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1 Introduction

If someone wanted to describe our modern world in a single word, he couldn’t find a more

appropriate word other than data. According to recent estimates, 2.5 quintillion (1018) bytes

are being produced daily and that pace is only accelerating with the growth of social media and

the Internet of Things (IoT). Unfortunately, most of this huge amount of information cannot

be used by humans, either because the data are not in a typical form needed by standard

analytical methods, or it’s too vast for a human mind even to comprehend.

Fortunately, modern computers consist of substantial amount of working memory and stor-

age capacity and therefore are more than capable of processing, learning from and draw ac-

tionable insights out of this kind of big data. This process is called Machine Learning and

from Google’s massive server farms used for Google Services to the voice assistant of the very

last smart-phone in the world, we rely on it to power our civilization, sometimes without even

knowing it! Some other use cases of machine learning include spam email filtering, product rec-

ommendations for customers, detecting and diagnosing medical diseases, self-driving vehicles

and the list goes on and on.

A more formal definition of Machine Learning can be phrased like this:

Machine Learning is the application of computer self-learning algorithms on big

data in such a way that we can turn this data into knowledge, like finding data

patterns or make predictions about future events.

1.1 The Three Types of Machine Learning

Big data of the modern era comes in two flavours: structured and unstructured data. Instead

of having humans process, manipulate and analyse manually that amount of data in order to

derive rules and build models from it, Machine Learning consists a much more efficient alterna-

tive for implementing and improving the performance of predictive models, in order to achieve

the best possible data-driven decisions1.

Generally, there are three types of Machine Learning: Supervised Learning, Unsuper-

vised Learning and Reinforcement Learning. There are fundamental differences between

them so that each of them is being applied on different types of problems. A visual representa-

tion of the three types of Machine Learning along with their subcategories and some practical

1Conceptually, this section is based on chapter 1 of the book [1]
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application examples can be seen in figure 12.

Figure 1: The Three Types of Machine Learning

Brief descriptions of the three types of Machine Learning and their subcategories follow in

the next subsections.

1.1.1 Supervised Learning

In the case of Supervised Learning the objective is to make a model learn from training data,

in order to be able to make predictions about other unseen data of the same type.

If the training data is a set of samples from a categorized (class-labelled) data set for which

their categories (discrete class labels) are already known, the predictive model consist a classi-

fier, hence this Machine Learning method is called Classification. The output signal of such

a model is the class labels that the model predicts for each new unseen sample. In the case

of a binary classification task, the number of categories is two, otherwise for more than two

categories we have the case of a multi-class classification task. Typical examples of these two

classification task types are spam email filters (spam, not-spam) and hand-written character

recognition systems, respectively. The whole concept is visually described in figure 23.

2Image taken from: https://towardsdatascience.com/coding-deep-learning-for-beginners-types

-of-machine-learning-b9e651e1ed9d
3Image taken from: http://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/tutorial/

text analytics/general concepts.html
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Figure 2: Supervised Learning - Classification

On the other hand, if the training data is a set of samples, each of which depends on a num-

ber of real-valued predictor variables and the output signal is a real-valued response variable,

the machine learning method is called Regression. In this case, by training the model we try

to find a relationship between those predictor variables, which allow us to predict the output

variable. Typically, there are three types of Regression: Linear Regression, Non-Linear

Regression and Logistic Regression.

In the first case we fit a straight line to the data that minimizes the distance (usually the

average squared distance) between the sample points and the line. Then we use the intercept

and slope learned from this data to predict the outcome variable of new data as shown in

figure 34. We do the same for the Non-Linear Regression, but in this case the fitted line is

not a straight one. A common model of this case is the Polynomial Regression. Predictor

variables can be continuous or binary. In Logistic Regression the response variable is binary in

nature. In this case the line divides the data points into two big categories, hence this method

is usually used for classification tasks.

4Image taken from: https://medium.com/simple-ai/linear-regression-intro-to-machine-learning

-6-6e320dbdaf06
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Figure 3: Supervised Learning - Linear Regression

1.1.2 Unsupervised Learning

In Unsupervised Learning, the data we are dealing with are unstructured and unlabelled. By

using an Unsupervised Learning method, we can extract the hidden structure of the data and so

retrieve meaningful information without the need of training the model with sample data. The

most common applications of Unsupervised Learning are: Clustering and Dimensionality

Reduction.

Clustering is a data analysis model that organizes an unstructured data set into meaning-

ful subgroups (clusters), without having any prior information about their cluster memberships.

Each derived cluster groups data points that share a degree of similarity with each other but

look quite dissimilar compared to the data points that belong to another cluster. Clustering is

a great technique for deriving information about the structure and the relationships between

the members of the data set, as shown in figure 45.

In real life applications data sets have high dimensionality, in other words data sets come

with a high number of predictor variables. For the modern big data sets, this fact rises chal-

lenges sometimes because the storage capacity and the computational capability of computers

5Image taken from: https://chatbotsmagazine.com/lets-know-supervised-and-unsupervised

-in-an-easy-way-9168363e06ab
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Figure 4: Unsupervised Learning - Clustering

(even the most advanced ones) are limited. Dimensionality Reduction is an Unsupervised

Learning data preprocessing technique that reduces the number of predictor variables (features)

of the data set in order to remove noise from data, but sometimes with the side-effect of re-

ducing the predictive performance of the models. Generally, the goal is to compress the data

onto a smaller dimensional subspace, retaining at the same time the majority of the relevant

information.

1.1.3 Reinforcement Learning

In Reinforcement Learning there are two basic notions: The agent and the environment.

The agent interacts with the environment using a Reinforcement Learning Algorithm and, via

an exploratory trial-and-error approach, it tries to improve its performance. The performance

of the agent is evaluated by a reward value given by the environment for each of the interactions

with it. Typically, the agent being at a particular state in the environment makes an action

and then receives feedback from the environment containing the reward for that action and

the agent’s new state, as shown in figure 56. The model is trained using a large number of

conceptual entities (in terms of time or space), the epochs. These entities are most commonly

called episodes. The overall goal of the Reinforcement Learning Algorithm is to train the model

in such a way that it finally learns a series of actions for which the cumulative reward after the

6Image taken from: https://chinagdg.org/2018/12/deep-reinforcement-learning-on-gcp-using

-hyperparameters-and-cloud-ml-engine-to-best-openai-gym-games/
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end of an episode is maximized.

Figure 5: Reinforcement Learning - Flow Diagram

A popular application of Reinforcement Learning is a game model, in other words how to

teach a Reinforcement Learning Model to play a particular game. In this example the agent

decides the best next move considering its current state in the environment and the possible

reward it will receive from it after the next move. The final goal is to win the game by maxi-

mizing the cumulative reward.

6



2 Neural Network Theory

2.1 The Neuron of the Human Brain

The human brain is the most complex organ in the human body. It produces our thoughts,

actions, memories, feelings and experiences of the world and contains a staggering 100 billions

nerve cells or neurons. Each neuron can make connections with thousands of others via tiny

bonds, called synapses. The complexity of this network of synapses of the human brain is

mind-blowing and the patterns these synapses make along with their strength are changing

continuously7.

The neuron is the basic cell of a nervous system and consists of the cell body or soma, the

dendrites, and the axon. A dendrite is a long fibre and the receiver of electrical or chemical

signals, the impulses. Each neuron has at least two of them and their job is to carry in the

impulses to the cell body. The cell body contains a nucleus and is the part of the neuron

that determines whether or not an impulse should be passed along to the axon. The axon

usually consists of one fibre and is responsible to carry away the impulses from the cell body

to other neurons, with which is attached to, via a number of synapses. The axon is capable of

making synapses thanks to some nerve terminals it contains, the axon terminals. A visual

representation of a neuron is shown in figure 68.

Figure 6: The Anatomy of a Neuron

7Conceptually, this section is based on chapter 2 of the book [1]
8Image taken from: https://socratic.org/questions/why-do-peripheral-neurons-have-long-axons
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2.2 The Artificial Neuron

2.2.1 The Perceptron

In 1943, researchers Warren McCullock and Walter Pitts, in order to analyse and describe the

function of the neuron, they came up with the notion of a simple logic gate with binary outputs.

The dendrites receive multiple incoming signals from other neurons or external censors, that

are aggregated into the cell body. If the aggregation of these signals exceeds a certain threshold,

an output signal is generated and passed through the axon of the neuron to the other neurons

that are attached to it via a number of synapses. The model is known as the MCP neuron.

A few years later, researcher Frank Rosenblatt, based on the MCP neuron model, published

the concept of an artificial neuron, the Perceptron. The Perceptron is an algorithmic model

of the MCP neuron combined with an algorithmic learning process. Suppose the number of the

input signals is m. Then the input signals xi are multiplied with weight coefficients or weights

wi and are transferred to the cell body where they are aggregated to the value of
∑
i

wixi with

i ∈ (1, 2, 3, · · ·m), which is called the net input z. The cell body consists of the aggregator,

an activation function φ(z) and a threshold θ. The activation function φ(z) used in the

Perceptron model is the step function with respect to θ, which is:

φ(z) =

 1, z ≥ θ

0, z < θ
(1)

If the value φ(
∑
i

wixi) of the activation function exceeds the given threshold θ, the Percep-

tron fires and since the output is binary, the output signal ŷ of the activation function is 1,

otherwise the output is 0.

More formally, we can pose this problem with the help of the linear algebra and define the

input signals and the weights as the vectors x and w, respectively. In addition, for simplicity

reasons, we can bring the threshold θ to the left of the equation 1 and define w0 = −θ and

x0 = 1, so we can now have a more compact form of the net input z and the activation function

φ(z), as shown in equations 2.

x =


x0

x1
...

xm

 , w =


w0

w1

...

wm

 , z =
m∑
i=0

wixi = wTx, φ(z) =

 1, z ≥ 0

0, z < 0
(2)

The Perceptron Algorithm can automatically learn the optimal weights w via the procedure

of training, which in this case is called the Perceptron Rule. During training multiple sets of

8



training input signals x paired with their corresponding desired output signals y are transmitted

into the Perceptron. The Perceptron rule uses the difference between the output signal ŷ and

the desired output y, which is called the error or loss, in order to update the weights w in the

direction that minimizes that error. Generally, the Perceptron rule can be summarized by the

following steps:

1. Initialize the weights w to 0 or a small random number

2. For each training sample x:

(a) Compute the output value ŷ

(b) Update the weights w

Conceptually, the whole process is described in figure 79.

Figure 7: The Perceptron Rule

It is important to note that the convergence of the Perceptron rule is only guaranteed if

the two classes (0, 1) are linearly separable, otherwise the Perceptron would keep updating the

weights w forever.

2.2.2 The Adaline (ADAptive LInear NEuron)

The Adaline is an evolution of the Perceptron and published by Bernard Widrow and Tedd

Hoff a few years after the Perceptron. The main difference between the Perceptron rule and the

Adaline rule is that, in this case, the activation function φ(z) is the linear function φ(z) = z,

in other words the identity function. The benefit of this type of function is that the training

process is now happening using the continuous value of the linear activation function φ(z),

instead of the binary output in order to compute the error, which results to a much more

efficient training. Consequently, we now need a threshold function or quantizer after the

9Image taken from: https://ldapwiki.com/wiki/Perceptron
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linear activation function φ(z), in order to keep the the output of the Adaline binary, as shown

in figure 810.

Figure 8: The Adaline Rule

Another critical difference between the Perceptron and the Adaline is the way we compute

the error during the training process. In the case of Adaline, instead of the Perceptron’s (y− ŷ)

difference, we define an error function or loss function J(w) and the objective is to minimize

that function. The Adaline rule defines the error function as the Sum of Squared Errors (SSE)

of all n samples of the training set, as shown in equation 3.

J(w) =
1

2

n∑
i=1

(yi − ŷi)2 =
1

2

n∑
i=1

[yi − φ(zi)]
2 (3)

The main advantages of the linearity of the loss function J are that it is differentiable and

convex, which means that we can use the gradient descent optimization algorithm to cal-

culate the optimal weights w that minimize the loss function J so as to classify the samples.

Conceptually, the gradient descent algorithm can be described as a descenting down a valley

movement until a local or global minimum is reached, as shown in figure 911.

The weight updates ∆w are calculated based on all samples in the training set, unlike

Perceptron’s rule, which updates the weights incrementally after each sample. The training

10Image taken from: https://www.simplilearn.com/how-to-train-artificial-neural-network-tutorial
11Image taken from the book: Sebastian Raschka, Python Machine Learning, Packt Publishing 2015
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Figure 9: A Visualization of the Gradient Descent Algorithm

algorithm passes over the training set several times, which are called epochs, until it finally

converges. In each iteration we make a small step away from the loss function’s gradient on

that certain point. The step size depends on the value of the learning rate η and the slope

of the gradient. The learning rate is usually a very small number, in the range of [10−5, 10−3].

The weight updates ∆w, are proportional to the gradient ∇J(w) of the loss function J and

the learning rate η and are calculated according to equation 4,

∆w = −η∇J(w) (4)

which means that each weight element wj of the vector w is adjusted by the factor calculated

in equation 5.

