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ABSTRACT

Motivated by the success of theorem provers as aiding tools in symbolic execution and the
convenience that declarative programming languages provide, in this thesis we attempt
to introduce a strictly declarative implementation of a theorem prover in Datalog. Our
approach, namely static declarative symbolic reasoning is implemented within the Doop
framework for Java Pointer Analysis, and it mainly seeks to answer ”Which expressions
are implied by another expression within a program”. The main motivation behind that
decision was to leverage Doop’s powerful infrastructure, and at the same time make it
possible for Doop to utilize the reasoner in the future for any of its analyses.

SUBJECT AREA: Static Program Analysis, Symbolic Reasoning, Propositional Logic
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ΠΕΡΙΛΗΨΗ

Έχοντας ως κίνητρο την επιτυχία των προγραμμάτων απόδειξης θεωρημάτωνως υποστη-
ρικτικά εργαλεία στην συμβολική εκτέλεση και την ευκολία που παρέχουν οι δηλωτικές
γλώσσες προγραμματισμού, στην εργασία αυτή επιχειρούμε να εισάγουμε μια αυστηρώς
δηλωτική υλοποίηση ενός προγράμματος απόδειξης θεωρημάτων σε Datalog. Η προσέγ-
γισή μας, πιο συγκεκριμένα η στατικά δηλωτική συμβολική συλλογιστική, υλοποιήθηκε
στα πλαίσια του εργαλείου Doop για Ανάλυση Δεικτών σε προγράμματα Java, και κυρίως
επιδιώκει να δώσει απάντηση στο ”Ποιες είναι οι εκφράσεις οι οποίες συνεπάγονται από
άλλες εκφράσεις εντός ενός προγράμματος”. Το κύριο κίνητρο πίσω από αυτήν την απόφα-
ση ήταν η αξιοποίηση των ισχυρών δομών του Doop και ταυτόχρονα η παροχή της δυνατό-
τητας μελλοντικής χρησιμοποίησης του εργαλείου συλλογιστικής στο μέλλον.

ΘΕΜΑΤΙΚΗΠΕΡΙΟΧΗ: Στατική ΑνάλυσηΠρογραμμάτων, Συμβολική Συλλογιστική, Προτα-
σιακή Λογική

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ”ευαισθησία”-ροής, ”ευαισθησία”-μονοπατιού, κανόνες συμπερασμού
και αποδείξεις προτασιακής λογικής
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Datalog Based Symbolic Program Reasoning for Java

1. INTRODUCTION

In an era of an ever-increasing use of software technologies for almost any everyday
task, the requirement for high quality software is indispensable. To that end, several tools
leveraging program analysis techniques have been introduced in the literature, mainly
aiming to assist in performance optimization or bug finding.

Those tools may either be highly autonomous or possibly rely on external frameworks to
back their reasoning. A symbolic execution framework stands as an example that is highly
dependent on an external constraint solver, otherwise known as theorem prover, that aids
it by producing a solution to an input constraint formula which further directs the execution.
These tools essentially try to yield proofs, yet they are implemented as complex software
systems in a common programming language, not being easily extensible. Declarative
programming languages are increasingly becoming preferable over the last few years by
the Computer Science community, with applications that span from program analysis to
databases and distributed systems. The main power of declarative languages is that they
allow to focus on the goal, rather than how to achieve it.

In the context of this work, we attempt to introduce a strictly declarative theorem prover
- symbolic reasoner - in Datalog. Our main motivation yields from the successful applic-
ations of such tools in the literature, while the use of Datalog as the implementation lan-
guages originates from its expressiveness and its widely recognized success, especially
in the field of Program Analysis. Our reasoner is implemented as an enhancement to the
Doop Framework for Java Pointer analysis, aiming to leverage its powerful constructs and
the possible utilization of our approach in Doop’s core in the future.

1.1 Thesis Structure

The rest of this thesis is organized as follows:

We provide a brief background overview of static program analysis, symbolic execution,
theorem proving and Datalog in 2 chapter. In the 3 chapter

• We introduce the core types and schema relations for our reasoning in 3.1.

• We extensively describe the generation of program expression trees in 3.2

• We introduce a path-sensitive analysis to reconstruct boolean expressions and rep-
resent program paths within 3.3

• In 3.4 we build our symbolic reasoning logic, based on the constructs introduced in
the previous sections.

Lastly, in 4 we provide a brief evaluation of our approach that arguably seems to scale
relatively well next to a simple Doop context-insensitive analysis, and in 5 we conclude
what were the most valuable key points of our approach and the next steps that would be
worth exploring.

C. Vrachas 14



Datalog Based Symbolic Program Reasoning for Java

2. BACKGROUND

Several program analysis techniques have been proposed in the literature, in order to
aid developers and users discover interesting program properties within their software.
For example, one might be interested in finding out whether there are memory leaks or
whether some piece of code is reachable.

Such techniques come in different flavors, either static or dynamic, and are usually based
on strong mathematical concepts. In this section we provide a brief background on these
concepts and frameworks tailored to the development of program analysis tools.

2.1 Static Program Analysis

Static program analysis is a program analysis technique that aims to reason about a pro-
gram’s behaviors without actually executing it. Program analysis techniques have been
heavily utilized by optimizing compilers since their early stages and they have also found
several other applications among the areas of software security and software correct-
ness [16]. The question of whether a program is correct or may terminate for all possible
inputs is in general undecidable. However, static analysis techniques are able to tackle
undecidability by over-approximating or under-approximating the initial problem, attempt-
ing to reason over a simplified version of it.

There is a plethora of different static analysis algorithms in the literature, each one met in
several domains. For instance, one may utilize analyses such as liveness and/or pointer
analyses in an optimizing compiler with the intention of eliminating dead code regions or
performing a constant propagation/folding optimization. Similarly, a reachability analysis
that determines whether a specific program point is reachable could be used by a software
correctness tool to make sure that an erroneous state is actually never reached.

There is a variety of design choices that may prove essential towards the scalability and
precision of a static program analysis algorithm. We briefly describe some of those choices
in the context of this work.

2.1.1 Whole-Program vs. Modular Analyses

Whole-Program analyses should not be confused with inter-procedural analyses. An inter-
procedural analysis considers multiple functions in order to perform its computations. In
the intra-procedural setting instead, an analysis would restrict its reasoning within a spe-
cific function bound, overlooking the way that function calls or external dependencies affect
the computations inside the function. However, someone could also perform a modular-
style analysis across a relatively small set of functions, that is an inter-procedural analysis.

A modular-analysis performs its computations within modular units, disregarding external
code dependencies and mainly does not attempt any reasoning accross the heap. On
the contrary, a whole-program analysis reasons about a program’s properties at every
program point by simultaneously constructing a whole-program heap representation of
the program to be leveraged during the analysis computations.

Whether the analysis would reason about a program’s properties in a whole-program or
a modular manner is of great importance, because such a decision affects the way that
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the analysis practitioner would tune its performance - scalability and precision. In the
whole-program analysis setting the design tradeoffs between scalability and precision
might prove crucial towards the overall analysis reasoning, though a modular-analysis
may be able to perform more precise reasoning, due to the relatively restricted area of
interest. Whole-program analyses are commonly used in the analysis of languages with
complex language features. Those languages, such as the object-oriented ones need to
reason about language constructs that may reside on the heap, and thus they may benefit
from a whole-program analysis reasoning. Such an analysis may not take into considera-
tion the exact ordering of the instructions of a program, sacrificing precision towards better
scalability.

