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ABSTRACT

The Python programming language enjoys wide use in many areas such as data science,
web development, machine learning, etc. This makes Python an attractive target for
various static analyses that aim to optimize the program or, more importantly, discover
errors and security flaws. Overall, static analysis of industry-level programs written in
almost any language is deemed necessary as a means of improving and maintaining the
quality of increasingly sophisticated and complex software.

Fact generation is the representation of a program as a database of facts, according to
a pre-defined schema (relational representation). It is an important first step to many
static analyses, especially in declarative form, such as those supported by the Doop static
analysis framework, which utilizes the Datalog language and a fact database to perform
its analyses. The database, after its creation, allows the specification of a static program
analysis as a set of (possibly recursive) queries.

In this thesis, we provide a means of transforming the AST of a Python program into
an equivalent set of fact files that constitute a fact database. This provides a foundation
framework, onwhichmore complex fact generation or transformation logic can be developed.
Thework presented, hopefully provides a basis onwhich various static analyses or program
transformations could be constructed for Python programs, at the AST level.

SUBJECT AREA: Static Program Analysis and Program Transformation

KEYWORDS: static program analysis, program transformation, doop framework,
python, fact generation



ΠΕΡΙΛΗΨΗ

Η γλώσσα προγραμματισμού Python, χρησιμοποιείται ευρέως σε πολλούς τομείς όπως
επιστήμη δεδομένων, ανάπτυξη εφαρμογών διαδικτύου, μηχανική μάθηση κ.α. Αυτό, κά-
νει την Python ελκυστικό στόχο για διάφορες στατικές αναλύσεις οι οποίες στοχεύουν να
βελτιστοποιήσουν το πρόγραμμα ή, ακόμα σημαντικότερα, να ανακαλύψουν λάθη και κενά
ασφαλείας. Γενικά, η στατική ανάλυση βιομηχανικών εφαρμογών γραμμένων σε οποιαδή-
ποτε γλώσσα κρίνεται απαραίτητη ως μέσο βελτίωσης και διατήρησης της ποιότητας όλο
και πιο προηγμένου και πολύπλοκου λογισμικού.

Παραγωγή γεγονότων είναι η αναπαράσταση ενός προγράμματος ως μια βάση δεδομέ-
νων που περιέχει γεγονότα, σύμφωνα με κάποιο ορισμένο εκ των προτέρων σχήμα (σχε-
σιακή αναπαράσταση). Η παραγωγή γεγονότων, είναι ένα σημαντικό πρώτο βήμα σε
πολλές στατικές αναλύσεις, και ιδιαίτερα σε δηλωτικές στατικές αναλύσεις, όπως αυτές
που υποστηρίζονται από το Doop framework για στατική ανάλυση, το οποίο αξιοποιεί την
γλώσσα Datalog και βάσεις γεγονότων για να εκτελέσει τις αναλύσεις του. Η βάση γε-
γονότων, μετά την δημιουργία της, επιτρέπει τον προσδιορισμό μιας στατικής ανάλυσης
προγράμματος ως ένα σύνολο από (πιθανώς αναδρομικές) επερωτήσεις.

Σε αυτή την πτυχιακή εργασία, δίνουμε ένα τρόπο μετατροπής του AST ενός προγράμ-
ματος Python σε ένα ισοδύναμο σύνολο από αρχεία γεγονότων τα οποία αποτελούν μια
βάση γεγονότων. Αυτό ταυτόχρονα θεμελιώνει ένα βασικό framework, πάνω στο οποί-
ο μπορούν να αναπτυχθούν πιο περίπλοκες παραγωγές γεγονότων ή μετασχηματισμοί.
Η δουλειά που παρουσιάζεται, ελπίζουμε να αποτελέσει βάση πάνω στην οποία θα υλο-
ποιηθούν διάφορες στατικές αναλύσεις ή μετασχηματισμοί προγραμμάτων Python, στο
επίπεδο του AST.

ΠΕΡΙΟΧΗ ΑΝΤΙΚΕΙΜΕΝΟΥ: Στατική ανάλυση προγραμμάτων και μετασχηματισμός
προγραμμάτων

ΛΕΞΕΙΣ-ΚΛΕΙΔΙΑ: στατική ανάλυση προγραμμάτων, μετασχηματισμός προγραμμά-
των, doop framework, python, παραγωγή γεγονότων
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Relational Representation of Python Abstract Syntax Trees

1. INTRODUCTION
This thesis aims to present a way through which the structure and contents of a Python
program’s AST (Abstract Syntax Tree) are imported into a Java program that can then
perform operations on the tree. We primarily focus on generating fact files from the AST,
and more specifically, we implement the simplest possible case of fact generation : a
direct translation of the AST structure into fact files. However, the framework we have
constructed allows us to describe arbitrary operations on the AST using the visitor pattern,
so that more complex fact generation or program transformation logic can be implemented
as an extension to this work.

Python, as we will discuss later on, exposes its programs’ abstract syntax trees. Our
work leverages that fact to extract the AST structure in the form of a JSON file, as a first
step. We thenmove on to import the JSON representation of the AST in our Java program.
The Java code, in turn, parses the JSON file and constructs an object hierarchy practically
indistinguishable from the original Python AST. The class hierarchy defined in our Java
program is augmented with the visitor pattern, which allows us to describe algorithms on
the tree. Finally, we construct a specialized visitor that outputs the relational structure of
the AST into fact files that comprise our final fact database.

The rest of the thesis is organized as follows:

1. In chapter 2, we provide a basic overview of the Python programming language and
abstract syntax trees, the software tools that were used, the visitor pattern which
greatly simplifies and modularizes our implementation, and the final output of our
program, fact files.

2. In chapter 3, we present - step by step - how we imported the AST in our Java
program.

3. In chapter 4, we explain how the visitor pattern allows us to perform fact generation
on the AST.

4. In chapter 5, we present a simple but complete example of the transformation and
fact generation process.

5. In chapter 6, we give some additional insights and reflections on our work.

6. In chapter 7, some final thoughts are given, and the thesis concludes.

N. Karystinos-Avgerantonis 14
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2. BACKGROUND
2.1 Python
Python is a high-level, interpreted, multi-paradigm programming language. It is dynamically
typed and garbage collected with a design and syntax that emphasizes code simplicity and
readability. Programming paradigms supported include : object-oriented programming
(main approach), procedural programming, functional programming andmanymore. Python’s
design philosophy makes it an ideal choice for Rapid Application Development since the
edit-test-debug cycle is insanely fast, due to the absence of the compilation step and the
language’s built-in exception mechanism.

Python is mainly used in data science and web development applications, along with
incredibly popular frameworks like Django and Flask for web development and NumPy
for data science. It is also a potent scripting or glue language, used to easily connect
existing software components together. Some stats about Python are available here [4].