∆wj = −η∂J(w)

∂wj
= η

n∑
i=1

[yi − φ(zi)](xi)j (5)

Finally, since all the weights wj are updated simultaneously, the Adaline learning rule can

be written in a more compact form, using vectors, as in equation 6.

w := w + ∆w (6)

2.2.3 The Artificial Neuron of Modern Neural Networks

Over the years, some other types of artificial neurons were invented based on the foundation

principles of Perceptron and Adaline. The main differences between these neurons and the

11



Perceptron or Adaline are in the formulas of the activation functions that are used, the types

of output signals and a slightly altered gradient descent algorithm, the stochastic gradient

descent. Several of these neurons are used together, interconnected with each other, forming

the modern Artificial Neural Networks (ANNs).

In general, the activation functions of these new generation neurons can be non-linear and

their usage depends on the type of the Neural Network we need, in order to solve a particular

type of problem. A representative subset of these functions includes the Sigmoid σ(x), the

Tanh tanh(x), the ReLU, the Leaky ReLU, the MaxOut and the ELU, as shown in figure

1012.

Figure 10: A Collection of Non-Linear Activation Functions

On the other hand, the output value ŷ of these neurons is not necessarily limited to binary,

but it can also be a real continuous value or a class of a multi-classed dataset. This theoretical

extension differentiates the behaviour of the artificial neuron to that of a physical neuron of

the human brain, but it is usually very convenient for achieving an efficient training process of

the ANN which is used in.

Finally, in the case of the Adaline neuron, the weights wj were calculated by the process of

minimizing the SSE loss function (shown in equation 3), using the whole training set several

times until the model converged. Nowadays, with the modern ANNs that are in use, the size

of the training datasets is usually very large, which means that running through the whole

dataset for each epoch would be computationally very costly. An answer to this problem is the

stochastic gradient descent optimization algorithm, which consists of the following steps:

12Image taken from: https://medium.com/@krishnakalyan3/introduction-to-exponential-linear-unit

-d3e2904b366c
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1. Shuffle the dataset randomly.

2. Apply the gradient descent algorithm, using one sample at a time.

Since each gradient descent value is calculated based on a single training sample, the value

of the error function J(w) includes more noise than in gradient descent, which can be an advan-

tage for escaping shallow local minima more easily. The deficit of this method is, of course, the

reduced computational efficiency, because of the huge number of times the weights wj are being

updated. A good compromise between the gradient descent and the stochastic gradient descent

is the mini-batch stochastic gradient descent. In this case, the whole dataset is divided

into mini-batches (groups) of samples on which the stochastic gradient descent algorithm is

then applied. The advantage of this method is the much faster convergence of the training

process because of the more frequent weight updates compared to the Adaline’s gradient de-

scent algorithm. Many of the modern neural network learning processes use the mini-batch

stochastic gradient descent algorithm.

2.3 The Artificial Neural Network (ANN)

As previously seen, the human brain is a collection of neurons connected together via synapses.

Each neuron receives as inputs the outputs of other neurons that are connected to it, makes some

calculations and if the result of the calculation exceeds some threshold θ, fires and propagates

the output signal to the next connected neuron. An Artificial Neural Network (ANN) is an

algorithmic construction that mimics a certain function of the human brain. The idea is based

on taking a large dataset of training samples and developing a system which can learn from

these samples, so the ANN can automatically infer rules that enables it to recognise previously

unseen samples or make predictions about future events. The topology of an ANN can belong

to one of three major categories: the Feed-Forward ANNs, the Recurent ANNs and the

Completely Linked ANNs, all of which are discussed in more detail in the next subsections.

2.3.1 The Feed-Forward Artificial Neural Network (Feed-Forward ANN)

In general, a Feed-Forward ANN consists of:

1. a number of interconnected artificial neurons, which are divided in three categories:

(a) The input neurons or sensors

(b) The hidden layer neurons

(c) The output neurons

13



2. a number of directed weighted connections, the synapses. The weight w of a synapse acts

as the strength of this synapse.

The complexity of the human brain is enormous and if we want to replicate it, the only thing

we can do is to approximate it. For some particular problems, a good approximation we can

use is an idealized Feed-Forward ANN, which consists of discrete layers of neurons. Each

layer of neurons is connected to the next with several synapses. Typically, the first layer is the

input layer which receives the inputs x and feed-forward them to the next layer unchanged.

The next part of the Feed-Forward ANN consists of one or more hidden layers, which take

the outputs of the previous layer, make some calculations based on a forward propagation

function fprop and forward them to the next layer. The Feed-Forward ANNs that have more

than one hidden layers of neurons are called Deep Feed-Forward ANNs. The last layer of

the Feed-Forward ANN is called the output layer and is responsible for producing the final

output ŷ.

A common connection topology for a Feed-Forward ANN is the Fully Connected Feed-

Forward ANN, in which every neuron of a particular layer is connected to all of the neurons

of the next layer, as shown in figure 1113. The main characteristic of these connections is that

they never form a circle, hence the term ”feed-forward”.

Figure 11: A Fully Connected Feed-Forward Artificial Neural Network

The most common forward-propagation function fprop used in Feed-Forward ANNs is the

previously defined as the net input of the Perceptron z, which is the weighted sum of the inputs

xi, as shown again in equation 7, where m is the number of neurons contained in the previous

layer. This statement does not apply, of course, to the input layer.

13Image taken from: www.http://neuralnetworksanddeeplearning.com/chap5.html
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fprop(x,w) =
m∑
i=0

wixi = wTx (7)

The most interesting aspect of a Feed-Forward ANN is its training process. The most

popular training approach is the back-propagation algorithm, the inspiration of which is

based on the stochastic gradient descent algorithm we looked at earlier. The exact steps of this

algorithm in order to adjust the weights of a Feed-Forward ANN are:

1. We forward-propagate the input vector x, layer by layer, using the forward propagation

function fprop, until the Feed-Forward ANN produces the output vector ŷ.

2. This procedure results in an error for each of the neurons of the output layer, which is

calculated according to an error function J(w).

3. We compute the gradient of the error function J(w) with respect to the weights wj of the

neurons of the output layer and then we update these weights in the direction of reducing

the errors of the output neurons.

4. We back-propagate these output errors back to the hidden layers, one at a time, to infer

errors to the hidden neurons, respectively.

5. We compute the gradients of these errors as well, using the same error function J(w) and

we update the weights of the hidden neurons, accordingly.

6. We repeat the previous steps for the entire dataset until the Feed-Forward ANN converges.

The Feed-Forward ANNs are the basis of many important types of Neural Networks that are

currently being used, such as the Convolutional Neural Networks (CNNs) for computer

vision applications [4], that will be discussed in more detail in a later section.

2.3.2 The Recurrent Neural Network (RNN)

The Recurrent Neural Networks (RNNs) are based on the notion of recurrence, which

is defined as a process of an artificial neuron influencing itself by any connection (synapse) and

along a temporal sequence. In general, all connections of a RNN form a directed graph. Some

types of RNN allow for their artificial neurons to be connected to themselves. These types

of connections are called direct or self recurrences. As a result, the artificial neurons that

implement such connections strengthen themselves in order to reach their activation limits θ.

If additional connections between artificial neurons and other artificial neurons of the same or

different layer are allowed, then we have the case of indirect recurrences. A RNN paradigm
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with direct connections and an additional feed-forward layer is shown in figure 1214.

Figure 12: A Recurrent Neural Network Paradigm

Unlike Feed-Forward ANNs, RNNs can have internal memory so they can keep data from

previous recurrences, in order to be used in a next recurrence. In the case of RNNs, the time

is divided into time steps. RNNs work through loops and each loop belongs to a certain time

step t. The computation algorithm of a RNN takes into consideration not only the current in-

put xt but also a number of results ĥt it computed in previous time steps (t− 1, t− 2, · · · ) and

are stored in the internal memory of the RNN, as shown in figure 1315. Typically, RNNs have

short-term memories and their recursive nature allows exhibiting a possible temporal behaviour

of the input signal xt, therefore they are used in applications such as speech recognition or

time series prediction.

In general, the RNNs are being trained through a process that is called Back-Propagation

Through Time (BPTT), which is an extension of the back-propagation algorithm used for

14Image taken from: https://austingwalters.com/classify-sentences-via-a-recurrent

-neural-network-lstm/
15Image taken from: https://medium.com/@camrongodbout/recurrent-neural-networks-for-beginners

-7aca4e933b82
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Figure 13: The Dataflow of a Recurrent Neural Network A

the Feed-Forward ANNs. A RNN can be thought of as multiple copies of the same network, each

passing a message to its successor. Each copy belongs to a certain time step t. Conceptually,

if we would like to unroll a RNN through time, we would sketch a figure as shown in figure 1416.

Figure 14: A Unrolled Recurrent Neural Network A

In the case of BPTT, we apply the back-propagation algorithm to the RNN, starting from

the time step t, backwards to time step 0. This means that, for each new time step t, the

back-propagation chain of the RNN is prolonged by 1, in other words the time element in the

BPTT algorithm only extends the depth of the back-propagation algorithm step by step.

RNNs are very useful because of their ability to connect previous information to a current

task and therefore extract relationships between them. This results to an enhanced capability

of understanding better their current state in the context of older sequential data. This comes

with a price though because of the vanishing gradients problem BPTT training algorithm

faces. The vanishing gradients problem is the indirect result of the continuous extension of the

16Image taken from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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depth of the RNN. Each time the BPTT algorithm steps backwards, it calculates the gradient

of the error function J for each neuron of that time-layer with respect to its weights wj and

it multiplies the result with the learning rate η. Taking into account that the value of the

learning rate η is usually much lower than 1 (η � 1), the more we travel backwards in time the

more times that time-layer’s gradients are multiplied with η, which means that after several

steps back the values of the gradients are very small (practically 0). As a result, the RNNs

stop learning after a few time steps backwards and consequently they are unable to connect

old data of these time-layers to the current task.

A recently invented type of RNN, which has been used extensively in our assignment, is

the Long Short-Term Memory RNN (LSTM RNN)[5]. LSTMs cope efficiently with the

vanishing gradients problem and are extensively discussed in a later section.

2.3.3 The Completely Linked Neural Network (CLNN)

In the case of Completely Linked Neural Networks (CLNNs), every neuron can be con-

nected to all other neurons except for itself (the direct recurrences are prohibited). The only

limitation is that all connections must be symmetric, which means that if there is a connection

from neuron i to the neuron j (i −→ j), there must also be the reverse connection from neuron

j to the neuron i (j −→ i), as shown in figure 1517.

Figure 15: A Completely Linked Neural Network

This unique topology of the CLNNs results in two very interesting properties these networks

17Image taken from: http://www.asimovinstitute.org/neural-network-zoo/
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have, which are:

1. Every neuron of an CLNN can become an input neuron.

2. Defined layers of neurons no longer exist.

A great application of the CLNNs are the Self-Organizing Maps (SOMs) or Kohonen

Neural Networks (KNNs)[6], which are ANNs that produce a lower dimensional represen-

tation (usually a 2D representation) of the input space of the training samples x and therefore

are used in unsupervised learning for dimensionality reduction applications. The basic aspect

that differentiates SOMs from Feed-Forward ANNs and RNNs is the learning process that is

used for their training. Their learning method is called competitive learning, in which all

nodes compete for the right to respond to a subset of the input data x, using a neighbour-

hood function N(x) to preserve the topological properties of the input space. This results

in increasing the specialization of each node of the network, which means that SOMs are well

suited to finding clusters within data, as shown in figure 1618.

Figure 16: A 2D Diagram of a Self Organizing Map

2.4 The Convolutional Neural Network (CNN)

Human vision is a very complicated function. The way the human brain inputs and processes

an image had been puzzling scientists until 1962, when a fascinating experiment by neurosci-

entists Hubel and Wiesel took place. In order to understand the functionality of the visual

18Image taken from: https://www.superdatascience.com/blogs/the-ultimate-guide-to-self

-organizing-maps-soms
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cortex, the part of the human brain that is responsible for the human vision, Hubel and Wiesel

showed that some individual neurons in the brain fired only in the presence of edges of a certain

orientation. For example, some neurons reacted when exposed to vertical edges, others to hor-

izontal edges and some others to diagonal ones. But the most important discovery they made

was that all of these neurons were organized in a columnar architecture, in a way that all these

groups of neurons together were able to produce visual perception. In other words, what

they found was that the visual cortex consists of specialized components (groups of neurons)

that have specific tasks, which means that when the human brain processes an image, it tries

to find certain characteristics or features of that image in order to comprehend and classify it.

Convolutional Neural Networks (CNNs)[4] are conceptually inspired from the virtual

cortex of the human brain. They mimic the way the human brain processes an image in order

to classify it into a predefined class by leveraging the facts that:

• Nearby pixels of an image are more strongly related than distant ones.

• Objects are built up out of smaller parts or features.

When a computer takes an image as input, in reality it receives a 3D array of pixel values

with size W × H × D. Depending on the resolution of the image, W refers to the width in

pixels, H refers to the height in pixels and D refers to the color depth of a pixel. In the case of

a colored RGB image we have D = 3 because we need an integer value in the range of (0−255)

for each of the red, green, and blue colors of the RGB image. Each of these values represents

the intensity of the corresponding color. Of course, in the case of a gray-scaled image we have

D = 1 since the color used in the image is only one (white). The numbers of the image array

are the only inputs available to the computer during the image classification process and the

task for the computer is to output numbers that describe the probability of the image belonging

to a certain class.

