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ABSTRACT 

 

For many, geo-location is a simple process where with the utilization of GPS a person 

can be located wherever and whenever is requested. However, even if the utilization of 

GPS for geolocation is the most common way and accurate as a system, it is a huge 

consumption of energy in order to achieve this process and it lucks on safety 

mechanisms and techniques. The purpose of this paper is to present another view of 

how we could locate an unknown node position in a system and how a safe 

environment could be created for this node. Our main idea was about the creation of a 

framework where we could create a three-dimensional field in which an unknown node 

could be located and afterwards a safe environment would be created for the new node. 

After a research on papers relevant with three-dimensional geo-localization 

mechanisms and techniques, alongside with the concept of hypervisors for the creation 

of safe environment with the utilization of cryptography, we came to the conclusion of 

the creation of a framework which would satisfy those requirements. We created a 3-

Dimentional field of four base nodes stations, where we utilized two localization GPS-

free algorithms for the location of a fifth unknown node alongside with a hypervisor for 

the trust environment creation. We utilized a TPM for the cryptography mechanisms and 

safety keys creation. In this paper we created a simulation where we compare the 

performance of those two geolocation algorithms in terms of accuracy and computation 

speed and accuracy, alongside with the hypervisor’s security mechanisms performance 

and its ability for data integrity insurance. Except our proposed framework components, 

we present also further information that we found in relevant papers, such as a variety 

of hypervisors and a variety of localization techniques, for more information for future 

work alongside with implementation steps and guidance.      
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ΠΕΡΙΛΗΨΗ 

 
Για πολλούς, η γεωγραφική θέση είναι μια απλή διαδικασία όπου με τη χρήση του GPS ένα 

άτομο μπορεί να εντοπιστεί όπου και όποτε ζητείται. Ωστόσο, ακόμη και αν η χρήση του GPS 

για γεωγραφική τοποθέτηση είναι ο πιο συνηθισμένος τρόπος και ταυτόχρονα ακριβής ως 

σύστημα, αποτελεί μια τεράστια κατανάλωση ενέργειας για να επιτευχθεί αυτή η διαδικασία και 

υστερεί σε μηχανισμούς και τεχνικές ασφαλείας. Σκοπός αυτής της εργασίας είναι να 

παρουσιάσουμε μια άλλη όψη για το πώς μπορούμε να εντοπίσουμε μια άγνωστη θέση ενός 

κόμβου σε ένα σύστημα και πώς θα μπορούσε να δημιουργηθεί ένα ασφαλές περιβάλλον για 

αυτόν τον κόμβο. Βασική μας ιδέα ήταν η δημιουργία ενός μηχανισμού όπου θα μπορούσαμε να 

δημιουργήσουμε ένα τρισδιάστατο πεδίο στο οποίο θα μπορούσε να εντοπιστεί άγνωστος 

κόμβος και στη συνέχεια θα δημιουργηθεί ένα ασφαλές περιβάλλον για τον νέο κόμβο. Μετά 

από μια έρευνα σε δημοσιεύσεις σχετικά με τρισδιάστατους μηχανισμούς και τεχνικές γεω-

εντοπισμού, παράλληλα με την έννοια των hypervisors για τη δημιουργία ασφαλούς 

περιβάλλοντος με την αξιοποίηση της κρυπτογραφίας, καταλήξαμε στο συμπέρασμα της 

δημιουργίας ενός πλαισίου που θα ικανοποιούσε αυτά απαιτήσεις. Δημιουργήσαμε ένα 

τρισδιάστατο πεδίο τεσσάρων σταθμών κόμβων, όπου χρησιμοποιήσαμε δύο αλγορίθμους 

εντοπισμού, χωρίς GPS, για τον εντοπισμό της θέση ενός πέμπτου άγνωστου κόμβου 

παράλληλα με έναν hypervisor για τη δημιουργία περιβάλλοντος εμπιστοσύνης. 

Χρησιμοποιήσαμε ένα TPM για τη δημιουργία κρυπτογραφικών μηχανισμών και κλειδιών 

ασφαλείας. Σε αυτή την εργασία δημιουργήσαμε μια προσομοίωση όπου συγκρίνουμε την 

απόδοση αυτών των δύο αλγορίθμων γεωγραφικής τοποθέτησης από την άποψη της  

ταχύτητας και της ακρίβειας του υπολογισμού, παράλληλα με την απόδοση των μηχανισμών 

ασφαλείας του hypervisor και την ικανότητά του για ασφάλιση ακεραιότητας δεδομένων. Εκτός 

από τα συστατικά του προτεινόμενου μηχανισμού, παρουσιάζουμε και άλλες πληροφορίες που 

βρήκαμε σε σχετικά έγγραφα, όπως μια ποικιλία από hypervisors και μια ποικιλία τεχνικών 

εντοπισμού, για περισσότερες πληροφορίες για μελλοντικές εργασίες παράλληλα με τα βήματα 

υλοποίησης και εκτέλεσης. 
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1. INTRODUCTION 
The current research has as its goal to define how geo-location algorithms and 

schemes are utilized in order to achieve the location calculation of a node. Also, how to 

achieve such geo-location process as secure as possible from attacks. Finally, we 

present our proposed scheme for a secure and protected localization environment. In 

the current chapter an overview of the context and motivation behind the research will 

be given, as well as the adopted research method and approach. Also, an outline of the 

overall structure of the thesis will be given. 

1.1 Motivation and objective 

As a robust process, geo-location enables mobile app developers to identify the 

physical and real-world geographic location of various individuals and devices. A mobile 

developer can use geo-location to identify the exact latitudinal and longitudinal location 

of an internet-connected device through its GPS Location or Geo Tag. They can even 

us geo-location to make their mobile apps standout in the crowd and deliver richer user 

experience. There are also many reasons why most enterprises nowadays opt for geo-

location-based mobile app development. 

Geo-location allows users to share their physical location with your application if they 

choose to. Especially useful in social networking, geo tagging, and mapping, but 

applicable to any type of application, geo-location enables developers to enhance the 

user experience, making content, social graphs and advertisements more relevant to 

the location of the user. It is useful to track moving vehicles, such as planes or cars. In 

case of emergency, knowing were the location of trapped people in a burning building or 

during an earthquake can save a lot of lives. Geo-location can apply to many 

applications as we will see in the next chapters.  

A system can adopt this geo-location concept to develop a safe environment were a 

user can access and utilize the system’s data only if he is inside a specific geographical 

scope. Imagine having a system that ensures that your personal data will be safe and 

accessed only by you and only in your house. We can have a system that has a specific 

geographical scope, where if a node enters this scope, the system can calculate its 

geological position and if it is authorized can access the system data. The system will 

be also responsible of the security and the data integrity of the user.  

The main objective of this paper is to describe a proposed geo-localization framework, 

further information is provided at chapters 8-9-10, where it will be capable of:  

1. Specify a geographical 3D field. 

2. Calculate the position of a node when it enters the geographical fixed field. 

3. Verify if the unknown node can access the framework data. 

4. Give a safe access and interaction with the framework to the new nodes. 

5. Ensuring that the data is full protected from attacks inside the fixed field. 

6. Ensuring data integrity and no data leakage. 
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In order to achieve a framework with the above requirements, we must answer some 

specific questions where are presented in the next section. 

1.2 Research questions 

To reach the objective stated in the previous section, several questions need to be 

answered. The main research questions are as follows: 

“How can we achieve geo-localization in a 3D space environment with low costs 

and high accuracy? “ 

As we will show in the next chapters there is a variety of algorithms and techniques that 

calculates the position of an unknow node in a system. However, there is a tradeoff 

between accuracy and energy consumption and hardware size. The more accuracy is 

needed the more energy and hardware is necessary in order to have high accuracies 

and low computations errors. 

“Why to avoid the use of GPS in a geo-location system?” 

GPS is expensive because it is a very slow communication channel. You need to 

communicate with three or four satellites for an extended duration at 50 bits per second. 

Using your GPS is a noticeable battery hog. New mechanisms and frameworks need to 

be adopted in order to achieve the position calculation of an unknown node with the 

minimal use of GPS in order to consume to the minimum of basic component of the 

modern devices. The battery. 

 

Figure 1. GPS Battery consumption. 

“How a system can create a safe environment for a user that ensures data 

integrity? “ 

In order to answer this question, we adopted the concept of hypervisors as we will see 

on the next chapters. With the utilization of hypervisors, a system can create an 

environment (such as a Virtual Machine) where the user can be sure that no other can 

access its memory and data except from him. 

“How can we ensure that the user’s data in the system will be fully protected? “ 
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In most systems that data between nodes is transmitted there is a variety of attacks that 

can harm the user’s data and the system itself. We will see that we can utilize specific 

components for protection. 

“Is there a system that calculate an unknow node position with low cost, 

providing a safe interaction between them and guarantees data protection and 

integrity, only inside a specific 3D geographical environment? “ 

As we will see on chapter 8, we propose a system where satisfies the requirement of 

the above question. A system that calculates unknow positions, provides safety and 

data integrity for users inside its scope. 

1.3 Thesis structure and reading guide 

The following table gives an overview of the research structure of this paper. We start 

with a short introduction in the geo-location process and application. We continue with a 

brief of positioning techniques and algorithms in order to achieve the position calculation 

process. 

We present the main security problems in geo location systems alongside with some 

mechanisms and proposed schemes for protections. The hypervisors concept is then 

presented with documentation and implementation of some representative hypervisors. 

Finally, our proposed framework is provided and our conclusions. In order to have a 

complete idea of our framework in chapters 6-7-8, make sure that you understand the 

basic concepts in chapters 2-3-4-5. Appendixes consists only of the implementation of 

some representative frameworks from chapter 5 and some source code presentation. 

Table 1. Thesis Chapter Structure 

Chapter Subsections Overview 
1.Introduction 1.1 Context  

1.2 Research setting 
1.3 Objectives 

An introduction of the concept and main objective of the paper and 
of its structure. 

2.Introducing Geo-
location 

2.1 Overview 
2.2 Why we need Geo-Location? 
2.3 Geo-Location Applications 

 

An introduction of the concept of geo-location and its applications. 
Why is so important? Why do we need to know where our position 
is in a system? 

3.Introducing Positioning 
Techniques  

3.1 Localization techniques Classification 
3.2 Localization Algorithms 

An introduction of the basic concept of localization techniques 
alongside with some localization schemes and framework. 

4.Introducing Security in 
Geo-location 

4.1 Security in Geo-location Systems 
4.2 Attacks in Localization 
4.3 Secure Geo-location Schemes 

An introduction of the security and attacks in geo-localization 
applications alongside with some schemes and frameworks. 

5.Hypervisors 5.1 Hypervisors Overview 
5.2 XMHF- uberXMHF  
5.3 Trust Hypervisor 

A presentation of the Hypervisors framework and technology and 
some representative applications. How Hypervisors work, how the 
ensure security and data protection from attackers and the 
evaluation of those.  

6. Proposed Secure Geo-
Location Scheme 

6.1 Introduction  
6.2 Proposed Framework Overview 
6.3 Proposed Framework Implementation 

Presentation of a proposed framework for a secure localization 
environment. 

7. Proposed Scheme 
Simulation 

7.1 Framework Installation 
7.2 Framework Execution 

Simulation of the proposed framework. 

8.Validation 8.1 Localization Algorithm Validation 
8.2 Hypervisor Validation  

Validation of the proposed framework. 

9.Conclusions Conclusion and Future work Conclusions and future work. 
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1.4 Thesis concept 

In order to present our proposed geo-localization framework, we need to understand 

first same basic concepts, technologies, mechanisms and algorithms that our 

framework is based on. Our proposed framework is a combination of two major 

concepts: Geo-Localization process and Security/Safety.  

 

Figure 2. Proposed framework concept. 

Firstly, is necessary to understand the basic concept of geo-location and how important 

is to modern applications alongside with how an unknown node position can be 

calculated in a geo-localization system (Chapter 2-3-4). Finally, is necessary to 

understand the concept of security and safety in such systems and how they can be 

protected from malicious attacks (Chapter 4-5).  

 

Figure 3. Thesis concept  
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2. INTRODUCING GEO-LOCATION 
In this chapter we present a short overview on how geo-location is achieved in modern 

applications and technologies alongside with the basic concept of geo-location and 

localization. 

2.1 Overview 

In its simplest form geo-location, involves the generation of a set of geographic 

coordinates and is closely related to the use of positioning systems, but its usefulness is 

enhanced by the use of these coordinates to determine a meaningful location, such as 

a street address. The word geo-location also refers to the latitude and longitude 

coordinates of a specific location. The term and definition have been standardized 

by real-time locating system standard ISO/IEC 19762-5:2008 [1] 

 

Figure 4. GPS Geo-location 

For either geolocating or positioning, the locating engine often uses radio frequency 

(RF) location methods, for example Time Difference Of Arrival (TDOA) for precision.  

TDOA systems often use mapping displays or other geographic information system. 

More details for those techniques are presented in chapter 3.  When satellite navigation 

(such as GPS) signals are unavailable, geo-location applications can use information 

from cell towers to triangulate the approximate position, a method that is not as 

accurate as GPS but has greatly improved in recent years. This is in contrast to earlier 

radiolocation technologies, for example Direction Finding where a line of bearing to a 

transmitter is achieved as part of the process. 

Internet and computer geo-location can be performed by associating a geographic 

location with the Internet Protocol (IP) address, MAC address, RFID, hardware 

embedded article/production number, embedded software number (such as UUID, 

Exif/IPTC/XMP or modern steganography), invoice, Wi-Fi positioning system, device 

fingerprint, canvas fingerprinting or device GPS coordinates, or other, perhaps self-

disclosed information. IP address location data can include information such as country, 

region, city, postal/zip  code,[6] latitude, longitude and time zone.[7] Deeper data sets can 

determine other parameters such as domain name, connection speed, ISP, language, 

proxies, company name, US DMA/MSA, NAICS codes, and home/business. At times 

geo-location can be more deductive, as with crowdsourcing efforts to determine the 

position of videos of training camps, combats, and beheadings in Syria by comparing 
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https://en.wikipedia.org/wiki/Radio_navigation
https://en.wikipedia.org/wiki/Radio_navigation
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features detected in the video with publicly available map databases such as Google 

Earth, as practiced by sites such as Bellingcat Some standards and name servers 

include:  

ISO 166, FIPS, INSEE, Geonames, IATA and ICAO. For geographic locations in the 

United States, the American National Standards Institute (ANSI) Codes are often used. 

[11] ANSI INCITS 446-2008 is entitled "Identifying Attributes for Named Physical and 

Cultural Geographic Features (Except Roads and Highways) of the United States, Its 

Territories, Outlying Areas, and Freely Associated Areas, and the Waters of the Same 

to the Limit of the Twelve-Mile Statutory Zone".[11] A number of commercial solutions have 

been proposed: 

• WOEID (Where on Earth IDentifier) is a unique 32-bit reference identifier that 
identifies any feature on Earth. [2]  

• NAC Locator provides a universal geocoding address for locations on the planet. [3] 

 

2.2 Why we need Geo-location? 

Identifying our exact location on earth has been a fascination of mankind since the 

Ancient Greeks used the stars to triangulate their position. The importance of knowing 

the exact position of o person, house, car, city, hospital etc. in the whole world with 

precision is obvious and today, we have a wide-array of location-based services that 

have made their way into office buildings and jean pockets everywhere. It is important 

because the Geo-location systems help an average person to locate herself precisely 

anywhere on the planet without having to be too much technically literate and for free. In 

fact, it has been rightly identified as the backbone for several businesses, without which 

it will be nearly impossible for the owners to operate it. 

Knowing the exact position location can be used for a number of applications and also 

can be useful in many emergency situations. It allows you to locate yourself on the high 

seas or featureless Saharan desert where there may not be any landmarks to orient 

yourself because it does not depend on any terrestrial system (such as its predecessor 

LORAN which is space based). It also can assist for rescue of fellow humans in 

situations such as natural disasters like earthquakes in a timely manner which was not 

possible before.  

Localization systems can encourage the innate desire of humans to explore the 

unknown lands without the fear of not being able to return since their global position is 

calculated. It can quietly help to protect soldiers in times of conflict and in hostile lands 

by helping them navigate themselves and by helping others to find them if needed.  

Automotive industries utilize geo-location application to provide rout guidance services 

to drivers. Internet and cloud application need the exact position of their user in order to 

provide their services with high speed and performance. Geo-location data can be 

utilized for statistics and demographics researches and applications. Space and aviation 

industries use geo-location data for calculate routes. The need of geo-location systems 

https://en.wikipedia.org/wiki/Google_Earth
https://en.wikipedia.org/wiki/Google_Earth
https://en.wikipedia.org/wiki/Bellingcat
https://en.wikipedia.org/wiki/ISO_3166
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standards
https://en.wikipedia.org/wiki/INSEE
https://en.wikipedia.org/wiki/Geonames
https://en.wikipedia.org/wiki/IATA
https://en.wikipedia.org/wiki/ICAO
https://en.wikipedia.org/wiki/Geolocation#cite_note-USCB-11
https://en.wikipedia.org/wiki/Geolocation#cite_note-USCB-11
https://en.wikipedia.org/wiki/WOEID
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is continuously growing and the majority of applications and industries require the exact 

location of their users in order to provide their services with accuracy, high performance 

and safety.   

Geolocation commonly uses Global Positioning System (GPS) and other related 
technologies to assess and specify geographical locations. The global positioning 
systems (GPS) market size was estimated at USD 37.9 billion in 2017. It is anticipated 
to progress at a CAGR of 18.4% during the forecast period.  

Increasing penetration of smart phones along with rising GPS-enabled vehicles is 
projected to bolster the growth of the market during the forecast period. Moreover, 
surging use of social media across developing countries and a high number of mergers 
and acquisitions between component manufacturers and integrators are poised to stoke 
the growth of the global positioning systems market. 

 

 

Figure 5. GPS Market Size, from Grand View Research 

2.1.1 The History of Geo-location 

With all of the progress made and all of the efficiencies introduced, geo-location’s 

history is uniquely fascinating. Let’s take a look at how far we’ve come: 

 

• 2,000+ Years Ago – Ancient Greeks triangulated their geographical location using only the 
stars. 

• 1933 – Radar is finally on the map, as the U.S Naval Research Laboratory’s Leo Young, 
proposed the use of a pulse radar technique to be able to detect aircraft and ships. 

• 1940 – The Naval Research Laboratory enabled the first submarine to use radar. It had a 
20-mile range. 

• 1957 – Sputnik I, the first artificial satellite to go into space, is launched by the Soviet Union. 
It was about the size of a beach ball at 58 cm., weighed only 184 pounds, and took about 98 
minutes to orbit the Earth on its elliptical path. 

• 1973 – The Navstar Global Positioning Satellite (GPS) system is proposed by the Pentagon. 

• 1978 – The first 11 Navstar GPS satellites are launched into space. 
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• 1983 – President Ronald Reagan offers to let all civilian commercial aircraft use the GPS 
system to improve air navigation safety. Although, the commercial use of GPS is granted 
with “selective availability,” or restricted use. 

• 1989 – Magellan becomes the first to sell a hand-held navigation device with the release of 
the Magellan NAV 1000. 

• 1993 – The U.S. Air Force sends the final Navstar GPS satellite into orbit, completing an 
entire network of 24 Global Positioning System (GPS) satellites. Although, they were not yet 
fully operational. 

• 1995 – The Navstar GPS program reached a fully operational status in April of 1995. The 
project cost 10 to 12 billion dollars. 

• 1999 – The first commercial use of GPS – a safety phone called the Benefon Esc! – is 
released for consumer purchase. It is sold mainly in Europe. 

• 2000 – President Bill Clinton lifts “selective availability” on GPS-usage for civilians. This 
allows civilians and consumer-facing services to use GPS with the same pinpoint accuracy 
as the military. 

• 2002 – Nikon introduces their D1H & D1X camera models – the first DSLR cameras to offer 
a GPS interface. 

• 2004 – Up to 15 percent of U.S. farmers use GPS-controlled tractors and/or combines and 
are saving as much as 5 percent in fertilizers and pesticides with the use of precision 
guidance systems. 

• 2005 – GIOVE-A, Europe’s first experimental GPS satellite is launched into space, serving 
to test critical technologies for the Galileo program, meant to give Europe independence 
from the U.S, Russian and Chinese GPS systems. The program is scheduled to be fully 
operational in 2020. 

• 2005 – Google Maps officially debuts! 

• 2005 – Yelp popularizes location-based reviews leveraging geo-location technologies. 

• 2006 – After testing equipment, such as the handheld SkyCaddie, and being courted by the 
electronic industry for several years, the U.S. Golf Association permits distance-measuring 
GPS devices and laser range finders. 

• 2006 – Geopointe is founded, revolutionizing the way Salesforce users can visually leverage 
their data. 

• 2007 – GPS becomes a multi-billion-dollar industry, causing further restrictions to be lifted 
on commercial usage by President George W. Bush. 

• 2009 – Foursquare launches, helping further popularize geo-location review services. 

• 2012 – The U.S Supreme Court rules that warrantless GPS tracking is constitutional. 

• 2015 – Facebook begins licensing location-based data from Factual, a geodata platform. 
This includes “US Places data,” which includes hotels and restaurants “extended attributes,” 
to support Facebook business pages, check-ins, Places search and more. 

• 2017 – Match.com reportedly enables users to see which other users they have crossed 
real-life paths with. 

• 2017 – Facebook fights to represent the primary “digital presence” for local businesses. With 
2.5 billion comments being added to Facebook business Pages every month, they are now 
competing directly with Google. 
 
 
 
 
 
 

https://www.facebook.com/geopointe/
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2.1.2 Applications 

2.1.2.a Aviation 

Most of the modern aircraft use geo-location receivers to provide the pilots and 

passenger with real-time aircraft position. They also provide a map of various 

destinations depending on where the aircraft operates. This application is also used by 

the airline operators to decide which route is the fastest, safest, and most fuel-efficient 

among the destinations. They also use the app to track the aircraft and direct the pilot in 

the case where there is a change in the weather conditions or any other issue that may 

arise. 

2.1.2.b Marine 

Highly accurate navigation app is needed by boat captains to enable them to navigate 

through waters to their destinations. These applications ensure that the channels are 

clear and there are no obstacles that can hinder their navigation. They are also required 

in the marine departments since they are used to map and position dredging operations 

in rivers, sandbars, and wharves to ensure that other boats are aware of how deep they 

should get. 

2.1.2.c Farming 

Farmers have a specific season for planting, weeding, and harvesting, and due to the 

repeat in the seasons, they put the geo-location receiver on their tractors and other 

farming equipment. This allows them to map their plantations and ensure that they 

return to precisely the same time when planting or weeding in the next season. This 

strategy is effective especially in seasons when it’s foggy with less visibility since the 

machine will still operate since its geo-location and not visual reference guides it. More 

so, its high accuracy makes it suitable for use in mapping soil sample locations, and the 

farmers can locate the areas that have soils suitable for farming. 

2.1.2.d. Science 

This is one field that intensively uses the geo-location app especially since there are 

numerous departments in the science field, this include physics, biology and earth 

science to mention a few. Before the invention of this app, scientists used metal and 

plastic bands to tag animals, and they would follow them to various location while 

monitoring them. However, since the invention and enhancement of the navigation app, 

it has helped scientist to fit the animal with the collars and the app can automatically 

record the animal’s movement and the information is transmitted to a through a satellite 

to the researcher. This means that they can trace the location of the animals’ movement 

without having to relocate them physically. Most of the sciences taught in schools will 

have more practical evidence especially since geo-location provides accurate data. 

Earth scientist also uses the app to study how landscapes change over time. Or any 

geographic area that they may be interested. 

2.1.2.e Surveying 

Surveying is one of the uses of geo-location that are essential especially since it is used 

in mapping and measuring various measures on the earth surface and underwaters. It is 
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used in determining land boundaries, mapping sea floors, and highlighting the changes 

in the shape of structures. The best thing about high accuracy geo-location app is that 

the surveyors can set it up over a single point and establish a reference marker. They 

can also use it in a moving configuration to map the boundaries of particular features. 

With the data obtained from the application, they can easily key in the details into a 

software that will help them offer their customers with a detailed chart. 

2.1.2.f Military 

The US Department of Defense was the first to develop the geo-location GPS app 

system, and since then the system has been adopted by numerous military forces 

around the world. Other countries have even decided to develop their satellite 

navigation networks as a defense mechanism during war times. Today, there has been 

a diverse use of the app, and it can be used to map the location of vehicles and other 

machinery such as missiles during a war. This is a technique used purposely to protect 

the soldiers and also manage resources. 

2.1.2.g Financial Services 

Financial organizations such as banks use this app to schedule and determine local and 

international money transfers. They are also using it to provide audit trails of financial 

transactions. More so, since more than 80% of the transactions are made through debit 

and credit cards, it has been easier to provide a higher level of timing accuracy. The 

geo-location GPS satellite is necessary for the financial field since it allows for data and 

time stamps of Electronic Funds Transfers. 

2.1.2.h Telecommunications 

Telecommunications especially the mobile telephones use this app to provide its users 

with accuracy, reliability, and stability of their operations. Although other clocks can 

provide this, the geo-location supports the derivation of synchronized time zones with 

the help of the satellite signals. 

2.1.2.i Heavy Vehicle Guidance 

Heavy tack machines used in mining and constructions also use this technology. For 

example, in highway construction, the marker pegs and surveyors have been replaced 

by the improvised in-cabin vehicle guidance and control systems. This makes the work 

easier since the driver only needs to follow the surveyor’s pre-programmed site plan.  

2.1.2.j Road Transportation 

Majority of users of this technology are taxi services, emergency vehicle location, 

commercial fleet management and freight tracking, public transport monitoring, 

dispatch, and navigation. Private car owners also use the app, and most of the new car 

models come with a factory-fitted GPS. 

2.1.2.m Social Activities 

Some of the social activities that have incorporated the use of this technology include 

cross-country cycling, skiing, hiking skydiving, paragliding, geotagging photographs, 

geocaching, geo dashing among others. 
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2.1.2.n Easy Access to Emergency Roadside Support 

In case of an accident or an emergency, you can seek assistance using the pre-

programmed emergency numbers on your smartphone. The best thing about using this 

app is that the emergency crew can trace your current location without having to provide 

any details. 

2.1.2.l Public Safety and Disaster Relief 

The best thing about geo-location is that it can be used in any weather or environmental 

condition which is the reason why is preferred for use during disaster management. The 

emergency vehicles and supplies are tracked using geo-location. 

2.1.2.o Can be used by Disabled People 

People with special needs are at times left on their one when their caretakers and loved 

ones have to work. The geo-location tracker is not only used to track their location, but it 

can be of great importance in the case of emergencies. 

2.1.2.p Civil engineering applications 

Civil engineering works are often done in a complex and unfriendly environment, 

making it difficult for personnel to operate efficiently. The ability of geo-location to 

provide real-time submeter- and centimeter-level accuracy in a cost-effective manner 

has significantly changed the civil engineering industry. Construction firms are using 

geo-location in many applications such as road construction,  

2.1.2.q Space and Spacecraft 

Some near and far term space missions involve formation flying, which requires that the 

positions of multiple spacecraft be accurately known relative to a hub spacecraft. 

2.1.2.r Security  

The location base encryption or Geo-Encryption technique uses GPS technology to 

enhance the data security. This concept is developed so that at a particular position and 

time, the specific recipient will decrypt the files. The breaching of data due to stolen 

laptops are a major problem. This technology will be used to restrict unauthorized user 

for any violation. Also, it can assure that data can be secure in specific geological fields 

and can be accessed only in the user is inside those specific fields. For instance, files 

and data from a specific university can be accessed only inside the university campus. 
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3. INTRODUCING LOCALIZATION TECHNIQUES 
In this chapter we present a short overview on localization technologies and techniques 

and how geo-location is achieved in those.  

3.1 Localization techniques classification 

Many of these applications need location base services. Although GPS is a direct 

solution to the localization problem, the high cost, high power consumption, and poor 

performance of GPS inside an indoor environment have necessitated the research on 

localization algorithms. Over the past few years, the scientific world has observed a lot 

of research efforts on this topic. Note that the localization is defined as the 

determination of the position of an unknown node, sometimes with the help of nodes 

with known position, and at other times using the connectivity information between the 

unknown nodes.  

Recent  studies have investigated the effect of mobility in localization, real world 

applications, “Anchor Based” and “Anchor Free” localization methods , “Range Based” 

localization algorithm (distance measurement technique to calculate the location of 

unknown nodes) and “Range Free” localization algorithm (connectivity rather than 

distance) , “Cooperative” (communication exists among all nodes) and “Non-

Cooperative” (unknown nodes communicate only with the anchor nodes) algorithms, 

“Centralized” algorithm based localization (aka network-centric positioning) and 

“Distributed” algorithm (no central control on the determination of the node’s position 

and each node estimates its location based on the locally gathered information - aka 

“self-positioning” algorithm 

3.1.1 GPS Based Localization 

Global Positioning System (GPS) localization has been attracting attention recently in 

various areas, including intelligent transportation systems (ITSs), navigation systems, 

road tolling, smart parking, and collision avoidance. Although, various approaches for 

improving localization accuracy have been reported in the literature, there is still a need 

for more efficient and more effective measures that can ascribe some level of accuracy 

to the localization process.  

The Navigation Satellite Time and Ranging (NAVSTAR) Global Positioning System 

(GPS) is a worldwide radio-navigation system created by the U. S. Department of 

Defense (DOD) to provide navigation, location, and timing information for military 

operations. System testing using a limited number of satellites began in 1978 with the 

system being declared fully operational in 1995. The system was declared available for 

civilian uses in the 1980s and has seen burgeoning civilian application for navigation 

and mapping. GPS is the U.S. implementation of a Global Navigation Satellite System 

(GNSS). Increasingly, GPS receivers have the capability to utilize signals from other 

GNSS such as the Russian GLONASS or European Galileo systems. SESD has no 

limitations on the use of signals from other GNSS. 
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The accuracy of the basic GPS system is approximately 15m. GPS accuracy can be 

affected by a number of factors including the Selective Availability feature, atmospheric 

delays, satellite clock and orbit errors, multipath signals, signal strength, and satellite 

geometry relative to the user. Wherever the node is on the planet, at least four GPS 

satellites are ‘visible’ at any time. Each one transmits information about its position and 

the current time at regular intervals. These signals, travelling at the speed of light, are 

intercepted by your GPS receiver, which calculates how far away each satellite is based 

on how long it took for the messages to arrive. Once it has information on how far away 

at least three satellites are, the GPS receiver can pinpoint the location using a process 

called trilateration. 

 

Figure 6. GPS Trilateration Model 

3.1.2 GPS Free Localization 

With a network of thousands of nodes, it is unlikely that the position of each node can 

be precisely predetermined [4]. Although GPS based localization schemes can be used 

to determine node locations within a few meters, the cost of GPS devices and the non-

availability of GPS signals in confined environments prevent their use in large scale 

sensor networks.Below is presented the recent advances on localization techniques in 

WSNs by considering a wide variety of factors and categorizing them in terms of data 

processing (centralized vs. distributed), transmission range (range free vs. range 

based), mobility (static vs. mobile), operating environments (indoor vs. outdoor), node 

density (sparse vs. dense), routing, algorithms, etc.  

 
Figure 7 .Classification of localization techniques 

3.1.2.a Anchor Based/Centralized 

In Centralized algorithms all computation is done in central server. Centralized 

algorithms resolve computational limitations of nodes. In these algorithm nodes have to 

communicate to BS, unfortunately communication consumes more energy than 

computation. In distributed algorithms computation is distributed among sensor nodes. 
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In these algorithms only Inter node communication is done which consumes less energy 

as compared to communication cost in centralized algorithm. 

3.1.2.b Anchor Free/Decentralized 

The main advantage of a decentralized data fusion system is the lack of dependency of 

the whole system on a central processing unit. Also, in such systems, the 

malfunctioning of a sensor will not affect the whole estimation, and local estimators with 

functioning sensors continue to perform properly. Several general decentralized data 

fusion algorithms are presented in [6-8]. In these works, a network of sensors with 

several local estimators is considered and several local estimates are produced. 

In [7], a decentralized architecture with applications in the navigation of vehicles is 

presented. The method is also applicable to the cases where the sensor measurements 

are asynchronous. In [8], the localization in a known environment is addressed and 

simulation results are provided to show the estimation results in a decentralized 

architecture. Recently, developing decentralized algorithms for SLAM with special 

application on the navigation of a team of robots has attracted new attentions [9]. In 

these works, the estimated landmark positions are transmitted between the robots for 

updating the map of the environment. 

3.1.2.c Range Based  

Range-based estimate location by point-to-point distance measurements [10]. Some 

common distance measurement methods are angle of arrival (AoA), time of arrival 

(ToA), time difference of arrival (TDoA), acoustic energy, and received signal strength 

indicator (RSSI). The first three methods require complex hardware set up while RSSI is 

simpler than the others but less accurate. After gathering the information of anchors and 

sometimes of other unknown nodes, distances are combined using techniques like 

trilateration or particle filter etc. 

3.1.2.d Range Free 

Range free localization algorithms use connectivity information among the nodes to 

determine the positions of unknown nodes [11]. Since the range base methods require 

a hardware setup that is both complex and costly, a range free method can be a 

possible solution to hardware limitation problems. 

 

Figure 8. Range Based Vs Range Free 
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3.1.3 Range Base Positioning techniques  

3.1.3.a RSSI 

The Received Signal Strength Indicator (RSSI) value is part of the data packet 

transmitted by all Veris Aerospond sensor units [12]. It is intended as means to obtain a 

relative indication of the quality of connection that exists between the sensor unit and 

the access point it is connected to on the wireless network. In order for this to be a 

useful tool in determining the quality of the connection, there are a few principals that 

need to be understood about what the RSSI value means. The RSSI formula is 

presented below: 

Signal Strength Signal strength is based on a number of factors, including the output 

power of the transmitter (the original strength of the signal), the sensitivity of the 

receiver (how well the receiving device can hear weak signals), the gain of the antennae 

at both ends of the path, and the path loss, or attenuation of the signal as it travels 

through the air from the transmitter to the receiver. Signal strength is expressed in units 

of decibels (dB). Due to the low power levels and the attenuation of free space, an RSSI 

value is expressed as a negative number. The more negative the number, the weaker 

the signal strength; conversely the closer the number is to zero, the stronger the signal. 

