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ABSTRACT 

 

Proteins are macromolecules that regulate a vast amount of biological processes. The 
spatial structure of proteins is the main determinant of their biological function. 
Consequently, discovering and researching new efficient methods for classifying 
proteins based on their 3D shape is an important task with applications in many 
scientific fields. In the context of this thesis, we explore and examine the capabilities of 
Deep Neural Networks in performing classification tasks on the complex 3D shapes of 
proteins. For these purposes, we analyze existing deep learning architectures that 
showed promising results. Additionally, we test the effectiveness of these architectures 
by performing a series of protein classification experiments. In our experiments, we 
represent the geometric 3D shape of proteins as point clouds, a flexible geometric data 
representation. Also since proteins have different sizes and the deep learning 
architectures we explore do not consume dynamic size input, we test ways of 
normalizing the proteins into the same constant size. Finally, we comprehensively 
present and evaluate the results of our work. 
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ΠΕΡΙΛΗΨΗ 

 

 
Οι πρωτεΐνες είναι μακρομόρια που ρυθμίζουν πληθώρα βιολογικών διεργασιών. Η 
χωρική δομή των πρωτεϊνών είναι ο κύριος καθοριστικός παράγοντας της βιολογικής 
λειτουργίας τους. Συνεπώς, η εύρεση νέων αποτελεσματικών μεθόδων ταξινόμησης 
πρωτεϊνών με βάση την τρισδιάστατη δομή τους είναι ένα σημαντικό έργο με εφαρμογές 
σε πολλά επιστημονικά πεδία. Στο πλαίσιο αυτής της πτυχιακής εργασίας, εξερευνούμε 
και εξετάζουμε τις δυνατότητες των Βαθιών Νευρωνικών Δικτύων όσον αφορά την 
εκτέλεση εργασιών ταξινόμησης σε σύνθετα τρισδιάστατα σχήματα πρωτεϊνών. Για τους 
σκοπούς αυτούς, αναλύσαμε υπάρχουσες αρχιτεκτονικές βαθιάς μάθησης που έδειξαν 
πολλά υποσχόμενα αποτελέσματα. Επιπλέον, δοκιμάζουμε την αποτελεσματικότητα 
αυτών των αρχιτεκτονικών με την εκτέλεση μιας σειράς πειραμάτων ταξινόμησης 
πρωτεϊνών. Στα πειράματά μας, αντιπροσωπεύουμε το γεωμετρικό τρισδιάστατο σχήμα 
των πρωτεϊνών ως νέφη σημείων, μια ευέλικτη γεωμετρική αναπαράσταση δεδομένων. 
Ακόμα, λόγω του ότι οι πρωτεΐνες διαφέρουν μεταξύ τους ως προς το μέγεθος και οι 
αρχιτεκτονικές βαθιάς μάθησης που εξερευνούμε δεν μπορούν να δεχθούν είσοδο 
δυναμικού μεγέθους, δοκιμάζουμε τρόπους για την κανονικοποίηση των πρωτεϊνών σε 
ένα κοινό σταθερό μέγεθος. Τέλος, παρουσιάζουμε ολοκληρωμένα τα αποτελέσματα 
της δουλειάς μας και τα αξιολογούμε. 
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1. INTRODUCTION 

In this thesis, we explore and experiment with Deep Learning architectures that are 
capable of working directly on 3D Point Clouds in order to handle the problem of Protein 
Classification based on their secondary structures. In this section, we will briefly explain 
the problem and provide basic knowledge of the methods used. 

 

1.1 Protein Classification 

Proteins are highly complex macro-molecular molecules with a significant role in 
molecular mechanisms and many biological processes. The 3D spatial structure of a 
protein determines its biological function.  

Classification of proteins based on their 3D spatial structure can prove to be crucial for 
providing knowledge about protein function and their interaction with other proteins. The 
classification of proteins remains a difficult and time consuming task. Manual 
classification is no longer a viable option due to the massive volume of the available 
data. Considering the recent evolution of Machine Learning and especially Neural 
Networks and their success on classification tasks, the utilization of those methods can 
be a valuable and efficient alternative for protein classification.  

 

1.2  Artificial Neural Networks  

Artificial Neural Networks (ANN) are computational systems that their architecture is 
inspired by the biological neural networks that constitute animal brains. ANNs are 
systems that progressively improve their ability to perform a certain task by analyzing 
examples without the need of a traditional rule-based algorithm, making them an 
appealing model for applications that are difficult to express with a traditional algorithm. 

ANNs consist of connected nodes (artificial neurons) that receive an input and produce 
an output that is related to the input, the activation function and the weights. Usually, 
ANNs are graphically represented as directed graphs with the vertices representing the 
neurons and the edges the connections between them (Figure 1.1). Typically the 
neurons are organized in layers. 

