis, the conditions do not matter so the analysis
assumes that function document.write is a sink even though only one path from

the branch can be traversed at a time depending on variable y’s value.

2.1 General Frameworks

Following, we are going to describe the T.J. Watson Libraries for Analysis, a powerful
framework that provides the foundation for the static analysis of the static and hybrid
taint analysis tools described in the thesis. Its key features and the fact that is publicly
available as an open-source framework have made it prevalent on the sector of static
analysis.

2.1.1 T. J. Watson Libraries for Analysis – WALA

The WALA framework [3] [24] is a static analysis tool developed by IBM. Originally, its
front-end was solely designed to analyze Java bytecode, but it expanded for JavaScript
as well.

1. var x;

2. x.f = prompt();

3. x.f = " ";

4. document.write(x.f);

Figure 7: Flow insensitivity example

1. var x = "";

2. var y = 5;

3. if (y === 5) {

4. x = prompt();

5. } else {

6. document.write(x);

7. }

Figure 8: Path Insensitivity Example

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 23

It is an open-source framework under Eclipse Public License available on Github1 and it
is characterized as one of the best tool for static analysis. It was donated to the
community by IBM in 2006.

WALA provides a set of libraries for the sake of interprocedural data-flow analysis. In
order to do so, its operation is comprised by three steps:

1. Construct a class hierarchy, by reading the source code into memory and keep
valuable information describing the types. This produces the analysis scope,
meaning what is going to be analyzed. This step is used for the analysis of a
Java program.

2. On-the-fly call graph construction for the execution of a pointer analysis using the
appropriate data structures (call graph nodes – CGNode objects) the framework

provides. The nodes of the call graph are representing the corresponding
methods and its edges are representing the target procedures to be called. In
case of a pointer analysis, the tool automatically constructs a call graph before
performing a customizable flow-insensitive Andersen-style pointer analysis.

3. Performing the subject analysis over the call graph deriving from Step 2.

The analysis performed by WALA can be highly customized by the user by modifying
the CallGraph API (CGNode objects) and PointerAnalysis API (PointerKey), which

are mentioned in the WALA documentation. We feel that describing the way those APIs
exactly work does not correspond with the purpose of this subject thesis and thus we do
not analyze them.

For the analysis mentioned above, WALA utilizes the open-source JavaScript engine
Rhino2, which is managed by the Mozilla Foundation3, in order to parse JavaScript and
create Abstract Syntax Trees for the analysis. Likewise, for the sake of fetching HTML
code it adopts the Jericho HTML parser4.

For the IR, WALA’s structure is composed by three key types of representations:

 TAC

 CFG

 A fully-pruned SSA form.

Following, we are going to describe the way WALA handles JavaScript’s complex
features to produce its Intermediate Representation without errors so it can successfully
construct the static representation of the program. The taint analyses tools which rely on
WALA for their static analysis extend some of its approaches. For example, a
framework may change the way WALA is treating the JavaScript prototypes using the
customization it provides in its documentation. Another framework may leave the default
manipulation of prototypes.

2.1.1.1 Prototype Chain

JavaScript is a prototype-based language [20]. All objects in JavaScript are instances of
Object, except for the primitives. That means all the objects in JavaScript inherit the

properties and methods from Object.prototype.

1
 https://github.com/wala/WALA [Accessed: 4 July 2019]

2
 https://github.com/mozilla/rhino [Accessed: 4 July 2019]

3
 https://foundation.mozilla.org/en/ [Accessed: 4 July 2019]

4
 http://jericho.htmlparser.net/docs/index.html [Accessed: 4 July 2019]

https://github.com/wala/WALA
https://github.com/mozilla/rhino
https://foundation.mozilla.org/en/
http://jericho.htmlparser.net/docs/index.html

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 24

For example, in Figure 9, function x has a property called prototype that may

include its properties and methods. In case an object is created out of that function x,

it inherits the methods and properties of the function.

Figure 9: Function's prototype example

Every prototype object may have another prototype object as its prototype. The
mechanism of the language allowing an object to traverse from its private prototype
object to the object the private prototype has as its prototype until it reaches null, in
order to collect properties, it is missing, is called prototype chaining. An example of the
prototype chain process is presented in Figure 10.

Figure 10: Prototype Chain Process

2.1.1.2 Object Creation

Manipulating the new operator in JavaScript is different than in the OOP Languages.

The semantics of the new operator are dynamic and flexible, since in JavaScript what
follows the operator is an expression and not a constant. Such a case is seen in Figure
11 below:

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 25

In the example, variable unknown can be either an Object or an Array depending on

the conditional cond of the if-then-else statement.

WALA handles the new operator as a dynamic dispatch. The expression following the

operator is constructed as a first-class function, hence new is translated to a special

method call on its argument.

2.1.1.3 Lexical Scoping

JavaScript allows variables which are located inside a method to be accessed and
assigned a different value from methods which are inside its body. It has two interesting
properties regarding scopes, Hoisting and Closure.

 Hoisting [21]: A variable can be declared after it is used. Hoisting moves all the
declarations of the variables to the top of the current scope, which can be a
function or a script.

 Closure [22]: A feature where an inner function has access to the variables of an
outer function.

The code snippet in Figure 12 refers to a working example where function bar can

successfully access variable x which is in the scope of function foo and perform

instructions without getting an error.

In order to retain this mechanism, the analysis performed is flow insensitive; meaning
the instruction sequence in the program is not taken into account.

1. function foo(p) {

2. var x = p;

3. function bar() {

4. var y = x + 2;

5. x = y + 1;

6. }

7. }

8.

9. var z = foo(2);

Figure 12: Example of Lexical Scoping

Figure 11: New operator issue example

1. var x;

2.

3. if (cond) {

4. x = Object;

5. } else {

6. x = Array;

7. }

8.

9. var unknown = new x();

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 26

2.1.1.4 Arguments Array

The arguments array [23] is an Array-like object that can be accessed within a
JavaScript function in order to refer to the value of a parameter given. It is not an Array

object because it is lacking basic Array methods. There are two cases regarding the

arguments array, depending on the arbitrary number of parameters the function is
called.

The first case refers to a function being called with less number of parameters than its
arguments. The rest of the parameters get the value undefined, like in Figure 13:

In the opposite case, portrayed in Figure 14, when the function is called with more
arguments than its parameters, the parameters can be accessed through its
arguments.array.

Figure 14: More parameters given than declared

WALA models the arguments array as an actual array. It creates one with length equal
to the parameters given. Accessing an element is a regular array access.

2.1.1.5 Copy Propagation

Copy propagation is an optimization technique used in compilers. It replaces the targets
of direct assignments to their values, because such instructions do not have an actual
meaning or they may have effect on others. For example, in the following Figure 15, the
variable x is replaced by its value, due to the fact that it does not form a meaningful

instruction.

Figure 15: Copy Propagation example

This is achieved by constructing the IR with the use of SSA so the analysis is simplified.

2.2 ACTARUS

The IBM’s ACTARUS framework [6] is a static taint analysis commercial tool based on
IBM’s WALA static analysis framework. The algorithm used in ACTARUS is available in

console:

1

2

3

1. const foo = function (x, y) {

2. console.log(arguments[0]);

3. console.log(arguments[1]);

4. console.log(arguments[2]);

5. }

6.

7. foo(1,2,3);

console:

1
undefined

1. const foo = function (x, y) {

2. console.log(arguments[0]);

3. console.log(arguments[1]);

4. }

5.
6. foo(1);

Figure 13: Less parameters given than declared

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 27

IBM’s Rational AppScan Source pack5. IBM also provides an open-source security test
suite6 that ACTARUS passes with flying colors.

2.2.1 Approach

ACTARUS is relied on an on-demand driven taint analysis approach. It’s process
consists of two phases:

 Building the static representation of the program using WALA. This stage is
composed by the construction of a call graph and the execution of a pointer
analysis on the whole program, using the Andersen analysis library in WALA. It is
essential to find the relationship between the variables and the procedures. The
fact that object properties in JavaScript can act as taint sources makes a
complete call graph representation and point-to analysis essential for the analysis.

 Completing the taint analysis process, by searching for taint sources in the
program which may become entry points for the injection of malicious code and
tracking the flow of untrusted input data entering from such points. This is done by
an interprocedural data-flow analysis. The framework traverses the call graph
starting from taint sources and reaching the sinks.

In more detail, the taint analysis process is based on an expansion of the Reps-
Horwitz-Sagiv (RHS) algorithm [14], which transforms a data-flow problem in to a
graph-reachability problem solved in polynomial time, using the notion of access
paths.

Building the static representation of a JavaScript program can run into multiple
problems and become a difficult procedure. ACTARUS extends some of WALA’s
techniques eliminating the problems that arise by JavaScript’s dynamic features.
ACTARUS does not model the method eval. The remaining of this section presents a

thorough description of these techniques.

2.2.1.1 Prototype Chain

ACTARUS models this process in its Intermediate Representation (IR) by rewriting the
property accesses into a loop, as seen at the Figure 16 below. In this specific case the
property access is x = y.a.

It can be deducted from the example, that in order for variable x to access the property

a of variable y, it checks for variable y’s prototypes and goes higher up the chain, until it

cannot find any more (reaches null pointer).

This is only for property accesses. If a value is assigned to a property that does not
exist, a new property is created and there is no need to perform property-chain lookup.

5
 https://www.ibm.com/us-en/marketplace/ibm-appscan-source/details [Accessed: 4 July 2019]

6
 https://researcher.watson.ibm.com/researcher/view_page.php?id=1598 [Accessed: 4 July 2019]

1. var p = y;

2.

3. do {

4. x = p.a;

5. p = p.__proto__;

6. } while (!defined(x))

Figure 16: ACTARUS property access loop

https://www.ibm.com/us-en/marketplace/ibm-appscan-source/details
https://researcher.watson.ibm.com/researcher/view_page.php?id=1598

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 28

2.2.1.2 Object Creations

The method followed in the framework is similar to the solution WALA uses. However,
WALA’s modeling of the new operator introduces a problem concerning the dynamic

nature of the language. For example, depending on the number of arguments given and
their type when allocating an Object, there can be several cases. Giving the parameter

true can result in creating a Boolean object, giving the parameter null can result in

creating an empty Object.

For this reason, ACTARUS is relied on a custom dispatch, which given for example the
new operator, it directs these new expressions to the appropriate methods, in order to

implement the correct semantics based on the parameters given.

