

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Defense Implementation for Website Fingerprinting Attacks
on Nginx Web Server

Panagiotis P. Kokkinakos

Supervisor: Konstantinos Chatzikokolakis, Associate Professor

ATHENS

JULY 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Υλοποίηση Άμυνας για Website Fingerprinting Attacks στον
Nginx Web Server

Παναγιώτης Π. Κοκκινάκος

 Επιβλέπων: Κωνσταντίνος Χατζηκοκολάκης, Αναπληρωτής Καθηγητής

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2019

BSc THESIS

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

Panagiotis P. Kokkinakos

S.N.: 1115201400069

SUPERVISOR: Konstantinos Chatzikokolakis, Associate Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Υλοποίηση Άμυνας για Website Fingerprinting Attacks στον Nginx Web Server

Παναγιώτης Π. Κοκκινάκος

Α.Μ.: 1115201400069

Επιβλέπων: Κωνσταντίνος Χατζηκοκολάκης, Αναπληρωτής Καθηγητής

ABSTRACT

Website Fingerprinting attack gives a passive adversary the ability to know which sites a

client visits, even when the packages that are being exchanged between the client and

the site are encrypted. This is possible by analyzing the network traffic between those

two, and extracting network patterns that are unique to each site.

For this kind of attacks, we implement an application-level defense called ALPaCA

(Application Layer Padding Concerns Adversaries), as proposed by Giovanni Cherubin,

Jamie Hayes, and Marc Juarez. We implement ALPaCA as a Rust library, and develop

an Nginx module which uses ALPaCA to protect the sites for which it is enabled.

In this thesis, we implement the first Website fingerprinting defense which can be used

on a web server.

The defense’s purpose is to lower the adversary’s predictive accuracy as of which site

the client visits, by altering the network traffic, and specifically the packages from the

site’s server towards the client.

The code of this thesis can be found at the following links:

Nginx Module

ALPaCA Library

SUBJECT AREA: Web Defense

KEYWORDS: website fingerprinting, privacy, anonymity

https://github.com/PanosKokk/ngx_http_alpaca_module
https://github.com/PanosKokk/libalpaca

ΠΕΡΙΛΗΨΗ

Η επίθεση Website Fingerprinting δίνει σε κάποιον παθητικό επιτιθέμενο την

δυνατότητα να ξέρει ποιους ιστοτόπους επισκέπτεται κάποιος πελάτης, ακόμα και όταν

τα πακέτα που ανταλλάσσονται μεταξύ του πελάτη και του ιστοτόπου είναι

κρυπτογραφημένα. Αυτό είναι δυνατό μέσω της ανάλυσης της διαδικτυακής κίνησης

μεταξύ αυτών των δύο, και της εξαγωγής μοτίβων δικτύου που είναι μοναδικά για κάθε

ιστότοπο.

Για αυτό το είδος επίθεσης, υλοποιούμε μια άμυνα επιπέδου εφαρμογής που

ονομάζεται ALPaCA (Application Layer Padding Concerns Adversaries), όπως

προτάθηκε από τους Giovanni Cherubin, Jamie Hayes, και Marc Juarez. Υλοποιούμε

το ALPaCA σαν βιβλιοθήκη της Rust και αναπτύσσουμε ένα module του web server

Nginx το οποίο χρησιμοποιεί το ALPaCA για να προστατεύσει τους ιστοτόπους για τους

οποίους είναι ενεργοποιημένο.

Στην πτυχιακή αυτή, υλοποιούμε την πρώτη άμυνα για Website Fingerprinting επιθέσεις

που μπορεί να χρησιμοποιηθεί σε web server.

Ο σκοπός της άμυνας είναι να μειώσει την ακρίβεια πρόβλεψης του επιτιθέμενου όσο

αφορά τον ιστότοπο που επισκέπτεται ο πελάτης, τροποποιώντας την διαδικτυακή

κίνηση, και συγκεκριμένα τα πακέτα από τον server του ιστότοπου προς τον πελάτη.

Ο κώδικας της πτυχιακής βρίσκεται στους ακόλουθους συνδέσμους:

Nginx Module

ALPaCA Library

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Web Defense

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: website fingerprinting, ιδιωτικότητα, ανωνυμία

https://github.com/PanosKokk/ngx_http_alpaca_module
https://github.com/PanosKokk/libalpaca

To my family.