 

Figure 9. RSSI range performance 

Given the received signal power PR (in Watt), the transmitted signal power PT (in Watt), 

the receiver’s antenna gain GR, the transmitter’s antenna gain GT , the signal 

wavelength λ, the distance d in meters and the signal propagation constant n, the Friis’ 

equation is defined as 

PR = PT 
𝐺𝑇∗𝐺𝑅∗𝜆

2

(4∗𝜋)2∗𝑑𝑛
  (1) 

Since the RSSI value is expressed in dBm, we have to convert the results of Equation 1 

from Watts to dBm using: 

P[dBm] = 10 · log10 (P[W] · 103) (2) 

and with Equation 2 we can obtain a relation between distance and receive power, 

simplified for the case of a 1-meter reference distance as: 

RSSI = A − 10 · n · log10 d (3) 
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where A is the received power in dBm with the two antennas 1 m distant, and n the loss 

parameter (or loss exponent) of the specific environment. Hence, the distance d can be 

easily calculated as 

d = 10
𝐴−𝑅𝑆𝑆𝐼

10∗𝑛
  

3.1.3.b TOA 

Time of Arrival [13] is the simplest and most common ranging technique, most notable 

used in the Global Positioning System (GPS). This method is based on knowing the 

exact time that a signal was sent from the target, the exact time the signal arrives at a 

reference point, and the speed at which the signal travels. Once these are known, the 

distance from the reference point can be calculated using the simple equation. 

 

Figure 10. TOA Overview 

Using this distance, the set of possible locations of the target can be determined. In two 

dimensions, this yields a circle with the equation: 

d = c * (tarrival – tsent) 

d =  √(xref − x)2 + (yref − y)2 

where c is the speed of light and (xref, yref) is the known position of the reference point. 

Once this set is calculated for enough reference points (at least three for two 

dimensional or at least four for three-dimensional), the exact position of the target can 

be calculated by finding the intersection. 

 

Figure 11. TOA Trilateration 

In this example, the Target (black) is surrounded by three Beacons (red, green, and 

blue). At time t1, a signal is sent from Beacon 1 to the Target, which is received at t2. 

The distance (d1) between the Target and Beacon 1 is calculated, then the circle of 
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possible locations is drawn, a. This process is repeated for Beacons 2 and 3, which 

yields two more circles, as shown in Figure 3. 

3.1.3.c TDOA 

Time Difference of Arrival is the second-most popular ranging technique, and it is 

somewhat more versatile than ToA [14]. This method does not require the time that the 

signal was sent from the target, only the time the signal was received and the speed 

that the signal travels. Once the signal is received at two reference points, the 

difference in arrival time can be used to calculate the difference in distances between 

the target and the two reference points. This difference can be calculated using the 

equation:  

Δd = c * (Δt) 

where c is the speed of light and ∆t is the difference in arrival times at each reference 

point. In two dimensions, this leads to the following equation [2]: 

Δd =  √(x2 − x)2 − (y2 − y)2 − √(x1 − x)2 − (y1 − y)2 

where (x1, y1) and (x2, y2) are the known positions of the beacons. Using nonlinear 

regression, this equation can be converted to the form of a hyperbola [2]. Once enough 

hyperbolas have been calculated, the position of the target can be calculated by finding 

the intersection. 

 
Figure 12. TDOA Trilateration 

In this example, we have the same setup of a target (black) surrounded by three 

beacons (red, green, and blue). A signal is sent from the Target at an unknown time, 

which is received by Beacon 2 at t1 and Beacon 3 at t2. The difference in distance (Δd) 

is calculated, and the hyperbola of possible locations is drawn, as shown in Figure 5.  

This hyperbola will have two branches, which would normally make finding the 

intersection more difficult. However, if the approximate location of the target is known 

(e.g. through a previously measured location), one of the branches can be discarded. In 

this case, the top branch is discarded. This process is repeated with the remaining 

Beacon pairs, and the result is shown in Figure 6. 

3.1.3.d AOA 

AOA is defined as the angle between the propagation direction of an incident wave and 

some reference direction, which is known as orientation [14]. Orientation, defined as a 
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fixed direction against which the AOAs are measured, is represented in degrees in a 

clockwise direction from the North. When the orientation is 0◦ or pointing to the North, 

the AOA is absolute, otherwise, relative. One common approach to obtain AOA 

measurements is to use an antenna array on each sensor node.  

 

 

Figure 13. AOA Trilateration 

3.1.4 Range Free Positioning techniques  

3.1.4.a DV hop 

The Distance Vector-Hop (DV-Hop) algorithm was proposed as a distributed localization 

algorithm based on distance vector between nodes [15]. Rather than estimating the 

distance between neighboring wireless nodes by using ranging methods, this algorithm 

first calculates the actual distance between every pair of anchor nodes (since the 

coordinates of these nodes are known a priori). It then finds hop-distance (i.e., the 

number of hops) between every pair of anchors and calculates the average distance per 

hop along these paths. These distances are then used for localization of sensor nodes. 

Specifically, the localization process while using DV-Hop algorithm consists of the 

following three phases: 

Step 1: Calculating the minimum hop count between beacon nodes and unknown 

nodes. Beacon nodes broadcast information which shows their positions to 

neighbouring nodes by using the classical distance vector routing protocol. The 

information contains {id,xi,yi,Hi}, where id, (xi,yi), and Hi represent the identifier, the 

coordinate, and the hop count of beacon nodes , respectively. Moreover, the initial value 

of Hi is set to zero.  

The nodes receiving the broadcast information record the localization and hop counts of 

beacon nodes as vectors, which are then transmitted to neighbouring nodes (the value 

of hop count is incremented by one). When a node receives the same id group, it is 

supposed to compare the newly obtained value of Hi with the original value and then 

select the minimum value to replace and update the original group; otherwise, the newly 

obtained group is abandoned. The position information and minimum hop count of all 

beacon nodes are obtained by this communication mode in WSNs. 

Step 2. Estimating the average hop distance. The purpose of calculating the average 

hop distance and minimum hop count first is to estimate the distance between unknown 
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nodes and beacon nodes. After acquiring the localization and the hop count of beacon 

nodes in the first stage, the average hop distance of whole networks can be computed.  

The information is then broadcast to the whole network, or all networks. Furthermore, 

most nodes are required to receive the average hop distance from their nearest beacon 

nodes. The distances between beacon nodes and unknown nodes can be calculated by 

multiplying the average hop distance by the hop count. Here, hdi and h(ij) denote the 

average hop distance and the hop distance between a be1acon node   and an unknown 

node Hi respectively, as shown in the following formula: 

ℎ𝑑𝑖 = 
∑√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 

∑ ℎ(𝑖𝑗)
 

The distances between unknown nodes and beacon nodes are calculated using the 

following formula: 

      di = hdi x Hop,  

where ℎ𝑑𝑖  signifies the average hop distance, while Hop is the minimum hop count 

between unknown nodes i and beacon nodes. 

Step 3. Based on plane geometry, the coordinates of unknown nodes can be acquired 

in the case of knowing the coordinates and distances between three beacon nodes. 

Suppose that the coordinates of three beacon nodes are 

(x1,y1), (x2,y2) and (x3,y3) respectively, and the distances between these three beacon 

nodes and an unknown node D  are expressed as  d1, d2, and d3 separately, then, the 

following formula is obtained: 

{

(𝑥1 − 𝑥)
2 + (𝑦1 − 𝑦)

2 = 𝑑1
2

(𝑥2 − 𝑥)
2 + (𝑦2 − 𝑦)

2 = 𝑑2
2

(𝑥3 − 𝑥)
2 + (𝑦3 − 𝑦)

2 = 𝑑3
2

 

Meanwhile, the coordinate of node D can be calculated by using the following formula: 

 

[
𝑥
𝑦] = [

2(𝑥1 − 𝑥3)  2(𝑦1 − 𝑦3)
2(𝑥2 − 𝑥3)  2(𝑦2 − 𝑦3)

]
−1

[
𝑥1
2 − 𝑥3

2 + 𝑦1
2 − 𝑦3

2 + 𝑑3
2 − 𝑑1

2

𝑥2
2 − 𝑥3

2 + 𝑦2
2 − 𝑦3

2 + 𝑑3
2 − 𝑑2

2]  

In this way, the coordinates of unknown nodes can be computed. 

3.1.4.b APIT 

The approximate point in triangle (APIT) is an approach for area estimation [16]. APIT 

algorithm requires a small percentage of anchors and employs a novel area-based 

approach to perform location estimation by segmentation of the field. Moreover, these 

nodes can be equipped with high-powered radio transmitter. The main idea of APIT for 

localization of nodes is to consider overlapping triangles. The vertices of these triangles 

are anchors.  



Secure Geo-location Techniques using Trusted Hyper-visor 

   20 
S. Rostantis 

Bounding triangles are obtained using any group of three reference nodes, rather than 

the coverage area of a single node. In the APIT algorithm, the sensor nodes receive 

location information from the nearby anchors initially.  

Second, the point in triangulation (PIT) test checks whether a sensor node is in a virtual 

triangle that is formed by connecting the three anchors from which signals are received. 

After the PIT test is done, the APIT algorithm aggregates the results through a grid 

SCAN algorithm [45]. The APIT algorithm calculates the CoG (Centre of gravity) of the 

intersections of all the overlapped triangles in which the node resides to determine its 

location 

 

Figure 14. The APIT principle 

 

In Fig. 9, M is the unknown node, the point A, B, C and D are four anchor nodes which 

are received by M, and point 1, 2, 3 and 4 are the neighbor nodes which received by M. 

The point A, B, C and D form four triangles, namely △ABC, △ACD, △ABD, and △DBC.  

In △ABD, the unknown node M has the neighbor node 3 is away from the vertices A, B 

and D of the triangle at the same time compared with the unknown node M. Therefore, 

according to the principle of APIT, the unknown node M is judged to be outside of 

△ABD. Similarly, the unknown node M is located inside of △ABC, △DBC and outside of 

△ACD 

Table 2. Positioning Technique Summary 

Technique Cost Accuracy Energy efficient Hardware size 

GPS High High Less Large 

GPS Free Low Medium Medium Small 

Centralized Depends High Less Depends 

Decentralized Depends Low High Depends 

RSSI Low Medium High Small 

TOA High Medium Less Large 

TDOA Low High High 
Less Complex 
May be Large 

AOA High Low Medium Large 

DV hop Low Medium High Small 

APIT Medium Medium High Medium 
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3.2 Localization Algorithms 

3.2.1 FP-MPP-APIT 

The proposed algorithm is an approximate point in triangulation test (APIT) -based 

localization algorithm combining the Fermat point and the mid-perpendicular plane 

models, and it is named FP-MPP-APIT [17]. It is a distributed range-free localization 

algorithm for three-dimensional WSNs that possesses the advantages of APIT-based 

localization algorithms. In geometry, the Fermat point of a triangle, also called 

the Torricelli point or Fermat–Torricelli point, is a point such that the total distance from 

the three vertices of the triangle to the point is the minimum possible. The Fermat point 

of a triangle with largest angle at most 120° is simply its first isogonic center or X(13), 

which is constructed as follows: Construct an equilateral triangle on each of two 

arbitrarily chosen sides of the given triangle. Draw a line from each new vertex to the 

opposite vertex of the original triangle. The two lines intersect at the Fermat point. 

 

Figure 15. Fermat Point in Triangle 

This point can divide a triangular pyramid into four sub-triangular pyramids. Thus, the 

APIT-3D algorithm can be used to determine in which sub-triangular pyramid the 

unknown node M is located. The sub-triangular pyramid that contains the unknown 

node is called the available sub-triangular pyramid. The mid-perpendicular plane model 

is used to divide the available sub-triangular pyramid. 

 

Figure 16. Mid-Perpendicular plane model 

The steps of this algorithm are described below: 

a. All beacon nodes broadcast their positions and ID. 

b. Each unknown node maintains a counter k and in every received beacon 

message the counter adds one and records the message. 

c. If the unknown node has more than four constructs a triangular pyramid APIT-3D 

algorithm is used to determinate if the node is located in the pyramid. 

d. The Fermat point model is adopted to divide the pyramid in four sub-pyramids. 

https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Triangle
https://en.wikipedia.org/wiki/Equilateral_triangle
https://en.wikipedia.org/wiki/Vertex_(geometry)
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e. The mid-perpendicular plane model is used to divide the available sub-triangular 

pyramid into a set of irregularly shaped subplaces. 

f. The unknown node is located. 

3.2.2 3D-IDCP 

Is an improved proposed 3D localization algorithm and a 3D localization model to 

improve positioning accuracy and coverage [18]. The proposal utilizes the range base 

localization and includes four phases. The concept of Degree of Coplanarity is added 

and the best positioning unit based on the Degree of Coplanarity is selected to ensure 

positioning accuracy. In addition, the unknown nodes which have been located are 

promoted to assistant anchor nodes. Degree of Coplanarity (DCP) represents the 

coplanar degree of four anchor nodes in the three-dimensional space. Degree of 

Coplanarity (DCP) can be expressed with 

DCP = {
0
𝜌

 

 

where 0 means that the space is coplanar and 𝜌 else, DCP ∈ (0, 1]. 

In the three-dimensional plane a positioning unit consists of at least 4 anchor nodes. 

DCP is utilized to represent the coplanar degree of the four nodes. The radius ratio of a 

tetrahedron us utilized ρ. The DCP ensures that the positioning unit can be selected. 

The position of the unknown node can be calculated through quadrilateration. 3D-IDCP 

is utilized to promote unknown nodes that are located to assistant nodes. The steps of 

this algorithm are described below: 

a. Choose the best positioning unit based on the DCP value to locate the unknown 

nodes. 

b. Promote the unknown node that have been located to beacon nodes and 

broadcast their positions. 

c. Locate now unknown nodes. 

The Quasi-Newton method is used for nonlinear optimization. 

3.2.3 Novel Centroid 

Bulusu and Heidemann have proposed the centroid localization algorithm, which is a 

range-free, proximity-based, coarse-grained localization algorithm [19] [20]. The 

algorithm implementation contains three core steps. First, all anchors send their 

positions to all sensor nodes within their transmission range. Each unknown node 

listens for a fixed time period t and collects all the beacon signals it receives from 

various reference points. Second, all unknown sensor nodes calculate their own 

positions by a centroid determination from all n positions of the anchors in range. The 

centroid localization algorithm, which uses anchor nodes (reference nodes), containing 
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location information (xi ,yi) , to estimate node position. After receiving these beacons, a 

node estimates its location using the following centroid formula: 

 

(𝑥𝑒𝑠𝑡, 𝑦𝑒𝑠𝑡) = (
𝑥1 +⋯+ 𝑥𝑁

𝑁
,
𝑦1 +⋯+ 𝑦𝑁

𝑁
) 

 

The steps of this algorithm are described below: 

a. All beacon nodes broadcast their positions. Each Unknown node collects all the 

ID nodes and calculates the distance. 

b. The unknown node arranges nodes ID by distance order. 

c. Make decision based on DCP of tetrahedron 

d. Make decision based on VRT 

e. Use of Novel Centroid algorithm Zc1 = (GcT*Gc)-1*GcT*hc1) 

3.2.4 DFPLE 

DFPLE is proposed to minimize the mean error and computational price in estimating 

WSNs location [21]. Like CPE, DFPLE is based on a bounding box algorithm to 

estimate the candidate of location. DFPLE expands the bound for location estimation 

using three cases of beacon node positioning. DFPLE has dynamic number of bound 

points. First, some assumptions are required for wireless sensor networks: 

a. There are N sensor nodes in the wireless sensor network. 

b. Every sensor node has a unique ID. 

c. Sensor nodes are deployed randomly. 

d. There are M beacon nodes in the network, where 0 < M < N. 

e. Each beacon node is equipped with a GPS and, thus, knows its own location. 

f. The other (N − M) nodes are normal nodes that are unaware of their positions. 

g. The transmission power of a beacon node is modulated by the variable radius 

method.  

That is, the power level of beacon nodes can be modulated to high power level up to 

increase the communication range of beacon nodes to 2r, where r is the transmission 

radius of normal nodes. The DFPLE consists of four main phases on its operation: 

gathering beacon node location phase, estimating location, refining estimated location 

and error estimation. Each step of phases described as follows: 

• Gathering Beacon Node Location 

To gather information about other beacon nodes within communication range, 

beacon nodes must increase power to extend their communication range to 2r. 2. 

The beacon nodes gather the ID and location information of neighboring beacon 

nodes by exchanging beacon frames. 
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• Location Estimation 

1.  Beacon nodes reduce power to their original level.  

2.  Normal nodes record all neighbors within communication range. 

3.  Neighboring beacon nodes provide other beacon node locations, which are 

collected in Phase I. When the beacon node is beyond the communication 

range of normal nodes, the neighboring beacon node that is farthest from the 

normal beacon node is considered the beacon node.  

4. The location of the normal node must meet one of the following three cases:  

▪ a. When the normal node is within communication range of a 

beacon node, the location of the beacon node is considered the 

most likely solution  

▪  b. When the normal node is within communication range of two 

beacon nodes, the midpoint of the intersection of their 

communication ranges is considered the most likely solution  

▪ c. When the normal node is within communication range of three 

beacon nodes, the Fermat point of the triangle which is formed by 

the intersection of the three circles in which the center of the circles 

are the beacon node locations is considered the most likely solution  

• Determine FERMAT Point 

The FERMAT point is point in PQR that minimizes |FP| + |FQ| + |FR| (Figure 6). 

When all angles of △PQR are less than 120°, a unique Fermat point F lies inside 

the triangle such that and meet each other at mutual angles of 120°. The Fermat 

point is found as follows.  

▪ Construct a virtual equilateral triangle associated with each PR, RQ, and 

QP, designated PQ`R, RP`Q, and QR`P respectively.  

▪ Construct lines PP`, QQ` and RR`. These are straight lines that connect 

the vertices of the triangle with the opposite vertices of the drawn virtual 

triangles.  

▪ Finally, PP`, QQ` and RR` intersect at the Fermat point, for which the sum 

of the distances from the point to the vertices of PQR is minimal. 

• Refining Estimated Location 

PQR needs to be shrunk to reduce the error in the estimated location. When 

PQR is constructed from three neighboring beacon nodes, two vertices may 

have the same x or y coordinate. Figure 7 presents three constructions of 

PQR—cases A, B, and C. Each case is treated with respect to refinement of the 

estimated location. 
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Figure 17. DFPLE Operation 

3.2.5 CPE 

The convex position estimation (CPE) was proposed by proposed by Doherty et al [22]. 

The basic idea of the CPE is that if a sensor node can communicate with another 

sensor, its position is restricted by the connectivity constraints to be in some region 

relative to the other sensors. Many such connectivity or proximity constraints define the 

set of feasible sensor position in a WSN.  

These constraints can be represented as Linear Matrix Inequalities (LMI-s). Once all the 

constraints in the network are expressed in this form, the LMI-s can be combined to 

form a single semi definite program. This is soled to produce a bounding region for each 

node, which Doherty et al., simplify to be a bounding box. If an unknown node can 

communicate with some neighbours anchor nodes, then there are connectivity 

constrains between the unknown node and its neighbours anchor nodes. 

Since the location of the unknown node must within the overlapping region of the 

communication regions of these anchor nodes, the information such as locations and 

communication ranges of these nearby anchor nodes can be employed to estimate the 

location of the unknown node. The CPE algorithm define the estimative rectangle (ER) 

which bounds the overlapping region and regards the center of the rectangle as the 

estimative location of the unknown node.  

 

Figure 18. CPE Algorithm 

The CPE algorithm is centralized localization scheme since each unknown sensor node 

sends the collected connectivity constraints back to a centralized controller. The 

centralized controller then estimates the location of every unknown node and flood the 

estimative location back to every unknown node. This central method makes the traffic-

load in CPE heavy and the CPE algorithm scale poorly. 

 

There are three main steps in the improved CEP localization algorithm [23]: Getting the 
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information of the one-hop and two two-hop away neighboring anchor nodes of 

unknown nodes, getting the initial estimative location of unknown nodes and refining the 

initial location of unknown nodes.In the anchor exchange phase, every sensor node 

gathers the location information of anchor nodes, which is one-hop and two-hop away 

via anchor nodes two-hop flooding. By using two-hop flooding, every unknown node can 

gather the ID and the location information of its one-hop and two-hop neighboring 

anchor nodes  

After finishing the anchor exchange phase, all the unknown nodes get the ID and the 

position of their one-hop and two-hop away anchor nodes. Then each unknown node 

computes its estimative rectangle (ER) as in CPE algorithm, and then uses the center of 

the estimative rectangle as the estimative location of the unknown nodes.In this phase, 

the initial estimative location obtained by utilizing estimative rectangle can be further 

refined by the information of neighbours two-hop away anchor nodes. The position the 

unknown node N can be calculated as: 

𝑃 = 𝑃′ + ∑𝐴𝑖𝐵𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑚

𝑖=1

 

where P’ the initial estimative location of unknown node N, which is computed by using 

CPE method in the former subsection. 

 

Figure 19. Improved CPE algorithm 

3.2.6 3D DV-Hop 

The DV-Hop localization algorithm as a distance-independent localization algorithm, is 

proposed by Dragos Niculescu from University of Lotto, USA [24]. The optimal principle 

is that the unknown node first calculates the minimum hop count of the beacon node, 

then estimates the average distance per hop, and then multiplies the average hop ratio 

by the minimum number of hops, finally obtains the estimated distance between the 

unknown node and the beacon node.  

The measurement method or the maximum likelihood estimation method can be used to 

calculate the coordinates of the unknown node. Similar with the conventional DV-HOP 

algorithm, the 3D DV-Hop algorithm is also composed of three phases [24-26]. Firstly, 

the typical distance vector exchange protocol is used to obtain all the nodes in the 

network to get the number of hops from the beacon nodes. 
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 In the second stage, after receiving the other beacon node position and the separated 

jump distance, the beacon node calculates the network average distance per hop, 

which is broadcast as a correction value to the network. And the correction value 

(average hop distance) HopSizei of the beacon node (xi, yi, zi) is expressed as follows: 

HopSize𝑖  =

∑ √(𝒙𝒊 − 𝒙𝒋) 𝟐 + (𝒚𝒊 − 𝒚𝒋) 𝟐 + (𝒛𝒊 − 𝒛𝒋) 𝟐𝒊≠𝒋

∑ 𝒉𝒊𝒊≠𝒋
 

Where (xi, yi, zi) (xi, yi, zi), , are the coordinates of the beacon nodes i and j. hi is the hop 

count of beacon i and all other beacon nodes. When the unknown node obtains a 

Euclidean distance between four or more beacon nodes, it can enter the third stage, 

i.e., calculate the node position. In the third stage, the position estimation is usually 

performed using a multilateral measurement method or a maximum likelihood 

estimation method. Assume that (x,y,z) is the coordinates of an unknown node U, which 

measures the distance of the coordinates of the n beacon nodes. The coordinates of the 

i-th beacon node are (xi, yi, zi) and the distance from node U to beacon node i is di. 

The 3D DV-Hop localization algorithm incorporates the constraints of the hop count and 

multiple collinearity thresholds in the general DV-Hop localization algorithm. The 

addition of the threshold improves the localization accuracy of the algorithm and 

reduces the computational complexity of the localization algorithm. The specific process 

of the algorithm is expressed in detail as follows: 

1.Calculate the minimum number of hops for the unknown node and the beacon 

node within the defined hop count. The unknown node records the minimum number 

of hops received by the beacon node, while ignoring the larger number of hops from the 

same beacon node. When the unknown node receives the hop count value less than 

the threshold three_hops, the node increases the hop value by l and forwards it to the 

neighbor node. Otherwise, the packet is discarded 

2. Calculate the distance between the unknown node and the beacon node within 

the defined hop count. Each beacon node uses the DV-Hop method to estimate the 

actual distance per hop based on the location information and the number of hops of the 

other beacon nodes. The unknown node records only the average distance per hop for 

the first average distance or the number of jumps per hop, so that the unknown node 

can receive the average distance per hop from the nearest beacon and calculate the 

hop count based on the number of beacon nodes within the hop distance 

 

3. Use the node location method mentioned in the basic principle of node location 

to calculate its own position. First, the unknown node will calculate all its beacon 

nodes in four groups according to the set of MC, according to the set thre_mc excluded 

MC by discarding less than the reference point combinations with less than thre_mc, 

and then according to the multilateral measurement method 
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to calculate the node coordinates, and finally take the average of all the results as the 

final position coordinates of the unknown node. 

3.2.7 Enhanced APIT algorithm 

The localization process of the APIT algorithm can be expressed as follows: The target 

node can get the set of beacon nodes which can communicate with it through the 

information transmission with the surrounding beacon nodes. Assuming there are n 

elements in the set and any three nodes are chosen to form a triangle, a total of Cn
3 

triangles can be formed. It is judged that the position of the unknown node is inside the 

triangle or outside the triangle, and then the other three nodes are selected to determine 

the position of the unknown node until all triangles are exhausted.  

Then, the overlapping area of all triangles can be calculated and further the area where 

the unknown node is located can be gradually reduced. Finally, the centroid of the 

overlapping area can be obtained as the estimated coordinates of the unknown node. 

The most important part of the APIT algorithm is to determine whether the unknown 

node is inside or outside the triangle. In this regard, the best-point-in-triangle-Φ (PIT) 

test algorithm can be used to determine whether the unknown node is inside the 

triangle. Figure 2 shows the specific PIT algorithm principle. 

 

Figure 20. PIT diagram 

A, B, and C are the three vertices of the triangle, and M is the unknown node that needs 

to be confirmed. Let the M point moves in any direction. When the M point is in the 

movement process and there is a point with the move to the M point, distances from the 

M point to A, B, C are increased or decreased at the same time, thus the point M is 

located outside the triangle; otherwise, M is located inside the triangle, 

which follows the PIT principle. 

Enhanced APIT algorithm. 

The improved APIT algorithm is similar with the APIT algorithm. First, we need to know 

the information of all the beacon nodes around the target node, which includes the 

position of the beacon node and the signal strength of the beacon node receiving the 

target node. 

All beacon nodes that can communicate with the target node form a beacon node set. 

We arbitrarily select three beacon nodes to form a triangle to determine whether the 

target node is inside or outside the triangle. It is known that the three beacon nodes 
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receive the signal strength of the target. When there is a point, the signal strength of the 

three beacon nodes received by the point is greater than or less than 

the signal strength received by the target node, then the target node is outside the 

triangle; otherwise, the target node is inside the triangle. 

Select all the triangles that contain the target node and divide the triangle into four or six 

parts with vertical lines. If the triangle is acute triangle, it can be divided into six small 

intervals. And if the triangle is a rectangular triangle or obtuse angle triangle, it can be 

divided into four small intervals. By comparing the signal strength by the target node 

received by the three beacon nodes, it can determine which subrange the target node is 

located. Find the overlapping area of all the cells and find the center of mass position of 

the overlapping area, and the center position can be seen as the target node position. 

3.2.8 Hybrid 3D Localization Algorithm 

A hybrid localization algorithm based on APIT and DV-Hop is proposed by Miaochao 

Chen [25].  When the PIT is used to determine whether the unknown node is inside the 

triangular region composed of any three beacon nodes, the judgment condition is added 

under the original APIT algorithm condition.  

The beacon nodes A, B, C and the unknown node M are obtained by the RSSI method, 

and then use the triangular cosine theorem to find the angle. If !AMC + !AMB + !BMC = 

360 °, M is in the triangle; otherwise, it is judged that the M is outside the triangle.  

 

Figure 21. 3D localization algorithm based on APIT and DV-Hop 
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In the selection of fine triangles, remove the signal strength of the weak triangle, the 

selection principle is that: in the beacon node intensive, set a threshold P, and P is for 

the unknown node in the PIT point of all triangles 3 nodes of the signal strength and the 

average. In the sparse environment of the beacon node, and the neighbor beacon node 

is not less than 3, the DV-Hop algorithm is used to locate. Because it calculates the 

minimum hop count of the unknown node and the beacon node by the distance vector 

routing method and then calculates the average distance of each hop.  

The product of the average distance between each hop and the minimum hop count is 

used as the estimated distance between the unknown node and the beacon node. 

When there are three beacon nodes, the coordinates of the unknown node are 

calculated using the trilateral method or the maximum likelihood estimation method. 

With only two neighbors of beacon nodes, the two-point localization method should be 

applied for node localization. The two-point localization method can measure the 

distance of unknown nodes and two beacon nodes according to RSSI, and then the 

coordinates of the unknown node can be obtained according to the coordinates of these 

two beacons. 

3.2.9 3D-TDOA Fictitious Point Method 

TDOA systems are based on difference time measurements between the signal arrival 

to different nodes or sensors in a network [26]. These measurements can be converted 

to difference of distances by multiplying these times by speed emission of the 

radioelectric waves (c). This leads in Euclidean Geometry to the next equation: 

 

Rij = dij = dIi − dIj = 

 √(xI  −  x𝑖)
2  + (yI  − yi)

2  +  (zI  − zi)
2  - √(xI  −  x𝑖)

2  + (yI  −  yi)
2  +  (zI  − zi)

2   + h(0, σ) = 

 ctij + h(0, σ) 

where dIj is the distance difference between receivers i and j—which is the result of 

multiplying the actual time difference of arrival (tij) and adding a white noise, h(0, σ), 

that considers atmospheric instabilities and time error measurements.  

This noise is related to signal transmission and measurement of times, which cannot be 

controlled by TDOA algorithms and so is not considered in this paper. In addition, (xI, yI, 

zI) are space coordinates of the vehicle that are being positioned and (xi, yi, zi), xj, yj, zj 

are coordinates of the nodes i and j, respectively, which receive the positioning signal. 

These equations correspond with hyperboloids that cannot be solved in an analytic 

direct process.  
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Non-linear equations of hyperboloids must be treated in order to address the TDOA 

problem resolution. Generally, two main methodologies have been considered: those 

based on hyperboloids intersection properties with closed-form solutions, and those 

based on numerical methods, which offer a progressive reduction on the error gradient 

derivation in successive approximations leading to the final solution. However, both of 

them share the qualification that a univocal TDOA problem resolution must use at least 

five different sensors.  

 

3.2.9.a Intersection of hyperboloids. 

The hyperboloid intersections can always be contained in a plane [27]. This process 

increases the freedom to the problem by one degree, since a number of n receivers 

generate a number of (n-1) independent hyperboloid equations and (n-2) independent 

intersection planes are obtained using this methodology. That means that to solve the 

3D TDOA problem linearly, where three planes are needed, we still have to use five 

different receivers.  

Nevertheless, the fact that the intersection of two different hyperboloids is contained in a 

plane makes the process of obtaining this plane equation independent from the original 

hyperboloid equations. As consequence, the intersection of two planes (four nodes) 

resulting in a line of possible vehicle localizations can be verified in any hyperboloid to 

finally get the two solutions that are achieved in TDOA problems with four beacons (i, j, 

k, l). This methodology leads to two different solutions that for LPS cannot be discarded 

by any assumable criterion.  

3.2.9.b Taylor approximation 

The other method would be based on applying a Taylor approximation truncated on first 

order to linearize the equations and allow a real-time solution to the problem. In this 

way, a point with enough proximity to the final solution (x0, y0, z0) from which a process 

of sequential iterations will be started is selected. These steps will finally allow the 

vehicle localization to be obtained through a matrix where the range differences are 

considered as follows: 

Rij = ctij = Rij0 + 
𝜕𝑅𝑖𝑗

𝜕𝑥
𝛥𝑥 + 

𝜕𝑅𝑖𝑗

𝜕𝑦
𝛥𝑦 + 

𝜕𝑅𝑖𝑗

𝜕𝑧
 𝛥𝑧 

where Rij is the value of the distance difference in the approximation point, and 
𝜕𝑅𝑖𝑗

𝜕𝑥
,
𝜕𝑅𝑖𝑗

𝜕𝑦
,
𝜕𝑅𝑖𝑗

𝜕𝑧
 are partial derivatives of the range differences, particularized for the values 

of the approximation point. Applying this very same process to the other two nodes k 

and l with reference to the node i, Rik and Ril can be estimated. This leads to the 

following matrix system: 
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ΔR = 

[
 
 
 
 
𝜕𝑅𝑖𝑗

𝜕𝑥
𝜕𝑅𝑖𝑙

𝜕𝑥
𝜕𝑅𝑖𝑘

𝜕𝑥

𝜕𝑅𝑖𝑗

𝜕𝑦

𝜕𝑅𝑖𝑙

𝜕𝑦

𝜕𝑅𝑖𝑘

𝜕𝑦

𝜕𝑅𝑖𝑗

𝜕𝑧
𝜕𝑅𝑖𝑙

𝜕𝑧
𝜕𝑅𝑖𝑘

𝜕𝑧 ]
 
 
 
 

[
𝛥𝑥

𝛥𝑦

 𝛥𝑧

] 

where ΔR is the range differences matrix, H is the partial derivative matrix (commonly 

known as visibility matrix) and P is the position variance matrix. Therefore, we can 

express the matrix system as follows: 

HΔP = ΔR 

This equation is usually solved through the least squares method [18], as described 

below: 

ΔP = ( Ht H )−1 Ht ΔR =[
𝛥𝑥

𝛥𝑦

 𝛥𝑧

] 

Regarding the resolution of the TDOA problem, four receiving sensors do not always 

guarantee the convergence of the method and, if produced, this can affect any of the 

two possible solutions (which prevents us from knowing whether the position calculation 

is correct). However, in contrast with the former method, the calculation of the position 

now guarantees a single solution instead of two possible answers. 

3.2.9.c Fictitious Point Method 

Of all the methods proposed so far, it is not possible to conclude whether the TDOA [28] 

System can be applied to LPS systems with four nodes with enough confidence to 

guarantee the correct calculation of the position. Nevertheless, it is possible to affirm 

that successive approximation methods do guarantee convergence—if produced—

towards one of the possible of the solutions. This means that if there were any way to 

ensure that the convergence occur toward the correct solution, the method would allow 

the problem with to be solved with four sensors.  