Technically, a typical CNN consists of eight types of layered concepts, which are:

1. The Input Layer

2. The Convolutional Layer

3. The Non-Linear Layer

4. The Pooling Layer

5. The Flattening Layer

6. The Fully Connected Layer

7. The Normalization Layer
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8. The Output Layer

All eight types of layers will be discussed in more detail in the following subsections.

2.4.1 The Input Layer

In CNNs we take advantage of the fact that all the inputs they have to process are images and

therefore we optimize their architecture in a more suitable way. In particular, unlike the regular

ANNs in which all inputs are flattened out first to an 1D vector, the input layer of a CNN is

a 3D construction of neurons with size W ×H ×D, the same size as the input image. Most of

the times and if no additional computational process is required at this stage, the input layer

just overlaps the convolutional layer.

2.4.2 The Convolutional Layer

The second layer in a CNN is the Convolutional Layer. The intuition behind this layer is

similar to the convolution operation (f ∗ g) on two functions f(t) and g(t), from mathematics,

which is shown in equation 8.

(f ∗ g)(t) =

+∞∫
−∞

f(τ)g(t− τ)dτ (8)

In our case, the f(t) function corresponds conceptually to the W ×H ×D array of pixels

of the input image, and the g(t) function to an other, much smaller F × F ×D array which is

called filter or kernel. Typical values for the F dimension belong to the range of [2, 5]. The

previous dimensions of the image and the filter19 suggest that:

• The color depth of the image and the filter must be the same (D).

• The two of the three dimensions of the filter, other than the color depth D, must be the

same, forming a rectangle with size F .

The values of the filter are called weights or parameters, and all these values combined

are shaping a pixel pattern, which is also called a feature. In general, during the convolution

operation we aim to find if some well-known features are included somewhere in the input image,

in order to be able to classify that image later on. In practice, the convolution operation consists

of the following steps:

19From now on the terms image and image array or filter and filter array respectively are being used

interchangeably.
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1. We overlap the filter f with the top-left corner of the image xf , in a pixel by pixel fashion.

In this case we have the top-left F ×F ×D part of the image overlapped by the F ×F ×D
filter.

2. We compute the dot product f ·xf , by making element-wise multiplications of the values

fi,j of the filter with the corresponding values xi,j of the image and then we aggregate the

results in a single value f · xf , as shown in equation 9.

f · xf =
W ·H∑
i=1

D∑
j=1

fi,j · xi,j (9)

3. We slide or convolve the filter to the right by a number of pixels, which is called the

stride S of the convolution layer, and we repeat the process of the previous step again,

from left to right and from top to bottom, until all parts of the image are visited at

least once. This whole process consists the convolution of the filter through the image.

Typical values for the stride belong to the range of [1, 5].

4. All convolution values f ·xf computed during the convolution process define a new array

which is called activation map or feature map. The size of the feature map Wfm×Hfm

with respect to the size of the image (W,H), the size of the filter F and the stride S is

derived from equation 10.

Wfm ×Hfm =

(
W − F
S

+ 1

)
×
(
H − F
S

+ 1

)
(10)

The whole process is visually described in figure 1720.

5. We repeat the convolution process for various filters, scanning the image for many dif-

ferent features. In that way we construct a bunch of feature maps in order to obtain

the final convolutional layer of the CNN, as shown in figure 1821. The convolutional

layer is also a 3D construction of neurons with size Wfm×Hfm×Kfm, where Kfm if the

number of filters that was used.

From the previous analysis it is now obvious that the whole convolution process has two

main disadvantages:

20Image taken from: https://www.vaetas.cz/posts/intro-convolutional-neural-networks/
21Image taken from: https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn

-step-1-convolution-operation
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Figure 17: The Convolution Process (L = W = 7, F = 3, S = 1)

Figure 18: The Final Convolutional Layer of the CNN

1. After a complete convolution process the image that is produced (feature map) can be

reduced in size. In modern CNNs where there are several convolutional layers, this could

lead to smaller and smaller images and this is something that usually adds difficulties to

the training process of a CNN.

2. During the convolution process, pixels that are positioned at the corners or at the edges

of the image are visited fewer times compared to the pixels that are positioned in more

centric areas, which means that there is a possibility of information loss for possible

features that are positioned near these spatial-limiting areas.

In order to overcome these issues we can use padding. With padding we add symmetrically

a number P of black pixels (xi = 0) at the borders of the image. This procedure results in a

larger image by 2P pixels in each dimension. In this case the size of the feature map Wfm×Hfm

with respect to the size of the image (W,H), the size of the filter F , the stride S and the padding

P is derived from equation 11.
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Wfm ×Hfm =

(
W − F + 2P

S
+ 1

)
×
(
H − F + 2P

S
+ 1

)
(11)

The value of P depends on the padding style we want to apply and this style depends on

the style of the data we focus on. In general there are two major categories of padding:

1. Full Padding: The value of P ensures that all pixels are visited the same amount of

times by the filter. This method has the disadvantage of increasing the size of the input.

2. Same Padding: The value of P ensures that the output has the same size as the input.

Visually, the two padding styles are described in figure 1922.

Figure 19: The Two Padding Styles

2.4.3 The Non-Linear Layer

Up until now, all operations that have been computed by the CNN were linear, just element-

wise multiplications and summations. The Non-Linear Layer introduces non-linearity to the

system, just after the convolutional layer. The main reason we need non-linearity into CNNs is

that it helps us to alleviate from the vanishing gradients problem that mentioned before in

the RNN section. All multi-layered ANNs that are trained with the use of the back-propagation

algorithm face this problem because the gradients decrease exponentially through the layers,

22Image taken from: https://towardsdatascience.com/simple-introduction-to-convolutional

-neural-networks-cdf8d3077bac
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as they propagate from the back to the front layers.

In the case of CNNs, several members of the family of the non-linear activation functions

can be used, but the most common one is the Rectified Linear Unit (ReLU) function. As

we have seen in previous sections, the ReLU function is defined as shown in equation 12 and is

graphically described in figure 2023.

R(x) = max(0, x) (12)

Figure 20: The ReLU Activation Function

Practically, the ReLU function turns all the negative weights of a feature map to zeros,

which is a computationally efficient procedure, leading to a faster CNN training without mak-

ing a significant difference to the accuracy of the results.

2.4.4 The Pooling Layer

The next layer in a CNN is the Downsampling or Pooling Layer. The way this layer

operates is similar to the convolution layer. In the case of the pooling layer, a F × F filter

convolutes through a W ×H feature map with a stride of S, but the operations applied to each

step are totally different, and belong to one of the following three main methods:

1. Max Pooling: The filter selects the maximum value of the F×F part of the feature map

it currently convolves. This is by far the most popular method and this is the method

that was used in this assignment.

2. L2-Norm Pooling: The filter computes the L2-Norm value of the F × F part of the

feature map it currently convolves.

23Image taken from: https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7
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3. Average Pooling: The filter computes and selects the average value of the F × F part

of the feature map it currently convolves.

A visual representation of the max pooling operation of a 2×2 filter through a 4×4 feature

map and a stride of 2 is shown in figure 2124.

Figure 21: The Max Pooling Operation (L = W = 4, F = 2, S = 2)

Intuitively, the pooling layer acts as a feature collection mechanism. Considering the

example in figure 21, a high activation value of a pixel of the activation map means that a

specific feature was spotted nearby that area of the input image. The max pooling operation

collects that information and stores it in the corresponding pixel of a new array, which consists

the max pooling map.

The most important reasons for adding a pooling layer into the architecture of a CNN are:

1. It reduces the size of the feature maps considerably, without loosing at the same time the

critical part of the information we need.

2. It can identify correctly the features of the input image, even though they are twisted or

placed in a slightly different position.

3. Although it removes information from the input image, the important features of the

input image are successfully preserved.

4. The information removal from the input image helps the training process to reduce over-

fitting significantly. The term overfitting refers to a model that is so accurately trained

for the train data set that it cannot generalize well, and fails when processing the test

data set.

24Image taken from: http://cs231n.github.io/convolutional-networks/
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2.4.5 The Flattening Layer

The flattening layer receives the W × H × D image array and reshapes (flattens) it into a

column vector x of size [W ·H ·D× 1], as shown in equation 13. This step is essential in order

to use the 1D vector as input to the fully connected layer that comes next.

x =


x0

x1
...

xm

 , m = W ·H ·D (13)

2.4.6 The Fully Connected Layer

The fully connected layer is a typical Deep ANN, like the ones discussed in more detail in

previous sections, with its input layer fully connected to the flattening layer. Basically, it is

responsible for the classification task of the CNN. Alternatively, depending on the nature of

the problem, other types of neural networks can be used like RNNs. A special case of a RNN,

the LSTM, is what was used in this assignment.

2.4.7 The Normalization Layer

The output of the fully connected layer are values that are analogous to the probability of an

image belonging to a certain class, but in general, they are not normalized, which means that

these probabilities don’t add up to 1. The normalization layer normalizes the probabilities,

using a normalization method like SVM or Softmax. In this assignment we used the Softmax

approach which usually gives better results and practically consists of the application of the

Softmax function to the output of the fully connected layer. Conceptually, we can say

that the Softmax function is the generalization of the Binary Logistic Regression Classifier to

multiple classes. The Softmax function is shown in equation 14, where f(zj) is the probability

of the output value zj.

f(zj) =
ezj∑
k

ezk
(14)

2.4.8 The Output Layer

The output layer consists of N neurons, where N is the number of the different classes of the

training data set. Each of these neurons contains the value of the probability a certain image

belonging to a certain class. These values are directly propagated from the normalization layer.
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2.4.9 The Back-Propagation Operation in a CNN

One of the most significant operations of a CNN, if not the most significant, is its back-

propagation operation[9] because through this operation we are able to train it. Depending

on the layer of the CNN we focus on each time, we have different approaches for the loss function

we have to use. In our case we divide the back-propagation procedure in three categories, which

are:

1. Back-Propagation in the Fully Connected Layer: In this layer, during the forward

propagation we used the Softmax function to normalize the probabilities of the output,

which means that in the back-propagation we have to compute the gradients of that

function in reverse. The resulting function is called the cross-entropy loss function

and is shown in equation 15, where the notation fj means the j-th element of the vector

of class-scores f .

Li = − log

 efyi∑
j

efj

 (15)

In practice, in order to calculate the cross-entropy loss function more efficiently we use

the information theory version of the function, which is shown in equation 16.

H(p, q) = −
∑
x

p(x) log q(x) (16)

Equation 16 describes the cross-entropy between a real distribution p and an esti-

mated distribution q. As seen above, the estimated class probabilities q are calculated

according to the formula of equation 17.

q =
efyi∑
j

efj
(17)

The values of the real distribution p is a one-hot vector, with the shape of that of

equation 18, where the whole probability mass (pj = 1) belongs to the correct class.

p = [0, · · · , 1, · · · , 0] (18)
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2. Back-Propagation in the Pooling Layer: In the case of the max-pooling operation

that was implemented in our assignment, and for the backward pass for the max operation,

we only have to route the gradient to the input that had the highest value in the forward

pass. A common practice to achieve this routing is to keep track of the index of the max

activation during the forward pass.

3. Back-Propagation in the Convolutional Layer: The back-propagation pass for a

convolution operation, for both the data and the weights, is also a convolution. The only

difference is that during the backward pass we must use the corresponding spatially-

inverted filters. Back-propagation in the convolutional layer is one of the most critical

operations in a CNN because this is the process its filters are trained in, meaning that this

is the operation the CNN learns which are the significant features of the input images and

which are not, in order to be able to classify these images correctly. An visual example

of an array of trained filters is shown in figure 2225.

Figure 22: An Array of Trained Filters of a CNN

2.4.10 The Modern Architecture of a CNN

As CNNs have been evolving through time, new architectures have also been invented. The

main areas the researches have been focusing on are:

1. The number of the convolutional layers: Modern CNNs can have more than one

convolutional layer followed usually by a max pooling layer. These multiple-layer combi-

nations play a big role to the increased accuracy of the CNNs.

2. The type of the fully connected layer: Several types of ANNs are being used nowa-

days with the DNNs and the RNNs the most common ones.

A visual representation of a modern CNN is shown in figure 2326.

25Image taken from: http://cs231n.github.io/convolutional-networks/#conv
26Image taken from: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural

-networks-the-eli5-way-3bd2b1164a53
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Figure 23: The Architecture of a Modern CNN

2.5 The Long Short-Term Memory Neural Network (LSTM)

As we discussed in a previous chapter, the Long Short-Term Memory Neural Network

(LSTM)[5] is a member of the RNN family. They were introduced by Hochreiter & Schmidhu-

ber in 1997, and its biggest attainment is its capability of coping efficiently with the vanishing

gradients problem, meaning that they are capable of learning long-term dependences. The

LSTM, like the RNN, can be thought of as multiple copies of the same network, each passing a

message to its successor. In the case of LSTM though the repeating network A or cell, contains

four network layers, instead of one. If we unroll a LSTM through time we get the structure

shown in figure 2427.

