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ΠΕΡΙΛΗΨΗ

Οι τεχνικές επιβλεπόμενης μάθησης τυπικά λειτουργούν με την υπόθεση πως το σύνολο

εκπαίδευσης και δοκιμής έχουν ληφθεί από μία κοινή κατανομή. Για αυτόν τον λόγο,

η εκπαίδευση χρήσιμων μοντέλων με συμβατικές μεθόδους για επιβλεπόμενη μάθηση

απαιτούν τουλάχιστον κάποια δεδομένα με ετικέτες από το πρόβλημα που μας ενδιαφέρει.

Η εκτεταμένη έρευνα στο πεδίο της μάθησης μηχανής, και ειδικότερα στην βαθιά μάθηση,

έχουν αποφέρει πολύ ισχυρές μεθόδους για την αντιμετώπιση προβλημάτων επιβλεπόμενης

μάθησης, ενώ οι εξελίξεις σε συστήματα διαχείρισης μεγάλων δεδομένων μας επιτρέπουν

να συλλέγουμε και να οργανώνουμε ακατέργαστα δεδομένα με ταχύτατους ρυθμούς. Αυτή

η πρόοδος έχει σε μεγάλο βαθμό δει το “κώλυμα” της διαδικασίας της μάθησης να μεταφέρεται

από την μοντελοποίηση και την εκπαίδευση, στην συλλογή ετικετών. Υποστηρίζουμε

πως για την πλήρη εκμετάλλευση της τεχνολογίας μας, πρέπει να ξεπεράσουμε αυτό

το “κώλυμα” και να αναπτύξουμε μοντέλα που είναι ανθεκτικά σε διαφορές μεταξύ των

κατανομών των συνόλων εκπαίδευσης και δοκιμής. Η προσαρμογή πεδίου είναι ένα

πλαίσιο το οποίο απευθύνεται στα παραπάνω θέματα και κάτω από ορισμένες υποθέσεις

προσφέρει εργαλεία για την επίλυσή τους. Σε αυτήν την εργασία, θα συζητήσουμε βελτιώσεις

σε υπάρχουσες τεχνικές για την προσαρμογή πεδίου που στηρίζονται σε αντιμαχόμενα

νευρωνικά δίκτυα. Εισάγουμε μία νέα συνάρτηση κόστους εμπνευσμένη από την πρόοδο

στα generative adversarial networks (GANs) και το πεδίο της βέλτιστης μεταφοράς. Τέλος,

προτείνουμε ένα νέο πλαίσιο, το οποίο καλούμε Αμφίδρομη Μερική Προσαρμογή Πεδίου,

στο οποίο χαλαρώνουμε τις συνήθεις υποθέσεις που γίνονται στην απλή προσαρμογή

πεδίου και παρουσιάζουμε έναν αλγόριθμο για την αντιμετώπιση προβλημάτων σε αυτό

το νεό πλαίσιο.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μάθηση Μηχανής

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Μεταφερόμενη Γνώση, Προσαρμογή Πεδίου, Αντιμαχόμενα Νευρωνικά

Δίκτυα





ABSTRACT

Supervised learning techniques typically work under the assumption that train and test

datasets are drawn from the same distribution. As such, training useful models with con-

ventional techniques for a supervised learning task, requires us to obtain at least some

labeled data for our problem of interest. Extensive research efforts in the fields of ML

and in particular DL have yielded powerful methods for tackling supervised problems and

developments in big data systems have made it possible to gather raw data at unprece-

dented rates. These advances have seen, to a large extent, the bottleneck of the learning

procedure shift from modelling/training to obtaining labels for training data. We argue that

in order to fully utilize our technologies, we need to bypass this bottleneck by creating

models that are robust under train and test data distribution discrepancies. DA is a frame-

work that addresses the aforementioned issues and under certain assumptions, provides

tools to resolve them. In this thesis we discuss improvements on current techniques for

DA that rely on adversarial neural networks. We introduce a new cost function for such

methods inspired by progress in generative adversarial networks (GANs) and the field of

optimal transport. Finally, we propose a novel problem setup, termed two-way partial do-

main adaptation, which relaxes the assumptions made in traditional DA and we present a

first algorithm to tackle problems in this setup.

SUBJECT AREA: Machine Learning

KEYWORDS: Transfer Learning, Domain Adaptation, Adversarial Neural Networks
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INTRODUCTION

Code for the experiments and methods described in this project can be found in the fol-

lowing repository https://github.com/GPikra/Adapy.

An important limitation of “traditional” ML algorithms is that they work under the assump-

tion that training and test data share the same distribution (and/or feature space). TL is

essentially a framework where this assumption is relaxed, allowing us to tackle ML prob-

lems by incorporating knowledge from another distinct but related ML problem1. Effective

transfer learning is practically relevant and highly desirable [1]. In particular, an important

direct application of TL, which will constitute our problem of interest in this project, is ob-

taining labels for an unlabeled dataset from a model trained on some other dataset with a

related label space and without necessarily the same feature-space distribution. We will

refer to this problem as label transfer.

Past studies on TL have yielded numerous “shallow” methods2 [2] for performing trans-

fer, but recently there has been an increasing interest for exploiting deep neural networks

in this field. Earlier approaches for “deep” TL attempted to capture transferable features

from the lower layers of neural networks trained on source data and fine-tune a network

with these features on target data. For this reason, these methods are refered to as fine-

tuning methods. Later on, training networks with deep architectures specific to targeting

TL emerged as a fruitful practice and inspired many state of the art algorithms. In this the-

sis, we focus on an important class of such algorithms, which work within an adversarial

framework.

In label transfer, the instances of the underlying datasets may or may not lie in the same

feature space and (if they do) we assume that they are distributed differently. This last

assumption is not necessary but it is generally the case and if it doesn’t hold, label trans-

fer reduces to classification. A special case of label transfer is the following: Given two

datasets with the same label space such that exactly one of them is labelled -the source

dataset-, can we retrieve the labels for the other -the target dataset- ?. As we will see later,

this setup is widely known as domain adaptation and there is a vast arsenal of algorithms

for tackling this kind of problem. In particular, adversarial domain adaptation algorithms

are quite flexible and effective in this setup. Nevertheless, both theory and practice sug-

gest that in certain cases these algorithms can fail and we will explore how to fix this by

introducing ideas from the field of optimal transport.

DA is very appealing theoretically, but the shared label space assumption is quite restric-

tive for practical applications. This is because in practice, we ideally want to extract labels

1This is discussed further below
2Without the use of deep neural networks
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from large “general-purpose” datasets with much larger label spaces than any specific-

task-dataset. For example, given an unlabelled dataset of natural images of domestic

animals, we want to be able to use eg ImageNet to extract labels. In pursuit of this goal,

the partial domain adaptation framework was recently introduced in which algorithms work

under the assumption that labels for target data are contained in the larger label space

of source data. Even though we believe the introduction of PDA is a step in the right di-

rection, we remark that creating such general-purpose source datasets, which document

the entire label space of any given specific task is unrealistic. Take for example the task

of classifying natural images or the task of classifying human activity in video data. It is

kind of hard to imagine a dataset in which every possible label for these tasks is well rep-

resented! To address this issue we introduce a new more general framework which we

term two-way partial domain adaptation.

Given a source and a target dataset, our aim is to automatically extract precisely the

information from the source data relevant to the target data and simultaneously to identify

which target instances are relevant to the given source. That is, we simply assume some

arbitrary non-empty intersection between target and source label spaces, and we want to

identify those instances of the target data that can benefit from the source dataset. We

refer to such instances as transfer relevant. Additionally, we are interested in identifying

precisely those instances of the source dataset that can benefit the target dataset (hence

“two-way”). Note that we can not hope to predict the label of a target instance belonging to

a class not represented in the source label space but the advantage of identifying which

instances belong to such classes is two-fold: Firstly, it allows us to minimize negative

transfer during the adaptation procedure and secondly, it allows us to identify the subset

of target instances that can be reliably labelled using this source.

In this first chapter, we present an overview of the general framework we will be using

and describe the transfer learning and domain adaptation problems. In addition, PAC

theoretic bounds will be discussed for domain adaptation. We also briefly introduce the

reader to earlier methods for DA as they provide usefull insights and a more complete

picture of the field. Specifically, we discuss an important algorithm for shallow feature-

representation transfer and devote a section for fine-tuning methods. Last but not least,

we describe the adversarial ANN framework and how it can be used for DA.

In the second chapter, we discuss the Wasserstein distance, a metric for measuring dis-

tribution similarity first introduced in the field of optimal transport. We motivate its use

in the feature-representation approach for domain adaptation and we argue, through a

series of theoretical results, that it is quite natural to build an adversarial model around

the Wasserstein distance. Furthermore, we present a novel adversarial algorithm for DA

using the ideas from this section and present experimental evidence of its superiority on

a series of interesting DA tasks. These include image obstruction, displacement, rotation

and rescaling.

In the third chapter, we present the PDA problem. We consider the complications that

G. Pikramenos 24
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arise in PDA and present an overview of the main algorithmic schemes that can be found

in the bibliography for tackling this problem.

In the final chapter we motivate and discuss our new adaptation framework. We present a

novel algorithm to tackle it and provide some theoretical support of its effectiveness. We

conduct experiments to illustrate that previously proposed algorithms fail in our new setup,

while our new method works.

1.1 Preliminaries

In the TL framework, the description of an ML problem is typically broken down into a do-

main and a task3. A domain D is a tuple (X , X), where X is some feature space and X is

some random variable mapping instances of the underlying “experiment” to elements of

X . A task T over a domain D = (X , X) is a tuple (Y , Y |X), where Y is some label space

and Y |X is a conditional random variable mapping the results of the underlying experi-

ment to elements of Y. Because we are usually interested in P (X) and P (Y |X) (rather
than X and Y |X) we often write (X , P (X)) for domains and (Y , P (Y |X)) for tasks.

The objective of the problem {D, T } is to learn from the available data a function f :
X → Y, to predict the value of Y given an observation of X. We call f a predictor for

T . This needs to be done in an optimal way with respect to some criterion we adopt. For

instance, in a classification task where we are interested in maximum accuracy, our objec-

tive would be to find an f such that ∀x ∈ X , f(x) ≈ arg max
y

Pr(Y = y|X = x). Similarly,

in a regression task where we intend to minimize the MSE of f , we would need to have

∀x ∈ X , f(x) ≈ E[Y |X = x].

For example, if we were interested in classifying images in those that contain cats and

those that do not, our domain could be D = (R, X), where X takes as input an image A
and outputs A’s average pixel intensity (here A is an instance of the underlying “experi-

ment”; a natural image). Define Y (A) = 1 ifA is an image of a cat and Y (A) = 0 otherwise.
Our task may then take the form T = ({0, 1}, Y |X) and our objective is to learn the most

probable label y ∈ {0, 1} given an observed average pixel intensity x ∈ R.

Describing ML problems as above, we may phrase the goal of TL as follows. Given a

source problem {DS, TS} and a target problem {DT , TT}, we want to improve the predic-

tor fT (·) for TT by incorporating information from {DS, TS} and fS(·). In general, we may

even have more than one source problems. If {DT , TT} = {DS, TS}, then we recover the

traditional ML setting.

There are three common metrics for measuring the performance of a TL method.

3Notations and definitions are adapted from [1],[2]
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1. The difference in final performance of fT (·) with and without transfer

2. The difference in steps before convergence of the algorithm with and without transfer

3. The initial performance of the algorithm (before additional training on the target task)

with and without transfer

Note that 2 and 3 are only relevant for iterative algorithms, eg for methods using neural

networks.

If information from the source problem reduces the performance of fT (·) we say that nega-
tive transfer has occured. It is a major challenge in current TL research to reduce negative

transfer automatically. In particular, recent research has tried to identify ways to measure

relatedness between tasks which could potentially allow us to transfer the “right” amount

of knowledge between them [1].