For ANNs to progressively learn to perform a task, a process of training is needed. 
During training ANNs use an optimization algorithm to minimize or maximize an 
objective function. Input is forward propagated through the neuron layers until it reaches 
the final output layer, then the output is compared with the desired result with the help of 
a loss function. Afterwards, the output is backpropagated again through the network, 
from the output layer back to the input layer, using the error values to calculate the 
gradient of the loss function and update the weights. This method is called gradient 
descent. 

The original goal of ANNs was to solve problems in the same way the human brain 
would. As of today ANNs are used in a variety of tasks such as image recognition, 
speech recognition, bioinformatics and others. 
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Figure 1.1: graphical representation of a simple Artificial Neural Network as a directed graph. 

Source: Wikipedia 

1.3 Deep Neural Networks  

Deep Neural Networks (DNN) are ANNs with multiple hidden layers between the input 
and the output layer. DNNs can model complex non-linear relationships and can provide 
better abstraction and feature extraction.  

In DNNs each layer learns to transform its input into a more abstract and composite 
representation. For example, in an image recognition task, the initial input may be a 
matrix of pixels; the first layer may abstract the pixels and encode edges; the second 
layer may compose and encode arrangements of edges; the third layer may encode 
edge arrangements into a nose or an eye; the fourth layer may recognize if the image 
contains a human face. The extra layers enable composition of features from the 
previous layers, enabling a DNN to potentially model complex data with fewer units than 
an ANN. 

As a result of extensive research during the last decades, DNNs have been successful 
and widely used in a variety of tasks such as image and object recognition, natural 
language processing, automated drug discovery and toxicology and others. The models 
we explore in this thesis are DNNs. 

1.4 Point Clouds  

A Point Cloud is a set of data points in space, each element of the set represents the 
3D spatial coordinates of a point. Mathematically, it can be represented as a set of 
points                   where each point    is a three dimensional vector of the 
point’s coordinates        . Point clouds are an important type of geometric data 
representation, often being the direct output of 3D scanning processes. However, due to 
their irregular nature many researchers choose to transform the point clouds into more 
regular types of 3D data representation such as 3D voxel grids, a process that 
massively increases the volume of the data. In this thesis, we will experiment on DNN 
architectures that directly consume Point Clouds with the intention of keeping the 
voluminosity of the data low without compromising the effectiveness of the methods. 
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2. DEEP LEARNING ON 3D DATA 

2.1 Background and Related work  

In this section we will discuss previous and related work on point clouds, deep learning 
on 3D data and protein classification. 
 
Handcrafted Point Cloud Features 

Various tasks in geometric data analysis and processing (classification, semantic 
segmentation etc.) often use hand crafted features. Those features usually capture 
some certain statistical properties of the points and are designed to be invariant to 
certain transformations. Those features may be categorized as intrinsic [1], [2], [3] or 
extrinsic [4], [5], [6]. Handcrafting features for a specific task is not a trivial task. 
 

Deep Learning on Geometric 3D Data 

Due to the variety of popular representations of 3D data there are multiple different 
approaches from researchers. Following the breakthrough of Convolutional Neural 
Networks (CNN) in computer vision [7] there has been strong interest in adapting similar 
methods on geometric 3D tasks, [8], [9], [10] are the pioneers of using CNNs on 
voxelized 3D shapes. However that approach is gated by its resolution due to the data 
sparsity and also by the computational cost of applying 3D convolution. There have 
been attempts to deal with the sparsity problem such as FPNN [11] and Vote3D [12] but 
processing very large 3D point clouds was still challenging. Recently, PointNet [13] 
exemplified a deep learning method directly on point clouds, which is one of the models 
we will thoroughly go over in this thesis. Following that work, there have been efforts to 
capture local features in 3D shapes in PointNet++ [14] and in Dynamic Graph CNN [15] 
which will also be analyzed further in this thesis. 
 

Protein Classification Methods 

There have been previous efforts to use neural networks for protein classification tasks. 
In some approaches such as [16] and [17] a graph representation of each 3D protein 
shape was used. More recently, a deep learning model [18] that worked on 3D voxel 
grids representation of proteins showed promising results.  
 

2.2 PointNet 

PointNet is a DNN designed to directly consume 3D point clouds while respecting the 
permutation invariance of the points in the set. The key to achieving this is the usage of 
a single symmetric max pooling function. Their idea is to approximate a general function 
defined on the point set by applying a symmetric function on transformed elements in 
the set : 

                                    

where       
           and                   

 

    is a symmetric function. 
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They approximate   by a multi-layer perceptron network and   by a composition of a 
single variable function and a max pooling function and showcase that it is working well 
through their experiments. 

Exploring the architecture of the classification network of PointNet (Figure 2.1) we can 

see that it consumes a set of   points as an input. An alignment of the input in a 
canonical space is achieved by predicting an affine transformation matrix with the use of 
a mini-network called T-net (Figure 2.1). After that, the data is passed to a Multi Layer 
Perceptron (MLP), the output of the MLP is going through another T-net for a similar 
transformation in order to predict a feature transformation matrix to align features from 
different point clouds. The output is then passed through another MLP, the output of this 
MLP is then fed through a max pooling layer, the symmetrical function, that aggregates 
the point features and creates a global descriptor which in turn is fed through a final 

MLP that outputs   classification scores where   is the number of classes. 