AKNOWLEDGMENTS

I would like to thank my supervisor, Prof. Konstantinos Chatzikokolakis, for giving me

the chance to work on this subject and for his support and encouragement throughout

this time.

CONTENTS

PREFACE .. 11

1. INTRODUCTION ... 12

2. NGINX ... 13

2.1 Configuration File ... 13

2.2 Nginx Modules .. 13

2.3 Filters ... 14

3. ALPACA .. 17

3.1 Morphing a Page ... 17

3.2 D-ALPaCA .. 18

3.3 P-ALPaCA .. 18

4. IMPLEMENTATION .. 19

4.1 Module Implementation .. 19

4.1.1 Configuration ... 19

4.1.2 Functionality .. 21

4.2 Library Implementation ... 22

4.2.1 P-ALPaCA Implementation ... 23

4.2.2 D-ALPaCA Implementation ... 24

4.2.3 Object Padding Implementation .. 24

5. CHALLENGES .. 25

5.1 Module Implementation Challenges ... 25

5.2 Library Implementation Challenges ... 26

6. CONCLUSIONS .. 29

REFERENCES ... 30

LIST OF FIGURES

Figure 1: Nginx example configuration ... 21

Figure 2: Return contents from Rust without freeing them afterward 25

Figure 3: Free memory allocated by Rust ... 25

Figure 4: Resolve filesystem path for an object .. 28

PREFACE

The work for this thesis was done between November 2018 and July 2019 in Athens.

The project was developed on a Linux machine, Rust and C were the programming

languages that were used and it was tested using version 1.14.2 of the Nginx web

server. For the development of this project it was of great importance to get familiar with

the Nginx modules and the Rust programming language.

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 12

1. INTRODUCTION

Website fingerprinting attacks are a great threat towards client anonymity, and are

particularly effective against .onion sites which are anonymous web servers hosted over

Tor. A passive adversary can learn which site has been visited by the client, even if they

browse through an anonymity network such as Tor and the communication is encrypted.

High level features such as the number of requests the browser makes to download a

page, the order of these requests and the size of each response, induce distinctive low

level features observed in the network traffic. The attack is often formulated as a

classification problem. The adversary collects samples of traffic traces from many

websites by performing web requests. Previously mentioned features are extracted, and

a machine learning classifier is trained to classify websites using those features. When

a client browses a web page, the adversary collects the tragic, extracts the features and

passes them in the classifier. In the case of a closed-world experiment, the visited

website is definitely one of those used to train the classifier, so a prediction about which

site was visited is made. In the case of an open-world experiment, the classifier tells the

adversary if a site from a specific set was visited.

Most of the existing defenses are often about the network-level, which makes their

deployment unrealistic, because of the fact that they may often require great changes of

Tor or the TCP stack. ALPaCA, however, is an application-level defense, which is more

natural and far easier to implement. There have been proposed two versions of

ALPaCA: Deterministic ALPaCA (D-ALPaCA) and Probabilistic ALPaCA (P-ALPaCA).

The purpose of the defense is to lower the adversary’s classifier’s accuracy by altering

the traffic features in order to make the sites less fingerprintable.

In this thesis, we implemented both ALPaCA versions as a Rust library and develop an

Νginx module which uses ALPaCA to protect the sites being served by the server.

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 13

2. NGINX

Nginx is a web server which can also perform as a reverse proxy, load balancer and

more. It uses a single-threaded, modular, event-driven, asynchronous architecture

which enables it to outperform other popular web servers and excels at serving static

content. It optimizes the usage of memory, CPU and network; therefore it can often

serve 10 times more requests compared to the Apache web server. One of its most

important features is that the content can be served to the client in chunks. This means

that the response starts getting sent to the client before it has been produced or

processed in its entirety, which decreases the server response time dramatically.

2.1 Configuration File

It is important to understand some basic concepts about the Nginx’s configuration file.

There are four contexts (called main, server, upstream, and location) which can contain

directives with one or more arguments. Directives in the main context apply to

everything; directives in the server context apply to a particular host/port; directives in

the upstream context refer to a set of backend servers; and directives in a location

context apply only to matching web locations (e.g., "/", "/images", etc.) A location

context inherits from the surrounding server context, and a server context inherits from

the main context.

2.2 Nginx Modules

Nginx modules are the building blocks of Nginx and they do most of the work a web

server can be associated with. Anyone can develop any kind of module, but Nginx

comes with a set of modules implementing most of its functionality called core modules.