Overall, Python consists a powerful programming languagewith a comprehensive standard
library and an array of useful frameworks built around it. Its wide use makes Python a
target for static analysis. Some of its features however, make statically analyzing a Python
program challenging (e.g. dynamic typing).

2.2 Python ASTs
An AST (Abstract Syntax Tree) consists a tree representation of the syntactic structure
of a program (source code). The tree is made up of nodes, with each node representing
a construct in the original source code. Constructing the AST of a program, constitutes
a crucial step of the compilation process for compiled languages. The compiler uses
the AST during various phases of the compilation like semantic analysis, symbol table
construction and intermediate code generation.

Wementioned earlier that Python is an interpreted language. That is not entirely accurate.
What in fact happens in Python’s standard reference implementation, namely CPython, is
a mixture of compilation and interpretation. Python source files (.py) are first compiled to
byte code (.pyc). The produced bytecode is then interpreted. The aforementioned aren’t
true for every Python implementation, so, we could say that Python doesn’t bother about
being compiled or interpreted, the implementation of the language makes that decision.

With the above in mind, the notion of an AST applies to Python, as it does to most any
other programming language specified by a grammar to avoid syntactic ambiguity. A valid
AST is an instance of the language’s grammar, a representation of a sentence (program)
that follows syntactic rules (grammar) and is thus correct (syntactically) and unambiguous.

Among its countless features and modules, Python can also programmatically expose a
source file’s AST through the - conveniently named - ast module [5]. This is very crucial,
practically enabling the work described in this thesis, since our fact generation is performed
on the AST of the target program. Alternative approaches also exist. For example, one
could perform fact generation at a lower level; in Python’s case, the bytecode level.

The official documentation for Python ASTs is not comprehensive. However, there exists
extremely useful and thorough unofficial documentation here [3].

N. Karystinos-Avgerantonis 15
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2.3 Software Tools
In this section we give a brief description of the software tools utilized in this project. More
details of the exact usage of the below tools can be found in the following sections [3, 4].

2.3.1 astexport
astexport is a library implemented in Python. The source code is available here [6], but
astexport is also available to install through the pip package manager for Python. This
library, allows us to effortlessly export a Python source file’s AST in JSON format. In Linux,
we can do so just by issuing the below command to our terminal, after installing astexport.

Listing 1: astexport command

1 astexport < input.py > ast.json

2.3.2 Gson
Gson [7] is an open source Java library, developed by Google, that enables the conversion
of JSON strings to equivalent Java objects, but can also do the reverse operation, which
is converting a Java object to its JSON representation. Briefly stated, Gson is a Java
serialization/deserialization library that converts Java objects to JSON and back.

2.4 Visitor Pattern
The visitor design pattern, in the context of object-oriented programming, allows the programmer
to separate algorithm and object structures. Essentially, when utilizing the visitor pattern
we can add new operations to existing object structures without needing to modify the
structures. As a result, instead of having to change all of our class definitions to define
a new operation, we can simply specify a new visitor that defines the operation for every
object.

This is accomplished by implementing what is known as a double dispatch mechanism.
Most object-oriented languages support - by design - single dispatch, which means that
the implementation of a function that is chosen to run only depends on the dynamic
type of the receiver of the call, but not on the dynamic type of the arguments provided.
Single dispatch can easily be leveraged to implement double dispatch, and that is how the
visitor pattern can be implemented in single dispatch languages. What really happens, in
short, is the following : We call a method on our object - let us name it accept (visitor
pattern terminology) - which, through overriding resolves our object’s dynamic type. We
are now inside the implementation of accept in the correct class definition. One could
argue this is enough, but remember that we want to be able to support the addition of
different operations without modifying the class definition. Following that thought, forbids
us from adding another method (e.g. accept2) to our class to support a second ”behaviour”
we want to achieve. What we do instead, is pass a visitor object (that implements our
desired behaviour/algorithm on the objects) during the first call. Now, being inside the
correct accept method with the help of overriding (single dispatch), we call the visitor’s visit
method passing in a self reference (the this pointer in some languages) as an argument,
essentially giving the object to the visitor. The dynamic type of our visitor is resolved with
single dispatch as expected so we have now ”hopped out” of the class we did not want
to modify, and we basically achieved our goal since we transferred the flow of execution
to the implementation of a method in our desired visitor, taking into account the dynamic
types of both our initial object and the visitor, thus realizing double dispatch.

N. Karystinos-Avgerantonis 16
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The visitor pattern has obvious benefits but also drawbacks. The fact that we only have to
give an accept method definition for our classes and can then perform arbitrary operations
by implementing visitors is really powerful, but say, for example at some point we need to
extend our class hierarchy. In that case, it would not simply suffice to provide an accept
method definition for our new classes. We would have to add the corresponding visit
method to all of our - already implemented - visitors, which is maybe a small price to pay
considering the separation between classes and algorithms we achieved.

The above description does not really provide great intuition to someone who has not
encountered the visitor pattern before, but its implementation and benefits in this work are
discussed again later on, with examples, in chapter [4]. More info on the visitor pattern
can be found here [8].

2.5 Facts & Fact Files
The notion of facts is of great importance in logic and logic programming. A logic program,
simply expresses facts and rules that are true in a domain. The initial facts along with
the application of the declared rules can produce new, previously unknown facts through
”logical deduction”. Notice how this description of logic programming fits perfectly in the
context of static analysis : We have some initial facts (our program’s source code or its
AST), and we would like to produce output facts - that are initially unknown - regarding the
behaviour of our program in all possible executions.

Doop [1] [2], exploiting the above similarity, expresses its analyses declaratively in the
Datalog language, defining rules that use input facts (the Extensional Database - EDB)
to produce output facts (the Intensional Database - IDB). This has an array of benefits,
including simpler and more concise declarative implementations, which, in turn allow
easier correctness verification, compared to a procedural implementation that sometimes
might be impossible to grasp and formally verify, especially for complex analyses.

In the scope of this thesis, we consider facts as tuples, that are grouped in a file (of csv
format) which we will call fact file. Our fact files consist a fact database. An example of
a fact file could be the following in our context : Say our file is called NodePosition.facts.
The tuples (or facts) contained in this file could be of the form (NodeID, lineno, colno).
What these facts represent, is, that every node of the AST (uniquely identified by its node
ID) corresponds to a specific location in the source file. lineno gives us the line and colno
the column in the original source file.

Moreover, since we will be outputting an almost direct translation of the AST into fact
files, we will use (at least) one fact file per AST node type. Since, as mentioned earlier,
there exist over 100 node types, our output database will contain around 100 fact files.
That sounds troublesome, but not all files (or nodes) are common, so most files contain
facts that are of little to no importance in a real Python program, or are completely empty.
The above statement is partially true however, since we have chosen not to generate fact
files for few node types as we will explain later on in our example [5].
More about this is presented in chapter [4].
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3. TRANSFORMATION STEPS
3.1 Introduction
We can now begin describing how we have gone about importing the AST structure into
our Java program. Note that this is not the only way this could have been done, however
it was chosen since it is conveniently aided by our software tools mentioned earlier.