2.1.2 Flow-Sensitivity

The concept of whether an analysis is designed with respect to the instruction ordering is
called flow-sensitivity. On the contrary, an analysis that is not designed that way is called
flow-insensitive. Flow-sensitivity is tightly related with the scalability and precision of static
program analyses, due to the fact that a flow-sensitive analysis keeps track of program
properties at every point of it, e.g. before or after every instruction. Whole-program ana-
lyses may usually omit the control-flow constructs during any of their reasoning. However,
many whole-program static analyses like the Doop framework’s Pointer analysis for Java
manage to add flow-sensitivity to their core analysis by slight preprocessing [17].

Several tools utilize state-of-the-art compiler technologies to convert the input source to a
lower level intermediate-representation (IR). For instance, there is a plethora of tools that
utilize the LLVM Compiler Infrastructure [15] for C-like languages, or Soot - A Java op-
timization framework [18] - for JVM languages. These tools may further lower the source
code in a Static Single Assignment (SSA) form. In SSA form, each variable is assigned
exactly once, never to be re-assigned again and it is also defined before any of its uses,
thus yielding a flow-sensitive representation.

2.1.3 Path-Sensitivity

A path-sensitive analysis is in a way an enhanced version of a flow-sensitive analysis
which also considers the path taken up to a specific program point. Such an analysis in-
troduces a path representation usually encoded as the combination of a program’s neigh-
boring branch conditional expressions, named path predicate. A path predicate is essen-
tially a Boolean formula, that is a function of boolean variables whose assignment yields
a different control-flow path.

Explicit knowledge of the path taken up to a specific program point allows the analysis to
achieve higher precision, ideally eliminating the need for any approximation. However,
such knowledge comes at a cost; the number of a program’s paths is exponential to the
number of branches within the program, thus an analysis that keeps track of all possible
paths would not manage to scale. There have been suggestedmultiple techniques [11], [8]
to address such issues in the literature. Some of those techniques manage to achieve
scalability by restricting the context of the computations or by introducing loose abstrac-
tions of the initial problem. As a static analysis technique a path-sensitive analysis does
not eventually execute the program, rather utilizes the path encoding in order to assert
properties that hold at specific program points.
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One of the adverse effects of pure Static Analysis techniques is that they result in a large
amount of false positives by trading off precision for scalability. In the context of such
techniques, a false positive is said to be an erroneous report of a static analysis tool that a
property violation has been discovered within the analyzed program, though such violation
does not eventually exist. There have been proposed several techniques of either (semi-
) dynamic nature that execute directly the program via code instrumentation, or static
solutions that attempt to simulate the execution of a program.

2.2 Symbolic Execution

Symbolic Execution is yet another program analysis technique that may be of either static
or dynamic flavor and mainly attempts to answer whether certain properties of a program
could potentially be violated by a piece of code [5]. At the same time it also results in an
automated way to generate test cases for programs under testing.

In contrast to the aforementioned static analysis techniques that do not directly execute
a program, Symbolic (or Concolic) Execution mainly attempts to simulate the execution
of a program by considering symbolic (non-deterministic) values for its input. Usually,
during the concrete execution of a program a single execution path is considered for any
computation, whilst a Symbolic Execution engine manages to explore a plethora of paths
thanks to the symbolic values assigned to its input variables. As such, a concrete exe-
cution is said to under-approximate the desired analysis. Concolic Execution is a mixture
of symbolic and concrete execution that considers concrete input values when possible,
thus making symbolic execution feasible in practice. The latter is usually described as
Dynamic Symbolic Execution (DSE). Several tools have been proposed in the literature
such as SAGE [12] and KLEE [7], that are considered to be the tools of choice when it
comes to binary analysis and/or systems testing.

In the symbolic setting, execution is typically driven by a symbolic execution engine which
at its core maintains some state for every explored path. The core data-structures of such
an engine are the Boolean formulas that encode an execution path by considering the
satisfied conditions taken for that exact path, and a symbolic store that keeps a mapping
between the variables met within the path and their equivalent symbolic expressions or
values. The former are constructed on each branch execution, while the latter is updated
after an assignment to the corresponding variable. Established by those two structures
for a path, the engine utilizes an automated theorem prover whose purpose is to check
whether there is any violation of the property under analysis that would lead to a failed
execution, besides verifying path feasibility. A path is said to be feasible in such scen-
ario, if there exists an assignment of concrete values to its symbolic encoding that would
yield the satisfiability of its boolean formula. Along with path-explosion due to the expo-
nential state space exploration, non-deterministic inputs and several other vulnerabilities,
symbolic execution efficiency also relies to the use of efficient external theorem provers.
Ongoing research attempts to face those threats in order to provide better tools that aid
developers and help discover bugs in programs.

2.3 Automated Theorem Proving

Automated theorem proving, namely the ability to automatically prove a mathematical the-
orem has been the insatiable desire of the scientific community for an extensive period of
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time. Theorem proving’s foundation is essentially mathematical logic formulas and model-
ling. On the other hand, Computer Science foundations lie within mathematics and logic.
Many times software developers want to prove that a specific property is satisfied for a
program and its given input values, like its termination. Computer programs can also be
encoded as a logical formula and so formal theorems may be constructed in the program-
ming setting too.

The purpose of an automated theorem prover (ATP) is ideally to answer whether a theorem
can be proven or not, providing at the same time a formal proof or a counterexample.
Automated theorem proving was initially considered to be part of Artificial Intelligence (AI).
However, human assistance would be essential in many cases, leading at the same time
to the recognition of unable to be proven theorems (such as termination).

Automated theorem proving has led to the creation of several tools following different ap-
proaches to solve the same problem: proof construction. Of particular interest have been
satisfiability modulo theories (SMT) provers (or solvers) that are themain tools employed in
symbolic execution. SMT is a generalization of the traditional boolean satisfiability problem
(SAT) that utilizes underlying decidable mathematical theories in order to encode and give
semantical meaning to function predicates instead of boolean (binary) variables. Such
theories are the theory of linear arithmetic, bitvectors and arrays and provide a powerful
expressiveness to the related solvers which could also be considered as constraint satis-
faction engines. Provided a predicate formula encoding, a prover aims to check whether
the formula is satisfiable; there is an assignment of values to the compounded predicates.
The state of the art tools for theorem proving have been the Z3 Theorem Prover [9], and
the Coq Proof Assistant [10], an interactive theorem prover

2.4 Datalog and Doop

2.4.1 Datalog

Datalog is a declarative programming language, essentially a subset of the Prolog pro-
gramming language due to the lack of function symbols, the cut operator among other
features. It is also usually considered a query language and has been described as pure
SQL enhanhanced with recursion.

Clause ordering does not matter in Datalog, and thus any order of computation is guar-
anteed to yield the same results, unlike Prolog. Computation in Datalog is established by
declaring input facts along with reasoning rules. Based on those, anything that can be
inferred is computed by the underlying engine reaching a convergence state due to the
fact that only new facts, that is asserted truth, can be produced by the inference rules.
Such rules are called monotonic and the associated computation is the fixed-point: rules
produce new facts until a convergence state is reached.