Figure 24: The Unrolled LSTM

27Image taken from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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2.5.1 The Fundamental Concept behind LSTM

The core concept behind LSTM is the cell state, and the various gates[10]. The cell state is

a vector that corresponds to the state of the previous cell, is modified in the current cell and is

propagated to the next cell through a propagation line, annotated with the top horizontal line

of figure 2527.

Figure 25: The Cell State Propagation Line

On its way, it interacts linearly with the four network layers of the current cell through some

neural network components, which are called gates. Practically, these gates act as filters on

the layers of the cell they are applied on, which means that they have the ability to optionally

remove or add information to these layers. This is done through their sigmoid σ activation

functions and a pointwise multiplication operation, as shown in figure 2627.

Figure 26: A LSTM Gate

As shown in figure 10 in the introduction section, the sigmoid layer outputs numbers be-

tween 0 and 1. These numbers correspond to the percentage of the content that should be let

through. A value of 0 means the gate is blocking completely the content, while a value of 1

lets everything through. An LSTM has three of these gates, in order to control the cell and the

hidden states. These are the forget gate, the input gate and the output gate, which are
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discussed in more detail in the following sub-section.

2.5.2 Step-by-step Description of the Operation of the LSTM

The main element that distinguishes the RNNs from the other types of neural networks is

their internal memory. In the case of LSTMs, as members of the RNN family, their internal

memory corresponds to the cell state Ct of time-step t, while their output corresponds to their

hidden state ht. In general, a LSTM cell has three inputs and two outputs. The inputs are

the cell state Ct−1 and the hidden state ht−1 of the previous time step t − 1 and the input

signal xt of the current time step t, while the outputs are the cell state Ct and the hidden state

ht of the current time step t.

The LSTM operation can be divided into three main steps, which are:

1. The Forget Step: In this step the LSTM cell has to decide what information is going

to be thrown away or forgotten from the cell state Ct−1. This decision is taken by the

forget gate f , which takes as inputs the concatenation of the hidden state ht−1 and the

input signal xt vectors and outputs a vector ft with component values in the range of [0, 1]

for each component of the Ct−1 vector. Values close to 0 mean ”forget this component

completely” and values close to 1 mean ”keep this component completely”. Taking into

account the weights Wf and the bias bf of the forget gate layer, we can compute the

output ft of the forget gate layer using equation 19.

ft = σ [Wf (ht−1 + xt) + bf ] (19)

A visual representation of the forget step is shown in figure 2727.

2. The Input Step: In this step the LSTM cell has to decide what information is going

to be stored into the cell state Ct−1. This decision is taken by the input gate i and an

additional tanh layer Ĉt. Both of them take as inputs the concatenation of the hidden

state ht−1 and the input signal xt vectors . The output of the input gate it decides which

components of the Ct−1 vector will be updated, while the tanh layer creates a vector of

the new candidates Ĉt for the cell state Ct, as shown in figure 2827.

As shown in figure 10, the tanh function squashes its inputs in the range of [−1,+1].

That is a very important step because, depending on the problem we want to solve, the
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Figure 27: The LSTM Forget Gate Layer

Figure 28: The LSTM Input Gate & Tanh Layers

values of the members of the input vector ht−1 + xt can become very big or very small,

resulting in devastating consequences on the stability of the network.

The outputs of these layers with respect to the weights Wi, WC and the biases bi, bC are

computed using equations 20.

it = σ [Wi (ht−1 + xt) + bi]

Ĉt = tanh [WC (ht−1 + xt) + bC ]
(20)

The outputs of the forget step and the input step are then combined using pointwise

multiplication operations, in order to update the old cell state Ct−1 and produce the new

cell state Ct. First the output ft of the forget gate is pointwise multiplied with the old cell

state Ct−1. Then the outputs it and Ĉt of the input gate and the tanh layer are pointwise

multiplied and then added to the old cell state Ct−1. All these operations create the new

cell state Ct, as shown in equation 21.
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Ct = ft × Ct−1 + it × Ĉt (21)

There are two important things to notice in the previous equation 21:

(a) As can be easily observed, equation 21 combines the previous cell state Ct−1 with

the candidate new cell state Ct, which means that this is the part of the LSTM that

helps it learn the relationship between inputs separated by time.

(b) The output of the forget gate layer ft×Ct−1 is added to the output of the input layer

it × Ĉt, instead of multiplied or mixed with it via weights and a sigmoid activation

function as occurs in a standard RNN. This addition operation helps the LSTM to

reduce substantially the vanishing gradients issue that standard RNNs face.

A visual representation of the computation of the new cell state Ct is shown in figure 2927.

Figure 29: The Cell State Ct Computation

3. The Output Step: In this step the LSTM cell has to decide what information is going

to output. This information will be the new hidden state ht of the cell. Practically, the

hidden state ht will be a filtered version of the cell state Ct. The filter that is used for this

purpose is the output gate ot. First a copy of the cell state Ct is squashed in the range

of [−1,+1], using a tanh function, for the same reasons as in the input step. The result

is then pointwise multiplied with the output of the output gate ot in order to filter out

the members of the vector of the cell state Ct, accordingly. All these operations create

the hidden state ht which consists the output of the LSTM cell of time step t. Defining

the weights and the bias of the output gate ot as Wo and bo respectably, the hidden state

ht can be computed as shown in equations 22.
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ot = σ [Wo (ht−1 + xt) + bo]

ht = ot × tanh (Ct)
(22)

A visual representation of the computation of the new hidden state ht is shown in figure

3027.

Figure 30: The Hidden State ht Computation

Over the years, many variants of LSTM architectures have been defined. Some of them are:

1. The Peephole-Connected LSTM, where all the gate layers are allowed to modify the

cell state.

2. The Gate-Coupled LSTM, where the forget and the input gate are coupled in order

to decide what to forget and what new information should be added.

3. The Gated Recurrent Unit (GRU), where the forget and input gates are combined

into an update gate, and the cell and hidden states are merged into one ”general” hid-

den state ht, as shown in figure 3127.
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Figure 31: The Gated Recurrent Unit (GRU)
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3 Reinforcement Learning Theory

As discussed briefly in the introductory section, Reinforcement Learning (RL) consists

on its own one of the three major categories of Machine Learning, mostly because of the

structure of its model being notably different from the other two. More specifically, the RL

model along with the Decision-Theoretic Planning (DTP) deals with learning in sequential

decision making problems, in which there is limited feedback. Both these models constitute the

most important sub-categories of the Markov Decision Processes (MDP) for learning in

stochastic domains28.

3.1 Markov Decision Processes (MDP)

Conceptually, the Markov Decision Processes (MDP) are based on two main notions: The

environment and the agent. Intuitively they can be defined as:

• Environment: The world in which an agent moves. It is an external system equipped

with a scenario that an agent can interact with. Everything the agent cannot control is

considered part of the environment. Typically, the environment consists the MDP system.

• Agent: A system that controls an environment by taking actions that can change the

state of the environment. Typically, the agent is not a part of the MDP. It is the control-

ling system of the environment. In general, an agent could be a software entity, a mobile

robot or an industrial controller.

In a MDP model an environment is modelled as a set of states. In order to control these

states, an agent performs some actions. The goal is the agent to be able to control the envi-

ronment in such a way that some performance quantity is maximized.

Formally, the definition of the MDP is:

A Markov Decision Process (MDP) is a discrete time stochastic control pro-

cess. It provides a mathematical framework for modelling decision making in situa-

tions where outcomes are partly random and partly under the control of a decision

maker.

MDPs are equipped with a discrete global clock t, with t = 1, 2, 3, ... .At each time step

t, the MDP is in some state and the agent may choose any action that is available in that state.

28Conceptually, this section is based on chapter 1 of the book [2]
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The MDP responds at the next time step by randomly moving into a new state, informing the

agent of the new state and of the corresponding scalar reward, as shown in figure 3229. The

probability that the MDP moves into its new state depends only on the current state and the

agent’s action, and is conditionally independent of all previous states and actions. In other

words the state transitions of an MDP satisfies the Markov Property, the definition of which

is:

A stochastic process has the Markov Property if the conditional probability dis-

tribution of future states of the process (conditional on both past and present states)

depends only upon the present state, and not on the sequence of events that preceded

it. A process with this property is called a Markov Process30.

In Markovian environments the current state s gives enough information to the agent in

order to decide for the optimal action. In other words, if the agent selects an action a with the

environment being in a state s, the probability distribution over the next states remains the

same as the last time the agent applied the same action a in the same state s.

Figure 32: The Reinforcement Learning Process

Depending on the prior knowledge about a MDP environment, we can define two types

of MDPs. The first is the model-based MDP, in which the full state transition dynamics

and evaluative feedbacks, also known as rewards, are priorly known. Model-based MDPs use

dynamic programming (DP) techniques for their learning. The second is the model-free

MDP, in which no prior knowledge about the MDP is available. Therefore the algorithm in-

teracts and experiments with the environment in order to gain knowledge on how to optimize

29Image taken from: https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
30Definition taken from WikiPedia

38



its performance, based on the received rewards. Model-free MDPs use RL techniques for their

learning, which have several advantages compared to other MDP techniques. The most impor-

tant one is that they can cope well with uncertainty and changing conditions.

3.2 Formal MDP Framework

The components that consist a Formal MDP Framework are divided into three sub-categories:

a set of MDPs, the policies and the optimality criteria, which are discussed in more detail in

the following subsections.

3.2.1 Markov Decision Processes (MDPs)

A set of MDPs consists of states, actions, a transition function and a reward function. Their

detailed definitions are:

1. States: A state is a concrete and unique characterization of all the important features

of the problem that is modelled. Each state is represented by a distinct symbol st with

respect to the time step t it is related to. The set of the states is defined as S =

{s1, s2, ..., sN}, where |S| = N .

2. Actions: An action can be used to control the state of the environment. Each action is

also represented with a distinct symbol at with respect to the time step t it is related to.

The set of actions is defined as A = {a1, a2, ..., aK}, where |A| = K. In some environments

there can be actions that cannot be applied to every state. The set of actions than can

be applied to a particular state s ∈ S is denoted as A(s), where A(s) ⊆ A. In general,

we assume that A(s) = A.

3. The Transition Function: When the agent takes an action a ∈ A in a state s ∈ S

the environment makes a transition to a new state s′ ∈ S according to a probability

distribution over the set of possible transitions. The transition function T : S × A ×
S −→ [0, 1] defines a proper probability distribution over all the possible next states,

which means that T must satisfy the property
∑
s′∈S

T (s, a, s′) = 1, where T (s, a, s′) is the

probability of the environment ending up in state s′ when an action a is applied to state

s.

4. Reward Function: The reward function R specifies a scalar feedback signal for being

in a state R : S −→ R, for applying some action in a state R : S × A −→ R, or for a

particular transition between states R : S × A × S −→ R. The last one is usually used

in model-free MDPs, like RL systems, where both the starting state s and the ending

state s′ are needed. In this case the reward function is denoted as R(s, a, s′). The reward
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function gives to the agent the direction to which way the MDPs should be controlled.

The transition function T along with the reward function R define the MDP model. There

are several types of systems that can be modelled by the MDP model. One typical case is the

episodic systems, which are based on the notion of the episode. An episode is a sequence of

states, actions and rewards, which starts at an initial state and ends with a terminal state. The

goal for the agent is, starting at a random starting state, to manage to finish in the terminal

state. For example, playing an entire game can be considered as an episode.

With all the elements of the MDP framework now available, we can redefine the MDP using

a formal mathematical notation as follows:

A Markov Decision Process (MDP) is a tuple 〈S,A, T,R〉 in which S is a

finite set of states, A a finite set of actions, T a transition function defined as

T : S × A× S −→ [0, 1] and R a reward function defined as R : S × A× S −→ R.

3.2.2 Policies

Theoretically speaking, a policy is a mapping from the set of states S to an optimal action

a ∈ A, based on decision theoretic measures of optimality, with respect to some goal to be

optimized. In the case of MDPs, we can use the MDP framework elements to form a formal

mathematical definition, as follows:

Given an MDP 〈S,A, T,R〉, a policy is a computable function π that outputs an

action a ∈ A(s) for each state s ∈ S.

A deterministic policy π(s) is a function defined as π : S −→ A and a stochastic policy

π(s, a) is a function defined as π : S × A −→ [0, 1], where π(s, a) ≥ 0 and
∑
a∈A

π(s, a) = 1 for

each state s ∈ S. The policy is a part of the agent which controls an environment modelled as

an MDP.
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3.2.3 Optimality Criteria

The optimality criteria determine what is actually being optimized. In the case of MDPs

the goal of learning is to gather as many rewards as possible. If we were concerned only for

the immediate reward rt, a simple optimality criterion would be the optimization of the

expected reward E[rt]. However, in MDPs we also take into account the future rewards that

are related to the current state st, in order to decide how to act now.

Considering episodic MDPs, there are three models of optimality, which are:

1. The finite horizon model, in which each episode consists of a finite number of steps

h, or a finite horizon of length h. The agent optimizes its expected reward E
[
h∑
t=0

rt

]
over

this horizon.

