

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

MSc THESIS

Adaptive UxV Routing Based on Network Performance

ATHANASIOS D. CHALVATZARAS

Supervisor: Stathes P. Hadjiefthymiades, Professor

ATHENS

August 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Προσαρμοστική Δρομολόγηση μη Επανδρωμένων
Οχημάτων με Βάση την Απόδοση του Δικτύου

ΑΘΑΝΑΣΙΟΣ Δ. ΧΑΛΒΑΤΖΑΡΑΣ

Επιβλέπων: Ευστάθιος Π. Χατζηευθυμιάδης, Καθηγητής

ΑΘΗΝΑ

Αύγουστος 2019

MSc THESIS

Adaptive UxV Routing Based on Network Performance

ATHANASIOS D. CHALVATZARAS

S.N.: M1611

SUPERVISOR: Stathes P. Hadjiefthymiades, Professor

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Προσαρμοστική Δρομολόγηση μη Επανδρωμένων Οχημάτων με Βάση την Απόδοση
του Δικτύου

ΧΑΛΒΑΤΖΑΡΑΣ Δ. ΑΘΑΝΑΣΙΟΣ
Α.Μ.: M1611

ΕΠΙΒΛΕΠΟΝΤΕΣ: Ευστάθιος Π. Χατζηευθυμιάδης, Καθηγητής

ABSTRACT

Robotics and Internet of Things (IoT) have been experiencing rapid growth nowadays.
IoT nodes are significantly enhanced with many different features. One of the most
important is the mobility capabilities, given by the noticeably huge growth of UxV (UxVs-
x stands for a different type of environment, i.e. ‘s’ stands for sea, ‘a’ for air and ‘g’ for
ground) area. The idea is the assumption of a drone as a mobile sensor, that can be
deployed wherever the experimenter wants. Some more characteristics that make the
unmanned vehicles a very tempting decision as IoT nodes are the decision-making
ability without human interaction, endurance, re-programmability and capability of
multimedia streaming. These characteristics make drones an option for use cases of
surveillance, security monitoring, and supporting crisis management activities. For
instance, a UGV equipped with a high-definition camera and running an algorithm of
object recognition can serve the purpose of border surveillance.

In this thesis, a framework that implements a network quality based decision-making
process is developed. This framework adapts the information flow between the UxV and
the Ground Control Station (GCS) based on network quality metrics (such as packet
error rate etc.) and the principals Optimal Stopping Theory (OST). The goal of this
framework is to ensure the optimal delivery of critical information from UxV to GCS and
vice-versa. If the network behaves optimally then there is no limitation on the
information flow, but if the network is saturated or overloaded restriction rules are
applied. The proposed model introduces two optimal stopping time mechanisms based
on change detection theory and a discounted reward process.

To support the implemented framework, an experimental environment has been set up
and also a series of experiments with very promising results. As a mobile IoT node, a
TurtleBot has been used, along with an XBOX Kinect sensor (RGB camera and depth
sensor) and a Raspberry Pi running Robotic Operating System (ROS) and Apache
Kafka pub-sub system with ultimate purpose the communication between the TurtleBot
and the GCS.

SUBJECT AREA: Robotics, Decision Making, IoT

KEYWORDS: Robotics, Network reliability, Decision making, IoT, Optimal Stopping
Theory, Unmanned Vehicles

ΠΕΡΙΛΗΨΗ

Μια μεγάλη και απότομη εξέλιξη παρατηρείται σήμερα στον τομέα της ρομποτικής και
του διαδικτύου των πραγμάτων. Οι κόμβοι που αποτελούν την κύρια υποδομή του
διαδικτύου των πραγμάτων έχουν εμπλουτιστεί με σημαντικές και πολυποίκιλες
δυνατότητες. Η πιο σημαντική από αυτες τις δυνατότηες είναι η κινητικότητα, η οποία
έχει προσφερθεί λόγω της επίσης σημαντικής εξέλιξης του τομέα που αφορά τα μη
επανδρωμένα οχήματα. Ένα μη επανδρωμένο όχημα μπορεί να εξυπηρετήσει έναν
ερευνητή ως κινητός αισθητήρας (θερμοκρασίας, πίεσης νερού) και να τοποθετηθεί σε
οποιαδήποτε δυνατή τοποθεσία. Κάποια ακόμα χαρακτηριστικά που κάνουν δελεαστική
την επιλογή μη επανδρωμένων οχημάτων ως κόμβους του διαδικτύου των πραγμάτων
είναι η ικανότητα της λήψης αποφάσεων χωρίς την ανθρώπινη παρέμβαση, η αντοχή, η
επαναπρογραμματισιμότητα καθώς και η δυνατότητα της ζωντανής ροής πολυμέσων.
Με βάση αυτά τα χαρακτηριστικά τα μη επανδρωμένα οχήματα μπορούν να
χρησιμοποιηθούν επίσης σε περιπτώσεις εποπτείας χώρων και συνόρων,
παρακολούθηση καμερών ασφαλείας καθώς και για υποστήριξη σε περιπτώσεις
διαχείρισης κρίσεων. Για παράδειγμα ένα μη επανδρωμένο όχημα ξηράς όπου φέρει μία
υψηλής ευκρίνειας κάμερα, σε συνδυασμό με έναν αλγόριθμο αναγνώρισης
αντικειμένων μπορεί να χρησιμοποιηθεί για επόπτεια συνόρων.

Σε αυτήν την διπλωματική εργασία προτείνεται ένα πλαίσιο, στο οποίο υλοποιείται μια
διαδικασία λήψης αποφάσεων με βάση την ποιότητα του δικτύου. Το πλαίσιο αυτό
προσαρμόζει την ροή της πληροφορίας μεταξύ του επανδρωμένου οχήματος και του
σταθμού ελέγχου, βασισμένο σε μετρικές ποιότητας του δικτύου (όπως το ρυθμό
απώλειας πακέτων) και στις αρχές της Θεωρίας Βέλτιστης Παύσης, με σκοπό να
εξασφαλίσει το βέλτιστο ποσοστό παραλαβής πληροφοριών υψίστης σημασίας από το
μη επανδρωμένο όχημα προς το σταθμό ελέγχου και το αντίστροφο. Όταν το δίκτυο
συμπεριφέρεται άριστα δεν υπάρχει περιορισμός στην ροή πληροφοριών, αλλα έαν το
δίκτυο είναι είτε υπερφορτωμένο, είτε κορεσμένο, τότε εφαρμόζονται περιοριστικοί
κανόνες. Το προτεινόμενο μοντέλο, εισάγει δύο μηχανισμούς βέλτιστης παύσης
βασισμένος στην Θεωρίας Βέλτιστης Παύσης, στη Θεωρία Ανίχνευσης Αλλαγής
Κατεύθυνσης καθώς και σε μία διαδικασία εκπτωτικής ανταμοιβής.

Για την υποστήριξη του υλοποιημένου πλαισίου, έγινε μία σειρά πειραμάτων με πολύ
υποσχόμενα αποτελέσματα. Σαν κινητός κόμβος χρησιμοποιήθηκε ένα ρομπότ
TurtleBot, μαζί με ένα XBOX Kinect που έφερε μία έγχρωμη κάμερα και έναν αισθητήρα
βάθους καθώς και με ένα Raspberry Pi, το οποίο εκτελούσε το Robotic Operating
System (ROS) και το σύστημα Apache Kafka, με σκοπό να γεφυρώσει το χάσμα
επικοινωνίας μεταξύ TurtleBot και σταθμού ελέγχου.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ρομποτική, Λήψη αποφάσεων, Δικτύωση των Πραγμάτων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ρομποτική, Αξιοπιστία Δικτύου, Λήψη Αποφάσεων, Δικτύωση των
Πραγμάτων, Θεωρία Βέλτστης Παύσης, Μη Επανδρωμένα
Οχήματα

Η εργασία αυτή αφιερώνεται στην οικογένεια μου και ιδιαίτερα στον παππού μου και τη
γιαγιά μου, για την μόνιμη και ανιδιοτελή στήριξη τους κατά την διάρκεια των σπουδών

μου.

ΕΥΧΑΡΙΣΤΙΕΣ

Για την διεκπαιρέωση της διπλωματικής αυτής εργασίας, θα ήθελα να ευχαριστήσω τον
επιβλέποντα καθηγητή μου, Ευστάθιο Χατζηευθυμιάδη που μου έδωσε τα κίνητρα, την
στήριξη και την ευκαιρία να ασχοληθώ με τον τομέα του pervasive computing. Επίσης
θα ήθελα να ευχαριστήσω την υποψήφια διδάκτωρ Κυριακή Παναγίδη για την
απεριόριστη βοήθεια και συμβολή της. Χωρίς αυτή η εκπόνηση αυτή της εργασίας θα
ήταν αδύνατη.

CONTENTS

1. INTRODUCTION .. 14

2. ROBOTIC OPERATING SYSTEM (ROS) AND HARDWARE COMPONENTS 16

2.1 Robotic Operating System (ROS) ... 16

2.1.1. Messaging Publish/Subscribe System Model .. 17

2.1.2. Filesystem Level ... 18

2.1.3. Computation Graph Level ... 19

2.1.4. ROS Community Level ... 23

2.1.5. Sensors ... 24

2.1.6. ROS Commands... 24

2.2 Main Hardware and Software Components .. 26

2.2.1. TurtleBot ... 26

2.2.2. Raspberry Pi - PlayStation 3 Controller .. 29

2.2.3. Ground Control Station (GCS) .. 30

2.2.4. Power Supply .. 30

2.2.5. ROS and Ubuntu Version ... 31

2.2.6. Wicd .. 31

2.2.7. Simultaneous Localization and Mapping (SLAM) ... 31

3. APACHE KAFKA ... 33

3.1 Ideal Publish-Subscribe System .. 34

3.2 Apache Kafka Key Characteristics ... 34

3.3 Topics .. 35

3.4 Brokers .. 35

3.5 Records .. 36

3.6 Partitions.. 36

3.7 Record Order and Assignment ... 37

3.8 Logs and Log Segments .. 37

3.9 Kafka Brokers and ZooKeeper ... 39

4. OPTIMAL STOPPING THEORY (OST) AND CHANGE DETECTION 41

4.1 Definition of the problem ... 41

4.1.1. Loss VS Reward ... 42

4.1.2. Random Reward Sequences .. 43

4.2 Stopping Rule Existence .. 43

4.3 The Secretary Problem ... 44

4.3.1. The Parking Problem (Mac Queen and Miller (1960)) .. 46

4.4 Change Point Detection ... 47

4.4.1. Change Point Detection Algorithms .. 47

5. RATIONALE AND PROBLEM FORMULATION .. 52

5.1 Definition of the Problem ... 52

5.2 Related Work .. 52

5.3 Time-Optimized Decision-Making Model for Unmanned Vehicles .. 53

5.3.1. Overview ... 53

5.3.2. Time-Optimized Change-Point Decision Making Process (TOCP) 54

5.3.3. Discounted Secretary problem (DSP) .. 58

6. PERFORMANCE EVALUATION .. 59

6.1 Experimental Setup .. 59

6.1.1. Communication Schema .. 59

6.1.2. Measuring the network ... 61

6.1.3. Telemetry Data .. 63

6.2 Experiments and Results ... 65

7. CONCLUSION ... 72

ABBRIVIATIONS - ACRONYMS ... 73

APPENDIX I .. 74

REFERENCES .. 75

LIST OF FIGURES

Figure 1: ROS graph architecture .. 17

Figure 2: Abstract representation of ROS' filesystem level .. 18

Figure 3: ROS Filesystem Level Example ... 19

Figure 4: ROS Computational Graph Level ... 20

Figure 5: ROS message Example ... 21

Figure 6: Upper View of TurtleBot .. 27

Figure 7: Side View of TurtleBot .. 27

Figure 8: Front View of TurtleBot ... 28

Figure 9: Live TurtleBot used in this thesis .. 28

Figure 10: Raspberry Pi Model 3 B with case, wi-fi USB adapter and PlayStation3
controller. ... 29

Figure 11: Raspberry Pi Model 3 B abstract architecture schema. 29

Figure 12: Cable that powers the Raspberry from TurtleBot’s battery 30

Figure 13: YAML file example .. 31

Figure 14: Pgm file example .. 32

Figure 15: rviz map view example ... 32

Figure 16: Kafka architecture as directional graph .. 33

Figure 17: Publish-Subscribe system .. 34

Figure 18: Abstract representation of pub-sub system topics .. 35

Figure 19: Abstract representation of Apache Kafka Brokers .. 36

Figure 20: Abstract representation of Apache Kafka partitions 37

Figure 21: Log structure format of partitions .. 38

Figure 22: Apache Kafka Partition Log Segments ... 39

Figure 23: Brokers/Zookeeper relationship .. 40

Figure 24: Typical behavior of the log-likelihood ratio 𝑺𝒌 corresponding to a change in
the mean of a Gaussian sequence with constant variance: negative drift before and
positive drift after the change. .. 48