The main statements of Datalog are the inference rules, usually consisting of the head and
the body. Both the head and the body may consist of conjunctions (expressed with the
comma operator ,) or disjunctions (expressed with the semicolon operator) of predicates,
equivalently called relations. Sharing many similarities with databases, a relation can be
thought of as a database table, whilst input facts and inferred knowledge can be thought of
as the database rows. The comma operator along with the variable constraints that may
form along the operand relations describes what is essentially known as the join operator
in the database community.
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Datalog has been extensively used both in the academic world and the industry. Several
prominent knowledge databases have been designed with Datalog being the underlying
engine (i.e. LogicBlox). Datalog also finds use cases in the construction of network spe-
cification files, distributed systems, security analysis of smart contracts [13] and static pro-
gram analysis. One of the static analysis tools that have successfully embodied Datalog
to express its analyses is the Doop framework.

2.4.2 The Doop framework

The Doop framework is a static program analysis tool particularly performing pointer ana-
lysis for the languages of the Java Virtual Machine (JVM) ecosystem. Late work has also
included analysis of Python, and especially TensorFlow programs.

Doop analyses are expressed in the Datalog language in a purely declarative setting and
the framework itself is known to be the first to introduce full, end-to-end context-sensitive
analyses for JVM based languages. The use of Datalog has lead to the generation of new
algorithms for pointer analysis that manage to scale, yet provide accurate results.

Doop at first utilizes the Soot framework to convert the initial program, usually compressed
as a Java ARchive (JAR) into Java bytecode. Based on the bytecode version of the pro-
gram, Doop generates the input facts for the analysis, introducing several relations that
can be pre-computed. The framework then includes the Datalog based Souffle tool for
static analysis [14] in order to perform any reasoning starting from the provided input facts.
That is, Souffle is the tool in which any reasoning happens. Doop analyses have been
expressed by a bunch of Datalog rules in Souffle Datalog. Even though several context-
sensitive analyses have been expressed, there is not any path-sensitive analysis within
the framework, thus it relies on the flow-sensitivity introduced by Soot.

C. Vrachas 19



Datalog Based Symbolic Program Reasoning for Java

3. STATIC DECLARATIVE SYMBOLIC REASONING

In this chapter we present our approach towards static declarative symbolic reasoning.
The core of the reasoning is encoded as a set of Souffle Datalog rules, along with the
related input facts. Doop includes several preprocessing steps, expressive analyses and
postprocessing parts that can be leveraged to enhance the core of our reasoning at rel-
atively swift speed. The motivating Java example along with the associated Jimple code
(Soot’s IR) are presented in 1 and 2 respectively.

boolean and ( boolean t , boolean f ) {
boolean x = t && f ;
re turn x ;

}

Code 1: Java source code

boolean and ( boolean t , boolean f ) {
boolean y , x , z ;

i f t == 0 goto l a b e l 1 ;
i f f == 0 goto l a b e l 1 ;
x = 1 ;
goto l a b e l 2 ;

l a b e l 1 :
y = 0 ;

l a b e l 2 :
z = phi (x , y ) ;
r e turn z ;

}

Code 2: Soot Jimple code

3.1 Schema Relations and Types

3.1.1 Input Facts and Types

Doop includes a set of fact generators that provide us with an extensive set of input facts
that may be leveraged for our reasoning. Those generators either target different input
languages or different intermediate representations (IR). As an example, there are gen-
erators that target the Java language, Android technology or Python. These generators
may further utilize different tools that would take care of the translation of the input pro-
gram into the corresponding IR; the current tools being used by Doop are namely Soot
and WALA. In the case of Java, the generators ought to produce the same set of input
facts that Doop consumes for its main analyses, and thus there is a set of files that define
the common predicates-facts that should be produced by the generators. The existing
set of generated facts is quite extensive and it is constantly further enriched, yet it does
not provide us with a set of facts crucial for the reasoning we introduce. Hosting a rich
whole of various pointer analyses, Doop mainly needs knowledge that is related to point-
ers, or, in the Java setting, reference types. As such, Doop lacks presence of multiple
facts in regard to primitive types or values and in case that they exist they are relatively
inadequate. Towards this end we decided to modify the common fact generator in a way
that enhances Doop with facts to be consumed by our symbolic reasoning approach. At
the same time these facts may also come handy for Doop itself in the future. In order to be
able to construct a fine-grained analysis we modified a certain amount of facts as follows
in figure 1.
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_AssignOperFrom(insn, position, from).
_IfVar(insn, position, var).

Figure 1: Modified Doop facts

_AssignOperFrom introduces a new position variable that keeps track of each subsequent
operand of an instruction’s right-hand side (rhs), whilst the same also holds for _IfVar too.
Next, we provide a glimpse of all the newly introduced generated facts in figure 2.

_OperatorAt(insn, operator).
_DummyIfVar(insn, var).
_AssignOperFromConstant(insn,position,from).
_IfConstant(insn, position, constant).

Figure 2: New Doop facts

AssignOper_From(insn, position, from).
AssignOper_FromConstant(insn,position,from)
If_Var(insn, position, var).
If_Constant(insn, position, constant).
DummyIf_Var(insn, var).
Operator_At(insn, operator).

Figure 3: Imported facts

These input facts share many similarities in regards to the associated variables - rela-
tion columns - though each one encodes crucial knowledge. The _OperatorAt relation
holds facts that encode the operation being present at a given instruction. _AssignOper-
FromConstant is an alternate rule of _AssignOperFrom, while _IfConstant is analogous to
_IfVar. A constant type is different to a variable type in the context of the framework, thus
the need for a more detailed differentiation between the two. Such differentiations have
extensively been made during the development of our approach, but in many cases will
be omitted in the context of this text. These relations essentially encode the operands met
in a unary/binary or if-condition expression accordingly. Lastly, the _DummyIfVar relation
has been introduced in order to encode the conditional expressions at a given branch in-
struction, that is quite necessary to our implementation and its need is evoked due to the
IR provided by Soot. It is also worth mentioning that the facts and the associated relations
as described above are provided by the generators written in Java. Mere preprocessing
takes place before importing the final facts into Doop’s knowledge base in order to follow its
conventions. That preprocessing leads to the following massaged relations as described
in figure 3.

The relations described thus far are only a small set of the input to our reasoning, as we
have made use of the various relations and rules that already existed in Doop. Here we
have only presented the brand new input relations or the ones that we modified. However
we cannot provide an extensive presentation of all, thus we will briefly describe them in
the following sections, in the context of the rules that they are used.

Our symbolic reasoning approach reasons about a program’s possible expressions. That
said, there is a need for the representation of a program’s expression, whether primit-
ive or not. Doop does not include such an encoding, due to the fact that its analyses
mainly reason about pointers. In order to address this and also lay the foundations of our
approach, we have introduced the appropriate types as described in figure 4.