2.2.1.3 Lexical Scoping

ACTARUS represents the variables of a program in Static Single Assignment, which
means that every variable in the IR is assigned only once. By converting the code on
the left of Figure 17 to its corresponding IR all the variables are replaced by their
identifier concatenated with the number of times they have appeared in the program.
For example, in line 2 variable x is encountered for the first time, so its representation in

SSA is x_1.

In order to preserve the SSA form for the lexical scoped variables, there are two
methods used, LexicalRead and LexicalWrite. Whenever there is a need to access

variables from functions inside or outside the local scope of the function, depending on
the type of the instruction, if that is a read or a write, the methods LexicalWrite and

LexicalRead are invoked respectively.

For example, in line 4 of the left part of the Figure 17, there is the instruction var y=x+2.

This instruction is inside function bar which is inside function foo and is trying to

access variable x that is declared outside of its local scope. Because of that, in the right

part of the Figure 17 there is a LexicalRead statement that precedes the assignment

of variable y.

Subsequently, the instruction in line 5 at the left part of Figure 17 is replaced by a
LexicalWrite invocation.

2.2.2 Taint Analysis

Given a graph G, the taint analysis that ACTARUS performs is separated in two phases:

 Traversing G, so the tool can find the sources, sinks and sanitizers. Sanitizers
are methods that transform the input data to harmless output data which are

1. function foo(p) {

2. var x = p;

3. function bar() {

4. var y = x + 2;

5. x = y + 1;

6. }

7. }

8.

9. var z = foo(2);

1. function foo(p) {

2. var x_1 = p;

3. function bar() {

4. x_2 = LexicalRead(x, foo);

5. var y_1 = x_2 + 2;

6. LexicalWrite(x, foo, y_2 + 1);

7. }

8. }

9.
10. var z_1 = foo(2);

Figure 17: Lexical Scoping SSA form example

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 29

ready to be executed by sinks without resulting in any possible harm for the
program.

 An interprocedural data-flow analysis that begins from the sources, in order to
verify if the data which begin their flow from the sources end up in sinks, without
traversing first from a sanitizer.

ACTARUS, instead of explicitly modeling the entire heap which can become really
expensive in terms of memory and time, only tracks information relevant for taint
propagation. That is tracking local variables and field dereferences which may lead to
untrusted data.

Figure 18: ACTARUS semantics

That is done by performing an interprocedural data-flow analysis relying upon the idea
of access path, to evaluate the expression in a program state as described in Figure

18. An access path < 𝑣, < 𝑓1, … , 𝑓𝑛 ≫ is a pair of a local variable v of the set ρ mapped

to its field identifiers 𝑓1, … , 𝑓𝑛 from the set h of the program, denoting a heap location. In
case a variable v has no identifiers, the access path becomes < 𝜈, 𝜀 >, where 𝜀 denotes
the empty sequence.

Access paths evaluate to the object 𝑜, or ⊥ if there are intermediate null dereferences or

there is no object o in the path. This is done by dereferencing the field identifiers 𝑓1, … , 𝑓𝑛 of the object pointed by v. With that way the set of all access paths evaluate to

object o and so the flows through the heap can be handled. This is useful for the taint
analysis because access paths help it track the taint propagation during the analysis by
examining the set of paths that evaluate to untrusted values.

However, due to the unbounded storeless representation of the heap dealing with
recursive data structures or heap cycles can lead to access paths being way too long. If
their size is not bounded the framework cannot assure termination or it may be time
consuming, spending valuable time and resources.

Because of this issue, there is a bound k indicating the length of the tracked access
paths for the static analysis. If an access path’s length is greater than k it is then
approximated/widened by replacing its suffix, beyond the first k field identifiers, by a

special symbol, ‘*’. In practice, the setting 𝑘 = 5 seems to produce the best results.

The on-demand driven analysis performed by ACTARUS lies in the initialization of
access paths. They are instantiated only when they are associated with a taint
instruction or taint in general. When ACTARUS exposes a taint source, it automatically
marks the access paths which refer to this instruction and are associated with the given
taint source.

The extra mechanism that ACTARUS has planted in the standard RHS algorithm is
related with the alias relations in the heap. Below we will describe two taint analysis
examples. The first one presents a simple case. The second one points out a corner
case standard RHS fails to detect, while the RHS enhanced ACTARUS successfully
points it out.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 30

2.2.2.1 Example 1

In this code snippet, there is not a reference-type assignment that can lead to a wrong
estimation of the vulnerabilities in the program.

In line 5, variable p is assigned user input through the sink method prompt.

Immediately, someone can deduct that variable a is a taint source, because adding

malicious code to the user input causes an XSS attack. That is how the framework

produces the tainted access path < 𝑎, 𝜀 >, since object a has no field properties.

Continuing the process, the values of the variables a and b become parameters for the

method set. The relational summary is easily deducted to be < 𝑦, 𝜀 > → < 𝑧, 𝑓 >, since

the value of variable y is inserted in the property f of the variable z. That means that it

just propagates taint from one parameter to the property of the other parameter.

Returning from the function set it is concluded that the path < 𝑏, 𝑓 > is also tainted

along with < 𝑎, 𝜀 >, which leads to an exact result. This can be seen from running the
code, since the user input appears in the console.

2.2.2.2 Example 2

Now we are going to look into a different example that the traditional RHS algorithm
would miss. ACTARUS’s RHS enhanced algorithm, does not though.

The example is similar to the one distributed before except for one part. In the setf

method there is a variable x. Variable x is assigned a field identifier of an object, which

is a reference type object and not a primitive. That means that it stores the memory

1. function swapf(y, z) {

2. z.f = y;

3. }

4.

5. var a = prompt();

6. var b = { };

7. swapf(a, b);

8.

9. console.log(b.f);

Figure 19: RHS algorithm example

1. function set(y, z) {

2. var x = z.c;

3. x.f = y;

4. }

5.

6. var a = prompt();

7. var b = { c: {} };

8. setf(a, b);

9.

10. console.log(b.c.f);

Figure 20: Enhanced RHS algorithm example

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 31

location of the property c of object z. As a result at the next instruction in line 3, where

in the property f of object x is assigned the value of variable y, a new property f for

object b is created holding the user input.

Returning from the function setf the relational summary deducts that the access

paths < 𝑎, 𝜀 > and < 𝑏, 𝑐. 𝑓 > are tainted. The hypothesis is correct since in the console
appears what the user wrote.

The problem that led to the enhanced RHS algorithm is the fact that when a reference
type value, an object, is copied to another variable, what gets copied is the memory
address and not the value itself. Objects are copied by reference. So when another
property is created by a variable pointing there, even by a local method variable as
shown below, the property does not get deleted. Thus, whenever a taint flows into an
access path, ACTARUS calls a function responsible for tracking alias relations and then
proceeds with the basic RHS algorithm.

It is worth noting that when a property of an object is tainted, ACTARUS does not mark
the whole object as tainted but only the actual part that is.

2.3 ANDROMEDA

The ANDROMEDA framework [7], like ACTARUS, is based upon the IBM’s open-
source WALA tool and its basic approach is tracking sensitive information, using a
demand-driver analysis, without building a representation for the whole program. It
calculates the propagation of data flow on-demand. Along with ACTARUS,
ANDROMEDA is available as part of the IBM’s Security AppScan Source pack7. It is
able analyze applications written in Java, .NET and JavaScript, in contrast to
ACTARUS’s JavaScript.

A thorough comparison between ANDROMEDA and ACTARUS is presented at the
conclusion of this thesis, in Section 6.6.

2.3.1 Approach

The process starts by building a call graph representation of the whole program based
on an intraprocedural type inference. Also, when there is a need to estimate an alias
relationship, which is caused by vulnerable data flow in the heap, the tool performs an
on-demand alias resolution. With that way there is no need for a complete pointer
analysis.

This has led to:

 A proper, rapid and efficient analysis of large code applications, since only a
fraction of them needs to be examined.

 The prospect of incremental analysis. Incremental analysis allows the efficient
reexamination of the application after a part of its code has changed. This can
happen because of a property of the framework to track vulnerable data flows
locally or on-demand, separating the parts of the program that have taken part in
the analysis from the newly added code. To conclude, when a part of the code
changes, the framework does need to redo its data-flow analysis from the
beginning, but in the exact specific parts that changed.

In ACTARUS, the framework tracks the sources, downgraders and sinks through the
graph using the RHS enhanced algorithm. By using the path relations it deducts the
taint propagation between the variables. ANDROMEDA absents from a complete

7
 https://www.ibm.com/us-en/marketplace/ibm-appscan-source/details [Accessed: 4 July 2019]

https://www.ibm.com/us-en/marketplace/ibm-appscan-source/details

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 32

representation of the program. Instead, it uses lazy data structures for its analysis.
There lies their key distinction.

2.3.2 Taint Analysis

ANDROMEDA uses three data structures throughout its analysis. These are a call
graph, a type hierarchy and data propagation graph. Instead of building the
representation for the whole program, ANDROMEDA employs greedy/lazy methods to
construct these data structures so it can perform the analysis.

The analysis starts with the assignment of the web application as input to the algorithm.
Then, the framework computes the type hierarchy of the application, by using
techniques for caching and demand evaluation. For the construction of the call-graph it
utilizes an oracle which deducts if the call graph needs to expand or not, based on the
calling methods and the taint source methods, capturing only the data it regards as
valuable. This oracle is based on control-flow reachability within the type-hierarchy
graph.

ANDROMEDA’s taint analysis flow representation is similar to the one ACTARUS uses,
that being using the notion of access paths. It takes as input a web application, along
with the libraries used, and it performs a data-flow analysis based on a set of security
rules. The access paths need to abide by them.

The security rules used in ANDROMEDA consist of a triplet < 𝑆𝑟𝑐, 𝐷𝑤𝑛, 𝑆𝑛𝑘 >,

where 𝑆𝑟𝑐, 𝐷𝑤𝑛 and 𝑆𝑛𝑘 are the sources, downgraders and sinks respectively in the
program to be analyzed. A vulnerability is reported when in a security rule data flows
from a source to a sink without having a downgrader between them. This is where the
tool focuses and thus the turn on-demand driven analysis.