Figure 25: Typical behavior of the CUSUM decision function 𝒈𝒌 49

Figure 26: Graph representation of DMP ... 54

Figure 27: Probability Density Function of 𝒇𝟎 Model Fitting... 55

Figure 28: Probability Density Function of 𝒇𝟏 Model Fitting... 56

Figure 29: Log-Likelihood Ratio Behavior .. 57

Figure 30: Abstract Representation of Experimental Approach 59

Figure 31: JSON message example for movement to specific point. 60

Figure 32: Twist message type example. ... 60

Figure 33: Abstract Communication Schema. .. 61

file:///C:/Users/thanos/Desktop/Chalvatzaras_v1.docx%23_Toc17272471
file:///C:/Users/thanos/Desktop/Chalvatzaras_v1.docx%23_Toc17272471
file:///C:/Users/thanos/Desktop/Chalvatzaras_v1.docx%23_Toc17272472

Figure 34: Running ping, iwconfig commands and receiving their output 62

Figure 35: Creating and sending to Apache Kafka a JSON message carrying the
network quality data ... 62

Figure 36: TurtleBot's Position Data Message ... 63

Figure 37: TurtleBot's Battery Level Data Message ... 64

Figure 38: Memory Consumption Data Message .. 64

Figure 39: CPU Consumption Data Message .. 64

Figure 40: Network Quality Data Message .. 64

Figure 41: CPU Temperature Data Message ... 64

Figure 42: Mission A and Mission B Real-Time Illustration .. 65

Figure 43: TOCP-DSP vs No-Policy regarding QNI in Mission 1- Path Exploration 66

Figure 44:TOCP-DSP vs Threshold Policy regarding QNI in Mission 1- Path Exploration
 .. 67

Figure 45:TOCP-DSP vs TOCP-Only Policy regarding QNI in Mission 1- Path
Exploration ... 67

Figure 46: PER of all four policies in Mission 1- Path Exploration 68

Figure 47:TOCP-DSP vs No-Policy Policy regarding QNI in Mission 2- Exhaustive
Scanning.. 69

Figure 48:TOCP-DSP vs Threshold Policy regarding QNI in Mission 2- Exhaustive
Scanning.. 69

Figure 49:TOCP-DSP vs TOCP-Only Policy regarding QNI in Mission 2- Exhaustive
Scanning.. 70

Figure 50: PER of all four policies in Mission 2- Exhaustive Scanning 70

Figure 51: TOCP-DSP vs No-Policy policy regarding latency (ms) in Mission 1- Path
Exploration ... 71

Figure 52:TOCP-DSP vs No-Policy policy regarding latency (ms) in Mission 2-
Exhaustive Scanning ... 71

LIST OF TABLES

Table 1: ROS standard message types ... 22

Table 2: ROS Commands .. 24

Table 3: Secretary Problem Expected Probabilities ... 45

Table 4: Rules of State Transition .. 54

Table 5: Description of Network Quality Indicators .. 55

Table 6: Telemetry Data Types and their priorities ... 63

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 14

1. INTRODUCTION

In the last decade, we have been witnessing significant advancements and evolution of
the Internet of Things (IoT). Going a step further to the IoT infrastructure nodes are
enhanced with mobility capabilities forming the mobile IoT networks and especially huge
growth can be noticed at unmanned vehicles area. One can assume a drone as a
mobile sensor node deployed to different locations. Other characteristics that make
unmanned vehicles (UxVs- x stands for different type of environment, i.e. ‘s’ for sea, ‘a’
for air and ‘g’ for ground) popular are the ability to make decisions without human
intervention capable of carrying additional payloads, the endurance, re-programmable
and capacity to stream multimedia content. As unmanned vehicles and especially
drones become more advanced, they present greater value especially in use cases of
surveillance, security monitoring, and supporting crisis management activities. For
instance, consider the use case of UxVs equipped with a video camera and air-quality
sensors to recognize objects in real-time including to cruise over forests and to spot
fires early.

For example, let’s assume a ground unmanned device with video steam capabilities
recognizing objects in real-time is sent to explore a disaster area from wildfire and to
spot new outbreaks of fire. This device is equipped with a camera, a connection
interface, a GPS, various sensors like thermostats and a back-end collection service.
The question is how is this device going to operate in an unknown area while it ensures
the successful execution of a mission? A mission is often described as a trajectory with
specific way-points in which the vehicle is ordered to approach and gather various
measurements from sensors or images from cameras. Can the dedicated round Control
Station (GCS) control the device in real-time without risks? A GCS is the terrestrial
system, which acts as a coordinator or master node at distance responsible for data
acquisition and transmission. The communication between the unmanned vehicle and
the GCS is established via wireless communications. A key feature of UxVs is the
control of a possible mission. A mission is created by the users and, then, GCS is
responsible for the successful execution of the mission autonomously. GCS control
messages shall be delivered with a high assurance of low or minimal time delay to
enable real-time management, monitoring, control, and feedback loops.

At IoT networks and especially after a disaster the successful delivery of messages
cannot be taken for granted. However, telemetry can be divided into main categories:
critical information transmission and sensor measurements. Critical information contains
the commands sent by GCS and the responses to these commands by UxVs. Critical
information requires real-time monitoring and control messages to be delivered with
high accuracy and minimal delay, while the connection between GCS and UxV is
always alive. In emergency cases, if UxV lost its connection to the base then it usually
returns to its initial position. Hence this means that the mission is canceled, even if the
device could be close to its end. This leads to waste of resources.

Unmanned vehicle is commanded to operate in an unknown area with no prior use of
maps or localization techniques. The trajectories are also dynamically created by users.
One possible metric to use of the mission is the quality of the network. Quality of the
network has high importance for the mission because significant commands or sensor
values can be lost. The quality of the network can be discriminated as proposed in. We
can assume that even if control feedback is in high priority, telemetry can be paused for
a short time in need of crisis. When the quality of network changes, UxV/GCS can
decide on-line to pause the transmission of commands in order not to overload a
saturated network or to risk to lose completely the messages. This loss can occur in

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 15

unwanted robot’s behavior like skipping a trajectory point, or even more devastating
results such as aborting the mission and returning to its initial point.

In this thesis, a framework that implements a network quality based decision-making
process is developed. This framework adapts the information flow between the UxV and
the Ground Control Station (GCS) based on network quality metrics (such as packet
error rate etc.) and the principals Optimal Stopping Theory (OST). The goal of this
framework is to ensure the optimal delivery of critical information from UxV to GCS and
vice-versa. If the network behaves optimally then there is no limitation on the
information flow, but if the network is saturated or overloaded restriction rules are
applied. The proposed model introduces two optimal stopping time mechanisms based
on change detection theory and a discounted reward process.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 16

2. ROBOTIC OPERATING SYSTEM (ROS) AND HARDWARE
COMPONENTS

2.1 Robotic Operating System (ROS)

ROS is an open source operating system for robots [5] [6], but not in the traditional
sense of an operating system regarding process management and scheduling. ROS
can be characterized as a meta-operating system. This means that ROS does not
replace, but instead works alongside the traditional operating system. Its main goal is to
provide communication between a host operating system (e.g. Linux) and a robot (e.g.
TurtleBot) and its philosophy is the quick and effective reusability of software on any
robot running ROS, with just little changes so the need of reinventing the wheel
vanishes.

The growth of interest in robotics combined with the simplicity and robustness of ROS,
led to its usage from a lot of research institutions, expanding its popularity. Nowadays,
commercial companies already adapting their products, in order to achieve compatibility
with ROS, such as sensors and actuators. Every day the number of devices compatible
with ROS increases.

Some of the standard operating system facilities that are provided from ROS are
hardware abstraction, low-level device control, implementation of commonly used
functionalities, message passing between processes, and package management.
Architecture of ROS can be described like a graph architecture with centralized
topology. This graph is composed of vertices, called ROS nodes (see section 2.1.3.1)
where processing takes place and edges, called topics (see section 2.1.3.2). A node
can post or/and subscribe to a topic, in order to pass or receive messages respectively.
A representation of that graph architecture is illustrated in Figure 1Figure 1. So, nodes
exchange messages using a pub/sub communication system (see section 2.1.1).

The ROS architecture has been designed and divided into three sections or levels of
concepts:

• The Filesystem level.

• The Computation Graph level.

• The Community level.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 17

Figure 1: ROS graph architecture

2.1.1. Messaging Publish/Subscribe System Model

Publish-subscribe is a messaging pattern. In this messaging pattern there are producers
and consumers. Producers, called publishers, send the messages and consumers,
called subscribers, receive the messages. Publishers do not send the produced
messages directly to the subscribers, on contrary they categorize these messages into
classes being unaware of the existence of subscribers. Pub-sub messaging pattern is
similar with message-queue pattern.

One specific subscriber does not need to consume all the messages produced and sent
in the system. For this case there is the process of filtering. Two forms of filtering and
the most common ones are topic-based filtering and content-based filtering. For the
case of this thesis topic-based filtering was applied. In topic-base filtering messages are
published on topics. Publishers choose the desired topic to produce their messages and
consumers subscribe to any desired topic. A topic can have many producers and many
consumers. All of the consumers will receive all messages that are published on this
topic.

ROS pub-sub system consists of nodes and topics. Nodes are executables that can
communicate with other processes using topics, services, or the Parameter Server. (see
section 2.1.3.7) Topics provide this communication between the nodes by transmitting
data. These data can be transmitted without a direct connection between nodes,
meaning the production and consumption of data are decoupled. A node can subscribe
and publish on any desired topic available. A topic can have multiple publishers and
subscribers so there is no limitation.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 18

The other publish-subscribe messaging system that was used is Apache Kafka, but
more information about it can be found in Chapter 3.

2.1.2. Filesystem Level

Like any traditional operating system, ROS’ programs are divided in folders and files.
Every file has a type that performs a specific task or action. In the following Figure 2, an
abstract representation of the filesystem level is illustrated.

Filesystem Level

Stacks

OtherManifest

Packages

CodeServicesMessages

Stack
Manifest

Figure 2: Abstract representation of ROS' filesystem level

2.1.2.1 Stack

A stack is a collection of packages, which co-operate in order to provide a specific
functionality. ROS has numerous of default stacks. The most infamous of all being the
navigation stack.

2.1.2.2 Stack Manifest

A stack manifest is a file that provides information about a specific stack, like its license
information and its dependency on other stacks. Stack manifests usually, if not always
follow the xml file format.

2.1.2.3 Packages

Packages are comprising the atomic level of ROS. They provide the minimum structure
that a ROS program requires. A ROS program may contain a ROS runtime process
(node), a configuration file etc. Packages also provides the benefit of code reusability
within ROS. A package can be transferred from one project to another with just minor
changes regarding the code of the runtime process and/or the configuration file. The
most granular thing you can build and release is a package.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 19

2.1.2.4 Manifests

Management of manifest is coordinated by a file called manifests.xml. A manifest
provides a lot of information about a package including dependencies, compiler flags,
license information etc.

2.1.2.5 Messages

Messages are used for data and information communication between processes. Every
message type has its own structure and fields. ROS has numerous standard types of
messages. More about messages on section 2.1.3.3

2.1.2.6 Services

Direct communication between nodes for request and response messages is provided
from ROS services. There are no default services provided, and all of them should be
created by the user. The source code files are stored in the srv folder.

2.1.2.7 Code

Source code for ROS nodes can be written in the following programming languages:
C++, Python and Java. There is a good amount of documentation and support for these
three languages, but there are also developers working in order to build support for
other languages too.

2.1.2.8 Other

Other files can be any type of files. A video file in order to process it, a text file for the
means of input or output, a config file to set the node parameters etc.

An example of the ROS filesystem level is illustrated in Figure 3.

Figure 3: ROS Filesystem Level Example

2.1.3. Computation Graph Level

The second level is the Computation Graph level where communication between
processes and systems happens. ROS creates a network where all the processes are

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 20

connected. Any node in the system can access this network, interact with other nodes,
see the information they are sending, and transmit data to the network. The basic
elements in this level are nodes, the Master, the Parameter Server, messages, services,
topics, and bags, all of which provide data to the graph in different ways. A
representation of this graph is illustrated in Figure 4.

Computational Graph Level

Nodes

ServicesMaster

Topics
Parameter

Server Messages

Bags

Figure 4: ROS Computational Graph Level

2.1.3.1 Nodes

Nodes are the most important component of ROS Computational Graph level. They are
processes that interact with the ROS network and complete their given tasks. Every
node has a unique name that differentiate it from the other nodes. This name is like its
unique id, and it is used in order to achieve communication with other nodes via topics.
A node can subscribe to a topic, so it can receive information, perform computation,
control sensors and actuators, and publish data to topics for other nodes to use. Given
that each node provides a specific functionality, it is wiser to have many nodes to control
different functions rather that a big single node. This aspect is crucial for fault tolerance
and code reusability. Nodes are written with a ROS client library. This library supports
many programming languages, with more important ones being: python, java and C++.

2.1.3.2 Topics

Topics are unique named buses used for data transmission between nodes. Nodes can
publish or subscribe to a topic, but data production and consumption are decoupled
meaning that there is an indirect connection between the nodes. Every topic should
have a unique name in order to avoid problems and confusion between same named
topics. Finally, each topic is related to a message type, meaning that it only accepts
specific message type. The connection between topics and nodes is depicted in Figure
1.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 21

2.1.3.3 Messages

ROS messages are stored in .msg files and are used by nodes in order to publish
information on topics. Each message file defines a message type that uses the standard
ROS naming convention: the name of the package followed by the /, and the name of
the .msg file. ROS has numerous predefined types of messages. An example of a
message file is illustrated in Figure 5.

uint8 state
float32 posx
string description

Message.msg

Figure 5: ROS message Example

As one can read from the figure Mesasge.msg type contains an 8-byte sized unsinged
integer named state, a 32-byte sized float named posx, and a string named description.