Considering that the approach of directly working and manipulating on point clouds was 
pioneered by PointNet and that the code is available online we think that it is a good 
starting point for testing how well DNNs that handle point clouds would perform on point 
clouds of highly complex 3D shapes such as proteins. 

 

 

 

Figure 2.1: The architecture of PointNet. Source: PointNet: Deep Learning on Point Sets for 3D 

Classification and Segmentation 

 

 

2.3 Dynamic Graph CNN 

Dynamic Graph CNN (DGCNN) is another DNN that works directly on Point Clouds. 
They propose a new approach heavily inspired by PointNet and convolution operations. 
Instead of learning on completely individual points like PointNet, they try to take 
advantage of local geometry structures by forming a local neighborhood graph in order 
to apply convolution like operations on it, an approach mainly based graph neural 
networks. For achieving this, they propose a novel convolution like operation called 
EdgeConv which has permutation invariance, translation invariance and non-locality 
properties. Unlike other graph Convolutional Neural Networks (CNN) their graph is not 

static but updated after each layer, as the   nearest neighbors of a point can change 



Deep Learning on Point Clouds for 3D Protein Classification Based on Secondary Structure 

A. Kalimeris   19 

after each layer as the proximity in input space can differ from the proximity in feature 
space. 

Considering a point cloud                        where each point    is a three 

dimensional vector of the point’s coordinates        , they compute a directed graph 
          representing local point structure where           and       are the 

vertices and edges respectively. The graph   is the   nearest neighbor graph of   in 

  , the graph also contains self loops, meaning each node can point to itself. They 
define edge features as                where              is a nonlinear 

function with a set of learnable parameters  . Finally they define the EdgeConv 
operation as: 

              
             

where   is a symmetric aggregation operation like   or     on the edge features 
associated with all the edges emanating from each. 

 

Delving into the architecture of DGCNN (Figure 2.2), we can see that the proposed 

model takes an input of   points that after an initial spatial transform layer they are 
alternately fed through EdgeConv and simple fully connected layers. The outputs of the 
last EdgeConv layer are globally aggregated to form an one dimensional global 
descriptor which is then fed through a max pooling layer and an MLP in order to 

produce   classification scores. 

DGCNN achieves state-of-the-art performance on several benchmarks such as 
ModelNet40 [24] for classification and also provide their code online. In this paper, we 
will use the code in order to experiment on proteins that have more complex 3D shapes. 
We also believe that taking advantage of local geometry will be beneficial for more 
accurately classifying those shapes. 

 

 

Figure 2.2: The architecture of Dynamic Graph CNN. Source: Dynamic Graph CNN for Learning on 

Point Clouds 
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3. EXPERIMENTS 

3.1 Datasets for Structural Classification of Proteins 

3.1.1 The Protein Data Bank Format 

There is a wide variety of extensively developed public databases containing structural 
information of proteins such as Protein Data Bank (PDB) [19]. The file format initially 
used by the PDB was called the PDB file format and is now adopted almost universally 
by the other protein structure related databases. The PDB files contain atomic 
coordinates, citations, primary and secondary structure information, crystallographic 
structure and other experimental data. The PDB file format documentation can be found 
at [20]. 

For the experiments conducted as a part of this thesis, we will use the ATOM entries of 
the PDB files that provide the 3D spatial coordinates of the atoms of a protein in order to 
create point clouds that can be directly processed by the deep learning architectures we 
are exploring. 

3.1.2 Protein Structure Classification Databases 

There are many databases that use protein structures deposited in the PDB. The most 
useful for the purposes of this thesis are protein structure classification databases such 
as CATH [21] and SCOP [22]. The datasets we used are based on the CATH 
hierarchical classification specifically on the Class level, which is determined by the 
overall secondary structure of the domain. There are four main structural classes of 
proteins according to CATH: 

1. mainly a (mainly consisting of a-helices), 

2. mainly b (mainly consisting of b-sheets), 

3. a/b (a-helixes and b-sheets alternating along the protein backbone), 

4. a+b (a-helices and b-sheets occur separately along the protein backbone). 

For the rest of this thesis we will be focusing on the classification of proteins between 
the mainly alpha and mainly beta classes. We use the Cath-Dataset-Non-Redundant-
S20 found at CATH website. This dataset contains the PDB files of a non-redundant 
subset of CATH protein domains. In total, there are 3987 mainly alpha domains and 
3159 mainly beta domains in the dataset. Also, we use a manually downloaded dataset 
from RCSB [23]. We downloaded 2500 mainly alpha and 2500 mainly beta proteins 
according to CATH classification with the help of the advanced search interface, that 
RCSB provides, that integrates CATH classification. This dataset contains PDB files 
from RCSB that include all entries (not only non-redundant domains), as well as the 
header metadata. 
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3.1.3 Dataset Generation 

The data we acquired from CATH and RCSB required some additional processing. 
PointNet, as well as, DGCNN receive their input into HDF51 file format and for that 
reason we used some simple python scripts to transfer the atomic coordinates from the 
PDB files into appropriately formatted HDF5 files. 