The types that are defined using a (|) symbol are said to inherit from the associated types,
while the latter definition introduces a new record type. The expression type manages to
represent both unary, binary and constant expressions at the same time, by distinguishing
each case with the help of the base field. If base is of type SymbolicInput then the latter
Expr fields are nil, while in the case of base being an Operator at least the first of the
Expr fields is indeed an expression. For each distinct expression we also preserve its
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.type SymbolicInput = Var | MethodInvocation | NumConstant

.type Operator = symbol

.type ExpressionType = PrimitiveType | ReferenceType

.type Base = SymbolicInput | Operator

.type Expr = [
base: Base ,
type: ExpressionType ,
left: Expr ,
right: Expr

]

Figure 4: Expression Type

type, which can either be PrimitiveType or ReferenceType. These types are the building
blocks for the construction of the program’s expressions. It may come natural to the reader
that the encoding leads to complex expression trees. This expression type is essentially
what powers our declarative symbolic reasoning approach, encoding both the primitive
expressions of the input program and its control flow constructs at the same time.

3.1.2 Relations

Weprovide here a brief presentation of themain declared relations that make our approach
work in figure 5.

.decl ResolveExpr(meth: Method, var: symbol, expr: Expr)

.decl isExpr(expr: Expr)

.decl isArithmeticExpr(expr: Expr)

.decl isReferenceExpr(expr: Expr)

.decl isBooleanExpr(expr: Expr)

.decl isBooleanExprLeftRight(exprOther: Expr, exprX: Expr, exprY: Expr,
op: Operator)

.decl isBooleanExprLeftRightInMethod(exprOther: Expr, exprX: Expr, exprY: Expr,
op: Operator, meth: Method)

.decl BuildPathExprBefore(meth:Method, prev:Instruction, exprBase: Expr,
insn:Instruction)

.decl PathExpressionBefore(meth:Method, insn: Instruction, pathExpr: Expr)

.decl PathExpressionAfterTrue(meth: Method, insn: Instruction, pathExpr: Expr)

.decl PathExpressionAfterFalse(meth: Method, insn: Instruction, pathExpr: Expr)

.decl ExprImpliesOther(expr: Expr, exprOther: Expr)

.decl ExprIsAlwaysTrue(expr: Expr)

.decl ExprIsAlwaysFalse(expr: Expr)

.decl ExprIsNegationOfOther(expr: Expr, exprOther: Expr)

Figure 5: Main Symbolic Reasoning relations

These relations and their associated rules are going to be thoroughly described in the
following section where we will be introducing the main parts of declarative symbolic reas-
oning. ResolveExpr is the main relation that constructs the program’s expressions derived
from the input statements and expressions, while the PathExpression* relations are re-
sponsible for the construction of the control flow expressions, essentially encoding the
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branches taken up to a specific program point. Lastly, our declarative symbolic reasoner
is powered by the rules of ExprImpliesOther, ExprIsAlwaysTrue, ExprIsAlwaysFalse and
ExprIsNegationOfOther relations, attempting to prove implications between the expres-
sions and assert those that hold true or false equivalently, if possible.

3.2 Program Expression Trees

Introducing a Souffle type that represents a program’s expressions is only one step to-
wards symbolic reasoning over a program. For our reasoner to be able to provide us with
meaningful results, we have to generate its world of expressions. To that end, we have
introduced several rules that build expression trees from the given program’s input rela-
tions, which essentially encode the expressions of a program in a symbolic manner. The
first set of these rules originate from the ResolveExpr relation that was declared in figure
5 of the previous section.

The ResolveExpr rules are divided into two sets of rules. The ones that encode the base,
symbolic input expressions and those that lead to the construction of the complex compos-
ite expressions. Symbolic input expressions represent the symbolic inputs of a method.
We consider (a) method parameters, (b) method invocation results, (c) instance and static
fields loading, (d) numeric constant assignments and (e) phi assignments as symbolic in-
puts. These input cases form the basis of our expressions, and it is also worth mentioning
that our reasoner mainly asserts any new knowledge in an intra-procedural fashion. The
rules for the enumerated symbolic input expressions are presented in the following figures.

ResolveExpr(?meth, ?var, ?expr) :-
isAssignLocal_Insn(?insn),
AssignLocal_From(?insn, ?param),
FormalParam(_, ?meth, ?param),
Var_Type(?param, ?type),
(isPrimitiveType(?type) ;
isReferenceType(?type)),
AssignInstruction_To(?insn, ?var),
Instruction_Method(?insn, ?meth),
?expr = [?param, ?type, nil, nil] .

Figure 6: (a) method parameter

ResolveExpr(?meth, ?var, ?expr) :-
isMethodInvocation(?insn),
MethodInvocation_Method(?insn, ?sig),
Method_ReturnType(?sig, _, ?type),
(isPrimitiveType(?type) ;
isReferenceType(?type)),
Instruction_Method(?insn, ?meth),
AssignReturnValue(?insn, ?var),
?expr = [?param, ?type, nil, nil] .

Figure 7: (b) method invocation results

ResolveExpr(?meth, ?var, ?expr) :-
isLoadInstanceField_Insn(?insn),
LoadInstanceField_To(?insn, ?var),
Var_Type(?var, ?type),
(isPrimitiveType(?type) ;
isReferenceType(?type)),
Instruction_Method(?insn, ?meth),
?expr = [?var, ?type, nil, nil] .

Figure 8: (c) load instance fields

ResolveExpr(?meth, ?var, ?expr) :-
isLoadInstanceField_Insn(?insn),
LoadInstanceField_To(?insn, ?var),
Var_Type(?var, ?type),
(isPrimitiveType(?type) ;
isReferenceType(?type)),
Instruction_Method(?insn, ?meth),
?expr = [?var, ?type, nil, nil] .

Figure 9: (d) load static fields

The various relations used in the rules bodies are quite self-explanatory which proves
the expressiveness and high quality of Doop’s code. We present the recursive rules that
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ResolveExpr(?meth, ?var, ?expr) :-
isAssignNumConstant_Insn(?insn),
AssignInstruction_To(?insn, ?var),
Var_Type(?var, ?type),
(isPrimitiveType(?type) ;
isReferenceType(?type)),
Instruction_Method(?insn, ?meth),
AssignNumConstant_Id(?insn, ?const),
?expr = [?const, ?type, nil, nil] .

Figure 10: (e) numeric assignments

ResolveExpr(?meth, ?var, ?expr) :-
Instruction_Method(?insn, ?meth)
isAssignLocal_Insn(?insn),
AssignInstruction_To(?insn, ?var),
Var_Type(?var, ?type),
(isPrimitiveType(?type) ;
isReferenceType(?type)),
c = count: AssignInstruction_To(_, ?var),
c > 1, ?expr = [?var, ?type, nil, nil] .

Figure 11: (f) phi assignments

apply for the cases of (a) local variable assignments, (b) unary assignments, (c) binary
expression assignments and (d) if conditions in the associated figures.

ResolveExpr(?meth, ?var, ?expr) :-
Instruction_Method(?insn, ?meth)
isAssignLocal_Insn(?insn),
AssignInstruction_To(?insn, ?var),
Var_Type(?var, ?type),
(isPrimitiveType(?type) ;
isReferenceType(?type)),
c = count: AssignInstruction_To(_, ?var),
c = 1, AssicnLocal_From(?insn, ?from),
ResolveExpr(?meth, ?from, ?expr).