Figure 21: ANDROMEDA’s concrete semantics

A state of the program 𝜎 = < 𝛦, 𝛨 > 𝜖 𝑆𝑡𝑎𝑡𝑒𝑠 = 𝐸𝑛𝑣 𝑥 𝐻𝑒𝑎𝑝 points from variables to
their values and from object fields to their values respectively. In order to track security
facts, there is an instrumentation of the above concrete semantics to maintain access
paths. An access path is a symbolic representation of a heap location represented as a

sequence 𝑥. 𝑓1 … 𝑓𝑛 of field identifiers (𝐹𝑙𝑑𝐼𝑑) rooted at a local variable (𝑉𝑎𝑟𝐼𝑑),
meaning an element in 𝑉𝑎𝑟𝐼𝑑 𝑥 (𝐹𝑙𝑑𝐼𝑑) ∗. For example, access path x.g denotes the

heap location of property g of the object x.

The access paths are needed in order to extend the state of the program to an

instrumented concrete state which is now a triple, 𝜎 = < 𝛦, 𝛨, 𝛵 > where 𝑇 is a set of
tainted access paths. The semantic rules for updating 𝑇 in case of an assignment or
field-read statement are similar to ACTARUS. Whenever a tainted value is assigned to
another variable, the later one is marked as tainted. In case of object properties, only
the property is regarded as tainted and not the object with all its property fields.

Using access paths can lead to the same issues ACTARUS had regarding the storeless
representation of the heap. ANDROMEDA solves these issues as ACTARUS, by using
a technique called access path widening. We have already described that technique in
Section 2.2.2.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 33

2.3.2.1 On-Demand Aliasing

The analysis is performing an on-demand alias analysis whenever untrusted data flows
into a property of an object. It is a lot similar to the issue ACTARUS describes regarding
the RHS algorithm, which would not take into account reference type object
assignments like the one explained in Example 2.

On-demand aliasing occurs whenever there is a corner case. In particular, whenever
there is an instruction assigning a variable to a property of an object, ANDROMEDA
traverses the control flow graph backwards searching for aliases of the object. A simple
example of this feature will be explained in the section below.

Figure 22: On-demand aliasing example

In the above example, set 𝑇 has an already tainted access path. Variable x is assigned

a property of another object that means it is pointing to the memory address of the
property c of object z.

Reaching the second instruction triggers the on-demand analysis. Its steps are the ones
written on red font. Because of this assignment and because of object x pointing to the

memory address of z.c, the property f of the property c of object z has become

tainted. ANDROMEDA successfully returns backwards to the graph to pinpoint any alias
relations of x finding the first instruction and deducting that z.c.f is correctly tainted.

2.3.2.2 Change Impact Analysis (CIA)

The CIA algorithm is the one responsible for the feature of incremental analysis. In more
detail, it examines all the layers of the data structures of ANDROMEDA. In case of a
code change in a compilation unit, it resolves the differences between the two versions.
It does that by exposing all the points of the program that have been affected and
modifies the data structures using them appropriately. For example, a code change may
result in a modification of the call graph, while the type hierarchy stays intact.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 34

3. DYNAMIC TAINT ANALYSIS TOOLS

Both types of analyses, either that is a static or a dynamic taint analysis, detect
vulnerabilities in the subject code. The big difference is where they find problems in the
development lifecycle. As mentioned, static taint analysis identifies vulnerabilities before
you run a program by examining the source code. On the other hand, dynamic taint
analysis adds instrumentation to the program so it can reach conclusions regarding the
taint propagation during the execution.

Even though their goal is the same, they tend to find errors in code that the other
cannot. There are defects that a dynamic taint analysis can miss, the static one can
detect successfully and vice-versa.

This taint analysis category comprises of a sole framework.

3.1 General Frameworks

In the following we are going to describe the two versions of the Jalangi framework and
its key aspects. It is used for the basis instrumentation of the dynamic taint analysis tool
presented in the ending of the section, due to its unique mechanic which allows the
proper dynamic analysis of a program.

3.1.1 Jalangi

The Jalangi framework [4] is an open-source dynamic analysis framework for the
JavaScript language available in Github8. It is a platform-independent framework,
meaning that its design is not relied on browsers or JavaScript engines. This design
does not require the continuous maintenance of the framework in case of a browser
update and it is not tied to a particular engine. Had it been tied to a browser, whenever
there was an update it would need to be updated as well. In contrast to this, the analysis
can be performed in any machine, desktop or cloud.

The tool is no longer supported but it is still available. We discuss it to explain some key
features there are used to its updated version Jalangi2 and also mention the fact that
there is a simple taint checker implemented within. It combines two basic approaches:

 Selective record-replay: This mechanism allows the user to record a specific
part of the program and execute it again (replay). This can be really useful to a
person performing an analysis since he can thoroughly examine an unexpected
behavior.

 Shadow values: This mechanism allows the storage of useful information about
an actual value in the program. Every value in the program can be associated
with a shadow one.

3.1.1.1 Selective record-replay

As the name indicated this technique is divided into two phases, the record and the
replay. During the record phase, the whole application is being executed along with the
instrumented parts of the program the user has added for his analysis. During the replay
phase, only the parts of the program that the user has added instrumented code get
replayed. The native functions and the uninstrumented parts do not.

This division in two phases allows their distinct execution. One can run the record
process on one platform and then the replay process on another platform. For example,
someone whose computer is not that powerful and the application they want to process

8
 https://github.com/SRA-SiliconValley/jalangi [Accessed: 4 July 2019]

https://github.com/SRA-SiliconValley/jalangi

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 35

is demanding, can run the record process through a cloud machine with higher
capabilities and then complete the record-replay process with his desktop machine.

As mentioned, the replay phase does not track uninstrumented code or native functions
executing. Instrumented functions that get called inside that code pose a demanding
problem for the framework. Jalangi records each object and function with a unique
numerical identifier. Also, it records the explicit calls to the instrumented functions which
are invoked by functions whose code is not taking place in the replay process.

Since the replay phase only executes a fraction of the program, it needs to load the
correct values so the user can successfully replay their instrumented code. Jalangi
makes use of the shadow memory in order to address this problem. During the record
phase, the framework keeps track of the memory loads taking place only inside the
instrumented code. If during that process Jalangi finds out that the values it has
recorded in the shadow memory for its variables are different than the ones at the end
of the process, due to uninstrumented code or native functions in between changing the
values of variables, it records them for the next phase.

In order to achieve this, the instrumentation taking place during the replay phase uses
the function sync, which makes sure that in the end of the record process the actual

value of a variable and the value of its shadow variable are not mismatched. With this
way, the values loaded for the replay process are sure to be correct.

3.1.1.2 Shadow Memory

The shadow values and shadow execution play a major role in the vector of a dynamic
taint analysis. They are the ones responsible for propagating the taint and holding taint
information. For example, Jalangi when noticing a taint source it saves the fact that it is
vulnerable input and that it can propagate taint in its corresponding shadow value.
Hence, whenever it comes into contact with other variables, it makes sure they are
marked as tainted too.

As mentioned, the instrumentation of the application is performed during the record
phase of the analysis. The same applies to the shadow execution, since it is a form of
instrumentation defined by the user.

The core of the shadow execution is associated with the object AnnotatedValue. This

object has two fields, one for storing the actual value of a variable and another one for
storing the shadow value of a variable, meaning extra information for it.

Figure 23: The AnnotatedValue object

For example, if during a taint analysis and user input method is encountered, the actual
value of the method can be replaced by a user defined annotated value. This can be
done by creating a new AnnotatedValue object which has two methods, one returning

the actual value field of the object and the other one returning the shadow value field of
the object.

Jalangi makes sure built-in JavaScript methods are performed on the actual values
even if they are replaced by user defined annotated values, by injected the appropriate
instrumentation code.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 36

3.1.2 Jalangi2

Jalangi’s advanced version is Jalangi2 [5]. Like its predecessor, it is an open-source
dynamic analysis tools that can also be used in a hybrid analysis. Its code can be found
on Github9. It can handle all the dynamic features of the JavaScript language. The key
difference with Jalangi is the removal of the record-replay mechanism.

On the other hand, it still retains the shadow memory mechanism but in a more
advanced manner. There is a new shadow memory API that can be found on the
documentation of Jalangi2. Expanding further into this API does not match the goals
and targets of this thesis. The basic idea is the same as Jalangi with the exception of
the way the shadow memory is manipulated by the user.

The structure of Jalangi2 is seen below:

Figure 24: Jalangi2 process

3.1.2.1 Jalangi Instrumentation

Takes as input the HTML and JavaScript code and produces the Source Information
with the Instrumented Files.

In more detail, during this process the framework takes the various instructions in the
JavaScript program and adds instrumented code so it can process them in the Jalangi
Runtime process happening later.

3.1.2.2 Source Information

During the instrumentation, Jalangi2 associates a unique instruction identifier iid to
each instruction. Also, during the runtime it associates a unique script id to each script.

9
 https://github.com/Samsung/jalangi2 [Accessed: 4 July 2019]

https://github.com/Samsung/jalangi2

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 37

The user can take advantage of such information while processing his Jalangi Callback
functions by using the methods J$.getGlobalIID(iid) which returns the unique id of

the expression and J$.iidToLocation(iid) which returns the location of the specified

iid.

3.1.2.3 Jalangi Runtime

Takes as input the Instrumented Files and the User written Analysis and produces the
Output of the analysis and a Trace which can be used for Offline Analysis.

The User Analysis file notes the Jalangi Callback10 functions that take part in the
analysis. The implementation of an analysis requires the implementation of several
callback functions. Specifically, an analysis is declared when there are objects assigned
to J$.analysis object, where each object defines the instrumentation code for a

callback function. Whenever a condition or instruction in the program is executed the
corresponding property of the analysis object is called. The user can define these
properties as they prefer to deduct conclusions concerning his analysis. An analysis is
always terminated by calling the endExecution callback function.

Below we are going to present a simple analysis that shows how many times a for-loop
was executed:

In Figure 25 there is a dummy for-loop that does absolutely nothing. After its

execution there is a message logged in the console. The analysis is customized by the

implementation of the conditional callback function:

10

 Jalangi Callback functions can be found in the jalangi2/docs/MyAnalysis.html in the Github page

1. for (var i=0; i<5; i++) {}

2. console.log("Done doing absolutely nothing.");

Figure 25: Dummy program

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 38

The analysis starts by assigning two properties to the J$.analysis object. Each

property is represented by a callback function.

The conditional takes as arguments the instruction identifier of the conditional

examined. It records the id of the conditional and prints to the console the boolean
values true or false based on the result evaluation of the condition.

The endExecution does not take any arguments. It is called at the ending of the

analysis in order to print the location of the conditional that took place. Normally, it is
used to conclude some results about the analysis.