In ROS, you can find a lot of standard types to use in messages as shown in the
following Table 1:

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 22

Table 1: ROS standard message types

A special type in ROS is Header. This is used to add the timestamp, frame, and so on.
This allows messages to be numbered so that we can know who is sending the
message. Other functions can be added, which are transparent to the user but are
being handled by ROS.

The header type contains the following fields:

• uint32 seq

• time stamp

• string frame_id

2.1.3.4 Services

ROS services are stored in .srv files. They are similar with topics in matter of format but
they have a crucial difference regarding functionality. Topics can provide many-to-many
communication whereas services provide one-to-one communication. One more
difference is that all services should be created by the user and there are no default
services in ROS. A providing ROS node offers a service under a string name, and a
client calls the service by sending the request message and awaiting the reply. Client
libraries usually present this interaction to the programmer as if it were a remote
procedure call.

2.1.3.5 Bags

A primary feature of a well-designed ROS system that we will utilize is that the parts of
the system that consume information do not care about the mechanism used to produce
that information. A good subscriber node will work any time the messages it needs are

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 23

being published without any knowledge of which other node or nodes is publishing
them. Bags are files created by ROS in the. bag format to save all the information of the
messages, topics, services and others. Bags can be used later to process, analyze and
visualize the flow of messages. Bags are created utilizing the rosbag tool, which
subscribes to one or more ROS topics and stores message data as they are received.
The bag file can be reproduced in ROS like a real session, sending the topics at the
same time with the same data. This allows us to run the robot itself a few times, record
the topics we need and then replay the messages on those topics many times in the
simulation environment, experimenting with the software that processes those data.

2.1.3.6 Master

Master provides an application program interface (API), a set of routines and protocols,
tracks publishers and subscribers and services. It also is the domain name system
server, which stores topic’s and services registration information for ROS nodes. But
Master’s main role is to guide individual ROS nodes in order to locate one another so
they can establish a peer-to-peer communication between them.

2.1.3.7 Parameter Server

Parameter Server is a shared, multivariable dictionary that is accessible via a network.
Nodes use this server to store and retrieve parameters at runtime. The ROS Parameter
Server is implemented using XML-RPC (a remote procedure call protocol which uses
XML to encode its calls and HTTP as a transport mechanism), which means that its API
is accessible via normal XML-RPC libraries. The Parameter Server uses XML-RPC data
types for parameter values, including the following:

➢ 32-bit integers

➢ Booleans

➢ Strings

➢ Doubles

➢ ISO 8601 dates

➢ Lists

➢ Base 64-encoded binary data

A user can also set a parameter from the command line by using:

 rosparam set <param_name> <param_value>

2.1.4. ROS Community Level

The third level is the Community level which consists of ROS resources that enable
separate communities to exchange software and knowledge. These resources include
ROS distributions, repositories, the ROS wiki and mailing lists.

• Distributions: Similar to the Linux distribution, ROS distributions are a collection
of versioned meta packages that we can install. The ROS distribution enables
easier installation and collection of the ROS software. The ROS distributions
maintain consistent versions across a set of software.

• Repositories: ROS relies on a federated network of code repositories, where
different institutions can develop and release their own robot software
components.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 24

• The ROS Wiki: The ROS community Wiki is the main forum for documenting
information about ROS. Anyone can sign up for an account and contribute their
own documentation, provide corrections or updates, write tutorials, and more.

• Bug ticket system: If we find a bug in the existing software or need to add a new
feature, we can use this resource.

• Mailing lists: The ROS-users mailing list is the primary communication channel
about new updates to ROS, as well as a forum to ask questions about the ROS
software.

2.1.5. Sensors

Sensors are crucial in robotics nowadays. With the use of sensors, a robot can
understand and map the environment around it and also it can report more types of data
(temperature, GPS location, humidity, brightness, video etc.) back to the user. The more
advanced the sensor is, the more accurate the data. ROS every day supports more and
more sensors and actuators, not only by the official ROS packages, but also with the
help from is community. A list of supported ROS sensors is provided in [7].These
supported sensors are divided in categories. Some of them are the above:

1. 1D range finders

2. 2D range finders

3. 3D Sensors (range finders and RGB-D cameras)

4. Audio / Speech recognition

5. Cameras

6. Environmental (like measuring wind speed and direction)

7. Force / Torque / Touch Sensors

8. Motion Capture

9. Pose estimation (GPS / IMU)

10. Power Supply

11. RFID (Radio-frequency identification)

2.1.6. ROS Commands

There are some default commands and tools that helps the user interact with ROS,
compile, execute and get the output of his programs etc. In the following Table 2, there
is a list of basic ROS commands and also of some commands used in this thesis.

Table 2: ROS Commands

Command Description

roscore Starts ROS master

rosrun <pkg_name> <node_name> Starts executable node

rosrun turtlesim turtlesim_node Starts simple movement simulator

rosrun turtlesim turtle_teleop_key Control the TurtleBot movement with
arrow keys

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 25

rospack list Lists all installed ROS packages

rospack find <pkg_name> Prints file path to package

rosls <pkg_name> Lists all files in package directory

roscd <pkg_name> Allows you to change directories using a
package name, stack name, or special
location

rosnode info <node_name> Display information about a node,
including publications and subscriptions.

rosnode kill <node_name> Kill one or more nodes by name. It is not
guaranteed to succeed. If a node is hung
or set to “respawn” in roslaunch, it may
either fail to die or may quickly reappear.

Rosnode cleanup Purge the registration of any node that
cannot be contacted immediately. Prints
list of unreachable nodes which has to be
confirmed. It can potentially unregister
functioning nodes.

rqt_graph Provides a GUI plugin for visualizing the
ROS computation graph.

rostopic echo </topic_name> Prints topic messages to screen

Rostopic info </topic_name> Provides data on topic such as type,
subscribers and publishers.

rostopic list Lists all active topics

rosbag record -O <filename></topic> Starts rosbag tool to record data from a
desired topic.

roslaunch turtlebot_bringup minimal.launch Starts the communication between the
TurtleBot and the ROS slave, in this case
a Raspberry Pi.

roslaunch turtlebot_navigation
amcl_demo.launch
map_file:=/home/pi/Desktop/little_map.yaml

Loads a map, creating the TurtleBot’s
space.

roslaunch turtlebot_rviz_launchers
view_navigation.launch --screen

Opens a navigation simulation on the
workstation.

roslaunch turtlebot_navigation
gmapping_demo.launch

Starts the mapping process.

rosrun map_server map_saver -f
/home/thanos/Desktop/thesis/maps/basement

Saves the created map.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 26

roslaunch turtlebot_teleop ps3_teleop.launch Starts the teleoperation using a PS3
controller.

2.2 Main Hardware and Software Components

For this thesis, it was critical to execute a series of experiments. A mobile network node
was needed, with capabilities of posting sensor data and network data extracted from its
link with the access point. Our choice was TurtleBot.

2.2.1. TurtleBot

TurtleBot [1] is a low-cost, personal robot kit with open source software. TurtleBot [1]
was created at Willow Garage by Melonee Wise and Tully Foote in November 2010.
The model which was utilized in this thesis had a built in XBOX Kinect sensor. XBOX
Kinect is equipped with a depth sensor, and an RGB camera. XBOX Kinect was
required for implementing SLAM mapping (see section 2.2.7), in order to create a map
(world) for the TurtleBot, so it can navigate autonomously.

Technical specifications of TurtleBot:

 Dimensions: 354 x 354 x 420 mm (14 x 14 x 16.5 in.)

 Weight: 6.3 kg (13.9 lbs.)

 Max Payload: 5 kg (11 lbs.)

 Speed and Performance

 Max Speed: 0.65 m/s (25.6 in./s)

 Obstacle Clearance: 15 mm (0.6 in.)

 Drivers and APIs: ROS

In the following Figure 6, Figure 7 and Figure 8 some more technical specifications are
presented. The images were downloaded from the official TurtleBot web page [1] .
Figure 9Figure 9 is a picture of the TurtleBot that was used for the experiments of this
thesis.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 27

Figure 6: Upper View of TurtleBot

Figure 7: Side View of TurtleBot

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 28

Figure 8: Front View of TurtleBot

Figure 9: Live TurtleBot used in this thesis

This figure presents the TurtleBot used. There

are 3 shelves, the middle one has mounted the

XBOX 360 Kinect used to map the area of the

experiment and on the top shelf lies a

Raspberry Pi model 3B.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 29

2.2.2. Raspberry Pi - PlayStation 3 Controller

TurtleBot uses ROS, but ROS does not run on the TurtleBot, but usually on a laptop or
netbook that lies on its top shelf. The laptop or netbook is connected with TurtleBot’s
base via USB cable to transfer the commands from ROS to the its hardware. Laptops
with high performance are usually heavy and big in size for TurtleBot usage, so the
option is almost always a netbook. Conventional low-cost netbooks do not have the
performance required and cause performance problems. The solution is a high-cost
netbook, but also a Raspberry Pi.

The Raspberry Pi [2] is a series of small single-board computers. For the purpose of this
thesis a Raspberry Pi Model 3 have been used, along with an SD Class 10 card and a
wi-fi USB adapter compatible with Linux.

Figure 10: Raspberry Pi Model 3 B with case, wi-fi
USB adapter and PlayStation3 controller.

Figure 11: Raspberry Pi Model 3 B abstract
architecture schema.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 30

A Playstation3 controller also have been used for moving the TurtleBot around
manually, because of its compatibility with ROS. The controller communicates with the
Raspberry via Bluetooth. Figure 10 illustrates the aforementioned hardware and Figure
11 gives an abstract representation of Raspberry Pi’s 3 architecture. As one can see in
Figure 11, Raspberry Pi 3 already has a wi-fi interface, but it does not have the required
capabilities to support the case of this thesis.

2.2.3. Ground Control Station (GCS)

A Ground Control Station (GCS) is usually a computer machine inside the field of the
experiment, but it can also in this case be anywhere. For the purpose of this thesis,
GCS communicates with the Raspberry Pi, passing commands and consuming
measurements, feedback etc. The most important task of the GCS, is passing the
movement commands to the TurtleBot. This procedure can have failures and delays
due to saturation or overloading of the network, so the GCS should have the knowledge
when to send a movement command, with a minimum possibility of being dropped as a
result of poor network quality. This knowledge comes from monitoring the network and
making decisions about pausing the transmission of movement commands with the use
of OST. It is assumed that the GCS has strong connection to its base station, thus the
network monitoring measurements come from the Raspberry Pi, that measures the link
strength between the TurtleBot and its base station, quality of that link and packet loss.

2.2.4. Power Supply

Raspberry Pi is not a common choice for TurtleBot, because there are some critical
issues regarding its compatibility with it. The most important of them is powering the
Raspberry. One option is high-cost and high-capacity power banks, and the other more
viable but harder option is to create a cable that draws power from TurtleBot’s battery.
Drawing energy from TurtleBot’s battery in order to power the TurtleBot has the
disadvantage of emptying the battery faster. On the other hand, the advantage is that
energy consumption of the TurtleBot’s hardware and of the algorithms that are
implemented is measured as a whole. For this thesis a cable for this purpose has been
created. The cable is connected to an already existent power output port of TurtleBot,
that provides power of 5V and 1A with the required pin, and ends up into the micro-USB
power supply port of the Raspberry Pi. Figure 12 illustrates this cable.

Figure 12: Cable that powers the Raspberry from TurtleBot’s battery

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 31

2.2.5. ROS and Ubuntu Version

One more critical issue is that ROS is stable under specific Linux distributions. Two of
them are Ubuntu 14.04 and Ubuntu 16.04. Neither of them exists for Raspberry Pi, but
with some tweaks a version of Ubuntu Mate 16.04 can be installed on Raspberry Pi
Model 3B and Model 3B+. Ubuntu Mate 16.04 supports specific version of ROS called
ROS Kinetic Kame, so there is no other choice regarding ROS version.

2.2.6. Wicd

The Raspberry Pi that lies on the top of TurtleBot, should eventually shut down after the
execution of specific number of missions, or because TurtleBot’s battery is empty and
needs recharging. When Ubuntu Mate boots, asks for root password in order to run the
network-manager service and finally connect to a desired wireless network. For
purposes of convenience and generality, every time that Raspberry turns on, should
automatically connect to the testbed’s base station or hotspot. This can be done with
the use of Wicd.

Wicd, which stands for Wireless Interface Connection Daemon is an open source
network manager for Linux and it provides a simple network connection interface.

The main advantage of Wicd is that bypasses the need to login as root, because it
starts running as a service before any user logs in. So, it is sufficient just the one-time
configuration of Wicd in order to solve the aforementioned problem. When the
Raspberry boots up alongside TurtleBot, connects to the specified network
automatically without having to login.

2.2.7. Simultaneous Localization and Mapping (SLAM)

TurtleBot should receive movement commands in order to approach the given
trajectory’s points and finally reach the goal point. Hence TurtleBot has to recognize the
space around it. In other words, it needs a map of the experimental area. ROS provides
the capability of mapping the TurtleBot’s space using the XBOX 360 Kinect connected
on it. Kinect has a depth sensor that allows it to sense how far an object is, and if it is
combined with moving the TurtleBot manually around using the PS3 controller, then
there is a complete map of the experimental area. This way ROS creates a map that
lays inside the local storage of Raspberry Pi. The map is separated in two files, one
yaml formatted file and one pgm file. Figure 13 and Figure 14 illustrate an example of a
yaml file and an example of a pgm file respectively.