ResolveExpr(?meth, ?var, ?expr) :-
isAssignUnop_Insn(?insn),
AssignInstruction_To(?insn, ?var),
Var_Type(?var, ?type),
isPrimitiveType(?type) ;
isReferenceType(?type)),
Instruction_Method(?insn, ?meth),
AssignOper_From(?insn, _, ?right),
_OperatorAt(?insn, ?op),
ResolveExpr(?meth, ?right, ?rExpr),
?expr = [?op, ?type, ?rExpr, nil] .

Figure 12: (a) local variable and (b) unary assignments
ResolveExpr(?meth, ?var, ?expr) :-

FUNCTION(?var, ?right1, ?right2, ?op),
Var_Type(?var, ?type),
(isPrimitiveType(?type) ;
isReferenceType(?type)),
ResolveExpr(?meth, ?right1, ?lExpr),
ResolveExpr(?meth, ?right2, ?rExpr),
?expr = [?op, ?type, ?lExpr, ?rExpr] .

ResolveExpr(?meth, ?var, ?expr) :-
FUNCTION(?var, ?right1, ?right2, ?op),
ResolveExpr(?meth, ?right1, ?lExpr),
ResolveExpr(?meth, ?right2, ?rExpr),
?expr = [?op, ”boolean”, ?lExpr, ?rExpr] .

Figure 13: (c) binary assignments and (d) if conditions

For simplicity, several details have been omitted from the rules as defined in figure 13
and they have been hidden under the FUNCTION relation. This function relation is for
demonstration purpose only and it is responsible for emitting the appropriate variables and
generating their corresponding expressions in either case of binary expression assignment
or if conditions for the rules to work. The rules behind the FUNCTION relation essentially
attempt to generate the appropriate combination of operands and expressions based on
whether an operand is a constant or a variable.

As previously mentioned, the rules presented in this section constitute one of the most
fundamental parts of our reasoner. They construct the most primitive, yet essential ex-
pressions of the analyzed program. However, the expressions are guarded in the sense
that, if unrolled, they would all lead to complex expressions between symbolic expres-
sions. We shall mention here that any reasoning is purely symbolic, and thus there is not
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any concrete evaluation of the expressions in the sense of constant folding. One could
also notice the lack of boolean expressions up to this point. This is due to Soot’s IR which
converts complex boolean expressions into different cotrol flow paths. In the following
section we provide an overview of the algorithm responsible for generating these boolean
expressions that encode the control flow constructs of the methods of the input program.

3.3 Path Expressions

Any Doop reasoning happens on facts produced at a lower level IR called Jimple, Soot’s
IR. Jimple omits several complex constructs, such as boolean expressions. In our case
though, we need to have an exact representation of these high level control flow constructs
in order to be able to reason about a program and answer several useful questions about
it. In order to further facilitate and enhance our core symbolic reasoning technique we
have introduced several algorithms that are responsible for the reconstruction of these
expressions representing the program’s branch conditions or complete path predicates.

Even though the analyzed program is quite simplified and the various complex control flow
structures have been lowered to way simpler forms, the reconstruction of the desired pre-
dicates is not trivial at all. Complex expressions between operands that contain operators
such as &&, || and ! have been simplified to three-address code (TAC) that completely trims
these operators in favor of if statements with simplified boolean conditions. Even though
we could modify the code transformer that lowers the initial program in a way that would
avoid these transformations, we decided to preserve any external framework functionality
as it is, implementing any predicate reformation in pure Datalog. Following we introduce
the algorithm that implements the desired functionality in two parts. For the sake of pure
logic formality we consider ∧, ∨ and ¬ the equivalents of and, or and negation operators.

At first we provide a high level overview of the algorithms responsible for the restoration
of the boolean predicates. The basis of each predicate is the first boolean expression met
in the program, that is usually the first branch instruction. The algorithm keeps track of
the path predicates at any program point before and after each instruction. Each branch
instruction splits two distinct path predicates, whilst any other instruction does not produce
any new path predicate but rather emits the predicate that holds at the program point
before it. However, an instruction may have multiple predecessors, that lead the execution
path up to the program point before it. The decision to consider only a single predecessor
would lead to inaccurate results as several program paths would have been lost. In order
for our algorithm to yield sound path predicates we join the expressions that hold after each
predecessor at the program point before such an instruction. Recall that any reasoning
is symbolic and there is not any concrete evaluation, thus we cannot be sure of what
path predicates should be discarded. This brief introduction reveals that our algorithm
needs to implement the following two functionalities: (a) the enumeration of all possible
predecessors of an instruction and (b) the making of the path predicates for every program
point. A path-predicate for label1 in 2 should be thought as follows:

(f == 0 ∧ t ̸= 0) ∨ t == 0 (3.1)

Figure 14: Path predicate example

In the following figures we are going to introduce the algorithmic parts responsible for the
instruction predecessors enumeration. The whole logic is implemented in pure Datalog
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rules like the rest of our work. Doop contains a set of rules populating relations that rep-
resent various control flow constructs, such as the set of basic blocks in each function
which we made use of. The simplest case of this enumeration is the single predecessor
case. We present the relations and the associated rules for this one, along with the helper
rules that populate the relations which keep track of the first and last predecessor of an
instruction in the following figures.

SinglePredOfInsnInMethod(?pred, ?insn, ?meth) :-
Instruction_Method(?insn, ?meth),
FirstPredOfInsnInMethod(?meth, ?pred, ?insn),
LastPredOfInsnInMethod(?meth, ?pred, ?insn).

Figure 15: Single predecessor rules.
FirstPredOfInsnInMethodOrdinal(?meth, ?firstOrd, ?insn) :-

Instruction_Method(?insn, ?meth),
?firstOrd = min ord(?prev): MayPredecessorModuloThrow(?prev, ?insn).

FirstPredOfInsnInMethod(?meth, ?first, ?insn) :-
Instruction_Method(?insn, ?meth),
MayPredecessorModuloThrow(?first, ?insn),
?min_ord = ord(?first),
FirstPredOfInsnInMethodOrdinal(?meth, ?min_ord, ?insn).

Figure 16: First predecessor of instruction in method
LastPredOfInsnInMethodOrdinal(?meth, ?lastOrd, ?insn) :-

Instruction_Method(?insn, ?meth),
?lastOrd = max ord(?prev): MayPredecessorModuloThrow(?prev, ?insn).

LastPredOfInsnInMethod(?meth, ?last, ?insn) :-
Instruction_Method(?insn, ?meth),
MayPredecessorModuloThrow(?last, ?insn),
?max_ord = ord(?last),
LastPredOfInsnInMethodOrdinal(?meth, ?max_ord, ?insn).

Figure 17: Last predecessor of instruction in method

The above rules introduce the handling of the least complicated cases. With just a few
rules wemanage to identify the one and only predecessor of an instruction. In figure 15 we
present the rule that populates the relation keeping track of the single predecessors of an
instruction which is powered by the rules of FirstPredOfInsnInMethod and LastPredOfIn-
snInMethod relations. In these two presented in figures 16 and 17 we leverage Doop’s
control-flow graph (CFG) analysis by using theMayPredecessorModuloThrow relation that
provides us with the predecessors of an instruction. We further aggregate with the help
of min and max aggregation functions of Souffle in order to distinguish the first and last
predecessors of an instruction accordingly. These rules are also utilized during the enu-
meration of the multiple predecessors of a single instruction, but they are wrapped into
complex rules that separate the multiple from the single predecessor case. We present
these wrappers in figure 18.