The output printed when executing the above analysis is the following:

Figure 27: Jalangi2 analysis example output

3.1.2.4 Offline Analysis

A useful mechanism in the framework that allows the users to analyze a previously
captured Trace without requiring the analysis to start from the beginning and performing
it offline.

3.1.2.5 Output Visualization

Takes the Source Information file and associates the output file with the exact locations
in the program to produce a more precise analysis deduction.

3.2 Ichnaea

Ichnaea [8] is a platform-independent dynamic taint analysis tool based on the Jalangi2
instrumentation framework. It handles the ECMAScript 5 language. Its platform-

1. (function(){

2. var id;

3. J$.analysis = {

4.

5. conditional : function (iid, result) {

6. id = J$.getGlobalIID(iid);

7.

8. if (result) {

9. console.log("true");

10. } else {

11. console.log("false");

12. }

13. },

14.

15. endExecution : function () {

16. var location = J$.iidToLocation(id);

17. console.log("The boolean values were printed by the "

18. + "conditional callback function invoked at "

19. + "location: " + location + ".");

20. }

21. };

22.}());

Figure 26: Jalangi analysis example

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 39

independent feature means there is no need to modify the JavaScript interpreter in
order to keep track of the information flow analysis, just like Jalangi and Jalangi2. It can
be used with any existing JavaScript engine. It was designed in order for developers to
have in their possession a tool that they can use during the development of an
application.

As with the other tools described, the Ichnaea framework is not an open-source tool. It
incarnates the approach presented on the remaining section.

3.2.1 Approach

The JavaScript source code to be analyzed is given as input to Ichnaea along with a
configuration file called taint specification. This configuration file specifies the taint
sources, tainted sinks and extra configurations.

Specifically, the configuration file may specify the taint sources and sinks through a
configuration parameter called taintSpec, which has two properties called sink and

source that are arrays of properties to values. If someone for example wants to assign

the method eval as a sink they will need to assign into the sink array of properties a

property called name with the corresponding value eval.

In addition to this, there can be other configuration parameters that enhance the
analysis and provide useful features, such as:

 taintNodeCommandLineInput. If set to true all the command line arguments

given to the program are assumed they are tainted.

 taintAllUserDefinedString. If set to true any user defined string will be
treated as tainted data.

 reportFlowLocation. If set to true the analysis will be able to report the location

of the first tainted flow found.

 reportAllFlows. If set to true the analysis will be able to report the location of

all the flows found.

After specifying the configuration file for the taint sources and sinks and with the help of
Jalangi’s instrumentation, Ichnaea generates a sequence of instructions for an abstract
stack machine. The abstract machine is implemented as a Domain Specific Language
(DSL), meaning it is developed to meet the needs of the particular framework.

The abstract machine includes operations among abstract values. Abstract values are
strings representing locations, where each location is represented by the file’s name
and the line’s number. Every abstract value is mapped to a local variable or object
property.

The abstract machine defines a set of operations described below:

 push(): pushes true or false to the stack indicating if the value is tainted or

not. True means it is tainted, false it is not.

1. Spec.taintSpec = {

2. "source" : [{"name" : "prompt"}],

3. "sink" : [{"name" : "eval"}]

4. };

Figure 28: Ichnaea taint specification example

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 40

 pop(): pops off previously pushed taint of an expression and discards its value.

 unaryop(op): pops off the stack, applies the unary operator op for the evaluation

of an expression and then pushes the result back into the stack.

 binaryop(op): pops off the two top elements of the stack, applies an operator

op for the evaluation of the expression and then pushes the result back into the

stack.

 initvar(var): pops the stack and creates a new map entry for the local

variable var according to the tainted value popped.

 readvar(var): loads taint for the variable var and push it into the stack.

 writevar(var): stores taint value on top of the stack into the variable var.

 setvar(var, taint): stores tainted value taint into local variable var.

 initproperty(obj, prop): pops the stack and initializes the property prop of

an object obj according to the tainted value popped.

 readproperty(obj, prop): loads taint for the property prop of an object obj

and pushes it into the stack.

 writeproperty(obj, prop): stores taint value on top of the stack into the

property prop of an object obj.

Instructions writevar and writeproperty are always followed by a pop method, since

they do not pop a taint value from the top of the stack. Literals, functions and objects
are never tainted. Hence, the generation of abstract stack machine instructions equal to
a boolean false push in the stack.

The instructions we described above provide a solid structure for the algorithm.
Nonetheless, they do not cover all of JavaScript’s dynamic features, such for example
eval. Let us see how such features are handled:

 Arrays: The abstract stack machine handles arrays and objects as they were
completely the same type.

 Getters and setters: These read and writes are not handled as property read and
writes as they are used. Instead, they are modeled as a function call.

 Apply and Call: These functions are used to assign the this pointer to a function.
Their difference is that apply gets an array of arguments, whereas call gets the
arguments separated by comma. These functions are represented as a call to
the function they are used.

 eval: eval operations are regarded as sinks during the analysis. However,

because of the taint specification extra configuration argument reportAllFlows

described before; there is a need to examine the code inside an eval. The code

eval needs to evaluate is treated as an additional script in the program and it is

instrumented as if it was not inside it.

 Exceptions: They are modeled with the declaration of the special variable
throw. In more detail, when there is need to use a throw statement, the

framework models it as writevar(‘_throw_’). Respectively, a catch statement

is modeled by a readvar(‘_throw_’) in order to process the throw statement.

 Arguments: Each access to this array object, which is available to all methods, is
handled as an object access.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 41

 Arguments in function calls: Calling a JavaScript function with less parameters
than the arguments declared results in the missing parameters assigned the
undefined value. In the analysis there are pushed false taint values in the stack.

 Native functions: Native functions in JavaScript take callback functions as
parameters. For that reason, in the taint analysis each native function is
associated with its callback.

Executing these instructions generated with the abstract machine produces a report for
the taint flows of the application. The execution is performed by a JavaScript engine or
browser. A portrayal of the process taking place in Ichnaea can be seen in the Figure
29.

What makes Ichnaea platform-independent is its ability to execute the generated
abstract machine instructions in another platform than the one the application was
developed, since it does not need a specially customized JavaScript engine or
instrumented browser.

Figure 29: Ichnaea's Structure

3.2.2 Taint Analysis

The instructions for the abstract stack machine are issued with the help of Jalangi’s
shadow memory feature, enabling the association between object identifiers with
objects and arrays. In the current implementation Jalangi2 is used.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 42

To describe the way the instructions for the abstract machine are generated and how
the framework understands a variable from a taint source reaches a sink we are going
to examine an example.

In the above example, a user gives as input an Internet Protocol (IP) address to a
platform and then platform informs him if the host of the IP he gave is alive or not. This
could be used to check if a website is available or not. Someone can observe that the
above code snippet is vulnerable to a code injection, since it accepts user input without
validation. If a user gave as input the following statement ‘127.0.0.1 && sudo rm –
rf /‘ they would get a message responding to his ping request and succeed in the

deletion of the whole server’s files.

Bear in mind that literals, functions and objects are never considered taint, after every
writevar or writeproperty follows a pop and the instructions for the abstract machine

are issued from the right to the left, meaning if there is an assignment, the instructions
generated are first for its right part and then for the its left part. Also, there is a taint
specification file setting the sink to be the command exec.

The abstract machine instructions after the code instrumentation with the help of Jalangi
would be the following:

1. var child_process = require('child_process');

2. var array = ['ping'];

3. array[1] = process.argv[2];

4. var command = array[0] + array[1];

5. child_process.exec(command,

6. function (err, stdout, stderr)

7. {

8. console.log('stdout: ' + stdout);

9. console.log('stderr: ' + stderr);

10. if (error !== null) {

11. console.log('exec error: ' + error);

12. }

13. });

Figure 30: Ichnaea sample program

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 43

Figure 31: Abstract stack instructions generated for the example

As seen, the line 2 of the example generates five instructions. At first, a taint value for
the literal ‘ping‘ is pushed. Then there is an initialization for the element 0 of the array

obj7 and a push of a taint value for the array literal. Finishing up, the array object

initialized is written to the variable array following up by a pop.

The line 3 of the example is where the taint propagates. The element of the array
array[1] is assigned with the user input argument given. It is handled as a taint
source. That can be seen in line 14, where the exact location of the taint source is

pushed to the property 1 of the object obj7 meaning the array[1] variable.

In line 4 is where the variable command is assigned the string concatenation of the
array elements array[0] and array[1]. Since array[1] has been tainted the taint

needs to traverse to the command as well. Binaryop instruction by popping the stack

twice and assigning the result back to it is responsible for that and succeeds, since in

Line 2:

1. push(false);
2. initproperty('obj7', '0');
3. push(false);
4. writevar('frame3:array');
5. pop();

Line 3:

6. readvar('frame3:array');

7. push(false);

8. readvar('frame5:process');
9. push(false);
10. readproperty('obj9', 'argv');

11. push(false);

12. readproperty('obj11', '2');

13. pop();

14. push('(example.js:3:12)');

15. writeproperty('obj7', '1');

16. pop();

 Line 4:

17. readvar('frame3:array');

18. push(false);

19. readproperty('obj7', 0);

20. push(false);

21. readproperty('obj7', 1);

22. binaryop('+');

23. writevar('frame3:command');

24. pop();

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 44

line 23 in the variable command is assigned the tainted source location which was

pushed back in line 14 to the property 1 of the object array.

Finally, the instructions reach the sink exec which was specified to be one in the taint

specification file. The taint report issues the exact location of the tainted flow.