In a scenario where the process is convergent and highly dependent upon the initial 

point of the iterations, it is safe to say that when this initial point is close enough to the 

solution (i.e., the previous solution of the vehicle), the convergence should always take 

place toward the correct solution. To prove this statement, the behavior of any point 

located at a plane containing the two possible solutions is going to be proven for the 

TDOA problem. The solution has been calculated by applying the successive 

approximation method to these initial points. 
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3.2.10 3D-TDOA CHAN Method 

It is a proposed algorithm from Zhang Jian-wu, Yu Cheng-lei, Tang bin and Ji Ying-ying 

[65]. Mobile positioning was achieved through detection signal of MS arrival time 

difference of two BSs in The TDOA technology, which greatly reduces the time 

synchronization requirements. In this algorithm, a hyperbola could be got with the focus 

of two BS and the focal length of the distance difference between MS to two BSs. Thus, 

it could measure the two-dimensional (2D) coordinates of MS by the intersection of 

three hyperbolas 

Several typical location algorithms based on TDOA are Fang algorithm, Chan algorithm, 

Taylor series expansion method and so on. With high positioning accuracy, the location 

technology of TDOA could reduce the system error, and the performance of TDOA is 

well in the non line-of-sight (NLOS) environment. However, comparing with TOA, the 

algorithm of TDOA is complex. Usually, positioning algorithm is based on two 

dimensional coordinates. In Practical application, not only two-dimensional coordinates 

of MS should be measured, but also height coordinate should be got. Thus, it is most 

important to measure the 3-dimensional coordinates of MS. Especially in the downtown 

with numerous high-rise buildings or the fluctuating level of the mountain environment, 

this demand even more urgent. 

Whether TOA or TDOA wireless location technology, accurate ranging is the first step to 

obtain the precise positioning. There are two way of traditional ranging of TOA, one is 

Two Way Ranging (TWR), another is One Way Ranging (OWR). TWR: If there is no 

common clock between nodes, the time between transmit node and receive node can 

be used to estimate the distance between two nodes. As shown in figure 1, node A 

sends a packet to node B at T0. After node B receives the packet, it returns a packet to 

node A at once. Node A receives the return packet at T1.  

The distance between node A and node B may be calculated. OWR: If there is common 

clock between nodes, we could use the OWR to measure the distance between two 

nodes. Time between two nodes could directly be measured by this method. Node A 

sends a packet to node B at T0, and node A receives the packet at T1 . The distance 

between node A and node B may be calculated. To unknown node coordinates can be 

calculated with the usage of hyperbolas and linear algebra, more information in the 

implementation of the algorithm are provided in the next sessions. 
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3.2.11 TOA/RSSI Direct Location Method 

A proposed algorithm from Mohamed Khalaf-Allah [66]. The positioning algorithms 

include the analytical method, the least-squares method, Taylor series method, the 

approximate maximum likelihood method, two-stage maximum likelihood method and 

the genetic algorithm. The described analytical (direct) method has three possibilities for 

the solution of x, i.e. one solution, two solutions and no solution, unlike the developed 

method, which yields a direct, exact and unique solution. This is due to using exactly 

four TOA measurements rather than three TOA measurements and thus any 

ambiguities can be resolved. The algorithm is advantageous in terms of implementation 

simplicity and computational cost. Therefore, it can be easily implemented in many low-

power and low-cost wireless applications, e.g. 3D sensor networks. It uses four TOA 

measurements with four stations to avoid object location ambiguities, which is a 

problem associated with using three TOA measurements with three stations. Another 

advantage of this direct method is that it needs exactly four TOA measurements to 

compute 3D position solutions, where in many situations more than four measurements 

are not available or the availability of more than four measurements is not important for 

the accuracy requirements of the application at hand. The 3D position algorithm delivers 

position solutions that are dependent only on the given measurements and information, 

in case the interest is only in a single coordinate, e.g. the vertical component. More 

information for the implementation of the algorithm are presented to the next sessions. 

 

3.2.12 Hybrid 3D-TOA/TDOA  

A hybrid TOA/TDOA lateration algorithm has been proposed from Yaro Abdulmalik 

Shehu, Muazu Musa, Sani Salisu and Abdulrazaq Abdulaziz [67]. Passive 

multilateration (MLAT) surveillance system estimate aircraft location in two steps. The 

first step involves estimating the time difference of arrival (TDOA) of the signal at 

antenna pairs. The second step involves using the estimated TDOA measurements 

from the first stage as input to a position estimation (PE) algorithm known as lateration. 

2D or 3D aircraft PE depends on the number of antennas deployed. For a 3D aircraft 

PE, a minimum of 4 antennas are required. Several techniques for estimating TDOA 

have been reported in literatures but the classical approach use in air traffic surveillance 

is the TOA approach. TDOA estimation using the TOA approach involves a pair wise 

difference of TOA measurements of the signal estimated at each antenna. TOA of the 

signal is the time taken for the transmitted signal from the aircraft to be detected at any 

of the antennas. More information are presented to the next sections. 

3.2.13 3D-RSSI/TOA Multilateration 
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This method follows the concept of calculating the distances of an unknow node from 

three base nodes with the RSSI/TOA method, which those 3 distances represents three 

radii of three spheres with centers the coordinates of the base nodes.  

3.2.14 Localization Algorithms Summary 

Table 3. Localization Algorithms Summary 

Name Nodes Publication Simulation and Information 

FP-MPP-APIT 
 

4 March 9, 2018 
[17] 

MATLAB 2014a was utilized as a simulation platform: Space:100m x100m x100m.Total Nodes 
:200.Beacon Nodes :20.Range: R=15. The proposed algorithm was compared with PB-APIT-3D,FM-APIT-
3D and DFPLE algorithm and showed that has a smaller localization error. Minimum 5 base nodes 

3D-IDCP 
 

5 7 June 2015 
[18] 

MATLAB 2009a.Three-dimensional area of 100 m × 100 m × 100 m. Communication radius 𝑅 is set 40 
meters. Experiments are carried out 50 times. Each time sensor nodes are randomly deployed. The 
simulation experiments have verified the effect of the proposed algorithm in positioning accuracy, 
positioning coverage, and proportion of bad nodes.  Minimum 5 base nodes 

Novel Centroid 
 

5 November 2008 
[20] 

Size of 100 m x 100 m x 100 m. centroid location is robust under the effect of the irregularity of the radio 
pattern. The reason is that the centroid algorithm does not depend on hop-count and hopsize that the effect 

of degree of irregularity（ DOI） is abated by the aggregation of beaconed information.3.The sensor nodes 

have the same maximum radio range R, which is used for normalization only.100 sensor nodes 4. The 
simulation results are averaged over 100 network instance. The proposed algorithm can improve location 
accuracy than the conventional centroid localization algorithm.  Minimum 5 base nodes 

DFPLE 
 

5 2011 [21] MATLAB A 2-D square area (5r5r and 10r10r) in which sensor nodes were randomly deployed. 200 nodes 
and radio range of 1.5r The DFPLE strategy was compared with the Convex Position Estimation (CPE). 
Simulation results demonstrate that the DFPLE algorithm for estimating sensor positions is more accurate 
than existing algorithms and improves upon conventional bounding box strategies.  Minimum 5 base nodes 

CPE 
(improved) 

 

5 2015 [22][23] MATLAB, Area of 200m× 200m.The sensor nodes are distributed randomly in this region.  Each sensor 
node has the same communication range 20m. With the number of sensor nodes is 200 and 300. The 
improved CPE localization algorithm outperforms the classic CPE and does not increase the hardware cost 
of sensor nodes. Minimum 5 base nodes. Minimum 5 base nodes 

3D DV-Hop 
 

5 25 January 2017 
[24] 

MATLAB .100x100x100 m3 3D space. The obstacle is a cube with the length of 14m, distributed in the 
48m<x,y,z<62m2. The total number of nodes is 200, including 50 beacon nodes and 150 unknown nodes. 
The communication radius of anchor node is 30m. The proposed algorithm is significantly superior to the 
improved DV-Hop localization algorithm and the traditional DV-Hop algorithm. Minimum 5 base nodes 

Enhanced 
APIT algorithm 

5 2015 [25] MATLAB Wireless sensor network coverage: 1000m % 1000m two-dimensional plane.200 sensor nodes, 
Radius is 200m, Minimum 5 base nodes 

Hybrid 3D 
Localization  

5 2017 [26] MATLAB  1. Wireless sensor network coverage: 1000m % 1000m two-dimensional plane. 2. The network 
layout of 200 sensor nodes, Communication radius is 200m, Simulation results show that the proposed 
hybrid algorithm can effectively improve the localization accuracy of beacon. 

3D-TDOA  
Fictitious 

Point 

4 2019 Field: 1000 × 400 × 100 m, described with a spatial discretization of 100 m in x coordinate, 50 m in the y 
coordinate and 10 m in the z coordinate. Each of the discretization points represents a real solution to the 
3D TDOA system of study.  Results showed that he four-sensor TDOA problem can be solved with only 
four sensors within a confidence interval defined through the convergence radius. Minimum 4 base nodes 

3D-RSSI/ TOA  
Multilateration 

“3” - 4 - Simulation is presented in the section 7 of this paper alongside with information of the implementation of 
the algorithm in section 6 

3D-TDOA 
CHAN 

5 2008 [65] Two simulations were performed with a numerical example. The increase of the number of 
available BSs, the positioning accuracy of Chan algorithm has some increased in the environment with 
Gaussian noise. When the value of NLOS is from 0 to 50, the performance improvement caused by 
increasing the number of BSs is not very significant. The reason is that with little value of NLOS, positioning 
accuracy is mainly determined by system error. However, with the increasing of the value of NLOS, the 
trend of positioning accuracy improvement caused by increasing the number of BSs is great. with the 
increase of the height of MS, the positioning accuracy of Chan algorithm has improved. 

3D TOA/RSSI 
Direct 

Location 

4 2014 [66] Simulation was performed with a numerical example. Four fixed transmitters were located at (0,0,0), 
(10,0,5), (10,10,0) and (0,10,5). The error-free range measurements were respectively 75 , 50 , 75 and 50 , 
where all coordinates and range measurements are in meters. 

Hybrid 
TOA/TDOA  

4 2016 [67] The performance in PE of the developed algorithm is compared with the two fix reference TDOA lateration 
using Monte Carlo simulation for some selected aircraft locations and TOA error standard deviation range 
of 0 meters to 2 meters. Simulation results shows that the performance comparison between the two 
lateration algorithms depends on the location of the aircraft. 
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4. INTRODUCING SECURITY IN GEO-LOCATION 
4.1 Attacks in Localization 

Secure localization of unknown nodes in a Wireless Sensor Network (WSN) is an 

important research subject. When WSNs are deployed in hostile environments, many 

attacks happen, e.g., wormhole, sinkhole and sybil attacks. Two issues about unknown 

nodes’ secure localization need to be considered. First, the attackers may disguise as 

or attack the unknown and anchor nodes to interfere with localization process. Second, 

the attackers may forge, modify or replay localization information to make the estimated 

positions incorrect [28]. 

The location information of the sensor node performs a critical role for numerous 

applications in wireless sensor networks (WSNs) such as environment monitoring, 

target tracking, and automatic surveillance. It also helps some fundamental techniques 

in sensor networks (e.g., geographical routing protocol and topology control) to be 

aware of where the messages are located. Driven by those demands, earlier research 

efforts have resulted in many localization schemes, with most assuming the sensors are 

deployed in a benign scenario. But when the sensor nodes are deployed in malicious 

environments, it is prone to different forms of threats and risks. A simple malicious 

attack can disturb the accurate position estimating and even make the entire network 

functioning improperly. Usually, the localization process can be divided into two steps 

information acquisition and position determination. 

4.1.1.a Information acquisition 

Roughly speaking, existing localization schemes of WSNs are classified into two 

categories: range-based schemes and range-free schemes. For range-based 

localization schemes, the distance or angle information is measured by RSSI etc. For 

range-free localization schemes, the localization is realized based on network 

connectivity or other information.   

4.1.1.b Position determination 

Location determination schemes have two categories: terminal-based schemes and 

infrastructure-based schemes. In terminal-based schemes, the unknown node localizes 

itself, the position of an unknown node can simply be computed by trilateration etc. In 

infrastructure-based schemes, references nodes including trusted neighbor nodes, 

mainly anchor nodes to localize the unknown node.  

Localization process can be attacked in different ways. Researchers have addressed a 

set of known attacks. The known attacks can be divided into two categories: external 

and internal attacks. The adversary is external if it is outside the WSN and implements 

malicious behaviors without right cryptographic key. Otherwise, the adversary is 

internal, in which case the adversary controls one or more fraudulent nodes. The 

attacks can also be classified into three categories Attacks on nodes, Attacks on 

information and Dos Attacks [29] [30]. 
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4.1.1 Attacks on Nodes 

An attacker is an external node which intrudes into the WSN. A compromised node is a 

normal node (an unknown or an anchor node) in the WSN compromised by the 

attacker. Attacks on nodes are listed as follows: 

4.1.1.a Compromise 

Node compromise is the most fundamental attack in WSN that leads to other kinds of 

attacks. It occurs when an attacker gains control of a node in the WSN. Normally, 

compromised nodes can be obtained by the following methods: attackers capture 

normal nodes and reprogram them attackers deploy nodes with larger computing 

resources such as laptops to attack normal nodes. With compromised node, an attacker 

can alter the node to listen information in the WSN, revoke legitimate nodes, input 

malicious data, and cause internal attacks, e.g. DoS attack. 

4.1.1.b Replication 

If an adversary manages to capture a node and extract the authentication/encryption 

keys, it can produce many replicas having the same identity (ID) from the captured node 

and integrate them into the WSN at chosen locations, which is called the node 

replication attack. Since the credentials of replicas are all the clones from the captured 

nodes, the replicas can be considered as legitimate members of the network. It is 

always assumed that the adversary cannot create new IDs for replicated nodes, since 

otherwise the attackers will have to create the corresponding security information (keys, 

codes, etc.), which is very difficult and even infeasible in most cases. Once the 

adversary replicates one or more sensor nodes, it can execute the malicious operations.  

4.1.1.c Impersonation 

An impersonation attack is an attack in which an adversary successfully assumes the 

identity of one of the legitimate parties in a system or in a communications protocol. 

One form of node impersonation attack is the Invisible Node attack, and the other one is 

the Stolen Identity attack. The Invisible Node attack: Malicious node M simply stands 

between two nodes A and B that are not in direct range. The invisible node M silently 

repeats the communication between nodes A and B, which misleadingly assume that 

nodes A and B communicate directly. In this way, the malicious node succeeds in 

impersonating node A to node B and vice versa.  

 

Figure 22. The invisible node attacks 
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The Stolen Identity attack: The malicious node M succeeds in stealing all the 

authentication credentials from a legitimate node A, such as the certified signature keys. 

If the malicious node outraces the legitimate node in updating the stolen credentials, 

then the credentials of the legitimate node will not be valid anymore. Thus, only the 

malicious node will be able to communicate with node B. This kind of attack is not just a 

matter of stealing a nodes identity, but also a matter of abusing the trust relationships 

that other parties may have had established with the legitimate node. 

 

Figure 23. The stolen identity attacks 

4.1.1.d Sybil attack 

In this attack, a single node i.e. a malicious node will appear to be a set of nodes and 

will send incorrect information to a node in the network. The incorrect information can 

be a variety of things, including position of nodes, signal strengths, making up nodes 

that do not exist. Authentication and encryption techniques can prevent an outsider to 

launch a Sybil attack on the sensor network. However, an insider cannot be prevented 

from participating in the network, but he should only be able to do so using the identities 

of the nodes he has compromised. Public key cryptography can prevent such an insider 

attack, but it is too expensive to be used in the resource constrained sensor network.  

4.1.1.e Wormhole attack 

In a wormhole attack, an attacker records a packet or individual bits of a packet at one 

location in the network. Then, it tunnels the packet (possibly selectively) to another 

location and replays it. The tunnel can be established in different ways, for example, 

through an out-of-band channel, packet encapsulation, high-powered transmission, 

packet relay and protocol deviations. In localization process, the attack may tunnel 

totally different and erroneous localization information. 

One node in the network (sender) sends a message to another node in the network 

(receiver node). Then the receiving node attempts to send the message to its 

neighbours. The neighbouring nodes think the message was sent from the sender node 

(which is usually out of range), so they attempt to send the message to the originating 

node, but it never arrives since it is too far away. 
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Figure 24. Wormhole attack 

Wormhole attack is a significant threat to wireless sensor networks, because, this sort of 

attack does not require compromising a sensor in the network rather, it could be 

performed even at the initial phase when the sensors start to discover neighbouring 

information. Wormhole attacks are difficult to counter because routing information 

supplied by a node is difficult to verify. 

4.1.2 Attacks on Information 

In the localization systems, unknown nodes always use the localization information of 

anchor nodes to localize themselves. The target of malicious nodes is usually to make 

localization information incorrect. Attacks on information are listed as follows: 

4.1.2.a Forgery 

Forgery attack is the malicious node sends misleading information in the localization 

systems. For example, in the active system, the malicious node pretends to be an 

anchor node to voluntarily send localization information. In the passive system the 

malicious node pretends to be an unknown node to be localized. 

4.1.2.b Alteration 

Alteration attack is the most direct attack. This attack targets the information exchanged 

between an unknown and an anchor node. Adversaries may directly alter the 

coordinates, time or the number of hops and increase the localization error of unknown 

nodes. For example, in Collaborative Collusion [], all malicious node can collaborate 

with each other to alter the information they receive or replay.  

4.1.2.c Interference 

Interference attack is the malicious node interferes with the signal measurements. For 

example, in range-based localization systems, malicious nodes may place obstacles 

between signal sender and receiver to prolong transmission time 

4.1.2.d Replay 

Replay attack is the most common or simple attack, especially when the capability and 

resources of the adversary are limited. In this attack, the malicious node congests the 

information transmission between sender and receiver, then replays the outdated 

information. Using the outdated information, the unknown nodes calculate inaccurate 
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positions. Unlike other attacks, replay attack can destroy the whole network with one 

node. 

4.1.2.e Selective forwarding 

In selective forwarding attack the malicious node behaves like black hole and refuses to 

forward sensitive messages and simply drops them, ensuring that they are not 

propagated any further. 

 

Figure 25. Selective forwarding 

The selective forwarding attack is difficult to detect. First, to avoid raising suspicions, an 

adversary selectively drops packets instead of dropping every packet. In addition, there 

are many reasons result in packet dropout, e.g., unreliable wireless communications, 

sensor nodes go into sleep state to save power.  

 

4.1.3 Denial of Service Attacks (DoS) 

4.1.3.a Jamming 

Jamming is a DOS attack at physical layer. Jamming interferes with the radio 

frequencies that a network’s nodes are using. A jamming source may either be powerful 

enough to disrupt the entire network or less powerful and only able to disrupt a smaller 

portion of the network 

4.1.3.a Tampering 

Another DOS attack in physical layer is tampering. By physical access an attacker can 

extract sensitive information such as cryptographic keys or other data on the node. A 

compromised node creates, which the attacker controls by altering or replacing node. 

Vulnerability of this attack is logical. A defence to this attack involves tamper-proofing 

the node’s physical package. 

4.1.3.b Collisions 

Collision is a DOS attack in the data link layer. When two nodes attempt to transmit on 

the same frequency simultaneously a collision occurs. A change will likely to occur in 

the data portion when packets collide and causing a checksum mismatch at the 

receiving end. The packet will then be discarded as invalid. An adversary may 

strategically cause collisions in specific packets such as ACK control messages. Error-

correcting codes use to defend against collisions. 
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4.1.3.c Exhaustion 

It is another type of DOS attack in link layer. An attacker can use repeated collisions to 

cause resource exhaustion. For example, a native link-layer implementation may 

continuously attempt to retransmit the corrupted packets. The energy reserves of the 

transmitting node unless these hopeless retransmissions are discovered or prevented. 

Applying rate limits to the MAC admission control is a possible solution of exhaustion. 

4.1.3.d Unfairness 

Unfairness is a weak of a DOS attack in link layer. An attacker may cause unfairness in 

a network by using the above link- layer attacks. Instead of preventing access to a 

service outright, an attacker can degrade it in order to gain advantage such as causing 

other nodes in a real time MAC protocol to miss their transmission deadline.  

4.1.3.e Selective Forwarding Attack 

Multi-hop mode of communication is commonly preferred in WSN data gathering 

protocols. An assumption made in multi-hop networks is that all nodes in the network 

will accurately forward received messages. Selective forwarding attack is a situation 

when certain nodes do not forward many of the messages they receive. In this attack, 

malicious nodes may refuse to forward certain messages and simply drop them, 

ensuring that they are not propagated any further.  

4.1.3.f Flooding 

Flooding attack on localization is the malicious node broadcasts large quantities of 

useless data packets to all nodes in its communication range. The common 

characteristic of flooding attack is to exhaust the available network communication 

bandwidth so that the other nodes cannot communicate with each other. Moreover, the 

sender and receiver are busy to send or receive the excessive packets from the 

attacker and consume a lot of network resources. 

4.1.3.g Desynchronization  

Disruption of an existing connection is desynchronization. For example, an attacker may 

repeatedly spoof messages to an end host, causing that host to request the 

retransmission of missed frames. With proper timing, an attacker may degrade or even 

prevent the ability of the end hosts to successfully exchange data. A possible solution to 

this type of attack is to require authentication of all packets communicated between 

hosts. The authentication method would be secure as an attacker will be unable to send 

the spoofed messages to the end hosts.  
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4.1.4 Localization attacks summary 

All the previously mentioned security threats serve one common purpose that is to 

compromise the integrity of the network they attack. In the past, focus has not been on 

the security of WSNs, but with the various threats arising and the importance of data 

confidentiality, security has become a major issue. Although some solutions have 

already been proposed, there is no single solution to protect against every threat.  

Table 4. Localization attack summary 

 

 

4.2 Secure Geo-location Schemes 

Localization algorithms are an important and challenging topic in Wireless Sensor 

Networks (WSNs), especially for the applications requiring the accurate position of the 

sensed information. Various algorithms have been proposed to obtain the location of 

sensor nodes. However, most of existing location algorithms assumes a non-adversarial 

environment.  

Attack Name Attack Behavior 

Compromise Alter the node to listen information 
Replication Node replication 

Impersonation Node impersonation 

Sybil attack Possessing multiple identities 

Wormhole attack Shortening the distance to make a fast routing path 

Forgery Sends misleading information 

Alteration Alter node coordinates 

Interference Interference signal measurements 

Replay Replays the outdated information 

Flooding Establishing false connections 

Selective forwarding Selectively forward packets 

Stealing Signal eavesdropping and tampering 

Jamming Sending jamming signal in the working frequency 
range 

Collision Repetition of messages 

Exhaustion Sending of unnecessary message 

Unfairness Explicitly taking the control of the channel 

Dos Attacks Exhaustion of energy of the unknown nodes 

Sinkhole Maliciously tamper with routing 

Tampering Tampering localization beacons 

Insider attack Compromised anchor nodes may provide false 
information 

Range change attack Changing the range or Angle of Arrival (AoA) 

False beacon location attack Compromising a beacon and then he can make the 
beacon broadcast false location 

False reported location attack Malicious node reports false 

Desynchronization  Disruption of an existing connection 
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The position estimation accuracy decreases drastically when some of the sensor nodes 

are compromised. In this section we present a variety of localization algorithms that 

ensure user's authentication, security and data safety and resists malicious attacks. 

Safety in geo localization systems can be achieved in many ways, for instance by using 

the coordinates of the unknown node as a verifier, cryptography or by external 

frameworks usage such as a TPM. Below we present some representative security 

algorithms and schemes in geo localization systems. 

4.2.1 Location-Dependent data Encryption Algorithm (LDEA) 

This algorithm is proposed by Hsien-Chou Liao, Yun-Hsiang Chao and Chia-Yi Hs [32]. 

It utilizes the latitude/longitude coordinate as the key for data encryption. When a target 

is determined for data encryption the cipher text can only be decrypted at the expected 

position.  

a) The purpose of LDEA is mainly to incorporate the latitude/longitude coordinate in the 

data encryption and thus to restrict the location of data decryption. 

b) A toleration distance (TD) is designed to overcome the inaccuracy and inconsistent 

problem of GPS receiver. 

c) When the target coordinate and TD is given by the sender (information system or 

mobile user), an LDEA-key is generated from latitude/longitude coordinate and TD. 

The random-key generator issues a session key, called R-key.  

d) Then, the final-key for encrypting the plaintext is generated by exclusive-or R-key 

with LDEA-key. The final-key can be used for the symmetric encrypt algorithm, such 

as DES, AES. KUr and KRr is the public and private keys generated on the receiver 

side. KUr is transmitted to the sender first. 

e) Then, TD and R-key is transmitted via asymmetric encryption algorithm. When the 

receiver gets the TD and R-key, the LDEA-key can be generated from TD and the 

coordinate acquired from GPS receiver. The final-key can be generated by 

exclusive-or R-key with LDEA-key.  

f)  If the acquired coordinate is matched with the target coordinate within the range of 

TD, the cipher text can be decrypted back to the original plaintext. Otherwise, the 

result is indiscriminate and meaningless. 

 

Figure 26. LDEA Process 
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4.2.2 Mutual Authentication Insider Node Validation  

This algorithm is proposed by Gulshan Kumar, Mritunjay Kumar Rai, Hye-jin Kim and 

Rahul Saha [33]. The main concept of this algorithm is that the main consideration of 

location discovery is a set of special nodes known as anchor nodes, which are resource 

privileged having more storage and computational capacity. Using the location of 

anchor nodes, other unknown nodes compute their location in different ways.  

Therefore, it is critical that malicious anchor nodes need to be prevented from providing 

false location information as the unknown nodes completely depend on the anchor 

nodes for computing their own location. The proposed algorithm considers only the 

anchor nodes, unknown nodes, and Base Station where anchor nodes and unknown 

nodes are deployed randomly. The anchors are having a variable range of transmission 

with an average transmission range 𝑅avg given as: 

Ravg =   
∑ 𝜓(|𝑒|)𝑒∈𝛦

𝑚
 

where 𝑚 is the number of anchor nodes in the network, 𝑒 is an edge between two 

nodes, 𝐸 is the set of the edges in the network, and 𝜓(|𝑒|) is the weighing function of a 

connection between an anchor node and an unknown node and interpreted as 𝜓(|𝑒|) ∼ 

|𝑒|𝛼, 2 ≤ 𝛼 ≤ 4. The algorithm starts with an initialization phase that deals with 

distribution of certificates by the BS. After the distribution of the certificates, distance 

estimation phase starts among the anchor nodes and the unknown nodes. Once the 

distances are estimated, the BS is able to localize the unknown nodes applying MMSE 

method. 

4.2.2.a Initialization Phase. 

Base Station (BS) provides the identity for all anchor nodes and unknown nodes as IDaj 

and IDui where aj is an anchor node and ui is an unknown node. BS also provides 

certificates for each anchor node and unknown node as Certaj and Certui. 

4.2.2.b Distance Estimation Phase.  

The anchor node aj sends a random nonce κ, along with the certificate Certaj to all the 

one-hop neighborhood unknown nodes ui in the range Ravg and starts the timer on. 

When the unknown nodes receive the message, verify the certificate using the public 

key BSK+ given by BS. As, only legitimate anchor nodes are having the certificate to 

provide, by verifying the certificates, the authentication of the anchor nodes can be 

proved. Then, the unknown nodes ui response back to the anchor node aj with the same 

nonce κ, time duration between of receiving the last bit of message sent by anchor node 

and transmitting the first bit of message to the anchor node, given as timeprocu encrypted 

with anchor node’s public key Kaj+ along with its own certificate. 

𝑎𝑗 → 𝑢𝑖 : 𝜘, Cert𝑢𝑖, 
 𝑢𝑖 → 𝑎𝑗: [𝜘, timeproc𝑢] 𝐾𝑎𝑗+ , Cert𝑢𝑖. 
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When 𝑎𝑗 sends message to 𝑢𝑖, it waits for a bounded time value 𝑡retransmit to retransmit 
the message if no response starts arriving to the anchor in that bounded time. This 
value is precomputed at the starting of the network deployment assuming all the 
favourable conditions of the network environment with a noise effect of Δ𝑡 and given as 

𝑡 retransmit = time normal + Δ𝑡,  
 
where time normal is the normal time duration of getting a response back from the 
unknown node. When the anchor node receives the response back from the unknown 
nodes, it decrypts the message using its own private key 𝐾𝑎𝑗-, verifies the certificate of 
the unknown nodes, stops the timer, and calculates the signal propagation time as) 
where time prop is the signal propagation time, time𝑗 is the timer interval at the anchor 

side, and time proc𝑎 is the time duration between receiving the first bit of the response 
and last bit of the response. Once the propagation time is calculated, the estimated 
distance between anchor node 𝑎𝑗 and unknown node 𝑢𝑖 is calculated as:  
 

𝑑𝑢𝑖
𝑎𝑗
= 𝑐 ∗  𝑡𝑖𝑚𝑒𝑝𝑟𝑜𝑝 

 
where 𝑐 is the speed of light. Once the anchor node calculates this estimated distance, 
it is then forwarded to the BS encrypted with the public key of BS and along with the 
anchor node’s certificate. 

 

𝑎𝑗 → BS: [𝑑𝑢𝑖
𝑎𝑗

]BS𝐾, Cert𝑎𝑗.  

 
After receiving the message from the anchor nodes, BS decrypts the message with is 
private key and gets the estimated distances. Finally, it uses Minimum Mean Square 
Error (MMSE) to estimate the location of an unknown node (𝑥𝑢𝑖, 𝑦𝑢𝑖). The relative 
mobility between an unknown node 𝑢𝑖 and anchor node 𝑎𝑗 at a given time t is given by:  

𝑅𝑀𝑡
𝑎,𝑢 = da,ut - da,ut-1 

 

where 𝑅𝑀𝑡
𝑎,𝑢

 is positive if node 𝑢𝑖 is moving away from 𝑎𝑗 and negative if 𝑢𝑖 is coming 

closer to 𝑎𝑗. 
 

4.2.2.c Handling Distance Estimation Error.  

Distance estimations in a wireless environment are very common to have error due to 
the noise or delay in the medium. Assume that the estimation error is 𝜖 ∈ [-𝜖max, 𝜖max], 
where 𝜖max is a system parameter and given as 0 ≤ 𝜖max ≤ 1. Therefore, the estimated 

distance can be given as:  
 

𝑑𝑢𝑖
𝑎𝑗

 ∈ [ true 𝑑𝑢𝑖
𝑎𝑗

  x (1 - εmax), true 𝑑𝑢𝑖
𝑎𝑗

  x (1 + εmax)] 
 

where true 𝒅𝒖𝒊
𝒂𝒋

  is the true distance between 𝑎 𝑗 and 𝑢𝑖 and can be calculated by 

applying Euclidean method. 
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4.2.2.d Simulation Results  

The framework was compared with the three recent algorithms: (1) CSLT, (2) MPA and 
(3) AWS. The localization ratio is defined as the percentage of successful location 
estimation of unknown nodes. The results showed that the proposed algorithm 
performed better as compared to others. In the simulation, the ratio of malicious nodes 
varied from 5% to 30% with increments of 5%. Simulation results showed that the 
relative error percentage of location estimation increases with the increasing number of 
malicious nodes. However, the proposed algorithm proved its efficiency in location 
estimation accuracy 

 

Figure 27. Propagation time estimation process 

4.2.3 TPM Based Geo-location 

This algorithm is proposed by Sungjin Parka, Jong-Jin Wona, JaenamYoona, Kyong 

HoonKimb and Taisook Hanc [34]. The basic concept of this algorithm is to state the 

major problem of cloud services that is that the actual geolocation of cloud tenant 

devices can be easily manipulated. In general, an application requests the geolocation 

of a device to a GPS device driver.  

In this process, there are many vulnerable points to forge the current geolocation of the 

device, which implies that the trusted computing base (TCB) for the trusted geolocation 

is too large. (e.g., the GPS device driver, system call tables, libraries for device driver 

communication, etc.) Since a large TCB-based system has high probability of 

embedding bugs, a secure system should minimize the TCB. The tiny hypervisor 

directly obtains the current geolocation from a GPS and computes an evidence value for 

the trusted geolocation with the Trusted Platform Module (TPM). 

 

 

Figure 28. TPM Based Localization Framework 
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4.2.3.a Proposed Framework 

Cloud tenants should install two proposed software, a tiny hypervisor, called TGVisor, 

and the Cloud Agent, in their devices. The hypervisor handles the geolocation value and 

performs TPM operations required for remote attestation. Locality 1 is assigned to the 

untrusted legacy OS and locality 2 to TGVisor. Throughout this locality assignment, the 

mobile device’s TPM can be shared by the tiny hypervisor and the untrusted legacy OS. 

TGVisor also includes the Crypto Module, a software cryptographic library that 

computes the evidence value for the trusted geolocation and creates a RSA session 

key. The Cloud Agent serves as a middleware to communicate between the hypervisor 

and the Trusted Geolocation Server (TGS), which is a verifier to check the 

trustworthiness of the TCB in target systems.  

The TGS in the server-side periodically requests a trusted geolocation value and a 

remote attestation evidence to a cloud device. In turn, the Cloud Agent passes these 

requests to the hypervisor via hypercalls. The hypervisor obtains a geolocation value 

from the GPS connected to the tenant device and performs cryptographic operations 

inside the hypervisor. The hypervisor returns the results of the cryptographic operations 

to the Cloud Agent and the Cloud Agent transfers them to the TGS. The TGS attests the 

trustworthiness of the hypervisor and geolocation value with a public RSA session key 

and enforces a policy to the Policy DB running in a cloud provider domain. More 

information for this framework will be provided in chapter 6. 

4.2.3.b Simulation Results 

The trusted geolocation for cloud devices is a necessary feature to solve the security 

concerns of cloud users about the data location in the cloud. In order to cloud providers 

to provide more reliable data location services, TGVisor is presented as a novel trusted 

geolocation system for the cloud devices. TGVisor is feasible and practical in the cloud 

environment. Compared with other hypervisors based on XMHF, TGVisor was 

implement with the small LOC, 2293 LOC, which means that TGVisor maintains the 

minimized TCB. 

4.2.4 Authenticated Location based on DRM 

The idea of authenticated positioning and location utilizing Digital Rights Management 

(DRM) concept was proposed by Thomas Mundt [35], after finding a vast variety of 

scenarios where location is essential for controlling access to resources for example: A 

hard disc containing the blueprint of a nuclear bomb can only be read on the premises 

of the lab or TV shows or DVD movies are licensed to a single country only. This trusted 

position information is being used to enable access to data or devices protected by 

Digital Rights Management (DRM). 