2. The infinite horizon model, in which each episode has an end but has also an arbitrary

length. In this case the agent optimizes the expected discounted reward E
[
+∞∑
t=0

γtrt

]
, using

a discount factor γ with 0 < γ < 1. The discount factor ensures that the theoretically

infinite sum converges to a finite value and also declares that the earlier rewards have

more weight compared to the ones received far away in time. Most RL algorithms use

this model.

3. The average reward model, in which the agent optimizes its expected average reward

lim
h→∞

E
[

1

h

h∑
t=0

rt

]
. The major disadvantage of this approach is that we cannot distinguish

between two policies in which the one receives big amounts of rewards earlier than the

other one, resulting in a more ambiguous route to the optimal goal.

3.3 Value Functions and Bellman Equations

In this section we define the value functions, which can link the optimality criteria to the

policies. A value function describes how good a state is for an agent to be in, or how good a

state is for an agent to make a certain action in and they are defined under some particular

policies. Multiple policies can have the same value function, but for a given policy the corre-

sponding value function is always unique. Some of the most commonly used value functions

are described in the following subsections.

3.3.1 The State Value Function V π(s)

Considering an infinite horizon model, the value of the state value function V : S −→ R of a

state s under policy π is the expected return (reward) of the state s, as expressed by equation

23.
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V π(s) = Eπ

{
+∞∑
k=0

γkrt+k |st = s

}
(23)

A useful property of all value functions is that they can be also written in a recursive form,

which are called Bellman Equations. Taking this into account, equation 23 can be rewritten

with the form of equation 24.

V π(s) =
∑
s′

T (s, a, s′) [R(s, a, s′) + γV π(s′)] (24)

Equation 24 denotes that the expected value of the state value function V π(s) is defined in

terms of the immediate reward and all the possible next states, weighted by their transition

probabilities.

In order for an MDP to find the optimal policy π∗, it must find the policy that receives the

most cumulative reward. It can be proven that the optimal solution of the state value function

V π∗ is given by equation 25, and is known as the Bellman optimality equation.

V π∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γV π∗(s′)

]
(25)

Given the Bellman optimality equation, we can now derive the optimal policy, as shown in

equation 26. The optimal policy is also known as the greedy policy because it greedily selects

the best action using the optimal value of the state value function.

π∗(s) = arg max
a

∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γV π∗(s′)

]
(26)

3.3.2 The State-Action Value Function Qπ(s, a)

In a similar way as the state value function, we can define the state-action value function

or Q-function Q : S × A −→ R as the expected return (reward) of the state s if the action a

is taken under policy π, which is expressed by equation 27.

Qπ(s, a) = Eπ

{
+∞∑
k=0

γkrt+k |st = s, at = a

}
(27)

In this case, the Bellman equation Qπ(s, a), the optimal state-action-value function Qπ∗ and

the optimal policy π∗(s) are given by equations 28, 29 and 30 respectably.
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Qπ(s, a) =
∑
s′

T (s, a, s′) [R(s, a, s′) + γQπ(s′)] (28)

Qπ∗(s, a) =
∑
s′

T (s, a, s′)
[
R(s, a, s′) + γmax

a′
Qπ∗(s′)

]
(29)

π∗(s) = arg max
a
Qπ∗(s, a) (30)

The main advantage Q-functions have is that they are not depended on the weighted sum

over the possible alternatives that use the transition function. In other words, in order to

compute an optimal action in a state there is no need to look into future steps. That is the

reason model-free MDPs use Q-functions instead of V-functions.

Equation 30 defines the greedy policy, based on the Q-function. This is the action that has

the highest value based on all possible next states that are related to this action.

The relation between the optimal values of the Q-function and the V-function is shown in

equations 31 and 32.

Qπ∗(s, a) =
∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γV π∗(s′)

]
(31)

V ∗(s) = max
a
Q∗(s, a) (32)

3.4 Markov Decision Process (MDP) Learning

Based on the definitions of the previous subsections, we can define the general procedure of how

to solve a MDP problem. By solving a MDP problem we are actually trying to compute an opti-

mal policy π∗, which heavily depends on the model type of the MDP: model-based or model-free.

In order to solve model-based MDPs we use DP. Assuming that the model is known, we

can compute value functions and policies based on the Bellman equation, using iterative pro-

cedures. On the other hand, model-free MDPs are solved via RL methods, which rely on the

interaction with the environment. Being completely agnostic about the structure of the model,

43



the agent has to explore the environment to collect information about it.

Both solutions are based on the generalized policy iteration (GPI) principle, which

consists of two interaction processes, the policy evaluation and the policy improvement

processes, as shown in figure 3331.

Figure 33: The Generalized Policy Iteration (GPI)

1. The policy evaluation process computes the value V π of the current policy π and

collects information about the policy.

2. The policy improvement process, evaluates the values of the actions in every state,

in order to find possible improvements and computes an improved policy π′, using the

current policy π and the value of the current policy V π.

In other words, we have a policy π that computes the value of a value function V π using a

learning procedure and in turn we have a value function that can be used to improve the policy

in order to make good actions.

3.5 Model-Free MDP Solution Techniques

In this section we focus on model-free MDP learning. As discussed earlier, model-free MDPs

use RL techniques for their learning, which are based on approximation and incomplete infor-

mation for the MDP model. They estimate values for actions without estimating the MDP

model. This type of RL is also called direct RL, in contrast to the indirect RL, which uses

DP methods for its learning.

31Image taken from book [3]
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An additional consideration about RL is how to deal with the temporal credit assign-

ment problem, which is based on the fact that the value of the earlier actions are completely

determined by the distant goal the agent is trying to achieve, resulting in delayed rewards

for these actions. In RL we deal with this problem by adjusting the estimated value of a

state based on the immediate reward and the estimated discounted value of the next state.

This process is called temporal difference (TD) learning and the class of RL algorithms

that interacts with the environment and update their estimates after each step is called online.

Because of the fact that the model-free MDPs use RL algorithms for their learning, these

systems are very commonly called RL systems and this is the terminology we will be using in

the rest of this text.

3.5.1 Exploration vs Exploitation

A RL algorithm needs to explore the environment, try various actions and evaluate the results,

because the MDP model is unknown. At the same time, it needs to exploit the gained knowledge

of the environment in order to perform well and gain a lot of rewards. The balance between

these two actions is known as the exploration vs exploitation problem. In general, there

are two main strategies for achieving this balance, which are:

1. ε-greedy Exploration Policy: This is the most basic strategy. The agent takes the

currently best action with probability (1 − ε) or an other available random action with

probability ε.

2. Boltzmann or Softmax Exploration Policy: The agent takes the action randomly

based on the probabilities derived from the weighted Q-values, according to equation

33, in which P (an) is the probability of selecting the action an and T the temperature

parameter. High values of T result in a more random selection strategy, as opposed to

lower values of T that make the strategy more greedy.

P (aN) =
e

Q(s, a)

T

∑
i

e

Q(s, ai)

T

(33)
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3.5.2 Temporal Difference (TD) Learning

As discussed earlier, TD learning algorithms learn estimates of values based on other estimates,

a procedure that is also called bootstrapping. A new action in an environment produces a

learning example, which can be used to re-evaluate the value of a state or state-action function

in relation to the immediate reward and the estimate value of the next state or the next state-

action pair.

The family of the TD learning algorithms have many members, the most common of which

are:

1. TD(0): This algorithm estimates the value of a state function V π(s), using the update

rule of equation 34.

V π
t+1(s) := V π

t (s) + α [r + γV π
t (s′)− V π

t (s)] (34)

where α is the learning rate, with α ∈ (0, 1). The agent makes an action a and receives

a reward r, while the system transitions from state s to the state s′. In this algorithm

only the value of the immediate successor V π
t (s′) is used, instead of the weighted average

of all possible next states.

2. Q-Learning: This algorithm estimates incrementally the Q-values for the corresponding

actions, based on the Q-value function of the agent, using the update rule of equation 35.

Qπ
t+1(st, at) := Qπ

t (st, at) + α

[
rt + γmax

at+1

Qπ
t (st+1, at+1)−Qπ

t (st, at)

]
(35)

where α is the learning rate, with α ∈ (0, 1). The agent makes an action at and receives

a reward rt, while the environment transitions from state st to the state st+1. The

update is applied to the value Qπ
t (st, at). Q-Learning is an off-policy learning algorithm,

which means it will finally converge to the optimal policy π∗ regardless of the initial

exploration policy that is being followed. The necessary conditions for this convergence

is that each state-action pair is visited infinite (theoretically) number of times and the

learning parameter α is decreased appropriately through the process.

3. SARSA: This algorithm is the on-policy version of the Q-learning algorithm, which

means that the algorithm learns the Q-value function of the policy the agent is currently

executing. The update rule for the SARSA algorithm is shown in equation 36.
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Qπ
t+1(st, at) := Qπ

t (st, at) + α [rt + γQπ
t (st+1, at+1)−Qπ

t (st, at)] (36)

where the agent makes the action at+1 according to the current policy in the state st+1.

The α parameter is the learning rate, with α ∈ (0, 1). In the limit, the SARSA algorithm

converges to the optimal policy π∗ if each state-action pair is visited infinite number of

times.

4. Actor-Critic Learning: This is another on-policy learning algorithm, but this time the

policy is kept separated from the value function. The policy is called the actor and the

value function the critic. After each interaction of the agent with the environment, the

critic evaluates the action made by the actor, using the TD-error function that is shown

in equation 37.

δt = rt + γV (st+1)− V (st) (37)

The sign of the TD-error δt defines if the weight of the action selected by the actor in

the state st must be increased or decreased. For this purpose, the preference p(st, at)

for an action at in some state st can be modified using the update rule that is shown in

equation 38.

p(st, at) := p(st, at) + βδt (38)

A visual representation of the actor-critic learning algorithm is shown in figure 3432.

Having separate policy and value function representations has many advantages in the

learning procedure. The most important of them are:

(a) Actor-critic algorithm does not take into account all the Q-values of each action in

order to select one of them. This is a big advantage in environments where the size

|A| of the set of the available actions is big, or the action space is continuous.

(b) Actor-critic algorithm can learn stochastic policies effectively.

32Image taken from: https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
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Figure 34: The Actor-Critic Learning Algorithm

3.6 Asynchronous Advantage Actor-Critic Algorithm (A3C)

In 2016, Google’s DeepMind Research Team published the Asynchronous Advantage Actor-

Critic (A3C)[7] RL algorithm, which is the RL algorithm that has been used in this assign-

ment. The A3C algorithm is presented in more detail in the following subsections.

3.6.1 The Advantage Function A(s, a)

In value-based RL methods, the state-action value function (or Q-function) Qπ(s, a; θ) is ap-

proximated, usually through a NN, where θ are the parameters being optimized. In the pre-

vious subsections we discussed a variety of RL algorithms that can be used to update these

parameters, such as the Q-learning algorithm. This algorithm aims to directly approximate

the optimal Q-function Qπ∗(s, a), assuming that Qπ∗(s, a) ≈ Q(s, a; θ). This algorithm is also

called 1-step Q-learning because it updates the Q-function Qπ(s, a; θ) using the 1-step return

rt + γmax
at+1

Q(st+1, at+1; θ). This approach can make the learning process slow because it takes

many iterations for a reward to propagate back to the relevant preceding state-action pairs.

We can deal with this problem by using an n-step Q-learning algorithm, in which the

Q-function Qπ(s, a; θ) is updated using the n-step return:

rt + γrt+1 + γ2rt+2 + · · ·+ γn−1rt+n−1 + max
at+n

γnQ(st+n, at+n)

which directly affects all the Q-values of the n preceding state-action pairs. This makes the
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propagation procedure of the rewards to the relevant state-action pairs much more efficient.

On the other hand, during a RL process a policy π(s|a; θ) can be improved by using a

learning value function V π, as discussed previously. Typically, this is done by approximating

the gradient ascent on the expected return E[Rt]. It can be proven that an unbiased estimate

of ∇θE[Rt] with respect to the parameters θ is the gradient ∇θ log π(at|st; θ)Rt. We can reduce

the variance of this estimate by subtracting a learned estimate bt of the value function of a

state V π(st), known as baseline, which results in the gradient ∇θ log π(at|st; θ) (Rt − bt). The

quantity Rt−bt we use to scale the policy gradient can be seen as an estimate of the advantage

of the action at in state st, leading to the definition of the Advantage Function Aπ(at, st)

under policy π that is given by equation 39, because Rt is an estimate of the Q-function

Qπ(at, st) and bt is an estimate of the value function V π(st).

Aπ(at, st) = Qπ(at, st)− V π(st) (39)

This approach can be seen as an actor-critic architecture, with the policy π being the

actor and the estimate bt of the value function V π(st) being the critic.

3.6.2 Asynchronous Reinforcement Learning Framework

In Asynchronous RL we use many asynchronous learning processes, also known as actor-

learners. Actor-learners run on a separate thread, forked by the OS of a single machine that

is equipped with several multi-core CPUs. Each actor-learner consists of a copy of the RL

algorithm and a copy of the environment it interacts with. There is also a separate shared

model of the environment, with which all actor-learners are synchronized and an optimizer,

which is a process responsible for the updating procedure of the parameters θ of the shared

model. The overall learning loop goes as follows:

1. At the beginning of each episode, each actor-learner copies the parameters θ of the shared

model into its own environment’s parameters θ′.