The negation of LastPredOfInsnInMethod in the first rule is required so that the FirstOfMul-
tiplePredsOfInsnInMethod relation considers instructions with multiple predecessors.
Otherwise it would be equivalent to the SinglePredOfInsnInMethod relation, while the
same also holds for the LastOfMultiplePredsOfInsnInMethod. Having introduced the first
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FirstOfMultiplePredsOfInsnInMethod(?pred, ?insn, ?meth) :-
Instruction_Method(?insn, ?meth),
FirstPredOfInsnInMethod(?meth, ?pred, ?insn),
!LastPredOfInsnInMethod(?meth, ?pred, ?insn).

LastOfMultiplePredsOfInsnInMethod(?pred, ?insn, ?meth) :-
Instruction_Method(?insn, ?meth),
!FirstPredOfInsnInMethod(?meth, ?pred, ?insn),
LastPredOfInsnInMethod(?meth, ?pred, ?insn).

Figure 18: First and last of multiple predecessors wrappers

and last predecessors rules for either case, there is the need of introducing the rules of
the relations associated with yielding an ordering of each distinct predecessor. Datalog
does not come with any explicit iteration syntax, thus we need to come with a way to enu-
merate those possible predecessors in a recursive style. We present the steps towards
the multiple predecessors enumeration in figure 19.

NotNextPredOfInsnInMethod(?meth, ?prev, ?next, ?insn) :-
Instruction_Method(?insn, ?meth),
MayPredecessorModuloThrow(?prev, ?insn),
MayPredecessorModuloThrow(?next, ?insn),
MayPredecessorModuloThrow(?nextPossible, ?insn),
ord(?prev) < ord(?next),
ord(?prev) < ord(?nextPossible),
ord(?nextPossible) < ord(?next).

NextPredOfInsnInMethod(?meth, ?prev, ?next, ?insn) :-
Instruction_Method(?insn, ?meth),
MayPredecessorModuloThrow(?prev, ?insn),
MayPredecessorModuloThrow(?next, ?insn),
ord(?prev) < ord(?next),
!NotNextPredOfInsnInMethod(?meth, ?prev, ?next, ?insn).

NextOfMultiplePredsOfInsnInMethod(?next, ?prev, ?insn, ?meth) :-
Instruction_Method(?insn, ?meth),
!LastPredOfInsnInMethod(?meth, ?prev, ?insn),
NextPredOfInsnInMethod(?meth, ?prev, ?next, ?insn).

Figure 19: Predecessors ordering rules

The last rule in figure 19 is yet again a wrapper which is used for the predecessors enumer-
ation. It populates the associated relation excluding the last predecessor. Even though
there are many different ways to tackle this problem, we decided to provide an interme-
diate relation which when negated yields the next predecessor in the enumeration. The
rule feeding that relation, named NotNextPredOfInsnInMethod, considers the previous
and next possible predecessor of an instruction and asserts that in case there is another
one between them the rule shall fail. Thus, the negation of this relation yields the actual
next possible predecessors which are then used to proceed with the enumeration.

After introducing the part responsible for the predecessors enumeration, we may proceed
to themain algorithm that creates the path predicates at every single program point. A high
level overview of the algorithm has been provided earlier, and we now present the core
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rules of this part in the following figures. We have already introduced the notion of before
and after program points in the context of a distinct instruction and at first we describe
the rules responsible for the construction of the path predicates after an instruction via the
PathExpressionAfterTrue and PathExpressionAfterFalse relations.

PathExpressionAfterTrue(?meth, ?insn, ?cond),
PathExpressionAfterFalse(?meth, ?insn, ?negatedCond) :-

FirstIfInsnInMethod(?insn, ?meth),
NegationOfConditionAtIfInsn(?cond, ?negatedCond, ?insn).

PathExpressionAfterTrue(?meth, ?insn, ?pathExpr1),
PathExpressionAfterFalse(?meth, ?insn, ?pathExpr2) :-

PathExpressionBefore(?meth, ?insn, ?pathExpr),
NegationOfConditionAtIfInsn(?cond, ?negatedCond, ?insn),
?cond = [?op, ?type, ?exprLeft, ?exprRight] ,
?pathExpr1 = [”&&”, ?type, ?cond, ?pathExpr] ,
?pathExpr2 = [”&&”, ?type, ?negatedCond, ?pathExpr] .

PathExpressionAfterTrue(?meth, ?insn, ?pathExpr) :-
PathExpressionBefore(?meth, ?insn, ?pathExpr),
!isIf_Insn(?insn).

Figure 20: Path expressions after an instruction

PathExpressionBefore(?meth, ?insn, ?expr) :-
PathExpressionAfterTrue(?meth, ?pred, ?expr),
SinglePredOfInsnInMethod(?pred, ?insn, ?meth),
isIf_Insn(?pred), isJumpTarget(?insn).

PathExpressionBefore(?meth, ?insn, ?expr) :-
PathExpressionAfterFalse(?meth, ?pred, ?expr),
SinglePredOfInsnInMethod(?pred, ?insn, ?meth),
isIf_Insn(?pred), !isJumpTarget(?insn).

PathExpressionBefore(?meth, ?insn, ?expr) :-
PathExpressionAfterTrue(?meth, ?pred, ?expr),
SinglePredOfInsnInMethod(?pred, ?insn, ?meth),
!isIf_Insn(?pred).

Figure 21: Path expressions before an instruction - single predecessor

The path expression predicates are split into two disjoint sets of true and false conjuncts
due to the separation of a program path after a branch instruction. A branch instruction
leads to different execution paths based on whether the condition succeeds or not. In or-
der to differentiate between the two, we have introduced the NegationOfConditionAtIfInsn
relation that yields the negated condition of a branch condition that would be used to gen-
erate the complement of a path predicate. The first rule in figure 20 represents the basis
of any path predicate formation, while the second one further splits each path predicate
into two subsequent expressions. The last rule represents the path predicate after any
statement that is not a branch instruction. However, these rules heavily depend on the
existence of path predicates on the program point right before each instruction. In figure
21 we present the rules of the relations that yield the path predicates at the program point
before each instruction for the single predecessor case.

The complicated case of the construction of the before-path predicates is essentially when
an instruction has multiple predecessors that flow up to it. In order to facilitate the rules
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of the relation PathExpressionBefore, we introduced the BuildPathExprBefore relation,
responsible for constructing a disjunction of all the predecessor path expressions that
meet at the program point right before the instruction. The former relation rules utilize the
predecessor enumeration relations introduced before, by implicitly enumerating all over
the predecessors. Lastly, we present the logic of the disjunct formation in figure 22.

PathExpressionBefore(?meth, ?insn, ?pathExpr) :-
LastOfMultiplePredsOfInsnInMethod(?pred, ?insn, ?meth),
BuildPathExprBefore(?meth, ?pred, ?pathExpr, ?insn).

BuildPathExprBefore(?meth, ?pred, ?expr, ?insn) :-
FirstOfMultiplePredsOfInsnInMethod(?pred, ?insn, ?meth),
isIf_Insn(?pred),
IsJumpTarget(?insn),
PathExpressionAfterTrue(?meth, ?pred, ?expr).