4.2.4.a Digital Rights Management (DRM) 

Digital rights management (DRM) is a set of access control technologies for restricting 

the use of proprietary hardware and copyrighted works. Digital Rights Management 

allows the copyright owners of multimedia content to decide under which circumstances 

https://en.wikipedia.org/wiki/Access_control
https://en.wikipedia.org/wiki/Copyright
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they want to allow users to access documents. Access can be restricted to read, write, 

change, update, and other operations. Managed material is secured by cryptographic 

methods such as encryption, watermarking, and signing. Encryption can be done by 

several algorithms such as RC4 and AES depending on the nature of the digital 

material. In order to determine an authenticated position, the following tasks must be 

accomplished in the given order: 

1) A public key infrastructure (PKI) needs to be established. 

2) The position needs to be calculated.  

3) The position needs to be authenticated.  

4) The DRM module decides whether it grants access to the protected material. 

Creating a public key infrastructure: Each node carries a unique private key which 

will be used in the authentication process as well as for decryption of secret messages. 

The corresponding public key is signed by a Certifying Authority (CA) which belongs to 

each closed user group in our system. Traditional certificates such as X.509 can be 

used for this purpose. 

Position determination: Signal strengths are utilized for positioning. Deriving the 

position directly from signal strengths of surrounding APs does not deliver accurate 

position information. An adapted method is utilized where uses a propagation model 

which is normally being calibrated by several test measurements. This calibrated model 

will be used to find the most likely position according to the current measurement of 

signal strengths. In order to calibrate the propagation model measurement reports are 

considered from nodes with known positions.  

These nodes determine the signal strengths to other fixed nodes. The difference 

between expected signal strength and real signal strength is used to parameterize the 

propagation model. The error between expected and measured attenuation is virtually 

distributed over the entire distance between two nodes. By performing this within all 

nodes in sight of each node a two-dimensional model will be generated. 

Authenticated positioning: As mentioned before all nodes are able to proof their 

identity by using a unique certificate which is signed by a CA. In order to proof its own 

position a node has to collect several measurement reports from surrounding nodes. 

Each measurement report contains the signal strength of the observed node as it is 

seen by the node generating the report. All reports are digitally signed using the node’s 

private key. Some special nodes called ”level-0-nodes” have a certificate available that 

marks them as nodes with a position that is not doubtful.  

Their position might have been securely determined by other means such as GPS or 

land surveying. The signatures of a CA ensures that only distinguished nodes can claim 

to be a ”level-0-node”. Nodes which derive their position from ”level-0-nodes” receive 

measurement reports as well as position reports. Both information are signed and 

therefore being marked as originated by a ”level-0-node”. All reports from nodes other 

than ”level-0-nodes” contain their calculated position (position report) and the signal 
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strength of the node to which the report is addressed (measurement report). All reports 

are signed as usual by the sender. In order to proof the calculated position the sending 

node also includes the signed reports which were used to determine its own position. 

Following this scheme ensures that every node is able to see and check the paths 

which were used to determine its own position back to at least three level-0-nodes”. 

4.2.4.b Simulation Results 

A prototype on a Linux driven TV satellite receiver with a built-in hard disc was 

implemented. The position was determinated and authenticated using a wireless mesh 

network. We are supporting a wireless community network with currently about 160 

nodes (130 of them are stationary, the remaining are limited mobile. Commercial 

wireless routers running on Linux were used as nodes. The results were considered to 

be sufficient for the purpose of mesh network based location aware dependent digital 

rights management.  

4.2.5 TOA-ECC Elliptic Curve Cryptography 

Is a public key cryptography scheme for secure localization and authentication between 

sensor nodes proposed from V. Vijayalakshmi and Dr. T.G. Palanivelu [36]. The key 

exchange between the nodes is done by using ECC key Exchange. A comparison of 

this technique is also done with the other asymmetric algorithms like RSA and MPRSA. 

The exchange of the key is also done using Diffie-Hellman and then compared to prove 

that ECC is the best. 

4.2.5.a Algorithm Overview 

The primary reason for the attractiveness of ECC over systems such as RSA and DSA 

is that the best algorithm known for solving the underlying mathematical problem 

(namely, the ECDLP) takes fully exponential time. In contrast, sub exponential-time 

algorithms are known for underlying mathematical problems on which RSA and DSA 

are based, namely the integer factorization (IFP) and the discrete logarithm (DLP) 

problems.  

This means that the algorithms for solving the ECDLP become infeasible much more 

rapidly as the problem size increases than those algorithms for the IFP and DLP. For 

this reason, ECC offers security equivalent to RSA and DSA while using far smaller key 

sizes. The attractiveness of ECC will increase relative to other public-key cryptosystems 

as computing power improvements force a general increase in the key size. The 

benefits of this higher-strength per-bit include: 

• Higher speeds and Lower power consumption 

• Bandwidth savings 

• Storage efficiencies and Smaller Certificates 

4.2.5.b Elliptic Curve Encryption and Decryption 

To encrypt and send a message Pm to B, A chooses a random positive integer k and 

produces the cipher text Cm as given by equation consisting of the pair of points.  
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Cm= [kG, Pm+kPB] (1) 

Note that A has used B’s public key PB. To decrypt the cipher text, B multiples the first 

point in the pair by B’s private key nB and subtracts the result from the second point as 

shown by equation:  

Pm+kPB-nB (kG) =Pm+k (nBG)-nB(kG) = Pm (2) 

4.2.5.c ECC key exchange 

A key exchange between users A and B can be accomplished as follows: 

1. A selects an integer nA less than n. This is A’s private key. A then generates a public 

key PA=nA*G; the public key is a point in Eq(a,b). 

2. B similarly selects a private key nB and computes a public key PB, 

3. The public keys are exchanged between the nodes A and B. A generates the secret 

key K=nA*PB. B generates the secret key K=nB*PA. 

4.2.5.d Simulation Results 

The TOA localization scheme along with ECC for secure localization and authentication 

was implemented. This TOA-ECC scheme was compared with the other public key 

cryptographic schemes like RSA and MPRSA. A further comparison was done by 

implementing both Diffie-Hellmann key exchange and ECC key exchange. The 

simulation results clearly indicate that TOA approach of localization along with the 

implementation of ECC with ECC key exchange is well suited for Wireless Sensor 

Networks. 

4.2.6 Collaborative localization based on Trust model  

This algorithm is proposed by Guangjie Han, Li Liu 1, Jinfang Jiang, Lei Shu, and Joel 

J.P.C. Rodrigues. CSLT [37] was implemented for Underwater Wireless Sensor 

Networks (UWSNs). First uses trust model to ensure node safety and avoid the 

influence from malicious nodes, which ultimately reduces unknown nodes’ localization 

error and enhances localization accuracy. Then, based on the collaboration of sensor 

nodes, localization ratio and localization accuracy can be further improved. The 

proposed CSLT consists of the following five sub-processes: trust evaluation of anchor 

nodes, initial localization of unknown nodes, trust evaluation of reference nodes, 

selection of reference node, and secondary localization of unknown node. 

4.2.6.a Algorithm Overview 

1. Trust evaluation of anchor nodes: In the first sub-process, the trust values of 

anchor nodes are calculated based on the main idea of detecting malicious anchor 

beacons.  

2. Initial localization of unknown nodes: In the second sub-process, the unknown 

nodes are localized based on the multilateral localization method by using 

positioning reference information from trusty anchor nodes.  

3. Trust evaluation of reference nodes: In the third sub-process, is evaluated the 

trust value for each successfully localized unknown node. 
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4. Selection of reference node: Then, the trusty and successfully localized unknown 

node can be selected as a reference node in the fourth sub-process.  

5. Secondary localization of unknown node: Finally, in the fifth sub-process, two-

hop trusty anchor nodes and reference nodes are used to help localize unknown 

nodes. 

 

 

 

Figure 29. CSLT five sub-processes 

4.2.6.b Simulation Results 

The algorithm was implemented using MATLAB. In the experiments, the deployment 

area was set to 500m×500m×500m. There are 500 unknown nodes randomly deployed 

in the 3D space. The communication range of unknown nodes is set to 100 m. The 

performance of CSLT is compared based on the following three metrics:  

(1) detect ratio of malicious nodes, (2) localization accuracy, (3) localization ratio, (4) 

energy consumption. Simulation results indicate that CSLT can achieve a high detect 

ratio of malicious nodes. In addition, the localization security including localization 

accuracy and localization ratio is improved in UWSNs. However, there are many 

remaining issues that need to be further studied. 

4.2.7 Secure DV-Hop Localization algorithm 

This algorithm is proposed by Xiaole Liu1, Rui Yang2 and Qingmin Cui [38]. Its basic 

idea realizes on transforming the distance to all beacon nodes from hops to meters by 

using computer average size of a hop. The advantages of the DV-Hop scheme are that 

it does not need any sophisticated hardware for the distance measurement and thus, it 

is free from range measurement errors. However, the DV-Hop technique introduces 

errors that propagated to the computation of a node’s location. 
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4.2.7.a Algorithm Overview 

The proposed scheme includes four phases. 

1. Initialization Phase: Before the sensor nodes deployed, the sink node generates 

random keys for each beacon sensor node and applies the hash function to 

generate hash chain. The base station will store the hash function and the last key 

Rn of each key chain into all sensor nodes as the authentication key of the beacon 

node. 

2. Hop-count Computation: The goal of this phase is that all sensor nodes get the 

minimal hop-count to each beacon node. In this phase all beacon nodes broadcast 

its information to its neighbor nodes. Let sensor node B is a beacon node. All sensor 

node i will broadcast a message to its neighbors 

3. Hop-size and Weighted Computation: In this phase, all beacon nodes will 

compute the distance to the beacon nodes and the weight of beacon nodes.  

4. Location Estimation: An unknown sensor node can calculate its location when it 

has to estimate distance to at least three beacons and weights of the three beacons. 

The position of unknown nodes is computed using weighted least square method, 

4.2.6.b Simulation Results 

DV-Hop was compared with the proposed algorithm. The performance evaluation of the 

localization algorithm adopts an average positioning error as an evaluation index, as 

following formula: 

ei  = ∑
√(𝑥𝑖− 𝑥𝑖̅)

2+(𝑦𝑖− 𝑦𝑖̅)
2 

𝑟

𝑛
𝑖=𝑁  

where n is the total number of sensor nodes in WSNs, N is the number of beacon 

nodes, (xi, yi) is the real coordinate of the unknown node i is, (xi, yi) is the evaluated 

coordinate, and r is the communication range of sensor nodes. 

All the sensor nodes were random placed in a square area with the fixed size of 

100m×100m. The radio range was 15 meters. And there are 20% beacon. The results 

demonstrate that the proposed algorithm can improve localization accuracy and against 

the nodes capture attacks effectively. 

 

4.4 Conclusion 

In this chapter we presented a variety of mechanisms where can provide safety and 
data protection to a geolocation system. Below we present a summary of which attacks, 
that were described in chapter 4.1, can be protected from the secure localization 
algorithms that were described above.  
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Table 5. Secure Localization algorithms VS Localization attacks 

 

The coordinates of the unknown node, certificates, TPM, public keys are some of the 

main ingredients for geolocation systems in order to achieve safety and security. In our 

proposed system, as it will be described in the next sessions, we decided to follow an 

approach utilizing the TPM concept for a safe geolocation system since it can provide a 

variety of ways for cryptography and safety algorithms alongside with key generations 

and strong encryptions methods. Summary is presented below: 

 

 

 

 

 Secure Localization Algorithms 

Attack Name LDEA MAINV TPMBG ALB-
DRM 

TOA-
ECC 

CSLT S. DV-
HOP 

Compromise ✔ ✔ ✔ - - - ✔ 

Replication - - - - - ✔ - 

Impersonation ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Sybil attack ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Wormhole attack ✔ - - - - - - 

Forgery ✔ ✔ ✔ ✔ - ✔ - 

Alteration ✔ - ✔ - ✔ - ✔ 

Interference - - - - - - - 

Replay ✔ - ✔ - ✔ - ✔ 

Flooding ✔ - ✔ - ✔ - ✔ 

Selective forwarding ✔ - ✔ - ✔ - ✔ 

Stealing ✔ ✔ ✔ - ✔ ✔ ✔ 

Jamming - - - - - - - 

Collision ✔ - ✔ - ✔ - ✔ 

Exhaustion - ✔ ✔ - - - - 

Unfairness ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Dos Attacks ✔ - ✔ - - - ✔ 

Sinkhole ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Tampering ✔ ✔ ✔ - - - ✔ 

Insider attack ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Range change attack ✔ - ✔ - - - - 

False beacon location 
attack 

✔ ✔ ✔ ✔ ✔ ✔ ✔ 

False reported location 
attack 

✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Desynchronization ✔ - ✔ - ✔ - ✔ 
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Table 6. Localization frameworks summary. 

 
 

 

 

 

Framework 
Name 

Publication Safety Mechanisms Evaluation 

Location-
Dependent data 

Encryption 
Algorithm 

(LDEA) 

2008 
[32] 

 

1. Toleration Distance 
(TD) 

2. Latitude/Longitude 
3. LDEA-key 
4. Random keys 

Pros:  The secure provided key is truly random. Easy 
implementation. 
Cons: Is not strong enough as it uses the static location 
of mobile node and they are using the static tolerance 
distance to overcome the inaccuracy and inconsistent of 
GPS receiver. 

Mutual 
Authentication 

and Insider 
Node Validation 

2017 
[33] 

1. Node Authentication 
2. Certificates 

Pros: High efficiency in location estimation accuracy. 
Low relative error percentage with the increasing number 
of anchor nodes. Detections of malicious attack over 
90%. supports mobility of the nodes and therefore it is 
suitable for dynamic network environments. 
Cons: High complexity and computation overhead 

Trust Platform 
Module (TPM) 

Based 
Geo-location 

2016 
[34] 

1. Trust Platform Module 
2. Cryptography 
3. Cloud Agent 

Pros: Is feasible and practical. Provides strong 
cryptographical mechanisms and algorithms and has 
high performance and low computations errors.  
Cons: Is not suitable for indoor positioning since it loses 
significant power inside buildings due to GPS and has 
computation overhead due to TPM operations. 

Authenticated 
Location 

based on DRM  

2005 
[35] 

 

1. Public key 
2. Node Authentication 
3. Digital Rights 

Management (DRM) 

Pros: Very effective for mesh networks. High 
performance for position authentication by a web trust 
protocol DRM. 
Cons: No measure system to describe expected and 
demanded confidence of the indicated position. No upper 
limit for the position error depends from the geographical 
configuration 

TOA-ECC 
Elliptic Curve 
Cryptography 

 

2008 
[36] 

 

1. Public key 
2. Elliptic Cryptography 
 
 

Pros: High performance, very low encryption and 
decryption time. Easy implementation. Is well suited for 
Wireless Sensor Networks. 
Cons:  Requires highly accurate synchronization of 
sender and receiver clocks due to TOA. High possibility 
of computations errors. 

Collaborative 
Secure 

Localization 
algorithm based 
on Trust model 

(CSLT) 
 

2016 
[37] 

 

1. Trust model 
2. Trusty anchors nodes 
3. References node 

Pros: High localization accuracy and localization ratio in 
UWSNs. High detect ratio of malicious nodes. 
Cons: Cannot find each type of malicious nodes with 
100%. Not very efficient if many malicious nodes launch 
an attack simultaneously. Tested only in MATLAB not to 
other platforms.  

Secure DV-Hop 
Localization for 

WSN 
 

2015 
[38] 

1. DV-Hop concept 
2. Random keys 

Pros: High effectiveness under different attack and high 
performance of localization. High localization accuracy 
and strong against localization attacks. 
Cons: Applicable only to DV-Hop localization process.  
Not scalable to other frameworks. 
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5. HYPERVISORS AND GEOLOCATION 
In this chapter we present a short overview on Hypervisors and how they achieved 

security and safety in systems. We present the types of Hypervisor alongside with 

information of some representative cases.  

5.1 Hypervisors Overview 

Hypervisor, also known as a virtual machine monitor, is a process that creates and runs 

virtual machines (VMs). A hypervisor allows one host computer to support multiple 

guest VMs by virtually sharing its resources, like memory and processing. Generally, 

there are two types of hypervisors. Type 1 hypervisors, called “bare metal,” run directly 

on the host’s hardware.  

Type 2 hypervisors, called “hosted,” run as a software layer on an operating system, like 

other computer programs. Hypervisors make it possible to use more of a system’s 

available resources, and provide greater IT mobility, since the guest VMs are 

independent of the host hardware. This means they can be easily moved between 

different servers. 

 

Figure 30. Hypervisor Overview 

Hypervisors provide several benefits to the enterprise data center. First, the ability of a 

physical host system to run multiple guest VMs can vastly improve the utilization of the 

underlying hardware. Where physical (nonvirtualized) servers might only host one 

operating system and application, a hypervisor virtualizes the server, allowing the 

system to host multiple VM instances -- each running an independent operating 

system and application -- on the same physical system using far more of the system's 

available compute resources. VMs are also very mobile. The abstraction that takes 

place in a hypervisor also makes the VM independent of the underlying hardware. 

Traditional software can be tightly coupled to the underlying server hardware, meaning 

that moving the application to another server requires time-consuming and error-prone 

reinstallation and reconfiguration of the application.  

By comparison, a hypervisor makes the underlying hardware details irrelevant to the 

VMs. This allows any VMs to be moved or migrated between any local or remote 

virtualized servers -- with sufficient computing resources available -- almost at-will with 

effectively zero disruption to the VM; a feature often termed live migration. VMs are also 

logically isolated from each other -- even though they run on the same physical 

machine. In effect, a VM has no native knowledge or dependence on any other VMs. An 

https://www.vmware.com/products/vsphere-hypervisor.html
https://searchdatacenter.techtarget.com/definition/data-center
https://whatis.techtarget.com/definition/operating-system-OS
https://whatis.techtarget.com/definition/operating-system-OS
https://searchnetworking.techtarget.com/definition/virtual-server
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error, crash or malware attack on one VM does not proliferate to other VMs on the same 

or other machines. This makes hypervisor technology extremely secure. Finally, VMs 

are easier to protect than traditional applications.  

A physical application typically needs to be first quiesced and then backed up using a 

time-consuming process that results in substantial downtime for the application. A VM is 

essentially little more than code operating in a server's memory space. Snapshot tools 

can quickly capture the content of that VM's memory space and save it to disk in 

moments -- usually without quiescing the application at all. Each snapshot captures a 

point-in-time image of the VM which can be quickly recalled to restore the VM on 

demand. 

Hypervisors are traditionally implemented as a software layer, but hypervisors can also 

be implemented as code embedded in a system's firmware. There are two principal 

types of hypervisor. Type 1 hypervisors are deployed directly atop the system's 

hardware without any underlying operating systems or other software. These are 

called "bare metal" hypervisors and are the most common and popular type of 

hypervisor for the enterprise data center. Examples include vSphere or Hyper-V. The 

first hypervisors, which IBM developed in the 1960s, were native hypervisors. 

These included the test  software SIMMON and the CP/CMS operating system (the 

predecessor of IBM's z/VM). Modern equivalents include AntsleOs, Xen, XCP-

ng, Oracle VM Server for SPARC, Oracle VM Server for x86, Microsoft Hyper-V, Xbox 

One system software, and VMware ESX/ESXi. Type 2 hypervisors run as a software 

layer atop a host operating system and are usually called "hosted" hypervisors like 

VMware Player or Parallels Desktop. Hosted hypervisors are often found on endpoints 

like PCs. VMware Workstation, VMware Player, VirtualBox, Parallels Desktop for 

Mac and QEMU are examples of type-2 hypervisors. 

 

Figure 31. Hypervisor types 

Hypervisors are important to any system administrator or system operator because 

virtualization adds a crucial layer of management and control over the data center and 

enterprise environment. Staff members not only need to understand how the respective 

hypervisor works, but also how to operate supporting functionality such as VM 

configuration, migration and snapshots. The role of a hypervisor is also expanding. For 

https://whatis.techtarget.com/definition/quiesce
https://searchdatabackup.techtarget.com/definition/storage-snapshot
https://searchservervirtualization.techtarget.com/definition/bare-metal-hypervisor
https://en.wikipedia.org/wiki/SIMMON
https://en.wikipedia.org/wiki/CP/CMS
https://en.wikipedia.org/wiki/Z/VM
https://en.wikipedia.org/wiki/Xen
https://xcp-ng.org/
https://xcp-ng.org/
https://en.wikipedia.org/wiki/Oracle_VM_Server_for_SPARC
https://en.wikipedia.org/wiki/Oracle_VM_Server_for_x86
https://en.wikipedia.org/wiki/Hyper-V
https://en.wikipedia.org/wiki/Xbox_One_system_software
https://en.wikipedia.org/wiki/Xbox_One_system_software
https://en.wikipedia.org/wiki/VMware_ESX
https://en.wikipedia.org/wiki/VMware_Workstation
https://en.wikipedia.org/wiki/VMware_Player
https://en.wikipedia.org/wiki/VirtualBox
https://en.wikipedia.org/wiki/Parallels_Desktop_for_Mac
https://en.wikipedia.org/wiki/Parallels_Desktop_for_Mac
https://en.wikipedia.org/wiki/QEMU
https://searchnetworking.techtarget.com/definition/system-administrator
https://searchitoperations.techtarget.com/definition/system-operator-sysop
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example, storage hypervisors are used to virtualize all of the storage resources in the 

environment to create centralized storage pools that administrators can provision -- 

without having to concern themselves with where the storage was physically located.  

Today, storage hypervisors are a key element of software-defined storage. Networks 

are also being virtualized with hypervisors, allowing networks and network devices to be 

created, changed, managed and destroyed entirely through software without ever 

touching physical network devices. As with storage, network virtualization is appearing 

in broader software-defined network or software-defined data center platforms. 

5.2 Trust Platform Module 

In order to the hypervisor to achieve all the security and cryptographical processes can 

utilize the usage of a Trust Platform Module (TPM). The TPM is a crypto processor 

designed to secure hardware and for the creation and generation of cryptographic keys. 

Here we present a short brief about what a TPM is. 

5.2.1 Introduction on Trust Platform Module 

Trusted Platform Module (TPM, also known as ISO/IEC 11889) is an international 

standard for a secure crypto processor, a dedicated microcontroller designed to secure 

hardware through integrated cryptographic keys. Trusted Platform Module (TPM) was 

conceived by a computer industry consortium called Trusted Computing Group (TCG), 

and was standardized by International Organization for Standardization (ISO) and 

International Electrotechnical Commission (IEC) in 2009 as ISO/IEC 11889. [39] 

TCG continued to revise the TPM specifications. The last revised edition of TPM Main 

Specification Version 1.2 was published on March 3, 2011. It consisted of three parts, 

based on their purpose.[2] For the second major version of TPM, however, TCG 

released TPM Library Specification 2.0, which builds upon the previously 

published TPM Main Specification. Its latest edition was released on September 29, 

2016, with several errata with the latest one being dated on January 8, 2018. 

 

Figure 32. Trust Platform Module overview 

 

https://searchstorage.techtarget.com/definition/storage-hypervisor
https://searchstorage.techtarget.com/definition/software-defined-storage
https://en.wikipedia.org/wiki/Secure_cryptoprocessor
https://en.wikipedia.org/wiki/Computer_industry
https://en.wikipedia.org/wiki/Trusted_Computing_Group
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.wikipedia.org/wiki/Trusted_Platform_Module#cite_note-TPM_Main_Specs-2
https://en.wikipedia.org/wiki/Errata
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Trusted Platform Module provides 

• A random number generator  

• Facilities for the secure generation of cryptographic keys for limited uses. 

• Remote attestation: Creates a nearly unforgeable hash key summary of the 
hardware and software configuration. The software in charge of hashing the 
configuration data determines the extent of the summary. This allows a third party to 
verify that the software has not been changed. 

• Binding: Encrypts data using the TPM bind key, a unique RSA key descended from 
a storage key.  

• Sealing: Similar to binding, but in addition, specifies the TPM state for the data to be 
decrypted (unsealed).  

Computer programs can use a TPM to authenticate hardware devices, since each TPM 

chip has a unique and secret RSA key burned in as it is produced. Pushing the security 

down to the hardware level provides more protection than a software-only solution.  

5.2.2 TPM implementations 

The United States Department of Defense (DoD) specifies that "new computer assets (e.g., 

server, desktop, laptop, thin client, tablet, smartphone, personal digital assistant, mobile 

phone) procured to support DoD will include a TPM version 1.2 or higher where 

required  by DISA STIGs and where such technology is available." DoD anticipates that 

TPM is to be used for device identification, authentication, encryption, and device 

integrity verification.  

5.2.2.a Platform integrity 

The primary scope of TPM is to assure the integrity of a platform. In this context, 

"integrity" means "behave as intended", and a "platform" is any computer device 

regardless of its operating system. It is to ensure that the boot process starts from a 

trusted combination of hardware and software, and continues until the operating system 

has fully booted and applications are running. 

The responsibility of assuring said integrity using TPM is with the firmware and the 
operating system. For example, Unified Extensible Firmware Interface (UEFI) can use 
TPM to form a root of trust: The TPM contains several Platform Configuration Registers 
(PCRs) that allow secure storage and reporting of security relevant metrics. These 
metrics can be used to detect changes to previous configurations and decide how to 
proceed. Good examples can be found in Linux Unified Key Setup  (LUKS), BitLocker  
and Private Core vCage memory encryption.  

An example of TPM use for platform integrity is the Trusted Execution 
Technology (TXT), which creates a chain of trust. It could remotely attest that a 
computer is using the specified hardware and software.  

5.2.2.b Disk encryption 

Full disk encryption utilities, such as dm-crypt and BitLocker, can use this technology to 

protect the keys used to encrypt the computer's storage devices and provide 

https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Cryptographic_keys
https://en.wikipedia.org/wiki/Remote_attestation
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/RSA_(algorithm)
https://en.wikipedia.org/wiki/Sealed_storage
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/RSA_(algorithm)
https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/Defense_Information_Systems_Agency
https://en.wikipedia.org/wiki/Security_Technical_Implementation_Guide
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Boot_process
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/Root_of_Trust
https://en.wikipedia.org/wiki/Linux_Unified_Key_Setup
https://en.wikipedia.org/wiki/BitLocker
https://en.wikipedia.org/wiki/PrivateCore
https://en.wikipedia.org/wiki/Trusted_Execution_Technology
https://en.wikipedia.org/wiki/Trusted_Execution_Technology
https://en.wikipedia.org/wiki/Full_disk_encryption
https://en.wikipedia.org/wiki/Dm-crypt
https://en.wikipedia.org/wiki/BitLocker
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integrity authentication for a trusted boot pathway that includes firmware and boot 

sector. 

5.2.2.c Password protection 

Operating systems often require authentication (involving a password or other means) 

to protect keys, data or systems. If the authentication mechanism is implemented in 

software only, the access is prone to dictionary attacks. Since TPM is implemented in a 

dedicated hardware module, a dictionary attack prevention mechanism was built in, 

which effectively protects against guessing or automated dictionary attacks, while still 

allowing the user a sufficient and reasonable number of tries. Without this level of 

protection, only passwords with high complexity would provide sufficient protection. 

5.2.2.d Other uses and concerns 

Any application can use a TPM chip for: 

• Digital rights management 

• Protection and enforcement of software licenses 

• Prevention of cheating in online games[13] 

Other uses exist, some of which give rise to privacy concerns. The "physical presence" 
feature of TPM addresses some of these concerns by requiring BIOS-level confirmation 
for operations such as activating, deactivating, clearing or changing ownership of TPM 
by someone who is physically present at the console of the machine 

Starting in 2006, many new laptops have been sold with a built-in TPM chip. In the 
future, this concept could be co-located on an existing motherboard chip in computers, 
or any other device where the TPM facilities could be employed, such as a cellphone. 
On a PC, either the LPC bus or the SPI bus is used to connect to the TPM chip. TCG 
has certified TPM chips manufactured by Infineon technologies, Nuvoton,  
and STMicroelectronics, having assigned TPM vendor IDs to Advanced  micro devices 
,Atmel, Intel   ,Broadcom , IBM, Infineon, Lenovo, National Semiconductor, Nationz 
Technologies, Nuvoton ,Qualcomm, Rockchip, Standard Microsystems Corporation, 
STMicroelectronics, Samsung, Sinosun, Texas Instruments, and Winbond.  

 

There are five different types of TPM 2.0 implementations:  

• Discrete TPMs are dedicated chips that implement TPM functionality in their own 
tamper resistant semiconductor package. They are theoretically the most secure 
type of TPM because the routines implemented in hardware should be more 
resistant to bugs versus routines implemented in software, and their packages are 
required to implement some tamper resistance. 

• Integrated TPMs are part of another chip. While they use hardware that resists 
software bugs, they are not required to implement tamper resistance. Intel has 
integrated TPMs in some of its chipsets. 

 

https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Boot_sector
https://en.wikipedia.org/wiki/Boot_sector
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https://en.wikipedia.org/wiki/Dictionary_attack
https://en.wikipedia.org/wiki/Digital_rights_management
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Cheating_in_online_games
https://en.wikipedia.org/wiki/Trusted_Platform_Module#cite_note-:2-13
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https://en.wikipedia.org/wiki/Laptop
https://en.wikipedia.org/wiki/Motherboard
https://en.wikipedia.org/wiki/Cellphone
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• Firmware TPMs are software-only solutions that run in a CPU's trusted execution 
environment. Since these TPMs are entirely software solutions that run in trusted 
execution environments, these TPMs are more likely to be vulnerable to software 
bugs. AMD, Intel and Qualcomm have implemented firmware TPMs. 

• Software TPMs are software emulators of TPMs that run with no more protection 
than a regular program gets within an operating system. They depend entirely on 
the environment that they run in, so they provide no more security than what can be 
provided by the normal execution environment, and they are vulnerable to their own 
software bugs and attacks that are penetrating the normal execution environment. 
They are useful for development purposes. 

• Virtual TPMs are provided by a hypervisor. Therefore, they rely on the hypervisor to 
provide them with an isolated execution environment that is hidden from the 
software running inside virtual machines to secure their code from the software in 
the virtual machines. They can provide a security level comparable to a firmware 
TPM. 

 

 

5.3 Trusted Hypervisors 

5.3.1 XMHF- uberXMHF 

5.3.1.a XMHF 

XMHF is an eXtensible and Modular Hypervisor Framework that strives to be a 

comprehensible and flexible platform for performing hypervisor research and 

development. The framework allows others to build custom (security-sensitive) 

hypervisor-based solutions (called "hypapps"). The XMHF is capable of running 

unmodified legacy multiprocessor capable OSes such as Windows and Linux. The 

XMHF core has a TCB of 6018 SLoC, and its performance is comparable. [40] 

XMHF is designed to achieve three goals – modular extensibility, automated 

verification, and high performance. XMHF includes a core that provides functionality 

common to many hypervisor-based security architectures and supports extensions that 

augment the core with additional security or functional properties while preserving the 

fundamental hypervisor security property of memory integrity (i.e., ensuring that the 

hypervisor’s memory is not modified by software running at a lower privilege level). 

XMHF advocates a "rich" single-guest execution model where the hypervisor framework 

supports only a single-guest and allows the guest direct access to all performance-

critical system devices and device interrupts. XMHF currently runs on recent multicore 

x86 hardware virtualized platforms with support for dynamic root of trust and nested (2-

dimensional) paging.  

https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Virtual_machines
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Figure 33. XMHF platform architecture 

5.2.2.b XMHF Framework Overview 

XMHF consists of the XMHF core and small supporting libraries that sit directly on top of 

the platform hardware. A hypapp extends the XMHF core to implement the desired 

(security) functionality. XMHF allows the guest direct access to all performance-critical 

system devices and device interrupts resulting in reduced hypervisor complexity, 

consequently Trusted Computing Base (TCB), as well as high guest performance. The 

high-level design principles behind XMHF are platform independent. The XMHF 

implementation currently supports both Intel and AMD x86 hardware virtualized 

platforms, and unmodified multi-processor Windows (2003 and XP) and Linux as 

guests. However, XMHF design principles apply to other architectures, such as ARM, 

as well. 

5.2.2.c Hypervisor Properties Required by DRIVE 

DRIVE (Designing hypervisors for Rigorous Integrity VErification) is composed of a set 

of hypervisor properties and system invariants. The hypervisor properties entail the 

invariants, which in turn imply the hypervisor’s memory integrity.  

The virtualized system is modeled as a tuple V = (H, G, D, M), where H is the 

hypervisor, G represents the guest, D represents devices, and M is the hypervisor 

memory containing both hypervisor code and data. Both G and D are controlled by the 

attacker. The guest memory is separate from M and irrelevant to memory integrity, from 

the model. DRIVE consists of a set of properties about H, system invariants, and a proof 

that if H satisfies those properties then the invariants hold on all executions of V. This, in 

turn, implies the memory integrity of H in V. DRIVE identifies the following six properties 

that restrict the hypervisor design and implementation: 

1. Modularity (MOD). Upon hypervisor initialization, control is transferred to a function 

init(). When an intercept is triggered, the hardware transfers control to one of the 

intercept handlers ih1(), . . .ihk(). 
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2. Atomicity (ATOM). This property ensures the atomicity of initialization and intercept 

handling on the CPU(s). It consists of two sub-properties: ATOMinit – at the start of V 

’s execution, init( ) runs completely in a single-threaded environment before any 

other code executes; ATOMih – the intercept handlers ih1(), . . . , ihk() always 

execute in a single-threaded environment. 

3. Memory Access Control Protection (MPROT). H uses a memory access control 

mechanism MacM. All MacM related state is stored in M. MacM consists of two 

parts: 

a. MacMG – for the guest 

b. MacMG – for the devices.  

4. Correct Initialization (INIT). After H’s initialization, MacM protects M from the guest 

and devices. The intercept entry points into H points to the correct intercept handler. 

5. Proper Mediation (MED). MacM is active whenever attacker-controlled programs 

execute. This implies: 

a. Before control is transfered to the guest (G), the CPU is set to execute in 

guest mode to ensure that MacMG is active,  

b. MacMD is always active. 

6. Safe State Updates (SAFEUPD). All updates to system state including M and 

control structures of the hardware TCB (e.g., guest execution state and chipset I/O), 

by an intercept   handler:  

a. preserve the protection of M by MacM in guest mode and for all devices;  

b. do not modify the intercept entry point into H,  

c. do not modify H’s code. 

The design and implementation decisions that help make XMHF minimalistic, enable 

verification of DRIVE properties on XMHF’s C implementation, and make automated re-

verification in the process of hypapp development possible. XMHF is a Type-1 (or 

native, bare metal) hypervisor that runs directly on the host’s hardware to control the 

hardware and to manage a guest OS. The guest runs on another (unprivileged) level 

above the hypervisor.  