Figure 13: YAML file example

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 32

Figure 14: Pgm file example

After creating the map, the workstation can initiate rviz, open the map and take the
coordinates of specific points in order to create a desired trajectory. This set of points
(trajectory) is given as input in the experiment’s source code. Figure 15 illustrates an
example rviz instance. Commands can also be given directly from rviz instance but this
is not the case of this thesis.

Figure 15: rviz map view example

The technique used for the map creation is called SLAM (Simultaneous localization and
mapping). SLAM can be described as the computational problem of constructing or
updating a map of an unknown environment while simultaneously keeping track of an
agent’s location within it.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 33

3. APACHE KAFKA

In this thesis two publish-subscribe (pub-sub) messaging systems were used. These
two messaging systems are Apache Kafka [3] and ROS pub-sub communication system
(see section 2.1.1). Apache Kafka is an open-source stream-processing software
platform written in Scala and Java.

Streaming platforms has the following capabilities:

• Similarity to message queues, regarding publishing and subscribing to streams of
records. In case of Kafka topics.

• Durable fault-tolerance.

• Immediate stream processing.

The main advantages of Kafka are that it provides high-throughput, and low latency,
regarding real-time data feeds. Storage layer of Kafka is a pub-sub message queue.
This means that there are application instances which act as consumers and application
instances which act as producers. Producers publish messages to specific Kafka topics
and consumers subscribe to these topics in order to consume the messages.

Kafka has a similar directional graph representation as ROS pub-sub system (see
section 2.1.1). An overview graph is illustrated in Figure 16.

In this work Kafka was used in order to fill the communication gap between the UxV and
the Ground Control Station (GCS) (see section 2.2.3). For a more analytical explanation
about the communication abstract introduced please refer to section 6.1.1.

Figure 16: Kafka architecture as directional graph

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 34

Examples of application that Apache Kafka can be utilized perfectly:

• Internet of things: Swarms of robots, smart watches, smart TV’s, or even
personal health monitors can send telemetry data through Apache Kafka.

• Sensor Networks: Areas and complex can be designed with an array of sensors
to track data or current status.

• Positional Data: Massive Multiplayer Online games, delivery tracks, robot
swarms.

• Other Real-Time Data like satellite data or medical sensor data.

3.1 Ideal Publish-Subscribe System

The idea behind ideal publish-subscribe system is pretty simple, Publisher A’s
messages should be delivered to Subscriber A’s, Publisher B’s messages should be
delivered to Subscriber B’s etc. as it is illustrated in Figure 17. But as it is known in real-
world architectures the existence of this system is impossible.

Figure 17: Publish-Subscribe system

The ideal Publish-Subscribe system has the benefit of the following features:

• Unlimited Lookback: A new Subscriber can read any subsequence of the sent
messages.

• Message Retention: Message loss is zero.

• Unlimited Storage: An infinite number of messages can be stored.

• No Downtime: The system is never down.

• Unlimited Scaling: Delivery latency is constant, no matter the number of
publishers and/or subscribers.

3.2 Apache Kafka Key Characteristics

The key differences of Apache Kafka in comparison with the ideal Publish-Subscribe
system are:

• Messaging is implemented on top of a replicated, distributed commit log.

• The functionality of the client is increased.

• Batch optimization instead of individual messages optimization.

• Retention of messages even after consumption, so they can be consumed again.

The results of these design decisions are:

• Extreme horizontal scalability

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 35

• Very high throughput

• High availability

• Different semantics and message delivery guarantees

3.3 Topics

Topics are the buses that help messages to find their way from the Publisher to the
Subscriber. A topic is a queue of messages written by one or multiple Producers and
read by one or multiple consumers. The identification of a topic is provided by the
knowledge of its name. In Apache Kafka, publishers are called producers and
subscribers are called consumers. In the following Figure 18, one can see an abstract
representation of the topics.

Figure 18: Abstract representation of pub-sub system topics

3.4 Brokers

The design of Apache Kafka offers distributed nature, meaning that Apache Kafka runs
on multiple hosts, with one broker per host. There are guarantees that there are no
downtime and unlimited scaling, because Apache Kafka ensures that always one host is
up and running. Brokers are coordinated by Zookeeper, in order to achieve the goal of
unlimited scaling. Furthermore, topics are replicated across brokers, contributing to no
downtime, unlimited scaling and message retention goals. As one can extract from the
above is that Apache Kafka behaves much like an ideal public-subscribe system. In the
following Figure 19, the issues explained in this paragraph are presented.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 36

Figure 19: Abstract representation of Apache Kafka Brokers

3.5 Records

In Apache Kafka semiology messages send between the producers and the consumers
are called records. Records consist of a key/value pair and metadata including a
timestamp. Key is used in order to identify the source of the message, and it is not
required. Keys and values are stored as arrays of bytes, and the format is not strict. The
metadata of each record can include headers. Headers may store application-specific
metadata as key-value pairs. In the context of the header, keys are strings and values
are byte arrays.

3.6 Partitions

Apache Kafka divides records into partitions. Partitions can be thought of as a subset of
all the records for a topic. In each partition the records are sorted by arrival time. Topics
are created by setting the following two parameters:

• Partition count: The number of partition that records will be spread among.

• Replication factor: The number of copies of a partition that are maintained to
ensure consumers always have access to the queue of records for a given topic.

Every topic has its leader partition. If the replication factor exceeds one, there will be
additional follower partitions. Apache Kafka clients communicate only with leader
partition for data. The rest of the partitions act like a fail-safe mechanism, providing
redundancy and failover. They are responsible of copying new records from their leader
partitions. With N brokers and topic replication factor M:

• If M < N, each broker will have a subset of all the partitions

• If M = N, each broker will have a complete copy of the partitions

In the following Figure 20, there are illustrated two brokers (N = 2) and a replication
factor of two (M = 2).

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 37

Figure 20: Abstract representation of Apache Kafka partitions

Partitions are the key to keeping good record throughput. Correct amount of partitions
and partition replications for a topic has the following benefits:

• Spreads leader partitions evenly on brokers throughout the cluster.

• Makes partitions within the same topic are roughly the same size.

• Load balancing on the brokers.

3.7 Record Order and Assignment

Apache Kafka uses round-robin regarding the assignment of records to partitions. There
are no guarantees that multi-partition records will retain their order by production time.

If the order of the records is of high importance, there can be guarantees from the
producer that records are sent to the same partition. This can be done by including
specific metadata in the record. These metadata are the following:

• The record can indicate a specific partition.

• The record can include an assignment key.

The hash of the key and the number of partitions in the topic determines which partition
the record is assigned to. Including the same key in multiple records ensures all the
records are appended to the same partition.

3.8 Logs and Log Segments

Inside topics and partitions Apache Kafka stores records in a log structured format. In
the following Figure 21, this log structured format is illustrated.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 38

Figure 21: Log structure format of partitions

Actually, not all the records are kept sequentially into a large file, but instead each log is
divided in segments, called log segments. Each log segment can be defined using a
size limit, a time limit, or both. Each of the partitions is broken into segments, with
Segment N containing the most recent records and Segment 1 containing the oldest
retained records. This is configurable on a per-topic basis. The following Figure 22
illustrates the above statements.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 39

Figure 22: Apache Kafka Partition Log Segments

3.9 Kafka Brokers and ZooKeeper

Zookeeper maintains broker, topic and partition information. Partition information such
as replica and partition locations, are updated regularly. Because of this frequent
metadata refreshes, a reliable connection between the brokers and the Zookeeper is
crucial. Some of the Zookeeper features are the following:

• Kafka Controller maintains leadership via Zookeeper

• Kafka Brokers also store other relevant metadata in Zookeeper

• Kafka Partitions maintain replica information in Zookeeper

The following Figure 23 illustrates the relationship between the brokers and the
Zookeeper.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 40

Figure 23: Brokers/Zookeeper relationship

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 41

4. OPTIMAL STOPPING THEORY (OST) AND CHANGE DETECTION

The theory of Optimal Stopping (OST) [8] is concerned with the problem of choosing an
optimal time to take a given action based on sequentially observed random variables in
order to maximize an expected reward or minimize an expected cost. Problems of this
type can be found in areas of statistics and operations research.

The theory of Optimal Stopping was considerably stimulated by A. Wald (1947). He
showed that – in contrast to the classical methods of the Mathematical Statistics,
according to which the decision is taken in a fixed (and nonrandom) time – the methods
of the sequential analysis take observations sequentially and the decision is taken,
generally speaking, at a random time whose value is determined by the rule (strategy)
of observation of a statistician. Wald discovered the remarkable advantage of the
sequential methods in the problem of testing (from i.i.d. observations) two simple
hypotheses. He proved that there is a sequential method (sequential probability-ratio
test) which requires on average a smaller number of observations than any other
method using fixed sample size (and the same probabilities of wrong decisions). It
turned out that the problem of optimality of a sequential statistical decision can be
reformulated as an “optimal stopping problem,” and this was the essential step in
constructing the General Optimal Stopping Theory.

The change to transmission of commands and sensor values is detected through an
optimal stopping rule based on the principles of Optimal Stopping Theory (OST); this
statistically secures the best time instance to maximize an expected pay off as will be
introduced later in our objective function. Before elaborating on our rationale and time-
optimized mechanisms, we provide the fundamentals and principles adopted from the
OST.

4.1 Definition of the problem

Stopping rule problems [8] are defined by two objects,

• a sequence of random variables, 𝑋1, 𝑋2, …,whose joint distribution is assumed
known, and

• a sequence of real-valued reward functions

𝑦0, 𝑦1(𝑥1), 𝑦2(𝑥1, 𝑥2), … , 𝑦∞(𝑥1, 𝑥2, …).

Given these two objects, the associated stopping rule problem may be described as
follows. You may observe the sequence 𝑋1, 𝑋2, … for as long as you wish. For each 𝑛 =
1,2, …,after observing 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛, you may stop and receive the known
reward yn(x1,..., xn) (possibly negative), or you may continue and observe Xn+1. If you
choose not to take any observations, you receive the constant amount, y0. If you never
stop, you receive𝑦∞(𝑥1, 𝑥2, …). (We shall allow the rewards to take the value −∞; but we
shall assume the rewards are uniformly bounded above by a random variable with finite
expectation so that all the expectations below make sense.)

Your problem is to choose a time to stop to maximize the expected reward. You are
allowed to use randomized decisions. That is, given that you reach stage n having
observed X1 = x1..., Xn = xn, you are to choose a probability of stopping that may depend
on these observations. We denote this probability by 𝜑𝑛(𝑥1, … , 𝑥𝑛). A (randomized)
stopping rule consists of the sequence of these functions,

𝛷 = (𝜑0, 𝜑1(𝑥1), 𝜑2(𝑥1, 𝑥2), …),

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 42

where for all n and d𝑥1, … , 𝑥𝑛, 0 ≤ 𝜑𝑛(𝑥1, … , 𝑥𝑛) ≤ 1. The stopping rule is said to be non-

randomized if each 𝜑𝑛(𝑥1, … , 𝑥𝑛)is either 0 or 1.

Thus, φ0 represents the probability that you take no observations at all. Given that you
take the first observation and given that you observe 𝑋1 = 𝑥1, 𝜑1(𝑥1) represents the
probability you stop after the first observation, and so on. The stopping rule, φ, and the
sequence of observations, 𝑋 = (𝑋1, 𝑋2, …), determines the random time N at which
stopping occurs, 0 ≤ 𝑁 ≤ ∞, where 𝑁 = ∞if stopping never occurs. The probability

mass function of N given 𝑋 = 𝑥 = (𝑥1, 𝑥2, …) is denoted by 𝜓 = (𝜓0, 𝜓1, 𝜓2, … , 𝜓∞),
where

𝜓𝑛(𝑥1, … , 𝑥𝑛) = 𝑃(𝑁 = 𝑛|𝑋 = 𝑥)for𝑛 = 0,1,2, … ,

𝜓∞(𝑥1, 𝑥2, …) = 𝑃(𝑁 = ∞|𝑋 = 𝑥).
 (1)

This may be related to the stopping rule φ as follows:

𝜓0 = 𝜑0

𝜓1(𝑥1) = (1 − 𝜑0)𝜑1(𝑥1)

⋮

𝑦𝑛(𝑥1) = [∏(1 − 𝜑𝑗(𝑥1, … , 𝑥𝑗))

𝑛−1

1

]𝜑𝑛(𝑥1, … , 𝑥𝑛)

⋮

𝜓∞(𝑥1, 𝑥2, …) = 1 − ∑𝜓𝑗(𝑥1, … , 𝑥𝑗)

∞

0

 (2)

 𝜓∞(𝑥1, 𝑥2, …) represents the probability of never stopping given all the observations.

Your problem, then, is to choose a stopping rule φ to maximize the expected return,
V(φ), defined as

𝑉(𝜑) = 𝐸𝑦𝑁(𝑋1, … , 𝑋𝑁)

= 𝐸𝑦𝑁 ∑𝜓𝑗(𝑋1, … , 𝑋𝑁)𝑦𝑗(𝑋1, … , 𝑋𝑗)

=∞

𝑗=0

where the “= ∞” above the summation sign indicates that the summation is over values

of j from 0 to ∞, including ∞. In terms of the random stopping time N, the stopping rule
φ may be expressed as

𝜑𝑛(𝑋1, … , 𝑋𝑛) = 𝑃(𝑁 = 𝑛|𝑁 ≥ 𝑛, 𝑋 = 𝑥), where 𝑛 = 0,1, …. (4)

The notation used is that of Section 7.1 of Ferguson (1967).