Nginx modules are developed using the C programming language.

There are 3 types of modules:

 Handlers process a request and produce an output

 Filters process and manipulate the output produced by a hander

 Load Balancers choose a backend server to send a request to, when more than

one backend server is available

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 14

At server startup, each handler attaches itself to particular locations defined in the

configuration file. Each location can only be associated with one handler. There is a

default handler which is typically used to serve static files.

If the handler is a reverse proxy to a set of backend servers, a load balancer can also

be attached to the location. Nginx comes with two load balancing modules.

If the handler does not produce an error, the filters are called. Multiple filters can be

attached into each location, so that a response can be manipulated in different ways.

The order of their execution is determined at compile-time. Filters have the classic

"chain of responsibility" design pattern: one filter is called, does its work, and then calls

the next filter, until the final filter is called. Then, Nginx sends the response.

A typical request processing cycle goes as follows:

A client sends an HTTP request. Nginx chooses the appropriate handler based on the

location configuration. A load balancer (if present) picks a backend server. The handler

produces the output and passes it to the first filter. The first filter manipulates the

response and passes it to the next, until it reaches the last one. Finally, the response is

sent to the client.

2.3 Filters

Filter modules are the ones that interest us for our project. They manipulate responses

generated by handlers. Header filters manipulate the HTTP headers, and body filters

manipulate the response content.

The really interesting part about the filter chain is that each filter doesn’t wait for the

previous filter to finish; it can process the previous filter’s output as it’s being produced.

Most of the time, the response is chunked into buffers which are linked with each other,

constructing a buffer chain. Sometimes there are more than one buffer chains. Filters

operate on one chain at a time, which means that if there are many chains, a filter is

called more than one time for a single response.

Basically, a body filter does one of the following:

 Keeps a buffer intact and passes it to the next filter

 Deletes the buffer from the buffer chain

 Modifies the buffer’s contents

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 15

In the next section, we will briefly run through the key components of an Nginx filter

module without going into too many details.

ngx_command_t: It is a typedef of ngx_command_s, for defining a module directive. A

static array of ngx_command_t, containing the directives of a module is passed to

Nginx. The array is terminated by a ngx_null_command. ngx_command_t has the

following fields.

 Directive Name

An ngx string for the name of the directive.

 Bitmask

Indicates where the directive will be configured (e.g. HTTP, server or location

block in the Nginx configuration file). The bitmask also indicates how many and

what arguments the directive takes.

 Set Function pointer

A set handler function for saving the directive arguments. Nginx has several pre-

defined set functions for saving various directive arguments like boolean, string

etc... A custom handler can also be specified.

 Configuration Structure

This specifies the configuration structure passed to the directive handler. If a

module directive is configured in the server context/block of the Nginx

configuration file, then the server context offset

(NGX_HTTP_SRV_CONF_OFFSET) should be specified here. The handler

function use this information for locating the right module configuration.

 Parameter offset

This is where the parameter for the module configuration is located. The set

handler function will save the directive argument here.

 Post

A secondary function pointer can be specified that will be called after the earlier

set function handler has saved the directive argument. This field can also hold a

default value that can be used by some of the Nginx pre-defined set functions.

ngx_http_module_t: Module context, a static data structure that defines the handlers

for the creation and initialization of a module's configuration struct. It includes handlers

that can run pre and post configuration.

A module can have its own configuration struct that contains the parameters it requires.

The function handlers defined here are for the creation and merging of the module

configuration struct. There are separate pairs of function handlers for the module

configuration that appear in Nginx 's main configuration block, server configuration block

and location block. There are also two handlers that can run pre and post configuration.

For those handlers that are not needed, NULL can be specified. For example, if a
module only has directives in Nginx's location block and it doesn't require merging

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 16

values from higher levels, the function handler for creating a location configuration can

be specified, while all others set to NULL.

ngx_module_t: This structure is a typedef of ngx_module_s and it defines the module.

It is a global variable for each module. At the top of the structure are version information

that can be filled by using a macro NGX_MODULE_V1. There are also several unused

fields for future extensions at the bottom of the struct that can be filled with

NGX_MODULE_V1_PADDING.