2. Each actor-learner executes the RL algorithm for a number of tmax time steps or less if

the end of the episode has reached.

3. Each actor-learner informs the optimizer for its newly learned parameters θ′ and continues

the execution of the RL algorithm.

4. For each update of any of the actor-learners, the optimizer updates the parameters θ of

the shared model accordingly.
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A visual representation of the whole process is shown in figure 35.

Figure 35: The Asynchronous RL Framework

Using an asynchronous RL procedure has many advantages, the most important of which

are:

1. We obtain a substantial reduction in training time, which most of the times is linear in

the number N of the actor-learners, given that each actor-learner occupies a single CPU

core.

2. Multiple actor-learners running asynchronously are likely to be exploring different parts

of the environment, which means that an actor-learner may be exploring a certain part

that had been previously explored by an other actor-learner, resulting to a much more

efficient learning.

3. The overall online updates that are being made to the parameters of the shared model

by the asynchronous actor-learners are likely to be less correlated compared to the online

updates applied by a single actor-learner.

3.6.3 Asynchronous Advantage Actor-Critic Algorithm (A3C)

Combining all the information of the previous related subsections together, we can define the

Asynchronous Advantage Actor-Critic Algorithm (A3C)[7]. The A3C algorithm learns

a policy π(at|st; θ), which is the actor and an estimate of the state value function V π(st; θυ),

which is the critic, where θ and θυ are the parameters of the actor and the critic respectively.

It also uses an n-step return learning approach, in order to update the policy and the value

function, which are updated every tmax time steps or less if a terminal state is reached. The
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update of the policy is given by the expression:

∇θ′ log π(at|st; θ′)Aπ(at, st; θ, θυ)

where Aπ(at, st; θ, θυ) is an estimate of the advantage function, which is given by the expression:

k−1∑
i=0

γirt+1 + γkV π(st+k; θυ)− V π(st; θυ)

and 0 < k < tmax. The pseudo-code of the A3C algorithm is presented in figure 3633.

Figure 36: The A3C Pseudo-code

Although the parameters θ of the policy π(at|st; θ) and θυ of the state value function

V π(st; θυ) are in general being separate, practically we always share some or all of them. For

example, we can have a softmax output for the policy π(at|st; θ) and one linear output for the

state value function V π(st; θυ), with all hidden layers of the NN being shared, as shown in figure

37.

Finally, Google researchers experimentally found that adding the entropy H of the policy

π to its gradient function improved the exploration because it helped the algorithm not to

33Image taken from paper [7]
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Figure 37: The Actor-Critic Architecture

converge in suboptimal policies. The gradient of the final objective function which includes the

entropy regularization is given by expression 40, where β is a hyper-parameter that controls

the strength of the entropy regularization term.

∇θ′ log π(at|st; θ′)Aπ(at, st; θ, θυ) + β∇θ′(H(π(st; θ
′))) (40)
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4 Assignment: Atari Breakout c© Game

4.1 Introduction

In this assignment we studied the case of a computer, learning how to play the video game

Atari Breakout c©. In this game the player controls a pad at the bottom of the screen in order

to force a tiny moving ball smash the bricks of a brick wall, which is located on the north part

of the screen, as shown in figure 38. For every smashed brick the player collects points and the

ultimate goal is to earn as much points as possible. If the player manages to clear out all the

bricks, he wins the level and moves on to a next, more challenging level. If the player misses

the ball, it passes through to the bottom of the screen and a ”life” is lost. There are five lives

available in the game. The game finishes as soon as all lives are lost.

Figure 38: Atari Breakout c© Game

4.2 Assignment Implementation

An arcade game is a text-book example of a Reinforcement Learning application. We trained a

model which was a combination of two types of Neural Networks: A CNN along with a LSTM,

and named it as the breakout model for practical reasons. The breakout model is visually

described in figure 39. The Reinforcement Learning algorithm was Google DeepMind’s Asyn-

chronous Advantage Actor – Critic (A3C)[7], which means that we used multiple agents

during the training procedure. In addition, we needed a shared model in order to give the
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agents the ability to share their knowledge. Each agent along with the shared model consisted

of a breakout model.

Figure 39: The Breakout Model

The size of the action space that is available in this game is four (4), which means that

there are four possible actions an agent (actor) can choose from. These actions are coded

by the OpenAI Gym platform with the integers of {0, 1, 2, 3}. The actions along with their

corresponding integer codes and interpretations are:

• NOOP - 0: Do not move.

• FIRE - 1: Press fire after a ”life” is lost in order to continue the game.

• LEFT - 2: Move the pad left.

• RIGHT - 3: Move the pad right.

The screen resolution of the platform of the game, after the removal of the black vertical

side stripes, was (160× 80) with color depth of 3 (RGB) and 32 colors. In order to accelerate

the training process, each frame was pre-processed in the following way:

1. The black vertical side straps of the frame were cropped out. In this way we removed the

parts of the screen that did not contain any information, reducing at the same time the

total amount of data that were processed for each frame.

2. The resolution of the frame was reduced from (160× 80) to (80× 80).

3. The color depth of the frame was reduced from 3 to 1, by calculating the mean value of

the three RGB values, which resulted in a gray-scale colored frame.

These three pre-processing steps resulted in a significant speed-up of the training process.
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4.2.1 CNN layer

The CNN is an image processing network and therefore gives the agent the ability to see the

environment. During the training process the CNN learns to identify the important objects in

each frame and passes this information to the LSTM layer.

The CNN we used in our assignment consisted of four identical combo-layers. Each combo-

layer was a convolutional / non-linear / pooling combination of layers. From left to right, these

combo-layers were capable of identifying objects of a smaller and smaller size. That was a

critical architectural decision because, as we can see in figure 38 the size of the objects varies.

For example, it was the last (far right) combo-level that was able to identify and learn the

shape of the game’s tiny ball.

4.2.2 LSTM layer

Regarding the fully-connected layer of the CNN, we used a LSTM. Experiments suggest that

using LSTMs in game-learning problems result in reduced learning times and in much more

efficient learning. The reason behind these ascertainments is that game-learning, in general,

depends heavily on time-related series of actions, in which LSTMs excel. For example, two

consecutive game frames include two consecutive positions of the ball, which in turn suggest a

particular route for the ball, resulting in a much more effective learning.

4.2.3 Optimizer

An Optimizer is an algorithm that updates the weights on stochastic gradient-based NNs, in

order to make them learn. In this implementation we used a modified version of the ADAM

optimizer[8]. The applied modification made ADAM capable of working in multi-threading

environments, which is critical for the parallel nature of the A3C algorithm.

4.2.4 Technical Details

Python 3 programming language was used throughout the whole concept because nowadays

Python and its Machine Learning open source libraries are the de-facto standard to any Ma-

chine Learning application out there. As environment for the model, we used the OpenAI

Gym[11] platform which consists a great abstraction of the game Breakout, because of its

simplistic approach on interacting with it via the Gym API for the Python 3 programming

language. The software we used in a little more more detail is shown in table 1.
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Operating System Ubuntu 18.04 LTS

Environment OpenAI Gym 0.10.9

Programming Language Python 3.6.7

Python Libraries

NumPy 1.15.4

SciPy 1.1.0

matplotlib 2.1.1

pandas 0.22.0

OpenCV 3.2.0

PyTorch 0.4.1

Table 1: Software used in the Assignment

The computer we used for the model training procedure was a PC with a 6-core Intel c©

i5-8400 @ 2.80Ghz CPU and 8GB DDR4 of RAM.
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5 Experiments and Results

5.1 Basic Setup

The first factor that we had to set, in relation to our hardware resources, was the number

of the asynchronous agents. In order not to overload our machine we used 16 training

agents, which is a good compromise between the demand for resources and training efficiency.

Additionally, we used a testing agent, which was continuously testing the breakout model

being trained, in order to collect and store the scores it achieved in each episode. In this way

we were able to study the quality and speed of the model, using different settings for its main

factors.

The two main factors related to the quality and speed of the learning procedure of the

breakout model are the learning rate η and the number of the steps n of the n-step Ad-

vantage Function. For this reason, our experiments were based on these two factors, selecting

the values {10−3, 10−4, 10−5} for the learning rate η and the values {10, 20, 50} for the number

of steps n.

5.2 Experiments with the Learning Rate, η

The term quality of the training procedure is related to the highest score the algorithm can

achieve in the game. We calculated two separate score values for each episode, the raw score

and the 100-period moving average of the scores, MA(100) and we collected the maxi-

mum of these two factors of all the episodes. With this computational approach we achieved a

more generalized understanding of the intuitive meaning of the highest scores.

In order to study the learning rate η more thoroughly, we first ran our tests for its three

different values, keeping at the same time the number of steps n constant (n = 20). The max-

imum scores we achieved for each of the three learning rates η are shown in table 2.

η = 10−3 η = 10−4 η = 10−5

max raw score 11.00 864.00 815.00

max MA(100) score 6.73 450.36 400.20

Table 2: Breakout scores with respect to the learning rate η

A visual representation of the three training procedures is shown in the graphs of figures

40, 41, 42.
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Figure 40: Breakout Scores for η = 10−3 and n = 20

Figure 41: Breakout Scores for η = 10−4 and n = 20
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Figure 42: Breakout Scores for η = 10−5 and n = 20

After studying the previous results and graphs regarding the learning rate values, we ended

up in the following conclusions:

1. η = 10−3: It is more than obvious that in this case the breakout model did not learn

anything at all. The graph of figure 40 is just noise, made from random movements

of the agent. This result was somewhat expected and is due to the global minimum

overshooting phenomenon as can be seen in figure 4334. Choosing a large learning

rate η results in large corrections δw of the error function J(w), which in turn results in

overshooting the global minimum and finally in increasing the value of the error function

instead of decreasing it. The final outcome is a back and forth adjustment process of the

value of the error function, and therefore noise.

2. η = 10−4: In this case the training procedure was fast and efficient. After ≈ 500 episodes

the scores started to grow almost linearly and after ≈ 1750 episodes the MA(100) reached

the 450 level. We kept the training procedure going for a total of ≈ 2500 episodes, just

for confirmation reasons.

3. η = 10−5: In this case the training procedure was successful but very slow, as expected.

After ≈ 2000 episodes the scores started to grow almost linearly but at a very slow pace,

and only after ≈ 6000 episodes the scores grew a little more rapidly. After ≈ 12000

34Image taken from the book [1]
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Figure 43: Successful Gradient Descent (left) & Global Minimum Overshooting (right)

episodes the MA(100) reached the 400 level, maybe having the potential to move even

higher, but we stopped the training as the whole procedure would require weeks of training

to finally converge. Choosing a small learning rate η results in tiny corrections δw of the

error function J(w), which in turn results in a slow converging procedure. Additionally,

with a small learning rate η we are risking the case of the agent getting trapped in a

possible local minimum of the error function J(w). That would reduce the quality of

training, which means lower scores. Fortunately, in the case of the A3C RL algorithm

the possibility of being trapped in a local minimum is significantly reduced due to the

asynchronous nature of this algorithm. In case an agent gets trapped in a local minimum,

the sharing knowledge of all the other asynchronous agents would most probably help it

overcome the issue, as the probability of all agents being trapped at the same time in a

local minimum is extremely small.

In conclusion, the value η = 10−4 of the learning rate produces the best balanced results

and therefore consists an optimal generalization of the solution of the problem.

5.3 Experiments with the Number of Steps, n

As discussed in the previous subsection, the term speed of the learning procedure is related

to the number of episodes the algorithm had to be trained with in order to achieve the highest

score. In addition to the learning rate η, the speed of the learning procedure also depends on

the number of steps n an agents makes in the environment before that cumulative experience

is transferred to the optimizer.

In order to study the impact the number of steps n have to the learning process, we ran our

tests for its three different values {10, 20, 50} keeping at the same time the value of the learning

rate constant (η = 10−4). The maximum scores we achieved for each of the three values of

the number of steps n are shown in table 3. The results of η = 10−4 and n = 20 are the ones
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computed in the previous subsection.

n = 10 n = 20 n = 50

max raw score 857.00 864.00 501.00

max MA(100) score 418.71 450.36 361.19

Table 3: Breakout scores with respect to the number of steps n

A visual representation of the three training procedures is shown in the graphs of figures

44, 41, 45.

Figure 44: Breakout Scores for η = 10−4 and n = 10

Having studied the previous results and graphs regarding the number of steps values, we

ended up in the following conclusions:

1. n = 10 & n = 20: In the first two cases the training processes had more or less the

same behaviour and the same results, with the n = 20 setting being a slightly better

option. After ≈ 500 episodes the scores started to grow almost linearly and after ≈ 1500

episodes the MA(100) reached the 420 v 450 level. These results are considered as fast
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Figure 45: Breakout Scores for η = 10−4 and n = 50

and efficient. We kept the training procedure going for a total of ≈ 2500 episodes, just

for confirmation reasons.