The number of atoms of each protein is different, while the deep learning architectures 
we explore take a fixed size point cloud as their input. In order to overcome this problem 
we needed to make all the point clouds sampled from PDB files have the same size. 

Given a fixed input size           , if a protein contains more atoms than that 
threshold we randomly sample            atoms from the protein. On the other hand, 
if a protein contains less atoms than            we “pad” the point clouds using two 
approaches (Figure 3.1). We either add zero vectors until the point cloud reaches the 

size of            (zero padding) or we copy an initial segment of the molecule (copy 
padding). We observed a better result with the copy padding method as we hypothesize 
it reinforces the local features, so that will be the most used padding method in this 
thesis. 

 

 

Figure 3.1: Graphical representation of the padding methods 

 

The protein backbone is what holds the protein together and mainly determines its 
structure, for that reason we also generated more separate datasets, in which we only 
take into consideration atoms that form the backbone (C, CA, N, O) from each PDB file. 
The PDB files from RCSB include the full header and metadata. With the help of that 
metadata, namely the secondary structure section, we also prepared other datasets that 
only keep points that belong in the secondary structures of a protein, the a-helices and 
the b-sheets. 

                                            

1
 www.hdfgroup.org [Accessed: 07/09/2019] 

https://www.hdfgroup.org/
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Lastly, we also wanted to test the deep learning architectures in a less complex 
classification task, classifying a single secondary structure into either an a-helix or a b-
sheet, thus we generated another dataset that contains only a-helices or b-sheets as 
separate entities to be classified. 

3.1.4 Datasets based on RCSB PDB files 

In this section we will describe the datasets we generated based on the PDB files we 
obtained from RCSB. Following every dataset we will present histograms that show the 
distribution of proteins based on the number of atoms they contain or the number of 
alpha carbons. We should also note that regarding the other backbone atoms (C, N, O) 
proteins follow the same distribution as the one regarding CA. 

 

Proteins consisting any number atoms. 

We use point clouds formed from 5000 manually downloaded proteins from RCSB that 
2500 are mainly alpha and 2500 are mainly beta. For the training procedure, the 
proteins were separated into 2250 mainly alpha and 2250 mainly beta for training and 
250 mainly alpha and 250 mainly beta for testing. We used the copy method for 
padding. 

 

Figure 3.2: Mainly alpha proteins (left) and mainly beta proteins (right) based on their number of 

atoms.  

Proteins consisting any number atoms (backbone atoms only) 

The same as the previous dataset except that we only keep backbone atoms. 

 

Figure 3.3: Mainly alpha proteins (left ) and mainly beta proteins (right) based on their number of 

alpha carbons. 
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Isolated Secondary Structures 

We isolate the secondary structures of the 5000 proteins downloaded from RCSB, with 
the help of the secondary structure section of the PDB files. There are 2250 point 
clouds formed from the secondary structures of mainly alpha proteins and 2250 from 
the secondary structure of mainly beta proteins used for training and 250 mainly alpha 
and 250 mainly beta used for testing. We used the copy method for padding. 

 

Figure 3.4: Mainly alpha proteins (left) and mainly beta proteins (right) based on the number of 

atoms that belong into their secondary structures. 

 

Isolated Secondary Structures (backbone atoms only) 

The same as the previous dataset except that we only keep backbone atoms. 

 

Figure 3.5: Mainly alpha proteins (left) and mainly beta proteins (right) based on the number of 

alpha carbons that belong into their secondary structures. 

 

Helix and Sheet dataset 

From all the 5000 proteins downloaded from RCSB we isolate 15000 a-helices and 
15000 b-sheets. For the training procedure, we separate the data into 13500 a-helices 
and 13500 b-sheets for training and 1500 a-helices and 1500 b-sheets for testing. We 
used the copy method for padding. 
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Figure 3.6: Alpha helices (right) and beta sheets (left) based on the number of atoms 

 

3.1.5 Datasets based on CATH-Dataset-Non-Redundant-S20  

In this section, in the same way, we will describe the datasets we generated based on 
the PDB files of the CATH-Dataset-Non-Redundant-S20. Following every dataset we 
will present histograms that show the distribution of proteins based on the number of 
atoms they contain or the number of alpha carbons. We should also note that regarding 
the other backbone atoms (C, N, O) proteins follow the same distribution as the one 
regarding CA. 
 