For the remaining fields, we are interested in only 3 of them. The rest are handlers that

can be called at various points in the Nginx cycle. These are set to NULL. The 3 fields

that concern us are as follow.

 void *ctx;

This takes the module context (ngx_http_module_t) which contains the function

handlers for creating module configuration struct and merging module

configuration.

 ngx_command_t *commands;

This takes a pointer to an array of ngx_command_t. Each ngx_command_t

defines a directive that the module takes.

 ngx_uint_t type;

This defines the type of module, such as NGX_CORE_MODULE,

NGX_HTTP_MODULE etc.

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 17

3. ALPACA

As mentioned earlier, ALPaCA is an application-level, server-side defense for the

purpose of tackling website fingerprinting attacks, which comes in two versions; P-

ALPaCA and D-ALPaCa. The fact that it doesn’t deal with the network layer, makes it

attractive and easy to implement. Most existing defenses pad the traffic with extra

network packets in order to hide the site’s features. This however, is difficult to

implement, as significant changes need to be applied to the underlying network

protocols. Therefore, in ALPaCA the padding is added to the actual contents of the

page, which is more natural and practical. By doing that, it alters the site’s high level

feature’s, which leads to the alteration of its low level features as well.

ALPaCA pads both the HTML of the page, and each of its objects such as the images

and the CSS stylesheets. In order to pad binary objects such as images, we can simply

append random bytes to the end of the file, without affecting it in any undesirable way.

To pad text objects such as HTML and CSS, we add random data into a comment.

ALPaCA chooses a list of sizes T called target, which specifies the number and the size

of the objects of the morphed page. The target is chosen in a different way, depending

on the ALPaCA version we use. Then, the original objects are padded to match the

sizes in T. If the target objects are more than the original objects, fake ALPaCA objects

which match the remaining target objects in size are created and added to the HTML.

Next, we describe the steps in order to morph a page.

3.1 Morphing a Page

At first, we choose the target T. We keep a list M containing the morphed objects, and a

list P containing the sizes in T that have not been used. We sort the original objects in

ascending size order, and do the following: for each original object, we find the smallest

size t in T to which the object can be padded (i.e., for which size(object) ≤ t). We

remove all the sizes in T smaller than the size we found, pad the object to that size and

then we add the morphed object to M. All the sizes removed from T, except the one we

used, are added into P. When all the original objects have been padded, the remaining

T sizes are also added into P. Then, we create new fake ALPaCA objects, which

contain random bytes, according to the sizes in P. Fake ALPaCA objects are

downloaded by the browser, but are styled as “hidden”, therefore they do not show on

the page. Finally, we pad the HTML to a target.

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 18

In the next section, we explain the different ways P-ALPaCA and D-ALPaCA select the

target T.

3.2 D-ALPaCA

D-ALPaCA (Deterministic-ALPaCA) decides deterministically how much a page and its

objects have to be padded. We have to supply three parameters: λ, σ and max_s,

where max_s should be a multiple of σ. The number of objects in the page is padded to

the next multiple of λ which is equal or greater than the original objects’ number, and the

size of each object is padded to the next multiple of σ which is equal or greater than its

original size. If there is a need to create fake ALPaCA objects, their size is sampled

uniformly at random from {σ, 2σ, ..., max_s}. Finally, the html is padded to the next

multiple of σ.

3.3 P-ALPaCA

P-ALPaCA (Probabilistic-ALPaCA) uses distributions to generate the target T. We have

to supply three probability distributions: Dn, Dh and Ds. Dn defines the number of

objects a page has, Dh defines the size of the HTML, and DS defines the size of each

object. P-ALPaCA samples the target T using these distributions, and morphs the

original page as described previously.

The defense first samples the number of objects n for the morphed page according to

Dn. Then, it samples the size of the morphed HTML from Dh, and n sizes from Ds. It

attempts to morph the original page to T, and if morphing fails the procedure is

repeated. Sampling from the distribution can always produce very large targets T, so a

parameter max_bandwidth is supplied. The total page size has to be smaller than or

equal to this parameter. If not, the procedure is repeated. Setting a very low

max_bandwidth value in order to avoid extremely high bandwidth overheads is not the

correct approach, as this would set a limit to the page size, removing the possibility that

it is morphed to resemble a larger site.

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 19

4. IMPLEMENTATION

We implemented the ALPaCA defense as a Rust library. We also developed an Nginx

module which uses the library in order to protect the sites that have it enabled, from

website fingerprinting attacks. We chose the Rust programming language because of its

compatibility with C code. The fact that Rust doesn’t use complicated features like

garbage collection makes it very easy to communicate with C APIs. Rust code is

compiled into a library, exposing certain functions which can be called from the C code,

in our case from our Nginx module.