2. n = 50: In this case the training process was relatively slower and noisier compared to

the two previous ones. After ≈ 500 episodes the scores started to grow almost linearly

but at a slower pace, and only after ≈ 2000 episodes the scores grew a little more rapidly.

After ≈ 4500 episodes the MA(100) reached the 360 level, maybe having the potential

to move a little bit higher. These less efficient and more noisy results were more or less

expected. A high number of steps in the environment means many continuous steps into

the ”future”, resulting to a much more unpredictable journey of the agents. That is the

reason that during a batch of episodes the scores were ranging from ≈ 50 points to ≈ 500

points, hence the more noise.

5.4 Final Conclusion

In conclusion, the optimal settings of the learning rate η and the number of steps n of the A3C

RL Algorithm we used to solve the Breakout problem, were: η = 10−4 and n = 20. These were

the settings that resulted in the most balanced results in terms of speed and efficiency.
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Appendices

A Code Listings

In this Appendix are included the eight (8) Python Code Listings we used in this assignment.

A.1 main.py

1 import os

2 os.environ[’OMP_NUM_THREADS ’] = ’1’

3 import torch

4 import torch.multiprocessing as mp

5 from environment import atari_env

6 from model import A3C_LSTM

7 from train import train

8 from test import test

9 from optimizer import SharedAdam

10 import time

11

12 # game configuration constants

13 env_config = {’id’: ’BreakoutDeterministic -v0’, ’crop1 ’: 34, ’crop2 ’: 34, ’

dimension2 ’: 80}

14

15 class Params ():

16

17 def __init__(self):

18

19 # environment parameters

20 self.env_conf = env_config

21

22 # training parameters

23 self.lr = 1e-4

24 self.gamma = 0.99

25 self.tau = 1.00

26 self.num_steps = 20

27 self.max_eps_len = 10000

28

29 # thread parameters

30 self.seed = 1

31 self.num_agents = 16

32

33 if __name__ == ’__main__ ’:

34

35 # initialize global parameters
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36 params = Params ()

37

38 # initialize environment

39 env = atari_env(params)

40 print(’environment ID = ’, params.env_conf[’id’])

41

42 # initialize shared model

43 shared_model = A3C_LSTM(env.observation_space.shape[0], env.action_space

)

44 shared_model.share_memory ()

45

46 # load trained model if available

47 print(’Loading trained model ...’)

48 try:

49 saved_state = torch.load(’a3c_lstm_model.dat’)

50 shared_model.load_state_dict(saved_state)

51 print(’Trained model loaded successfully ...’)

52 except:

53 print(’Trained model load procedure failed!’)

54

55 # initialize optimizer

56 optimizer = SharedAdam(shared_model.parameters (), lr=params.lr)

57 optimizer.share_memory ()

58

59 # start agents (fork threads)

60 processes = []

61

62 # start training agents

63 for rank in range(params.num_agents):

64 p = mp.Process(target=train , args=(rank , params , shared_model ,

optimizer))

65 p.start()

66 processes.append(p)

67 time.sleep (0.1)

68

69 # start testing agent

70 p = mp.Process(target=test , args=(params , shared_model))

71 p.start()

72 processes.append(p)

73 time.sleep (0.1)

74

75 # stop agents (join threads)

76 for p in processes:

77 time.sleep (0.1)

78 p.join()
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A.2 environment.py

1 import gym

2 import numpy as np

3 from gym.spaces.box import Box

4 from cv2 import resize

5

6

7 # Parts of the following code were taken from the OpenAI Gym / Universe and

modified accordingly.

8 # https :// github.com/openai/universe -starter -agent/blob/master/envs.py

9

10 def atari_env(params):

11 env = gym.make(params.env_conf[’id’])

12 env._max_episode_steps = params.max_eps_len

13 env = EpisodicLifeEnv(env)

14 env = FireResetEnv(env)

15 env = AtariRescale(env , params.env_conf)

16 env = NormalizedEnv(env)

17 return env

18

19

20 def process_frame(frame , conf):

21 frame = frame[conf[’crop1 ’]:conf[’crop2 ’] + 160, :160]

22 frame = frame.mean (2)

23 frame = frame.astype(np.float32)

24 frame *= (1.0 / 255.0)

25 frame = resize(frame , (80, conf[’dimension2 ’]))

26 frame = resize(frame , (80, 80))

27 frame = np.reshape(frame , [1, 80, 80])

28 return frame

29

30

31 class AtariRescale(gym.ObservationWrapper):

32

33 def __init__(self , env , env_conf):

34 gym.ObservationWrapper.__init__(self , env)

35 self.observation_space = Box(0.0, 1.0, [1, 80, 80], dtype=np.uint8)

36 self.conf = env_conf

37

38 def observation(self , observation):

39 return process_frame(observation , self.conf)

40

41

42 class NormalizedEnv(gym.ObservationWrapper):

43
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44 def __init__(self , env = None):

45 gym.ObservationWrapper.__init__(self , env)

46 self.state_mean = 0

47 self.state_std = 0

48 self.alpha = 0.9999

49 self.num_steps = 0

50

51 def observation(self , observation):

52 self.num_steps += 1

53 self.state_mean = self.state_mean * self.alpha + observation.mean()

* (1 - self.alpha)

54 self.state_std = self.state_std * self.alpha + observation.std() *

(1 - self.alpha)

55

56 unbiased_mean = self.state_mean / (1 - pow(self.alpha , self.

num_steps))

57 unbiased_std = self.state_std / (1 - pow(self.alpha , self.num_steps)

)

58

59 return (observation - unbiased_mean) / (unbiased_std + 1e-8)

60

61

62 class EpisodicLifeEnv(gym.Wrapper):

63

64 def __init__(self , env):

65 gym.Wrapper.__init__(self , env)

66 self.lives = 0

67 self.was_real_done = True

68

69 def step(self , action):

70 obs , reward , done , info = self.env.step(action)

71 self.was_real_done = done

72 lives = self.env.unwrapped.ale.lives ()

73 if lives < self.lives and lives > 0:

74 done = True

75 self.lives = lives

76 return obs , reward , done , self.was_real_done

77

78 def reset(self , ** kwargs):

79 if self.was_real_done:

80 obs = self.env.reset (** kwargs)

81 else:

82 obs , _, _, _ = self.env.step (0)

83 self.lives = self.env.unwrapped.ale.lives()

84 return obs

85

86
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87 class FireResetEnv(gym.Wrapper):

88

89 def __init__(self , env):

90 gym.Wrapper.__init__(self , env)

91 assert env.unwrapped.get_action_meanings ()[1] == ’FIRE’

92 assert len(env.unwrapped.get_action_meanings ()) >= 3

93

94 def reset(self , ** kwargs):

95 self.env.reset (** kwargs)

96 obs , _, done , _ = self.env.step (1)

97 if done:

98 self.env.reset (** kwargs)

99 obs , _, done , _ = self.env.step (2)

100 if done:

101 self.env.reset (** kwargs)

102 return obs

103

104 def step(self , ac):

105 return self.env.step(ac)
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A.3 agent.py

1 import torch

2 import torch.nn.functional as F

3 from torch.autograd import Variable

4 import environment

5 import model

6

7

8 class Agent(object):

9

10 def __init__(self , params):

11

12 # global parameters

13 self.params = params

14

15 # agent environment

16 self.env = environment.atari_env(params)

17

18 # agent model

19 self.model = model.A3C_LSTM(self.env.observation_space.shape[0],

self.env.action_space)

20 self.eps_len = 0

21

22 # values returned from agent environment (openai gym)

23 self.state = None

24 self.reward = 0

25 self.done = True

26 self.info = None

27

28 # agent LSTM values

29 self.hx = None

30 self.cx = None

31

32 # agent buffers

33 self.values = []

34 self.log_probs = []

35 self.rewards = []

36 self.entropies = []

37

38

39 def action_train(self):

40

41 # retrieve values for current state

42 value , logits , (self.hx , self.cx) = self.model(( Variable(self.state.

unsqueeze (0)), (self.hx, self.cx)))
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43 prob = F.softmax(logits , dim =1)

44 log_prob = F.log_softmax(logits , dim =1)

45 entropy = -(log_prob * prob).sum (1)

46

47 # choose action with respect to probs

48 action = prob.multinomial(num_samples =1).data

49 log_prob = log_prob.gather(1, Variable(action))

50

51 # make next step

52 self.state , self.reward , self.done , self.info = self.env.step(action

.numpy ())

53 self.state = torch.from_numpy(self.state).float()

54 self.reward = max(min(self.reward , 1), -1)

55

56 # store values into agent buffers

57 self.values.append(value)

58 self.log_probs.append(log_prob)

59 self.rewards.append(self.reward)

60 self.entropies.append(entropy)

61

62 self.eps_len += 1

63

64 return self

65

66 def action_test(self):

67

68 # retrieve values for current state

69 with torch.no_grad ():

70 value , logit , (self.hx , self.cx) = self.model(( Variable(self.

state.unsqueeze (0)), (self.hx, self.cx)))

71 prob = F.softmax(logit , dim =1)

72

73 # choose action with respect to max prob

74 action = prob.max (1) [1]. data.numpy()

75

76 # make next step

77 self.state , self.reward , self.done , self.info = self.env.step(action

[0])

78 self.state = torch.from_numpy(self.state).float()

79 self.eps_len += 1

80

81 return self

82

83 def clear_agent_buffers(self):

84 self.values = []

85 self.log_probs = []

86 self.rewards = []
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87 self.entropies = []

88

89 return self
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A.4 optimizer.py

1 import math

2 import torch

3 import torch.optim as optim

4 from collections import defaultdict

5

6

7 # Parts of the following code were taken from the PyTorch library (v0.4.1)

and modified accordingly.

8

9 class SharedAdam(optim.Optimizer):

10

11 def __init__(self , model_params , lr=1e-3, betas =(0.9 , 0.999) , eps=1e-3,

weight_decay =0, amsgrad=True):

12 defaults = defaultdict(lr=lr, betas=betas , eps=eps , weight_decay=

weight_decay , amsgrad=amsgrad)

13 super(SharedAdam , self).__init__(model_params , defaults)

14

15 for group in self.param_groups:

16 for p in group[’params ’]:

17 state = self.state[p]

18 state[’step’] = torch.zeros (1)

19 state[’exp_avg ’] = p.data.new().resize_as_(p.data).zero_ ()

20 state[’exp_avg_sq ’] = p.data.new().resize_as_(p.data).zero_

()

21 state[’max_exp_avg_sq ’] = p.data.new().resize_as_(p.data).

zero_ ()

22

23 def share_memory(self):

24 for group in self.param_groups:

25 for p in group[’params ’]:

26 state = self.state[p]

27 state[’step’]. share_memory_ ()

28 state[’exp_avg ’]. share_memory_ ()

29 state[’exp_avg_sq ’]. share_memory_ ()

30 state[’max_exp_avg_sq ’]. share_memory_ ()

31

32 def step(self):

33 for group in self.param_groups:

34 for p in group[’params ’]:

35 if p.grad is None:

36 continue

37 grad = p.grad.data

38 amsgrad = group[’amsgrad ’]

39
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40 state = self.state[p]

41 exp_avg , exp_avg_sq = state[’exp_avg ’], state[’exp_avg_sq ’]

42

43 if amsgrad:

44 max_exp_avg_sq = state[’max_exp_avg_sq ’]

45 beta1 , beta2 = group[’betas’]

46

47 state[’step’] += 1

48

49 if group[’weight_decay ’] != 0:

50 grad = grad.add(group[’weight_decay ’], p.data)

51

52 exp_avg.mul_(beta1).add_(1 - beta1 , grad)

53 exp_avg_sq.mul_(beta2).addcmul_ (1 - beta2 , grad , grad)

54

55 if amsgrad:

56 torch.max(max_exp_avg_sq , exp_avg_sq , out=max_exp_avg_sq

)

57 denom = max_exp_avg_sq.sqrt().add_(group[’eps’])

58 else:

59 denom = exp_avg_sq.sqrt().add_(group[’eps’])

60

61 bias_correction1 = 1 - beta1** state[’step’].item()

62 bias_correction2 = 1 - beta2** state[’step’].item()

63 step_size = group[’lr’] * math.sqrt(bias_correction2) /

bias_correction1

64

65 p.data.addcdiv_(-step_size , exp_avg , denom)
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A.5 model.py

1 import torch

2 import torch.nn as nn

3 import torch.nn.functional as F

4 from torch.autograd import Variable

5 import numpy as np

6

7

8 class A3C_LSTM(nn.Module):

9

10 def __init__(self , num_inputs , action_space):

11 super(A3C_LSTM , self).__init__ ()

12

13 # Variable Initialization

14 num_outputs = action_space.n

15 relu_gain = nn.init.calculate_gain(’relu’) # additional coefficient

16 # for ReLU

17 # Convolution Layers (4)

18 self.conv1 = nn.Conv2d(num_inputs , 32, kernel_size =5, stride=1,

padding =2)

19 self.maxp1 = nn.MaxPool2d(2, 2)

20 self.conv2 = nn.Conv2d (32, 32, kernel_size =5, stride=1, padding =1)

21 self.maxp2 = nn.MaxPool2d(2, 2)