3.2 Step 0 : Python source code → Python AST
Thankfully, we do not have to do anything in this step. Python, as we already discussed,
exposes a program’s AST through the ast module. In the event that we were working on
a language that does not expose the AST, this step would have been significantly harder.
We would have had to build a parser that identifies our language’s grammar, and then
leverage our parser to construct the AST. Building a parser for a complex language like
Python is not a simple task.

3.3 Step 1 : Python AST → JSON
This step is also relatively trivial. As we discussed in chapter [2.3], astexport can do all
the work for us. It utilizes the ast module to traverse the whole AST and export a JSON
representation. Let us now give an example to see how the output of astexport looks.

Consider the following simple Python program stored in the file f.py :

Listing 2: Simple Python function

1 def f(x):
2 return x + 1

This code looks dead simple, right? We just defined a function that adds one to its
argument and returns the result. Now let’s take a look at the JSON that represents the
AST, produced by astexport. We first execute this command :

Listing 3: astexport command for pretty JSON

1 astexport -p < f.py

Optional argument -p gives us a prettified JSON output that looks something like this:

Listing 4: Original JSON for f.py

1 {
2 "ast_type": "Module",
3 "body": [
4 {
5 "args": {
6 "args": [
7 {
8 "annotation": null,
9 "arg": "x",

10 "ast_type": "arg",
11 "col_offset": 6,
12 "lineno": 1
13 }
14 ],
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15 "ast_type": "arguments",
16 "defaults": [],
17 "kw_defaults": [],
18 "kwarg": null,
19 "kwonlyargs": [],
20 "vararg": null
21 },
22 "ast_type": "FunctionDef",
23 "body": [
24 {
25 "ast_type": "Return",
26 "col_offset": 1,
27 "lineno": 2,
28 "value": {
29 "ast_type": "BinOp",
30 "col_offset": 8,
31 "left": {
32 "ast_type": "Name",
33 "col_offset": 8,
34 "ctx": {
35 "ast_type": "Load"
36 },
37 "id": "x",
38 "lineno": 2
39 },
40 "lineno": 2,
41 "op": {
42 "ast_type": "Add"
43 },
44 "right": {
45 "ast_type": "Num",
46 "col_offset": 12,
47 "lineno": 2,
48 "n": {
49 "ast_type": "int",
50 "n": 1,
51 "n_str": "1"
52 }
53 }
54 }
55 }
56 ],
57 "col_offset": 0,
58 "decorator_list": [],
59 "lineno": 1,
60 "name": "f",
61 "returns": null
62 }
63 ]
64 }

Wait, what happened? 2 lines of Python correspond to 60 lines of JSON for the AST? That
seems absurd, however this is what in fact happens. Most of the AST nodes have many
fields, most of which are usually unused. For example the node for function definitions
contains subnodes for storing annotations (which we didn’t use) or decorators (which
again we didn’t use). Let’s simplify the above JSON to only include the necessary - for our
example - fields. We also remove fields with key lineno and col_offset which correspond
to the line and column (in the source file) our node was derived from.
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Our new simplified version looks something like this :

Listing 5: Simplified JSON for f.py

1 {
2 "ast_type": "Module",
3 "body": [
4 {
5

6 "ast_type": "FunctionDef",
7 "name": "f",
8 "args": {
9 "ast_type": "arguments",

10 "args": [
11 {
12 "arg": "x",
13 "ast_type": "arg"
14 }
15 ]
16 },
17 "body": [
18 {
19 "ast_type": "Return",
20 "value": {
21 "ast_type": "BinOp",
22 "left": {
23 "ast_type": "Name",
24 "id": "x",
25 "ctx": {
26 "ast_type": "Load"
27 }
28 },
29 "op": {
30 "ast_type": "Add"
31 },
32 "right": {
33 "ast_type": "Num",
34 "n": {
35 "ast_type": "int",
36 "n_str": 1,
37 }
38 }
39 }
40 }
41 ]
42 }
43 ]
44 }
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Let’s point out some things to clarify what we are seeing:

• Each object in our JSON enclosed in braces { } corresponds to a node of our AST.

• Some nodes contain fields whose values are not single-child nodes or scalars (atomic
values), but instead many nodes grouped in an array of JSON objects. For example,
the body field of the outermost JSON object contains an array of nodes. In our case
the array has only one object, but, generally, that field corresponds to the body of our
program, and most programs do not simply contain a function definition and nothing
more.

• All objects have a field named ast_type. This field signifies the type of node the
object represents. Some of the node types we notice are : FunctionDef, Return,
BinOp, Add, Num, which makes sense considering what our program does.

Take a look at [line 4] of our simplified JSON where a new node begins. The node is a
function definition, the function name is f, there are arguments and a body that contains
a return node. Hopefully, by now you can see the correlation between the AST structure
and our original program.

We will not go into more details right now, but the JSON representation of the AST will be
revisited in our example [5].

3.4 Step 2 : JSON → Java objects
Having acquired the JSON representation of the AST we now have to convert the structure
described by the JSON file to Java objects. This step is slightly more complex, but, once
again, our tools, and more specifically [Gson], greatly simplify what we have to do. Had we
not used Gson, we would have had to build a JSON parser ourselves, and then leverage
the parser to instantiate the proper Java objects that correspond to the JSON objects in
our file. Gson helps us automatically parse the JSON file, provided we specify the object
structures that will be encountered during the parsing.

Essentially, we have to define a Java class for every type of node in the AST, with fields
that exactly match those encountered in the JSON object of that type. There is a small
but very important detail however : JSON objects do not inherently carry type information.
The node type is given by the ast_type field. On the contrary, Java objects inherently carry
their type, without us having to define it as an attribute. So, in Java, as in most object-
oriented languages, the type of an object coincides with the name of the class the object
is an instance of.

Abstractly, what we have to do is this : Tell Gson to parse the JSON file, and, for every
JSON object encountered, instantiate a Java object of the class with name that matches
the value of the ast_type field of the JSON object, and then copy the rest of the JSON
values to the corresponding attributes of our new Java object. In this way, we will have a
Java object of the correct type that has been fully instantiated.
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Let us elaborate on how we construct our class hierarchy and use Gson to parse our JSON
file.

We first define the Node class as an abstract base class.
Listing 6: Abstract Node Class Definition

1 public abstract class Node {}

We will now define, for the sake of simplicity, just the four derived classes that help
represent numbers. The rest of the classes are defined in the same manner, one for
every node type, with appropriate fields. All node descriptions can be found here [3].