In the next sections we describe the implementation and functionality of both the Nginx

module and the Rust library, and how they communicate with each other.

4.1 Module Implementation

Our Nginx module which is called ngx_http_alpaca_module is a filter. It attaches itself

in the chain of filters, and operates on the response generated by an Nginx handler. At

a high level, what is does is the following: At first it receives the HTML to be sent to the

client, passes it to a library function, gets the modified HTML and passes it onto the next

filter. Then, for each one of the requested objects, it receives its contents, calls a library

function, receives the extra padding for the object and appends it to the objects’ buffer

chain (which contains its contents as mentioned earlier).

4.1.1 Configuration

The filter is controlled by eight directives which are placed in the Nginx’s configuration

file:

 apaca_prob

It takes on or off as its argument, depending on whether the user wants to use

the probabilistic version

 alpaca_deter

It takes on or off as its argument, depending on whether the user wants to use

the deterministic version

 alpaca_dist_html_size

Its argument is the distribution to be used for the probabilistic version in order to

sample the size of the HTML

 alpaca_dist_obj_number

Its argument is the distribution to be used for the probabilistic version in order to

sample the number of objects

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 20

 alpaca_dist_obj_size

Its argument is the distribution to be used for the probabilistic version in order to

sample the size of each object

 alpaca_obj_num

Its argument is the λ parameter for the deterministic version. The number of

objects in the morphed HTML will be a multiple of it

 alpaca_obj_size

Its argument is the σ parameter for the deterministic version. The sizes of objects

in the morphed HTML will be a multiple for it

 alpaca_max_obj_size

The max_s parameter for the deterministic version. It has to be a multiple of σ.

The arguments for the alpaca_dist_* directives can either be a known distribution with

its parameters from the list below:

 LogNormal/mean,std_dev**2

 Normal/mean,std_dev**2

 Exp/lambda

 Poisson/lambda

 Binomial/n,p

 Gamma/shape,scale

Or a file which contains values and a probability for each value in ascending probability

order.

ALPaCA can be used in both server and location contexts. It can also be used together

with fastcgi_pass (for dynamic content) and proxy_pass (for proxying upstream

servers), but only if embedded images are static and accessible locally. A

sample nginx.conf is below:

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 21

server {
 listen 80;
 server_name www.example.com;
 root /var/www;

 # ALPaCA can be configured at the server context
 # Use the probabilistic method
 alpaca_prob on;
 # Path to the distribution file, relative to root
 alpaca_dist_html_size /dist/dist1.dist;
 # Known distribution
 alpaca_dist_obj_number Normal/20.0,1.0;
 # Known distribution
 alpaca_dist_obj_size Normal/1071571.0,1000.0;

 # but also at a location contenxt
 #
 location /foo/ {
 # Use the deterministic method

 alpaca_deter on;
 alpaca_obj_num 5;
 alpaca_obj_size 50000;
 alpaca_max_obj_size 100000;
 }

 # It works for dynamically generated content (but embedded images/css need to
be static)
 location ~ \.php$ {
 include snippets/fastcgi-php.conf;
 fastcgi_pass unix:/var/run/php/php7.2-fpm.sock;
 fastcgi_param SCRIPT_FILENAME $request_filename;
 }

 # It also works with proxy_pass, however embedded images/css still need
to be accessible in the local files ystem.
 # IMPORTANT: Accept-Encoding should be set to "" so that the upstream server
returns raw html
 location /proxy/ {
 proxy_pass http://www.upstream.com/;
 proxy_set_header Accept-Encoding "";
 }
}

Figure 1: Nginx example configuration

4.1.2 Functionality

As mentioned earlier, each filter module contains a header filter which manipulate the

HTTP headers, and a body filter which manipulates the response content. The headers

manipulation comes in handy, because we need to change the headers of the

requested fake ALPaCA objects. The name of a fake ALPaCA object when requested is

__alpaca_fake_image.png. However, because of the fact that the image does not

actually exist in the filesystem, Nginx sets the response’s status to 404, which means

that the file was not found. In order to force the browser to download the random

content we send for this requests, we change the response’s status to 200 in the header

filter.