Proteins consisting of more than 1024 atoms  

In the original dataset we downloaded from CATH there were 1699 mainly alpha and 
1503 mainly beta protein domains that had more than 1024 atom entries. We randomly 
separated those into 1529 mainly alpha and 1353 mainly beta for training and 170 
mainly alpha and 150 mainly beta for testing. 

 

Figure 3.7: Mainly alpha proteins (left) and mainly beta proteins (right) with more than 1024 atoms 

based on their number of atoms.  

 

Proteins consisting of more than 1024 atoms (backbone atoms only) 

From the aforementioned dataset we take only the backbone atoms in consideration 
and used both zero padding and copy padding when needed. 
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Figure 3.8: Mainly alpha proteins (left) and mainly beta proteins (right) with more than 1024 atoms 

based on their number of alpha carbons. 

 

Proteins consisting of any number of atoms 

We use 5000 proteins from Cath-Dataset-Non-Redundant-S20, 2500 mainly alpha and 
2500 mainly beta. The proteins are separated into 2250 mainly alpha and 2250 mainly 
beta for training and 250 mainly alpha and 250 mainly beta for testing. We used the 
copy method for padding. 

 

Figure 3.9: Mainly alpha proteins (left) and mainly beta proteins (right) with more than 1024 atoms 

based on their number of atoms. 

 

Proteins consisting of any number of atoms (backbone atoms only) 

The same as the previous dataset except that we only keep backbone atoms. 

 

Figure 3.10: Mainly alpha proteins (left) and mainly beta proteins (right) based on their number of 

alpha carbons. 
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3.2 Evaluation Metrics 

For the experiments conducted as a part of this thesis, we used a variety of metrics 
such as Accuracy, Precision and Recall, for the purpose of evaluating the effectiveness 
of the classification task performed by the DNN models we used. 

 

Accuracy 

Accuracy is defined as the ratio of all the correct predictions to the total number of 
predictions. It is a helpful metric that can capture the general effectiveness of a 
classification model, when the number of samples of each class is about equal. 

 

          
                   

                 
 

 

Precision and Recall 

The results of a binary classification experiment can be summarized using a Confusion 
Matrix (Figure 3.11). 

 

Figure 3.11: Confusion Matrix 

 

Consequently, Precision and Recall can be defined as follows: 

 

           
              

                              
 

 

       
              

                              
 

 

Precision represents the fraction of relevant instances among the retrieved instances, 
while Recall represents the fraction of relevant instances that have been retrieved over 
the total amount of relevant instances. Precision and Recall can offer valuable insight 
on the exactness and the quality of a classification experiment. Considering the protein 
class “mainly alpha” as the positive outcome of a prediction, we are able to similarly use 
the aforementioned metrics in our experiments. 
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3.3 Training Procedure and parameters 

All the training procedures for both PointNet and DGCNN have been carried out on 
Google’s cloud based data science platform called Google Colab2, with the usage of a 
Nvidia Tesla T4 GPU provided by the platform. The duration of the training procedure 
for each experiment was 200 – 300 epochs due to the demanding and time consuming 
nature of the task and took about 4-5 hours to finish for 200 epochs and 6-7 hours for 
300 epochs respectively. 

PointNet and DGCNN, as any other Deep Neural Network, have a set of parameters 
that need to be initialized before the training process begins. DGCNN code is heavily 
inspired from PointNet; as a result both models have a similar set of parameters that 
need to be initialized. For the experiments conducted as a part of this thesis, we used 
the following parameter values: 

                 

                  

                     

                       

                  

                            (depending on the dataset of the experiment) 

Both networks use dropout layers on the final MLP with the purpose of avoiding 
overfitting. The keep probability value is 0.7 and 0.5 for PointNet and DGCNN 
respectively. 

We should also note that in the case of DGCNN a graph of the   nearest neighbors is 
calculated between each layer. For all the following experiments     . 

3.4 Result Visualization 

The experiment results will be visualized by graphs that present the Accuracy and Loss 
value of the test set on each epoch throughout the course of each experiment. We will 
also present a graph of the loss value of the training set on each epoch. Each graph 
consists of one “smoothened” curve, heavily inspired by the smoothen function of 
TensorBoard3, that attempts to capture a more intuitive pattern of the value progression 
throughout the experiment. Additionally, another more transparent curve is shown on 
each graph that represents the raw measurement values. 

                                            

2
 colab.research.google.com [Accessed: 07/09/2019] 

3
 www.tensorflow.org/tensorboard [Accessed: 07/09/2019] 

https://colab.research.google.com/
https://www.tensorflow.org/tensorboard
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3.5 Experiments 

In this section we will present our experiments and comprehensively go over the results. 
We used the implementations of PointNet4 and DGCNN5 that are available online, with 
slight changes to fit our number of classes. 