In case in our example line 4 was substituted with the native function reduce the
instructions would be the following, since Ichnaea handles the native functions with
nested callback functions successfully, given there is only one callback function inside
it.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 45

Figure 32: Abstract stack machine instruction using the native function reduce

from the accumulator to the first argument
of the callback function

26. readvar('_accum_');

27. push(false);

28. push(false);

29. readproperty('obj7', '0');

body of the callback function

30. push(false);

31. push(false);

32. readproperty('obj17', '0');

33. push(false);

34. push(false);

35. readproperty('obj17', '1');

36. binaryop('+');

37. writevar('_ret_');

38. pop();

from the return value of the callback
function to the accumunlator

39. readvar('_ret_');

40. writevar('_accum_');

41. pop();

from the accumulator to the return value of
reduce

42. readvar('_accum_');

43. writevar('_ret_');

44. pop();

Line 4:

45. pop();

46. readvar('_ret_');

47. writevar('frame:command');
48. pop();

Line 2:

1. push(false);

2. initproperty('obj7', '0');

3. push(false);

4. writevar('frame3:array');

5. pop();

Line 3:

6. readvar('frame3:array');

7. push(false);

8. readvar('frame5:process');

9. push(false);

10. readproperty('obj9', 'argv');

11. push(false);

12. readproperty('obj11', '2');

13. pop();

14. push('(example.js:3:12)');

15. writeproperty('obj7', '1');

16. pop();

Line 5:

17. readvar('frame3:array');

18. push(false);

19. readproperty('obj13', 'reduce');

20. push(false);

21. push(false);

22. push(false);

from the second argument of reduce to the
accumulator

23. pop();

24. initvar('_accum_');
25. pop();

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 46

4. STATIC & DYNAMIC TAINT ANALYSIS TOOLS

As we have presented, both types of tools have the same goal but operate in a different
way. Hence, it is a good practice to integrate both analyses to form a hybrid taint
analysis framework that uses static analysis for the thorough examination of the
program and a dynamic analysis for the manipulation of the dynamic features of
JavaScript.

Following, we present a commercial framework and an approach we have found, that
cover these thoughts.

4.1 JavaScript Blended Analysis Framework

4.1.1 Approach

The JavaScript Blended Analysis framework (JSBAF) [9] was designed in order to
combine both types of analyses, static and dynamic. Its static infrastructure was built on
the IBM WALA open-source static analysis framework. The reasoning behind this
approach is derived from the fact that dynamic analysis can detect flaws in the program
that the static analysis misses, like for example a dangerous eval operation. The
process taking place for this tool is composed by two phases, the dynamic and static
ones.

The first one is separated in two sub-phases:

Figure 33: JSBAF's Dynamic Phase.

 Test Selector: Chooses a subset from a set of tests that provide good coverage
of the program given for processing, to achieve good analysis and in lower cost
that using all the set.

 Execution Selector: Collects run-time information for every test executed and
produces a dynamic trace for each one of them. For example, function calls.

Respectively the second one is separated in the phases described below:

Figure 34: JSBAF's Static Phase.

 Static Infrastructure: Analyzes the program.

 Solution Integrator: Merges the data-flow solutions from different test traces
into a program solution. Then decides if there should be more traces to analyze.

The structure of the framework is portrayed by the Figure 35 below:

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 47

Figure 35: Structure of JSBAF

Regarding its design, JSBAF performs dynamic analysis in each dynamic trace
separately and it merges the results. Even though it would be faster to have a single
uniform dynamic trace instead of multiple small ones, the designers chose this
approach, because of its accuracy.

As with ACTARUS, JSBAF handles some of the dynamic issues of the language that
arise during static analysis. The rest, such as object creations, prototype chaining are
modeled by default by IBM’s WALA framework. There can be solid improvements
regarding their accuracy though.

4.1.1.1 Eval

A pure static analysis may miss eval expressions or approximate them in the worst

case, due to the fact that they produce code at runtime. This dynamic generated code
makes static analysis unsafe when analyzing JavaScript programs.

In this specific framework, eval calls are being monitored by the Execution Collector

during the dynamic phase of the analysis. The Execution Collector gathers them along
with any code they produced and transfers them to the Static Infrastructure, which
analyzes the program including the aftermath of the eval calls.

4.1.1.2 Function Variadicity/Arguments Array

Function Variadicity occurs when a function is called with a number of parameters that
differ from its declaration. Static analyses ignore this property of the language, because
the number of the parameters in which a function is called cannot be known before
runtime. This problem is again assigned to the Execution Collector since it is able to
detect the exact number of parameters for every function call.

With this way, instructions that are based on the number of parameters given and don’t
match with that number are pruned, with the pruning mechanism. Instead, static
analysis would assume that the data flow could take any branch resulting in a false
result.

JSBAF’s pruning mechanism, knowing the arguments given at runtime presents a form
of context sensitivity. A static analysis would assume that every branch is feasible.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 48

Instead as shown in Figure 36 the variable input can take two values depending on

the length of the arguments.array. So examining the number of arguments and

finding the correct one depending on occasion can result in pruning the unnecessary
code.

4.1.2 Taint Analysis

Continuing we are going to describe JSBAF’s phases in detail and see how they differ
from pure static analyses, like ACTARUS.

4.1.2.1 Dynamic Phase

As mentioned, this phase of the framework is consisted of two processes. The
Execution Selector, which is responsible for extracting the page traces, through the
Trace Extractor and the Trace Selector, which is responsible for choosing the best page
traces for analysis.

The Execution collector relies on a specialized version of TracingSafari, an
instrumented version of the open-source web browser engine WebKit11, developed for
characterizing behavior of JavaScript programs.

TracingSafari records the operations performed by the JavaScript’s interpreter of the
Safari web browser including reads, writes, deletes, field adds. JSBAF’s

dynamic phase requires human interaction. That is why the representation should affect
the browser performance slightly. TracingSafari collects only the information that is
essential for the taint analysis.

To ensure the security of a website, web tester checks all the pages of the same
domain. A web application’s operation may have code from different pages. The
instructions gathered get separated in page traces, where each trace includes a series
of instructions from the same page of the website. There is at least one trace for each
page.

A page trace consists of a dynamic call tree, recorded object creations, compile-time
visible JavaScript source code and dynamically generated code including any executed
library code.

11

 https://webkit.org/ [Accessed: 4 July 2019]

1. function variadicity_example() {

2. var input;

3.

4. if(arguments.length === 0) {

5. input = null;

6. } else {

7. input = arguments[0];

8. }

9.

10. other_function(input);

11. }

Figure 36: Function variadicity example

https://webkit.org/

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 49

The Execution Collector records the exact number of parameters for each function
called. The Trace Extractor is the one responsible for constructing the page traces for
each web page.

However, in a web application there might be similar pages. That results in similar page
traces as well. JSBAF framework avoids checking such cases, since the results taken
from examining them compared to the time spent are not satisfactory.

This is where Trace Selector interferes by choosing the traces which differ the most and
cover a large extent of the application. The traces chosen satisfy the following
requirements by including:

 Dynamically generated code.

 Methods.

 Object creations.

Choosing which page traces prevail over others is assigned to different metrics
developed by the framework.

4.1.2.2 Static Phase

The Static Phase is where the page traces are statically analyzed by the WALA
framework. JSBAF’s Call Graph Builder is responsible for building a call graph for every
page trace as a WALA data structure with pruned source code for each node. Since
WALA cannot detect dynamically generated code, JSBAF has created the Code
Collector to obtain that code from the page trace. Also, the Call Graph Builder applies
pruning to the code of all functions as mentioned in the Function Variadicity handling.

Below we are going to describe the static taint algorithm which detects the program for
any integrity violation. It is divided in four steps:

1. A pointer analysis for JavaScript performed in order to obtain aliases of objects in
the program. This technique helps establish which pointers or heap references
can point to which variables. There are a lot of corner cases that can be missed
without examining the heap of the program, like the ones referenced in the
examples given in ACTARUS and ANDROMEDA.

2. Sources and sinks are automatically identified in the program:

 A data source is called tainted when the user of an untrusted third party
has control of its value. That is for example a user. The same for
JavaScript functions from an untrusted third party. Taint sources like that
can be JavaScript’s event handlers.

 Every method that writes sensitive information is referred as a sink.
Variables holding browser/user information are regarded as sensitive.

3. A call-graph reachability analysis is performed to filter out any node that is not a
direct call path from a method containing taint sources to a method containing
sinks. The remaining nodes are called candidates.

4. A performance of an interprocedural traversal of the call graph from each taint
source to each sink, from the candidate nodes left out of the call-graph
reachability analysis. At each encountered candidate method, an intraprocedural
data dependence analysis is applied to track the tainted variables into candidate
calls. If one argument of the call is tainted, we assume all the arguments are
tainted as an optimization to avoid analysis of these methods. A taint propagation
process to conclude the analysis.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 50

4.2 An approach on XSS Prevention

Due to the severity of XSS attacks, this paper [10] proposes a technique that tracks the
information flow of sensitive information on the client-side. Monitoring the client-side of
an application can eliminate all the types of XSS attacks.

4.2.1 Approach

In more detail, it uses the JavaScript engine of the browser to track the flowing of
sensitive information, by using a dynamic taint analysis. However, since a dynamic taint
analysis may miss taint propagation on some occasions, because of the fact that the
attacker may be able to execute code that it does not cover, there are also some
fractions of the code that are analyzed by a static taint analysis. The approach
presented uses in its majority dynamic taint analysis and on-demand static taint
analysis.

The description of this taint analysis technique was incorporated into the Mozilla
Firefox12 1.0 pre web browser. For the verification of the mechanism was used a web
crawler based on Firefox and able to traverse the application and perform user actions.

4.2.2 Taint Analysis

As mentioned the taint analysis used in this approach is a hybrid variation combining a
dynamic and static taint analysis.

4.2.2.1 Dynamic Taint Analysis

The dynamic taint analysis taking place in the hybrid analysis has the ability to track
data-dependencies and control-dependencies to ensure correct taint propagation. That
means that when there are assignment instructions where a tainted value is assigned to
another value, that value becomes tainted too. The same happens, in case of
operations like switch, if-then-else when they are based upon a tainted variable.

The result is marked as tainted.

A really experience attacker can try to sanitize tainted variables so he overpasses the
dynamic taint analysis by using complex structures. For example, by creating a
structure that decomposes a string to characters and then merges them back together.

In the example in Figure 37 the attacker is trying to overcome both the dependencies
mentioned. At first, they try to assign parts from a taint source to the properties of an
array and then from that array they try to assign the characters of the cookie using a
switch.

By using data dependency, when the cookie string is assigned to the array, since on

the right of the assignment is a tainted variable the array becomes tainted too. By using
direct control dependencies, when the technique notices that both conditions are
manufactured by a tainted variable all the results they produce are masked as tainted.
That is why it is essential to track both types of dependencies accurately.

12

 https://www.mozilla.org/el/firefox/new [Accessed: 4 July 2019]

https://www.mozilla.org/el/firefox/new/

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 51

The mechanism responsible for propagating the taint is locating on the JavaScript
engine of the web browser. Specifically, a JavaScript program is parsed and compiled
into bytecode which is then executed by the JavaScript engine’s interpreter. The engine
is extended to understand when the result of a bytecode instruction could be tainted or
not, by separating the instructions in four major categories where each category has its
own rules regarding taint propagation:

 Assignments: Whenever a tainted value is assigned to another variable’s value,
the later one is marked as tainted. In case of object properties, when a field
identifier of an object or an element of an array is tainted, the whole structure is
marked tainted. That is so control-dependencies and function calls can
propagate taint correctly.