Listing 7: Num Class Definition

1 public class Num extends Node {
2 public int lineno;
3 public int col_offset;
4 public Node n;
5 }

Listing 8: Int Class Definition

1 public class Int extends Node {
2 public long n;
3 public String n_str;
4 }

Listing 9: Float Class Definition

1 public class Float extends Node {
2 public double n;
3 }

Listing 10: Complex Class Definition

1 public class Complex extends Node {
2 public double i;
3 public double n;
4 }

Notice that:

• The Num node contains a subnode n. A Num node can have an Int, Complex or
Float subnode, so the dynamic type of n could be any of those, and that is one of the
reasons why we need our base class. Different types of subnodes could possibly
appear at the same field of the base node.

• The Num node contains ”position” fields lineno and col_offset while its possible
subnodes do not.

• The Int node also contains a string representation of the integer to handle Python’s
arbitrary integer size.

We will also give the object structure of a control-flow node, the While node.

Listing 11: While Class Definition

1 public class While extends Node {
2 public int lineno;
3 public int col_offset;
4

5 public Node test;
6 public Node[] body;
7 public Node[] orelse;
8 }

Listing 12: While Structure Pseudocode

1 while([test]):
2 [body]
3 else:
4 [orelse]
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Two remarks for the previous two listings:

• The body and orelse fields are of typeNode[ ] since they possibly hold many nodes.
For example if our while contained two assignments on separate lines, the body
array would contain two Assign nodes. Similarly for the orelse array.

• We again have positional information for our While node.

As a next step we have to declare our base class to Gson and give it the field that defines
the subtype we want to instantiate. Our next code example will illustrate how this is done
for all our classes using reflection. Note that we have grouped the node classes in larger
superclasses (outer classes) that essentially constitute node categories. The code below
is a snippet residing in our main function. Some variables may not be properly declared
in the snippet.

Listing 13: Initializing and deploying the Gson parser

1 Class[] nodeCategories = { Literals.class, Variables.class, Expressions.class,
2 Statements.class, ControlFlow.class,
3 Definitions.class, AsyncAwait.class, Misc.class };
4

5 Map<Class<?>, String> classLabels = new HashMap<Class<?>, String>();
6

7 /* General Case : Label = Class name */
8 for (Class nodeCategory : nodeCategories) {
9 for (Class clazz : nodeCategory.getDeclaredClasses()) {

10 classLabels.put(clazz, clazz.getSimpleName());
11 }
12 }
13

14 /* Special Case : Custom Labels */
15 classLabels.put(Literals.Int.class, "int");
16 classLabels.put(Literals.Float.class, "float");
17 classLabels.put(Literals.Complex.class, "complex");
18

19 RuntimeTypeAdapterFactory<Node> nodeAdapterFactory =
20 RuntimeTypeAdapterFactory.of(Node.class, "ast_type");
21

22 for (Class clazz : classLabels.keySet()) {
23 nodeAdapterFactory.registerSubtype(clazz, classLabels.get(clazz));
24 }
25

26 Gson gson = new GsonBuilder()
27 .serializeNulls()
28 .registerTypeAdapterFactory(nodeAdapterFactory)
29 .create();
30

31 Node root = gson.fromJson(bufferedReader, Node.class);

Let’s now point out what’s happening in the above snippet:

• We first define a Class object array to hold our superclasses (outer classes).

• Then, we define the map classLabels that helps us correlate class objects with
the class labels used by astexport (we use the term class labels to talk about the
possible contents of the ast_type field described earlier).
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• For every category (outer class), we use the reflective method getDeclaredClasses
to obtain all the node types defined within that category as Class objects, and insert
them in the map with their names as labels. We then manually set some labels,
due to int and float being keywords in Java. We can’t define a class named int but
astexport sets the field ast_type to ”int”, so our map must correlate the Int class
object with the string ”int” that will be encountered during the JSON parsing. We do
the same for Float due to similar reasons and to Complex for symmetry since these
are all the numeric nodes. The rest of the classes’ labels coincide with their names.

• After this, we construct a RuntimeTypeAdapterFactory object, passing in our base
class and the name of the JSON field that will contain the class label. The runtime
type adapter factory does the hard work of dynamically reading the field ast_type for
every JSON object and instantiating an object of the class that corresponds to the
class label it encountered. For this to happen, we also have to register our classes
and their labels, so we simply use our map classLabels to do that (line 22).

• Having done the above, we can now instantiate a parser object, also registering our
RuntimeTypeAdapterFactory object as part of the parser.

• Finally, all we have to do is give our parser a reader on the file and, magically, we
get back the root of a fully materialized AST that mirrors the description in our JSON
file.

We have now completed the transformation and importing process. The whole AST
resides in our Java program’s memory ready to be worked on.

3.5 Transformation Summary
Overview of what we have done in this section:

• Show how astexport is used to produce the JSON representation of the AST from
our initial Python source file.

• Outline the definition of our class hierarchy that corresponds to the AST’s node types,
presenting definitions for some selected classes.

• Elaborate on how we initialize our parser to perform the required deserialization.
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4. FACT GENERATION
4.1 Overview
In this section, after having imported the AST in our Java program, wemove on to implement
the visitor pattern for our node hierarchy, and, additionally, present a simple fact generation
visitor that allows us to represent the AST in the form of fact files as described earlier in
chapter [2.5].

4.2 Visitor Pattern
The visitor pattern was briefly touched upon in chapter [2.4]. In this chapter, we demonstrate
our visitor implementation, and the extensions needed in our class hierarchy to enable the
visitor pattern.

The visitor pattern is especially useful on trees, and since it should be extensible we ought
to be able to support different traversals of the tree, in addition to different behaviours for
a traversal. More generally, any algorithm on the tree should be feasible to implement.
Building a visitor hierarchy is a good design practice since a generic traversal visitor could
be subtyped by a concrete visitor that only performs specialized operations on some of the
nodes. In essence, we get the traversal behaviour from our base class, and our subtype
simply overrides the visit methods of the nodes it wants to process.

The first step taken was building the generic visitor interface.

Listing 14: Generic Visitor Interface

1 package visitors;
2

3 import nodes.*;
4

5 public interface NodeVisitor<R, A> {
6 R visit(Literals.Num node, A arg);
7 R visit(Literals.Int node, A arg);
8 R visit(Literals.Float node, A arg);
9 R visit(Literals.Complex node, A arg);

10 . . .
11 . . .
12 . . .
13 R visit(Misc.Module node, A arg);
14 }

Every node visitor (or its supertypes) should implement theNodeVisitor generic interface,
so that it is made certain that a behaviour is implemented for every node type. The
generics used correspond to the return type of the visit functions (R) and the argument
which they might utilize (A).