3.5.1 Experiments on datasets based on RCSB PDB files 

Classification of Proteins consisting of any number of atoms 

In this experiment, we trained both PointNet and DGCNN with 2250 point clouds 
sampled from mainly alpha protein PDB files and 2250 sampled from mainly beta 
protein PDB files. The test set consisted of 250 mainly alpha point clouds and 250 

mainly beta. The number of points each network processed (           parameter) 
was 2048 for PointNet and 1024 for DGCN. DGCNN training with 2048 points was 
reaching the memory limit on the training platform and could not complete the 

execution. For proteins with atoms less than the            parameters, we used the 
copy padding method. Below (Figure 3.12, Figure 3.13), we show the results of the 
experiments for every network. 

 

Figure 3.12: PointNet: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs 

 

Figure 3.13: DGCNN: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs 

After 200 epochs of training, PointNet achieved an accuracy of        and DGCNN 
      respectively. In addition, for DGCNN we measured the Precision value at       

                                            

4
 github.com/charlesq34/pointnet [Accessed: 07/09/2019] 

5
 github.com/WangYueFt/dgcnn [Accessed: 07/09/2019] 

https://github.com/charlesq34/pointnet
https://github.com/WangYueFt/dgcnn
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and the Recall value at      . We observed slightly better results from DGCNN even 
though it processed half the amount of points compared to PointNet, suggesting that the 
consideration of local features is improving the classification results. 
 

Classification of Proteins consisting of any of number of atoms (backbone) 

We performed the same experiment as above, except this time we only sample atoms 
from each protein backbone. Training parameters and padding methods are the same. 
 

 

Figure 3.14: PointNet: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs 

 

Figure 3.15: DGCNN: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs 

In this experiment, after 200 epochs of training, PointNet achieved an accuracy of  

      and DGCNN       respectively. In addition, for DGCNN we measured the 
Precision value at       and the Recall value at      . These results show no significant 
change. However, we believe that DGCNN would achieve better results if we could 
sample more points to capture a more complete version of the backbone. 
 

Classification of Proteins based on Isolated Secondary Structures 

We conducted a classification experiment similar to the previous ones. We trained 
PointNet and DGCNN with 2250 point clouds sampled from mainly alpha protein PDB 
files and 2250 sampled from mainly beta protein PDB files. However, this time we only 
sampled atoms that belong to the secondary structures of each protein. The test set 
consisted of 250 mainly alpha and 250 mainly beta point clouds that were sampled in 

the same way. The number of points each network processed (           parameter) 
was 2048 for PointNet and 1024 for DGCNN, for DGCNN training with 2048 points was 
reaching the memory limit on the training platform and could not complete the 
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execution. For proteins with atoms less than the            parameters, we used the 
copy padding method. 
 

 

Figure 3.16: PointNet: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

300 epochs 

 

Figure 3.17: DGCNN: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

300 epochs 

As we can see in the plots showcasing the results (Figure 3.16, Figure 3.17), after 300 

epochs of training, PointNet achieved an accuracy of        and DGCNN       
respectively. In addition, for DGCNN we measured the Precision value at       and the 

Recall value at      . These results show a slight improvement for the PointNet network 
and at the same time a significant improvement for the DGCNN network, indicating that 
sampling points that only belong in the protein secondary structure hold significantly 
more information that can be further exploited by local feature capturing. 
 

Classification of Proteins based on Isolated Secondary Structures (backbone) 

We performed the same experiment as above, except this time we only sample 
backbone atoms that belong in the secondary structures of each protein. Training 
parameters and padding methods are the same. 
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Figure 3.18: PointNet: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

300 epochs 

 

Figure 3.19: DGCNN: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

300 epochs 

As we can see on the results above (Figure 3.18, Figure 3.19), PointNet achieved an 

accuracy of        and DGCNN       respectively. In addition, for DGCNN we 

measured the Precision value at       and the Recall value at      . The values 
remained relatively the same for PointNet while slightly dropping for DGCNN. Again, we 
believe that DGCNN would achieve better results if we could sample more points to 
capture a more complete version of the backbone, unfortunately we could not test that 
on the platform we used for training. 
 

Classification of Alpha Helices and Beta Sheets 

For this experiment we isolated alpha helices and beta sheets form the PDB files. We 
wanted to experiment with the effectiveness of each network, on a simpler problem. We 
trained both PointNet and DGCNN using 27000 point clouds each one containing the 
3D spatial coordinates of the atoms that belong to a single alpha helix or a single beta 
sheet of a protein, 13500 of those point clouds represent alpha helices and 13500 point 
clouds represent beta sheets. The test set consisted of 1500 alpha helix point clouds 
and 1500 beta sheet point clouds. The number of points each network processed 

(           parameter) was 128 as the helices and sheets are significantly shorter 
(contain less atoms) than whole proteins. For helices or sheets with atoms less than the 

           parameters, we used the copy padding method. 
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Figure 3.20: PointNet: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs 

 

Figure 3.21: DGCNN: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs 

The result plots (Figure 3.20, Figure 3.21) show that after 200 epochs PointNet 

achieved an accuracy of        and DGCNN       respectively on classifying an object 
into the alpha helix or beta sheet category. Also, for DGCNN we measure the Precision 

value at       and the Recall value at      . Both networks show significantly better 
results, considering this is a less complex problem. Nevertheless, DGCNN achieves 
great values in all metrics suggesting that the consideration of local features by a neural 
network is important even in less demanding tasks. 