1.2 Transfer Learning Scenarios

Depending on the differences between {DT , TT} and {DS, TS} a number of different TL

frameworks arise which need to be studied separately4. In this project our focus is mainly

on DA, in which TT = TS and DT 6= DS. DA problems are classified as homogeneous

or heterogeneous depending (respectively) on whether XS = XT or XS 6= XT . Under the

assumption TT = TS where the common label space is Y, one might be tempted to think

that a model for P (Y |XS) will work well for P (Y |XT ) without further amendment (since the

underlying distribution P (Y |X) is the same in both cases), however, this is not the case in

practice because P (Xs) 6= P (XT ), which we refer to as dataset bias or covariate shift. A

detailed argument and example for this can be found in [3].

In addition, in the context of DA, our focus is on problems where data from the source

domain is much more abundant than data from the target domain and both source and

target data are available during training. Furthermore, source data is assumed to be at

least partially labeled, while target data may be unlabeled5. This framework is refered to

as TTL and in this project we treat DA as part of TTL.

There are two main approaches to tackling DA, namely the instance-based approach and

the feature-representation approach. The former is inspired by importance sampling6,

while the latter assumes the existence of a shared near-optimal inductive bias between

tasks and attempts to find it. In particular, feature representation methods look for a trans-

formation that maps both domains in an “intermediate” space in which their marginal dis-

tributions are similar. This procedure mitigates the effects of covariate shift.

4A description of the different TL scenarios that may arise is given in [1],[2]
5At least some labeled data may be needed as a validation set
6See [1], page 8 for a detailed argument
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Figure 1.1: Illustration of covariate shift and its problems. On the left the source domain and a decision

boundary for a classifier trained on the source domain. In the middle, the target domain juxtaposed with the

source decision boundary and a decision boundary obtained by supervised learning on the target domain.

On the right the two domains mapped to some latent space through domain adaptation. (Image taken from

https://medium.com/deep-learning-domain-adaptation-on-image-segmentat/introduction-2b44dd49ea05,

10/4/2019)

The following informal discussion is aimed at motivating the use of feature representa-

tion transfer for DA further. Intuitively, if two domains are related we expect that there

exist shared hidden variables which majorly affect the data in both domains. That is, there

should be some shared latent space in which the distributions of the data from the two do-

mains are very similar and which accounts for most of the variance in the common label

space. In fact, we could informally think of how related two domains are, as the extent to

which we can find a representation that allows us to perform well on both tasks simulta-

neously.

If we could discover the aforementioned latent space we could use it to train an algo-

rithm on data from either domain to use on either task. This latent space is probably lower

dimensional than the original domains because we expect the later to include other vari-

ables that “separate” the two tasks. Thus, most approaches to representation transfer are

to perform some form of dimensionality reduction on the two domains, ensuring that the

marginal distributions on the resulting space are similar. Note also that the resulting space

must be “rich” enough to make the prediction of label variables easy.

1.3 Learning Bounds for Domain Adaptation

In this section we will present some theoretical guarantees for the accuracy of DA. Re-

call that for typical classification (ie under the assumption of identical marginals between

training and test sets), the VC bounds from PAC learning theory give

εTest(h) ≤ εTrain +O
(√V C(H)

N
log(

N

V C(H)
)− log(δ)

N

)

27 G. Pikramenos



Generalizing Domain Adaptation: Relaxing Task Assumptions & an Alternative Cost Function for

Adversarial Methods

Figure 1.2: An example illustrating a good and a bad hypothesis space. In both pictures the blue points

represent the source domain and the orange points the target domain. The circles represent points in

class A and the rombuses represent points in class B. On the left the hypothesis space includes one

parameter models specifying a vertical line. On the right our hypothesis space includes arbitrary linear

models specified by two parameters. On the left H is not strong enough to separate the domains but it can

easily separate the classes. This is not true on the right.

where H is our hypothesis space, V C(H) is the VC-dimension and δ is the probability

that the above inequallity will hold. When we relax the assumption of identical marginals,

results established in [32] give the following bound

εTarget(h) ≤ εSource(h) +O
(
dH∆H(DS, DT ) +

√
V C(H)

N
log(

N

V C(H)
)− log(δ)

N

)
+ λ

where λ = min
h∈H

εTarget(h) + εSource(h). The expression dH∆H is defined as

dH∆H(π1, π2) = sup
A∈AH∆H

|π1(A)− π2(A)|

whereH∆H = {g | ∃h, h′ ∈ H, st ∀x, g(x) = XOR(h(x), h′(x)} is the symmetric difference
hypothesis space and AH∆H = {A | ∃g ∈ H∆H, st g(x) = 1, iff x ∈ A}. In words, dH∆H

resembles the total variation distance but with the supremum taken over all sets where

two hypotheses in H disagree. By inspecting the above inequality we note two things.

Firstly, to be able to guarantee some success in the adaptation procedure, it is necessary

that there is a common near optimal inductive bias h∗ ∈ H; otherwise the term λ may be

too large. Secondly, we want our hypothesis space to be complex enough to discriminate

between classes but not complex enough to discriminate between domains. It is readilly

seen that a task is well suited for adaptation only if we can represent our instances in such

a way, such that discriminating between classes is easier than discriminating between

domains.
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1.4 Shallow Representation Domain Adaptation

It is evident from the above discussion, that any algorithm for representation-based trans-

fer should inccorporate some measure of distribution similarity. Usual choices involve the

KL divergence, cross entropy and JSD. However, in most settings the use of these mea-

sures will require an intermediate density estimation step7. An alternative that allows us

to skip this step is the MMD criterion [4].

In this section we will discuss the algorithm introduced in [5] for representation transfer.

It is based on maximum variance unfolding [6] as a dimensionality reduction technique

and it achieves distribution similarity by minimizing theMMD between domains in the new

space. Some brief remarks from the theory of RKHS are necesary for this discussion and

are presented below.

1.4.1 Note on kernels

A RKHS H over a domain D with kernel function k : X ×X → R, is a Hilbert space of real
functions f : X → R with dot product 〈·, ·〉 satisfying

〈f, k(x, ·)〉 = f(x) (1.1)

and span{k(x, ·) : x ∈ X} = H. (1.1) is refered to as the reproducing property and it

implies that k is symmetric and positive semi-definite. The later means that for any finite

sequence of points X = {x1, ..., xn}, the kernel matrix of k over X defined as

Kij = k(xi, xj)

is positive semi-definite. Furthermore, for every symmetric positive-definite k there is an

RKHS with kernel k. We call span(k(x, ·) : x ∈ S) a section of the kernel on S and

k(x, ·) = φ(x) a feature map of k. A kernel is universal, if for any compact subset Z ⊆ X ,

any continous real-valued function over Z can be approximated arbitrarily close by an ele-

ment of the section of k on Z [7]. A RKHS is universal if its reproducing kernel is universal.

Given data in two domains X = {x1, ..., xn1} and X ′ = {x′1, ..., x′n2
} the MMD empirical

estimate for their distribution similarity is given by

MMD(X,X ′) = || 1
n1

n1∑
i=1

k(xi, ·)−
1

n2

n2∑
i=1

k(x′i, ·)||H (1.2)

In [4] and [7] detailed motivation for this measure is given. TheMMD criterion only has the

desired properties when the underlying kernel is universal. For this reason it is important

to ensure that our kernel is universal in the discussion to come.

7This is not a problem in the case of neural networks, as this step comes essentially for free
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It can be shown that if for any set X the induced kernel matrix is positive definite, then the

kernel is universal [5]. The MMD criterion can be restated in terms of kernel matrices as

follows

MMD(X,X ′) = trace(KL)

where,

K =

[
KX KX,X′

KT
X,X′ KX′

]
, and Lij =


1
n2
1
, if i, j ≤ n1

1
n2
2
, if i, j > n1

− 1
n1n2

, otherwise

Here KX,X′ is the matrix with entries Kij = k(xi, x
′
j) for xi ∈ X and x′j ∈ X ′. Finally, note

that if a kernel can be written as

K = K̃ + εI (1.3)

with ε > 0 and K̃ � 0, it is positive definite and hence universal.

1.4.2 Maximum Mean Discrepancy Embedding

The MMDE [7] is a dimensionality reduction technique, that ensures that the distributions

of source and target domains in the resulting space are similar in the MMD sense. Given

two domainsXS, XT wewant to find amappingψ such that it minimizesMMD
(
ψ(XS), ψ(XT )

)
.

If φ(x) is the feature map of a universal kernel then for any arbitrary map ψ, φ ◦ψ(x) is the
featuremap of another universal kernel [5]. This effectivelymeans that MMD

(
ψ(XS), ψ(XT )

)
is equivalent to MMD(XS, XT ) for some other universal kernel k′.

Now from what we discussed, the problem we need to solve looks like

min
K

trace(KL)

subject to K � 0

This however is not enough as we need the resulting space to be rich enough to allow

good prediction. This is why the additional constraints below are added [6].

min
K̃

trace(K̃L)− λK̃

subject to [1] K̃ii + K̃jj − 2K̃ij + 2ε = ||xi − xj||2, ∀(i, j) ∈ N
[2] K̃1 = −ε1
[3] K̃ � 0

Here, 1 is the vector of all ones andN is the set defined by: (i, j) ∈ N if xi, xj are δ-nearest
neighbors of each other (for some predefined δ). The modifications to the problem es-

sentialy mean that nearby points in the original space stay close after the transformation

(constraint 1) and far away points get stretched maximally (-λK̃ in objective). The second
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constraint centers the data on the new space. Also, we change variables from K ↔ K̃,

where K = K̃ + εI as this allows us to cast the problem as an SDP problem.

Now, having solved the SDP we can perform PCA on K̃ to obtain a low dimensional

representation for our data. Since the data is centered, K̃ is related to the covariance

matrix of our data in the new space and so this is justified. The obtained representation

can be used to train a classifier on source data and it can then be used to solve the target

task, as we no longer have the covariate shift problem and the latent space is rich enough

to allow good prediction.

In practice, this algorithm does not scale up well. Firstly, even though SDP solvers have

polynomial complexity, the fastest available ones have complexity worse than∼ O(n3) [8].
This leads to an overall complexity of O((n1 + n2)

6.5) for MMDE [9]. Furthermore, stor-

ing the involved matrices in memory for large problems may be infeasible. Overall, even

though the above algorithm is theoretically appealing it is very computationally intensive

and this hinders its scalability and practicality.

To elude the computational burden of MMDE, a modified version of this algorithm is pro-

posed in [9] called Transfer Component Analysis, which also allows us to tackle partial

domain adaptation problems.

1.5 Transfer via Fine-Tuning Neural Networks

1.5.1 Method Description

Fine-tuning methods for DA are amongst the most widely used ones.8 The general pro-

cedure for these methods involves training a deep neural network on the source task (or

assembly of source tasks) and using the learnt weights to initialize a network which is then

trained (“fine-tuned”) on the target task. Design choices for these algorithms are mainly

concernced with the fine-tuning phase and examples include whether or not to freeze

weights in lower layers and randomly initialize the remaining weights and whether to aug-

ment target data with source data. In the fine-tuning method framework, a “cut” on the

source network at some layer l means that we are considering separately the layers from

input up to and including l and the rest of the layers.

Informally, experiments suggest that features learned by lower layers (nearer to input)

of the network are fairly general and can be transferred accross domains, while higher

layer features are domain specific9. For example, deep neural networks trained on nat-

ural images tend to learn features similar to Gabor filters or color blobs irrespective of

8Strictly speaking these methods could be thought of as multi-task learning methods, however because

the amount of labeled data may be very limited we consider it DA
9[10]
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the objective function or the specific dataset used10. The experimental setup is described

in detail in [10]. Note that for the above referenced experiments, the generality of a set

of features for a task A is quantified only with respect to a second task B, so beneficial

transfer is only guaranteed if the underlying datasets are related; it is not necesary that

using low level features from an other task will be beneficial.

An interesting remark made in [10] is that even if the tasks between which we wish to

transfer knowledge are related, choosing the number of layers to use from the source

network is not very straightforward. Cutting a network of N layers at layer l and using

layers 1 . . . , l to initialize the lower layers of a target network exhibits bad behaviour when
l ≈ N

2
. In [10] it is argued that this observation is due to fragile co-adaptation devel-

oped between the network’s intermediate layers, which can only be learned when layers

are trained jointly (thus fine-tuning cannot fix this). Cutting the network near the middle

breaks the co-adaptation between the two parts and thus should be avoided. On the other

hand we want to incorporate as much “general” information from the source task as pos-

sible. So we need a way to deal with this dilemma.