22 self.conv3 = nn.Conv2d (32, 64, kernel_size =4, stride=1, padding =1)

23 self.maxp3 = nn.MaxPool2d(2, 2)

24 self.conv4 = nn.Conv2d (64, 64, kernel_size =3, stride=1, padding =1)

25 self.maxp4 = nn.MaxPool2d(2, 2)

26

27 # LSTM Layer

28 self.lstm = nn.LSTMCell (1024, 512)

29

30 # Actor Output

31 self.actor_linear = nn.Linear (512, num_outputs)

32

33 # Critic Output

34 self.critic_linear = nn.Linear (512, 1)

35

36 # Normalized Weights Initialization (Xavier)

37 self.apply(weights_xavier_init)

38

39 self.conv1.weight.data.mul_(relu_gain)

40 self.conv2.weight.data.mul_(relu_gain)

41 self.conv3.weight.data.mul_(relu_gain)

42 self.conv4.weight.data.mul_(relu_gain)

43
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44 self.actor_linear.weight.data = norm_tensor_init(self.actor_linear.

weight.data , 0.01)

45 self.actor_linear.bias.data.fill_ (0)

46

47 self.critic_linear.weight.data = norm_tensor_init(self.critic_linear

.weight.data , 1.00)

48 self.critic_linear.bias.data.fill_ (0)

49

50 self.lstm.bias_ih.data.fill_ (0)

51 self.lstm.bias_hh.data.fill_ (0)

52

53 def forward(self , inputs):

54 inputs , (hx , cx) = inputs

55 x = F.relu(self.maxp1(self.conv1(inputs)))

56 x = F.relu(self.maxp2(self.conv2(x)))

57 x = F.relu(self.maxp3(self.conv3(x)))

58 x = F.relu(self.maxp4(self.conv4(x)))

59

60 x = x.view(x.size (0), -1) # flatten tensor (LSTM input)

61

62 hx , cx = self.lstm(x, (hx , cx))

63 x = hx

64

65 return self.critic_linear(x), self.actor_linear(x), (hx , cx)

66

67 # Computation of policy loss (Actor) & value loss (Critic)

68 def loss_function(agent):

69

70 # variable initialization

71 R = torch.zeros(1, 1) # Reward

72 gae = torch.zeros(1, 1) # Generalized Advantage Estimation

73 policy_loss = 0.00 # Actor policy loss

74 value_loss = 0.00 # Critic value loss

75 gamma = agent.params.gamma

76 tau = agent.params.tau

77

78 # retrieve value from agent model

79 if not agent.done:

80 value , _, _ = agent.model(( Variable(agent.state.unsqueeze (0)), (

agent.hx, agent.cx)))

81 R = value.data # last state reward = Critic value

82

83 R = Variable(R)

84 agent.values.append(R)

85

86 for i in reversed(range(len(agent.rewards))):

87
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88 # compute Reward & Advantage

89 R = gamma * R + agent.rewards[i]

90 advantage = R - agent.values[i]

91

92 # compute Value loss

93 value_loss = value_loss + 0.5 * advantage.pow(2)

94

95 # compute GAE (Generalized Advantage Estimation)

96 delta_t = agent.rewards[i] + gamma * agent.values[i + 1]. data -

agent.values[i].data

97

98 gae = gae * gamma * tau + delta_t

99

100 # compute Policy loss

101 policy_loss = policy_loss - agent.log_probs[i] * Variable(gae) -

0.01 * agent.entropies[i]

102

103 return policy_loss , value_loss

104

105 # Xavier Weights Initialization

106 def weights_xavier_init(m):

107 if isinstance(m, nn.Conv2d):

108 weight_shape = list(m.weight.data.size())

109 fan_in = np.prod(weight_shape [1:4])

110 fan_out = np.prod(weight_shape [2:4]) * weight_shape [0]

111 w_bound = np.sqrt (6.00 / (fan_in + fan_out))

112 m.weight.data.uniform_(-w_bound , w_bound)

113 m.bias.data.fill_ (0)

114 elif isinstance(m, nn.Linear):

115 weight_shape = list(m.weight.data.size())

116 fan_in = weight_shape [1]

117 fan_out = weight_shape [0]

118 w_bound = np.sqrt (6.00 / (fan_in + fan_out))

119 m.weight.data.uniform_(-w_bound , w_bound)

120 m.bias.data.fill_ (0)

121

122 # Normalized Weights Initializer (with respect of std value)

123 def norm_tensor_init(weights , std = 1.00):

124 x = torch.randn(weights.size())

125 x *= std / torch.sqrt((x**2).sum(1, keepdim=True)) # normalization (var(

out) = std ** 2)

126 return x
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A.6 train.py

1 import torch

2 from agent import Agent

3 from torch.autograd import Variable

4 import model

5

6

7 def train(rank , params , shared_model , optimizer):

8

9 print(’Train Agent: {} -> started ’.format(rank))

10

11 # initialize seed

12 torch.manual_seed(params.seed + rank)

13

14 # initialize agent

15 agent = Agent(params)

16 agent.env.seed(params.seed + rank)

17 agent.state = agent.env.reset ()

18 agent.state = torch.from_numpy(agent.state).float ()

19 agent.model.train ()

20

21 while True:

22 agent.model.load_state_dict(shared_model.state_dict ())

23

24 if agent.done:

25 agent.cx = Variable(torch.zeros(1, 512))

26 agent.hx = Variable(torch.zeros(1, 512))

27 else:

28 agent.cx = Variable(agent.cx.data)

29 agent.hx = Variable(agent.hx.data)

30

31 # make num_steps actions in a row

32 for step in range(params.num_steps):

33 agent.action_train ()

34 if agent.done:

35 break

36

37 if agent.done:

38 agent.state = agent.env.reset ()

39 agent.state = torch.from_numpy(agent.state).float ()

40

41 # compute policy loss & value loss

42 policy_loss , value_loss = model.loss_function(agent)

43

44 # compute variable gradients
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45 agent.model.zero_grad ()

46 optimizer.zero_grad ()

47 (policy_loss + 0.5 * value_loss).backward ()

48 ensure_shared_grads(agent.model , shared_model)

49

50 # update model weights

51 optimizer.step()

52

53 # reset agent

54 agent.clear_agent_buffers ()

55

56 def ensure_shared_grads(model , shared_model):

57 for param , shared_param in zip(model.parameters (), shared_model.

parameters ()):

58 if shared_param.grad is not None:

59 return

60 else:

61 shared_param._grad = param.grad
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A.7 test.py

1 import torch

2 from agent import Agent

3 from torch.autograd import Variable

4 import time

5 import csv

6

7

8 def test(params , shared_model):

9

10 print(’Test Agent: -> started ’)

11

12 # initialize seed

13 torch.manual_seed(params.seed)

14

15 # initialize agent

16 agent = Agent(params)

17 agent.env.seed(params.seed)

18 agent.state = agent.env.reset ()

19 agent.eps_len += 2

20 agent.state = torch.from_numpy(agent.state).float ()

21 agent.model.eval()

22

23 # initialize scores

24 eps_num = 0

25

26 try:

27 print(’Checking for old score file ...’)

28 csv_file = open(’score_log.csv’, ’r’, newline=’’)

29 with csv_file:

30 for row in reversed(list(csv.reader(csv_file))):

31 eps_num = int(row [0])

32 break

33 print(’Old score file found. Last episode number = {}’.format(

eps_num))

34 except:

35 print(’Old score file not found!’)

36

37 reward_sum = 0

38 reward_max = 0

39 score_buffer = []

40

41 start_time = time.time()

42 eps_ended = True

43 while True:
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44 if eps_ended:

45 agent.model.load_state_dict(shared_model.state_dict ())

46 eps_ended = False

47

48 with torch.no_grad ():

49 if agent.done:

50 agent.cx = Variable(torch.zeros(1, 512))

51 agent.hx = Variable(torch.zeros(1, 512))

52 else:

53 agent.cx = Variable(agent.cx.data)

54 agent.hx = Variable(agent.hx.data)

55

56 # make next action

57 agent.action_test ()

58 reward_sum += agent.reward

59

60 if agent.done and not agent.info:

61 state = agent.env.reset ()

62 agent.eps_len += 2

63 agent.state = torch.from_numpy(state).float ()

64 elif agent.info:

65 eps_ended = True

66 if agent.eps_len < agent.params.max_eps_len - 50:

67 eps_num += 1

68 score_buffer.append ((eps_num , reward_sum))

69 if reward_sum >= reward_max:

70 reward_max = reward_sum

71 print(’Episode #{}: total time {}, reward = {}, total frames =

{}, max reward = {}’.format(

72 eps_num , time.strftime("%Hh %Mm %Ss", time.gmtime(time.

time() - start_time)), reward_sum , agent.eps_len , reward_max))

73 if eps_num % 10 == 0:

74 print(’Saving trained model ...’)

75 try:

76 state_to_save = agent.model.state_dict ()

77 torch.save(state_to_save , ’a3c_lstm_model.dat’)

78 print(’Trained model saved successfully ...’)

79 except:

80 print(’Trained model saving procedure failed!’)

81 print(’Saving scores ...’)

82 try:

83 csv_file = open(’score_log.csv’, ’a’, newline=’’)

84 with csv_file:

85 csv_writer = csv.writer(csv_file)

86 csv_writer.writerows(score_buffer)

87 print(’Scores saved successfully ...’)

88 score_buffer.clear()
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89 except:

90 print(’Score saving procedure failed!’)

91 start_time = time.time()

92 reward_sum = 0

93 agent.eps_len = 0

94 agent.state = agent.env.reset ()

95 agent.eps_len += 2

96 agent.state = torch.from_numpy(agent.state).float ()
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A.8 play.py

1 import os

2 os.environ[’OMP_NUM_THREADS ’] = ’1’

3 import torch

4 from agent import Agent

5 from torch.autograd import Variable

6 import time

7

8 # game configuration constants

9 env_config = {’id’: ’BreakoutDeterministic -v0’, ’crop1 ’: 34, ’crop2 ’: 34, ’

dimension2 ’: 80}

10

11 class Params ():

12

13 def __init__(self):

14

15 # environment parameters

16 self.env_conf = env_config

17

18 # training parameters

19 self.lr = 1e-5

20 self.gamma = 0.99

21 self.tau = 1.00

22 self.num_steps = 20

23 self.max_eps_len = 10000

24

25 # thread parameters

26 self.seed = 1

27 self.num_agents = 16

28

29

30 def play(params):

31

32 print(’Play Agent: -> started ’)

33

34 # initialize seed

35 torch.manual_seed(params.seed)

36

37 # initialize agent

38 agent = Agent(params)

39 agent.env.seed(params.seed)

40 agent.state = agent.env.reset ()

41 agent.eps_len += 2

42 agent.state = torch.from_numpy(agent.state).float ()

43 agent.model.eval()
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44

45 # load saved model

46 print(’Loading trained model ...’)

47 try:

48 saved_state = torch.load(’a3c_lstm_model.dat’)

49 agent.model.load_state_dict(saved_state)

50 print(’Trained model loaded successfully ...’)

51 except:

52 print(’Trained model load procedure failed!’)

53

54 # initialize scores

55 reward_sum = 0

56 eps_num = 0

57

58 start_time = time.time()

59 while True:

60 with torch.no_grad ():

61 if agent.done:

62 agent.cx = Variable(torch.zeros(1, 512))

63 agent.hx = Variable(torch.zeros(1, 512))

64 else:

65 agent.cx = Variable(agent.cx.data)

66 agent.hx = Variable(agent.hx.data)

67

68 # render screen

69 agent.env.render ()

70

71 # make next action

72 agent.action_test ()

73 reward_sum += agent.reward

74

75 if agent.done and not agent.info:

76 state = agent.env.reset ()

77 agent.eps_len += 2

78 agent.state = torch.from_numpy(state).float ()

79 elif agent.info:

80 eps_num += 1

81 print(’Episode #{}: total time {}, reward = {}, total frames =

{}’.format(

82 eps_num , time.strftime("%Hh %Mm %Ss", time.gmtime(time.

time() - start_time)), reward_sum , agent.eps_len))

83 start_time = time.time()

84 reward_sum = 0

85 agent.eps_len = 0

86 agent.state = agent.env.reset ()

87 agent.eps_len += 2

88 agent.state = torch.from_numpy(agent.state).float ()
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89

90 if __name__ == ’__main__ ’:

91

92 # initialize global parameters

93 params = Params ()

94

95 # initialize environment

96 print(’environment ID = ’, params.env_conf[’id’])

97

98 # play the game

99 play(params)
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B Computer Setup

In this Appendix are included all the commands that are required for setting up an Ubuntu

18.04 LTS system, in order to be able to run the training and testing codes that were listed in

Appendix A.

B.1 setup.sh

1 // Python 3 dependencies

2 sudo apt -get install build -essential

3 sudo apt -get install python3 -dev

4 sudo apt -get install python3 -pip

5

6 // OpenAI Gym dependencies

7 pip3 install ’gym[atari]’

8

9 // Pytorch 0.4.1 installation (CPU -only build)

10 pip3 install torch ==0.4.1 -f https :// download.pytorch.org/whl/cpu/stable
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