 Arithmetic and logic operations: The result of such operations is tainted when
one variable taking part in the operation is tainted.

 Control structures and loops: As mentioned before when a variable in the
condition of such structures is tainted, every variable assigned value inside them
is marked as tainted. In more detail, a tainted scope is wrapped around the
control structure checking all the operations inside it marking the tainted
variables according to the assignments taking place.

 Function calls and eval: Functions called inside tainted scope are regarded as
tainted. If one of the parameters is tainted then the associated arguments are
tainted to. Everything that is assigned inside a tainted function or returned by it is
marked as tainted.

1. var cookie = document.cookie;
2. var cookie_array = [];

3.
4. for(i=0; i<cookie.length; i++) {
5. cookie_array[i] = cookie[i];

6. }
7.
8. var duplicate = '';

9. for(i=0; i<cookie_array.length; i++) {
10. switch(cookie_array[i]) {
11. case 'a': duplicate += 'a';

12. break;
13. case 'b': duplicate += 'b';
14. break;

15. .
16. .
17. .

18. }
19. }
20.

21. document.location =
22. 'http://www.malicious.com/cookiestealer.php?cookie='
23. + duplicate;

Figure 37: XSS attack trying to override data and control dependencies

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 52

The eval method is treated in a special manner. The arguments given to it are

executed as a JavaScript program. If a parameter of it is tainted or the eval

function itself is tainted, due to being called in a tainted scope, everything inside
it is regarded as tainted.

At last, another useful mechanic that the extended JavaScript engine has is that it
manages another trick an attacker may use from his arsenal, that of DOM laundering.
They can store a tainted variable into a DOM element and access it later, so the
analysis will not be able to see through it and handle it as tainted. However, taint
information is not lost when a variable leaves the JavaScript engine. So the attacker will
not be able to trick the analysis.

4.2.2.2 Static Taint Analysis

As mentioned static taint analysis confronts issues that the dynamic taint analysis
cannot track. Dynamic taint analysis cannot figure indirect control dependencies. Taking
for example an if-then-else structure which is based on a tainted condition,

operations taking place on the branch executed are the only ones marked as tainted,
despite the tainted scope generated around the control structure.

This can be abused strategically by an attacker by evaluating always a branch as false
in order to not mark a critical value inside the branch as tainted and use it later in the
program to update him on his operations.

This kind of an attack is what produces the need of a static taint analysis to thoroughly
check indirect control dependencies by examining all the possible paths in the condition.
The attacker by taking advantage of the correlation between the variables correct and

incorrect, which a dynamic taint analysis cannot trace, he is able to decrypt the

cookie of the user. Instead of checking a character one by one he can also try and
guess the cookie value or perform a binary search. The point is he can leak information
out of the application to his cause.

1. var cookie = document.cookie;

2.

3. var correct = false;

4. var incorrect = false;

5.

6. if (cookie[0] == 'a') {

7. correct = true;

8. } else {

9. incorrect = true;

10.}

11.

12.if (correct === false) {

13. document.location =

14. 'http://malicious.com/cookiedecryption.php?retry=true';

15.}

16.

17.if (incorrect === false) {

18. document.location =

19. 'http://malicious.com/cookiedecryption.php?cookiechar=a';

20.}

Figure 38: Cookie decryption by exploiting indirect control dependencies

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 53

To counter such an attack the technique performs a linear static analysis in every
branch of a control structure whose condition is related to a tainted variable. Precisely, if
the static linear analysis passes an instruction responsible for assigning values to
another variable inside the bytecode tainted scope of the tainted control structure it
taints the variable.

Variables assigned inside such control structures, despite being executed or not, are
considered vulnerable. In the previous example described such an analysis would
characterize both variables as tainted and the attacker would not be able to leak
information back to them.

However, instructions responsible for assigning the properties of an object use the stack
to designate their target object, due to JavaScript being a stack-based language. That
has led to the making of a stack analysis which sole purpose is to estimate the elements
inside the stack for every instruction in the program. This stack analysis is achieved
using an intraprocedural data flow analysis. As explained in the Introduction Section an
intraprocedural analysis performs the instructions one by one and simulates its potential
results and assumes that the procedures invoked may alter all the visible variables. In
this paper, the simulations of the instructions are performed on an abstract stack.

In the implementation presented in the paper not all the bytecode instructions are
correctly implemented to fit the process. Instructions like throw and safe have not been

modeled. When the analysis tracks such instructions it automatically taints them.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 54

5. OTHER TOOLS

Besides the frameworks we have analyzed that perform taint analysis, we felt it would
be delicate to describe some other tools we came across that have the exact same goal
but operate in a different way than the taint analysis standards presented before.

The first tool presented, employs an interesting test technique through fuzzing to the
subject program while the second uses an API able to detect and sanitize the tainted
input while the program is executing, so an attack is averted.

5.1 FLAX

The basic philosophy behind FLAX framework [11] is a type of dynamic analysis called
tainted enhanced blackbox fuzzing. It is a hybrid technique combining the features of
dynamic taint analysis and random fuzzing. Fuzzing or random black-box testing is a
popular mechanism for testing applications. However, it doesn’t perform too well when it
has a large number of inputs.

In this approach it is used for creating tests which represent a Client-Side Vulnerability
(CSV), confronting with this way the constraints of pure dynamic taint analysis. Some of
the CSV it takes care are XSS, Command Injection, Cookie-sink vulnerabilities and
Origin Mis-attribution.

It is also worth mentioning, that this mechanism eliminates the false warnings which
would result from a taint analysis tool.

5.1.1 Taint Analysis

The taint analysis the tool performs is divided in five steps:

1. The application to be analyzed is executed. It is given a harmless input. The
execution of it is operated in an instrumented browser resulting in the generation
of a trace in JavaScript Simplified Instruction Language (JASIL). In a few words,
the application is transformed to a JASIL IR trace appropriate for analysis.

JASIL is an IR used to simplify the taint analysis, since it gets rid of the dynamic
semantics of JavaScript by having a small set of operations that represent a
subset of JavaScript’s most used semantics in applications.

In order to downgrade the semantics of JavaScript and generate a JASIL trace,
Webkit’s13 open-source JavaScript interpreter, which is the core of the Safari web
browser14, got instrumented appropriately to translate the bytecode executing to
JASIL form. Webkit’s interpreter was also used in the JSBAF framework.

Complex functions and mechanisms in the language get downgraded to simpler
ones along with accesses like for example property look ups, creating and
destroying objects, which are handled by map of the JASIL form. This simplicity
that JASIL provides is key for the dynamic taint analysis of a complex language
such as JavaScript.

FLAX is not platform-independent, since in order to produce the JASIL trace
there is need of a special instrumented browser.

2. Perform character-level dynamic taint analysis on the JASIL trace generated
from step 1. The analysis tracks data flows from the input data to the critical sinks
of the application and finds out which part of the initial benign data given to the
application as input can be exploited.

13

 https://webkit.org [Accessed: 4 July 2019]
14

 https://safari.en.softonic.com [Accessed: 4 July 2019]

https://webkit.org/
https://safari.en.softonic.com/

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 55

FLAX categorizes sinks according to their resulting exploit in case someone
injects malicious code. Its taint analysis is the like the ones have described
throughout the thesis. It carefully tracks the flow of the variables that are affected
from a taint source until they reach a sink. For such flows that do not get
sanitized while traversing paths to sinks, the tool groups them to subject them to
fuzzing.

3. The statements dynamic taint analysis characterizes as potentially harmful are

extracted into a program slice, called acceptor slice As. Such statements are the

ones that effect data, which are arguments of a sink operation or are associated
with the range of input characters that can be exploited according to the analysis.

When the framework tracks such a sink, it goes backwards from the sink to the

taint source and extracts the mentioned acceptor slice As. In order to continue to

the next step, that of fuzzing, the acceptor slice is converted back to JavaScript
from JASIL form.

4. This step describes the other half of the process, the sink-aware random fuzzing.

Each As is fuzzed to find a set of inputs that may exploit a vulnerability in the

application. Acceptor slices As are created and analyzed instead of the whole

program because of their reduced size. Fuzzing can focus only on a fraction of
the program input.

Specifically, the tool applies random inputs/tests on each acceptor slice As based

on the kind of sink they are based on. As mentioned before, FLAX categorizes all
the sinks based on the attack someone can perform by exploiting them. Hence
the term sink-aware random fuzzing, since the tool generates the appropriate
tests for each sink.

5. Verify the inputs that the fuzzer produced for each acceptor slice. This process is
done by performing the attacks on the web application. An oracle observing the
attacks deduces the final results on whether the attacks were successful or not. If
an attack was successful it notes it to the vulnerability report.

A detailed snapshot of the framework and its analysis can be seen below:

Figure 39: FLAX Analysis

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 56

5.2 Precise Taint Tracking

The approach presented in Precise Taint Tracking [12] refers to a method that expands
coarse-grained taint tracking. It is based on another approach proposed by Nguyen-
Tuong[13] called precise tainting, a framework that replaces the standard PHP
interpreter with a modified interpreter that precisely tracks taintedness and checks for
dangerous content in uses of tainted data.

Precise Taint Tracking tracks tainted input at the character level and gives the ability to
the developer to sanitize the tainted strings and continue the execution of the
application without the need to crash it. In more detail, it gives the opportunity to the
library writers to sanitize data when developers misuse the libraries by performing bad
programming techniques and on top of that warn them of their mistakes.

For example, in case of an SQL Injection Attack, the programmer is alarmed of his bad
use of JavaScript libraries concerning the manipulation of the SQL queries and at the
same time the dangerous SQL input is sanitized at its tainted substrings by adding
escapes.

Firstly, there is presented an implementation of a coarse-grained taint tracking, the first
technique implemented. Then using precise tainting the writers reached their final
framework, precise taint tracking.

5.2.1 Coarse-Grained Taint Tracking

Coarse-grained taint tracking forms a robust approach for the taint analysis of script
languages. Apart from tracking when one value is inserted in the program from outer
untrusted sources it also aims in sanitizing such values on the runtime and producing
warnings.