4.1.1. Loss VS Reward

Often, the structure of the problem makes it more convenient to consider a loss or a
cost rather than a reward. Although one may use the above structure by letting
𝑦𝑛denote the negative of the loss, clarity is gained in such cases by letting 𝑦𝑛denote the
loss incurred by stopping at n, and considering the problem to be one of choosing a
stopping rule to minimize V(φ).

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 43

4.1.2. Random Reward Sequences

For some applications, the reward sequence is more realistically described as a
sequence of random variables 𝑌0, 𝑌1, … , 𝑌∞ whose joint distribution with the observations

𝑋1, 𝑋2, … is known. The actual value of 𝑌𝑛 may not be known at time n when the decision
to stop or continue must be made. However, allowing returns to be random does not
represent a gain in generality because, since the decision to stop at time n may depend
on 𝑋1, … , 𝑋𝑛, we may replace the sequence of random rewards 𝑌𝑛 by the sequence of
reward functions 𝑦𝑛(𝑥1, … , 𝑥𝑛) for 𝑛 = 0,1, … ,∞ where

𝑦𝑛(𝑥1, … , 𝑥𝑛) = 𝐸{𝑌𝑛|𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛} (5)

Any stopping rule φ for the payoff sequence 𝑌0, 𝑌1, … , 𝑌∞ should give the same expected.

4.2 Stopping Rule Existence

It is crucial that a stopping rule exists for a given problem. Optimal Stopping cannot be
applied if there is no stopping rule existence. For example, assume a problem that
someone throws a dice for an infinite time of times and wins the sum of all the throws. It
is clear that he should never stop, because the expected reward increases continuously.
For this problem a stopping rule does not exist. In this chapter the requirements for the
existence of stopping rule will be listed.

Assume the general stopping rule problem described in section 4.1 with observations
𝑋1, 𝑋2, … and rewards 𝑌𝑜 , 𝑌1, … , 𝑌∞ where 𝑌𝑛 = 𝑦𝑛(𝑋1, … , 𝑋𝑛). The existence of the
stopping rule relies on the two following requirements:

1. 𝐸{𝑠𝑢𝑝𝑛𝑌𝑛} < ∞

2. 𝑙𝑖𝑚 𝑠𝑢𝑝𝑛→∞𝑌𝑛 ≤ 𝑌∞

The meaning of these two requirements is given bellow with no strict mathematical
explanation:

• The maximum of 𝑌𝑛 should exist, or else someone who can predict the future will
always receive a non-finite reward.

• 𝑌𝑛 should not go to ∞, because there will be cases that someone by chance will
not get a finite reward.

For better understanding of the above requirements, refer to the following two
examples:

• Example 1: Let 𝑋1, 𝑋2, … be independent Bernoulli trials with probability ½ of
success, and let 𝑌0 = 0,

𝑌𝑛 = (2𝑛 − 1)∏𝑋𝑖

𝑛

1

, (6)

and 𝑌∞ = 0. As long as only successes have occurred, you may stop at stage n

and receive 2𝑛 − 1; after the first failure has occurred, you receive 0. Since 𝑌𝑛 →
0 a.s., the second requirement is satisfied. On the other hand, 𝑠𝑢𝑝𝑛𝑌𝑛 = 2𝑘 − 1

with probability
1

2𝑘+1 for k= 0,1,2,… so that 𝐸{𝑠𝑢𝑝𝑛𝑌𝑛} = ∑ (1 − 1
2𝑘⁄) 2⁄∞

0 = ∞

and the first requirement is not satisfied. If you reach stage n without any failures,
your return for stopping is 2𝑛 − 1 , while if you continue one stage you can get an

expected value of at least (2𝑛+1 − 1)/2 = 2𝑛 − 1/2, which is better. Thus, it can
never be optimal to stop before a failure has occurred. Yet continuing forever

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 44

gives you a zero payoff so there is no optimal stopping rule. In fact, 𝑠𝑢𝑝𝑁𝐸𝑌𝑁 =
1 , but the supremum is not attained.

• Example 2: Let 𝑌0 = 0, 𝑌𝑛 = 1 – 1/n for n = 1, 2… and 𝑌∞ = 0. (The 𝑋𝑛 are
immaterial). Here requirement one is satisfied and requirement two is not. Yet,
like the previous example, the longer you wait the better off you are, but if you
wait forever you win nothing. There is no optimal rule.

4.3 The Secretary Problem

A commonly known application of the optimal stopping theory is known as the Secretary
Problem [8]. The problem is usually described as the problem of a decision maker who
is called to choose the best secretary among a finite number of applicants with the goal
of picking the best applicant.

1. There is one position available.

2. There are n applicants for the position where n is a known finite number.

3. You can rank the applicants linearly from worst to best without ties.

4. The applicants are interviewed sequentially.

5. As each applicant is interviewed you must either reject the applicant and
interview the next one or accept the applicant and end the decision problem.

6. You must make the decision to accept or reject each applicant using only the
relative ranks of the applicants interviewed so far.

7. A rejected applicant cannot be recalled later.

8. The objective of the general solution is to maximize the probability of selecting
the best applicant. This is the same as maximizing the expected payoff, with
payoff defined to be 1 if you do select the best, 0 otherwise.

We place this problem into the guise of a stopping rule problem by identifying stopping
with acceptance. We may take the observations to be the relative ranks, 𝑋1, 𝑋2, … , 𝑋𝑛,
where 𝑋𝑗is the rank of the jth applicant among the first j applicants, rank 1 being best.

By assumption 4, these random variables are independent and 𝑋𝑗has a uniform

distribution over the integers from 1 to j. Thus, 𝑋1 ≡ 1, 𝑃(𝑋2 = 1) = 𝑃(𝑋2 = 2) = 1 2⁄ ,
ect.

Note that an applicant should be accepted only if it is relatively best among those
already observed. A relatively best applicant is called a candidate, so the jth applicant is
a candidate if and only if 𝑋𝑗 = 1. If we accept a candidate at stage j, the probability we

win is the same as the probability that the best candidate overall appears among the
first j applicants, namely 𝑗 𝑛⁄ . Thus,

𝑦𝑖(𝑥1, … , 𝑥𝑗){
 𝑗 𝑛⁄ if applicant j is a candidate,

0 otherwise.
 (7)

Note that 𝑦0 = 0and that for 𝑗 ≥ 1, 𝑦𝑗depends only on 𝑥𝑗.

This basic problem has a remarkably simple solution which we find directly without the
use of the optimal rule for finite horizon problems:

𝑉𝑗
(𝑇)

(𝑥1, … , 𝑥𝑗) = 𝑚𝑎𝑥 {𝑦𝑗(𝑥1, … , 𝑥𝑗), 𝐸(𝑉𝑗+1
(𝑇)

(𝑥1, … , 𝑥𝑗 , 𝑋𝑗+1)|𝑋1 = 𝑥1, … , 𝑋𝑗 = 𝑥𝑗)} (8)

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 45

Let 𝑊𝑗 denote the probability of win using an optimal rule among rules that pass up the

first j applicants. Then 𝑊𝑗 ≥ 𝑊𝑗+1 since the rule best among those that pass up the first j

+ 1 applicants is available among the rules that pass up only the first j applicants. It is
optimal to stop with a candidate at stage j if 𝑗 𝑛⁄ ≥ 𝑊𝑗. This means that if it is optimal to

stop with a candidate j, then it is optimal to stop with a candidate at j + 1, since
(𝑗 + 1) 𝑛⁄ > 𝑗 𝑛⁄ ≥ 𝑊𝑗 ≥ 𝑊𝑗+1. Therefore, an optimal rule may be found among the rules

of the following form, 𝑁𝑟for some 𝑟 ≥ 1:

 𝑁𝑟: Reject the first r-1 applicants and then accept the next relatively best
applicant, if any.

Such a rule is called a threshold rule with threshold r. The probability of win using 𝑁𝑟is

𝑃𝑟 = ∑ 𝑃(𝑘𝑡ℎapplicant is best and is selected)

𝑛

𝑘=𝑟

= ∑𝑃(𝑘𝑡ℎapplicant is best)𝑃(𝑘𝑡ℎapplicant is selected|it is best)

𝑛

𝑘=𝑟

= ∑
1

𝑛
𝑃(best of first k - 1 appears before stage r)

𝑛

𝑘=𝑟

= ∑
1

𝑛

𝑟 − 1

𝑘 − 1

𝑛

𝑘=𝑟

=
𝑟 − 1

𝑛
∑

1

𝑘 − 1

𝑛

𝑘=𝑟

 .

 (9)

where (𝑟 − 1) (𝑟 − 1)⁄ represents 1 if 𝑟 = 1. The optimal 𝑟1 is the value of r that
maximizes 𝑃𝑟. Since

𝑃𝑟+1 ≤ 𝑃𝑟if and only if

𝑟

𝑛
∑

1

𝑘 − 1
≤

𝑟 − 1

𝑛
∑

1

𝑘 − 1
 if and only if

𝑛

𝑟

𝑛

𝑟+1

∑
1

𝑘 − 1
≤ 1

𝑛

𝑟+1

,

 (10)

we see that the optimal rule is to select the first candidate that appears among
applicants from stage 𝑟1 on, where

𝑟1 = 𝑚𝑖𝑛 {𝑟 ≥ 1:∑
1

𝑘 − 1

𝑛

𝑟+1

≤ 1}. (11)

The following table is easily constructed.

𝑛 = 1 2 3 4 5 6 7 8
𝑟1 = 1 1 2 2 3 3 3 4
𝑃𝑟1 = 1.0 . 500 . 500 . 458 . 433 . 428 . 414 . 410

Table 3: Secretary Problem Expected Probabilities

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 46

It is of interest to compute the approximate values of the optimal 𝑟1and the optimal

𝑃𝑟1for large n. Since ∑
1

𝑘−1

𝑛
𝑟+1 ~ log(

𝑛

𝑟
), we have approximately log(𝑛 𝑟1⁄) = 1, or 𝑟1 𝑛⁄ =

𝑒−1. Hence, for large n it is approximately optimal to pass up a proportion 𝑒−1 of the
applicants and then select the next candidate. The probability of obtaining the best
applicant is then approximately 𝑒−1.

4.3.1. The Parking Problem (Mac Queen and Miller (1960))

Assume that you are driving towards a destination on an infinite distance. When you are
close enough, you have to park in order to disembark. If you pass an empty parking
spot, you are not allowed to go back and take it, but it is not guaranteed that you will
find a spot later on the road. So, the problem here is to pick the perfect spot, closer to
your destination, without having to know if there are spots closer.

Here, we model this problem in a discrete setting. We assume that we start at the origin
and that there are parking places at all integer points of the real line. Let 𝑋0, 𝑋1, 𝑋2, … be
independent Bernoulli random variables with common probability p of success, where
𝑋𝑗 = 1 means that parking place j is filled and 𝑋𝑗 = 0 means that it is available. Let if

you do you lose |T-j|. You cannot see parking place j+1 when you are at j, and if you
once pass up a parking place you cannot return to it. If you ever reach T, you should
choose the next available parking place. If Y is filled when you reach it, your expected
loss is then (1 − 𝑝) + 2𝑝(1 − 𝑝) + 3𝑝2(1 − 𝑝) + ⋯ = 1 (1 − 𝑝)⁄ , so that we may consider
this as a stopping rule problem with finite horizon T and with loss

𝑦𝑇 = 0 𝑖𝑓 𝑋𝑇 = 0 and 𝑦𝑇 = 1 (1 − 𝑝)⁄ 𝑖𝑓 𝑋𝑇 = 1 . (12)

and for 𝑗 = 0, … , 𝑇 − 1,

𝑦𝑗 = 𝑇 − 𝑗 if 𝑋𝑗 = 0 and 𝑦𝑗 = ∞ 𝑖𝑓 𝑋𝑗 = 1 . (13)

The value 𝑦𝑗 = ∞ forces you to continue if you reach a parking place j and it is filled.

We seek a stopping rule, 𝑁 ≤ 𝑇, to minimize 𝐸𝑌𝑁.

First, we show that if it is optimal to stop at stage j when 𝑋𝑗 = 0, then it is optimal to stop

at stage 𝑗 + 1 when 𝑋𝑗+1 = 0. As in Moser’s problem, 𝑉𝑗
(𝑇)

depends only on 𝑋𝑗,and 𝑋𝑗 =

1 is a constant that depends only on 𝑛 − 𝑗. It is optimal to stop at stage 𝑛 − 𝑗 if 𝑦𝑛−𝑗 ≤

𝐴𝑗. We are to show that if 𝑛 − 𝑗 ≤ 𝐴𝑗, then 𝑛 − 𝑗 − 1 ≤ 𝐴𝑗−1. This follows from the

inequalities, 𝑛 − 𝑗 − 1 < 𝑛 − 𝑗 ≤ 𝐴𝑗 ≤ 𝐴𝑗−1.