The baremetal design allows for a small-TCB and high performance hypervisor code 

base. Recall that XMHF consists of the XMHF core and small supporting libraries that 

sit directly on top of the platform hardware. A hypapp extends the XMHF core and 

leverages the basic hypervisor and platform functionality provided by the core to 

implement the desired (security) functionality OSes. 

To achieve DRIVE properties, XMHF relies on platform hardware support, which 

includes hardware virtualization, two-level Hardware Page Tables (HPT), DMA 

protection, and dynamic root of trust (DRT) support. These capabilities are found on 

recent Intel and AMD x86 platforms. Similar capabilities are also forthcoming in ARM 

processor platforms. While this breaks backward compatibility with older hardware, it 

allows XMHF’s design to be much smaller and cleaner while achieving the DRIVE 

properties to ensure memory integrity. 
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5.2.2.d XMHF Framework Evaluation  

XMHF’s TCB consists of the XMHF core, the hypapp and supporting libraries used by 

the hypapp. The XMHF supporting libraries (totaling around 8K lines of C code) 

currently include a tiny C runtime library, a small library of cryptographic functions, a 

library with optional utility functions such as hardware page table abstractions and 

command line parsing functions, and a small library to perform useful TPM operations.  

From a hypapp’s perspective, the minimum TCB exposed by XMHF comprises the 

XMHF core which consists of 6018 SLoC. The figure below shows that the XMHF core 

forms 48% of a hypapp’s TCB, on average. This supports the hypothesis that these 

hypervisors share a common hypervisor core that is re-used or engineered from scratch 

with every new application. 

 

 

Figure 34. Porting status of several HyperVisors. 

It was measured XMHF’s runtime performance using two metrics: 

1. guest overhead imposed solely by the framework (i.e., without any hypapp),  

2. base overhead imposed by XMHF for a given hypapp. 

The platform was an HP Elitebook 8540p with a Quad-Core Intel Core i7 running at 3 

GHz, 4 GB RAM, 320GB SATAHDD and an Intel e1000 ethernet controller, using 

Ubuntu12.04 LTS as the guest OS running the Linux kernel v3.2.2.For network 

benchmarks, it was connected another machine via a1 Gbps Ethernet crossover link 

and run the 8540p as a server. It was used XMHF with both 4K and 2MB hardware 

page table (HPT) mappings for measurement purposes. Most of the SPEC benchmarks 

show less than 3% performance overhead. However, there are four benchmarks with 

over 10%, and two more with 20% and 55% overhead. For I/O application benchmarks, 

read access to files and network access incurs the highest overhead (40% and 25% 

respectively). The rest of the benchmarks show less than 10% overhead. 

 

Figure 35. XMHF Application Benchmarks 
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XMHF’s performance was compared with the popular Xen (v 4.1.2) hypervisor. Three 

hardware virtual machine (HVM) configurations were used for domU, that are identical 

in memory and CPU configuration to the native system: HVM domU (xen-domU-hvm), 

HVM domU with para virtualized drivers (xen-domU-pvhvm) and HVM domU with pci 

passthrough (xen-domU-passthru). dom0 was also used (xendom0) as a candidate for 

performance evaluation. 

For compute-bound applications XMHF and Xen have similar overheads (around 10% 

on average) with the 2MB XMHF HPT configuration performing slightly better. For disk 

I/O benchmarks, XMHF, xen-dom0 and xendom U-pvhvm have the lowest overheads 

(ranging from 3-20%). Both XMHF and Xen have higher overheads on the disk read 

benchmark when compared to other disk benchmarks. For network I/O benchmark, 

XMHF has the lowest overhead (20-30%). xen-dom0 and xen-domU-passthru incur a 

45% and 60% overhead respectively, while xen-domU-hvm and xen-domU-pvhvm have 

more than 85% overhead. 

 

Figure 36. XMHF performance comparison with Xen 

 

5.2.2.e uberXMHF 

XMHF is no longer in active development. It is superseded by uberXMHF (uber 

eXtensible Micro-Hypervisor Framework). The uber eXtensible Micro-Hypervisor 

Framework (uberXMHF) is a compositionally verifiable, extensible, micro-hypervisor 

framework for commodity platforms advocating the design and development of a new 

class of security-oriented micro hypervisor base applications (“uberapps”).  

uberXMHF is designed to achieve three goals: modular extensibility, automated 

(compositional) verification, and high performance. uberXMHF includes a core that 

provides functionality common to many hypervisor-based security architectures and 

supports extensions that augment the core with additional security or functional 

properties while preserving the fundamental hypervisor security property of memory 

integrity (i.e., ensuring that the hypervisor’s memory is not modified by software running 

at a lower privilege level). 
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uberXMHF advocates a “rich” commodity single-guest execution model (uber-guest) 

where the hypervisor framework supports only a single, commodity guest OS and 

allows the guest direct access to all performance-critical system devices and device 

interrupts. In principle, the uber-guest could also be a traditional hypervisor/VMM. 

uberXMHF currently runs on both x86 (Intel and AMD) and ARM (Raspberry PI) multi-

core hardware virtualized platforms with support for nested (2-dimensional) paging. The 

framework can run unmodified legacy multiprocessor capable OSes such as Linux and 

Windows. 

5.3.2 Xvisor 

Xvisor is an open-source type-1 hypervisor, which aims at providing a monolithic, light-

weight, portable, and flexible virtualization solution. It provides a high performance and 

low memory footprint virtualization solution for ARMv5, ARMv6, ARMv7a, ARMv7a-ve, 

ARMv8a, x86_64, and other CPU architectures. In comparison to other ARM 

hypervisors, it is one of the few hypervisors providing support for ARM CPUs which do 

not have ARM virtualization extensions [41].  

The Xvisor source code is highly portable and can be easily ported to most general-

purpose 32-bit or 64-bit architectures as long as they have a paged memory 

management unit (PMMU) and a port of the GNU C compiler (GCC). Xvisor primarily 

supports Full virtualization hence, supports a wide range of unmodified Guest operating 

systems. Paravirtualization is optional for Xvisor and will be supported in an architecture 

independent manner (such as VirtIO PCI/MMIO devices) to ensure no-change in Guest 

OS for using para virtualization. 

It has most features expected from a modern hypervisor, such as: Device tree based 

configuration, and high resolution timekeeping, Threading framework, Host device driver 

framework, IO device emulation framework, Runtime loadable modules, Pass through 

hardware access, Dynamic guest creation/ destruction , Management terminal, Network 

virtualization, Input device virtualization, Display device virtualization and many more. 

Hypervisors can be categorized into three categories based on Host hardware access, 

CPU virtualization, and Guest IO emulation, as follows: 

1. Complete Monolithic: Complete monolithic hypervisors (e.g. Xvisor) have one 

common software for Host hardware access, CPU virtualization, and Guest IO 

emulation. 

2. Partially Monolithic: Partially monolithic hypervisors (e.g. KVM) are usually an 

extension of the general purpose of monolithic OS (e.g. Linux, FreeBSD, 

NetBSD, etc.) to support Host hardware access + CPU virtualization in kernel 

and support Guest IO emulation from software running in user-space (e.g. 

QEMU). 

3. Micro-kernelized: Micro-kernelized hypervisors (e.g. Xen) are usually light-

weight micro-kernels providing basic Host hardware access + CPU virtualization 

in kernel and for rest it depends on a Management Guest (e.g. Dom0 of Xen) 

http://en.wikipedia.org/wiki/Hypervisor
http://gcc.gnu.org/
http://en.wikipedia.org/wiki/Full_virtualization
http://en.wikipedia.org/wiki/Paravirtualization
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which provides complete Host hardware access, Management interface, and 

Guest IO emulation. 

Xvisor is a complete monolithic hypervisor whereas most open-source hypervisors are 

either partially monolithic or micro-kernelized. 

 

Figure 37. XVisor Architecture Overview 

5.3.2.a Xvisor Framework Overview 

All core components of Xvisor such as: CPU virtualization, guest IO emulation, 

background threads, para-virtualization services, management services, and device 

drivers run as a single software layer with no prerequisite tool or binary file. The guest 

OS runs on what Xvisor implementers call Normal vCPUs, having a privilege less than 

Xvisor. Moreover, all background processing for device drivers and management 

purposes run on Orphan vCPUs with highest privilege. Guest configuration is 

maintained in the form of a tree data structure called device tree [21]. This facilitates 

easier manipulation of guest hardware through device tree script (DTS). In other words, 

no source code changes are required for creating a customized guest for embedded 

systems. 

The most important advantage of Xvisor is its single software layer running with highest 

privilege, in which all virtualization related services are provided. Unlike KVM, Xvisor’s 

context switches are very lightweight (refer to section V) resulting in fast handling of 

nested page faults, special instruction traps, host interrupts, and guest IO events. 

Furthermore, all device drivers run directly as part of Xvisor with full privilege and 

without nested page table (unlike Xen) ensuring no degradation in device driver 

performance. In addition, the Xvisor vCPU scheduler is per-CPU and does not do load 

balancing for multiprocessor systems.  

The multi-processor load balancer is a separate entity in Xvisor, independent of the 

vCPU scheduler (unlike KVM and Xen). Both, vCPU scheduler and load balancer are 

extensible in Xvisor. Xvisor’s only limitation is its lack of rich board and device driver 

support like Linux. To tackle this limitation Xvisor provides Linux compatible headers for 
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porting device driver frameworks and device drivers from Linux kernel. Albeit not 

completely solving the problem, porting efforts are greatly reduced. 

5.3.2.b Host Interrupts 

Xvisor’s host device drivers generally run as part of Xvisor with highest privilege. Hence, 

no scheduling or context switch overhead is incurred for processing host interrupts. A 

scheduling overhead only incurs if the host interrupt is routed to guest, which is not 

running currently. 

5.3.2.c Memory Management  

Xvisor ARM pre-allocates contiguous host memory as guest RAM at guest creation 

time. It creates a separate three level stage2 translation table for each guest. Xvisor 

ARM can create 4KB or 2MB or 1GB translation table entries in stage2. Additionally, it 

always creates the biggest possible translation table entry in stage2 based on IPA and 

PA alignment. Finally, the guest RAM being flat/contiguous (unlike other hypervisors) 

helps cache speculative access, which further improves memory accesses for guests. 

5.3.2.e Memory Footprint Comparison 
 

Embedded systems require small memory footprint: 

 

Table 7. XVisor Memory Footprint 

5.3.2.f Xvisor Framework Evaluation  

The experiments aimed to evaluate the newly proposed embedded hypervisor Xvisor’s 

efficiency in comparison to KVM and Xen. Four benchmark applications were tried on 

guest Linux running on Cubieboard2 [25]. The Cubieboard2 is an ARM Cortex-A7 dual 

core 1GHz board with 1GB RAM. The following hypervisor versions are used in our 

experiments: 

1. KVM: Latest Linux-3.16-rc3 is used as Host KVM kernel. The guest kernel is Linux-

3.16-rc3. 

2. Xen: Latest Xen-4.5-unstable kernel dated 3rdAugust 2014 is used as hypervisor. 

The Dom0 

kernel is Linux-3.16-rc3 and DomU kernel is also Linux-3.16-rc3. 

3. Xvisor: Latest Xvisor-0.2.4+ dated 18th July 2014 is used as hypervisor. The guest 

kernel is Linux-3.16-rc3. 

Experimental results are obtained with two test vectors. The first runs over a single 

core, while the second runs over a dual core. The systems under test (SUTs) are:  

1. Host without any hypervisor 

2. Xvisor guest 

3. KVM guest 
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4. KVM guest with HugeTLB  

5. Xen guest.  

In order to ensure that only CPU overhead, memory bandwidth and lock 

synchronization latency are taken into consideration, both test vectors have one para 

virtualized guest with two vCPUs. Moreover, all hypervisors have the following 

optimizations: No maintenance interrupt from generic interrupt controller, Super pages 

support for Xen ARM, and Trap-and-yield vCPU on WFE instruction. 

The DMIPS obtained on Xvisor guest are around 0.2% higher than KVM guest, 0.19% 

higher than KVM guest with HugeTLB, and 0.46% higher than Xen DomU. The 

Dhrystone benchmark is small in size and mostly fits in cache at runtime hence memory 

access overhead does not affect it. Despite obtaining improvement of 2 DMIPS, this still 

improves the overall system performance because 1 DMIPS equals 1757 iterations-per-

second.  

Therefore, actual improvement will be thousands of Dhrystone iterations (typically few 

million machine cycles). The memory copy results of Xvisor guest are around 18% 

higher than KVM guest,1.2% higher than KVM guest with HugeTLB, and 0.67%higher 

than Xen DomU. Also, integer read-modify-writer esults of Xvisor guest are around 

1.14% higher than KVMguest, 1.2% higher than KVM guest with HugeTLB, and1.64% 

higher than Xen DomU.  

Results show sustainable memory bandwidth in Xvisor guest are around 0.72%higher 

than KVM guest, 1.57% higher than KVM guest with HugeTLB and 1.2% higher than 

Xen DomU. Hackbench results show that task dispatch latency on Xvisor guest is 

around 12.5% lower than KVM guest, 5.62% lower than KVMguest with HugeTLB and 

6.39% lower than Xen DomU. 

 

 

5.3.3 TGVisor 

The major problem with trust geo-location between service providers and cloud tenants 

is that the actual geo-location of the cloud tenant device can be easily manipulated. In 

the process of geo-location, there are many vulnerable points to forge the current geo-

location of the devices which means that the trusted computing base (TCB) for the 

trusted geo-location is too large. Since a large TCB-based system has high probability 

of embedding bugs, a secure system should minimize the TCB. [42] 

TGVisor is a proposed framework from Sungjin Park, Jae Nam Yoon, Cheoloh Kang, 

Kyong Hoon Kimand Taisook Han[]. The main features of TGVisor are a hardware-

assisted tiny hypervisor, the Dynamic Root of Trust Management (DRTM), and the 

TPM. With the combination of these components, TGVisor delivers the trusted geo-

location of the mobile cloud devices to the cloud provider. 
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 It uses the TPM-based remote attestation and the hypervisor-based trusted geo-

location module in order to guarantee its trustworthiness. The key role of TGVisor is to 

compute the remote attestation value of the TCB and the current geo-location based on 

the TPM. The TGVisor handles the geo-location value and performs TPM operations 

required for the remote attestation. The primary goal of the remote attestation is to 

guarantee the trustworthiness of TGVisor and the integrity of the current geo-location 

value. 

5.3.3.a Architecture 

The tiny hypervisor assigns the locality 1 to the untrusted legacy OS and the locality 2 to 

the tiny hypervisor. Throughout this locality assignment, the mobile device’s TPM can 

be shared by the tiny hypervisor and the untrusted legacy OS. The Cloud Agent serves 

as a middleware to communicate between the tiny hypervisor and the Trusted Geo-

location Server, which is a verifier to check the trustworthiness of the TCB in the target 

system. The TGS in the server-side periodically requests a trusted geo-location value 

and a remote attestation result. In turn, the Cloud Agent passes these requests to the 

hypervisor via hypercalls. 

The hypervisor obtains a geo-location value from the GPS connected to the tenant 

devices and performs cryptographic operations based on the TPM. The hypervisor 

returns the results of the cryptographic operations to the Cloud Agent which again 

transfers them to the TGS. The TGS attests to the trustworthiness of the hypervisor and 

the geo-location value and enforces a policy to the Policy DB running in the cloud 

provider domain.  

In order to ensure the trusted geo-location, all the operations involved in the trusted 

geo-location must exist in or be isolated by the hypervisor. They must place in a 

separate VM including a secure OS, a TPM library, a TPM driver, and an attestation 

application. Since this makes the TCB, the separate VM, larger, it violates the premise 

that the minimized TCB is more reliable.  

TGVisor includes two key modules to meet the above requirements: the Hypercall 

Module and the Trusted Geo-location Module. The Hypercall Module serves as a 

gateway for TGVisor to communicate with outer applications such as the Cloud Agent. It 

contains functions to process requests from the Cloud Agent, namely hyper_loadkey, 

hyper_quote2, and hyper_getgeoloc. The TGM is a set of functions to compute the 

trusted geo-location of the mobile device.  

The key functions of the TGM can be divided into the secure geo-location reading and 

the cryptographic operation. The TGM retrieves the current geo-location of the mobile 

cloud device from the actual geo-location sensor like the GPS. Even though the TGM is 

totally protected by the hypervisor, a geo-location value derived from the TGM is not 

guarded during the transmission to a location server. For the secure transmission, the 

TGM performs a cryptographic sign operation with the AIK based on the TPM. 
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Figure 38. TGVisor architecture 

5.3.3.b Attestation protocol 

The proposed framework measures the trustworthiness of TGVisor using the integrity of 

TGVisor with the SKINIT instruction. Additionally, the TGS must validate that a geo-

location value from the tenant device is intact. The hash function is the most general 

way to check the intactness, so TGVisor leverages the hash of the geo-location value 

[43]. The trusted geo-location is assured between the TGS and the mobile cloud client 

by the attestation protocol described by the following steps:  

1. Preparing the attestation protocol where a mobile device launches TGVisor with the 

SKINIT instruction, at boot time as a result if attackers attempt to load their own 

hypervisors with the SKINIT, PCR17 must be modified and the TGS can detect this 

abnormal behavior with the attestation protocol for the trusted geo-location. 

2. Establishing a secure session when a cloud user runs a cloud app, throughout this 

step, the TGS and the Cloud Agent mutually authenticate each other and share 

secrets to be used to protect the communication by Transport Layer Security (TLS). 

Even that the Cloud Agent and TGVisor path is not secure because the attestation 

value is cryptographically protected by AIK and TPM, TGVisor, attackers cannot 

compromise this protocol.  

3. Retrieving the trusted geo-location. If the secure session establishment succeeds, 

the Cloud Agent logs in the TGS and the TGS starts a periodic attestation(d) 

Attestation of the trustworthy evidence where he TGS verifies an AIK certificate of 

the mobile device with the Privacy CA certificate. 
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Figure 39. TGVisor Attestation Protocol 

5.3.3.c TGVisor Framework Evaluation 

As far as the implementation is concerned the proposed framework consists of four 

components: TGVisor, the TGS, the Cloud Agent, and the cloud app server. TGVisor is 

implemented based on eXtensible Hypervisor Framework (XMHF). XMHF delivers a 

general framework for building a DRTM-based tiny hypervisor. Four components are 

implemented:  

1. A core 

2. A TPM 

3. The TGM  

4. The Hypercall Module.  

The core component features memory allocation, copy data from or to an untrusted OS, 

and so on. The TPM component is responsible for all the TPM operations in the 

hypervisor such as TPM_Quote2 and TPM_Loadkey2. The TGM acquires a current 

geo-location of the mobile cloud device from the GPS module and provides the remote 

attestation value which is cryptographically protected by the TPM. The Hypercall 

Module features interfaces to the Cloud Agent via hypercalls.  

The Cloud Agent is a lightweight program to help communicate with the TGS. The TGS 

is a server in the cloud provider domain that periodically attests to the TCB and the geo-

locationof the mobile cloud client. The Cloud Agent and the TGSare written in Node.js. 

and an additional hypercall library using C language, because Node.jscannot directly 

invoke hypercalls. The cloud app server is a modified Etherpad server. A HP ProBook 

6555b notebook is used as a mobile client device which is equipped with an AMD 

Turion P520 2.30GHz processor, 4GB of memory, and 160GB of HDD. The host 

operating system is the 32-bit version of Ubuntu 12.04. 

For the evaluation of the proposed framework several tests were executed in a specific 

university area (geofence) where the user cloud device could not access the documents 

in the cloud server when it was outside of the geofence, due to illegal geo-location. On 

the other hand it could only access the documents when it was located inside the 

specific area.  
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The results indicate that cloud users hardly feel the performance degradation due to 

TGVisor. The added lines of code in TGVisor were significant less that other 

supervisors e.g. TrustVisor, LockDown, SecVisor etc. as a result to minimize the TCB 

operations. Some limitations of the proposed framework are that if the framework is to 

be used not only outside but indoors then the TGM need modifications in order to 

communicate with an indoor positioning device. Another limitation of the proposed 

framework is computation overhead due to TPM operations.  

 

Figure 40. TGVisor comparison with other HyperVisors 

Another experiment was the measurement of the performance impact of TGVisor with 

SunSpider. Since most cloud applications run in web browsers like Google Chrome, 

JavaScript engines are mostly embedded in them.  SunSpider 1.0.2. was utilized for the 

TGVisor and it was compared with the native Linux system. The range of the 

performance impact per item is from 2.9% to 11.8%, and the average performance 

degradation is only 8.3% where this indicated that cloud users hardly feel the 

performance degradation due to TGVisor. 

 

Figure 41. TGVisor Javascript performance 

5.3.4 TrustVisor 

A secure hypervisor, called TrustVisor, is proposed from Jonathan M. McCune, Ning 

Qu, Yanlin Li, Anupam Datta, Virgil D. Gligor and Adrian Perrig [44] to provide a safe 

execution environment for security-sensitive code modules without trusting the OS or 

the application that invokes the code module. TrustVisor protects security-sensitive 

code and data on untrusted commodity platforms from malware, e.g., kernel-level 
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rootkits. and is designed to protect the integrity and execution of security-sensitive code, 

and confidentiality and integrity of the data used by that code. 

 

Figure 42. TrustVisor Architecture Overview 

5.3.4.a Memory Protection. 

TrustVisor has three basic operating modes, a host mode and two guest mode, legacy 

mode and secure mode. TrustVisor memory protections from the perspective of 

executing code. (a) In host mode, TrustVisor is executing in response to a trap or 

hypercall, and may manipulate the state of a PAL, or the untrusted legacy OS or 

applications. (b) In legacy guest mode, TrustVisor isolates PAL state and its own 

memory regions from the untrusted legacy code. (c) In secure guest mode, a PAL is 

executing, and TrustVisor isolates it from the memory regions of TrustVisor and the 

untrusted legacy OS and applications 

 

Figure 43. TrustVisor mode types 

5.3.4.b Trusted Computing 

A DRTM-like mechanism provides the valuable security properties of a known-good 

initial state, memory protection from DMA accesses, and integrity measurement of the 

launched code before it executes. The TRTM is realized via the inclusion of a 

TrustVisor-managed, software micro TPM (µTPM) instance associated with each PAL. 

The µTPM executes on the platform’s primary CPU for high performance while avoiding 

the TCB growth required of a full software TPM. The TRTM is instantiated as part of the 

PAL registration process and is designed to serve as a “second-layer” dynamic root of 

trust, where the PAL code is isolated and measured before it is executed. The 

combination of the isolated environment, TRTM, and µTPM offer PALs facilities for fine-

grained remote attestation and long-term protection of sensitive state with a small TCB.  
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To distinguish between legacy code and PALs, we devise a registration mechanism by 

which untrusted applications can register selected code and data as security sensitive. 

Registration triggers the sequence of TRTM operations, including allocation of a µTPM 

instance and protection of the PAL’s memory pages. Once registered, a PAL can be 

invoked multiple times without requiring a new TRTM operation. The µTPM instance 

provides PALs with a facility for long-term secret protection and enables remote 

attestation that a particular PAL has executed.  

TrustVisor enables remote attestation and long-term protected storage for PALs via the 

TRTM and µTPM associated with each PAL. TrustVisor is itself instantiated using the 

hardware dynamic root of trust mechanism, thereby reducing the TCB for TrustVisor 

and PALs executing thereupon, and rooting trust in TrustVisor in the platform’s physical 

TPM. Figure 3 shows the relationship of trusted components when multiple PALs are 

registered. The shaded areas indicate the trusted components in the TCB for a 

particular PAL 

5.3.4.c Data Secrecy 

For data protection TrustVisor distinguish two intervals during which data protection is 

required: residence in volatile storage (RAM) while SSCB is executing, and residence 

on non-volatile storage while untrusted code is executing. Volatile storage refers to data 

in memory that is protected by TrustVisor and the system’s MMU andDEV. TrustVisor-

internal state is protected by keeping it in the region of memory that is accessible only to 

code in host mode. For Non-Volatile Storage TrustVisor utilizes cryptography by the 

system’s Trusted Platform Module. 

5.3.4.d Memory Protection Mechanisms 

TrustVisor must protect its own memory regions while also isolating PALs from each 

other, from the legacy OS and itsapplications, and from DMA-capable devices. 

TrustVisor uses secure x86 hardware virtualization support to securely bootstrap itself, 

as well as to enforce isolation between TrustVisor itself, the legacy OS, and PALs. 

TrustVisor programs the system’s IOMMU to prevent access to these pages by DMA-

capable devices. 

The life cycle of a PAL, which begins when code is first identified as comprising a PAL 

via a registration process is described below. PAL progresses: 

PAL Registration. To avoid modifying the legacy OS to support PALs, TrustVisor 

implements an application-level hypercall interface for registering PALs (though PALs 

can also be components of the OS if desired).  

PAL Invocation. Following registration, the untrusted legacy application and OS cannot 

read, write, or directly execute the memory containing the PAL that it registered. 

However, the functions inside the PAL can still be invoked using what appears to the 

developer to be an ordinary function call. TrustVisor then performs the following three 

steps before transfering control to the called function inside the PAL: 

1. Identify which registered PAL contains the current called sensitive function. 
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2. Switch from legacy guest mode to secure guest mode, with secure guest mode 

configured so that only the pages containing this PAL are accessible. 

3. Prepare the secure-mode execution environment for the called sensitive function. 

This includes marshaling input parameters into isolated pages available to the PAL and 

setting up the PAL’s stack pointer. Passing pointers in and out of a PAL requires 

knowing the size of the pointed-to area. (This information is providedas part of the 

registration call, when entry-points are enumerated.)  

PAL Termination. When a PAL has completed executing and returns to the calling 

legacy application, TrustVisor once again gets control. TrustVisor performs the following 

two steps before transfering control back to the legacy application: 

1. Marshal any returned parameters and make them available to the calling untrusted 

application. 

2. Switch from secure guest mode to legacy guest mode,in which the pages containing 

the  PAL are once again inaccessible from guest mode. 

PAL Unregistration. Un-registration is normally initiated by the application that 

originally registered a particular PAL. However, it can also be initiated by the legacy OS 

if a PAL exits due to an error (e.g., a null-pointer exception).  

5.3.4.e µTPM Functions 

1. The software µTPM interface exports the following TPM-like functions: 

2. HV Extend for measuring data, 

3. HV GetRand for getting random bytes, 

4. HV Seal and HV Unseal for sealing and unsealing data based on measurements 

5. HV Quote to attest recorded measurements using digital signatures. 

5.3.4.f Attestation and Trust Establishment 

Attestation enables a remote entity to establish trust in TrustVisor, and subsequently in 

PALs protected by TrustVisor. Building on the two-level integrity measurement 

mechanisms also design a two-part attestation mechanism. First, the TPM-based 

attestation to demonstrate that a dynamic root of trust was employed to launch 

TrustVisor with hardware-enforced isolation. Second, the µTPM-based attestation to 

demonstrate that TRTM was employed to launch a particular PAL with TrustVisor-

enforced isolation. Thus, the ultimate root of trust in a system running TrustVisor stems 

from TPM-based attestation to the invocation of TrustVisor using hardware DRTM.  

TPM-Generated Attestation. An external verifier that receives a TPM-generated 

attestation covering the PCRs into which TrustVisor-relevant binaries and data have 

been extended conveys the following information to the verifier:  A dynamic root of trust 

was used to bootstrap the execution of TrustVisor.  TrustVisor received control 

immediately following the establishment of the dynamic root of trust.  

 The precise version of TrustVisor that is executing is identifiable by its measurement in 

one of the PCRs.  TrustVisor generated an identity key for its µTPM based on the 

current TPM AIK. Note that the verifier must learn the identity of the AIK by some 
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authentic mechanism, such as pre-configuration by an administrator or system owner. 

In some cases, trust-on-firstuse may even be reasonable, but we emphasize that the 

choice of mechanism is orthogonal to the architecture of TrustVisor. µTPM-Generated 

Attestation.  

An attestation from TrustVisor consists of an HV Quote operation, along with additional 

measurement metadata3 to facilitate the verifier’s making sense out of the values in the 

µPCRs. The verifier must first decide to trust TrustVisor based on a TPM attestation. If 

TrustVisor is untrusted, then no trusted environment can be constructed using 

TrustVisor. A verifier learns the following information as it analyzes the contents of the 

µPCRs:  µPCR always begins with 20 bytes of zeros extended with the measurement of 

the registered PAL.  

Thus, the verifier can learn precisely which PAL was registered and invoked during this 

session on TrustVisor. The values in the remaining µPCRs and any other values 

extended into µPCR [0] are specific to the PAL that executed and will not have been 

influenced by TrustVisor.  The set of µPCRs selected for inclusion in HV Quote will be 

signed by TrustVisor’s µTPM identity key µAIK. 

5.3.4.g TrustVisor Framework Evaluation  

For the implementation memory protection mechanisms are executed, then trusted 

computing mechanisms including the µTPM implementation. To achieve memory 

isolation, TrustVisor virtualizes the guest OS’s physical memory using the 2D nested 

page table (NPT) hardware feature provided by AMD SVM. The NPTs are maintained 

by TrustVisor in host mode, while the guest OS continues to maintain its own page 

tables to translate guest virtual addresses to guest physical addresses (i.e., the guest 

OS need not be aware that it is virtualized).  

At runtime, guest physical addresses are further translated to machine physical 

addresses by the CPU using the corresponding NPT. TrustVisor maintains only one set 

of NPTs for the guest, which is simply an identity mapping from guest physical 

addresses to machine physical addresses. TrustVisor uses 2 MB page granularity in the 

NPTs to improve performance by reducing TLB pressure. To protect itself, TrustVisor 

sets the NPT permissions such that its physical pages can never be accessed through 

the NPT from guest mode.  

To protect its physical pages against DMA access by devices, TrustVisor uses the DEV 

(Device Exclusion Vector) mechanism, which is a simplified IOMMU (Input Output 

Memory Management Unit) provided by AMD SVM. With DEV support, the system’s 

memory controller is designed to provide DMA read and write protection for physical 

pages on a per-page basis. Application developers must explicitly register and 

unregister the PAL(s) for their application (recall §4.2.2).  

Both registration and unregistration consist of a hypercall with parameters to describe 

the PAL to be registered. These hypercalls are intercepted directly by TrustVisor without 

legacy OS awareness using the VMMCALL instruction. Finally, the trust computing 
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mechanisms are executed: Trust booting where AMD’s SKINIT instruction is used to 

create a dynamic root of trust to bootstrap TrustVisor starting from an initially untrusted 

system state and then the μTPM implementation. 

The experimental platform was a Dell PowerEdge T105 with a Quad-Core AMD 

Opteron running at 2.3 GHz. The current implementation of TrustVisor allocated 2 GB of 

RAM to the Linux kernel and supports only a uniprocessor guest. Additional cores and 

RAM were unused. The server run the 32-bit version of the Fedora Core 6 Linux 

distribution for the experiments.  

It was evaluated how this implementation maintains a small TCB and compatibility with 

unmodified legacy software. Results showed that the TCB was reduced, the total size of 

TrustVisor implementation is 7889 lines of C and assembly code and the runtime TCB 

was about 6481 lines, which includes 3919 lines of RSA and other libraries. TrustVisor 

can support any 32-bit legacy x86 OS image without any modifications.  TrustVisor has 

an extra overhead due to PALS and μTPM operations. 

 

 

Figure 44. Comparison between TrustVisor and Linux Native. 

5.3.5 SecVisor 

SecVisor is a proposed framework from Arvind Seshadri, Mark Luk, Ning Qu and Adrian 

Perrig[ ]where is a tiny hypervisor that uses hardware memory protection and memory 

virtualization and ensures code integrity for commodity OS kernels [45]. In particular, 

SecVisor ensures that only user-approved code can execute in kernel mode over the 

entire system lifetime, as a result to protect the kernel against code injection attacks, 

such as kernel rootkits. 

5.3.5.a SecVisor Framework Overview 

SecVisor uses the IO Memory Management Unit (IOMMU) to protect approved code 

from where Direct Memory Access (DMA) writes. Also, SecVisor virtualizes the CPU’s 

Memory Management Unit (MMU) and the IOMMU. This ensures that SecVisor can 

intercept and check all modifications to MMU and IOMMU state. The SecVisor ensures 
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that CPU executes only approved code in kernel mode. Every entry into kernel should 

set the CPU’s Instruction Pointer (IP) to an instruction within approved kernel code. 

After an entry into kernel mode places the IP within approved code, the IP should 

continue to point to approved kernel code until the CPU exits kernel mode. Every exit 

from kernel should set the privilege level of the CPU to user mode. SecVisor ensures 

that the approved code can be only modified by SecVisor and its TCB.   

SecVisor uses page tables as the basis of its hardware memory protections. SecVisor 

can keep the page tables in its own address space and allow the kernel to read and 

modify them only via “safe” function calls. Also, SecVisor virtualizes physical memory. 

Virtualizing physical memory causes the addresses sent on the memory bus to be 

different from the physical addresses seen by the kernel. The page table used by 

SecVisor to virtualize physical memory is called Protection Page Table. SecVisor sets 

the Protection Page Table so that user memory is not executable when the CPU 

executes in kernel mode.  

On each entry to kernel mode, SecVisor sets execute permissions in the Protection 

Page Table so that only approved code will be executable. Then, the CPU will generate 

an exception on every attempt to execute unapproved code in kernel mode. When 

SecVisor receives such an exception, it terminates the kernel. SecVisor also marks the 

approved code pages read-only in the Protection Page Table. This prevents any code 

executing on the CPU (except SecVisor) from modifying approved code pages. 

SecVisor uses the DMA write protection functionality of the IOMMU to protect approved 

code pages from being modified by DMA writes. 

SecVisor ensures that all control transfers through which the CPU enters kernel mode 

will set the IP to an address within the approved code. This requires SecVisor to find the 

target of every possible control transfer to kernel mode is that CPUs only allow kernel 

mode entries to transfer control to entry points designated by the kernel. This prevents 

user programs from triggering arbitrary control flows in kernel code by entering at 

arbitrary points. The kernel informs the CPU of the permitted entry points by writing the 

addresses of such entry points (hereafter called the entry pointers) in CPU registers and 

data structures like the interrupt vector table (IVT).  