The implementation presented is based on the open-source JavaScript engine written in
Java, Rhino15 which is managed by the Mozilla Foundation16. For the tainting the
technique appends a special character token at the end of the string which is
considered dangerous. The Application Programming Interface for the analysis consists
of three main functions:

 taint(input): Takes a parameter input string input and applies a special

token to the end of it to mark it as tainted. Returns a copy of the initial string.

 isTainted(str): Returns true or false depending if the parameter str is
tainted or not.

 untaint(tainted): Untaints the parameter tainted string tainted and returns a

copy of the string without the special token indicating that it is tainted.

An example:

The cookie taken by the user’s session is marked as tainted. Thus the console when
calling the function isTainted on the variable cookie prints true.

15

 https://github.com/mozilla/rhino [Accessed: 4 July 2019]
16

 https://foundation.mozilla.org/en/ [Accessed: 4 July 2019]

1. var cookie = taint(document.cookie);
2. console.log(isTainted(cookie));

Figure 40: Coarse-grained taint tracking example

https://github.com/mozilla/rhino
https://foundation.mozilla.org/en/

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 57

5.2.2 Extending Coarse-Grained Taint Tracking

What led to the precise taint tracking was the inadequacy of the coarse-grained taint
tracking technique to detect which portions of the string are tainted. Instead, the whole
string was tainted. Hence, in case a small benign part of the string was assigned to
another variable that variable was regarded as tainted. In the example below, the value

true is printed to the console, which is a false positive.

For that cause, that implementation was extended to taint the values at a character
level. Also, the API was extended to include two more functions:

 taintedRegions(tainted): Returns an array of two numbers indicating the

start and the end indexes of the tainted parts of the tainted input parameter
tainted.

 sanitize(tainted, callback): Allows the modification of the tainted string

tainted by performing the function callback on it to each tainted region of the

string.

and extend the already implemented functions to be more delicate:

 taint(input): Also, appends a list of the ranges of the tainted parts of the

tainted input string input.

 isTainted(str): Now, correctly returns true only if there are portions of the

string str tainted. In contrast to the example presented before in the coarse-

grained taint tracking that presented a perfectly safe string as tainted.

 untaint(tainted): Removes taint from the tainted string tainted by removing

the special token at the end of the string along with the lists indicating the tainted
regions.

Let us see how the precise taint tracking may be used to track down an attempt on SQL
Injection and sanitize it at the same time, without crashing the actual program:

1. var cookie = taint(document.cookie);

2. var msg = "Your cookie is: " + cookie;

3. var sliced = msg.slice(0, 4);

4. console.log(isTainted(sliced));

Figure 41: Issue Regarding Coarse-Grained Taint Tracking

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 58

In line 1, the variable name which is given by the user and put inside the query includes

malicious code. The attacker is aiming to delete the whole table Users inside the

database. Thus, in line 2 it is marked as tainted and at line 9 it is sanitized by replacing
the single quotes with two single quotes, as show at the two figures below, Figure 43
and Figure 44. Hence, a possible SQL injection attack would result in an SQL syntax
error.

Figure 43: Escaping the UserName given

Figure 44: Result query after escaping the UserName given

Executing the example produces the following output in the console which shows the
correct tainting of parts of the string in contrast to the whole tainting the coarse-grained
taint tracking would perform:

Figure 45: Console output executing the example

1. var name = "Bobby Drop Tables'; DROP TABLE Users; -- ";
2. var tname = taint(name);

3. var query = "SELECT * FROM Users WHERE UserName='" + tname + "';";
4.
5. console.log(isTainted(query));

6. console.log(isTainted(query.substring(0, 36));
7. console.log(taintedRegions(query));
8.

9. var safe = sanitize(query, function (str) {
10. return str.replace(/'/g, "''");
11. });

12. console.log(isTainted(safe));

Figure 42: Precise Taint Tracking managing an SQL Injection attempt

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 59

6. CONCLUSIONS

The purpose of the thesis was executing multiple tests on the pool of taint analysis
frameworks collected to measure their Accuracy in terms of simple and complicated
attacks. However, the majority of the tools we have accumulated are commercial
without option for trial, apart from ACTARUS and ANDROMEDA. Both of these are in
the IBM’S Security AppScan Source for analysis pack. Unfortunately, we were not given
access to the trial version and thus we could not perform test cases on any framework.

Mitropoulos, et al [16] present a thorough classification of tools used to defend against
web application attacks by analyzing each of them based on their:

 Accuracy

 Availability

 Ease of use

 Performance Overhead

 Security

 Detection Point

Since we did not manage to get our hands on the tools we examined, we are unable to
analyze them in terms of Accuracy, Ease of Use and Performance Overhead. In
addition to that, the Detection Point is the same for every one of them, since taint
analysis tracks vulnerable input on the client-side.

Instead, we are going to emphasize on the differences on these frameworks. What does
one do that the other fails to cover in the analysis, like for example handling the eval
call? Which of them are platform-independent? Which of them are based on browsers?

Thus, we group and analyze our frameworks in a similar manner to provide some
conclusions out of our research.

In our classification tables presented below, we only mention the taint analysis
frameworks we have analyzed during the thesis and not techniques which have not
been implemented in a tool, like for example the one presented in Section 4.2. Also, we
have included the frameworks described in Section 5 to compare them with the pure
taint analysis tools. At last, we do not include general frameworks like WALA and
Jalangi, even though it is able to build a taint checker on them.

6.1 General Conclusions

In Table 1, we present the frameworks and in which categories they belong based on
their taint analysis:

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 60

Table 1: Frameworks’ categories

Frameworks Static Taint Analysis Dynamic Taint Analysis

ACTARUS

ANDROMEDA

Ichnaea

JSBAF

FLAX

Precise Taint Tracking

In Table 2 we present the taint analysis tools along with the framework they base some
of their key analyses taking place:

Table 2: Base analysis frameworks for the taint analysis

Frameworks Base Framework

ACTARUS WALA

ANDROMEDA WALA

Ichnaea Jalangi

JSBAF WALA

FLAX -

Precise Taint Tracking -

As we can see, the majority of the frameworks use the IBM’s WALA static analysis tool.
We believe that happens because of the fact that it is open-source, it is highly
customizable and provides a sound and novel approach to the dynamic features of
JavaScript.

6.2 Attacks

Each framework handles different kinds of attacks. All of them, though, are able to
handle the most prevalent attacks performed on web applications, those being Cross-
Site Scripting and Injection attacks. In the Injections category we assume any type of
injection with the most common being SQL Injection and Command Injection.

Table 3 presents a detailed series of attacks each framework is able to negate:

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 61

Table 3: Attacks successfully handled by each framework

Frameworks
Cross-Site
Scripting

Injections

Unvalidated
Redirects

and
Forwards

Log
Forging

Origin Mis-
attribution

ACTARUS

ANDROMEDA

Ichnaea

JSBAF

FLAX

Precise Taint
Tracking

6.3 JavaScript feature extension

As mentioned on the Section 2.1.1, WALA takes care of the dynamic features of the
JavaScript language, like prototype chains, object creations. Some of the tools using it
for their static analysis decide to extend WALA’s approaches, whereas others leave it
as is. In Table 4, we present the tools that extend WALA’s techniques. We are not sure
how ANDROMEDA takes care of this matter, so we abstain from giving a false
conclusion.

Table 4: Extension of the JavaScript features for the WALA-based frameworks

Frameworks Eval Call
Arguments

Array
Prototype

Chain
Object

Creation
Lexical
Scoping

ACTARUS

ANDROMEDA - - - - -

JSBAF

6.4 Platform-independency

Tools that are platform independent do not modify the JavaScript interpreter in order to
keep track of the taint analysis. There is need of a special instrumented browser that
helps the framework in its execution. Such frameworks are Jalangi and Ichnaea. These
specifically do not use a modified engine. Because of this platform-independency
feature, Jalangi has the ability to perform its two phase analysis in two different
machines.

The only taint analysis platform independent tool is Ichnaea due to the fact that its
analysis relies on Jalangi.

ACTARUS, JSBAF and ANDROMEDA are based on WALA, which uses the Rhino
parser by Mozilla Foundation to parse JavaScript and other data.

Platform independency is described in Table 5:

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 62

Table 5: Platform-independency

Frameworks Platform-independent

ACTARUS

ANDROMEDA

Ichnaea

JSBAF

FLAX

Precise Taint Tracking

The tools that are not platform-independent, in most cases, base their analysis in a
modified browser/engine or they are tied to a particular engine. Specific engines are
used for the dynamic phases of the frameworks performing dynamic taint analysis. A
mapping for each framework and the engine they use/modify is presented in Table 6:

Table 6: JavaScript engines that each platform-dependent framework uses

Frameworks JavaScript Engine

ACTARUS Rhino

ANDROMEDA Rhino

JSBAF Static: Rhino Dynamic: WebKit

FLAX WebKit

Precise Taint Tracking Rhino

6.5 Availability

All the taint analysis tools we have analyzed are only for commercial use. The only form
of availability is that of a trial version for the IBM’s Security AppScan Source for analysis
package that includes the algorithms used for ACTARUS and ANDROMEDA.

Tools that are publicly available are described in Table 7:

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 63

Table 7: Available frameworks to the public

Frameworks Available

ACTARUS

ANDROMEDA

Ichnaea

JSBAF

FLAX

Precise Taint Tracking

6.6 ACTARUS vs ANDROMEDA

ACTARUS and ANDROMEDA are two frameworks both produced by IBM and
integrated in the same security package. For that purpose, we would like to compare
them and present the pros and cons for each one of them. They are both based on an
on-demand driver taint analysis using the notion of access paths. However, they have
key differences. A detailed comparison is presented in Table 8.

Table 8: ACTARUS vs ANDROMEDA

ACTARUS ANDROMEDA

Constructing a call-graph representing
the whole program

Constructing a call-graph using lazy
methods and not representing the whole
program

Pointer analysis of the whole program On-demand aliasing when needed

JavaScript front-end JavaScript, .Net, Java front-end

- Incremental Analysis

Despite their differences, the fact that they have been developed by the same company
makes them have some major similarities. In addition to this, it should be noted that a
group of people that contributed to the making of ACTARUS have also contributed to
the making of the ANDROMEDA framework. In Table 9 we present their correlation.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 64

Table 9: Similarities between ACTARUS and ANDROMEDA

Similarities

On-demand driven taint analysis using access paths

Context sensitive taint analysis

Based on the IBM’s WALA static analysis framework

Commercial products under the IBM’s Security AppScan Source for analysis

6.7 Conclusion

XSS and Injections vulnerabilities have become increasingly popular due to the
extensive use of JavaScript in web applications. Even though such attacks can be
easily eliminated, the developers still use wrong programming techniques for the
developing of a web application. Since, to err is human we felt it was a necessity to
present automated tools in the form of taint analysis to protect both benign users from
their leak of private information and enterprises from harming their reputation beyond
repair.