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 22

As for the body filter, it does the following: If the response is HTML, we collect the whole

response in a buffer and determine which version of ALPaCA to use according to the

directives’ arguments. Then, we call the ALPaCA library function which corresponds to

the determined version, along with some other parameters such the suitable arguments

of each version, the Nginx root, the HTML’s path in the filesystem and the current size

of the HTML. The function returns the morphed HTML, which is put it into a new buffer

chain and we pass the chain onto the next filter.

If the response is CSS or image, we check if the ALPaCA GET parameter is present in

the request’s arguments. The ALPaCA GET parameter is a parameter that is appended

by Rust to the images’ and CSS file’s references in the HTML when it is morphed. It

indicates the target size of the object. An image reference in the HTML after it has been

morphed should look like this: . This

means that the image’s content should be padded to 10000 bytes. If the alpaca-padding

is present to the request’s arguments, we call the library function which is responsible

for the objects’ padding, passing the type of the object, the request’s arguments and the

original size of the object as arguments. It returns the extra padding for the object, so

we put it in a new buffer and pass it onto the next filter. The same procedure is being

followed if the request is about a fake ALPaCA object. Its original size is set to 0,

because of the fact that it doesn’t exist yet, so the extra padding bytes that are returned

from the function are actually as many as the number which the alpaca-padding

parameter indicates.

A core difference between the HTML’s and the objects’ requests, is how we treat the

original response. In the case of HTML, we don’t pass the original response to the next

filter, but the modified one. In the case of objects, we pass the whole original response

to the next filter, and then we pass the extra padding bytes as well.

If any kind of error occurs during the morphing, we pass the original response onto the

next filter.

4.2 Library Implementation

The Rust library is where the actual ALPaCA functionality takes place. It exposes three

functions which are called from the module: morph_html_Palpaca which morphs an

HTML according to the probabilistic version, morph_html_Dalpaca which morphs an

HTML according to the deterministic version, and morph_object which returns the extra

padding for an object. There is also a struct called Object which represents an HTML,

CSS or image object, containing its type, its content its target size and its position in the

HTML if it is CSS or image.

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 23

At first, no matter which version we use, we parse the objects’ references contained in

the HTML. This is done by using the select Rust library. For each CSS and image

reference we find, we look for it in the filesystem in order to get its content’s size. Then

we create an Object object to keep track of it, and append it to an Object array. When

the parsing is finished, the array contains an Object object for every CSS and image

found in the HTML in ascending size order.

4.2.1 P-ALPaCA Implementation

In the case of the P-ALPaCA version, we have to parse the distributions passed from

the module. If the distribution is a known one, we use the rand_distr Rust library to

sample values. If a distribution file has been given the sampling is done like this:

We parse the file and create two vectors, one containing the values and the other

containing the probability for each value. Then, we produce a random number between

0 and 1, and start summing the probabilities until the sum is greater than the random

number. The sampled value is the one that corresponds to the probability that caused

the sum to become greater than the random number.

After parsing the distributions, we try to morph the HTML PAGE_SAMPLE_LIMIT times,

which is currently set to 10. The morphing is done according to the P-ALPaCA algorithm

described earlier, using the given distributions to sample the target T. We try to sample

each value SAMPLE_LIMIT times, which is set to 30. For example, if we want to sample

the number of objects in the HTML after the morphing and the original HTML has n

objects, we will keep sampling values until the sampled value is greater than or equal to

n. If no such value has been sampled after SAMPLE_LIMIT times, the morphing fails. If

the morphing is successful, a vector containing the morphed objects and the fake

ALPaCA objects as Object objects is available. Each Object object contains the position

in the HTML of the object it represents, so we add the alpaca-padding parameter to

each original object’s reference in the HTML. Then, we append the fake ALPaCA

objects’ references to the end of the HTML, creating img HTML elements styled as

hidden: <img src="/__alpaca_fake_image.png?alpaca-padding=target_size”

style="visibility:hidden">

Finally, we sample a target size for the HTML, pad it to it and return a pointer to the

morphed HTML. To add the padding, we simply add the extra bytes to the end of the

HTML in a comment. The target size has to be at least 7 bytes greater than the original

size, because of the 7 bytes we need to add the comment indication. The same applies

to the CSS padding as well, where the target size has to be at least 4 bytes greater than

the original.

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 24

4.2.2 D-ALPaCA Implementation

For D-ALPaCA, the same procedure is followed, apart from the part where the target T

is made. The number of objects is padded to the next multiple of λ which is greater than

or equal to the original number of objects. Each original object is padded to the next

multiple of σ which is greater than or equal to its original size. For each fake ALPaCA

object, we sample a size between σ and max_s. Finally, the HTML’s target size is the

next multiple of σ.