The next logical step is to implement generic traversal visitors that will allow us to traverse
the tree in various ways. We only present a depth-first traversal visitor but many others
could be implemented.
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Listing 15: Generic Depth-First Visitor

1 package visitors;
2

3 import nodes.*;
4

5 public class DepthFirstVisitor<R, A> implements NodeVisitor<R, A> {
6

7 public R visit(Literals.Num node, A arg) {
8 return node.n.accept(this, arg);
9 }

10

11 public R visit(Literals.Int node, A arg) {
12 return null;
13 }
14

15 public R visit(Literals.Float node, A arg) {
16 return null;
17 }
18

19 public R visit(Literals.Complex node, A arg) {
20 return null;
21 }
22

23 . . .
24

25 public R visit(ControlFlow.While node, A arg) {
26 node.test.accept(this, arg);
27 for (Node n: node.body)
28 n.accept(this, arg);
29 for (Node n: node.orelse)
30 n.accept(this, arg);
31 return null;
32 }
33

34 . . .
35

36 public R visit(Definitions.ClassDef node, A arg) {
37 for (Node n: node.bases)
38 n.accept(this, arg);
39 for (Node n: node.keywords)
40 n.accept(this, arg);
41 for (Node n: node.body)
42 n.accept(this, arg);
43 for (Node n: node.decorator_list)
44 n.accept(this, arg);
45 return null;
46 }
47

48 . . .
49 }
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Some comments on the above code snippet:

• Obviously, we don’t present all the methods, as with our interface earlier, since we
have around 100 methods for our different node categories. The methods however
follow a simple pattern of definition, so, from our example, the remaining method
definitions can easily be inferred, by consulting the node documentation [3].

• The general strategy we follow to implement the DFS traversal is this :

– If we arrive at a leaf node (a node that has no subnodes), we simply return.

– If our node has subnodes, or arrays of subnodes, we call the accept method
on all subnodes. The accept method is the addition we need to make to our
classes so that we can implement the visitor pattern.

• The acceptmethod call takes us to the acceptmethod body of the class that corresponds
to the dynamic type of our object (single dispatch as discussed in [2.4]), and inside
the body of that method, the visit method is called, which sends us back to our visitor,
and so on and so forth.

The modifications to our node classes are given below. We first need to modify our Node
abstract base class.

Listing 16: Original Node Abstract Class

1 package nodes;
2

3 public abstract class Node {}

Listing 17: Modified Node Abstract Class

1 package nodes;
2 import visitors.NodeVisitor;
3

4 public abstract class Node {
5 public <R, A> R accept(NodeVisitor<R, A> v, A arg) { return null; }
6 }

The only addition we need to perform is the accept method with a body that simply returns.
We then override this method in all our node subclasses in the same way presented below.
This allows us to handle nodes polymorphically, while still getting us to the correct class
when we call accept (which we need for the visitor pattern). The visitor pattern would not
be possible to implement if we did not override the base class’ accept method, because
we would not be able to leverage the double dispatch mechanism we described earlier in
[2.4].

We only give the modification for one node class, since the modification is identical in
all other classes.

Listing 18: Original Num Node Class

1 public class Num extends Node {
2 public int lineno;
3 public int col_offset;
4 public Node n;
5 }

N. Karystinos-Avgerantonis 27



Relational Representation of Python Abstract Syntax Trees

Listing 19: Modified Num Node Class

1 public class Num extends Node {
2 public int lineno;
3 public int col_offset;
4 public Node n;
5

6 @Override
7 public <R, A> R accept(NodeVisitor<R, A> v, A arg) {
8 return v.visit(this, arg);
9 }

10 }

All the accept method has to do, is call the visitor’s visit method (which will resolve its
dynamic type) and also pass in the this self-reference.

With all the above in mind let us look at a simple example of visiting a Num node.

Listing 20: Simple Visit Example

1 NodeVisitor<String, String> v = new DepthFirstVisitor<>();
2

3 Literals.Num NumNode = new Literals.Num();
4 Node n = NumNode;
5

6 n.accept(v, null);

Let’s mentally trace the calls:

• n.accept(v, null) seems to be calling the abstract base class’ accept method but
remember that we have overriden it! So the method actually called in the first step is
the accept method inside the Num class that we defined in the previous listing [19].

• That method in turn, calls the visit method of our visitor. The dynamic type of our
visitor isDepthFirstVisitor so the function with signature public R visit(Literals.Num
node, A arg) inside the [DepthFirstVisitor class] will be called.

• That function in turn calls the accept function on its subnode. This will transfer the
flow of execution to the appropriate overriding accept method inside either the Int,
Float or Complex class, since as we mentioned, those are the possible subnodes
of a Num node.

• Then the visit method is called inside that accept method, and so on, and so forth.

In general we get the pattern : accept → visit → accept → visit . . .

Hopefully, by now, the inner workings of the visitor pattern are slightly clearer.

Note: Our previous example would not actually compile since our node classes are enclosed
in the category classes. This means, in our example, that we would need a Literals
object to instantiate a Num object. This can easily be solved by making our inner classes
static, but we purposefully avoided that in our previous listings for simplicity. The actual
implementation declares the inner classes as static to solve this.
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4.3 Fact Generation Visitor
So far, we have presented the generic visitor pattern framework that is implemented. In
this section, we will elaborate on how we constructed the visitor that does the ”simple
fact generation”, by outputting well-formed facts to appropriate fact files.

Let’s take a look at part of the implementation.

Listing 21: Fact Generation Visitor

1 package visitors;
2

3 import nodes.*;
4 import util.ASTRepresentation;
5 import util.Database;
6 import util.PredicateFile;
7 import util.Session;
8

9 import java.io.File;
10 import java.io.IOException;
11 import java.util.Stack;
12

13 public class FactGenVisitor extends DepthFirstVisitor<String, Integer> {
14

15 String filename;
16

17 Database db;
18 ASTRepresentation _rep;
19 Session sess;
20

21 Stack<Node> scope;
22

23 private static final String NULL_STR = "-";
24

25 public FactGenVisitor(String filename){
26 try {
27 db = new Database(new File("./output"));
28 } catch (IOException ex) {
29 throw new RuntimeException("Could not instantiate file database.");
30 }
31 _rep = ASTRepresentation.getRepresentation();
32 sess = new Session();
33 this.filename = filename;
34 scope = new Stack<>();
35 }
36

37

38 public void cleanup() {
39 try {
40 db.close();
41 } catch (IOException ex) {
42 throw new RuntimeException("Could not close file database.");
43 }
44 }
45
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46 @Override
47 public String visit(Literals.Num node, Integer arg) {
48 String ID = _rep.getScopedID(node, scope.peek(), sess);
49 String childID = node.n.accept(this, arg);
50