Thus, there is an optimal rule of the threshold form, 𝑁𝑟for some 𝑟 ≥ 0: continue until r
places from the destination and park at the first available place from then on. Let
𝑃𝑟denote the expected cost using this rule. Then, 𝑃0 = 𝑝 (1 − 𝑝)⁄ and for 𝑟 ≥ 1, 𝑃𝑟 = (1 −
𝑝)𝑟 + 𝑝𝑃𝑟−1. We will show by induction that

𝑃𝑟 = 𝑟 + 1 +
2𝑝𝑟+1 − 1

1 − 𝑝
 . (14)

𝑃0 = 𝑝(1 − 𝑝) = 1 + (2𝑝 − 1) (1 − 𝑝)⁄ , so, it is true for 𝑟 = 0. Suppose it is true for 𝑟 − 1;
then 𝑃𝑟 = (1 − 𝑝)𝑟 + 𝑝𝑃𝑟−1 = (1 − 𝑝)𝑟 + 𝑝𝑟 + 𝑝 (2𝑝𝑟 − 1) (1 − 𝑝)⁄ = (𝑟 + 1) +
(2𝑝𝑟+1 − 1) (1 − 𝑝)⁄ , as was to be shown. To find the value of r that minimizes (7), look

at the differences, 𝑃𝑟+1 − 𝑃𝑟 = 1 + (2𝑝𝑟+2 − 2𝑝𝑟+1) (1 − 𝑝)⁄ = 1 − 2𝑝𝑟+1. Since this is
increasing in r, the optimal value is the first r for which this difference is nonnegative,
namely, 𝑚𝑖𝑛{𝑟 ≥ 0: 𝑝𝑟+1 ≤ 1 2⁄ }. For example, if 𝑝 ≤ 1 2⁄ , you should start looking for a
parking place 𝑟 = 6 places before the destination.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 47

4.4 Change Point Detection

Let us assume that we monitor a sequence of i.i.d. random variable 𝑋1, 𝑋2, …with a

known distribution 𝐹0. At some point T in time, unknown to you, the distribution will
change to some other known distribution 𝐹1, and we have to sound an alarm as soon as
possible after the change occurs. It is assumed that you know the distribution of T. If the
cost of stopping after the change has occurred is the time since the change, and if the
cost of false alarm that is of stopping before the change has occurred is taken to be a
constant c>0 then the total cost may be represented by

𝑌𝑛 = 𝑐𝐼{𝑛 < 𝑇} + (𝑛 − 𝑇)𝐼{𝑛 ≥ 𝑇} for n=0, 1..., and 𝑌∞ = ∞ . (15)

In this display I(A) represents the indicator function of a set: so, for example 𝐼{𝑛 < 𝑇} is
equal to 1 if n<T and to zero otherwise. Since T is a random unobservable quantity, we
may replace 𝑌𝑛 by conditional expected value given 𝑋1,..., 𝑋𝑛

𝑦𝑛 = 𝑐𝑃(𝑇 > 𝑛 ∣∣ 𝐹𝑛) + 𝛦((𝑛 − 𝑇)(+.) ∣∣ 𝐹𝑛) for n=0, 1..., and 𝑌∞ = ∞ . (16)

Change-point detection has its origins almost sixty years ago in the work of Page [9]
Shirayaev [10] and Lorden [11] who focused on sequential detection of a change-point
in an observed stochastic process. The stochastic process was typically a model for the
measured quality of a continuous production process, and the change-point indicated a
deterioration in quality that must be detected and corrected. In our case, we are
adopting this methodology for finding the best time instance for the controller strategy in
order to maximize the possibility of successful message delivery by observing runtime
network statistics.

The need of change point detection is based on the critical issue that the UxV should
“know” when to stop transmitting sensitive and crucial information and data to a
saturated network risking their loss. For that reason, a Time Optimized Change-Point
Decision Making Process (TOCP) based on CUSUM algorithm was created. More about
TOCP in section 5.3.2.

4.4.1. Change Point Detection Algorithms

Let a sequence of independent random variables (𝑦𝑘)𝑘 with a probability density 𝑝𝜃(𝑦)
depending upon only one scalar parameter. Before the unknown change time 𝑡0, the
parameter 𝜃 is equal to 𝜃0, and after the change it is equal to 𝜃1 ≠ 𝜃0. The problems are
then to detect and estimate this change in the parameter. The parameter 𝜃0 it is
assumed that it is known before the change. Change point detection algorithms are
based on a crucial concept of mathematical statistics, namely the logarithm of the
likelihood ratio, defined by:

𝑠(𝑦) = ln
𝑝𝜃1(𝑦)

𝑝𝜃𝜊(𝑦)
 . (17)

and referred for simplicity as log-likelihood ratio. Below is explained the key statistical
property of this ratio. 𝐸𝜃0 and 𝐸𝜃1 are representing the expectations of the random

variables under distribution 𝑝𝜃0 and distribution 𝑝𝜃1 respectively. Then,

𝐸𝜃0(s) < 0 and 𝐸𝜃1(𝑠) > 0. (18)

This practically means that a change in parameter 𝜃 is reflected as a change in the sign
of the mean value of the log-likelihood ratio. This property of the log-likelihood ratio can

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 48

be viewed as a measure of detectability of the change. Also, the Kullback information K
is defined by 𝐾(𝜃1, 𝜃0) = 𝐸𝜃1(𝑠), there is the difference between the two mean values,

𝐸𝜃1(𝑠) − 𝐸𝜃0(𝑠) = 𝐾(𝜃1, 𝜃0) + 𝐾(𝜃0, 𝜃1) > 0. (19)

So, the detectability of a change can be found also with the aid of the Kullback
information between the two distributions before and after the change.

4.4.1.1 CUmulative SUM (CUSUM) Algorithm

CUSUM algorithm, was first proposed in [23]. There are several different variations and
approaches. The one described here is the Intuitive Derivation approach. Also, a simple
pseudo-code approach is made.

4.4.1.1.1 Mathematical Approach of CUSUM Algorithm (Intuitive Derivation
Approach)

Let 𝑆𝑘 be the log-likelihood ratio. This ration shows a negative drift before the change
and a positive drift after the change as it is illustrated in Figure 24.

Figure 24: Typical behavior of the log-likelihood ratio 𝑺𝒌 corresponding to a change in the mean of

a Gaussian sequence with constant variance: negative drift before and positive drift after the
change.

So, the relevant information lies in the deference 𝑔𝑘 between the value of the log-
likelihood ration and its current minimum value 𝑚𝑘; and the corresponding decision rule

is then, at each time instant, to compare this difference to a threshold ℎ as follows:

𝑔𝑘 = 𝑆𝑘 − 𝑚𝑘 ≥ ℎ , (20)

Where,

𝑆𝑘 = ∑𝑠𝑖

𝑘

𝑖=1

𝑠𝑖 = ln
𝑝𝜃1(𝑦𝑖)

𝑝𝜃𝜊(𝑦𝑖)
 (21)

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 49

𝑚𝑘 = min 𝑆𝑗 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑗 ≤ 𝑘

In the following Figure 25, the typical behavior of 𝑔𝑘 is illustrated. The stopping time is:

𝑡𝑎 = min{𝑘: 𝑔𝑘 ≥ ℎ} . (22)

which can be also written as:

𝑡𝑎 = min{𝑘: 𝑆𝑘 ≥ 𝑚𝑘 + ℎ}. (23)

Figure 25: Typical behavior of the CUSUM decision function 𝒈
𝒌

4.4.1.1.2 Algorithm

In this section, a general approach to the CUSUM algorithm is given. Its purpose is the
better understanding of the algorithm. Assume a univariate time series 𝑥𝑡 ∈ ℝ consisting
of data values collected over time and a target value 𝜇 for this data stream. CUSUM
involves the calculation of positive and negative changes (𝑃 and 𝑁, respectively) in the

time series 𝑥𝑡 cumulatively over time and it compares these changes to a positive and a
negative threshold (𝑡ℎ𝑟𝑒𝑠ℎ+ and 𝑡ℎ𝑟𝑒𝑠ℎ−, respectively). Whenever these thresholds are
exceeded, a change is reported through the above-detection and below-detection
signals (𝑠+ and 𝑠−, respectively) while the cumulative sums are set to zero. In order to
avoid the detection of non-abrupt changes or slow drifts, the algorithm takes into
consideration tolerance parameters for positive and negative changes (𝑘+ and 𝑘−,
respectively).

The input parameters for the CUSUM algorithm are the following:

• the target value 𝜇 ∈ ℝ

• the above-tolerance value 𝑘+ ∈ ℝ

• the below-tolerance value 𝑘− ∈ ℝ

• the above-threshold value 𝑡ℎ𝑟𝑒𝑠ℎ+ ∈ ℝ

• the below-threshold value 𝑡ℎ𝑟𝑒𝑠ℎ− ∈ ℝ

The output parameters for the CUSUM algorithm are the following:

• the above-detection signal 𝑠+ ∈ {0,1}

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 50

• the below-detection signal 𝑠− ∈ {0,1}

CUSUM is presented in Algorithm 1 below.

ALGORITHM 1. Cumulative Sum (CUSUM)

Input: univariate time series 𝑥𝑡, target value 𝜇, above-tolerance 𝑘+,
below-tolerance𝑘−, above-threshold 𝑡ℎ𝑟𝑒𝑠+, below-threshold 𝑡ℎ𝑟𝑒𝑠−

Output: above detection signal 𝑠+, below detection signal 𝑠−

1: 𝑃 ← 0;

2: 𝑁 ← 0;

3: 𝑡 ← 1;

4: while (𝑡𝑟𝑢𝑒)

5: 𝑠+ ← 0;

6: 𝑠− ← 0;

7: 𝑃 ← 𝑚𝑎𝑥(0, 𝑥𝑡 − (𝜇 + 𝑘+) + 𝑃);

8: 𝑁 ← 𝑚𝑖𝑛(0, 𝑥𝑡 − (𝜇 − 𝑘−) + 𝑁);

9: if (𝑃 > 𝑡ℎ𝑟𝑒𝑠+) then

10: 𝑠+ ← 1;

11: 𝑃 ← 0;

12: 𝑁 ← 0;

13: end

14: if (𝑁 < −𝑡ℎ𝑟𝑒𝑠−) then

15: 𝑠+ ← 1;

16: 𝑃 ← 0;

17: 𝑁 ← 0;

18: end

19: 𝑡 ← 𝑡 + 1;

20: End

The algorithm assumes that the arrived time series follow a normal distribution. In order
the algorithm to work properly, the tolerance and threshold parameters should be tuned
in a way that determines what an actual change is for a specific time-series.

This tuning can be performed by following these steps:

• Start with large 𝑡ℎ𝑟𝑒𝑠ℎ+, 𝑡ℎ𝑟𝑒𝑠ℎ− values.

• Choose 𝑘+, 𝑘− parameters to half of the expected change, or adjust them such
that 𝑃,𝑁 are zero more than half of the times.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 51

• Then set the 𝑡ℎ𝑟𝑒𝑠ℎ+, 𝑡ℎ𝑟𝑒𝑠ℎ− values so that the required number of false alarms
or the required delay for detection is obtained.

• If faster detection is sought, try to decrease 𝑘+, 𝑘−values.

If fewer false alarms are desired or changes that do not make sense are detected, try to
increase 𝑘+, 𝑘−values.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 52

5. RATIONALE AND PROBLEM FORMULATION

5.1 Definition of the Problem

In practice, if a UxV loses contact with the GCS, it returns back to a given initial position.
This is impractical for missions that require UxV to travel a good distance away from the
GCS. It is also energy inefficient both for the UxV’s battery and for the network, to start
the mission from the beginning every time that communication is lost. The goal of this
thesis is to prevent the aforementioned loss of communication by acting proactively
based on the OST, in order to complete the mission without the need of restarting it. The
algorithm implemented for the purpose, extracts network data from the UGV’s and
GCS’s wireless interface and then uses the OST in order to take actions, for example
starting and stopping the telemetry transmission from the sensors. In this thesis, there
will be usage of live data produced by a UGV (TurtleBot), in order to prove the
theoretical work and the simulations.

In this thesis a framework that implements a network quality based decision-making
process is developed. This framework adapts the information flow between the UxV and
the Ground Control Station (GCS) based on network quality metrics (such as packet
error rate etc.) and the principals Optimal Stopping Theory (OST). The goal of this
framework is to ensure the optimal delivery of critical information from UxV to GCS and
vice-versa. If the network behaves optimally then there is no limitation on the
information flow, but if the network is saturated or overloaded restriction rules are
applied. The proposed model introduces two optimal stopping time mechanisms based
on change detection theory and a discounted reward process.

5.2 Related Work

In the literature researchers have extensively studied message-routing protocol
employed on the unmanned vehicles. Opportunistic networks are studied as long as
they are capable of maintaining efficient operation in a wide range of network density
and mobility conditions. These network environments are classified by their diversity of
topological conditions. One of the classification categories are networks of almost static
dense topologies. Regarding this category conventional topology-based protocols [14]
are the best option; they just use labels/identities. When the density starts decreasing
but the mobility status remains stable, then the best option is the position-based
protocols [15] [16]. Position-based protocols rely on the spatial transposition of
messages due to hops from one node to another. Another classification category are the
networks of low nodal density. In these networks intense mobility is required, so nodal
contact opportunities can be created. These topologies are based on the ‘carry’ action
[17] [18], i.e. the spatial transposition of the message due to the physical movement of
the carrier node, perform better; they employ information about the nodes motion
characteristics.