Then, SecVisor only has to ensure that all entry pointers point to instructions within 

approved code. To find all the entry pointers, it needs to identify all the CPU data 

structures that can contain entry pointers. By design, every CPU architecture has a set 

of control transfer events that trigger CPU execution privilege changes. Each control 

transfer event has an associated entry pointer in some CPU data structure.  

The entry list can be created from the architectural specification of the CPU. Next, for 

each event in the entry list we find the CPU data structure which holds its entry pointer. 

In this manner, we obtain the list of all the CPU data structures which can hold the entry 

pointers. SecVisor virtualizes the entry pointers and only permits the kernel to operate 
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on the virtualized copies. This allows SecVisor to intercept and check all modifications 

to the entry pointers.  

The virtualization can be performed in two ways. First, SecVisor can provide the kernel 

with “safe” function calls through which the kernel can read and modify the entry 

pointers. Second, SecVisor can maintain shadow copies of the entry pointers for use by 

the CPU and keep the shadow copies synchronized with the kernel’s entry pointers. As 

with virtualizing physical memory, the choice between these two alternatives is a trade-

off of performance versus security and portability.  

The shadowing method was preferred in this framework because it reduces the size of 

SecVisor’s kernel interface and also reduces the number of changes required to port a 

kernel to SecVisor. All legitimate methods that exit kernel mode will transfer control to 

code in user memory. If on each entry to kernel mode the CPU will start executing 

approved code, it is fairly direct to ensure that exits from kernel mode will set the CPU 

privilege to user mode. All kernel mode entries will try to execute approved code, which 

is part of kernel memory. This will cause the CPU to generate an exception. As part of 

handling this exception, SecVisor marks all user memory non-executable. Thus, any 

exit to user mode will cause a protection violation, generating a CPU exception. 

SecVisor sets the privilege level of the CPU to user mode. 

5.3.5.b SecVisor Framework Evaluation  

For the evaluation of SecVisor three design goals where considered: small code 

size,minimal kernel interface, and ease of porting OS kernels. For the Code size it was 

utilized a D.A. Wheeler’s sloc program to count the number of lines of source code 

SecVisor prototype, the Kernel interface was consisted of only 2hypercalls. The first 

hypercall was used by the kernel to request changes to its code (such as loading and 

unloading modules), while the second hypercall was used by the kernel during its 

initialization to pass the virtual and guest physical addresses of the shadow table area 

and for porting OS kernels three changes to the Linux kernel version 2.6.20 to port it to 

SecVisor. First, the decompress_kernel function invokes SecVisor using the skinit 

instruction instead of jumping to the decompressed kernel. Second, during its 

initialization, the kernel passes the addresses of the shadow table area to 

SecVisorusing a hypercall.  

Finally, the control flow of the load_module and the free_module function was 

changed.The experimental platform was a HP Compaqdc5750 Microtower PC. This PC 

uses an AMD Athlon64 X2 dual core CPU running at 2200 MHz and has 2 GB RAM. 

SecVisor allocates 1536 MB of RAM to the kernel in the experiments. The PC runs the 

i386 version of the Fedora Core 6 Linux distribution. We use the uniprocessor versions 

of Linux kernel 2.6.20 and Xen 3.0.4. The lmbench benchmarking suite was used to 

measure overheads of different kernel operation.  

The results showed SecVisor protects the kernel against a variety of well-known and 

unpublished attacks, including code injection through buffer overruns, kernel-level 

rootkits, and malicious devices with DMA access but does not prevent against control-
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flow attacks, it can be combined with approaches that do provide additional protections. 

SecVisor will ensure code integrity and memory protection. 

 

Figure 45. SecVisor VS Xen performance 

5.3.6 Lockdown 

Red/green systems have been proposed as a mechanism for improving user security 

without abandoning the generality that has made computers so successful. They are 

based on the observation that users perform security-sensitive transactions infrequently, 

and hence enhanced security protections need only be provided on demand for a 

limited set of activities [46]. They require virtualizing all of the system resources and 

devices that may be shared between the two environments. From a security 

perspective, this introduces considerable complexity into the reference monitor 

responsible for keeping the two environments separate. In addition, even without 

compromising a reference monitor, actively sharing resources by allowing both 

environments to run simultaneously exposes side channels that can be used to learn 

confidential information. From a performance perspective, the interposition necessary to 

virtualize devices adds overhead to both trusted and untrusted applications. 

 

Figure 46. Lockdown Overview 
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At a high level, Lockdown splits system execution into two environments, trusted and 

untrusted, that execute non-concurrently. This design is based on the belief that the 

user has a set of tasks that he wants to run with maximum performance, and that he 

has a set of tasks that are security sensitive which he wants to run with maximum 

security and which are infrequent and less performance critical. The performance-

sensitive applications run in the untrusted environment with near-native speed, while 

security-sensitive applications run in the trusted environment, which is kept pristine and 

protected by Lockdown.  

The Lockdown architecture is based on two core concepts: (i) hyper-partitioning: system 

resources are partitioned as opposed to being virtualized. Among other benefits, this 

results in greater performance, since it minimizes resource inter-positioning, and it 

eliminates most side-channel attacks possible with virtualization; and (ii) trusted 

environment protection: Lockdown limits code execution in the trusted environment to a 

small set of trusted applications and ensures that network communication is only 

permitted with trusted sites. 

5.3.6.a Hyper Partitioning 

As far as hyper-partitioning is concerned, Lockdown must isolate the trusted 

environment from the untrusted environment. Further, Lockdown must isolate itself from 

both environments so that its functionality cannot be deliberately or inadvertently 

modified. One way to achieve this isolation is to rely on the platform hardware to 

partition resources. This hardware capability facilitates concurrent execution of multiple 

partitions without virtualizing devices but not all devices can be share and such platform 

support is not widely available. Lockdown partitions the CPU in time by only allowing 

one environment to execute at a time. With hyper-partitioning, both the untrusted and 

trusted environments use the same set of physical devices and leverages the Advanced 

Configuration and Power-management Interface (ACPI) to save and restore device 

states while partitioning non-storage devices. Lockdown performs an environment 

switch by transitioning the current environment to sleep and waking up the other. 

Lockdown uses approved code execution and network protection to ensure that only 

trusted code (including device firmware code) can be executed and only trusted sites 

can be visited while in the trusted environment, as explained below. 

5.3.6.b Approved Code Execution 

For non-firmware code, Lockdown uses Nested Page Tables (NPT) to enforce a W ⊕X 

policy on physical memory pages used within the trusted environment. Thus, a page 

within the trusted environment may be executed or written, but not both. Prior to 

converting a page to executable status, Lockdown checks the memory region against a 

list of trusted. Execution is permitted only if this check succeeds. 
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Figure 47. Lockdown protection mechanism 

5.3.6.c Network Protection 

Since users perform many security-sensitive activities online, applications executing in 

the trusted environment need to communicate with remote sites via the network. 

However, permitting network communication exposes the trusted environment to 

external attacks. Remote attackers may exploit flaws in the OS’s network stack, or the 

user may inadvertently access a malicious site, or a network-based attacker may 

perform SSL-based attacks (e.g., tricking a user into accepting a bogus 

certificate).While approved code execution prevents many code-based attacks, the 

trusted environment may still be vulnerable to script-based attacks (e.g., Javascript) and 

return-oriented programming attacks. 

To forestall such attacks, Lockdown restricts the trusted environment to communicate 

only with a limited set of trusted sites. It imposes these restrictions by inter posing on all 

network traffic to or from the trusted environment. Lockdown uses hardware CPU and 

physical memory protections to prevent the trusted environment from seeing or 

accessing any physical network devices present in the system.  

Network communication is permitted via a proxy network driver that Lockdown installs in 

the guest OS. This driver forwards packets to Lockdown, which analyzes the packets 

and then forwards them to the physical network interface. The trusted environment can 

use a distinct physical network interface or reuse the same interface of the untrusted 

environment for network communication (since the environments run non-concurrently). 

In both cases the Lockdown hypervisor will need to include the network driver for the 

physical interface.  

A simpler approach is to perform network access (either wireless or wired) using the 

Lockdown Verifier. In this case, the Lockdown hypervisor does not need to contain any 

network driver but simply forwards the packets to the verifier. Lockdown uses packet 

analysis to determine which network packets are permitted. One approach, with the 

argument that any site with sensitive data should be using SSL to protect it in transit, 
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would be to allow only SSL and DNS network packets to passthrough to trusted sites. 

All other packets are dropped.  

When an SSL session is initiated, Lockdown determines if the request is a valid SSL 

connection request. If it is, Lockdown validates the site’s SSL certificate and checks it 

against the list of trusted sites (the creation and maintenance of this list is discussed in 

the following section). If any of these checks fail, the packet is dropped. Incoming 

packets are permitted only if they belong to an existing SSL session or are in response 

to an earlier DNS request. Note that DNS-based attacks are forestalled by SSL 

certificate verification. From a technical perspective, supporting other network protocols 

such as SSH is also possible. 

5.3.6.d Defining Trusted Entities. 

To keep the trusted environment safe, Lockdown restricts the software that can execute 

and the sites that can be visited. To define what software and sites can be trusted, we 

leverage the user’s existing trust in the distributor of Lockdown, i.e., the organization 

that provided the user with a copy of Lockdown in the first place. For example, in a 

corporation, the IT department would play the role of Lockdown distributor.  

For consumers, the role might be played by a trusted company or organization, such as 

RedHat, Mozilla, or Microsoft. Lockdown’s key insight is that by agreeing to install 

Lockdown, the user is expressing their trust in the Lockdown provider, since Lockdown 

will be operating with maximum platform privileges on their computer. Thus, we can also 

trust that same organization to vet trusted software and websites. The list of trusted 

software can be relatively small: primarily an operating system and a trusted browser.  

 

5.3.6.e Lockdown Framework Evaluation  

The implementation is a complete prototype of Lockdown on both AMD and Intel x86 

platforms with Windows 2003 Server as the OS in both the trusted and untrusted 

environments. It was also developed a prototype using Linux guests. Neither prototype 

required changing any code in the OS kernels. Due to space constraints, we focus on 

describing our Windows prototype on the AMD platform. This Lockdown prototype 

consists of a Lockdown Loader and the Lockdown Runtime. The SKINIT instruction is 

used to perform a late-launch operation which ensures that the Lockdown Loader runs 

in a hardware-protected environment and that its measurement (cryptographic hash) is 

stored in the TPM’s Platform Configuration Register (PCR) 17.  

The trusted Lockdown Loader loads the Lockdown Runtime and protects the Lockdown 

Runtime’s memory region from DMA reads and writes (using AMD’s Device Exclusion 

Vector). It then verifies the integrity of the Lockdown Runtime and extends a 

measurement (a cryptographic hash) of the Lockdown Runtime’s code into the TPM’s 

PCR 19. The Lockdown Loader then initializes the USB controller on the host for 

communication with the Lockdown Verifier, creates the Nested Page Tables for the 

trusted and untrusted environments and transfers control to the Lockdown Runtime.  
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When first launched, the Lockdown Runtime requests a challenge from the Lockdown 

Verifier. The Lockdown Runtime launches the environment currently indicated on the 

Lockdown Verifier in a hardware virtual machine and informs the Lockdown Verifier 

once the environment has been launched, so that the Lockdown Verifier can sound the 

attention buzz and light the appropriate LED. The Lockdown Runtime’s role in hyper-

partitioning, and protection of the trusted environment is described below. 

To implement hyper-partitioning for non-storage devices under the Windows OS, 

Lockdown makes use of the ACPI S4 (hibernate) sleep state. ACPI S3 (standby) would 

offer faster switching times, but Windows ACPI implementation only saves and restores 

device state during an S4 sleep, and hence we cannot use S3 with Windows without 

modifying its source code. Memory and storage device partitioning are described below. 

Memory. In our current implementation (on systems with 4 GB of physical memory), 

Lockdown reserves 186 MB for itself and 258 MB for the system’s firmware. The rest of 

physical memory is available to the trusted or untrusted environment. Storage Devices.  

To implement the Trusted Environment, Lockdown uses page level code hashing. Prior 

to executing the trusted environment, Lockdown sets its Nested Page Table (NPT) 

entries to prevent execution of those pages. When the trusted environment attempts to 

execute a page, it causes a fault that returns control to Lockdown. Lockdown computes 

a hash of the faulting page and compares it to the hashes in its list of trusted software. If 

a match is found, the corresponding NPT entry is updated to allow execution but 

prevent writes. If the trusted environment later writes to this page, a write fault will be 

generated. Lockdown will re-enable writing but disable execution. Network Protection. 

To provide network protection for the trusted environment, an untrusted network was 

developed driver for Windows, and an SSL Protocol Analyzer within Lockdown. 

Lockdown’s TCB compares favorably with other popular hypervisors and VMMs ,such 

as L4Ka-Pistachio, NOVA, VMWare ESXi, Xen + Linux, KVM + Linux + QEMU and 

Hyper-V + Windows which tend to be orders of magnitude larger, despite not providing 

Lockdown’s protection’s for a trusted environment The implementation and results 

indicate that partitioning offers increased security (by reducing the size of the reference 

monitor to 10K lines of code and by reducing opportunities for side channels) and 

performance (by giving the untrusted environment unfettered access to system devices) 

at the cost of slow switching times (on current systems). 

5.3.7 Credo 

Credo is a Hyper-V based hypervisor [47]. Key components of the Hyper-V architecture 

are a microkernel hypervisor and a privileged management partition, called the root 

partition. The hypervisor virtualizes core platform resources while the root partition owns 

all I/O devices and does I/O virtualization. Hyper-V supports two forms of virtualized I/O 

– emulation based I/O, where a guest VM performs memory mapped or port-based I/O 

that is intercepted by the hypervisor and forwarded to the root partition and enlightened 
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I/O, where the root partition and a guest VM communicate over a shared-memory 

channel using the vmbus protocol. 

 

Figure 48. Credo comparison with Hyper-V 

The Credo threat model does not consider certain types of attacks. In particular the 

primary goals of Credo is to provide secrecy and integrity protection of a VM’s 

virtualized state from the root partition, establish a small, measurable TCB for a VM as 

well as a measure of VM’s trustworthiness, and enable mechanisms to verify this at 

runtime and to make sure that the cost of security should be imposed only if security is 

required by a VM. Since performance is the key requirement in any cloud computing 

environment, any such cost should be low. 

5.3.7.a Credo Framework Overview 

The Credo architecture provides a way to execute guest virtual machines in a secure 

and trustworthy environment without taking a trust dependency on the root partition 

using a mechanism similar to DRTM launch. The hypervisor provides a hypercall to 

trigger a v(irtual) DRTM event for a guest VM. When this event is triggered (either by the 

guest VM or by the root partition on its behalf), the hypervisor suspends the VM, creates 

the secure execution environment for the VM using the emancipation procedure, measures 

and records the “execution state” of the VM. As the last step, the hypervisor resumes the 

execution of the guest VM inside the secure execution environment. 

To emancipate a guest VM’s memory, the hypervisor removes root partition’s access 

from its page tables for all system memory pages backing a guest VM’s physical 

address space. Both reads and writes to these pages are intercepted by the hypervisor 

- reads return all 0xFF s, while writes are silently thrown away. After the VM is 

emancipated, the hypervisor disallows creation of any new mappings in an emancipated 

VMs physical space. This implies that that a guest VM’s address space must be 

completely populated before the VM is emancipated.  
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However, this does not preclude dynamic memory management where the VM can 

unemancipate memory pages before returning them to the root partition. Because an 

emancipated VM has exclusive control over memory, it must explicitly release control of 

the memory pages backing its physical space in order for the resources to be reclaimed 

by the root partition after the VM shuts down. This step is accomplished using the 

“unemancipate partition” hypercall, which resets the root partition’s access to its original 

state for all memory pages backing the guest VM.  

It is imperative that the guest VM must explicitly remove any secret information from 

pages explicitly before calling the unemancipate partition hypercall in order to maintain 

the secrecy and integrity guarantees. A guest VM’s vCPU state may be modified 

outside the control of the guest VM as a result of intercepts. These intercepts are either 

caused by guest VM itself, e.g., by accessing some virtual resource such as MSR or I/O 

port, or by external events, such as a virtual interrupt associated with a virtual device 

5.3.7.b Emancipating I/O 

In Credo, it is the responsibility of the guest VM to use cryptographic measures for I/O 

emancipation as the hypervisor is not involved in the para virtualized I/O path. Making 

the guest VM aware of I/O emancipation is compatible with the para virtualized I/O 

model. Emancipated para-virtualized I/O from a guest VM involves two steps: first, a 

shared memory based channel is established between an emancipated guest VM and 

the untrusted root partition; and second, a guest VM uses secrecy and/or integrity 

protection techniques to read or write data to or from this shared memory channel. For 

the root partition to use shared memory for communication it needs to be able to access 

guest memory which is by default protected by memory emancipation.  

Credo provides the “unemancipate page” hypercall to selectively remove protection for 

the pages used by the shared memory channel. One such channel is created for each 

para-virtualized device. Messages sent over the channel may contain pointers to buffers 

on data pages that must also be unemancipated. As an optimization, instead of calling 

the “unemancipate page” hypercall for every page, the vmbus keeps a pool of 

unemancipated pages that are setup at VM startup.  

Drivers allocate and free memory pages to and from this pool. The vmbus driver in the 

guest VM can grow/shrink this pool on demand as needed. This encryption approach to 

emancipating I/O works in a cloud environment since the guest VM mostly requires just 

storage and network based I/O to execute in such an environment. In fact, Credo 

explicitly disallows any emulation based I/O, and all VM management should be 

performed using a network based remote access connection. 

5.3.7.c Credo Framework Evaluation  

(a) Emancipated VM startup:  

In order to build such an “execution image” that is formed from a saved VM state that 

forms the captured via VM save operation a bootable RAMDISK is stored on a virtual 

IDE disk. Here, the IDE disk is only used by the bootloader on the trusted server. By 
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disabling the IDE disk driver (disk.sys) from this RAMDISK installation, is ensure that 

once Windows finishes booting, the OS does not use the IDE disk with which the VM 

started executing.  

(b) SDisk: 

SDisk is implemented as a filter driver in the virtual storage stack that sits right above 

the virtual SCSI driver. It mainly interposes itself on the read/write path, and performs 

data encryption/decryption before passing it down to virtual Encryption mechanism used 

is AES with 256-bit key as KSD. SCSI driver, which then sends emancipated I/O data 

on untrusted vmbus communication channel. SDisk driver stores metadata related to 

SDisk on the last 1MB of vhd.  

(c) DRTM launch of hypervisor: 

TXT architecture puts certain restrictions on the DLME that make it difficult to directly 

launch the hypervisor as a DLME. Instead a small Hyper-V aware DLME (HvDLME) that 

understands the specifics of Hyper-V hypervisor is used as DLME. It extends Windows 

bootloader (winload.exe) to load HvDLME and the actual hypervisor binary in the 

memory and perform a small amount of DRTM specific configuration to establish the 

required memory mappings, e.g., to allow TPM access. Next, the boot loader launches 

HvDLME using DRTM launch as described earlier. As a result of DRTM operation, 

PCRs 17 and 18 are set with measurements related to HvDLME. 

The PassMark Performance Test benchmark suite [] was used for benchmarking the 

performance of various tests inside the guest VM. The benchmark is run in three 

scenarios: With stock Hyper-V configuration. With Credo but without the secure 

execution environment. This measures the impact of Credo on no security sensitive 

VMs. With Credo within the secure execution environment.  

This measures the impact of Credo and secure execution environment on security 

sensitive VMs. Experimental results show that Credo imposes mostly one-time setup 

cost. Credo does not impact performance for virtual machines that do not require the 

security benefits when compared to a stock Hyper-V environment, while only imposing 

modest cost on emancipated VMs. 

 

 

Figure 49. Credo Performance Evaluation CPU/Memory and Disk 
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5.3.8 Hypervisors Summary 

In this chapter we presented some representative virtualization frameworks alongside 

with their implantation and instruction for execution and configurations. We present the 

hypervisor information summary in the table below.  

Each row contains the name of each hypervisor followed with the contributors, date of 

publication, if the hypervisor uses a TPM, the supported operation systems, if the 

framework has been tested by the contributors and if there is the source code available 

for downloading. 

Table 8. Summary of the hypervisors that are presented in this paper. 

Framework 
Name 

Contributors Date of 
publication 

TPM 
Version 

Type OS Evaluation Source 
Code 

XMHF [40] June 26, 2012 TPM (v1.2) 1 a)Windows 
XP 
b)Windows 
Server 2003 
c)Ubuntu 
10.04 

The 
framework 
was tested 

In Github. 
Open 
Source in 
official site 

uberXMHF [41] October 3 
2018 

TPM (v1.2 
or above) 

1 a)Ubuntu 
16.04 
b)Ubuntu 
12.04 
c)Raspberry 
PI 3 

The 
framework 
was tested 

In Github. 
Open 
Source in 
official site. 

XVisor [42] January 31 
2016 

 

No TPM 1 Linux 
Raspberry Pi 

The 
framework 
was tested 

In Github. 
Open 
Source in 
official site. 

TGVisor [43] June 2015 TPM 
usage 

1 Ubuntu 12.04 The 
framework 
was tested 

Not Found 

TrustVisor [44] May 2010 TPM (v1.2 
or above) 

1 Fedora Core 6 
Linux 

The 
framework 
was tested 

In Github. 
 

SecVisor [45] October 14 
2007 

TPM 
usage 

2 Fedora Core 6 
Linux 

The 
framework 
was tested 

Not Found 

Lockdown [46] July 14, 2009 TPM 
usage 

1 a) Windows 
2003 Server 
b) Linux 

The 
framework 
was tested 

In Github. 

Credo [47] 2011 TPM (v1.2) 1 Windows The 
framework 
was tested 

Not Found 
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6. PROPOSED SECURE GEO-LOCALIZATION FRAMEWORK 
In this chapter we present our proposed Localization framework that ensures a trust 

geo-location environment in WSN. The framework is explained with details alongside 

with detailed explanation for the way that the proposed framework achieves trust geo-

location. Geographic locations of user devices are widely used to provide rich user 

experience in various environments such as proximity-based marketing, travel 

information, and cloud computing. Especially, cloud service providers require to utilize 

actual cloud user’s locations in location-based cloud services like Amazon GovCloud.  

However, it is not trivial to obtain the trusted geo-locations of the user devices because 

there are many points for attackers to forge the current geo-locations of the cloud user 

devices. WSN may be deployed in hostile environments with sensors operating 

unsupervised. Attacks on WSN are presented in section 4. Hence, an adversary can 

interrupt the functionality of location-aware applications by exploiting the vulnerabilities 

of the localization scheme. To confront those types of attacks we proposed a Secure 

Geo-Location framework with the utilization of Hypervisors and TPM. 

6.1 Introduction 
In this section our proposed secure geolocation framework is presented, with the usage 

of a Trust Platform Module (TPM) and a Hypervisor, that ensures a safe geolocation 

process for unknown nodes in a specified and trust environment. The basic idea is to 

create a geographical environment that is consisted of anchor nodes and where 

unknown node can be located and can access a protected and safe system.The basic 

concept of the framework is as follows:  

First, we specify a geographical field that will be the environment where geolocation and 

safety will be provided. This field consists of a base station and three anchor-beacon 

nodes that their geological position is calculated and known. Those nodes form a 

tetrahedron shape (the base station and the two anchor nodes form the base and one 

node is the pick). Each node supports a Hypervisor that can ensure a trustful and safe 

environment. In our implementation we use the Trustrvisor (which is implemented over 

a uberXMHF), further details are presented below.  

The TPM is utilized here to achieve this purpose since it provides all the mechanisms of 

 a secure crypto processor designed to secure hardware through integrated 

cryptographic keys. When an unknown node enters the specified field, it can easily be 

detected from all four nodes. With a localization algorithm, the coordinates of the 

unknown node can be calculated (further details of this process will be presented in the 

next session) and if the unknown node position is determined as then the access to the 

system is granted, otherwise is denied. In the case that is granted the anchor node can 

give access to the new node in the system through a Hypervisor (Virtual Machine).  

With the hypervisor the node can utilize all the information in the system without data 

corruption. Thus, the new node has access to a secure system that protects it from any 

malicious attacks, also the system is protected from any possible attempt in data 

https://en.wikipedia.org/wiki/Secure_cryptoprocessor
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modification, data corruption or any other type of attacks in WNS. Below a diagram is 

presented that explain the high-level overview of the basic concept of our framework. 

The framework contains four phases:  

 

Figure 50. Proposed framework high level overview. 

 

Trust field creation  

A three-dimensional geographical field is formed by three coplanar and static base 

nodes on the ground, forming a triangular shape. A fourth node stays on a specific high 

position from the ground as a results all four nodes are forming a tetrahedron shape 

field. All four nodes have known coordinates that are shared between them and are in a 

constant communication. 

Node position calculation  

When an unknown node enters this specified trust field, it can be detected from all the 

base nodes of the system. Then the node’s distance can be estimated using positioning 

techniques (e.g. RSSI, DV-HOP etc.) and its position inside the system is calculated 

using relevant techniques (e.g. trilateration etc.). Those coordinates are shared between 

the base nodes.   

Verification phase 

4.Node access phase. Node access 
can either be denied or granted 
where it can access the system's 
data throught Hypervisor.

3.Verification phase. Node is 
verified whether it can access the 
field or not.

2. Node position calculation 
phase. A 3D localization algorithm 
is executed. 

1.Trust field creation phase. 
Anchors nodes set up. Field's 3D 
boundaries specification.

Encrypted Field 
Creation

Trust Field Creation by 
Anchor Nodes

Unknown Node 
Enter Field

Unknown Node 
Position Calculation

Unknown Node Position 
Verification

Unknown Node Access 
Granted

Unknown Node Access Data 
with Hypervisor

Unknown Node Access 
Denied
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Knowing the node’s specific position compared with the system the base nodes can 

estimate if the node is inside or outside of the trust field. Then the system can accept or 

reject the node access in the system’s data. 

Node access phase 

If the node is not rejected from the system, its access is granted. Then the hypervisor 

(e.g. Hypervisor) is responsible of creating a safe environment (a guest virtual machine) 

for the node, where the node has access to the system’s data and can interact with it. 

 

6.2 Framework Overview 

 The framework consists of the following features: 

• Four (or five) base nodes, forming a tetrahedron shape A, B, C and D. (E). 

• Each node contains a hypervisor. 

• Each node contains a TPM for the hypervisor implementation. 

• A unknow node X enters the field with a random movement. 

 

Figure 51. Framework overview 

6.2.1 Trust Field Creation 

In figure 53 we can understand how this specified three-dimensional field can be 

represented in a cartesian plane. Nodes A, B, (E) and C are base ground nodes on a 

coplanar field. Node D has a known high H from the ground. In the cartesian plane 

representation the base nodes form the tetrahedron ABCD with base A, B, (E), C and 

pick D. The edges of the tetrahedron represents the distances between the node, that 

are also known and constant: d1 is distance between A and B, d2 is distance between B 

and C, d3 is distance between A and C, d4 is distance between A and D, d5 is distance 

between C and D and d6 is distance between B and D etc. Each base node utilizes a 

hypervisor in order to create a safe and secure environment for the new guest nodes: 

uberXMHFA for node A, uberXMHFB for node B, uberXMHFC for node C, uberXMHFE 

for node E and uberXMHFD for nodeD. In our framework we choose the Trustvisor 

hypervisor which is implemented from uberXMHF. Each node contains also a TPM 
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environment, which is necessary for the Trustvisor hypervisor in order to create a safe 

environment. All the system’s geographical data, base node’s coordinates and 

distances, are known and shared between all base nodes. All base nodes are in a 

constant communication and aware of any change in the system.   

 

Figure 52. Trust field representation. 

6.2.2 Node Position Calculation 

In order to calculate the coordinates of the unknown node X in the system we utilized 

the mechanisms below:  

Table 9. Localization algorithms simulated 

Algorithm Name Metrics Dimension Base nodes 

1.Multilateration RSSI 3 4 

2.Multilateration TOA 3 4 

3.Direct Location Method RSSI 3 4 

4.Direct Location Method TOA 3 4 

5.CHAN Algorithm TDOA 3 5 

6.Hybrid Algorithm TDOA/ TOA 3 4 

 

 

6.2.2.a 3D-RSSI/TOA 

Finding Distances from center points from 3 spheres 

https://stackoverflow.com/questions/1406375/finding-intersection-points-between-3-spheres
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In order to calculate the distances D1, D2 and D3 of the unknown node X, we need a 

minimum of 3 base nodes in the area. The selected techniques for this calculation are: 

RSSI and TOA. All three localization techniques can calculate the distances between 

two nodes in a system.  

In our framework, the distances D1, D2 and D3 can be calculated by those techniques. 

We can use every combination of three base node for the distance calculation. As a 

representative case we can have as a reference base nodes A, B and C (or D) and their 

distances from unknown node E D1, D2 and D3. The distances represent the radius of 

each sphere with centers nodes A, B and C 

Finding intersection points between 3 spheres 

We assume that the coordinates of the spheres (xA,yA,zA), (xB,yB,zB) and (xC,yC,zC) , 

alongside with the relevant radius D1, D2 and D3 are known. Then we have the 

following equations. Three spheres: 

EQ1: (xA - x)2 + (y A - y) 2 + (z A - z) 2 = D12 

EQ2: (xB - x) 2 + (yB - y) 2 + (zB - z) 2 = D22 

EQ3: (xC - x) 2 + (yC - y) 2 + (zC - z) 2 = D32 

 

Figure 53. Intersection point calculation 

Intersection computation algorithm 

1. Pick one of the equations (EQ2) and subtract it from the other two (EQ1, EQ3). That 

will make those other two equations into linear equations in the three unknowns.   

2. Use them to find two of the variables (x, y) as linear expressions in the third (z).  

These two equations are those of a line in 3-space, which passes through the two 

points of intersection of the three spheres. 

https://stackoverflow.com/questions/1406375/finding-intersection-points-between-3-spheres
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3. Then substitute these into the equation of any of the original spheres (EQ1).  This 

will give you a quadratic equation in one variable, which you can solve to find the 

two roots.   

4. These values will allow you to determine the corresponding values of the other two 

variables, giving you the coordinates of the two intersection points. Keep the positive 

intersection point. 

6.2.2.b Direct Location Method 

The TOA measurements between the object and the stations are multiplied by the 

known signal propagation speed in the media to yield range measurements. Thus, (xi, 

yi, zi), i = 1, ... 4 is the known position of station i. From the set of three equations from 

the measurements of the distances of the unknown node and the bases nodes, we can 

compute three equations expressed in z and y that can be cancelled out using straight 

forward algebra to get an explicit expression for x independent of y and z. Thus, we 

have one equation for each coordinate x, y and z with known parameters. 

6.2.2.c 3D-TDOA CHAN Algorithm 

In a localization system, time difference of arrival technique is widely used to estimate 

the location of a mobile station. Chan’s method is another non-iterative solution of 

achieving optimum performance for arbitrarily placed sensors. Following the derivation 

of the formulae for bias and mean-square errors of TDOA estimation under rm, this 

paper moves on to the joint estimation of TDOA and time scale. It proposes an iterative 

search for the maximization of the cross-ambiguity function (CAF), which is also the 

maximum likelihood function for additive Gaussian bandlimited white noise disturbance. 

In addition, a quadratic Lagrange interpolator is also proposed to obtain the initial 

parameter values for the iterative search, which can increase the chance of converging 

to the global minimum solution. It is necessary to time scale a digital sequence by a 

noninteger in the maximization process. For an N-point sequence, this operation, which 

first interpolates the samples by sinc functions and then resamples, is in the order 

O(N/sup 2/). Noting that the magnitude of the sinc function decreases rapidly from its 

peak, this paper uses a fast approximation (FA) method that applies only five sinc 

coefficients for the interpolation, reducing the computation to O(N). 

6.2.2.d Hybrid 3D TOA/TDOA  

TDOA measurements when converted to distance results in hyperbolic equations. N 

number of TOA measurements will result in N-1 hyperbolic equations. Using this 

concept with the proper modifications we can convert four equations using TDOA of 4 

base nodes to a simplified linear matrix equation A x = b. The implementation is 

presented in the next session. 

 

6.2.3 Verification  

After the execution of the algorithm that is described above, the unknown node has its 

own coordinates in the system X (xx, yx, zx). Those coordinates are shared between all 
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the base nodes of the framework. Now we can use any verification criteria we want to 

accept or deny the node access in the system.  

6.2.4 Node Access 

Finally, after the verification phase is executed, the node can either have no access in 

the system since it has not the verification criteria necessary or have access to the 

system data. In this case, a safe and secure environment is created for the guest node 

by the hypervisor, where it can have access to the data system and can interact and 

communicate with it without data loses and with secure protection from any attacks. 

 

Figure 54. Verification and access overview. 
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6.3 Framework Implementation Overview 

6.3.1 Simulation Overview 

To evaluate the performance and implementation of our proposed framework, we 

simulated a random movement of the unknown node E in the field. The implementation 

of the movement algorithm is described in the next session, also the source code is 

provided in the appendixes. We assume that node X each time unit t has unknow 

coordinates: 

• X [ x(t), y(t), z(t)] 

where t ∈ ℕ → t = [Start Movement, End Movement]. The random algorithm that we 

utilize to simulate this movement is Brownian motion. We can then utilize one 

localization method in order to calculate the distances of E from the bases nodes A, B, 

C and X and then calculate the coordinates X [ x(t), y(t), z(t)] each time unit t with multi-

lateration. The current distances of E from A, B, C, D is DN(t), N ∈ [A,B,C,D].  