51 db.add(PredicateFile.NUM, ID, childID);
52 db.add(PredicateFile.FILEPOSITION, ID,
53 String.valueOf(node.lineno),
54 String.valueOf(node.col_offset));
55

56 return ID;
57 }
58

59 @Override
60 public String visit(Literals.Int node, Integer arg) {
61 String ID = _rep.getScopedID(node, scope.peek(), sess);
62

63 db.add(PredicateFile.INT, ID, node.n_str);
64

65 return ID;
66 }
67

68 @Override
69 public String visit(Literals.Float node, Integer arg) {
70 String ID = _rep.getScopedID(node, scope.peek(), sess);
71

72 db.add(PredicateFile.FLOAT, ID, String.valueOf(node.n));
73

74 return ID;
75 }
76

77 @Override
78 public String visit(Literals.Complex node, Integer arg) {
79 String ID = _rep.getScopedID(node, scope.peek(), sess);
80

81 db.add(PredicateFile.COMPLEX, ID, String.valueOf(node.n),
82 String.valueOf(node.i));
83

84 return ID;
85 }
86

87 . . .
88

89 @Override
90 public String visit(ControlFlow.While node, Integer arg) {
91 String ID = _rep.getScopedID(node, scope.peek(), sess);
92

93 String testID = node.test.accept(this, arg);
94

95 db.add(PredicateFile.WHILE, ID, testID);
96 db.add(PredicateFile.FILEPOSITION, ID, String.valueOf(node.lineno),
97 String.valueOf(node.col_offset));
98
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99 for (int i = 0; i < node.body.length; i++) {
100 String nodeID = node.body[i].accept(this, arg);
101 db.add(PredicateFile.WHILEBODY, ID, String.valueOf(i), nodeID);
102 }
103

104 for (int i = 0; i < node.orelse.length; i++) {
105 String nodeID = node.orelse[i].accept(this, arg);
106 db.add(PredicateFile.WHILEORELSE, ID, String.valueOf(i), nodeID);
107 }
108

109 return ID;
110 }
111

112

113 . . .
114

115 @Override
116 public String visit(Definitions.FunctionDef node, Integer arg) {
117 /* Get ID before pushing to scope */
118 String ID = _rep.getScopedID(node, scope.peek(), sess);
119

120 _rep.addScopeRep(node, scope.peek(), node.name);
121

122 /* Change scope to visit children */
123 scope.push(node);
124

125 String argsID = node.args.accept(this, arg);
126

127 String returnsID = NULL_STR;
128 if (node.returns != null)
129 returnsID = node.returns.accept(this, arg);
130

131 db.add(PredicateFile.FUNCTIONDEF, ID, node.name, argsID, returnsID);
132 db.add(PredicateFile.FILEPOSITION, ID, String.valueOf(node.lineno),
133 String.valueOf(node.col_offset));
134

135 for (int i = 0; i < node.body.length; i++) {
136 String nodeID = node.body[i].accept(this, arg);
137 db.add(PredicateFile.FUNCTIONDEFBODY, ID, String.valueOf(i), nodeID);
138 }
139

140 for (int i = 0; i < node.decorator_list.length; i++) {
141 String decoratorID = node.decorator_list[i].accept(this, arg);
142 db.add(PredicateFile.FUNCTIONDEFDECORATORS, ID, String.valueOf(i),
143 decoratorID);
144 }
145

146

147 /* Pop scope before returning */
148 scope.pop();
149

150 return ID;
151 }
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152

153 @Override
154 public String visit(Misc.Module node, Integer arg) {
155

156 _rep.addScopeRep(node, node, filename);
157

158 scope.push(node);
159 super.visit(node, arg);
160 scope.pop();
161

162 return null;
163 }
164 }

You probably just skipped over it so let’s take some time to explain what is happening.

• Firstly, as expected, we extend the DepthFirstVisitor class and set our return and
argument types to String and Integer accordingly. Arguments are of no importance,
but the String return value is necessary for our implementation as we will soon see.

• The fields of our fact generation visitor are explained below:

– filename is the name of our original Python source file. We use it in our node
IDs described later.

– db which is an instance of the Database class, provides an abstraction (along
with an enumeration we define in another utility file) such that we can write to
appropriate fact files in this fashion : db.add([EnumConstant], [Column1],
[Column2], ...). Each enumeration constant corresponds to a separateWriter
instantiated to write to a specific fact file. We can write arbitrarily many columns
since add uses Varargs.

– _rep of type ASTRepresentation provides a mapping between Node objects
and the scoped IDs we create to identify them. Scoped IDs are unique IDs
that also include scope information. For example a node’s scoped ID could
be : input.py/foo/Int/219. It basically consists of two parts : 1) The scope
: input.py/foo, 2) Our node’s ID : Int/219. Note that we make no distinction
between function and class scopes but it is an easy addition to our implementation.
In that sense, foo could either be a class or a function. The node’s ID includes
the node type (Int here) and a unique number.

– sess of type Session provides the unique numbers that constitute the last part
of an ID. For simplicity, we just count the nodes as a means of providing unique
IDs. The first node we form an ID for will get 0, the next 1, and so on. The IDing
scheme can change by modifying the Session class implementation. More
generally, in case we analyze multiple files (which we will not discuss in this
thesis), we can arbitrarily reset the identification, or use the same Session
object for all files.

– scope of type Stack<Node> allows us to keep track of the current scope during
our traversal, so that we can always provide the scoped IDs we discussed
earlier.

– NULL_STR is a String that defines what we output in our fact file when a field
of our node is empty (null).
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• We will now explain what typically happens when we visit a node :

– First of, we ask for a scoped ID for our node.

– Then, in case our node has subnodes, we call accept on them so that that they
can get IDed. Their IDs are returned and saved by the original parent node.

– The next step is writing to the fact files. Usually nodes only write to two fact
files : 1) The fact file corresponding to their node category, 2) The fact file that
holds positional information for all nodes that carry it. Some nodes only write
to 1), but other nodes, specifically nodes that contain arrays of subnodes, write
to additional fact files, one for each subnode array, so that the array contents
can be preserved and correctly indexed. There are also nodes that don’t write
to fact files.

– The final step is to simply return the node’s ID we formed in the first step, to be
used in case the current node is a subnode of another node.

Important Note : Step 2 happens before step 3 because when we write to our
current node’s fact file we need to correlate it to its subnodes, so we must know their
IDs.

• Another thing to further clarify is the form of the fact files. This pattern is followed
when writing to fact files: When we write to the fact file that corresponds to our node’s
category, we always start with the node’s ID and then write all fields that are single
nodes (in this case their ID is written) or non-node fields (in that case we write their
values as strings). If our node contains an array of subnodes we write to a new
fact file for every array. The new fact files that correspond to the array in most if
not all cases follow this pattern : (originalNodeID, elementNumber, elementID),
where originalNodeID is the ID of the node containing the array, elementNumber is
the position of the subnode in the array and elementID is the ID of the subnode.