For example, say we are using the first layer of the source network for transfer between

two related datasets. It may be beneficial to use the second layer as well (as more infor-

mation is adapted) but it might not be the case that using a third layer is beneficial; the

third layer could be co-adapted with subsequent layers and provide bad information on its

own. In addition, adding more and more layers (to incorporate co-adaptations) may lead

to more domain-specific features, which is not desirable for beneficial transfer.

In practice these issues are dealt with using a validation set; We treat the cutting point

l as a hyperparameter.

1.5.2 Extending these Ideas to Multi-Task Learning

MTL is part of the ITL framework, where we assume that there is available labelled data

in both source and target problems, in similar volumes and both are available during train-

ining. Furthermore, we need not have shared domains or tasks between problems, eg
TS 6= TT and/or DT 6= DS. In contrast to DA, in MTL we do not distinguish between

“source” and “target” problems, as this characterization is not really relevant, but instead

index problems, eg {Di, Ti}ni=1. MTL is homogeneous if all supervised tasks Ti are of the

same type (for example classification/regression). In this section we consider homoge-

neous classification MTL. Similarly, when Di share the same feature-space X we say we

have homogeneous-feature MTL.

As mentioned earlier, fine-tuning methods are very closely linked with multi-task learn-

ing. In particular, when target and source data are both labelled we can extend the ideas

from the previous section to develop a scheme for learning the tasks simultaneously. This

10ibid

G. Pikramenos 32



Generalizing Domain Adaptation: Relaxing Task Assumptions & an Alternative Cost Function for

Adversarial Methods

Figure 1.3: Tensorboard logs for training on 20 batches of 64 images from data consisting of 1000
random instances of the USPS dataset. A randomly initialized network (orange) vs a network with 2 lower
layers pretrained on MNIST (blue). Networks have the same topology. It is clear from this example that

initializing lower layers with weights obtained from a pretrained network results in faster learning and

higher final accuracy. Accuracy after 20 epochs is ≈ 84% with transfer and ≈ 53% without.

serves as a form of regularization enabling the trained models to generalize better and

additionally allows us to train more complex models on lesser data. The idea is straight-

forward: train two (or more) neural networks in an alternating fashion while a fixed number

of their lower layers is shared between them. Although this method is not state-of-the-art

in MTL, we present it here for completeness.

As discussed earlier, lower layers tend to be general and thus sharing them between

models for related tasks is appropriate. The models can still become specific in their up-

per layers, although we cannot completely avoid task specific features creeping into the

shared representation. As discussed in [12], it is possible to make multi-task learning

more effective by slightly modifying this idea to incorporate adversarial methods. Here we

present the benefits of multi-task learning experimentally.

For our experiment we trained four networks on MNIST and USPS, two of which are

trained jointly (one on each task) while sharing their first layer and two of which are trained

independently of each other (one on each task) which serve as controls. For each task

we picked a subset of the labels such that the label spaces for each task slightly differ.

Further, we used a small amount of data from each dataset. The results indicate that the

classifier for task 2 performed significantly better than its control counterpart, while on task

1 there was little difference between the multitasking network and its control.
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Figure 1.4: Tensorboard logs for the multi-task experiment.

1.6 Adversarial Domain Adaptation

In this section we describe adversarial methods for DA. The term adversarial methods

broadly refers to a class of algorithms that train neural networks jointly with “competing”

objectives. Adversarial networks for DA can be broken down as follows: There are two

“representer” networks MS and MT mapping the source and target domains respetively to

a common latent space and a domain discriminator network D mapping the latent space

to the interval [0, 1]. Additionally, there is a classifier network C that maps the output ofMS

to a distribution over the common label space. When MS = MT we say that the method is

symmetric. Symmetric methods are in general harder to train because they require more

fine tuning and the classifier network should also be trained during transfer.

In the adaptation phase, MS and MT are trained so that D cannot discriminate between

their outputs and so that C performs well on source data given input fromMS. On the other

hand, D is trained to distinguish the outputs of MS and MT . As we will see later, under a

suitable loss function, we can think of D(x)’s as measuring the likelihood that x was gen-
erated by MS. We see thus that the representer networks and the discriminator are like

adversaries. For asymmetric methods, the classifier is usually pretrained on source data

and kept fixed during the adversarial training phase.

The aim is to reach an equillibrium (point of convergence) where D is identically 0.5 and
where C performs well. This would imply that the distributions of MS(xs)xS∼P (XS) and
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Figure 1.5: Illustration of the central idea in adversarial domain adaptation through the ADDA algorithm.

Before adaptation, the latent distributions of source and target domains are different and the domain

discriminator can distinguish them by selecting the most probable domain. When latent space distributions

of source and target domains are aligned the domain discriminator cannot distinguish source from target

instances.
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Figure 1.6: Diagram for general adversarial domain adaptation topology.

MT (xt)xt∼P (XT ) are identical (or rather indistinguishable by an adversary with the com-

plexity of D) and that MS(x) is rich enough for TS. Because C provides a good model for

P (Y |MS

(
XS

)
), by theDA assumptions, it must also provide a goodmodel forP (Y |MT

(
XT

)
).

So provided we can construct our network topologies and objective functions so that the

above equillibrium is reachable, we can solve the covariate shift problem. In fact, here

we have assumed P (Y |MS(X)) ≈ P (Y |MT (X)) which is reasonable if Mt ≈ Ms or if

good transfer has occured. Symmetric methods have the advantage that P (Y |MS(X)) =
P (Y |MT (X)) comes for free.

In general adversarial methods for DA perform very well. However, there are some cases

of problems where training the networks through the above procedure may not lead to

a satisfying solution. For example, when the source and target domain distributions are

multimodal, it may be hard to align them in latent space though gradient updates [13],[14].

That is, it is possible for D to be unable to discriminate between the two domains and

P (MS(xs)xS∼P (XS)) 6= P (MT (xt)xt∼P (XT )). This is refered to as the mode collapse problem.

1.6.1 An Example: Adversarial Discriminative Domain Adaptation

One instantiation of the above setup is theADDA algorithm [15]. ADDA uses loss functions

LC = −Exs,ys∼XS ,YS

[ K∑
i=1

I{i = ys} logCi
(
Ms(xs)

)]
LD = −Exs∼XS

[log(D
(
Ms(xs)

)
)]− Ext∼XT

[log(1−D
(
Mt(xt)

)
)]

LM = −Ext∼XT
[log(D

(
Mt(xt)

)
)]

where expetations are estimated as dataset averages. As a pre-training phase, the algo-

rithm learns weights for Ms and C by minimizing

min
C,Ms

LC
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over {DS, TS}. These weights are then frozen, ie they are not modified further for the

rest of training. Note that the resulting C is essentially a model for P (Y |Ms

(
XS

)
), as LC

is the cross entropy between the empirical distribution for P (Y |Ms

(
XS

)
) and the inferred

distribution C(M
(
Xs

)
). As this is minimized we have C(M

(
Xs

)
) ≈ P (Y |Ms

(
XS

)
). The

topology of the network Mt for the target domain is identical to Ms and Mt is initialized as

Ms (with same weights) to avoid finding degenerate solutions. Then, adversarial training

attempts to iteratively solve

min
D

LD|fixed Mt (1.4)

min
Mt

LM |fixed D

Note that minimizing LM is equivalent to maximizing LD with respect to Mt. The reason

LM 6= −LD is that the choice of LM provides better gradient feedback early on during

training and has the same stationary point properties as −LD [14]. The loss function

LD is inspired from [13], and following similar arguments we can show it has the desired

stationary point properties. In particular,

LD = −
∫
XS

ps(xs) log(D
(
Ms(xs)

)
) dxs −

∫
XT

pt(xt) log(D
(
Mt(xt)

)
) dxt =

−
∫
M

pMs(XS)(m) log(D
(
m
)
) + pMt(Xt)(m) log(D

(
m
)
) dm

where M is the common latent space in which the image of Ms and Mt belong. This can

be shown to have its optimal/minimum value (with respect to D and with fixed Ms and Mt)

at

D∗(m) =
pMs(XS)(m)

pMs(XS)(m) + pMt(XT )(m)
(1.5)

This also justifies the intuition described earlier; that D(·) measures the likelihood that its

input was generated from the source domain. Fixing D(m) = D∗(m), LD can be rewrit-

ten as (some more detail can be found in [13] and a similar proof is given for weighted

distributions in Chapter 4 of this thesis)

LD = log(4)− 2JSD(pMs(XS)||pMt(XT ))

Thus, LD is minimimized for fixed D when pMs(XS) = pMt(XT ). Thus, indeed the algorithm

has an equillibrium with the desired properties, given the networks are complex enough

to model these distributions.

1.6.2 Mitigating the Mode-Collapse Problem

Asmentioned earlier an important limitation with classical adversarial methods is their abil-

ity to deal with the mode collapse problem. For this reason modifications such as CADA

37 G. Pikramenos



Generalizing Domain Adaptation: Relaxing Task Assumptions & an Alternative Cost Function for

Adversarial Methods

[15] have been proposed.

CADA deals with the mode collapse problem, by conditioning training on C’s prediction.

Label information can help reveal the multimodal structure of domain distributions making

it easier to align distributions in latent space [15]. Specifically, we define a new mapping

F with inputs the outputs of Ms and C. Then, D maps the output of F to [0, 1] as before. A
simple candidate for F is the vector concatenation function F (x, y) = xy.

We denote hs(xs) = F
(
Ms(xs),C

(
Ms(xs)

))
and ht(xt) = F

(
Mt(xt),C

(
Mt(xt)

))
. The con-

ditional objective for the network has the form

LD = −Exs∼XS
[log(D

(
hs(xs)

)
)]− Ext∼XT

[log(1−D
(
ht(xt)

)
)]

and again expectations are estimated as dataset averages. This scheme may be adapted

for different adversarial DA algorithms and depending on the specific algorithm used, dif-

ferent parameters of the network will be frozen during training. For example, we could

use the above scheme as part of the ADDA algorithm described in the previous section,

in which case C and Ms would be frozen during adversarial training.

Different mappings F represent different ways of incorporating label information to the

discriminators input. In [15] it is argued that simple concatenation does not allow the

model to fully capture interdependencies between the outputs of Ms and C. An alterna-

tive mapping is proposed based on estimating the tensor product of the two input vectors.

Recall, the tensor product between two vectors is given by

v ⊗ u =

 v1u1 v1u2 ... v1unu

...
...

vnvu1 v1u2 ... vnvunu


of course the computation of v ⊗ u is expensive and in practice we cannot embed it in

the adversarial network without dramatically increasing the number of parameters. The

proposed solution is to estimate the tensor product using randomized algorithms [15].
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WASSERSTEIN DOMAIN ADAPTATION

It should be clear from our discussion thus far that the problem of distribution alignment is

of central importance to domain adaptation. We have also seen that this can be tackled

by solving a minimization problem involving some “measure of distance” between distribu-

tions (eg MMD, KL-divergence etc..). These measures may be regarded as being better

or worse depending on the task at hand. For example, we saw that using the MMD cri-

terion in the MMDE algorithm allowed us to skip a density estimation step. Similarly, the

JSD arises naturally under common objective functions for training adversarial networks.

In this chapter, we will discuss a new measure of distance between distributions which

has been succesfully used to tackle many hard problems in machine learning [16]; the

Wasserstein distance. The reasons for this success will become apparent by the end of

this chapter.