Connectivity issues between mobile nodes is critical and there should be guarantees for
the secure delivery of the messages. For this reason, a Decision-Making Process
(DMP) can be created. The DMP relies on information that have an impact on message
delivery rate, such as network ping, packet loss, delay deadlines, etc. In [4] ,a cross-
layer optimization framework for single-user multimedia transmission over single hop
wireless networks was created. In this framework the DMP takes into consideration the
network conditions and the adaptation capabilities of the user at various layers of the
protocol stack.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 53

Methods that derive from the principals of Optimal Stopping Theory (OST), can also be
studied. These methods can apply on information exchange regarding ad-hoc networks.
However, the focus of the research in the literature is not based on the OST principals.
In [19] - [21] contextual data mechanisms deal with the delivery of quality information to
context-aware applications in static and mobile ad-hoc networks respectively assuming
epidemic-based information dissemination schemes. The mechanism in [19] is based
on the probabilistic nature of the “secretary problem” [8] and the optimal on-line
problem. Authors in [20] study a dynamic video encoder that detects scene changes
and tunes the synthesis of Groups-of-Pictures accordingly. Such dynamic encoding can
be applied to infrastructures with restricted resources, like IoT facilities where
multimedia streams are of use. They propose a time-optimized DMP that yields different
sizes of groups-of-pictures (frames) to meet the previously discussed objectives i.e.,
transmit video sequences in acceptable quality with rational use of the wireless
resources. In [22] authors propose optimal DMP decisions on the collection of
contextual data from WSNs. The authors determine the best time to switch from
decision to learning phase of Principal Component-based Context Compression (PC3)
model, while data inaccuracy is taken into account. If data inaccuracy remains at low
levels, then any deterministic switching from compression to learning phases of the
observation.

Concluding, change-point is a legacy work, with his lineage going back to the work of
Page [9], Shiryayev [10] and Lorden [11]. Lorden, focused his research on sequential
detection of a change-point in an observed stochastic process. The stochastic process
was typically a model for the measured quality of a continuous production process, and
the change-point indicated a deterioration in quality that must be detected and
corrected.

5.3 Time-Optimized Decision-Making Model for Unmanned Vehicles

5.3.1. Overview

The main goal of this thesis is the development of a framework that implements a
network quality-based decision-making process. That decision-making process (DMP)
adapts the information flow of UxV missions. UxV not only have to receive messages
from a GCS, but also post data from their built-in sensors like position, temperature etc.
Information flow is adjusted dynamically based on network metrics such as packet error
rate (PER), by starting and stopping message production between the GCS and the
UxV. So, the framework has two states of operation: active and passive. The duration
and the transitions between the states, are defined by two on-line mechanisms. As
mentioned in the introduction (see chapter Error! Reference source not found.), not a
ll the messages have the same criticality, for example sensor telemetry (e.g. humidity)
can be characterized as lower priority messages in comparison with the position
reporting of UxV that is a perquisite for the safe execution of the mission. Higher priority
messages should be sent constantly, but lower priority messages can be delayed if the
network performance is not sufficient. With this behavior there is a better chance that
the UxV will finish the mission without losing completely the link between its network
interface and the mission’s access point.

The DMP runs locally on the UxV/GCS, and it is equipped with a Time-Optimized
Change-Point Decision Making Process (TOCP), which is triggered every time there is a
change to network performance (TOCP is fully described in section 5.3.2). When the
DMP is in ‘passive’ state, stopping the transmission of various messages, a Discounted
Secretary Problem (DSP) which is activated tries to recover the state back to ‘active’
(DSP is introduced in Section 5.3.3). DSP ranks the network quality measurements from

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 54

worst to best and optimally delays its pause interval. The pausing period has a
maximum deadline of 𝑇ℎ𝑚𝑎𝑥.

In the following Figure 26, everything of the above are explained with the help of a
directed graph where 𝑄𝑁𝑖 stands for Quality of Network Indicator.

Active State Passive State

TOCP() → passive

DRP() → active ‖ counter == Th

counter == 0

counter ≤ Th

Figure 26: Graph representation of DMP

In the following

 Table 4 there are the rules of state transitions.

 Table 4: Rules of State Transition

5.3.2. Time-Optimized Change-Point Decision Making Process (TOCP)

When the UxV is in active state, then TOCP mechanism is triggered. Assume the
network quality data follow a probability density function (𝑥𝑛, 𝑓𝑖) where 𝑓𝑖 expresses the
normal distribution (with value 𝜇𝑖 and variance 𝜎𝑖). These network data 𝑥1, 𝑥2, … , 𝑥𝑛 can
be considered as a random signal with i.i.d. random variables observed in real-time. For
the case of this thesis, a probability density function comparison method was adopted in

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 55

order to estimate 𝑝(𝑥𝑛, 𝑓𝑖). This method derives the closest distributions to the newly
introduced Quality Network Indicator (QNI). QNI is calculated using live network data
and more specifically: Packet Error Rate (PER), Signal-to-Noise Ratio (SNR), and the
UNIX built-in interference quality indicator (Q). The description of these metrics can be
found in Table 5 bellow. So, QNI is an affine combination of the above metrics
normalized in [0,100]:

𝑄𝑁𝐼𝑛 = 𝑃𝐸𝑅�̂� + 𝑆𝑁𝑅�̂� + 𝑄�̂�. (24)

Quality indicator Description

Packet Error Rate (PER) Rate between the lost packets and the total
packets sent through the network

Signal-to-Noise Ratio (SNR) Ratio of signal power to the noise power

Interference quality Indicator (Q) Exported by an access point in scale [0,100]
and depends on the level of contention or
interference, like the bit or frame error rate, or
other hardware metric.

Table 5: Description of Network Quality Indicators

Now assume two priors know distributions 𝑓0 , 𝑓1 where 𝑓0 ≠ 𝑓1, where 𝑓0 represents the
data of QNI when the network quality is good, and 𝑓1 represents the data of QNI when
the network quality is bad. Probability Density Function (PDF) model fittings of these
distributions are illustrated in Figure 27 and Figure 28.

Figure 27: Probability Density Function of 𝒇𝟎 Model Fitting

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 56

Figure 28: Probability Density Function of 𝒇𝟏 Model Fitting

The method for estimating 𝑝(𝑥𝑛, 𝑓𝑖), is based on model fitting of all the parametric
probability distributions to the QNI, and then is observed if there is a concept drift of QNI
from one distribution to another.

Now assume a time 𝑚. Before this time QNI follows the PDF of the distribution 𝑓0 , and
after this time shifted to the PDF of distribution 𝑓1. Under the given observations, the
following equation (25) can be extracted, where 𝑥0 is the first sample, and 𝑥𝑘 is the
current sample.

𝑝(𝑥) =

{

 ∏ 𝑝(𝑥𝑛, 𝑓0)
𝑘

𝑛=0
, 𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒; ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝐻0

∏ 𝑝(𝑥𝑛, 𝑓0)∏ 𝑝(𝑥𝑛, 𝑓1)
𝑘

𝑛=𝑚

𝑚−1

𝑛=0
, 𝑐ℎ𝑎𝑛𝑔𝑒; ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝐻1

 . (25)

The challenge is now to approximate the potential change point time 𝑚 and decide
between the hypothesis 𝐻0 and 𝐻1 based on the behavior of QNI. A good solution for
this problem can be found in [9] which adopts the minimax approach. From [9] the
conditional expected delay is defined:

𝐸𝐻1[(𝑁𝑑 − 𝑚 + 1)+|𝑛 = 0,1, … ,𝑚 − 1]. (26)

The minimax performance criterion is given by its supremum taken over. Specifically,
the worst-case detection delay is estimated as:

𝐷𝑛(𝜏) = sup
𝑛≥1

𝑒𝑠𝑠 sup𝐸𝑘 [(𝜏 − 𝑘 + 1)+|𝐹𝑘−1]. (27)

Where 𝑥+ = 𝑚𝑎𝑥{𝑥, 0} and the False Alarm Rate (FAR) is defined in [12] as:

𝐹𝐴𝑅(𝜏) =
1

𝐸∞[𝜏]
 , (28)

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 57

 𝑤ℎ𝑒𝑟𝑒 𝐸∞[𝜏] 𝑑𝑒𝑓𝑖𝑛𝑒𝑠 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

Log-likelihood ratio at time 𝑛 is defined by:

𝐿𝑥(𝑛) = ln
𝑝(𝑥(𝑛), 𝑓0)

𝑝(𝑥(𝑛), 𝑓1)
= ln

𝜎1
2

𝜎0
2 +

(𝑥 − 𝜇1)
2

2𝜎1
2 +

(𝑥 − 𝜇0)
2

2𝜎0
2 . (29)

and 𝑆(𝑛) is defined as the cumulative summation of the log-likelihood ratios from 0 to n:

𝑆(𝑛) = ∑ 𝐿𝑥(𝑘)

𝑛

𝑘=0

. (30)

Under the Lorden criterion, the goal is to find the optimal solution to equation (27). This
solution was determined in [13] and it is given by the CUSUM test proposed in [23]. The
optimal stopping time of change point detection is given by:

𝜏∗ = 𝑚𝑖𝑛
{𝑛 ≥ 1, max

1≤𝑘≤𝑛
∑𝐿𝑥(𝑖) ≥ 𝛼

𝑛

𝑖=𝑘

}, (31)

 𝑤ℎ𝑒𝑟𝑒 𝛼 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

In the following Figure 29, is illustrated the behavior of log-likelihood ratio, when there is
a change from good network state to bad network state.

Figure 29: Log-Likelihood Ratio Behavior

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 58

5.3.3. Discounted Secretary problem (DSP)

When the UxV transits from the active state to the passive state, it cannot stay passive
forever, because it has a hard limit for sending messages to GCS in order to report that
its alive. This limitation does not only apply to the UxV, but also for the GCS; a GCS
cannot leave a UxV with no control messages for a long time. TOCP introduced in
section 5.3.2 optimally picks the moment, that the UxV’s telemetry will transit from
active to passive state. A finite horizon problem was applied in the pausing state. A
discounted secretary problem was assumed in which the QNI measurements are
treated as ‘candidates’ for the secretary position. DSP shall stop if the best candidate is
selected prior to the deadline of the pausing period. In other words, it is used stopping
rule that will maximize the probability of choosing the best/maximum QNI value 𝑥𝑘.
Discounted factor works a penalty for every timestep that DSP do not conclude to the
optimal stopping time.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 59

6. PERFORMANCE EVALUATION

6.1 Experimental Setup

Approaching the problem effectively, there should be an experimental scenario, in order
to have unbiased, accurate and representative data. The most common technique is to
run a robotics simulator, in order to simulate the behavior and the sensors of a UxV,
replay dummy network measurements, execute the experiment on the given
environment and finally get the results as an output. In contrast to the usual practice of
simulating the UxV and the network, in this thesis live UxV and network data were used.

In order to explain further the given approach, there is Figure 30. Figure 30Error!
Reference source not found. is an abstract representation of the experimental setup.

Figure 30: Abstract Representation of Experimental Approach

6.1.1. Communication Schema

Messages like movements commands should be passed from GCS to TurtleBot.
Communication between GCS and TurtleBot is not direct. The messages first pass
through Apache Kafka, then received by Raspberry Pi and finally are served to the
corresponding TurtleBot nodes. The need for an intermediate messaging system
between GSC and Raspberry exists because there is not a default ROS server which
can accept messages directly from the GCS (see Figure 33). Apache Kafka fills this
communication gap. Messages between GCS and Raspberry Pi are in JSON format.
Messages between Raspberry and TurtleBot are in various JSON style formats. The
messages that should be given to TurtleBot in order to move, has to be received from
cmd_vel topic and be in Twist format. Figure 31 and Figure 3232 illustrate a JSON
formatted movement command and a Twist formatted movement command
respectively.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 60

Figure 31: JSON message example for movement to specific point.

Figure 32: Twist message type example.

In the following Figure 3333 is illustrated an abstract representation of the
communication schema.

{

 ‘orientationz’: 0,

 ‘orientationx’: 0,

 ‘orientationy’: 0,

 ‘orientationw’: 0,

 ‘positionx’: 0,

 ‘positiony’: 0,

 ‘tst’: ‘2019-02-08 11:31:47’

}

twist:

 twist:

 linear:

 x: 0.0

 y: 0.0

 z: 0.0

 angular:

 x: 0.0

 y: 0.0

 z: 0.0

 covariance: [0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0]

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 61

Figure 33: Abstract Communication Schema.

6.1.2. Measuring the network

As mentioned in section 5.3.2, it is critical to extract network information (PER, SNR, Q)
in order to calculate QNI. For this reason, an algorithm for extracting these values was
made. The source code can be found in Error! Reference source not found. by f
ollowing the GitHub link listed. This algorithm executes the default ping command and
iwconfig installed in UNIX systems. By parsing the output of these commands, the
aforementioned network quality metrics can be extracted. The algorithm takes as input
the interval between sending packets, address to ping (in this case the Access Point of
the mission), size of the packet to send and the wireless interface of the UxV.
Afterwards it transmits the extracted network quality data through Apache Kafka to the
GCS, in a JSON formatted message. The messages carrying these data are considered
as high priority messages and their transmission is never paused.