BuildPathExprBefore(?meth, ?pred, ?expr, ?insn) :-
FirstOfMultiplePredsOfInsnInMethod(?pred, ?insn, ?meth),
isIf_Insn(?pred),
!IsJumpTarget(?insn),
PathExpressionAfterFalse(?meth, ?pred, ?expr).

BuildPathExprBefore(?meth, ?pred, ?expr, ?insn) :-
FirstOfMultiplePredsOfInsnInMethod(?pred, ?insn, ?meth),
!isIf_Insn(?pred),
PathExpressionAfterTrue(?meth, ?pred, ?expr).

BuildPathExprBefore(?meth, ?next, ?pathExpr, ?insn) :-
BuildPathExprBefore(?meth, ?prev, ?expr, ?insn),
NextOfMultiplePredsOfInsnInMethod(?next, ?prev, ?insn, ?meth),
!isIf_Insn(?next),
PathExpressionAfterTrue(?meth, ?next, ?exprPrev),
?pathExpr = [”||”, ”boolean”, ?expr, ?exprPrev] .

BuildPathExprBefore(?meth, ?next, ?pathExpr, ?insn) :-
BuildPathExprBefore(?meth, ?prev, ?expr, ?insn),
NextOfMultiplePredsOfInsnInMethod(?next, ?prev, ?insn, ?meth),
isIf_Insn(?next),
isJumpTarget(?insn),
PathExpressionAfterTrue(?meth, ?next, ?exprPrev),
?pathExpr = [”||”, ”boolean”, ?expr, ?exprPrev] .

BuildPathExprBefore(?meth, ?next, ?pathExpr, ?insn) :-
NextOfMultiplePredsOfInsnInMethod(?next, ?prev, ?insn, ?meth),
BuildPathExprBefore(?meth, ?prev, ?expr, ?insn),
isIf_Insn(?next),
!isJumpTarget(?insn),
PathExpressionAfterTrue(?meth, ?next, ?exprPrev),
?pathExpr = [”||”, ”boolean”, ?expr, ?exprPrev] .

Figure 22: Path expression before multiple predecessors
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All of the rules introduced in this section generate the boolean logic formulas, disjuncts and
conjuncts. These formulas are modeled with the help of the expression type introduced
during the first sections of this thesis. We may now proceed to the description of the core
algorithm of our analysis, static declarative symbolic reasoning.

3.4 Boolean Symbolic Reasoning

A symbolic reasoner mainly deduces knowledge about the expressions of a program. This
knowledge may get as complex as one wants to. The symbolic reasoner tool is essentially
a theorem prover that given a friendly input representation and a set of guiding facts tries
to reason about a program by constructing formal proofs with the help of a set of inference
rules. In the context of this work we have introduced a fundamental symbolic reasoner
that mainly deduces knowledge about the boolean expressions of a program in a purely
symbolic manner. That is, our reasoner contains pure propositional logic formulas and it
does not concretely evaluate any expression on the fly, but rather constantly emits new
knowledge until a fixpoint is reached: there can be no more knowledge produced by the
set of inference rules. In this chapter we exhibit the core implementation of our reasoner
by describing the set of propositional logic axioms and inference rules that bring into life
our technique. The whole of those axioms and rules are implemented as pure Datalog
rules, without the help of any external tool. The main work of the reasoner is to ask the
question of “What are the program expressions that may be implied by another program
expression?”.

The main relation of the core reasoning algorithm is the ExprImpliesOther relation. Form-
ally, this relation represents the following logical statement:

P → Q (3.2)

where P and Q represent any logical (boolean) formula.

3.4.1 Propositional Logic Axioms

We begin with the enumeration of the axioms that constitute the basis of our reasoner. In
the following figures we present the Datalog rules describing those axioms.

ExprImpliesOther(?expr, ?expr) :-isBooleanExpr(?expr).

Figure 23: Self implication
ExprImpliesOther(?expr, ?exprLeft),
ExprImpliesOther(?expr, ?exprRight) :-

isBooleanExprLeftRightInMethod(?expr, ?exprLeft, ?exprRight, ”&&”, ?meth).

Figure 24: A ∧B → A and A ∧B → B

ExprImpliesOther(?expr, ?exprLeft),
ExprImpliesOther(?expr, ?exprRight) :-

isBooleanExprLeftRightInMethod(?expr, ?exprLeft, ?exprRight, ”&&”, ?meth).

Figure 25: A → A ∨B and B → A ∨B
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ExprImpliesOther(?expr, ?exprOther) :-
isBooleanExprLeftRightInMethod(?expr, ?exprLeft, ?exprRight, ”&&”, ?meth),
isBooleanExprLeftRightInMethod(?exprOther, ?exprRight, ?exprLeft, ”&&”, ?meth).

Figure 26: A ∧B → B ∧A

ExprImpliesOther(?expr, ?exprOther) :-
isBooleanExprLeftRightInMethod(?expr, ?exprLeft, ?exprRight, ”||”, ?meth),
isBooleanExprLeftRightInMethod(?exprOther, ?exprRight, ?exprLeft, ”||”, ?meth).

Figure 27: A ∨B → B ∨A

ExprImpliesOther(?expr, ?exprOther) :-
isBooleanExprLeftRightInMethod(?expr, ?exprLeft, ?exprRight, ”&&”, ?meth),
?exprOr = [”||”, ”boolean”, ?exprB, ?exprC] ,
?exprLeft = [”&&”, ”boolean”, ?exprA, ?exprB] ,
?exprRight = [”&&”, ”boolean”, ?exprA, ?exprC] ,
?exprOther = [”||”, ”boolean”, ?exprLeft, ?exprRight] .

Figure 28: A ∧ (B ∨ C) → (A ∧B) ∨ (A ∧ C)

ExprImpliesOther(?expr, ?exprOther) :-
isBooleanExprLeftRightInMethod(?expr, ?exprLeft, ?exprRight, ”&&”, ?meth),
?exprLeft = [”&&”, ”boolean”, ?exprA, ?exprB] ,
?exprRight = [”&&”, ”boolean”, ?exprA, ?exprC] ,
?exprNRight = [”||”, ”boolean”, ?exprB, ?exprC] ,
?exprOther = [”&&”, ”boolean”, ?exprA, ?exprNRight] .

Figure 29: (A ∧B) ∨ (A ∧ C) → A ∧ (B ∨ C)

ExprImpliesOther(?expr, ?exprOther) :-
?exprBC = [”&&”, ”boolean”, ?exprB, ?exprC] ,
isBooleanExprLeftRightInMethod(?expr, ?exprA, ?exprAB, ”||”, ?meth),
?exprLeft = [”||”, ”boolean”, ?exprA, ?exprB] ,
?exprRight = [”||”, ”boolean”, ?exprA, ?exprC] ,
isBooleanExprLeftRightInMethod(?exprOther, ?exprLeft, ?exprRight, ”&&”, ?meth).

Figure 30: A ∨ (B ∧ C) → (A ∨B) ∧ (A ∨ C)

ExprImpliesOther(?expr, ?exprOther) :-
?exprAB = [”||”, ”boolean”, ?exprA, ?exprB] ,
?exprBC = [”||”, ”boolean”, ?exprB, ?exprC] ,
isBooleanExprLeftRightInMethod(?expr, ?exprAB, ?exprBC, ”&&”, ?meth),
?exprRight = [”&&”, ”boolean”, ?exprB, ?exprC] ,
isBooleanExprLeftRightInMethod(?exprOther, ?exprA, ?exprRight, ”&&”, ?meth).