2.1 Wasserstein Distance

Formally, given two probability measures π1, π2 with finite moments of order p on Rd (en-

dowed with the Borel σ-algebra on Rd) we define the p-Wasserstein distance by

Wp(π1, π2) = inf
π
E[ ||X − Y ||p ]

1
p = inf

π

( ∫
Rd×Rd

||x− y||pdπ(x, y)
) 1

p

where the infimum is taken over all probabilistic couplings π of π1 and π2 and where X,Y
are random vectors with marginal distributions π1, π2 respectively. Let Pp, where p ≥ 1
be the set of all probability measures on Rd that have finite moments of order p. Then

it can be shown [17] that Wp(X) is a metric on Pp. This definition can be generalized

to any separable, complete metric space. Informally, in the definition of the Wasserstein

distance we are looking for a joint distribution (with marginals π1, π2) of X,Y so that under

this joint distribution the expected value of ||X − Y ||p is minimized. For example, the cou-

pling we need for W2(π1, π2) is the one that maximizes the correlation between X,Y [18].

In this project we will only be concerned with the Wasserstein-1 distance. For discrete

distributions, Wasserstein-1 distance is also known as the EM distance.

2.1.1 Computing the Wasserstein Distance Between Discrete Distributions

To better understand theWasserstein distance we present a method for computing it when

the underlying marginals are discrete distributions. The minimization problem of comput-

ing W (π1, π2) when π1, π2 are n-dimensional probability vectors can be cast as a linear

program. To see this note that a probabilistic coupling π of π1, π2 can be represented as
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an n2 dimensional vector

π =



π(x1, y1)
π(x1, y2)

...

π(x2, y1)
π(x2, y2)

...

π(xn, yn)


Also define

C = (||x1 − y1||, . . . , ||x1 − yn||, ||x2 − y1||, . . . , ||x2 − yn||, ||xn − y1||, . . . , ||xn − yn||)

and a cost function

z = C · π

we further need to introduce constraints to ensure that π is a valid probabilistic coupling

of π1, π2. Fistly,
π ≥ 0

then, define the concatenation πm =

(
π1
π2

)
and the 2n× n2 matrix

A =



1n 0n 0 . . .
0n 1n 0 . . .

1, 0n−1 1, 0n−1 1, 0n−1 . . .
0, 1, 0n−2 0, 1, 0n−2 0, 1, 0n−2 . . .
0, 0, 1, 0n−3 0, 0, 1, 0n−3 0, 0, 1, 0n−3 . . .

...
...


we also need

A · π = πm

which ensures we have correct marginals. Overall, the linear program we need to solve

is
min
π∈Rn2

z = C · π

subject to A · π = πm

π ≥ 0

which can be solved by algorithms in the literature (eg simplex, interior point methods, . . . ).
Figure 2.1, illustrates visually the solution to the above linear program for a toy example.

Similar methods can be employed for higher order wasserstein distances in these discrete

cases. However, theminimization problemwhen the underlying distributions are continous

densities, is intractable. This is unfortunate, since, for domain adaptation, we are mainly

interested in distributions with continuous support. This will be resolved by introducing the

dual Kantorovich problem.
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Figure 2.1: Visualization of an optimal transport plan with respect to the wasserstein distance between

two discrete distributions. This was obtained by solving the aforementioned linear program. On the top left

we see the source distribution and on the top right we see the target distribution. On the bottom left we see

the optimal coupling encoded as a heatmap. On the bottom right we see, color coded, the optimal

transport resulting from the optimal coupling.

2.1.2 Motivating the Use of the Wasserstein Distance

We now present an illustrative example1 of why we would want to use an alternative to

the JSD as a distribution similarity measure in adversatial DA.

Example (2.1.1) (Learning Parallel Lines)

Suppose X ∼ Unif(0, 1). Let gθ : R → R2 : x → (θ, x) and let π0 be the distribution

of g0(X) and πθ the distribution of gθ(X). The JSD between these two distributions is

given by (for θ 6= 0):

JS(π0, πθ) =
1

2

(∫
I{x = 0} log( 2I{x = 0}

I{x = 0}+ I{x = θ}
) dx dy

+

∫
I{x = θ} log( 2I{x = θ}

I{x = 0}+ I{x = θ}
) dx dy

)
= log(2)

hence and since JS(π0, π0) = 0 we have,

JS(π0, πθ) =

{
log(2), if θ 6= 0

0 , if θ = 0
(2.1)

1Adapted from an example given in [16]
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Note that if we wanted to adjust the parameter of gθ so as to minimize JS(π0, πθ) we could
not have used gradient methods as there are no usefull gradients in (2.1). This is a con-

cern for us, since gradient feedback is essential to adversarial DA.

Note that the Wasserstein distance for these distributions is given by

W (π0, πθ) = inf
π
E[ ||g0(X)− gθ(X)|| ] = inf

π

( ∫
Rd×Rd

||g0(X)− gθ(X)|| dπ
)
=

= inf
π

( ∫
Rd×Rd

||(−θ, 0)|| dπ
)

(a)
= |θ|

where (a) follows because π is a probability coupling. Thus we see that in this example

the wasserstein distance gives us usefull gradient signals, which allow us to tune the

parameter of gθ. The behaviour noted in the above example can be justified theoretically

and generalized as we will see later. We delve deeper in this topic in the following section.

2.2 Geometric Considerations for Convergence of Domain Adaptation

Following the discussion in [19], we start by introducing some useful concepts. Given two

regular submanifoldsM1,M2 of Rn, we say that they intersect transversally at x ∈M1∩M2

if TxM1+TxM2 = TxRn, where TxM denotes the tanget space at x of the manifoldM . Oth-

erwise, ifM1,M2 do not intersect transversally at a point x ∈M1∩M2, we say they perfectly

align at x. We have the following theorem which explains the behaviour noted in example

2.1.1,

Theorem (2.2.1)

Let π1, π2 be continous and have supports contained in regular submanifolds M1,M2 of

Rn respectively, such thatM1,M2 have dimension < n and do not perfectly align. Then

JS(π1||π2) = log(2)

Proof

From the premise of the theorem, we know that at every point x ∈ M1 ∩ M2 the mani-

folds intersect transversally. Let S1, S2 be the supports of π1, π2 respectively. We have

2JS(π1, π2) =

∫
S1

π1(~x) log(
2π1(~x)

π1(~x) + π2(~x)
)d~x+

∫
S2

π2(~x) log(
2π2(~x)

π1(~x) + π2(~x)
)d~x

Lemma: If M1,M2 are as in the premise of the theorem, then M1 ∩M2 has measure 0 in
bothM1 andM2.
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Proof of Lemma:

If M1 ∩M2 = ∅ then the lemma is true. If not, then M1 ∩M2 = M ′ must also be a regular

submanifold ofRn. It is enough to prove thatM ′ is a strictly lower dimensional submanifold

of bothM1 andM2 since then it will have measure zero in both.

Suppose for a contradiction and without loss of generality, that dim(M ′) = dim(M1).
Then, considering tangent spaces as embedded in Rn, TxM

′ = TxM1 for all x, since
TxM

′ ⊆ TxM and they have the same dimension. But then TxM1 = TxM
′ ⊆ TxM2 (†).

Since no perfect alignment occurs, n = dim(TxM1+TxM2) and because of (†), dim(TxM1+
TxM2) = dim(TxM2) ⇒ dim(M2) = n. A contradiction since our assumption was that

dim(M1), dim(M2) < n. �

We now have ∫
S1

π1(~x) log(
2π1(~x)

π1(~x) + π2(~x)
)d~x =

∫
S1\S2

π1(~x) log(
2π1(~x)

π1(~x) + π2(~x)
)d~x +

������������������:0∫
S1∩S2

π1(~x) log(
2π1(~x)

π1(~x) + π2(~x)
)d~x

where the second term is zero since we integrate over a set of measure zero. In the first

term the domain of integration does not intersect the support of π2 and has full measure.

Hence, we have∫
S1

π1(~x) log(
2π1(~x)

π1(~x) + π2(~x)
)d~x =

∫
S1\S2

π1(~x) log(
2π1(~x)

π1(~x)
)d~x = log(2)

Similar arguments show ∫
S2

π2(~x) log(
2π1(~x)

π1(~x) + π2(~x)
)d~x = log(2)

and thus JS(π1||π2) = log(2) �

The above result shows that there are cases where JSD will simply not work for our

purposes. Naturally, the question arises of whether we should be worried about this in

practice. The following result provides some evidence that the aforementioned behaviour

should not be neglected

Theorem (2.2.2)

Let M1,M2 be regular submanifolds of Rn such that their respective dimensions are < n.
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Take X,Y independent and continous random variables with image in Rn. Let x and y be
vectors drawn from the distributions of X and Y respectively and define M̃1 =M1+x and
M̃2 =M2 + y. Then

Pr(M̃1 perfectly aligns with M̃2) = 0

Proof:

See [19], Lemma 2. �

It is hypothesized that in general, the support of real world data distributions indeed lies

on lower dimensional submanifolds of the respective feature space. This is known as the

manifold hypothesis. Note however, that by mapping our data onto lower dimensional

spaces (eg using a deep neural network to map data points to a lower dimensional latent

space) we can make the supports of the transformed distributions overlap significantly.

This may, of course, lead to loss of information (eg mapping everything to a single point)

and even when the mapping is useful, points x for which
pS(x)
pT (x)

is either too large or too

small will not have significant contribution to the gradients in adversarial training [20].

2.3 Wasserstein Distance Works

We will now present some theorems and sketch proofs (adapted from [16]) in order to bet-

ter understand the reasons that the Wasserstein distance is more suited for our purposes.

For the rest of our discussion we will assume, unless otherwise stated, that all distributions

have finite means.

Theorem (2.3.1)

Let πY be a probability distribution over some compact space Y and X a random vari-

able over another space X . Suppose that g : X × Rn → Y : Rn 3 θ → gθ : X → Y is a

parametric function. Finally, let πθ be the distribution of gθ(X). Then,

1. If g is continous with respect to θ, then W (πY , πθ) is continous with respect to θ.

2. If g is locally Lipschitz with local Lipschitz constants that have finite expectation with
respect to the distribution of g’s input, then W (πY , πθ) is continous everywhere and

differentiable almost everywhere.

Proof (Sketch)

Given two points θ, θ′ in Rn we have ||gθ − gθ′ || → 0 as θ′ → θ. But the joint distribution

of the vector (gθ(x), gθ′(x)) is a probabilty coupling with appropriate marginal distributions

hence 0 ≤ W (πθ, πθ′) ≤ E[||gθ−gθ′ ||] (sinceW is has an inf over probability couplings) and

thusW (πθ, πθ′) → 0 as θ → θ′. SinceW (·, ·) is a metric we have (follows from the triangle
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inequality)

0 ≤ |W (πY , πθ)−W (πy, πθ′)| ≤ W (πθ, πθ′) → 0

Which gives claim 1.

Now if g is as in 2 we want to show W (πY , πθ) has the same properties. For any point

in g’s domain p = (x, θ) there is an open neighborhood U of p and a local Lipschitz con-

stant Lp, such that ∀q = (x′, θ′) ∈ U we have

||g(p)− g(p′)|| ≤ Lp||p− p′||

As we let x→ x′ and if (x, θ′) ∈ U (†), we get

E[||g(p)− g(p′)||] ≤ ||θ − θ′||E[Lp]

By the previous argument this gives

|W (πY , πθ)−W (πy, πθ′)| ≤ ||θ − θ′||E[Lp]

Since the set Uθ of parameters θ that satisfy (†) is open in Rn (because U was open) and

E[Lp] is finite, we can set Lθ = E[Lp] and we have

|W (πY , πθ)−W (πy, πθ′)| ≤ Lθ||θ − θ′||

and this is true for all parameters θ in Uθ. Hence,W is locally Lipschitz and thus continous

everywhere and differentiable almost everywhere. �

Note that these nice properties of W do not hold in general for the JSD; indeed Exam-

ple 2.1.1 demonstrates that the JSD can be discontinous.

Even though there seems to be reasons to prefer the Wasserstein distance over the JSD

we have already seen that JSD works in practice for certain problems. It would be reas-

suring to know that whenever the JSD works so will the Wasserstein distance. Essentially,

this is taken care of by the next theorem, but before we procceed we present a small bit

of theory.