3.5.2 Experiments on datasets based on CATH-Dataset-Non-Redundant-S20 

 

Classification of proteins consisting of any number of atoms 

For this experiment, we trained our networks, PointNet and DGCNN, with 2250 point 
clouds sampled from mainly alpha domains and 2250 point clouds sampled from mainly 
beta domains, from the CATH-Dataset-Non-Redundant-S20 dataset which contains 
PDB files with non-redundant domains of proteins. The test set, sampled the same 
dataset, consisted of 250 mainly alpha and 250 mainly beta point clouds. The number of 

points each network processed (           parameter) was 1024. For proteins with 
atoms less than the            parameters, we used the copy padding method. 
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Figure 3.22: PointNet: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs 

 

Figure 3.23: DGCNN: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs 

PointNet achieved an accuracy of       and DGCNN       respectively. In addition, for 

DGCNN we measured the Precision value at       and the Recall value at      . Those 
values suggest a poor classification performance, close to random. The precision and 
recall values suggest that DGCNN classifies almost all point clouds in one class. 
 

Classification of proteins consisting of any number of atoms (backbone) 

We performed the same experiment as above, except this time we only sample atoms 
from each protein domain backbone. Training parameters and padding methods are the 
same. 

 

Figure 3.24: PointNet: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs 
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Figure 3.25: DGCNN: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs 

We can see on the plots (Figure 3.24, Figure 3.25), sampling only backbone atoms from 
a non redundant protein domain drastically improved DGCNN effectiveness with an 

Accuracy value of      , a Precision value of       and a Recall value of      . On the 
other hand PointNet results remained at the same levels as it achieved an Accuracy 

value of      . These results indicate that processing the backbone of a non-redundant 
protein domain offers a lot of information that can be exploited by a network capable of 
capturing local features. 
 

Classification of proteins consisting of more than 1024 atoms 

In the original dataset we downloaded from CATH there were 1699 mainly alpha and 
1503 mainly beta protein domains that had more than 1024 atom entries. We randomly 
separated those into 1529 mainly alpha and 1353 mainly beta for training and 170 
mainly alpha and 150 mainly beta for testing. The number of points each network 

processed (           parameter) was 1024. 

 

Figure 3.26: PointNet: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs 

 

Figure 3.27: DGCNN: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs 
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PointNet achieved an accuracy of       and DGCNN       respectively. In addition, for 

DGCNN we measured the Precision value at       and the Recall value at      . Those 
values suggest a poor classification performance, close to random.  
 
 

Classification of proteins consisting of more than 1024 atoms (backbone) 

We performed the same experiment as above, except this time we only sample atoms 
from each protein domain backbone. Training parameters are the same. For this 
experiment we also show the results using both padding methods we mentioned in this 
thesis. 

 

Figure 3.28: PointNet: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs (copy padding) 

 

Figure 3.29: DGCNN: Accuracy (left) and Loss (right) over 200 epochs (copy padding) 

 

Figure 3.30: PointNet: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs (zero padding) 
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Figure 3.31: DGCNN: Accuracy (left) and Test Set Loss (middle) and Train Set Loss (right) over 

200 epochs (zero padding) 

Using the copy padding method (Figure 3.28, Figure 3.29), PointNet achieved an 

accuracy of       and DGCNN       respectively. In addition, for DGCNN we 
measured the Precision value at       and the Recall value at      . While PointNet 
accuracy remains close to random, DGCNN shows a remarkable increase in all 
performance metrics which is consistent to our hypothesis that a complete sample of 
the backbone points with limited padding, processed with a network that accounts for 
local geometric features, is encapsulating the most useful information and provides the 
best results. With the usage of zero padding method (Figure 3.30, Figure 3.31), we 
observe a similar trend in results, with DGCNN being significantly better performing, 
albeit worse than the results achieved with the copy padding method.  
 