 

Figure 55. Simulation Movement steps 

6.3.2 Random Movement  

To calculate DN(t) we utilize and compared the performance of the localization  

techniques: RSSI, TDOA 

 

Figure 56. Unknown node movement 
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Brownian motion  

Input in Brownian motion simulation: dimensions (m), the number of the walk step (n), 

the density of the field (d), a coefficient (t) and the start position 𝑐̂0. 

m:  m ∈ ℕ &    0 < m < 4  

n:  n ∈ ℕ &    0 < n  

d:  d ∈ ℝ  &    0 < d 

t:  t ∈ ℝ  &    0 < t < 1  

𝑐̂0:  𝑐̂0  = 

[
 
 
 
𝑥1
𝑥2… .
… .
𝑥𝑚]
 
 
 

      &      𝑐0̂ ∈ ℝ
m       &      x1-m∈ ℝ 

Compute the Δt for utilize it as a new coefficient in the algorithm: 

Δt = 
𝑡

𝑛−1
  

For every step n the algorithm will produce a new random m dimension position          

𝑐̂𝑖= [ x1, x2, ……, xm] 

❖ ∀ i ∈ {1, 2, ……, n} 

➢ Si:   Si = √2 ∗ 𝑚 ∗ 𝑑 ∗ 𝑑𝑡 ∗  Xi  ,     where Xi  ∼ U(ℝ)     &      Si ∈ ℝ 

➢ ∀ j ∈ {1, 2, ……, m} 

• Δxji  :  Δxji  = Xji  ,     where Xji ∼ U(ℝ)    &      Δxji  ∈ ℝ 

 

➢ ‖𝑥‖𝑖:   ‖𝑥‖𝑖  = √∑   (𝛥𝜒𝜄
𝑘)2    𝑘=𝑚

𝑘=1 ,    where ‖𝑥‖𝑖 ∈ ℝ 

➢ dx𝑖̂:    dx𝑖̂ = 

[
 
 
 
 
𝛥𝜒𝜄

1

𝛥𝜒𝜄
2

… .
… .
𝛥𝜒𝜄

𝑚]
 
 
 
 

  ,    where dx𝑖̂ ∈ ℝm 

➢ dx𝑖
′̂:   dx𝑖

′̂= dx𝑖̂ * 
𝑠𝑖

 ‖𝑥‖i 
 → dx𝑖

′̂ = 

[
 
 
 
 
 𝛥𝜒𝜄

1  ∗  
𝑠𝑖

 ‖𝑥‖i 

𝛥𝜒𝜄
2  ∗  

𝑠𝑖

 ‖𝑥‖i … .
… .

𝛥𝜒𝜄
𝑚 ∗ 

𝑠𝑖

 ‖𝑥‖i ]
 
 
 
 
 

 ,     where dx𝑖
′̂ ∈ ℝm 

 

➢ 𝑐̂𝑖:   𝑐̂𝑖 = 𝑐̂𝑖−1  + dx𝑖
′̂  ,    where 𝑐̂𝑖  ∈ ℝm 

 

A new random m dimension position is produced 𝑐̂𝑖. It will produce n random position in 

total. This algorithm simulates a m-D random movement of a node in n steps. 
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6.3.3 Calculate Metrics  

6.3.3.a RSSI 

As it was presented in chapter 3 [48], the formula for calculating the distances between 

two nodes using received signal strength indicator is: 

PR = PT.
𝐺𝑇∗𝐺𝑅∗𝜆

2

(4∗𝜋)2∗𝑑𝑛
  (1) ➔  

P[dBm] = 10 · log10 (P[W] · 103) (2) ➔  

RSSI = − (10 · n · log10 d − A) (3) ➔  

d = 10
𝐴−𝑅𝑆𝑆𝐼

10∗𝑛
  (4) 

Choosing value for n it depends on the environment. Typical values are: 2 for free 

space, 2.7 to 3.5 for urban areas, 3.0 to 5.0 in suburban areas and 1.6 to 1.8 for indoors 

when there is line of sight to the router. At maximum Broadcasting Power (+4 dBm) the 

RSSI ranges from -26 (a few inches) to -100 (40-50 m distance). Default transmit power 

for DD-WRT based routers is 70mW or 18.5dBm [49]  

Di= 10
𝐴𝑖−𝑅𝑆𝑆𝐼𝑖
10∗𝑛

  , where i = {1,2,3,4,5} 

 

6.3.3.b TOA 

As it was presented in chapter 3, the formula for calculating the distances between two 

nodes using Time of Arrival is: 

Δdi-x = c * (Δti-x) 

Where c is the speed of light in the vacuum and Δt is the time difference between the 

start time and the time of arrival between a base node and unknown node X. 

6.3.3.c TDOA 

As it was presented in chapter 3, the formula for calculating the distances between two 

nodes using Time Difference of Arrival is: 

Δdi-j-x = c * (Δti-j-x) 

Where c is the speed of light in the vacuum and Δt is the time difference between the 

start time and the time of arrival between two base nodes and unknown node X.  For 

example, if we have two base nodes i and j and x is the unknow node then: 

Δdi-j-x = c * (Δdi-x - Δdj-x) 

 

 

6.3.4 Calculate Position  
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6.3.4.a With Spheres Intersection points for RSSI/TOA Multilateration 

Input: x1, x2, x3, y1, y2, y3, z1, z2, z3, r1, r2, r3. Subtract EQ2 from EQ1, move all constants to 

right side. Call the right side constant k1 [50]:  

k1 = r12 - r22 - x12 + x22 - y12 + y22 - z12 + z22  

Left side of EQ1 is of the form a1x + b1y + c1z where a1, b1, and c1 are the coefficients 

a1 = 2 * (x2 - x1) 

b1 = 2 * (y2 - y1) 

c1 = 2 * (z2 - z1) 

Subtract EQ2 from EQ3, move all constants to right side, Call the right side k3 

k3 = r32 - r22 - x32 + x22 - y32 + y22 - z32 + z22 

Left side of EQ3 is of the form a3x + b3y + c3z, where a3, b3, and c3 are the coefficients 

a3 = 2 * (x2 - x3) 

b3 = 2 * (y2 - y3) 

c3 = 2 * (z2 - z3) 

The two equations (EQ1, EQ3) are now linear equations in the three unknowns: EQ1: a1x + 

b1y + c1z = k1, EQ3: a3x + b3y + c3z = k3. Then find y as a linear expression of z.  y = e*z 

+ f 

IF : 

{
 
 
 
 
 

 
 
 
 
 

  a1 =  0      =>  {
𝑒 =  

−𝑐1

𝑏1

𝑓 =  
−𝑐3

𝑏3

 

a1 ≠ 0 AND a3 =  0 => {
𝑒 =  

−𝑐3

𝑏3

𝑓 =  
𝑘3

𝑏3

 

a1 ≠ 0 AND a3 ≠  0 =>

{
 
 

 
  𝑎31 =

𝑘3

𝑏3

 𝑒 = −
a31 ∗ c1 − c3

a31 ∗ b1 − b3

 𝑓 =
a31 ∗ k1 − k3

a31 ∗ b1 − b3

 

Then find x as a linear expression of z.  x = g*z + h ➔ IF : 

{
 
 
 
 
 

 
 
 
 
 

  b1 =  0      =>  {
𝑔 =  

−𝑐1

𝑎1

ℎ =  
−𝑐3

𝑎3

 

b1 ≠ 0 AND b3 =  0 => {
𝑔 = 

−𝑐3

𝑎3

ℎ =  
𝑘3

𝑎3

 

b1 ≠ 0 AND b3 ≠  0 =>

{
 
 

 
  𝑏31 =

𝑏3

𝑎3

 𝑔 = −
b31 ∗ c1 − c3

b31 ∗ a1 − a3

 ℎ =
b31 ∗ k1 − k3

b31 ∗ a1 − a3

 

Substitute these into the equation of any of the original spheres (EQ1). This will give you a 
quadratic equation in one variable, which you can solve to find the two roots 

A = g2 + e2 + 1 
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B = -x1 * g - y1 * e - 2 * z1 - x1 * g - y1 * e + 2 * g * h + 2 * e * f 

C = x12 + y12 + z12 - 2 * x1 * h - 2 * y1 * f + h2 + f2 - r12 

Use the quadratic formula to solve to find the two roots. 

rootD = √(B2  −  4 ∗  A ∗  C) 

z = 
−B + rootD

2 ∗ A
 , z_ = 

−B− rootD

2 ∗ A
 

Calculate you the coordinates of the two intersection points. 

x = g * z + h,  x_ = g * z_ + h 

y = e * z + f, y_ = e * z_ + f 

Finally, keep the positive solution:  

E: Solutions => {
( 𝑥 , 𝑦 , 𝑧 )

 ( _𝑥 ,   _𝑦 , _𝑧 )

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 
⇒           {

(𝑥, 𝑦 , 𝑧)
 (_𝑥, _𝑦 , _𝑧)

 =>  Solution: E = (x, y, z) 

6.3.4.b Direct Location Method for RSSI/TOA 

The TOA measurement equation is written as 

(x − xi )2 + (y − yi )2 + (z − zi )2 = ri2, i = 1 ,2,3 4 

Substituting i = 2, 3, 4 in Eq. above and subtracting each of the three equations from Eq.  

above when i = 1, we get three equations of the form: 

Aj, i = 2, 3, 4 A j = (r 1 − ri) + (xi − x1) + (yi − y1) + (zi − z1), j = 1, 2, 3 

Let  

I1 = (z3 - z1)*(x2 - x1)-(z2 - z1)*(x3 - x1),      I2 = ( z4 - z1 )*( x2 - x1)-( z2 - z1 )*( x4 - x1) 

I3 = (z3 - z1)*A1 - (z2 - z1) * A2,     I4 = ( z4 - z1 )* A1 - ( z2 - z1 ) * A3 

I5 = (z3 - z1) * (y2 - y1) - (z2 - z1) * (y3 - y1),  I6 = (z4 - z1)*( y2 - y1 )-( z2- z1 )*( y4 - y1 ) 

I7 = (y3 - y1) *(x2 - x1) - (y2 - y1)*( x3 - x1 ),  I8 = (y4 - y1 )*( x2 - x1) - (y2 - y1 )*( x4 - x1 ) 

I9 = (y3 - y1) * A1 - (y2 - y1) * A2,       I10 = (y4 - y1 )* A1 - ( y2 - y1 )* A3 

I11 = (y3 - y1)*( z2 - z1 ) - (y2 - y1)*( z3 - z1),  I12 = (y4 - y1)*( z2 - z1) - (y2 - y1 )*(z4 - z1 ) 

Thus, the solution can be calculated as presented below:  

x=  
𝐈𝟒∗𝐈𝟓 − 𝐈𝟑∗𝐈𝟔

𝐈𝟐∗𝐈𝟓 − 𝐈𝟏∗𝐈𝟔
∗
𝟏

𝟐 
 , y= 

𝐈𝟒∗𝐈𝟓 − 𝐈𝟑∗𝐈𝟔

𝐈𝟐∗𝐈𝟓 − 𝐈𝟏∗𝐈𝟔
∗
𝟏

𝟐 
, z= 

𝐈𝟒∗𝐈𝟓 − 𝐈𝟑∗𝐈𝟔

𝐈𝟐∗𝐈𝟓 − 𝐈𝟏∗𝐈𝟔
∗
𝟏

𝟐 
 

6.3.4.c With TDOA CHAN 

It is assumption that M BSs are randomly distributed in 3-dimension space. (x, y, z) is 

unknown MS position and (Xi, Yi, Zi) is BSi position. Ri is the distance between BSi and MS. 

Thus, the distance between MS and BSi is given by: 
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Ri = (Xi -x)2 + (Yi-y)2 + (Zi-z)2 = Ki – 2*Xi*x – 2*Yi*y -2*Zi*z +R = (c * ti)2, where i=1, 2.., M 

Where Ki = Xi2 +Yi2 +Zi2, R = x2+y2+z2, τi the value of TOA, c is the speed of light. Assume        

za =[zp
T,R]T is unknown vector, where z =[x, y, z]T .The error vector with TOA noise is that:        

ψ = h – Ga za
0 where,  

h = [
𝑅1
2 − 𝐾1
…………
𝑅𝑀
2 − 𝐾𝑀

] , 𝐺𝑎 [
−2𝑋𝑀 − 2𝑌𝑀 − 2𝑍𝑀 1

…………
−2𝑋𝑀 − 2𝑌𝑀 − 2𝑍𝑀 1

] 

By using WLS method, we use covariance matrix Q of measured value of TOA to replace the 

Covariance matrix of error vector ψ. za is given by: 

za = argmin{(h-Gaza)TQ-1(h-Gaza)} = (GaTQ-1Ga)-1(GaT Q-1h), where Q=diag(σ12, ...., σΜ2) 

If error of TOA is little, ψ is given by: ψ = 2Bn+n*n ≈ 2𝐵𝑛, where B=diag(R12, ...., RΜ2), Ri0 is 

the actual distance between MS and BSi, n is the measurement error of TOA. Covariance 

matrix of error vector ψ is given by: ψ =Ε[ψψT] =4ΒQΒ. In the environment with noise, 

Ri = Ri0 + cni, Ga = Ga0 + ΔGa, h = h0 + Δh  

It is assumed that za = za0 + Δza, Δza and covariance matrix of Δza are measured by: 

Δza = c * (GaT ψGa)-1Gaψ-1Bn, cov(za) = E[Δza ΔzaT] = (GaT ψ-1Ga)-1 

za is a zero-mean random variable, thus za can be expressed as: 

za,1 = x0 + e1, za,2 = y0 + e2, za,3 = z0 + e3, za,4 = R0 + e4 

Where e1, e2, e3, e4 are the error estimates of za. Vector’s error of z a can be expressed as:   
ψ’ = h’ – Ga’ za’ 

h’ = 

[
 
 
 
 
𝑧𝑎,1
2  

𝑧𝑎,2
2

𝑧𝑎,3
2

𝑧𝑎,4
2 ]
 
 
 
 

, 𝐺𝑎
′ = [

1 0 0
0 1 0
0 0 1
1 1 1

] , 𝑧𝑎
′ = [

𝑥2

𝑦2

𝑧2
] 

The covariance matrix of ψ ' also could be defined by: ψ'= E[ψ’ψ’Τ] = 4Β’cov(za)B’. Where 

B = diag(x0, y0, z0, 1/2), x0, y0, z0 in B' could be replaced by the value of za. The estimates of 

z'a by WLS is given by: z'a = (Ga’ψ’-1G’a)-1(G’aT ψ’-1h’). MS positioning is calculated by:  

zp = √𝒛𝒂′  or zp =-√𝒛𝒂′  

The plus or minus selection of (x,y,z) in zp should be the same as the sign of (x,y,z) in za . 

6.3.4.d With Hybrid TOA/TDOA 

The equation for the TOA measurement of the signal at the i-th antenna station transmitted 
from an emitter located at x = (x, y, z) is: 

τi =
√(x−xi)

2+ (y−yi)
2+ (z−zi)

2   

c
 ➔  (τi * c)2 = (x − xi )2 + (y − yi )2 + (z − zi )2 ➔ 
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(τi * c)2 = (x2+y2+z2) – (2xxi+2yyi+2zzi) + (xi
2+ yi

2+ zi
2) 

Let  

R = (x2+y2+z2) and Ki = (xi2+ yi2+ zi2)➔ 

Ri2 = R - (2xxi+2yyi+2zzi) + Ki 

TDOA measurement between the i-th and the j-th antenna station pair is obtained as: 

τij = τi - τj=
√(x−xi)

2+ (y−yi)
2+ (z−zi)

2   

c
−
√(x−xi)

2+ (y−yi)
2+ (z−zi)

2   

c
 

We calculate the values τ13, τ14, τ23, τ14 we get to []:  

a134 = x × b134 + y × c134 + z × d134 

a234 = x × b234 + y × c234 + z × d234 

Finally, we get a matrix form Ax = b  

A =  

[
 
 
 
 
2(x1 − 𝑥2)2(x3 − 𝑥4) 2(y1 − 𝑦2)2(𝑦3 − 𝑦4) 2(𝑧1 − 𝑧2)2(z3 − 𝑧4)

𝑥31
𝑅13

−
𝑥41
𝑅14

𝑦31
𝑅13

−
𝑦41
𝑅14

𝑧31
𝑅13

−
𝑧41
𝑧14

𝑥32
𝑅23

−
𝑥42
𝑅24

𝑦32
𝑅23

−
𝑦42
𝑅24

𝑥31
𝑅13

−
𝑥31
𝑅13 ]

 
 
 
 

 

 

b = 

[
 
 
 
 
(𝑅1 
2 − 𝑅2 

2 − 𝐾1 + 𝐾2 )(𝑅3 
2 − 𝑅4 

2 − 𝐾3 + 𝐾4)

0.5(𝑅1 
2 − 𝑅2 

2 +
𝐾14

𝑅14
−
𝐾13

𝑅13
 )

0.5(𝑅1 
2 − 𝑅2 

2 +
𝐾24

𝑅24
− 

𝐾23

𝑅23
 ) ]

 
 
 
 

 

 

where we solve for x = [ x, y, z] T 
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7. PROPOSED FRAMEWORK SIMULATION 
In this chapter we present our proposed Localization framework simulation. We explain 

how we installed the relevant components and features necessary for our framework 

alongside with our implemented code and scripts. Also, we present how the simulation 

works and how we tested it. 

7.1 Framework simulation overview  

 

The simulator can be found in [64]. The simulator contains two basic phases. In the first 

is the process of calculating all the metrics values (TDOA, TOA, RSSI) of the base 

nodes from the unknown and then simulate the algorithms performance. In this phase 

we implemented a python project that is responsible for all the above. In the second 

phase we implemented a bash script that is responsible for downloading and installing 

the hypervisor to a local machine alongside with all the necessary modules and 

packets. We explain with details those implementations in the sections below. 

7.1.1 Localization algorithms simulation process 

The python simulator contains of 6 phases: 

1. Browian Motion 

In this phase we create a random motion of unknown node X in a 3d field 

2. Data creation 

Here we create the RSSI, TOA and TDOA values for each position of X. 

3. Simulation 

This is the phase where the algorithms are executed. 

4. Storing 

We store the data to files. 

5. Graphics 

Here we plot all the movements and algorithms traces 

6. Statistics 

Finally, we evaluate the algorithm’s performances. 

More information for the implementation of the script are presented below. 

 

Figure 57. Geolocation simulation process 

Browian Motion

• Create random 
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• Create metrics 
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Graphics

• Overall image 
creation 
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• Create statistics 
imaged
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7.1.2 Hypervisor simulation process 

The bash simulator contains of 6 phases:  

1. Update 

Update and upgrade software of local machine. 

2. Download 

Download hypervisor from Github. 

3. Installation 

Install hypervisor to local environment. 

4. Configuration 

Install all relevant packet and features alongside with any configuration. 

5. Verification 

Verify that hypervisor is installed properly.  

 

Figure 58. Hypervisor simulation process 

7.1.3 Framework Folder Structure 

Here we present a short overview of the folder structure in order to understand how the 

files and folders are placed. The brown scaled colored boxes represents folders and the 

blue scaled boxes files. The green is the executable python file to start the simulation. 

The input is given from the JSON file in the folder Input, grey box. 
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Figure 59. Simulation folder structure 

7.1.4 Framework Implementation 

Our simulator takes as an input a JSON file. This JSON file contains the information that 

are present below: 

Table 10. JSON input data simulation 

Input Explanation Example 

X Start position of unknown node "X": [20, -20, 20], 

nodes Base nodes coordinates "A": [10, -40, 0] 

algorithms Algorithm to execute "RSSI": ["Multilateration"], 

transittionPower_dBm Base node transmission power "transittionPower_dBm": 70, 

noise Noise coefficient 0 – 5 "noise": 3.5, 

Dimensions Dimensions, 3D "Dimensions": 3, 

steps Steps of unknow node  "steps": 500, 

density 3D field density "density": 1000.0 

time_Coeff Time coefficient 0-1.0  "time_Coeff": 1.0 

totalExperiments Samples per experiment "totalExperiments": 1 

showPlots Show plot for each sample "showPlots": "Yes" 

PickForCalculation Select pick base node for calculation "PickForCalculation": "Yes" 

 

In the JSON file we can define how many experiments we would like to execute 

alongside with how many samples should we consider for each, for a general statistic 

evaluation. Each input in the JSON file represent an individual experiment. For each 

experiment, a number of samples, that are defined from the input, are executed. Those 

sample are individual tests that contains the python simulation process that was 

described above in 7.1.1. Then the python simulator generates each experiment with 

the relevant sample and for each experiment provides the overall statistics evaluation 

that is calculated from its sample. All the necessary information, log files, data that is 

utilized, figures etc. are provided and generated in the relevant folders. 

 

Figure 60. Python Simulator overview 
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Base Stations communication process  

In order to compute and evaluate the time performance of the simulator we developed a 

C++ application to simulate the environment. The simulation contains the unknown 

node X where broadcasts its presents by sending messages in the environment, base 

station A, B and C where receives the messages from X and they forward the data to 

the Master base station where gathers all the receives metrics from X and computes its 

position. The communication time is computed from the first presence of node X until 

the last step of the simulation. 

 

Figure 61. Base stations communication process 

To simulate this process, we utilized the process/sockets concept. Each base station A, 

B and C, the master station and unknown X are individual C++ processes. Each base 

station contains of two sockets one to receive messages from X and one to send to 

master. Node X contains four sockets for all the stations each to send messages. The 

master contains three sockets for the base stations and one for node X to receive 

messages. The simulation starts from X which continuously send messages to all BSs 

and stops when the termination message is send. The overall communication time is 

computed. 
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Figure 62. Base communication architecture 

7.2 Framework Requirements  

In our implementation we use python 3.7 for the creation of a python project for the 

localization algorithms evaluation. We have implemented the hypervisor’s execution in a 

raspberry environment. Below we present the requirements in order to execute the 

simulation. 

7.2.1 Localization simulation  

1. OS: Ubuntu 16.04 

2. Python 3.7, Pip 3 

3. Python Packages Math, matplotlib, numpy, random, json, scipy, datetime, 

mpl_toolkits, urllib3 

7.2.2 Hypervisor simulation 

In our implementation, our hardware and OS are presented below: 

1. OS: A Raspberry PI v3 board. That ensure that the model B or B+ with the 

Cortex-A53 quad-core processor  

i. Hardware Virtualization extensions: Cortex A53: Hardware Support for 

Virtualization 

ii. 2nd-level page tables Typically turned on implicitly along with 

Virtualization extensions Cortex A53: Second-stage Page Tables 

2. TPM: version 2.0 

 

7.3 Framework Execution  

In order to start the simulation after the input is provided in Input/inputData.json, the 

following command must be executed from command line:  

~$ python3.7 run.py 

The source code run.py can also be executed with python2. It will start the evaluation of 

the packets and features that are installed in the system. If all the necessary packets 

are installed, then it will evaluate the input in /Input/. If the input contains plausible and 

valid data, then the simulation will start.  

All the necessary folders are created, and the simulator is responsible for creating 

graphs, pictures and log files for better understanding. Each experiment created is 

unique since a time stamp is utilized with the current time to avoid conflicts. 
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7.4 Simulation input data 

7.4.1 Field input  

Three dimensions field m = 3, Field density d = 1000 

7.4.2 Nodes coordinates input  

Table 11. Nodes Coordinates input 

Nodes x-Axis y-Axis z-Axis   Distances Between Nodes  

A B C D E 

A 10 -40 0 - 83.2165 80.7774 57.4456 56.5685 

B -35 30 0 83.2165 - 75.1664 61.0327 90.1387 

C 40 35 0 80.7774 75.1664 - 66.5206 36.4005 

D 0 0 40 57.4456 61.0327 66.5206 - 64.0312 

E 50 0 0 56.5685 90.1387 36.4005 64.0312 - 
X Start (C0) 0 -20 20 30.0000 64.2261 70.8872 28.2842 57.4456 

 

7.4.3 Brownian motion input  

Three dimensions m = 3, Field density d = 1000, Number of random walk steps n = 500, 

Coefficient t = 0.1.   

7.4.4 Extra parameters input  

Transmitted power of Base Nodes, 70mW or 18.5dBm, n = 3, average noise coefficient 

value, tmD = 3, average transmission time delay value in seconds 

7.5 Simulation output data 

7.5.1 Graphics 

Plotting the graphics of TDOA, TOA and RSSI calculated values from base nodes. 

 

Figure 63. TDOA, TOA and RSSI simulated values 
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Plotting the graphics of all the algorithm x, y, z values compared to the real values. 

 

 

Figure 64. X, Y, Z performance from algorithms 

Plotting the graphics of all the algorithm time of execution and communication time. 

 

Figure 65. time performance algorithm 

Plotting the motion graph of the unknown node alongside with the calculated traces. 

 

Figure 66. Unknown node motion 
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7.5.2 Statistics files 

For each statistic file contains three folders: The Data , where raw data is provided for 

the time measurements , the metrics values and the traces, the Figures where the 

relevant diagrams and figure are provided and the Logs folder where the output logs of 

the simulator is provided. 

 

Figure 67. Statistics files structure 

7.5.3 Summary files 

In the summary folder a summary is computed from all the statistics samples that are 

performed in each experiment. It contained to main parts. The Performance, where it is 

evaluated for each algorithm the computation performance (the computed X, Y, Z 

values with the real X, Y, Z values) for the error evaluation and the Time performance 

where the total execution and communication time is summarized for each algorithm. In 

each part relevant figures and diagrams are provided alongside with a text file with 

general info. The mean value and standard deviation is provided for each. 

 

Figure 68. Summary files structure 
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 8. VALIDATION 
For each algorithm we executed one experiment with 100 samples each. Each sample 

contained 500 steps of the unknow node which they correspond to individual evaluation 

of each algorithm. We created a statistical evaluation for each algorithm, where we 

compered the localization error of the calculated coordinates from the real values.  

8.1 Localization algorithms accuracy performance validation 

We performed the experiments to the environment below for each: 

1. PC-Intel_Core_i3-1.7GHz_RAM4GB 

2. PC-Intel_Core_i7-2.7GHz_RAM8GB 

3. PC-Intel_Core_i7-2.7GHz_RAM16GB 

4. Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 

8.1.1 3D-RSSI Multilateration  

From a sample of 50000 steps overall, we computed the mean error value for each 

coordinate x, y, z alongside with the standard deviation for 3D-RSSI Multilateration. We 

execute the simulation for four different environments as presented below.  

8.1.1.a 3D-RSSI Multilateration PC-Intel_Core_i3-1.7GHz_RAM4GB 

 

Figure 69. X, Y, Z RSSI Mult Alg, PC-Intel_Core_i3-1.7GHz_RAM4GB 

 

8.1.1.b 3D-RSSI Multilateration PC-Intel_Core_i7-2.7GHz_RAM8GB 

 

Figure 70. X, Y, Z RSSI Mult Alg, PC-Intel_Core_i7-2.7GHz_RAM8GB 
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8.1.1.c 3D-RSSI Multilateration PC-Intel_Core_i7-2.7GHz_RAM16GB 

 

Figure 71. X, Y, Z RSSI Mult Alg, PC-Intel_Core_i7-2.7GHz_RAM16GB 

 

8.1.1.d 3D-RSSI Multilateration Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 

 

Figure 72. X, Y, Z RSSI Mult Alg, Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 

8.1.2 3D-TOA Multilateration  

From a sample of 50000 steps overall, we computed the mean error value for each 

coordinate x, y, z alongside with the standard deviation for 3D-TOA Multilateration. We 

execute the simulation for four different environments as presented below.  

 

8.1.2.a 3D-TOA Multilateration PC-Intel_Core_i3-1.7GHz_RAM4GB 

 

Figure 73. X, Y, Z TOA Mult Alg, PC-Intel_Core_i3-1.7GHz_RAM4GB 



Secure Geo-location Techniques using Trusted Hyper-visor 

   113 
S. Rostantis 

8.1.2.b 3D- TOA Multilateration PC-Intel_Core_i7-2.7GHz_RAM8GB 

 

Figure 74. X, Y, Z TOA Mult Alg, PC-Intel_Core_i7-2.7GHz_RAM8GB 

 

8.1.2.c 3D- TOA Multilateration PC-Intel_Core_i7-2.7GHz_RAM16GB 

 

Figure 75. X, Y, Z TOA Mult Alg, PC-Intel_Core_i7-2.7GHz_RAM16GB 

 

 

8.1.2.d 3D- TOA Multilateration Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 

 

Figure 76. X, Y, Z TOA Mult Alg, Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 

8.1.3 3D-RSSI/TOA Direct method  

From a sample of 50000 steps overall, we computed the mean error value for each 

coordinate x, y, z alongside with the standard deviation for 3D-RSSI Direct method. We 

execute the simulation for four different environments as presented below.  
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8.1.3.a 3D-RSSI Direct method PC-Intel_Core_i3-1.7GHz_RAM4GB 

 

Figure 77. X, Y, Z RSSI Direct Alg, PC-Intel_Core_i3-1.7GHz_RAM4GB 

8.1.3.b 3D-RSSI Direct method PC-Intel_Core_i7-2.7GHz_RAM8GB 

 

Figure 78. X, Y, Z RSSI Direct Alg, PC-Intel_Core_i7-2.7GHz_RAM8GB 

8.1.3.c 3D-RSSI Direct method PC-Intel_Core_i7-2.7GHz_RAM16GB 

 

Figure 79. X, Y, Z RSSI Direct Alg, PC-Intel_Core_i7-2.7GHz_RAM16GB 

8.1.3.d 3D-RSSI Direct method Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 

 

Figure 80. X, Y, Z RSSI Direct Alg, Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 
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8.1.4 Hybrid 3D-TOA/TDOA  

From a sample of 50000 steps overall, we computed the mean error value for each 

coordinate x, y, z alongside with the standard deviation for Hybrid 3D-TOA/TDOA. We 

execute the simulation for four different environments as presented below.  

8.1.4.a Hybrid 3D-TOA/TDOA PC-Intel_Core_i3-1.7GHz_RAM4GB 

 

Figure 81. X, Y, Z Hybrid 3D-TOA/TDOA, PC-Intel_Core_i3-1.7GHz_RAM4GB 

 

8.1.4.b Hybrid 3D-TOA/TDOA PC-Intel_Core_i7-2.7GHz_RAM8GB 

 

Figure 82. X, Y, Z Hybrid 3D-TOA/TDOA, PC-Intel_Core_i7-2.7GHz_RAM8GB 

 

8.1.4.c Hybrid 3D-TOA/TDOA PC-Intel_Core_i7-2.7GHz_RAM16GB 

 

Figure 83. X, Y, Z Hybrid 3D-TOA/TDOA, PC-Intel_Core_i7-2.7GHz_RAM16GB 
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8.1.4.d Hybrid 3D-TOA/TDOA Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 

 

Figure 84. X, Y, Z Hybrid 3D-TOA/TDOA, Raspberry-Pi3ModelB1.4GHzRAM1GB 

 

8.1.5 Chan method 

From a sample of 50000 steps overall, we computed the mean error value for each 

coordinate x, y, z alongside with the standard deviation for Chan. We execute the 

simulation for four different environments as presented below.  

8.1.5.a Chan PC-Intel_Core_i3-1.7GHz_RAM4GB 

 

Figure 85. X, Y, Z Chan Alg, PC-Intel_Core_i3-1.7GHz_RAM4GB 

 

8.1.5.b Chan PC-Inel_Core_i7-2.7GHz_RAM8GB 

 

Figure 86. X, Y, Z Chan Alg, PC-Intel_Core_i7-2.7GHz_RAM8GB 
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8.1.5.c Chan PC-Intel_Core_i7-2.7GHz_RAM16GB 

 

Figure 87. X, Y, Z Chan Alg, PC-Intel_Core_i7-2.7GHz_RAM16GB 

 

8.1.5.d Chan Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 
 

 

 

Figure 88. X, Y, Z Chan Alg, Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 

 

8.1.7 Performance Summary  

Table 12. Performance Overview 

Algorithm Complexity Accuracy Minimum Nodes Mean Error 

3D-RSSI Multilateration O(N) 10-9 meters 4 ~10-10 meters 

3D-TOA Multilateration O(N) 10-9 meters 4 ~10-10 meters 

3D-TOA Direct O(N) 10-9 meters 4 ~10-10 meters 

3D-RSSI Direct O(N) 10-9 meters 4 ~10-10 meters 

Hybrid 3D-TOA/TDOA O(N) 1-10 meters 4 ~10    meters 

Chan Method O(N) 1-100 meters 5 ~100  meters 
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8.2 Localization algorithms time validation 

We performed time measurements for the same four environments as described above. 

 

8.2.1 3D-RSSI Multilateration  

For 50000 steps, we computed the mean execution time for all environments. 

  

Figure 89. RSSI Multilateration method average execution time 

 

8.2.2 3D-TOA Multilateration 

For 50000 steps, we computed the mean execution time for all environments. 

 

Figure 90. TOA Multilateration method average execution time 

 

8.2.3 3D-RSSI Direct method  

For 50000 steps, we computed the mean execution time for all environments. 

 

Figure 91. RSSI Direct method average execution time 

8.2.4 3D-TOA Direct method  
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For 50000 steps, we computed the mean execution time for all environments. 

 

Figure 92. TOA Direct method average execution time 

 

8.2.5 Hybrid 3D-TOA/TDOA  

For 50000 steps, we computed the mean execution time for all environments. 

 

Figure 93. X, Y, Z error statistics TOA/TDOA Alg 

 

 

8.2.6 Chan method  

For 50000 steps, we computed the mean execution time for all environments.

  

Figure 94. Chan method average execution time 
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8.2.7 Performance Summary  

The overall execution, communication and overall time between all the nodes for all the 

executed algorithms is calculated:  

Table 13. Execution Time Overview in milli seconds 

Algorithm PC-Intel_Core_i3-
1.7GHz_RAM4GB 

PC-Intel_Core_i7-
2.7GHz_RAM8GB 

PC-Intel_Core_i7-
2.7GHz_RAM16GB 

Raspberry-Pi_3_Model B+-
1.4GHz_RAM1GB 

Execut
ion 

Commu
nication 

Total Execut
ion 

Commu
nication 

Total Execut
ion 

Commu
nication 

Total Execut
ion 

Commu
nication 

Total 

3D-RSSI 
Multilaterati
on 

0.04272
55 

45.75 45.7927
2 

0.05553
4 

52.162 52.2178
34 

0.06956
4 

53.181 53.2505
8408 

1.64427
5 

96.795 96.9052
75 

3D-TOA 
Multilaterati
on 

0.04272
55 

45.75 45.7927
2 

0.05553
4 

52.162 52.2178
34 

0.06956
4 

53.181 53.2505
8408 

1.64427
5 

96.795 96.9052
75 

3D-RSSI 
Direct 

0.04323
8 

42.5169 42.5602
38 

0.08442 58.115 58.1994
082 

0.07788
64 

51.689 51.7668
864 

0.16672
7158 

129.971 130.137
72715 

3D-TOA 
Direct 

0.04323
8 

42.5169 42.5602
38 

0.08442 58.115 58.1994
082 

0.07788
64 

51.689 51.7668
864 

0.16672
7158 

129.971 130.137
72715 

Hybrid 3D-
TOA/TDOA 

0.18093
05 

56.03 56.2109
305 

0.20197
2 

57.395 57.5969
72 

0.18230
722 

54.073 54.2553
0722 

0.66494
1185 

96.165 96.8299
411 

Chan 
Method 

0.95847
8 

53.985 54.9434
78 

1.15464 70.036 71.5824
15 

1.35392
8 

67.7959 
 

69.1499
238 

5.43830
608 

152.096 157.534
6060 

 

The execution time is the calculated time of the algorithm’s execution. The 

communication time is the calculated time of all the processes communication for the 

data exchange. The total is the sum of the execution and communication time. 
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8.3 Summary  

Total time summary in milli seconds for all algorithms and environments. 