4.2.3 Object Padding Implementation

In order to add the extra padding for the object requests (CSS, images) we have the

morph_object function. As arguments, it receives the object’s type, its original size and

the request’s query which contains the alpaca-padding parameter. The target size is

extracted from the parameter, and it has to be greater than or equal to the original size.

The number of padding bytes is calculated by subtracting the original size from the

target size, and a vector of random padding bytes is created which is returned by the

function.

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 25

5. CHALLENGES

In this section, we describe the challenges we faced during the Nginx module and the

Rust library implementation. A challenge that involved both the library and the module

implementation was the fact that Rust frees automatically any variable that goes out of

scope. This means that we had to find a way to tell Rust not to free the morphed HTML

and the extra padding for the objects after they are returned to the module. The solution

was the following: We move the contents we want to return to the heap in a buffer, and

then tell Rust to “forget” it, therefore not calling a destructor for the buffer when it goes

out of scope.

pub fn as_prt(self) -> *const u8 {
 let mut buf = self.content.into_boxed_slice();
 let data = buf.as_mut_ptr();
 std::mem::forget(buf);

 data
}

Figure 2: Return contents from Rust without freeing them afterward

After we are done processing the returned contents in the module, we have to free this

memory. This cannot be done from the module because the memory was not allocated

in it; therefore we created a custom free_memory function in the library. When the

contents are returned to the module, they get hard-copied to a buffer. Then,

free_memory is called passing the contents that were returned from the library and their

size as arguments, and it frees the memory allocated for them.

pub extern “C” fn free_memory(data: *mut u8, size: &usize) {
 let s = unsafe { std::slice::from_raw_parts_mut(data, *size) };
 let s = s.as_mut_ptr();

 unsafe {
 Box::from_raw(s);
 }
}

Figure 3: Free memory allocated by Rust

5.1 Module Implementation Challenges

Learning how to develop an Nginx module was a challenge itself, because of the fact

that modules are extremely customizable. A big burden is placed on the programmer o

define exactly how and when the module should run. Apart from that, although the

module’s functionality was pretty straight forward (most of the work is done in the

library), we faced the following challenges:

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 26

As mentioned earlier, sometimes there are more than one buffer chains containing the

response. This means that a filter is called more than one time for a single response. In

the case where we have an HTML response, we had to find a way to collect the whole

response to a buffer in order to pass it to the library function. The buffer of course

cannot be declared inside the body_filter function, as its variables are reinitialized for

every call. Fortunately, Nginx allows a module to keep state information per request

through a request context data structure defined by the module. We created the

ngx_http_alpaca_ctx_t struct which stores the state of processing a response for the

module. The struct, along with other variables, contains a buffer in which the whole

response is stored, and its size. At the start of each request, we initialize the request’s

context, and for each chain link that is received, we iterate through its buffers and copy

the contents into the context’s buffer. When the last chain link is passed in the module,

the buffer contains the whole response so this is when we call the library functions. At

first the memory we allocated for the whole response’s buffer had size

content_length_n which can be found in the response’s headers and contains the size

of the whole response. This however created a new challenge.

If Nginx is used as a proxy server, content_length_n doesn’t contain the actual size of

the HTML, as it is unknown. Considering this case, we had to modify the code in order

to support it, so if the content_length_n’s value is -1, we allocate 1000 bytes of memory

for the response’s buffer. Now, when we copy a buffer’s contents from the chain link into

our buffer, if the copy causes the size to be greater than the buffer’s capacity, we

double the size. Of course we keep track of both its capacity and its actual size. Making

this modification, solved our problem, and also enabled the module to work with

dynamically generated HTML response as well.

5.2 Library Implementation Challenges

In the implementation of the ALPaCA library, we faced the following challenges:

During the ALPaCA morphing we had to append the alpaca-padding parameter to the

original objects’ references in the HTML. For this purpose we needed a high level HTML

parser so the select Rust library did the work. It generates a document from a given

HTML string, which contains nodes corresponding to the HTML elements, which can be

accessed and modified. The position field in the Object struct which indicates the

position of the object reference in the HTML, is actually the index of its corresponding

node, so after the morphing, in order to append the parameter to each reference, we

had to modify the corresponding’s node’s HTML.