Figure 31: (A ∨B) ∧ (A ∨ C) → A ∨ (B ∧ C)
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3.4.2 Propositional Logic Inference Rules

The axioms described before form the ground truth for the reasoner. However, for the
reasoner to infer new knowledge we have to define a set of inference rules. An inference
rule is the actual means of proving. Based on any number of logical premises an inference
rule infers one or maybe even more conclusions.

The formal definition of a logical inference rule that takes only two premises is the following:

P, P → Q ⊢ Q (3.3)

where P and Q are metavariables which are essentially logical sentences that may con-
sist of multiple logical statements. Based on the definitions above we introduce a set of
inference rules that are the ones responsible for powering our analysis.

ExprImpliesOther(?expr, ?exprOther) :-
ExprImpliesOther(?expr, ?exprInter),
ExprImpliesOther(?exprInter, ?exprOther).

Figure 32: A → B and B → C ⊢ A → C

ExprImpliesOther(?exprA, ?exprOther) :-
isBooleanExprLeftRightInMethod(?exprOther, ?exprB, ?exprC, ”&&”, ?meth).
ExprImpliesOther(?exprA, ?exprB),
ExprImpliesOther(?exprA, ?exprC).

Figure 33: A → B and A → C ⊢ A → B ∧ C

ExprImpliesOther(?exprLeft, ?exprA) :-
isBooleanExprLeftRightInMethod(?exprLeft, ?exprB, ?exprC, ”||”, ?meth).
ExprImpliesOther(?exprB, ?exprA),
ExprImpliesOther(?exprC, ?exprA).

Figure 34: B → A and C → A ⊢ B ∨ C → A

ExprImpliesOther(?exprBNeg, ?exprANeg) :-
ExprIsNegationOfOther(?exprA, ?exprANeg),
ExprIsNegationOfOther(?exprB, ?exprBNeg).

Figure 35: A → B and ¬B and ¬A ⊢ ¬B → ¬A
ExprImpliesOther(?expr, ?exprOther) :-

ExprIsAlwaysFalse(?expr),
isBooleanExprLeftRightInMethod(?expr, _, _, _, ?meth),
isBooleanExprLeftRightInMethod(?exprOther, _, _, _, ?meth).

Figure 36: False ⊢ False → A

ExprImpliesOther(?exprOther, ?expr) :-
ExprIsAlwaysTrue(?expr),
isBooleanExprLeftRightInMethod(?expr, _, _, _, ?meth),
isBooleanExprLeftRightInMethod(?exprOther, _, _, _, ?meth).

Figure 37: True ⊢ A → True
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ExprImpliesOther(?expr, ?exprOther) :-
ExprImpliesOther(?expr, ?exprCompOther),
?exprCompOther = [”||”, ?type, ?exprOther, ?exprFalse] ,
ExprIsAlwaysFalse(?exprFalse).

Figure 38: A → (B ∨ False) ⊢ A → B

ExprImpliesOther(?expr, ?exprOther) :-
ExprImpliesOther(?exprCompOther, ?exprOther),
?exprCompOther = [”&&”, ?type, ?expr, ?exprTrue] ,
ExprIsAlwaysTrue(?exprTrue).

Figure 39: A ∧ True → B ⊢ A → B

As seen above, we have encoded our tool’s core reasoning within a set of few Datalog
rules. Even though our approach builds on top of propositional logic theory it manages to
express several logical rules of inference and forms the basis for introducingmore powerful
theories within the scope of our reasoner, such as the theory of arithmetic. It is also worth
mentioning that in the context of this text we have not included several implementation
details. The whole implemnetation may be found in Doop’s public Github repository [2]
under the symbolic-reasoning addon logic.
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4. EVALUATIONS

In this chapter we provide a short evaluation of our approach. The main purpose of this
work was to investigate how easily could a theorem prover be implemented in the Datalog
programming language. Our main motivation for this work has been the successful applic-
ation of theorem provers in techniques such as symbolic execution. To this end, wewanted
our approach to lay the foundations for the integration of a theorem prover in Doop’s reas-
oning. We evaluated our approach for three different input JARs based on the DaCapo
benchmarks [6]. These JARs are associated to ANTLR [1], HSQLDB [3] and Jython [4].
In the following table we provide some measurements regarding the time needed for the
analyses to run. We have evaluated our approach on Doop’s context-insensitive analysis
with symbolic reasoning either turned on or off. For the symbolic reasoning runs, we also
wanted to evaluate how many program expressions are identified along with how many
expression implications are infered.

Table 1: Analysis evaluation

Input Jar Fact Generation CI + Symbolic CI Expressions ExprImpliesOther
ANTLR 49 sec 48 sec 33 sec 608.547 863.864
HSQLDB 51 sec 43 sec 25 sec 653.207 916.722
Jython 33 sec 79 sec 77 sec 418.389 590.549

Doop’s context-insensitive analysis performs a pointer analysis without any context con-
sideration for its reasoning. Our symbolic reasoning approach is implemented as com-
plement to any of Doop main analyses, and thus it further burdens the analysis execution
times, as observed in table 1. It is also worth mentioning that Doop does not benefit in any
way from our approach at the moment. However we may easily notice that our reasoner,
even though quite simple, manages to identify a set of expressions, also providing a relat-
ively satisfying number of expression implications. These numbers are quite encouraging,
as further restricting the reasoning to discard certain sets of expressions and introducing
more logic theories as part of our reasoner would certainly provide more accurate results.

C. Vrachas 34



Datalog Based Symbolic Program Reasoning for Java

5. CONCLUSIONS AND FUTURE WORK

In the previous chapter we provided a brief evaluation of our approach. By introducing
our reasoner as part of Doop, we managed to demonstrate several encouraging results.
We have also managed to demonstrate the simplicity and expressiveness of a declarative
language such as Datalog. The implementation of both core reasoner and its prelimin-
aries came quite naturaly to us, proving Datalog to be a tool to be considered for such
applications. At the same time we also enhanced Doop with several constructs such as
the expression type which could prove valuable to Doop for further usage.

Our work opens a plethora of research directions to investigate in the context of Doop and
declarative static analysis in general. For example, it would make sense to explore the
case of completely integrating the reasoner in a pointer analysis performed by Doop. Such
an investigation would require the utilization of the introduced path-predicates and infer-
ence rules. The path-predicates are essentially expressions that encode the control-flow
constructs of a program, and thus inferencing over them would lead to the identification of
unreached program locations not to be included during a pointer analysis reasoning. As of
the moment Doop completely lacks path-sensitivity, thus we believe that it would probably
be of value to research towards this direction.
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ABBREVIATIONS - ACRONYMS

IR Intermediate Representation

JVM Java Virtual Machine

CI Context-Insensitive

CFG Control-Flow Graph

SSA Static Single Assignment

DSE Dynamic Symbolic Execution

SMT Satisfiability Modulo Theories

SAT Satisfiability

ATP Automated Theorem Prover

AI Artificial Intelligence

JAR Java ARchive
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