The TV distance between probability measures on the same measurable space (say with

the Borel σ-algebra) (X , Borel(X )) is defined as

TV (πi, π) = sup
A∈Borel(X )

|πi(A)− π(A)|

The TV distance satisfies all properties of a metric and induces another way of comparing

probability measures. It can be shown that it has similar properties to JSD [16]. For the

45 G. Pikramenos



Generalizing Domain Adaptation: Relaxing Task Assumptions & an Alternative Cost Function for

Adversarial Methods

next proof we need an important result called Pinsker’s Inequality. This states that

TV (π1, π2) ≤
√
KL(π1||π2)

2
(2.2)

where KL denotes the KL divergence. Recall also that by definition, we have

JS(π1, π2) = KL(π1||πm) +KL(π2||πm) (2.3)

where we have that

πm =
π1 + π2

2

Theorem (2.3.2)

Suppose that π is a distribution on a separable complete metric space X and let {πi}i∈N
be a sequence of probability distributions defined on X . Then,

lim
i→∞

JS(πi, π) → 0 ⇒ lim
i→∞

W (πi, π) → 0

Proof (Sketch)

Lemma (†)
lim
i→∞

JS(πi, π) → 0 ⇒ lim
i→∞

TV (πi, π) → 0

Proof of Lemma:

TV (πi, π) ≤
(a)
TV (πi, πm) + TV (πm, π) ≤

(b)

√
KL(πi||πm)

2
+

√
KL(π||πm)

2
= Q

Clearly, since KL(·||·) ≥ 0, if JS(πi, π) → 0 then Q→ 0 and so TV (πi, π) → 0.

From (†) and Theorem 6.15 in [21] the claim trivially follows. �

The two theorems presented in this section tell us that Wasserstein distance has bet-

ter properties than the JSD and that, loosely speaking, we don’t loose anything from using

W over JSD (excluding computational considerations).

2.4 Wasserstein Adversarial Networks

By now, we have motivated the use of the Wasserstein distance and we now address is-

sues of computing it. In general, computingW directly is made intractable by the infimum

in its definition. Hence, we present an important result that is key for W ’s computation.

Theorem (2.2.1) [Kantorovich-Rubinstein Duality (Special Case)] [21]
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Let J denote the space of all 1-Lipschitz functions on a separable complete metric space

X (eg R). Then,
W (π1, π2) = sup

||ψ||≤1

Eπ1 [ψ(x)]− Eπ2 [ψ(x)] (2.4)

as long as the supremum on the right hand side is finite. In the above equation ψ ∈ J .

Proof:

See [21], Chapter 5. �

In particular [16], we could consider defining a family of parametric K-Lipschitz functions

{fw}w∈W parametrized by a parameter vector w and solving the following maximization

problem

max
w

Eπ1 [fw(x)]− Eπ2 [fw(x)] (2.5)

if (2.5) is solved and the supremum of (2.4) is reached then we have succesfully estimated

W (π1, π2) up to a multiplicative constant (since ||fw|| may be ≥ 1).

The following theorem gives some key insights into why adversarial networks are par-

ticularly well-suited for using the Wasserstein distance as a distribution alignment metric.

Theorem (2.2.2)

Suppose that g : X × Rn → Y : Rn 3 θ → gθ : X → Y is a parametric function. Let

also, Z be a random variable such that Z ∼ p and gθ(Z) ∼ π2. Moreover, let g be locally

Lipschitz with local Lipschitz constants that have finite expectation with respect to p. Let
also π1 be a second distribution. Then the suprememum in equation (2.4) is attained, ie

∃ψ = arg max
||ψ||≤1

Eπ1 [ψ(x)]− Eπ2 [ψ(x)]

and (if both terms are well defined)

∇θW (π1, π2) = −Ep[∇θψ(gθ(z))]

Proof:

See [16], Appendix C. �

Informally, using the idea expressed earlier (2.5) for approximating the function ψ by a

parametric function fw (eg. a neural network) we get a well defined scheme for mini-

mizing the wasserstein distance between a distribution π1 and the output distribution of a

parametric function gθ. In particular, consider performing the following computations in an
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alternating manner

max
w

Eπ1 [fw(x)]− Ep[fw(gθ(z))] |fixed θ

min
θ
Eπ1 [fw(x)]− Ep[fw(gθ(z))] |fixed w

for example, using a stochastic gradient descent scheme. At each step, we want to find

optimal parameters w in order to best approximate the gradient of W (π1, π2) and so the

maximization process above should be repeated until convergence at each step. Under

some mild assumptions (eg w lives in a compact space, f, g have sufficient capacity etc)

this scheme can be shown to theoretically converge (at least to a local minimum of W ).

In practice, problems may arise due to limited capacity of the underlying models and ap-

proximation errors. Convergence of this scheme in the context ofWGAN is studied in [22].

Suppose now, for this informal discussion, that our parametric models have enough ca-

pacity to approximate ψ and capture the distribution π1 fully and that fw is K-Lipschitz

∀w. Then training fw to optimality for the current θ gives us the direction of the gradient

of W (π1, π2) with respect to θ which allows us to update θ so as to minimize W (π1, π2).
Of course, after a couple of steps we need to return and tune w since the second term

−Ep[fw(gθ(z))] has changed (due to the change in θ). The optimal scenario is that this

process will continue until π1 and π2 are aligned (ie W (π1, π2) is minimized).

There are still some important points to be addressed. Firstly, we want to use neural

networks as our parametric models for fw and gθ so as to provide our models with the

necessary capacity. The first issue we should address, is ensuring that fw is K-Lipschitz

∀w, which of course may not be true for a general neural network. However, by restricting

the network’s weights to lie in a compact space W (for example the interval [−0.5, 0.5]),
fw can be made to satisfy the Lipschitz condition [16]2. This could be done for example

through weight clipping or projecting the weights to a sphere [16]. Furthermore, we can

also use a neural network for gθ due to the following result.

Theorem (2.2.3)

Let gθ be a feedforward neural network with smooth Lipschitz activation functions and

let its input be distributed with finite mean. Let also, π1 be any distribution with finite mean

and π2 the distribution of the output of gθ. Then,

1. W (π1, π2) is continous everywhere and differentiable almost everywhere

2. g is locally Lipschitz with local Lipschitz constants that have finite expectation with

respect to the distribution of g’s input

Proof:

2note that the weight clipping method is not endorsed by the authors
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The first claim follows from the second claim and the premise of the theorem using theo-

rem (2.3.1).

The proof for the second claim is found at [16], Appendix C. �

So we see that the Wasserstein distance is a natural metric for aligning distributions in

adversarial neural networks. We proceed to discuss how this observation can help us

tackle the domain adaptation problem more effectively.

2.4.1 On Enforcing the Lipschitz Condition on fw

As we already saw in Wasserstein adversarial optimisation that we need the parametric

approximator fw to satisfy a Lipschitz condition. In [16], the proposed way to enforce this

was through weight clipping, even though the authors themselves were reluctant to using

this method. In [22] an alternative gradient penalty method is proposed.

2.5 Wasserstein Domain Adaptation

In this section we will present an algorithm that incorporates the Wasserstein distance in

an adversarial architecture for domain adaptation. This algorithm is essentially an adapta-

tion of ADDA to use a Wasserstein domain critic instead of a vanilla domain discriminator.

We term this algorithm WADDA. WADDA is similar to the WDGRL scheme introduced in

[20]. However, inWADDA we allow the target network to have its own set of parameters,

that is MS 6= MT and we keep MS fixed during training (we also have a source task pre-

training phase like in ADDA). On the other hand, in WDGRL the source and task feature

extractors are tied and the classifier is trained in an alternating manner together with the

representer network. Because the source representer and classifier are trained during the

transfer, training may become unstable much more easilly.

The objective functions for our algorithm is as follows:

LD = Ext∼XT
[D(MT (xt))]− Exs∼XS

[D(MS(xs))]

LT = λE[H(C(MT (xt)))]− Ext∼XT
[D(MT (xt))]

and alternating stocahstic minimization is performed as in

min
D

LD|fixed MT

min
MT

LT |fixed D

Note that as suggested by the results we presented in this chapter, this alternating optimi-

sation decreases the Wasserstein distance between the latent distributions MT (XT ) and
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MS(XS) of source and target datasets. Furthermore, we expect this scheme to have bet-

ter convergence properties that the traditional one (that uses the JSD) due to the superior

gradients of the Wasserstein distance. Note that in each iteration we train the discrimina-

tor critic multiple times. This is because we want to obtain optimal parameters forD given

the fixed MT in order to best approximate the gradient of the Wasserstein distance.

Note also that in the representer objective function we have added entropy regulariza-

tion. This idea is discussed in [23] and it has been previously used succesfully in a partial

domain adaptation algorithm which we will discuss shortly. As explained in [23], in statis-

tical learning the information we extract from unlabelled data comes from their structure.

For any unsupervised learning algorithm to work succesfully, it is of paramount importance

that it takes advantage of the structure of its input. Furthermore, in any unsupervised task

it is natural to assume that meaningful structure is present in our data; otherwise no infor-

mation can be gained.

In particular, for our problem we can use the classifier’s output to regularize represen-

tation learning so as to preserve the target data structure as much as possible. We add

to our objective function a term

λE[H(C(MT (xt)))]

where H denotes the information entropy and λ is a trade-off parameter. Minimizing this

quantity with respect to the representer network parameters encourages the target latent

representation to keep classes well separated, thus preserving the original structure.
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EXPERIMENTS: FULL DOMAIN ADAPTATION

In this chapter we will list a number of domain adaptation tasks that will be of interest to

us and we will conduct experiments to determine how effectively we can solve them. In

particular, we will be interested in the following

1. Image obstruction

2. Image displacement

3. Image rotation

4. Image rescaling

We will use the MNIST and USPS datasets for our experiments. These are widely used

datasets of hand-written digits consisting of gray-scale 28× 28-pixel images. Specifically,

we train a source model on the MNIST dataset and then perform the above operations to

different extents on the USPS dataset and attempt transfer. Below we present our results.

We will compare ADDA with WADDA and at the end of this chapter we present a “beat-

the-benchmark” table where we tune WADDA to obtain very good performance on two

tasks. These are marked with an * in the comparative tables. For the comparison we will

set the trade-off parameter λ to zero as we are interested in comparing the wasserstein

gradients to the JSD gradients alone. For beating the benchmark in the end, λwe is tuned.

We start with image obstruction where we put a “solid block” of n × n pixels in a loca-

tion of the image (ie we set all pixel values in the block to 1’s). We test different values

of n. Next we test the displacement task. We displace the digits by (i, j) pixels to the

horizontal and vertical directions respectively. We then test the rotation task, where we

rotate the digits by an angle θ anti-clockwise. Finally, we test the rescaling task where we
rescale the digits by a factor (i, j) along the horizontal and vertical axis respectively. For

all our experiments, unless otherwise specified, the discriminator is trained on 10 batches

for each batch the representer is trained on.

Furthermore, during the first epoch we allow the discriminator to train for 25 iterations

in order to give it a “head-start”. This strategy is intuitive and we empirically verified that

this works nicely. All our experiments were performed on a Tesla K40c NVIDIA GPU and

we performed each test 5 times and present the average accuracy. The Adam optimizer

was used for all trials and the clip parameter for the weights in WADDA was set to 0.05.

We note that for ADDA too many iterations for the discriminator per iteration of the repre-

senter (depending on the task at hand) may lead to a perfect discriminator, in which case

we have zero feedback to train the representer. This however is not a problem inWADDA,

where the domain critic may be trained as long as we want. Furthermore, we observed

51 G. Pikramenos



Generalizing Domain Adaptation: Relaxing Task Assumptions & an Alternative Cost Function for

Adversarial Methods

thatWADDAwith weight clipping suffers from vanishing/exploding gradients and we found

that normalizing the gradients during training is always beneficial. In particular, we nor-

malized gradients using the L2 norm.