Another challenge was the fact that we had to find the filesystem path of each object in
the HTML in order to access it. The path of each object in the HTML is relative to the
root of the Nginx server. For example, if the root is /var/www, and an image’s url path is

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 27

/images/image1.png, then the image’s filesystem path is /var/www/images/image1.png.
To complicate things, if the objects’ url path doesn’t begin with a slash, we also have to
consider the HTML’s base url path in the equation. Finally, we have to resolve the dots
in the path, and be careful not to end up with a filesystem path that accesses files
outside the Nginx root. For these reasons, we had to pass both the Nginx root and the
html’s url path to the library functions. The algorithm to resolve an object’s filesystem
path can be found in the next page.

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 28

fn filesystem_path(root: &str, relative: &str, html_path: &str) ->
Option<String> {

 if relative.starts_with("https://") || relative.starts_with("http://") {

 return None;

 }

 let mut fs_relative = String::from(relative);

 if !fs_relative.starts_with('/') {

 let base = Path::new(html_path).parent().unwrap().to_str().unwrap();

 if !base.ends_with('/') {

 fs_relative.insert(0,'/');

 }

 fs_relative.insert_str(0,base);

 }

 // Resolve the dots in the path so far

 let components: Vec<&str> = fs_relative.split("/").collect();

 // Stack to be used for the normalization

 let mut normalized: Vec<String> = Vec::with_capacity(components.len());

 for comp in components {

 if comp == "." || comp == "" {continue;}

 else if comp == ".." {

 if !normalized.is_empty() {

 normalized.pop();

 }

 }

 else {

 normalized.push("/".to_string()+comp);

 }

 }

 let mut absolute: String = normalized.into_iter().collect();

 absolute.insert_str(0,root);

 Some(absolute)

}

Figure 4: Resolve filesystem path for an object

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 29

6. CONCLUSIONS

Website fingerprinting attacks pose a big threat in clients’ anonymity, and there is

definitely a need for protection against them. In this thesis we implemented ALPaCA

defense as a Rust library and developed an Nginx module which uses it. As was

proven, ALPaCA is a realistic and easy to deploy defense with very satisfying results.

Users who operate .onion sites have the incentives to use such a defense, as most of

the time those sites provide sensitive information and clients may not want to be

associated directly with it. Apart from that, .onion sites can be distinguished from regular

sites with more than 90% accuracy. Finally, the fact that ALPaCA is a server-side

defense makes it easier to use, because it only needs to be enabled by the site’s

operator without the client’s interference.

Defense Implementation for Website Fingerprinting Attacks on Nginx Web Server

P. Kokkinakos 30

REFERENCES

 [1] Cherubin, Giovanni, Hayes, Jamie, and Juarez Marc. Website Fingerprinting Defenses at the
Application Layer. In Proceedings on Privacy Enhancing Technologies 2017.

[2] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Peeka-Boo, I Still See You:
Why Efficient Traffic Analysis Countermeasures Fail. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy.

[3] JUAREZ, M., AFROZ, S., ACAR, G., DIAZ, C., AND GREENSTADT,R. A Critical Evaluation of
Website Fingerprinting Attacks. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (New York, NY, USA, 2014), CCS ’14, ACM, pp. 263–274.

[4] J. Hayes and G. Danezis. k-fingerprinting: a Robust Scalable Website Fingerprinting Technique. In
USENIX Security Symposium. USENIX Association, 2016.

[5] A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and S. Devadas. Circuit fingerprinting attacks: passive
deanonymization of tor hidden services. In USENIX Security Symposium, pages 287–302. USENIX
Association, 2015.

[6] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg. A Systematic Approach to Developing
and Evaluating Website Fingerprinting Defenses. In ACM Conference on Computer and Communications
Security (CCS), pages 227–238. ACM, 2014.

[7] Cherubin Giovanni. 2017. Bayes, not Naïve: Security Bounds on Website Fingerprinting Defenses.
Proceedings on Privacy Enhancing Technologies 2017 (2017).

[8] Rebekah Overdorf, Marc Juarez, Gunes Acar, Rachel Greenstadt, Rachel Greenstadt. How Unique is
Your .onion?An Analysis of the Fingerprintability of Tor Onion Services. 2017

[9] Shuai Li, Huajun Guo, Nicholas Hopper. Measuring Information Leakage inWebsite Fingerprinting
Attacks and Defenses. CCS’18, October 15-19, 2018, Toronto, ON, Canada