Snapshots of the code, can be found bellow.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 62

Figure 34: Running ping, iwconfig commands and receiving their output

Figure 35: Creating and sending to Apache Kafka a JSON message carrying the network quality
data

#run ping command

 cmd1 = 'ping' + ' ' + str(host) + ' -c ' + str(count) + ' -s ' + str(size) + ' -i ' + str(interval)

+ ' -q'

 command1 = subprocess.Popen(cmd1.split(),stdout=subprocess. PIPE)

 rawoutput1 = command1.communicate()

 #check if network is ok

 if rawoutput1[0] == "":

 print "Waiting to reconnect..."

 time.sleep(3)

 continue

 output1 = rawoutput1[0].split('\n')

 output1 = filter(None, output1)

 del output1[0]

 del output1[0]

 packets = output1[0].split(',')

 pnumbers = re.findall('\d+',output1[0])

iwconfout = os.popen('iwconfig %s' % interface).readlines()

x = Record(sent, received, loss, quality, level, str(millis))

njson = json.dumps(x.__dict__)

print njson

producer.send('turtle_net',njson)

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 63

6.1.3. Telemetry Data

While the UxV is in the passive state all transmissions regarding telemetry data except
the network quality data and the UxV’s location data are paused for a period of time,
until it is decided to resume. But what exactly are these telemetry data?

The following Table 6 shows the types of telemetry data and their priority per type:

Telemetry Data Type Priority (Importance)

Network Quality High

TurtleBot’s Battery Level Low

Memory Consumption Low

CPU Consumption Low

CPU Temperature Low

TurtleBot’s Location High

Table 6: Telemetry Data Types and their priorities

Network data are crucial because by reading these, TOCP and DSP can decide on-line
about the UxV’s state transition as mentioned in section 5.3.2. All the other data except
TurtleBot’s location data are considered as low priority data. TurtleBot’s location is a
critical piece of information, because the GCS should know anytime where the UGV is
inside the field of the experiments, in order to modify its behavior, take photos etc.

JSON formatted messages of the aforementioned data types can be found bellow.

Figure 36: TurtleBot's Position Data Message

{

 "orz": 0.0,

 "orx": 0.0,

 "ory": 0.0,

 "orw": 0.0,

 "posx": 0.0,

 "posy": 0.0,

 "tst": "2019-02-08 11:31:47",

 "latency”: "12312324124" //millis from 1970

}

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 64

Figure 37: TurtleBot's Battery Level Data Message

Figure 38: Memory Consumption Data Message

Figure 39: CPU Consumption Data Message

Figure 40: Network Quality Data Message

Figure 41: CPU Temperature Data Message

The code of ROS Nodes that implement this functionality can be found in Error! R
eference source not found. by following the GitHub listed there.

{

 "battery": 150.0,

 "ts": "2019-02-08 11:43:54",

 "latency": "12312324124" //millis from 1970

}

{

 "ts": "2019-02-08 11:43:54",

 "memory": 1.3,

 "latency”: "12312324124" //millis from 1970

}

{

 "cpu": 14.5,

 "ts": "2019-02-08 11:43:54",

 "latency”: "12312324124" //millis from 1970

}

{

 "loss": 0.0,

 "received": 0,

 "ts": "2019-02-08 11:43:54"

 "quality": 0,

 "level": 0,

 "sent": 0,

 "latency”: "12312324124" //millis from 1970

}

{

 "meantemp": 41.3,

 "ts": "2019-06-05 10:49:53",

 "latency": "1559720993088"

}

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 65

6.2 Experiments and Results

An experimental evaluation is reported in order to compare the performance of the
implemented framework. TurtleBot was used for the executed experiments for two
applications:

• Following a trajectory reaching a goal point. (Mission A)

• Exhaustive scanning of a room. (Mission B)

For both mission categories, user gives the desired trajectory points, creating a path,
that the UxV should follow in order to reach its final destination. In the following Figure
42 the UxV, the map, and the user-given trajectory for the two missions are illustrated.
These screenshots were taken, while the TurtleBot was executing a live mission. The
experiments were conducted in a classroom and a corridor of the University of Athens.

Figure 42: Mission A and Mission B Real-Time Illustration

100 runs of 10 minutes duration were performed and each run involved more than 100
observations for every integrated TurtleBot sensor. Four different policies of decision
were adopted, in order to build the comparative assessment:

• No-policy, meaning that the UxV always sent and receive messages, with no
concern of the network conditions.

• A heuristic threshold-based model. In this model the transmission of messages
and telemetry stops when QNI falls under the interval of [0.4, 0.5].

• A TOCP model which applies a change detection policy.

• A TOCP-DSP model.

In the following Figure 43, Figure 44, Figure 45 and Figure 46 the QNI and PER
performance of the four policies is plotted regarding Mission 1 – Path following. In
Mission 1 there are two intervals that the network has very poor quality. These intervals
are [35-45] and [75-90] and exist in all four different policies. There is a difference
though regarding the TOCP-DSP policy. While for Threshold policy, No-policy and only

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 66

TOCP policy the QNI reach values less than 50%, for the TOCP-DSP policy QNI is
close to 68%. PER maximum values per policy are:

• No-policy: 25%

• Threshold: 45%

• Only TOCP: 15%

• TOCP-DSP: 10%

These maximum values are reached in the aforementioned intervals of poor network
quality. The gain of PER with the application of TOCP-DSP policy is up to 20%. TOCP-
DSP policy is more efficient that the only TOCP policy because the “pausing” period is
not only adaptively activated, but also adaptively deactivated. TOCP-DSP related to
PER reaches from 20% up to 70% better results.

Figure 43: TOCP-DSP vs No-Policy regarding QNI in Mission 1- Path Exploration

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 67

Figure 44:TOCP-DSP vs Threshold Policy regarding QNI in Mission 1- Path Exploration

Figure 45:TOCP-DSP vs TOCP-Only Policy regarding QNI in Mission 1- Path Exploration

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 68

Figure 46: PER of all four policies in Mission 1- Path Exploration

In the following Figure 47, Figure 48, Figure 49 and Figure 50 the QNI and PER
performance of the four policies is plotted regarding Mission 2 – Exhaustive Scanning.
Mission 2 was executed inside a classroom of University of Athens. Because of the
indoor space there are many obstacles and walls, that render the finalization of the
mission harder than Mission 1.

QNI mean values for Mission 2 polices:

• No-policy: 68.4446

• Threshold: 70.8197

• Only TOCP: 65.8525

• TOCP-DSP: 76.3498

PER maximum values for every policy:

• No-policy: 30%

• Threshold: 20%

• Only TOCP: 20%

• TOCP-DSP: 10%

From the above data is shown that the TOCP-DSP policy, outperforms the rest of the
policies, not only regarding PER, but also regarding network quality.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 69

Figure 47:TOCP-DSP vs No-Policy Policy regarding QNI in Mission 2- Exhaustive Scanning

Figure 48:TOCP-DSP vs Threshold Policy regarding QNI in Mission 2- Exhaustive Scanning

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 70

Figure 49:TOCP-DSP vs TOCP-Only Policy regarding QNI in Mission 2- Exhaustive Scanning

Figure 50: PER of all four policies in Mission 2- Exhaustive Scanning

In the following Figure 51 and Figure 52 latency of No-policy and TOCP-DSP is plotted
regarding Mission 1 and Mission 2 respectively. As it is shown TOCP-DSP policy
achieves better results in both missions. For Mission 1 TOCP-DSP outperforms No-
policy by 24%. Furthermore TOCP-DSP achieves a constant maximum value less than
9% of original latency of the messages.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 71

Figure 51: TOCP-DSP vs No-Policy policy regarding latency (ms) in Mission 1- Path Exploration

Figure 52:TOCP-DSP vs No-Policy policy regarding latency (ms) in Mission 2- Exhaustive
Scanning

Having this data, as one can see, the double optimal stopping game (TOCP-DSP)
based on network performance, outperforms regarding PER, QNI, and latency not only
the default UxV policy (No-policy), but also the other tested policies (TOCP-Only,
Threshold).

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 72

7. CONCLUSION

In this thesis a framework that implements a network quality based decision-making
process is developed. This framework adapts the information flow between the UxV and
the Ground Control Station (GCS) based on network quality metrics (such as packet
error rate etc.) and the principals Optimal Stopping Theory (OST). The goal of this
framework is to ensure the optimal delivery of critical information from UxV to GCS and
vice-versa. If the network behaves optimally then there is no limitation on the
information flow, but if the network is saturated or overloaded restriction rules are
applied. The proposed model introduces two optimal stopping time mechanisms based
on change detection theory and a discounted reward process. The performance
evaluation showed the successful delivery of messages in poor network conditions and
the moderate production of messages so as not to burden an already saturated
network.

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 73

ABBRIVIATIONS - ACRONYMS

IoT Internet of Things

UxV Unmanned Vehicle, x can stand for aerial, ground or sea

UGV Unmanned Ground Vehicle

GCS Ground Control Station

OST Optimal Stopping Theory

ROS Robotic Operating System

SLAM Simultaneous Localization and Mapping

CUSUM CUmulative SUM

DMP Decision-Making Process

PER Packet Error Rate

TOCP Time-Optimized Change-Point decision making process

QNI Quality of Network Indicator

SNR Signal-to-Noise Ratio

FAR False Alarm Rate

GoP Group of Pictures

WSN Wireless Sensor Networks

DSP Discounted Secretary Problem

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 74

APPENDIX I

The source code of this thesis can be found by following the link:
https://github.com/Thanoschal/thesis

https://github.com/Thanoschal/thesis

Adaptive UxV Routing Based on Network Performance

A. Chalvatzaras 75

REFERENCES

[1] “TurtleBot2” [Online]. Available: https://www.turtlebot.com/. [Accessed: 09-Jul-2019]
[2] “Raspberry Pi hardware – Raspberry Pi Documentation” [Online] Available:

https://www.raspberrypi.org/. [Accessed: 12-Jul-2019]
[3] “Apache Kafka” [Online] Available: https://kafka.apache.org/. [Accessed: 26-Jun-2019]
[4] F. Fu and M. van der Schaar, “Dependent optimal stopping framework for wireless multimedia

transmission,” 2010 IEEE Int. Conf. Acoust. Speech Signal Process., pp. 2354–2357, 2010.

[5] A. Martinez and E. Fernández, Learning ROS for Robotics Programming. Packt Publishing, 2013.

[6] J. M. O’Kane and J. M. O. Kane, A gentle introduction to ROS. 2013.

[7] “Sensors supported by ROS.” [Online]. Available:

http://wiki.ros.org/Sensors#Sensors_supported_by_ROS. [Accessed: 09-Jan-2018].

[8] T. Ferguson, Optimal stopping and applications. Mathematics Department, UCLA.

[9] E. S. Page, “Continuous Inspection Schemes,” Biometrika, vol. 41, no. 1/2, p. 100, 1954.

[10] A. bert N. Shirayaev and A. B. Aries, Optimal stopping rules, no. 8. 2008.

[11] G. Lorden, “Procedures for Reacting to a Change in Distribution,” Ann. Math. Stat., vol. 42, no. 6,

pp. 1897–1908, 1971.

[12] J. Unnikrishnan, V. V. Veeravalli, and S. Meyn, “Least favorable distributions for robust quickest

change detection,” IEEE Int. Symp. Inf. Theory - Proc., pp. 649–653, 2009.

[13] G. V. Moustakides, “Optimal Stopping Times for Detecting Changes in Distributions,” Ann. Stat.,

vol. 14, no. 4, pp. 1379–1387, 1986.

[14] A. B. Mcdonald, “Survey of Adaptive Shortest-Path Routing in Dynamic Packet-Switched Networks

1 Introduction,” pp. 1–29, 1997.

[15] Min Chen, V. C. M. Leung, Shiwen Mao, Yang Xiao, and I. Chlamtac, “Hybrid Geographic Routing

for Flexible Energy—Delay Tradeoff,” IEEE Trans. Veh. Technol., vol. 58, no. 9, pp. 4976–4988,

Nov. 2009.

[16] S. Giordano, I. Stojmenovic, and L. Blazevie, “Position Based Routing Algorithms for Ad Hoc

Networks: a Taxonomy,” Ad Hoc Wirel. Netw., pp. 103–136, 2003.

[17] Y. Cao and Z. Sun, “Routing in delay/disruption tolerant networks: A taxonomy, survey and

challenges,” IEEE Commun. Surv. Tutorials, vol. 15, no. 2, pp. 654–677, 2013.

[18] H. M. Lin, G. Yu, A. C. Pang, and J. S. Pathmasuntharam, “Performance study on delay tolerant

networks in maritime communication environments,” Ocean. IEEE Sydney, Ocean. 2010, 2010.

[19] C. Anagnostopoulos and S. Hadjiefthymiades, “Delay-tolerant delivery of quality information in ad

hoc networks,” J. Parallel Distrib. Comput., vol. 71, no. 7, pp. 974–987, 2011.

[20] K. Panagidi, C. Anagnostopoulos, and S. Hadjiefthymiades, “Optimal grouping-of-pictures in iot

video streams.”

[21] C. Anagnostopoulos and S. Hadjiefthymiades, “Optimal, quality-aware scheduling of data

consumption in mobile ad hoc networks,” J. Parallel Distrib. Comput., vol. 72, no. 10, pp. 1269–

1279, 2012.

[22] C. Anagnostopoulos and S. Hadjiefthymiades, “Advanced Principal Component-Based
Compression Schemes for Wireless Sensor Networks,” Acm Trans. Sens. Networks, vol. 11, no. 1,
pp. 1–34, 2014.

[23] E. S. Page. 1971. Procedures for reacting to a change in distribution. Ann. Math. Statist.42, 6
(1971), 1897–1908.