In summary, ADDA performs better with relatively balanced training in discriminator and

representer, whileWADDA performs better for more iterations of the critic and small learn-

ing rates for the representer. For this reason, in this comparative experiments we used

the best hyperparameters we found for each method (including iterations D/R and learning

rates). The most important parameter related to the networks’ topology is the dimension

of the latent space, ie the size of the output of the domain representer networks. This

conclusion is drawn from what we have seen in Chapter 2 relating to JSD andWassertein

distance. Indeed, whene the dimension of the latent space is too large we note that ADDA

does not perform well (there is slightly any change in the representer parameters). This

problem was not observed for WADDA. For this reason we compare the methods with a

network topology with relatively few latent dimensions (64).

For beating the benchmark we changed the topology of the discriminator from a simple

multi-layer perceptron to a residual network. This further amends the vanishing/exploding

gradient problem observed when weight clipping is used.

For the obstructed image task, both methods yield a significant improvement compared

to the source network. WADDA consistently outperforms ADDA by a small margin. We

make similar observations for the displacement task. In the rotation task we observe a

sharp drop in the relative performance of WADDA with respect to ADDA which is indeed

very interesting and should be investigated further. Finally, for the rescaling task, both

methods perform quite well butWADDA offers significant improvement in the harder trials

(ie with very small rescaling factors).
Table 3.1: Results for obstruction task

# of blocked pixels (n) ADDA WADDA-H
Source

Network

5 85.15% 86.45% 69.51%

7 76.04% 77.69% 62.28%

14 74.47% 79.82% 48.87%

15 63.42% 65.01% 34.68%

Comparison of ADDA and WADDA-H on the obstructed image task. We let the networks train for 100 iterations. For this task, in

WADDA-H we used λ = 0.
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Figure 3.1: Sample from the obstructed USPS dataset for different values of n

Table 3.2: Results for displacement task

(i, j) ADDA WADDA-H
Source

Network

(3,2) 65.71% 76.62% 58.59%

(7,0) 88.78% 88.85% 65.87%

(0,3) 68.83% 73.98% 57.19%

(5,3) 45.49% 47.63% 43.54%

Comparison of ADDA and WADDA-H on the displaced image task. We let the networks train for 100 iterations. Red indicates the

occurence of negative transfer. For this task, in WADDA-H we used λ = 0

Table 3.3: Results for rotation task

θ in degrees ADDA WADDA-H
Source

Network

15 93.82% 92.58% 93.67%

-30 87.74% 85.03% 74.73%

40 75.23% 74.91% 66.11%

60 45.39% 42.05% 41.90%

Comparison of ADDA and WADDA-H on the displaced image task. We let the networks train for 100 iterations.
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Figure 3.2: Sample from the displaced USPS dataset for different values of (i, j)

Table 3.4: Results for rescaling task

(i, j) ADDA WADDA-H
Source

Network

(1.3,0.7) 78.97% 79.13% ** 58.20%

(0.8,0.7) 73.59% 73.69% 54.11%

(1,1.5) 92.57% 94.93%** 91.87%

(0.6,0.6) 55.51% 63.71% 45.24%

Comparison of ADDA and WADDA-H on the displaced image task. We let the networks train for 100 iterations. For ** the number of

discriminator iterations per representer iterations (D/R) for WAADDA-H were increased to 25 to obtain increased performance. The

same change for ADDA decreases its performance so we used 10D/1R
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Figure 3.3: Sample from the rotated USPS dataset for different values of θ

Table 3.5: Results for beat-the-benchmark

Task Parameters iterations accuracy
source

accuracy

obstruction,

n = 15
D/R = 50 400 74.39% 34.68%

displacement,

(i, j) = (5, 3)
D/R = 50 500 65.22% 43.54%

D/R denotes the number of discriminator iterations per representer iteration. Learning rates were 5× 10−5 and 10−5 for the

discriminator and representer respectively.
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Figure 3.4: Sample from the rescaled USPS dataset for different values of (i, j)

G. Pikramenos 56



Generalizing Domain Adaptation: Relaxing Task Assumptions & an Alternative Cost Function for

Adversarial Methods

PARTIAL DOMAIN ADAPTATION

4.1 Problem Description

In the first chapter, we discussed some important methods for domain adaptation and

ran our own experiments to validate their effectiveness. As we saw, DA allows one to

transfer labels from one dataset to another (unlabelled) dataset by aligning their feature

distributions. But even though DA is an interesting theoretical problem its usefulness in

real world applications is limited. The methods explored thus far only work under the re-

strictive assumption that TT = TS. In practice, we are usually interested in transferring

labels from a large dataset (containing many classes) to a smaller (unlabelled) dataset

with only a subset of these classes [24]. This fact motivates the more general framework

of PDA introduced in [25] in which, the assumption YS = YT is relaxed to YT ⊆ YS and

Pr(YS = y|X, y ∈ YT ) = Pr(YT = y|X).

Ideally, we would like to identify a subset of the source data X ′
S(⊂ XS) such that Pr(y ∈

YT |X ′
S) = 1. If this is achieved we retrieve the full DA scenario and we simply need to

align the marginal distributions P (X ′
S) and P (XT ). However, it is important to note that we

do not know which labels in YS correspond to YT and this makes our task much harder. As

pointed out in [24], source data points with labels in XS\X ′
S are responsible for negative

transfer and we want to eliminate (or decrease as much as possible) their contribution to

training. To sum up, we can analyze the partial domain adaptation task into two objectives:

minimize the influence of outlier source points1 and maximally match the distributions be-

tween target domain and source domain with labels in YT .

A naive approach to tackling the partial domain adaptation problem would be to augment

the target data with a copy of the source data (ignoring labels). This certainly recovers

the full DA problem but it does not achieve much. In general we are interested in cases

where the source data is much more abundant than the target data and with many more

classes. In these cases the contribution of target data under the naive approach may be

minimal.

4.2 Adversarial Partial Domain Adaptation

Since we have already seen that using adversarial neural networks has been widely suc-

cesful for DA tasks it should come as no surprise that most methods for PDA are also built

within this framework. Next, we will discuss some state-of-the-art methods for tackling the

PDA problem within an adversarial framework.

1with labels in XS\X ′
s
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4.2.1 Selective Adversarial Network

The first method we will discuss is SAN which is introduced in [24] 2. In this model, the

domain discriminator used in typical adversarial DA models is replaced with |YS| discrim-

inative networks Di for i = 1, . . . , |YS| (one for each source task). Informally, the idea

behind this modification is that the network can now behave in different ways for different

classes, which is desirable as we want maximal alignement for certain classes and no

alignement for others. To decide which discriminator to use for each instance of training3

a natural idea is to use the output of the source classifier C to make a soft decision. Recall

thatC
(
Ms(xs)

)
is a model for P (Y |Ms

(
XS

)
) and we can use it as a model for P (Y |Mt

(
XT

)
).

Obviously, this is not necessarily a good model for the target task; this is the reason we

are adapting domains in the first place.

Overall, for each instance Mt

(
x
)
or Ms

(
x
)
we use C to estimate the probability that x

belongs to each of the source classes (using C
(
Mt(x)

)
/ C

(
Ms(x)

)
respectively). Each

domain discriminator Di is associated with a cross entropy function

lDi
(x) = −I(d(x) = s)

|Xs|
log(Di

(
Ms(x)

)
)− I(d(x) = t)

|Xt|
log(1−Di

(
Mt(x)

)
)

where d(x) is the domain label of x and I is the indicator function. Note that∑
x∈DS∪DT

lDi
(x) = LDi

where LDi
is the empirical estimate of the discriminator loss function that we discussed

in classical adversarial DA and DS, DT are source and target datasets. We define the

probability-weighted discriminator loss as

L′
D =

|YS |∑
k=1

∑
x∈DS∪DT

I(d(x) = i) Ck
(
Mi(x)

)
lDk

(x)

where Ck denotes the kth component of C(·). In line with what we did for ADDA, we also

define
M
Di
(x) = − 1

|Xt|
log(Di

(
Mt(x)

)
)

and

L′
M =

|YS |∑
k=1

∑
x∈DT

C
k
(
Mt(x)

)
lMDk

(x)

2There are some minor differences between what is described here and [24] because some adjustments

were made for this project to be more coherent in terms of notation
3As discussed earlier we dont know target labels hence its not possible to determine this without some

work
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An additional weight term is included in the final model, which weighs down classes that

are unlikely to be part of the target label space. In particular

wk =
1

|XT |
∑
x∈DT

Ck
(
Mt(x)

)
is used. It is evident that if most points score low for a particular class it is more unlikely

that this class is part of the target label space. However, if a class has very few instances

relative to other classes in the target data the model will likely fail to do effective transfer

for this class since it will always get down-weighed (due to the low number of summands).

This is not addressed in [24] but it is pointed out in [26]. The final loss functions for SAN

are given by

LSAND =

|YS |∑
k=1

wk
∑

x∈DS∪DT

I(d(x) = i) Ck
(
Mi(x)

)
lDk

(x)

LSANM =

|YS |∑
k=1

wk
∑
x∈DT

C
k
(
Mt(x)

)
lMDk

(x)

and training takes the form

∀k, min
Dk

LSAND |fixed Mt,Di ∀i 6=k

min
Mt

LSANM |fixed Di, ∀i

In general, because SAN uses one set of discriminator parameters for every class in the

source task it does not scale well to problems with large source label spaces.

4.2.2 Importance Weighted Partial Domain Adaptation

Next, we discuss a different approach for partial domain adaptation introduced in [26].

The idea is similar to SAN; we want to reweight the influence of instances that are likely

to be from outlier classes. However, instead of using the source classifier to do this, in

this approach information about the relevance of an instance is derived from a domain

discriminator. In particular, suppose that the domain discriminator D(m) has reached its

optimal value for some fixed representation networksMS,MT (as defined in section 1.5.1).
Then, we can informally think of the output value ofD as estimating the likelihood thatD’s
input came from the source domain. Under this line of reasoning, ifD(MS(x)) ≈ 1 it is more

probable that x’s label is not part of the target label space and similarly if D(MS(x)) ≈ 0
x’s label is probably part of YT . So instead of using C to calculate weights, in IWAN we

use instance-based weights

w̃(mx) = 1−D∗(mx)
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derived from the optimal domain discriminatorD∗ (of section 1.5.1) for fixed representation

networks. In the above, mx = Ms(x). Since we are only interested in the relative impor-

tance of instances and to avoid having all weights near 1 or 0 the weights are normalized.

Thus we get,

w(mx) =
w̃(mx)

E[w̃(mx)]

where the expectation is over the distribution of latent space instances occuring from the

source domain. In practice the normalizing factor is estimated as the average of w̃(mx)
for all x in DS, or rather on the current minibatch of source data.

Given weights w(mx) for each instance x, a naive way to define the loss function for our

task is

min
D

max
Mt

− Exs∼XS
[w(mxs) log(D

(
Ms(xs)

)
)]− Ext∼XT

[log(1−D
(
Mt(xt)

)
)] (4.1)

But because we used D to derive the weights (ie the weights are a function of D) the
optimal discriminator is not given by (as we might have hoped)

D∗(mx) =
w(mx)p(mx)

w(mx)p(mx) + p(Mt(x))

Therefore, when solving the game (1.4), we dont get the theoretical guarantees of min-

imizing the JSD between the weighted source density and the target density. To fix this

issue, a second domain discriminator D0 (independent of D) is introduced. The game

described in (1.4) becomes

min
D0

max
Mt

− Exs∼XS
[w(mxs) log(D0

(
Ms(xs)

)
)]− Ext∼XT

[log(1−D0

(
Mt(xt)

)
)] (4.2)

where now the weights are independent of D0 and thus the optimal domain discriminator

is given by

D∗
0(mx) =

w(mx)p(mx)

w(mx)p(mx) + p(Mt(x))

Note also that by definition E[w(mx)] =
∫
w(mx)p(mx) dmx = 1 and clearly w(mx) ≥ 0

implying that w(mx)p(mx) is a valid probability density function. Hence from the analysis

of section (1.6.1) solving (1.4) minimizes the JSD between the weighted source probabil-

ity density and the target density. This is precisely what we want given that the weights

actually do weight down the outlier classes and promote the target classes. To finish de-

scribing this method we also need to specify the loss functions for the classifier and the

first discriminator.