 
 
 
 

3.6 Comparison between PointNet and DGCNN 

In this section we will present tables (Table 1, Table 2) for a side by side comparison of 
the deep learning neural networks we explored. According to the results of the 
experiments, DGCNN exhibits better performance in almost any task compared to 
PointNet, this suggests that a network that factors the local geometric features of the 
shapes it processes is a more promising and effective method for classifying complex 
shapes. Regarding the padding methods we used, our experimental results indicate that 
for PointNet both padding methods do not provide any significant increase in 
performance, suggesting that independently treating each point, atom in our case, 
“confuses” the network when there are padded atoms. On the other hand, DGCNN 

considers the   nearest points so it can ignore points with no relevant information such 
as the padded zero vectors or reinforce existing features with points copied from the 
existing structures. 
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Table 1: Comparison between PointNet and DGCNN on Experiments on datasets based on RCSB 

PDB files 

Experiments on datasets 
based on RCSB PDB files 

Pointnet Accuracy Dgcnn Accuracy 

Classification of Proteins 
consisting of any number 
of atoms (copy padding) 

0.548 0.560 

Classification of Proteins 
consisting of any number 
of atoms backbone (copy 

padding) 

0.542 0.554 

Classification of Proteins 
based on Isolated 

Secondary Structures 
(copy padding) 

0.624 0.700 

Classification of Proteins 
based on Isolated 

Secondary Structures 
(backbone, copy padding) 

0.658 0.710 

Classification of Alpha 
Helices and Beta Sheets 

0.728 0.950 

 
 
 

Table 2: Comparison between PointNet and DGCNN on Experiments on datasets based on CATH-

Dataset-Non-Redundant-S20 

Experiments on datasets 
based on CATH-Dataset-

Non-Redundant-S20 
PointNet Accuracy DGCNN Accuracy 

Classification of Proteins 
consisting of more than 

1024 atoms 
0.526 0.520 

Classification of Proteins 
consisting of more than 
1024 atoms (backbone, 

copy padding) 

0.516 0.886 

Classification of Proteins 
consisting of more than 
1024 atoms (backbone, 

zero padding) 

0.530 0.790 

Classification of Proteins 
consisting of any number 
of atoms (copy padding) 

0.492 0.524 

Classification of Proteins 
consisting of any number 
of atoms (backbone, copy 

padding) 

0.478 0.760 
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4. CONCLUSIONS AND FUTURE WORK 

In this thesis, we explore Deep Neural Networks that were recently proposed as 
effective models for geometrical 3D tasks that work directly on point clouds. We 
performed various experiments on these deep learning architectures in order to test 
their effectiveness on classifying highly complex 3D shapes such as proteins. For the 
purposes of this thesis, we performed a variety of classification tasks with the usage of 
PointNet and DGCNN on many differently preprocessed point cloud datasets that have 
been directly sampled from PDB files. 
 
Our experiments have shown that a network that captures the local geometric features 
of a shape instead of only global ones, such as DGCNN, is important for improving the 
performance of classification tasks on protein shapes that consist of complex surfaces 
and folds. Furthermore, focusing only on the secondary structures and the backbone of 
the protein, exhibited an increase in the performance of the networks, specifically on the 
DGCNN, achieving accuracy values of up to 71% on DGCNN and 65.4% on PointNet. 
The results of our experiments show that, taking into consideration only backbone 
atoms or backbone atoms that belong in the secondary structures of the protein is 
beneficial for increasing the accuracy of the networks. The best results were observed 
when we sampled backbone atoms from non-redundant protein domains and used them 
to train the DGCNN network achieving an accuracy value of 76% without any restriction 
on the length of the proteins and up to 88.6% when sampling from proteins with more 
than 1024 atoms. Lastly, regarding the padding methods we used, both methods 
showed little difference on PointNet. However, on DGCNN copy padding appeared as 
the more effective method, suggesting that the copied points could reinforce local 
features compared with the padding of zero vectors that add no useful information. 
  
Reviewing the results of the experiments, in which we classified structures into alpha 
helixes or beta sheets, we observe that the neural networks we tested are significantly 
better on performing that classification task compared to the classification of proteins 
into mainly alpha or mainly beta. For PointNet, the best accuracy value we achieved for 
protein classification task was 65.4% while the accuracy of the single secondary 
structure classification into an alpha helix or beta sheet was 72.8%. In the same 
manner, our best accuracy value on protein classification for DGCNN was 88.6% 
whereas the task of classifying a single structure into alpha helix or beta sheet had an 
accuracy of was 95%. Those results are also consistent with our hypothesis that 
DGCNN will perform better on the given tasks as it considers the local geometric 
features. 
 
The results presented in this thesis are encouraging and can be improved further with 
future work. Architectures with dynamic input size to cater for the difference in size 
between proteins could be researched or new and more effective methods for 
normalizing the proteins of different size to a constant size could be proposed. 
Refinement of the current architectures for more efficient capturing of data features is 
also an option. It should be noted that in the experiments we conducted regarding the 
protein backbone, we considered Oxygen (O) as a part of the backbone, however, 
going forward the consideration of only carbons (C), alpha carbons (CA) and nitrogen 
(N), as a part of the protein backbone should be tested. Finally, a platform with access 
to more resources could prove to be helpful in alleviating experimentation limits.  
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ABBREVIATIONS - ACRONYMS 

ANN Artificial Neural Network 

CNN Convolutional Neural Network 

DNN Deep Neural Network 

DGCNN Dynamic Graph CNN 

MLP Multi Layer Perceptron 

PDB Protein Data Bank 
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