• Notice how nodes that influence scope, like FunctionDef (line 116), push onto the
scope stack to correctly keep track of the scope before they visit their subnodes and
pop the scope stack before they return.

That was the outline of how our simple fact generation visitor works.

4.4 Summary
What we essentially did in this section, was generate facts about the AST’s structure as
the simplest fact generation case. The argument, is that given the framework we have
constructed so far, we could implement arbitrarily complex fact generation visitors or even
program transformers that actually modify the AST. As we mentioned time and again, the
visitor pattern allows us to perform arbitrary operations on the tree so using that we could
achieve any desired fact generation or transformation.
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5. EXAMPLE WALKTHROUGH
5.1 Overview
In this section, an example that goes over the whole process described in previous sections
is given. We have chosen to give our example on a trivial Python program, so that the
complexity of the AST does not clutter our description of what happens in every step.
Moreover, choosing a trivial program helps us elaborate on details, whereas with a larger,
more complex program, a full description and analysis would be stupidly lengthy if not
impossible. It has already been demonstrated that a mere Python function definition yields
a substantially lengthier JSON representation of the AST [2].

5.2 Example
5.2.1 Initial source code
In the next listing, we give our initial source code, assuming it is stored in the file example.py.
We will simply perform a trivial addition of two integer numbers.

Listing 22: Example Source Code

1 1 + 2

5.2.2 AST in JSON format
Following the first steps described in section [3], the AST is exported to the file example.py.json.

Listing 23: astexport command for example.py

1 astexport -p < example.py > example.py.json

The contents of the file example.py.json are now given.

Listing 24: Example AST in JSON

1 {
2 "ast_type": "Module",
3 "body": [
4 {
5 "ast_type": "Expr",
6 "col_offset": 0,
7 "lineno": 1,
8 "value": {
9 "ast_type": "BinOp",

10 "col_offset": 0,
11 "left": {
12 "ast_type": "Num",
13 "col_offset": 0,
14 "lineno": 1,
15 "n": {
16 "ast_type": "int",
17 "n": 1,
18 "n_str": "1"
19 }
20 },
21 "lineno": 1,
22 "op": {
23 "ast_type": "Add"
24 },
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25 "right": {
26 "ast_type": "Num",
27 "col_offset": 4,
28 "lineno": 1,
29 "n": {
30 "ast_type": "int",
31 "n": 2,
32 "n_str": "2"
33 }
34 }
35 }
36 }
37 ]
38 }

5.2.3 Simplified JSON & Relevant Java Classes
At this point, we will not oversimplify as we did in [3]. Instead, we only disregard the
outermost part of the JSON, the object with type Module that contains in its body all ”first
level” nodes in our program. We will not be generating facts for the Module node since
we focus on analyzing one file at a time, and moreover, our example only contains one
expression. The rest of the objects’ fields are only reordered to promote readability.

Listing 25: Example AST in JSON (Simplified)

1 {
2 "ast_type": "Expr",
3 "lineno": 1,
4 "col_offset": 0,
5 "value": {
6 "ast_type": "BinOp",
7 "lineno": 1,
8 "col_offset": 0,
9 "left": {

10 "ast_type": "Num",
11 "lineno": 1,
12 "col_offset": 0,
13 "n": {
14 "ast_type": "int",
15 "n": 1,
16 "n_str": "1"
17 }
18 },
19 "op": {
20 "ast_type": "Add"
21 },
22 "right": {
23 "ast_type": "Num",
24 "lineno": 1,
25 "col_offset": 4,
26 "n": {
27 "ast_type": "int",
28 "n": 2,
29 "n_str": "2"
30 }
31 }
32 }
33 }
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The relevant class definitions are given below to reveal the structural correlation of the
JSON and the object graph we construct when importing and deserializing the JSON.
The definitions of some of the classes have already been provided, but are repeated for
coherence. The accept method described earlier, that allows the visitor pattern to operate,
is excluded for economy of space.

Listing 26: Expr Class Definition

1 public class Expr extends Node {
2 public int lineno;
3 public int col_offset;
4

5 public Node value;
6 }

Listing 27: BinOp Class Definition

1 public class BinOp extends Node {
2 public int lineno;
3 public int col_offset;
4

5 public Node op;
6 public Node left;
7 public Node right;
8 }

Listing 28: Num Class Definition

1 public class Num extends Node {
2 public int lineno;
3 public int col_offset;
4

5 public Node n;
6 }

Listing 29: Int Class Definition

1 public class Int extends Node {
2 public long n;
3 public String n_str;
4 }

Listing 30: Add Class Definition

1 public class Add extends Node {}

The 1-to-1 correspondence between the JSONand the class definitions should be apparent.

5.2.4 Java Object Graph

Figure 1: Object Graph for our example
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The object graph in figure [1] helps visualize the object structure residing in RAM after
having imported and deserialized the file example.py.json. Mentally tilting the graph by
90 degrees to the right better reveals the object graph’s tree shape. In essence, the AST
now resides in our Java program’s memory with the above structure.

5.2.5 Visiting the Object Graph
The relative visit functions of our fact generation visitor that are triggered when visiting the
object graph in figure [1] are now presented. Again, some of them have been presented
earlier, but are repeated for coherence.

Listing 31: Expr Visit Method

1 @Override
2 public String visit(Expressions.Expr node, Integer arg) {
3 String ID = _rep.getScopedID(node, scope.peek(), sess);
4

5 String valueID = node.value.accept(this, arg);
6

7 db.add(PredicateFile.EXPR, ID, valueID);
8 db.add(PredicateFile.FILEPOSITION, ID,
9 String.valueOf(node.lineno),

10 String.valueOf(node.col_offset));
11

12 return ID;
13 }

Listing 32: BinOp Visit Method

1 @Override
2 public String visit(Expressions.BinOp node, Integer arg) {
3 String ID = _rep.getScopedID(node, scope.peek(), sess);
4

5 String leftID = node.left.accept(this, arg);
6 String op = node.op.accept(this, arg);
7 String rightID = node.right.accept(this, arg);
8

9 db.add(PredicateFile.BINOP, ID, leftID, op, rightID);
10 db.add(PredicateFile.FILEPOSITION, ID, String.valueOf(node.lineno),
11 String.valueOf(node.col_offset));
12

13 return ID;
14 }

Listing 33: Int Visit Method

1 @Override
2 public String visit(Literals.Int node, Integer arg) {
3 String ID = _rep.getScopedID(node, scope.peek(), sess);
4

5 db.add(PredicateFile.INT, ID, node.n_str);
6

7 return ID;
8 }
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Listing 34: Num Visit Method

1 @Override
2 public String visit(Literals.Num node, Integer arg) {
3 String ID = _rep.getScopedID(node, scope.peek(), sess);
4 String childID = node.n.accept(this, arg);
5

6 db.add(PredicateFile.NUM, ID, childID);
7 db.add(PredicateFile.FILEPOSITION, ID,
8 String.valueOf(node.lineno),
9 String.valueOf(node.col_offset));

10

11 return ID;
12 }

Listing 35: Add Visit Method

1 @Override
2 public String visit(Expressions.Add node, Integer arg) { return "+"; }

By examining the above methods - and more specifically the db.add() calls - one can infer
the structure of the fact files produced for these node types. Further explanation about
the operation of these methods was given in section [4.3].