Another important insight given in [26] is that the entropy minimization principle described

in [23] can be used to make sure that the target classes are well separated by C under

a transformation through Mt. As stated in [23] and as we already discussed for WADDA,

the information content of unlabeled data is reduced as classes overlap increases and it
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is reasonable to assume that classes are well separated if unlabeled data are going to be

useful to us. In particular, the loss function is augmented as

L = −λEx∼Xt [H
(
C
(
Mt(x)

))
] + L′

and again we only maximize with respect to Mt and minimize with respect to D. In the

above

L′ = −Exs∼XS
[w(mxs) log(D0

(
Ms(xs)

)
)]− Ext∼XT

[log(1−D0

(
Mt(xt)

)
)]

and λ > 0 is a trade-off parameter as before. Empirically, we found that good values for

λ for MNIST/USPS are between 3 and 7. Finally, H is the information entropy function.

Informally, we can think of minimizing Ex∼Xt [H
(
C
(
Mt(x)

))
] as pushing C

(
Mt(x)

)
as far

away from the uniform distribution as possible. The full optimization problem is given by

the following equations:

min
D0

max
Mt

L

min
D

− Exs∼XS
[log(D

(
Ms(xs)

)
)]− Ext∼XT

[log(1−D
(
Mt(xt)

)
)]

min
C,Mt

− Exs,ys∼XS ,YS

[ K∑
i=1

I{i = ys} logCi
(
Ms(xs)

)]
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TWO-WAY PARTIAL DOMAIN ADAPTATION

5.1 Problem Description & Motivation

We discussed how reweighting the source distribution during training can minimize neg-

ative transfer in partial domain adaptation. But still, a natural question arises: Are the

assumptions in partial domain adaptation general enough? We will argue that they are

not.

Here is a quick recap. The upshot of developing transfer learning schemes is that we

want to be able to train models on large labeled datasets (presumably hard to collect) with

many classes and use them to train models for easy to obtain unlabelled datasets. We

saw the theory behind domain adaptation and how this can be applied when the target

and source labels are the same. In [24] and [26] a big leap forward was made for practical

applications with the introduction of partial domain adaptation. This addresses the much

more realistic scenario where the target label space is only a subset of the source label

space. But in the general label transfer problem an even more realistic assumption is

YS ∩ YT 6= ∅, which we introduce here and term two-way partial domain adaptation. That

is, to simply assume that there are some shared labels between tasks.

Two-way partial domain adaptation captures those situations where in addition to the as-

sumptions of PDA, some new unseen classes are part of the target dataset, which were

not present in the source data. Such scenarios arise naturally when the underlying task

involves many classes and the source label space is small (for example due to cost of

collecting a larger labelled dataset). Clearly, for a target instance with label y ∈ YT\YS,
we cannot hope to say much since our source classifier only outputs a distribution over

source labels. However, the existence of such instances is a source of negative trans-

fer during training. During training the partial domain adaptation model will falsely try to

align the entire target distribution to the source distribution. To make matters worse, if we

are using IWPDA, because source instances get reweighted, target outlier instances will

tend to be aligned to source instances with labels in YT . This hinders training. In more

detail, the underlying assumption is further relaxed from YT ⊆ YS to YT ∩ YS 6= ∅ and

P (YS = y|X, y ∈ YT ∩ YS) = P (YT = y|X, y ∈ YT ∩ YS). The non-empty intersection is

needed so that there is at least some information to be gained from the source model.

According to our discussion thus far it should be clear that our goal is to find appropriate

parameters so that P (MS(X
∩
S )) = P (MT (X

∩
T )) where X

∩
i denotes the subset of Xi with

labels in YT ∩ YS. We will call the set X∩
T the transfer-relevant instances.

We are also interested in developing a method which will allow us to identify which target

instances are transfer-relevant. This is a very important component of the solution to the

two-way partial domain adaptation problem, since without it, our obtained model for the
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target task is essentialy unusable. Of course identifyingX∩
T without the target labels is ex-

tremely hard (if not impossible!) to do and hence we will settle for a solution that provides

instances that are probably transfer-relevant with respect to some confidence measure

that is related to Pr(x ∈ X∩
T ).

In the following sections we propose a solution that both minimizes negative transfer due

to outlier target labels and provides (essentially for free) a way to identify probably transfer-

relevant instances. We will then provide experimental evidence for the effectiveness of

our proposed method.

5.2 Doubly Importance Weighted Adversarial Network

We will introduce an algorithm inspired by the reweighting done in IWPDA for tackling two-

way partial domain adaptation. Like in IWPDA we use two domain classifiers D and D0

to align weighted latent distributions but unlike IWPDA we use the first classifier to assign

weights to target instances as well. The idea behind this is similar to what we saw earlier

for IWPDA. Denote MT (xt) as m
t
x for simplicity. Recall that for a fixed target representer

network the optimal domain discriminator is given by (1.5), which may be rewritten as

D∗(x) =
1

1 + pT (x)
ps(x)

(5.1)

which scales like
pS(x)
pT (x)

. When the domain discriminator is confident that a target instance

lies in the target domain, ie D(mt
x) ≈ 0, it is unlikely that this instance has a label common

to the source task and so it should be down weighted. Similarly, if D(mt
x) ≈ 1 it is much

more likely that the label of this instance is shared in the source label space and so we

should promote transfer. We have accordngly,

w̃T (mt
x) = D(mt

x)

and normalizing as before

wT (mt
x) =

w̃T (mt
x)

E[w̃T (mt
x)]

For the source domain nothing changes so we have,

w̃S(mx) = 1−D∗(mx)

wS(mx) =
w̃S(mx)

E[w̃S(mx)]

Now let PwT
(MT (xt)) = wT (mt

x)pT (m
t
x), where pT is the pdf of the target latent space. It

is evident that PwT
defines a probability density function which is the desired weighted

density for the target task. Similarly, PwS
= wS(mx)pS(mx) forms the weighted density for

the source task. The idea now is to use a separate domain discriminator to align these
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weighted densities. The objective function looks like,

L′ = −Exs∼XS
[wS(mxs) log(D0

(
Ms(xs)

)
)]− Ext∼XT

[wT (mt
x) log(1−D0

(
mt
x

)
)]

and as before, we can optimize with respect to D0 for fixed weights and representer net-

works, using the calculus of variations. Denote the latent space Z, we have

L′ =

∫
X

F [D(x), D′(x), x] dx

−
∫
X

[wS(mx)pS(x)log(D0(mx)) + wT (mt
x)pT (x)log(1−D0(m

t
x))] dx

=
(a)

−
∫
Z

[wS(z)pS(z)log(D0(z)) + wT (z)pT (z)log(1−D0(z))] dz

where (a) follows from the change of variable formula and density transformation. We

solve for D the equation
∂L′

∂D
[D] =

∂F

∂D
− d

dx

∂F

∂D′ = 0 ⇒

∂

∂D
[wS(z)pS(z)log(D

∗
0(z))] = − ∂

∂D
[wT (z)pT (z)log(1−D∗

0(z))] ⇒

wS(z)pS(z)

D∗
0(z)

=
wT (z)pT (z)

1−D∗
0(z)

D∗
0(z) =

ws(z)pS(z)

ws(z)pS(z) + wT (z)pT (z)

and in turn fixing the weights and the current optimal discriminator, we have

max
D

− L′ =

= Exs∼XS
[wS(mxs) log(

ws(mx)pS(mx)

ws(mx)pS(mx) + wT (mx)pT (mx)
)]

+Ext∼XT
[wT (mt

x) log(
wT (mt

x)pT (m
t
x)

ws(mt
x)pS(m

t
x) + wT (mt

x)pT (m
t
x)
)] =

= Ez∼PwS [log(
PwS

(z)

PwS(z) + PwT (z)
)] + Ez∼PwT [log(

PwT
(z)

PwS(z) + PwT (z)
)] =

= − log(4) + JS(PwS ||PwT

)

and it is promptly seen that this has a global minimum at PwT
= PwS

. Thus, as before,

we have a way of calculating the gradient of the JSD between our distributions of interest

using alternating optimization.

A final point to make is that we can use the scoring discriminator, which is obtained for

free after runing DIWAN, to obtain a measure of the likelihood that each target instance

belongs to an outlier target label. If the algorithm converges succesfully the distributions
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Figure 5.1: Experimental evidence for negative transfer due to oulier classes in target domain for

obstruction task (n = 15). In red 0 outlier labels and in blue 5 outlier labels. We plot two standard deviation

intervals from mean for 25 simulations per case.

of weighted source and weighted target data in the latent space are aligned. This means

that the scoring discriminator (with appropriate capacity) when trained to optimality will

give low scores for data that were involved heavily in the transfer and high scores for

data that were not. Hence, the target weights described above are a natural confidence

measure that allows us to identify transfer-relevant instances.

5.3 Experimental Evidence for Negative Transfer in the two-way Setting

We start by running experiments to observe how outlier target labels affect the effective-

ness of ADDA. Our experimental setup is identical to that in Chapter 3. The same four

tasks are considered. We start by running ADDA 25 times on a full domain adaptation

scenario with 5 source labels and for 20 epochs. We then repeat for a scenario where

there are 10 target labels and 5 source labels. The source network, labels and all hyper-

parameters are kept the same in both scenaria. We perform this experiment for all 4 tasks

and plot average accuracy ±2σ vs #-iterations for all tasks.

The results are as expected. The outlier target labels hinder the adaptation procedure

notably. It is interesting that the negative effect is more severe for some tasks. For exam-

ple, in the obstruction task the accuracy loss is on average 10% <, while for the rotation

task it is close to 1%. For the rescaling task the accuracy loss is on average 2.5%, while

on the displacement task it is 4.3%.
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Figure 5.2: Experimental evidence for negative transfer due to oulier classes in target domain for

rescaling task (1.3, 0.7). In red 0 outlier labels and in blue 5 outlier labels. We plot two standard deviation

intervals from mean for 25 simulations per case.

Figure 5.3: Experimental evidence for negative transfer due to oulier classes in target domain for

displacement task ((5, 3). In red 0 outlier labels and in blue 5 outlier labels. We plot two standard deviation

intervals from mean for 25 simulations per case.
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Figure 5.4: Experimental evidence for negative transfer due to oulier classes in target domain for

rotation task θ = −30. In red 0 outlier labels and in blue 5 outlier labels. We plot two standard deviation

intervals from mean for 25 simulations per case.

5.4 Experimental Evidence for the effectiveness of DIWAN

In this section we break down DIWAN into the component mitigating negative transfer and

the component identifying the transfer-relevant instances. Experiments for each of these

are presented separately in the following two subsections.

5.4.1 Mitigating Negative Transfer

Below we present experimental results that illustrate the benefits of our method. We

trained a source network and classifier on MNIST using only five random digit labels.

We then perform transfer with different number of target labels and common labels. We

compare IWPDA from Chapter 4 with our DIWAN. To identify negative transfer we only

measure accuracy on common test labels. Note that in practice we do not know which

instances correspond to the common test labels and hence the experiment below is “unre-

alistic”. That is, the recorded accuracies could not be measured/achieved in a real world

problem without further work. However, by comparing test accuracies on the common

label instances we provide evidence for the negative transfer occuring when we ignore

outlier target labels. We will repeat the experiment for all 4 tasks of interest. Each exper-

iment is performed 5 times and average accuracies are reported.

All experiments in this section are performed on an NVIDIA GeForce 840M, except when

marked with a (∗) in which case they are ran on a Tesla K40c. On the Tesla a different
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source network and source labels are used as well.

In general, it is clear from the results that DIWAN mitigates the negative transfer due to

outlier source and target labels in all 4 tasks. Furthermore, we found that DIWAN learns

faster compared to ADDA and IWPDA and allows for usage of greater learning rates.

We empirically found that in order to achieve “good” results (as the ones listed in our ex-

periments), ADDA needs 5×-10× smaller learning rates. Appropriate tuning needs to be

made for the discriminator as well and even with such low learning rates the algorithm

often converges to much lower accuracy levels than DIWAN. When ADDA was run with

larger learning rates there was rapid divergence. Finally, we observe that while DIWAN

handles any combination of source and target outlier instances, when target outlier labels

are present together with source outlier labels, IWPDA is unable to impove transfer quality

over ADDA. This is characteristic in the rotation and displacement task experiments.