Despite the fact that we were not able to measure their precision, we are optimistic that
we have presented a thorough research and conclusions based on the resources we
were given. In addition to this, we believe that we have demonstrated a comprehensive
introduction to people who were not familiar to this technique until today. We hope
sometime in the future; more researchers pick up taint analysis for analyzing JavaScript
and produce sound techniques publicly available for a more secure Internet.

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 65

TABLE OF TERMINOLOGY

Ξενόγλωσσος όρος Ελληνικός Όρος

Client-side Πλευρά Πελάτη

Tainted Στιγματισμένος

Source Πηγή

Sanitize Εξαγνίζω

Sink Καταβόθρα

Tainting Στιγματισμός

Taint Μόλυνση

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 66

ABBREVIATIONS – ACRONYMS

3AC Three Address Code

API Application Programming Interface

AST Abstract Syntax Tree

CFA Control Flow Analysis

CFG Control Flow Graph

CIA Change Impact Analysis

CSV Client-side Vulnerabilities

DOM Document Object Model

DSL Domain Specific Language

HTML Hypertext Markup Language

IP Internet Protocol

IR Intermediate Representation

JASIL JavaScript Simplified Instruction Language

JS JavaScript

JSBAF JavaScript Blended Analysis Framework

OOP Object Oriented Programming

OWASP Open Web Application Security Project

RHS Reps-Horwitz-Sagiv

SSA Static Single Assignment form

SQL Structured Query Language

TAC Three Address Code

URL Uniform Resource Locator

WALA T.J. Watson Libraries for Analysis

WWW World Wide Web

Evaluating Taint Analysis Tools for JavaScript

M. Papamichalopoulos 67

REFERENCES

[1] Owasp.org, “OWASP Top 10 Application Security Risks”, 2017 [Online]. Available:
https://www.owasp.org/index.php/Top_10-2017_Top_10 [Accessed: 25 May 2019].

[2] O. Tripp, S. Guarnieri, M. Pistoia, A. Aravkin, “ALETHEIA: Improving the Usability of Static Security
Analysis”, Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. (CCS '14), ACM, 2014, pp. 764.

[3] J. Dolby, M. Sridharan, “Static and Dynamic Program Analysis Using WALA (T.J. Watson Libraries for
Analysis)”, PLDI 2010.

[4] K. Sen, S. Kalasapur, T. Brutch, S. Gibbs, “Jalangi: a selective record-replay and dynamic analysis
framework for JavaScript”, Proceedings of the 2013 9

th
 Joint Meeting on Foundations of Software

Engineering (ESEC/FSE 2013), ACM, 2013, pp. 488-498.
[5] M. Sridharan, K. Sen, L. Gong, “Jalangi: A Dynamic Analysis Framework for JavaScript”. [Online].

Available: https://manu.sridharan.net/files/JalangiTutorial.pdf, pp. 1-44. [Accessed: 25 Jun. 2019]
[6] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, R. Berg, “Saving the world wide web from

vulnerable JavaScript”, Proceedings of the 2011 International Symposium on Software Testing and
Analysis. (ISSTA ’11), ACM, 2011, pp. 177-187.

[7] O. Tripp, M. Pistoia, P. Cousot, S. Guarnieri, “Andromeda: Accurate and Scalable Security Analysis
of Web Applications”, Fundamental Approaches to Software Engineer (FASE 2013), Springer, Berlin,
Heidelberg, 2013, pp. 210-225.

[8] R. Karim, F. Tip, A. Sochurkova, K. Sen, “Platform-Independent Dynamic Taint Analysis for
JavaScript”, IEEE Transactions of Software Engineering (IEEE), Early Access.

[9] S. Wei, B.G. Ryder, “Practical blended taint analysis for JavaScript”, Proceedings of the 2013
International Symposium on Software Testing and Analysis. (ISSTA 2013), ACM, 2013, pp. 336-346.

[10] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, G. Vigna, “Cross Site Scripting Prevention
with Dynamic Data Tainting and Static Analysis”, Proceedings of the Network and Distributed System
Security Symposium (NDSS 2007), San Diego, California, USA, 2007.

[11] P. Saxena, S. Hanna, P. Poosankam, D. Song, “FLAX: Systematic Discovery of Client-side
Validation Vulnerabilities in Rich Web Applications”, Proceedings of the Network and Distributed
System Security Symposium (NDSS 2010), San Diego, California, USA, 2010.

[12] T. Saoji, T. H. Austin, C. Flanagan, “Using Precise Taint Tracking for Auto-sanitization”, Proceedings
of the 2017 Workshop on Programming Languages and Analysis for Securit. (PLAS ’17), ACM, 2017,
pp. 15-24.

[13] D. Greene, D. Evans, A. Nguyen-Tuong, J. Shirley, S. Guarnieri, “Automatically Hardening Web
Applications Using Precise Tainting”, IFIP International Information Security Conference, Springer,
2005, pp. 295-307.

[14] T. Reps, S. Horwitz, M. Sagiv, “Precise interprocedural dataflow analysis via graph reachability”,
Proceedings of the 22

nd
 ACM SIGPLAN-SIGACT symposium on Principles of programming

languages (POPL ’95), ACM, 1195, pp. 49-61.
[15] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques and Tools, 2006, pp.

9, 10, 25, 91-105, 357-370, 399-408, 597-618, 903-917.
[16] D. Mitropoulos, P. Louridas, M. Polychronakis, A. D. Keromytis, “Defending Against Web Application

Attacks: Approaches, Challenges, Implications”, IEEE Transactions on Dependable and Secure
Computing, vol. 16, issue 2, pp. 188-203, March 2017.

[17] Owasp.org, “Cross-Site Scripting (XSS)”, 2018. [Online]. Available:
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS) [Accessed: 5 Jun. 2019].

[18] Owasp.org, “Command Injection”, 2018. [Online]. Available:
https://www.owasp.org/index.php/Command_Injection [Accessed: 5 Jun. 2019].

[19] Owasp.org “SQL Injection”, 2018. [Online]. Available: https://www.owasp.org/index.php/SQL_Injection
[Accessed: 5 Jun. 2019].

[20] Mozilla.org, “Object.prototype”, 2019. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype [Accessed: 10 Jun. 2019].

[21] Mozilla.org, “Hoisting”, 2019. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Glossary/Hoisting [Accessed: 10 Jun. 2019].

[22] Mozilla.org, “Closure”, 2019. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Closures [Accessed: 10 Jun. 2019].

[23] Mozilla.org, “The arguments object”, 2019. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Functions/arguments [Accessed: 10 Jun. 2019].

[24] IBM, “WALA: T.J. Watson Libraries for Analysis”, 2015. [Online]. Available:
http://wala.sourceforge.net [Accessed: 20 Jun. 2019].

https://www.owasp.org/index.php/Top_10-2017_Top_10
http://www.sigsac.org/ccs/CCS2014/
https://manu.sridharan.net/files/JalangiTutorial.pdf
https://www.researchgate.net/scientific-contributions/10763242_Christopher_Kruegel
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/SQL_Injection
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
http://wala.sourceforge.net/

	PREFACE
	1. INTRODUCTION
	1.1 Static vs Dynamic Analysis
	1.2 Data-Flow Analysis
	1.3 Pointer Analysis
	1.4 Interprocedural vs Intraprocedural Analysis
	1.5 Call Graphs
	1.6 Intermediate Representation
	1.7 Paper Organization

	2. STATIC TAINT ANALYSIS TOOLS
	2.1 General Frameworks
	2.1.1 T. J. Watson Libraries for Analysis – WALA
	2.1.1.1 Prototype Chain
	2.1.1.2 Object Creation
	2.1.1.3 Lexical Scoping
	2.1.1.4 Arguments Array
	2.1.1.5 Copy Propagation

	2.2 ACTARUS
	2.2.1 Approach
	2.2.1.1 Prototype Chain
	2.2.1.2 Object Creations
	2.2.1.3 Lexical Scoping

	2.2.2 Taint Analysis
	2.2.2.1 Example 1
	2.2.2.2 Example 2

	2.3 ANDROMEDA
	2.3.1 Approach
	2.3.2 Taint Analysis
	2.3.2.1 On-Demand Aliasing
	2.3.2.2 Change Impact Analysis (CIA)

	3. DYNAMIC TAINT ANALYSIS TOOLS
	3.1 General Frameworks
	3.1.1 Jalangi
	3.1.1.1 Selective record-replay
	3.1.1.2 Shadow Memory

	3.1.2 Jalangi2
	3.1.2.1 Jalangi Instrumentation
	3.1.2.2 Source Information
	3.1.2.3 Jalangi Runtime
	3.1.2.4 Offline Analysis
	3.1.2.5 Output Visualization

	3.2 Ichnaea
	3.2.1 Approach
	3.2.2 Taint Analysis

	4. STATIC & DYNAMIC TAINT ANALYSIS TOOLS
	4.1 JavaScript Blended Analysis Framework
	4.1.1 Approach
	4.1.1.1 Eval
	4.1.1.2 Function Variadicity/Arguments Array

	4.1.2 Taint Analysis
	4.1.2.1 Dynamic Phase
	4.1.2.2 Static Phase

	4.2 An approach on XSS Prevention
	4.2.1 Approach
	4.2.2 Taint Analysis
	4.2.2.1 Dynamic Taint Analysis
	4.2.2.2 Static Taint Analysis

	5. OTHER TOOLS
	5.1 FLAX
	5.1.1 Taint Analysis

	5.2 Precise Taint Tracking
	5.2.1 Coarse-Grained Taint Tracking
	5.2.2 Extending Coarse-Grained Taint Tracking

	6. CONCLUSIONS
	6.1 General Conclusions
	6.2 Attacks
	6.3 JavaScript feature extension
	6.4 Platform-independency
	6.5 Availability
	6.6 ACTARUS vs ANDROMEDA
	6.7 Conclusion

	TABLE OF TERMINOLOGY
	ABBREVIATIONS – ACRONYMS
	7.
	REFERENCES