A summary of the structure of the above mentioned fact files follows.

Table 1: Fact Files’ Structure

File Name Columns
FilePosition.facts (nodeID, lineno, col_offset)

Expr.facts (nodeID, valueID)
BinOp.facts (nodeID, leftID, op, rightID)
Num.facts (nodeID, nID)
Int.facts (nodeID, n_str)

Something that should be pointed out - and was only briefly touched upon earlier in chapter
[4] - is that some nodes’ visit methods do not write to fact files (e.g. [The Add visit method],
just presented). This is a choice that was made to limit the volume of fact files we produce
since in the case of operators (e.g. +,−, ∗) it is probably wasteful to view them as nodes
and ID them, and thus provide separate fact files for them. In our implementation, we
simply return the corresponding operator as a string which is subsequently written directly
to the fact file of the node that contains the operator node as a field.
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5.2.6 Fact Files
Having exported our AST into JSON, and given that as input to our Java program, which
deserialized it and called our fact generation visitor on it, we get the aforementioned fact
files as an output. In this section the contents of these files will be listed.

Listing 36: FilePosition.facts

1 NODE_ID LINENO COL_OFFSET
2 example.py/Num/2 1 0
3 example.py/Num/4 1 4
4 example.py/BinOp/1 1 0
5 example.py/Expr/0 1 0

Listing 37: Expr.facts

1 NODE_ID VALUE_ID
2 example.py/Expr/0 example.py/BinOp/1

Listing 38: BinOp.facts

1 NODE_ID LEFT_ID OP RIGHT_ID
2 example.py/BinOp/1 example.py/Num/2 + example.py/Num/4

Listing 39: Num.facts

1 NODE_ID N_ID
2 example.py/Num/2 example.py/Int/3
3 example.py/Num/4 example.py/Int/5

Listing 40: Int.facts

1 NODE_ID N_STR
2 example.py/Int/3 1
3 example.py/Int/5 2

The IDing scheme was described in section [4]. The correspondence between the [object
graph] and these fact files is pretty simple. Every object instance corresponds to a row in
the appropriate fact file (with the exception of the Add node as discussed earlier). The
member fields of the object (minus the positional information that is written to a separate
file) are directly written to the fact file if they are not references to other objects but
primitives, while for fields that are references, the ID of the referenced object is written
so as to indirectly point to that object.

5.3 Summary
The example given in this section sheds light on thewhole process. The starting, intermediary
and final files/structures were thoroughly presented. To summarize once more :

Python program
astexport−−−−−→ JSON AST

Gson−−−→ Java Objects
V isitor−−−−→ Fact F iles
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6. ADDITIONAL THOUGHTS
6.1 Verification & Loss of Information
An important question that arises is the following : Are the products of our transformation
process at all steps equivalent to the original Python AST? The short answer is : probably
yes. The lengthier answer is that we assume the JSON representation is equivalent,
since it is produced by an external tool, namely astexport. Additionally, our Java object
representation of the tree is equivalent to the JSON representation. That was tested by
re-serializing our Java objects to JSON and comparing to the original JSON we used as
input. Finally, the way we constructed the fact files, we have probably preserved all the
necessary information contained in our objects. Consequently, in theory, we should be
able to reconstruct the original Python AST or even further, the original Python program.
This is not an easy task however, especially when starting from the last product of the
chain, fact files. Proving that starting from fact files we can reacquire the original program
would be interesting but it is not explored in this thesis. It could possibly be examined as
future work.

We state, with little uncertainty, that all the information of the original AST or program (they
are equivalent since Python uses the AST to produce the bytecode that is interpreted) are
preserved throughout our transformation. This is merely a statement however. A proof
would require rebuilding the AST or program starting from the fact files as discussed in
the above paragraph.

6.2 Implementation Language
In retrospect, we need not have implemented our work using the Java language. A Python
implementation might have been a lot less troublesome since most of the transformation
steps would be eliminated, and as a result we would have only had to implement the
visitor pattern to perform fact generation. There are two main reasons for the language
choice : 1) Out-of-the-box performance of the JVM compared to the Python interpreter, 2)
Integration with the Doop [1] platform.

6.3 Caveats
As stated in Python’s documentation, its abstract syntax grammar might change in an
arbitrary way with every release, thus affecting the structure of the AST (via addition,
removal or modification of nodes of different types), and subsequently rendering the work
described here incomplete or imprecise. Usually, changes are of a small scale, so, a
few modifications of our implementation could allow us to work with any desired Python
version. For the purposes of this thesis, we have only considered the AST structure as it
is described for Python 3.6.
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7. CONCLUSIONS
The number of static analysis tools and techniques is rapidly growing, not only for the
Python language, but universally. Checking the source codemanually is an almost impossible
task in large codebases, with the software becoming more and more complex and lengthy.
In this thesis, we provided a framework upon which various static analyses and program
transformations could be implemented for Python programs, on the AST level. Our Java
program, along with our tools, [astexport, Gson], transforms the input Python program
to equivalent fact files. The fact files can then be imported for analysis. For example, a
Datalog program could be used to write a declarative static analysis algorithm, as is done
in the Doop framework. Moreover, our Java program is extensible, thus new algorithms
on the AST are easy to implement through the visitor pattern we provide.

This work is by no means complete. It is merely the first step towards a Java analysis
framework for Python programs, and subsequently can be extended in various ways:

• Reconstruct the original program from fact files to prove that the transformation is
non-destructive and reversible.

• Implement different kinds of visitors to suit various traversal/modification needs.

• Write more complex fact generation visitors that produce non-trivial facts.

• Construct static analysis programs in Datalog that use the facts produced as input.

• Write Datalog programs to check the consistency of the fact files. (e.g. Check if all
IDs are valid)

• Support multiple Python versions. (we only focused on 3.6 while there is still a lot of
code in Python 2.7)

• Add parallelism wherever possible and the ability to produce facts for multiple files
concurrently.
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ACRONYMS AND ABBREVIATIONS
AST Abstract Syntax Tree
JVM Java Virtual Machine
JSON JavaScript Object Notation
EDB Extensional Database
IDB Intensional Database
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