Table 5.1: Results for Obstruction (n = 15)

# target labels
# common

labels
ADDA IWPDA 2-way IWPDA

source

network

2 2 3.77% 89.56 % 86.38% 7.83%

3 3 90.11% 93.27% 91.43% 34.85%

4 4 80.09% 82.97% 78.56% 53.19%

4 2 57.36% 85.59% 87.76% 57.35%

5 2 3.45% 70.72% 88.44% 7.83%

6 2 60.89% 78.49% 80.05% 49.16%

4 3 33.59% 63.88% 64.48% 29.32%

5 3 38.90% 74.91% 74.84 % 41.47%

6 3 67.65% 69.54% 70.87% 61.62%

7 3 70.22% 74.56% 89.95% 68.64%

5 4 75.21% 77.30% 85.61% 53.19%

6 4 74.41% 77.62% 83.86% 48.49%

7 4 79.91% 77.54% 81.76% 69.71%

8 5 72.69% 73.20% 77.98% 57.03%

10 5 63.09% 67.31% 76.22% 57.03%

Compare full domain adaptation with partial domain adaptation and two-way partial domain adaptation on different number of target

labels on the obstruction task. 20 iterations, (5scor, 10dd) : 1MT iterations.
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Table 5.2: Results for Rotation (θ = 40)

# target labels
# common

labels
ADDA IWPDA 2-way IWPDA

source

network

2 2 64.04% 67.89% 67.54% 64.94%

3 3 66.90% 66.78% 64.76% 62.15%

4 4 73.26% 74.89% 73.91% 68.82%

4 2 70.01% 65.14% 68.86% 64.95%

5 2 73.99% 73.81% 74.49% 72.77%

6 2 66.05% 60.13% 67.16% 49.28%

4 3 76.30% 76.98% 77.83% 73.59%

5 3 71.23% 68.40% 71.67% 62.15%

6 3 84.85% 83.24% 84.92% 73.30%

7 3 75.36% 77.21% 81.50% 62.83%

5 4 70.21% 70.43% 70.76% 69.08%

6 4 70.07% 70.04% 70.26% 69.08%

7 4 75.57% 77.03% 78.86% 68.82%

8 5 63.37% 64.21% 67.39% 65.83%

10 5 61.31% 65.83% 67.02% 65.83%

Compare full domain adaptation with partial domain adaptation and two-way partial domain adaptation on different number of target

labels on the rotation task. 20 iterations, (1scor, 10dd) : 1MT iterations.
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Table 5.3: Results for Displacement ((i, j) = 5, 3)

# target labels
# common

labels
ADDA IWPDA 2-way IWPDA

source

network

2 2 60.00% 78.89% 78.83% 72.22%

3 3 59.77%% 85.66% 84.58% 80.65%

4 4 74.02% 85.32% 85.05% 66.07%

4 2 60.22% 60.01% 65.21% 56.42%

5 2 55.33% 60.07% 78.88% 72.22%

6 2 78.97% 79.24% 90.46% 59.23%

4 3 83.55% 88.31% 92.66% 69.90%

5 3 34.62% 35.17% 55.76% 35.31%*

6 3 38.98% 41.36% 59.83% 38.99%*

7 3 34.00% 36.13% 42.62% 35.31%*

5 4 79.21% 81.36% 82.04% 74.44%

6 4 45.50% 53.31% 61.23% 44.42%*

7 4 39.69% 41.55% 66.80% 38.31%*

8 5 73.25% 73.67% 85.03% 70.74%

10 5 66.56% 73.10% 82.32% 70.74%

Compare full domain adaptation with partial domain adaptation and two-way partial domain adaptation on different number of target

labels on the displacement task. 20 iterations, (1scor, 10dd) : 1MT iterations.
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Table 5.4: Results for Rescaling ((i, j) = 0.6, 0.6)

# target labels
# common

labels
ADDA IWPDA 2-way IWPDA

source

network

2 2 60.32% 87.60% 85.92% 83.80%

3 3 77.28% 81.32% 80.97% 60.56%

4 4 77.33% 79.41% 77.90% 62.50%

4 2 55.84% 67.51% 82.65% 69.09%

5 2 80.98% 74.48% 85.30% 65.13%

6 2 72.31% 83.71% 94.56% 83.39%

4 3 66.02% 85.21% 90.01% 79.22%

5 3 59.03% 87.88% 93.78% 79.22%

6 3 44.67% 46.98% 53.25% 46.47%∗

7 3 49.14% 56.39% 58.12% 54.11%∗

5 4 52.98% 54.98% 56.76% 55.17%∗

6 4 80.57% 81.92% 87.61% 80.87%∗

7 4 70.07% 76.17% 82.98% 74.61%

8 5 59.65% 54.78% 62.54% 57.48%∗

10 5 74.17% 77.83% 84.54% 68.57%

Compare full domain adaptation with partial domain adaptation and two-way partial domain adaptation on different number of target

labels on the rescaling task. 20 iterations, (1scor, 10dd) : 1MT iterations.

5.4.2 DIWAN for Identifying Probably Transfer-Relevant Instances

In this experiment we investigate how the scoring discriminator weights vary between tar-

get instances. We start by randomly selecting the number of target labels and common

labels we will use for each task. We then train our algorithm and plot histograms of the

weights. Histograms for oulier labels are plotted with blue, while transfer relevant labels

are plotted with red. We then proceed to measure the accuracy of our model on filtered

instances with DIWAN score above different thresholds. We measure the total number of

target instances after applying the filter, the percentage of total target relevant instances

that go through the filter and the percentage of transfer relevant instances in the filtered

dataset.

In general it is seen that the weight distribution for transfer relevant features for all four

tasks is right-skewed and most of the transfer relevant instances have scores higher than
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the mean (which corresponds to 1 on all diagrams). Furthermore, we find that for all tasks

there is a cut-off threshold for which the filtered data is mostly transfer relevant (with per-

centage above 95%). For the obstruction task 32.39% of the dataset passed the threshold,

while for other tasks the corresponding percentage is as low as 10%. We note however

that apart from the rotation task, those high scoring transfer relevant instances are more

likely to be classified correctly compared to lower scoring transfer relevant instances. For

example, the accuracy on all the transfer relevant instances for the obstruction task was

78.91%, while for the high-scoring filtered data (99.22% of which is transfer relevant) the

accuracy was 98.43%. For the rotation task, this is not true and this requires further inves-

tigation.

An important point to make here is that we have not given a principled way of select-

ing the threshold; we simply provided some empirical evidence to support that there is a

“good” threshold. In practice, the choice of threshold needs to be chosen using a vali-

dation procedure. We still note that for all our experiments, keeping only instances with

scores 1.5×mean results in a filtered dataset that mostly consists of transfer relevant data.

Table 5.5: Result for Obstruction experiment (n = 14) (Accuracy on transfer relevant

instances, 56.08% → 78.91%)

Cut-off threshold

% of total

transfer relevant

instances

considered

% transfer

relevant

instances in

considered

data

# of target

instances

considered

Accuracy

0 100.00 47.10 4142 36.12%

0.5 100.00 62.53 3120 47.95%

1 97.54 80.13 2375 62.95%

1.5 32.39 99.22 637 98.43%
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Figure 5.5: Weight histogram for obstruction task (n = 14). In red 5 transfer relevant labels and in blue 5

outlier labels.
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Figure 5.6: Weight histogram for rescaling task (0.6, 0.6). In red 2 transfer relevant labels and in blue 4

outlier labels.
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Figure 5.7: Weight histogram for displacement task (5, 3). In red 4 transfer relevant labels and in blue 4

outlier labels.
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Figure 5.8: Weight histogram for displacement task (θ = −30). In red 2 transfer relevant labels and in

blue 4 outlier labels.
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Table 5.6: Result for Rescaling experiment (0.6, 0.6) (Accuracy on transfer relevant in-

stances, 62.49% → 73.63%)

Cut-off threshold

% of total

transfer relevant

instances

considered

% transfer

relevant

instances in

considered

data

# of target

instances

considered

Accuracy

0 100.00 58.42 4455 37.15%

1 53.51 78.39 1777 67.36%

1.25 32.85 98.16 871 92.66%

1.5 20.86 100.00 543 100.00%

Table 5.7: Result for Displacement experiment (5, 3) (Accuracy on transfer relevant in-

stances, 65.66% → 76.92%)

Cut-off threshold

% of total

transfer relevant

instances

considered

% transfer

relevant

instances in

considered

data

# of target

instances

considered

Accuracy

0 100.00 43.37 6002 49.92%

1 61.93 65.90 2446 60.95%

1.25 30.43 92.63 855 84.21%

1.5 7.99 96.74 216 91.16%

Table 5.8: Result for Rotation experiment θ = −30 (Accuracy on transfer relevant in-

stances, 64.95% → 68.43%)

Cut-off threshold

% of total

transfer relevant

instances

considered

% transfer

relevant

instances in

considered

data

# of target

instances

considered

Accuracy

0 100.00 42.96 3247 42.22%

1 55.84 59.19 1316 38.98%

1.25 21.57 86.24 349 50.43%

1.5 5.96 98.96 97 35.16%
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CONCLUSIONS & FUTURE WORK

In this project we have motivated the use of domain adaptation schemes for solving the

label transfer problem and we investigated possible improvements on classical adversar-

ial domain adaptation methods. In particular, we proposed an adversarial neural network

algorithm (WADDA) that relies on the Wasserstein distance as a distribution alignment

metric, which achieves much better results on most transfer tasks we considered. The

Wasserstein distance was also motivated theoretically, extending previous work onGANs.

It was observed that WADDA with weight clipping or weight projection to a sphere may

become unstable due to exploding gradients and in practice we found that using gradient

regularization is a good practice to avoid this. We empirically found that the effectiveness

of WADDA relative to other JSD based methods is task dependent.

Furthermore, we introduced two-way partial domain adaptation and proposed an algo-

rithm to tackle it. We illustrated experimentally that outlier target labels are a source of

negative transfer in domain adaptation and we provided a way to isolate probably transfer

relevant instances. We showed that in the two-way setting our algorithm mitigates nega-

tive transfer substantially for our considered tasks and allows us to train our models faster,

using larger learning rates. In addition, we found that in the PDA setting our DIWAN algo-

rithm is competitive with IWPDA.

In the future, our methods will be tested on larger more complex datasets, possibly consist-

ing of natural images. In addition, we plan to investigate domain adaptation on sequential

data and recurrent neural networks. Furthermore, we plan to leverage the Wasserstein

cost function for developing solution for the partial and two-way partial setting. This was

not done in the present work because of time constraints. Finally, alternative ways of iden-

tifying transfer relevant instances in the two-way partial domain adaptation setting will be

investigated.
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ABBREVIATIONS - ACRONYMS

ADDA Adversarial Discriminative Domain Adaptation

ANN Artificial Neural Network

CADA Conditional Adversarial Domain Adaptation

DA Domain Adaptation

DIWAN Doubly Importance Weighted Adversarial Network

EM Earth-Mover

GAN Generative Adversarial Networks

ITL Inductive Transfer Learning

IWAN Importance Weighted Adversarial Network

IWPDA Importance Weighted Partial Domain Adaptation

JSD Jenshen Shannon Divergence

KL Kullback-Liebler

ML Machine Learning

MMD Maximum Mean Discrepancy

MMDE Maximum Mean Discrepancy Embedding

MSE Mean Squared Error

MTL Multi-Task Learning

PAC Probably Approximately Correct

PCA Principal Component Analysis

PDA Partial Domain Adaptation

RKHS Reproducing Kernel Hilbert Space

SAN Selective Adversarial Network

SDP Semi-Definite Programming

TL Transfer Learning

TTL Transductive Transfer Learning

TV Total Variation

VC Vapnik-Chervonenkis

WADDA Wasserstein Adversarial Discriminative Domain Adaptation

WDGRL Wasserstein Distance Guided Representation Learning

WGAN Wasserstein Generative Adversarial Network
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