 

Figure 95. Total Time Performance summary 

Total performance summary in meters for all algorithms and environments (power of 10) 

 

Figure 96. Total Accuracy Error Performance summary 
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9. CONCLUSION 
 

In this paper, a prototype of Geo-location solution is developed and integrated into the 

Raspberry Pi3 platform. We proposed a Geo-location solution for low-power WSNs, 

using range-based GPS free state-of-the-art localization techniques in combination of a 

secure Hyper-visor. This approach allows to create a safe environment for each 

procedure of a node. In our case, we developed the procedure of localization. 

Localization is the most important in mobile WSNs. Without securing the topology of a 

network, no process can take place. 

 A compliance verification algorithm is developed and tested. Some preliminary 

results are reported and show the feasibility and the effectiveness of using trusted 

hyper-visor and range-based localization techniques. This solution might have a great 

impact on security and efficiency of a swarm. Future work includes more experiments, 

adding scalability, and the development of further services to be integrated into the 

platform. 

 

Table 14. Algorithms Evaluation Summary 

Summary 3D-RSSI/TOA 
Multilateration 

3D-RSSI/TOA Direct 
Method 

Hybrid 3D-
TOA/TDOA 

Chan Method 

PCi
3.1.
9G
Hz_
16G

B 

PCi
7.2.
7G
Hz_
16G

B 

PCi
7.2.
7G
Hz_
16G

B 

RPi
3+1.
4G
Hz_
1G
B 
 

PCi
3.1.
9G
Hz_
16G

B 

PCi
7.2.
7G
Hz_
16G

B 

PCi
7.2.
7G
Hz_
16G

B 

RPi
3+1.
4G
Hz_
1G
B 
 

PCi
3.1.
9G
Hz_
16G

B 

PCi
7.2.
7G
Hz_
16G

B 

PCi
7.2.
7G
Hz_
16G

B 

RPi
3+1.
4G
Hz_
1G
B 
 

PCi
3.1.
9G
Hz_
16G

B 

PCi
7.2.
7G
Hz_
16G

B 

PCi
7.2.
7G
Hz_
16G

B 

RPi
3+1.
4G
Hz_
1G
B 
 

Calculated 
Error 

Performance 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Speed 
Performance 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Overall ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
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10. FUTURE WORK 
 

Our future research goal is the implementation of the hypervisor XVisor in our proposed 

secure geo-localization system.  Alongside the implementation will follow a series of 

security, speed, performance and pressure tests in the hypervisor in order to evaluate 

its reaction in several test environments. We will create a simulator for those purposes 

to simulate the environments. 

 After the evaluation then we can conclude if this hypervisor will satisfy the safe geo-

localization system’s requirements and if it can be utilized as the main factor of security 

and data protection in a geo-localization system. Our goal is to develop a secure geo-

localization system with the usage of the most optimized and with high performance 

localization algorithm alongside with the utilization of the most secure and with high 

performance hypervisor for the creation of safe environments.  
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APPENDIX A 
Hypervisors Implementation 

[50] XMHF  
Implementation  

Requirements: 
1. A TPM (v1.2): The BIOS feature is often called something like "embedded security 

device" 
2. Virtualization extensions 

a. AMD: Secure Virtual Machine (SVM) or AMD Virtualization (AMD-V) 
b. Intel: Virtualization Technology (VT-x) 

3. 2nd-level page tables Typically turned on implicitly along with Virtualization extensions, if 
the processor supports it. 

a. AMD: Nested Page Tables (NPT) 
b. Intel: Extended Page Tables (EPT) 

4. Dynamic root of trust. 
5. AMD: Late-launch (default with AMD-V) 
6. Intel: Trusted Execution Technology (TXT). This feature is implemented partially by a 

signed software module, called an SINIT module. Some processors exist that have the 
TXT hardware support but do not (yet) have an SINIT module. Look for the 

Building 

Development Environment 
XMHF and its Apps (e.g., TrustVisor) get built in a Linux environment with a recent version of 
gcc. XMHF has been verified to build on Ubuntu 10, 11, and 12 series, both 32 and 64-bit. 
 

Build tools 
A list of packages must be installed: aptitude, install, pbuilder, texinfo, ruby, build-essential, 
autoconfli, btool, gcc-multilib (for 64-bit platforms) 
 

High-level Build Summary 
One "drives" the build from `xmhf/xmhf`.  The interesting high-level build commands include: 

1. cd xmhf/xmhf 
2. ./autogen.sh            # creates ./configure 
3. ./configure              # creates Makefile from Makefile.in 
4. make                     # Builds the selected hypapp and the XMHF core 
5. make install            # Installs both binaries and dev headers and libs 
6. make install-dev        # Installs just dev headers and libs 
7. make test                   # Runs various automated tests 
8. make clean                # Deletes all object files 
9. make init-late            # Explicitly builds the Linux kernel module for a dynamic late 

launch 
 

The functioning of make install-dev and make test are hypapp-specific. For example, in 
TrustVisor, the primary prerequisite for tee-sdk and PAL development is having successfully run 
make install-dev in xmhf/xmhf. 



Secure Geo-location Techniques using Trusted Hyper-visor 

   125 
S. Rostantis 

How do I build an XMHF hypapp? 
The preferred method for building different hypapps (e.g., TrustVisor, Lockdown) is by 
specifying which hypapp to build using `./configure`. The following describes the sequence of 
steps for building a XMHF hypapp using the helloworld hypapp as a running example. 
 

Checkout the XMHF project source tree. 
1. cd $WORK: 
2. git clone git://git.code.sf.net/p/xmhf/xmhf xmhf 
3. cd $WORK/xmhf/xmhf      //Change working directory to the XMHF source tree root. 
4. ./autogen.sh   // Generate the `./configure` script. 
5. ./configure --with-approot=src/example-hypapps/helloworld --with-apparchive=xmhfapp-

helloworld.a    //Configure the XMHF hypapp. 
6. Generate/install binaries (default install path is specified with the `--prefix=` flag to 

`configure`). 
a. make 
b. make install 
c. make install-dev # optional (hypapp-specific) 
d. make test           # optional (hypapp-specific) 

Installation 

Supported guest operating systems 
In principle, any guest should be supported so long as it: 

• Uses 'normal' 32-bit page tables. PAE is also supported on AMD. 64-bit is not yet 
supported. 

• Does not use MTRRs. XMHF does not yet virtualize these (on Intel   platforms), and an 
attempt by the guest to access MTRRs will trap and halt the system. 

The following guest OSes are known to work: 

• Windows XP 

• Windows Server 2003 

• Ubuntu 10.04 (with custom kernel to disable MTRRs) 

Install XMHF binaries 
If you have a .deb, use `dpkg -i` to install it. Otherwise, copy `init-x86.bin` and `hypervisor-
x86.bin.gz` to `/boot`. You will need to install Grub 1, if you haven't already. On most modern 
Linux distributions, you will need to downgrade from Grub 2. On Windows machines without a 
Linux installation, you will need to install Grub.  

Customize Linux Kernels 

XMHF currently does not virtualize MTRRs (on Intel Platforms). On Linux, you will need to build 
or obtain a kernel with MTRR (`CONFIG_MTRR`) features disabled. Get a 2.6.32.X version, in 
this case we used 2.6.32.46. When making a new kernel yourself, do: 
 

•  make install      //copies vmlinuz-2.6.32.46 into `/boot` 

•  make modules_install`     //places modules in `/lib/modules/2.6.32.46` 

•  in `/boot`:    mkinitramfs -o `initrd.img-2.6.32.46 2.6.32.46` 
 

[53] UberXMHF  

Implementation 

Currently runs on: 

1. Intel x86 32-bit hardware platform (pc-intel-x86_32) 

2. Raspberry PI 3 ARMv8 32-bit hardware platform (rpi3-cortex_a53-armv8_32) 
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3. PC AMD x86 32-bit/Legacy Intel x86 32-bit hardware platforms (pc-legacy-

x86_32) 

Hardware Requirements 

1. A TPM (v1.2 or above) The BIOS feature is often called something like "embedded 
security device" 

2. Hardware Virtualization extensions Intel Virtualization Technology (VT-x) 
3. Hardware Support for DMA Isolation Intel Virtualization Technology for Directed I/O  
4. 2nd-level page tables:  Intel Extended Page Tables (EPT) 
5. Dynamic root of trust: Intel Trusted Execution Technology (TXT).  

Supported OS 

1. Ubuntu 16.04 LTS with Linux Kernel 4.4.x,  
2. Ubuntu 12.04 LTS with Linux Kernel 3.2.0-27-generic and below 

Installation 

Make sure your BIOS is up to date, you could ruin your motherboard if your BIOS is 

buggy.  

Configure target system to boot uberXMHF 

You will need to install Grub 1, if you haven't already. On most modern Linux 

distributions, you will need to downgrade from Grub 2. The following commands 

accomplish the above task on Ubuntu: 

1. sudo apt-get purge grub os-prober 
2. sudo apt-get purge grub-gfxpayload-lists 
3. sudo apt-get install grub 
4. sudo update-grub 
5. grub-install /dev/sda 

 
And remove lines (if any) from “/boot/grub/menu.lst”: 

• title          Chainload into GRUB 2 

• root           b5912383-7f9e-4911-b51d-b14ce8cea70b 

• kernel         /boot/grub/core.img 
 

Get the correct SINIT module (Intel only) 

uberXMHF launches itself with a dynamic root of trust. On Intel platforms, this requires a 

signed SINIT module provided by Intel, that matches your platform CPU and chipset. 

Adding a Grub entry to boot Linux 

You will need to add a Grub entry to `/boot/grub/menu.lst`. To ensure that it doesn't get 

clobbered, put it outside the AUTOMAGIC KERNEL LIST. When booting the machine, 

first choose the uberXMHF entry, and then choose a normal Linux entry. A grub entry 

for uberXMHF looks something like this: 

1. title uberXMHF 
2. rootnoverify (hd0,1)     # should point to /boot 
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3. kernel /boot/xmhf-x86-vmx-x86pc.bin.gz serial=115200,8n1,0x3f8   # correct serial 
address 

4. modulenounzip (hd0)+1                                        # should point to where 
grub is installed 

5. modulenounzip /boot/4th_gen_i5_i7_SINIT_75.BIN              # Intel TXT AC SINIT 
module 

 

On Intel it is necessary to append one more line to provide the SINIT Authenticated 
Code module, or “ACmod”. This should be the last line. E.g. 
 

• module /i5_i7_DUAL_SINIT_18.BIN 
 

This will boot uberXMHF with debug output going to the specified serial port and then 

reload grub. 

savedefault for unattended boot 

Booting linux involves loading the grub menu twice. The first time you must select the 

uberXMHF entry, and the second time you must select an OS entry. You can automate 

this by using savedefault: 

• default saved 

Have your uberXMHF entry what you want as your default OS entry save each-other as 

the new default: 

• title uberXMHF: savedefault 1 

• title Default OS: savedefault 0 

Verifying and Building 

pc-intel-x86_32 

For verification: Execute the following within the `uxmhf/` folder in the root tree of the 

sources: 

1. Prepare for verification 

a. ./bsconfigure.sh 
b. ./configure --disable-debug-serial 
c. make uxmhf-verifyuobjs-prep 

2. Verifying individual uberobjects 

a. cd xmhf-uobjs/<uobj-name> 
b. make verify 
c. cd ../.. 
d. replace <uobj-name> with the uberobject directory name (e.g., 

`xh_hyperdep`) 
3. Performing uberobject composition check: make uxmhf-verifyuobjs-compcheck 

4. Verifying all the uberobjects: make uxmhf-verifyuobjs-all 

For Building:  Execute the following within the `uxmhf/` folder in the roottree of the 

sources: 
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1. Configure the serial debug output 

a. ./configure --enable-debug-serial=<your-serial-port-number> 
b. replace `<your-serial-port-number>` with the system serial port number. Note: if 

you omit the parameter to `--enable-debug-serial` the default port chosen is 
`0x3f8` or `COM1`. 

2. Building the uberobject binaries and the final hypervisor image: make uxmhf-image 

If everything goes well a final hypervisor image `xmhf-x86-vmx-x86pc.bin.gz` will be 

generated. 

pc-legacy-x86_32 

For verification: Use a combination of automated and manual techniques as described 

below: 

1. OS: Ubuntu 10.10, 32-bit;  

2. Verification Tools: CBMC: v4.1 32-bit; 

Change working directory to the uberXMHF (pc-legacy-x86_32) source tree root: 

1. sudo dpkg -i cbmc_4.1_i386.deb 

2. cd ./xmhf 

3. ./autogen.sh 

4. ./configure --with-approot=hypapps/verify 

5. make verifyall or make verify 

make verifyall will perform full verification of the uberXMHF (pc-legacy-x86_32) core as 

well as the uberapp. Subsequently, you can use make verify to verify the uberapp 

assuming there are no further changes to the uberXMHF (pc-legacy-x86_32) core 

For Building: A list of packages to install: 

• aptitude, install, pbuilder, texinfo, ruby, build-essential, autoconfli, btool, 

gcc-multilib (for 64-bit platforms) 

Change working directory to the uberXMHF (pc-legacy-x86_32) root directory. 

1. cd ./xmhf 

2. ./autogen.sh 

3. ./configure --with-approot=hypapps/helloworld 

4. make 

5. make install 

6. make install-dev    # optional (hypapp-specific) 

7. make test            # optional (hypapp-specific) 

Debugging 

XMHF debugging is done primarily via the serial port. Use dmesg | grep ttyS on a Linux 
guest OS on the target system to examine the serial ports that the target system 
recognizes. For machines without a physical serial port (e.g., laptops), you may 
leverage Intel Active Management Technology (AMT) Serial-Over-LAN (SOL) capability. 
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AMT SOL exposes a serial port to the underlying platform once enabled (typically in the 
BIOS). 
 

[58][59][60] TrustVisor 

Implementation 

The Trusted Execution Environment Software Development Kit. This is a set of tools and APIs 
for developing PALs and applications that use them. The current implementation is available in 
Github[ ]. There are all the executable and source files along with the instruction for the 
implementation and execution of the uberXMHF hypervisor, and also for XMHF and uxmhf-rpi. 

TrustVisor Installation 

To run TrustVisor on a given machine, installation is the same as for any other 

XMHFapp. See Installing uberXMHF for pc-legacy-x86_32 in the previous sessions. 

TrustVisor uses TPM NVRAM to securely store a master secret that is used to derive its 

cryptographic keys. For a real deployment of TrustVisor, this would need to be access 

controlled to TrustVisor's measurement, so that untrusted software would be unable to 

access this storage. [56] 

TrustVisor Building 

The TrustVisor build is primarily driven from the XMHF build process. When running 

`configure`, you will need to set `--with-approot=` to point to the TrustVisor source code. 

See Building uberXMHF for pc-legacy-x86_32 in the previous sessions. 

TrustVisor Configurations 

Disable the infineon driver 

Modern Ubuntu has a tendency to load the Infineon-specific v1.1b TPM driver, when it 

should be using tpm_tis.  Thus, we blacklist tpm_infineon.  Don't forget to reboot after 

making this change.  It is possible to manually remove this driver (`modprobe -r 

tpm_infineon`) and `modprobetpm_tis`, if you know what you'redoing. In 

“/etc/modprobe.d/blacklist.conf” add: 

• blacklist tpm_infineon 

Shut down trousers, if it is running 

See if trousers is running first, shut down if necessary.  It will probably start up again 

after the next reboot.  You may wish to uninstall it or disable it more permanently if 

you're not otherwise using it. 

1. /etc/init.d/trousers status 
2. /etc/init.d/trousers stop 

Install jTpmTools [61]  

Install packet with the command below: 

• sudo dpkg -i jtpmtools_0.6.deb  
 

Set the tpm device to be accessible by jtss 

1. chown jtss:tss /dev/tpm0 
2. /etc/init.d/jtss start 
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3. /etc/init.d/jtss status 
4. cat /var/log/jtss/tcs_daemon.log 

 
Take ownership of the TPM 

You will need to take ownership of the TPM, and set an owner password. It is important 

not to lose the owner password that you set. In TrustVisor's security model it is not 

security critical that the owner password is not compromised, so feel free to use a well 

known password or empty string if you are not using the TPM for other purposes that 

might require a strong TPM owner password. 

• jtttake_owner -e ASCII -o 'owner_password' 
 

Define the NV spaces 

Define two nv spaces. One stores TrustVisor's master secret. The other stores the root 

of a hash chain used for replay protection (see [Memoir]) 

• jtt nv_definespace \ 
--index 0x00015213 \ 
--size 20 \ 
-o 'owner_password' \ 
-e ASCII \ 
-p 11,12 \ 
-w \ 
--permission 0x00000000 \ 
--writelocality 2 \ 
--readlocality 2 
 

• jtt nv_definespace \ 
--index 0x00014e56 \ 
--size 32 \ 
-o 'owner_password' \ 
-e ASCII \ 
-p 11,12 \ 
-w \ 
--permission 0x00000000 \ 
--writelocality 2 \ 
--readlocality 2 
 

Unload Linux TPM driver 

Before running Trustvisor or PAL code that requires access to the NV RAM, we need to 

ensure the Linux TPM device driver is indeed removed. Hence, we want to stop all the 

drivers that rely on the Linux TPM.  

1. /etc/init.d/jtss stop 

2. modprobe -r tpm_tis 
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Installing TEE-SDK 

On a machine where you are planning to develop PALs, you will also need to install the 

TrustVisor development headers. The tee-sdk currently expects those headers to be 

installed in two places. First, install the headers in a ‘normal’ system location. This can 

be installed by make install-dev, when you build TrustVisor. If you directly install 

TrustVisor binary on your platform without building it, please download and uncompress 

the uberXMHF package, go to the xmhf directory and run the following commands: 

1. ./autogen.sh 

2. ./configure --with-approot=hypapps/trustvisor 

3. make install-dev 

Second, you will then need to reconfigure to point to the Trustvisor PAL cross-

compilation environment and install the headers again: 

1. ./configure --with-approot=hypapps/trustvisor --prefix=$(SYSROOT)/usr 

2. make install-dev 

Note: $(SYSROOT) depends on your configuration of building TEE-SDK, see below for 

more details. The default $(SYSROOT) is /usr/local/i586-tsvc 

Downloading and Patching Third Party Libraries 

Before installing TEE-SDK, you need to download a few third-party libraries (e.g., 

newlib, openssl), and apply patches to them so that they could be used for PAL 

development. Download the: 

1. newlib-1.19.0.tar.gz 

a. cd ../ports/newlib/newlib-1.19.0 

b. patch -p1 < ../newlib-tee-sdk-131021.patch 

2. openssl-1.0.0d.tar.gz 

a. cd ../ports/openssl/openssl-1.0.0d 

b. patch -p1 < ../openssl-tee-sdk-131021.patch 

Building and Installing TEE-SDK 

After installing TrustVisor headers, downloading and patching third party libraries, go to 

TEE-SDK directory and run make to build and install TEE-SDK. If you would like to 

override the default paths, specify your overrides as parameters to make: 

• make PREFIX=$(PREFIX) HOST=$(HOST) SYSROOT=$(SYSROOT) 

• $(PREFIX) specifies where you will install various utilities, libraries, and headers. 

The default $(PREFIX) is /usr/local. 

• $(HOST) is the host-name to use for PAL code. The default $(HOST) is i586-tsvc. 

• $(SYSROOT) points to the path where libraries to be linked against PAL code will be 

installed. The default $(SYSROOT) is $(PREFIX)/$(HOST) 
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Of course, you may install each tee-sdk component individually, either by specifying a 

target to make, or by manually performing the steps in the corresponding make recipe. 

At the time of this writing, the components installed by make are: 

1. toolchain: these are wrappers to utilities such as gcc, with names like i586-tsvc-gcc. 

They mostly serve to override the system paths with paths in $(SYSROOT). 

2. tz: This implements the TrustZone API for managing and communicating with 

services (pals) running the trusted execution environment (trustvisor). 

3. newlib: this is an implementation of libc targeted for PALs. Functions that do not 

involve IO should work as expected. IO functions currently fail gracefully. The 

toolchain i586-tsvc-gcc will link against this library by default, unless -nostdlib is 

used. 

4. openssl: This is the well-known openssl library, ported for use with pals. It is not 

installed by default, but can be installed with make openssl 

Using TEE-SDK 

Compiling applications 

The TEE-SDK installs several libraries to the development machine. There is a front-

end library for applications (tee-sdk-app), a front-end library for services (tee-sdk-svc), 

and for each device there are application and service back-end libraries (tee-sdk-app-

devname and tee-sdk-svc-devname). We use pkgconfig to simplify management of 

these libraries. The compile time flags needed to link against a package can be 

obtained using pkg-config --cflags packagename.  

The linking flags can be obtained using pkg-config --libs --static packagename. Note 

that we only support static linking for now. If you installed tz to a non-standard location 

$tzinstallprefix, you may need to set PKG_CONFIG_LIBDIR to include 

$tzinstallprefix/lib/pkgconfig. An application using the tee-sdk to communicate with a 

service running in a trusted environment must link against at least one application back-

end. It is also permissable to link against multiple back-ends; a single application can 

communicate with services running on multiple devices. 

Compiling services (PALs) 

You must compile and link using exactly one service back-end package. At the time of 

this writing, there is only one anyways: tee-sdk-svc-tv. pkgconfig will automatically pull 

in the service front-end tee-sdk-svc as a dependency. Using the compile and link flags 

from those packages is important not only to link against the corresponding libraries; 

they also reference compiler options to eliminate code-constructs that are unsupported 

inside services, and linker options to ensure the necessary layout in the final binary. 

Services to be run under TrustVisor need to be compiled somewhat specially. A PAL is 

linked together into the same binary with the application that runs it. At run-time, the 

application registers the PAL with TrustVisor. Using the raw TrustVisor interfaces for 

PAL management, you would need to keep track of which address ranges belong to 
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PAL code, data, etc., and make sure those sections are page-aligned. Things can get 

tricky if you want some code to be accessible to both the PAL code and the application 

code, and trickier still if you want to use different implementations for the same function 

in PAL and application code (such as linking the PAL against a version of libc that does 

not make system calls while linking the regular code with the standard version of libc). 

The TEE-SDK has some tools to take care of these details for you. The basic approach 

is use partial linking to link all PAL code into a single object file (.o), rewrite all symbols 

except for the PAL entry-point in that object file to be private, and then use a linker 

script to link this object file with the regular application while mapping the code and data 

of the PAL to special page-aligned sections. The TrustVisor back-end provides 

simplified functions for registering a PAL that has been built and linked this way. 

The TEE-SDK includes pkg-config files that specify the necessary compilation and link 

flags, and Makefile snippets that can be included in your own Makefiles to automate 

most of the process. Pointing your makefile at those makefile snippets and\or pkg-config 

files (rather than copying and modifying a monolithic Makefile with these things hard-

coded) will help keep your pal up to date as the build process evolves. See 

examples/newlib/Makefile for a good starting point of a Makefile that dynamically 

incorporates the TEE-SDK-provided Makefile snippets and pkg-config files. 

Compiling and running the test example 

After installation in tz, you should be able to compile and run the test example in 

../examples/test. Remember to set the PKG_CONFIG_LIBDIR environment variable if 

you installed to a non-system directory. 

Loading and unloading services 

Services are loaded and unloaded through the TrustZone service manager. The 

TrustVisor back-end provides some convenience functions for an application to load an 

unload a single PAL: 
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APPENDIX B 
Sequencing in Three-Dimensional Grids python 

The sequencing and computation of the transition matrix for the bordered symmetric 

random walk.  

import matplotlib as mpl 

import matplotlib.pyplot as plt 

import random 

import math 

import numpy as np 

from mpl_toolkits.mplot3d import Axes3D, art3d 

from urllib3.connectionpool import xrange 

 

def nodeDistancesCalculation (p1, p2): 

  dist = math.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2 + (p2[2] - p1[2])**2) 

  return dist 

 

def pointInsideTetrahedron (v1,v2,v3,v4,p): 

  def tetraCoord_Dorian(A, B, C, D): 

          v1 = B - A;v2 = C - A; v3 = D - A 

         mat = np.array((v1, v2, v3)).T 

          M1 = np.linalg.inv(mat) 

          return (M1) 

M1=tetraCoord_Dorian(v1,v2,v3,v4) 

   newp = M1.dot(p-v1) 

     return (np.all(newp>=0) and np.all(newp <=1) and np.sum(newp)<=1) 

 

def brownian_motion_simulation (xyz,cur): 

    m = 3; n = 500; d = 1000.0;t = 1.0 

dt = t / float(n - 1) 

  for j in range(1, n): 

         s = np.sqrt(2.0 * m * d * dt) * np.random.randn(1) 

         dx = np.random.randn(m) 

         norm_dx = np.sqrt (np.sum(dx ** 2)) 

         for i in range (0, m): 

              dx[i] = s * dx[i] / norm_dx 

          cur[0] += dx[0] 

        cur[1] += dx[1] 

          if cur[2] + dx[2] > 0: 

               cur[2] +=  dx[2] 

         else: 

               cur[2] += abs(dx[2]) 

          p = np.array(cur[:]) 

         xyz.append(cur[:]) 

 

mpl.rcParams['legend.fontsize'] = 10 

fig = plt.figure() 

ax = fig.gca(projection='3d') 

xyz = [] 

cur = [0,-20, 20] 
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A = np.array ([10, -40, 0]) 

B = np.array ([-30, 30, 0]) 

C = np.array ([30, 30, 0]) 

D = np.array ([0, 0, 30]) 

brownian_motion_simulation(xyz,cur) 

x, y, z = zip (*xyz) 

 

file = open("TraceOutput.txt","w") 

header = " A = " + str(A) + "\n B = " + str (B) + "\n C = " + str (C) + "\n D = " + str (C) + "\n\n" 

file.write(header) 

file.write("Node E Trace Log: \n\n") 

for i in range(0 , len(x)): 

     inputFile = "[ " + str (x[i]). ljust (10)[:15] + ", " + str (y[i]). ljust (10)[:15]   + ", " + str (z[i]). ljust 

(10) [:15]  + "] :\t\t Distances-> AE = " + str (nodeDistancesCalculation(A,[x[i],y[i],z[i]])). ljust (10)[:15] + 

", BE = " + str (nodeDistancesCalculation (B,[x[i],y[i],z[i]])). ljust (10)[:15] + ", CE =  "+ str 

(nodeDistancesCalculation (C,[x[i],y[i],z[i]])). ljust (10)[:15]+ ", DE =  " + str 

(nodeDistancesCalculation(D,[x[i],y[i],z[i]])).ljust (10)[:15] + "\n" 

file.write(inputFile) 

ax.plot(x, y, z,'C3', label='E node movement') 

ax.scatter(cur[0], cur[1], cur[2],'C7',label="End") 

ax.scatter(x[0], y[0], z[0],'C3',label="Start") 

v = np.array([A, B, C, C ,D ]) 

ax.scatter3D(v[:, 0], v[:, 1], v[:, 2]) 

verts = [ [v[0],v[1],v[4]], [v[0],v[3],v[4]],[v[2],v[1],v[4]], [v[2],v[3],v[4]], [v[0],v[1],v[2],v[3]]] 

ax.add_collection3d(Poly3DCollection(verts, facecolors='cyan', linewidths=1, edgecolors='r', alpha=.25)) 

ax.scatter(x[-1], y[-1], z[-1], c='b', marker='o') 

ax.legend() 

plt.show() 

 

Figure 97. Random Walk output example 
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APPENDIX C 
Intersection points between 3 spheres python 

 

function intersect3spheres (x1, x2, x3, y1, y2, y3, z1, z2, z3, r1, r2, r3) { 

 var a1, b1, c1, k1, a3, b3, c3, k3, a31, b31, e, f, g, h, A, B, C, x, y, z, x_, y_, z_, rootD; 

 k1 = r1 * r1 - r2 * r2 - x1 * x1 + x2 * x2 - y1 * y1 + y2 * y2 - z1 * z1 + z2 * z2; 

 a1 = 2 * (x2 - x1); 

 b1 = 2 * (y2 - y1);  

 c1 = 2 * (z2 - z1);  

 k3 = r3 * r3 - r2 * r2 - x3 * x3 + x2 * x2 - y3 * y3 + y2 * y2 - z3 * z3 + z2 * z2;   

 a3 = 2 * (x2 - x3); 

 b3 = 2 * (y2 - y3); 

 c3 = 2 * (z2 - z3); 

 if (a1 === 0) { 

  e = -c1 / b1; 

  f = k1 / b1; 

 } else if (a3 === 0) { 

  e = -c3 / b3; 

  f = k3 / b3;   

 } else {  

  a31 = a3 / a1; 

  e = - ((a31 * c1 - c3) / (a31 * b1 - b3)); 

  f = (a31 * k1 - k3) / (a31 * b1 - b3); 

 }  

 if (b1 === 0) { 

  g = -c1 / a1; 

  h = k1 / a1; 

 } else if (b3 === 0) { 

  g = -c3 / a3; 

  h = k3 / a3; 

 } else { 

  b31 = b3 / b1; 

  g = - ((b31 * c1 - c3) / (b31 * a1 - a3)); 

  h = (b31 * k1 - k3) / (b31 * a1 - a3); 

 } 

 A = g * g + e * e + 1; 

 B = -x1 * g - y1 * e - 2 * z1 - x1 * g - y1 * e + 2 * g * h + 2 * e * f; 

 C = x1 * x1 + y1 * y1 + z1 * z1 - 2 * x1 * h - 2 * y1 * f + h * h + f * f - r1 * r1; 

 rootD = Math.sqrt(B * B - 4 * A * C); 

 z = (-B + rootD) / (2 * A); 

 z_ = (-B - rootD) / (2 * A);   

 x = g * z + h; 

 x_ = g * z_ + h; 

 y = e * z + f; 

 y_ = e * z_ + f; 

 return [x, y, z, x_, y_, z_]; 

} 

 

https://stackoverflow.com/questions/1406375/finding-intersection-points-between-3-spheres
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APPENDIX D 
Random walk mobility with R 
 caculateTransitionMatrix3d = function (width , depth , height ) { 

w = width d = depth h = height 

numberOfStates = w∗d∗h 

P = matrix (0, nrow = numberOfStates, ncol = numberOfStates ) 

nodePoints = matrix ( 0 , nrow = numberOfStates , n col = 3 ) 

nodeNumber = 0 

for (z in 1: h) {for (y in 1: d) {for (x in 1: w) { 

nodeNumber = nodeNumber + 1 

nodePoints [ nodeNumber , ] = c (x , y , z ) 

}}} 

calculateNeighbourNodes = function (x , y , z ) { 

neighbourNodes = matrix (nrow = 0 , n col = 3) 

if ( x > 1 ) neighbourNodes = rbind ( neighbourNodes , c ( x−1 , y , z ) ) 

if ( x < w ) neighbourNodes = rbind ( neighbourNodes , c ( x+1 , y , z ) ) 

if ( y > 1 ) neighbourNodes = rbind ( neighbourNodes , c ( x , y−1 , z ) ) 

if ( y < d ) neighbourNodes = rbind ( neighbourNodes , c ( x , y+1 , z ) ) 

if ( z > 1 ) neighbourNodes = rbind ( neighbourNodes , c ( x , y , z−1 ) ) 

if ( z < h ) neighbourNodes = rbind ( neighbourNodes , c ( x , y , z+1 ) ) 

return ( neighbourNodes ) 

} 

neighbourNodes = list( ) 

nodeDegrees = c ( )  

nodeNumber = 0 

for (z in 1: h) {for (y in 1: d) {for (x in 1: w) { 

nodeNumber = nodeNumber + 1 

neighbourNodes [ [ nodeNumber ] ] =calculateNeighbourNodes (x,y ,z) 

nodeDegrees[[nodeNumber]]=nrow( neighbourNodes [[nodeNumber]] ) 

}}} 

nodeTransformation = function (x, y, z) {return ( x + w ∗ (y−1) + w ∗ d ∗ ( z −1) )} 

transformedNeighbourNodes = list () 

nodeNumber = 0 

for (z in 1: h) {for (y in 1: d) {for (x in 1: w) {res = c ( ) 

nodeNumber = nodeNumber + 1 

for (i in 1: nrow ( neighbourNodes [ [ nodeNumber ] ] ) ) { 

value1 = neighbourNodes [ [ nodeNumber ] ] [ i , 1 ] 

value2 = neighbourNodes [ [ nodeNumber ] ] [ i , 2 ] 

value3 = neighbourNodes [ [ nodeNumber ] ] [ i , 3 ] 

res = c (res, nodeTransformation (value1,value2 , value3 ) ) 

} 

TransformedNeighbourNodes [ [ nodeNumber ] ] = res 

}}} 

for ( nodeNumber in 1 : numberOfStates ) { 

     P [ nodeNumber , transformedNeighbourNodes [ [ nodeNumber ] ] ] = 1 / nodeDegrees[ 

nodeNumber ] 

} 

return ( P ) 

} 
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APPENDIX E 
Way points output example 
 [ -1.762666719825, -22.60864158980, 18.895749148212] :Distances-> AE = 28.246575218699, BE = 62.626396164657, CE =  64.292966201223, DE =  25.249991197641 

[ -1.435704363900, -20.07952591316, 18.227263374445] : Distances-> AE = 29.322921959861, BE = 60.465783969079, CE =  61.874029727047, DE =  23.320504616597 

[ -1.635140021379, -19.78191325741, 18.451133156449] : Distances-> AE = 29.742088521229, BE = 60.193425587293, CE =  61.801822679420, DE =  22.964627155337 

[ -2.170852646725, -16.56715680376, 19.083690396634] : Distances-> AE = 32.579365149776, BE = 57.507814898071, CE =  59.729817444538, DE =  19.958684854737 

[ -0.911234804309, -14.79329197055, 16.260585835480] : Distances-> AE = 31.919270454529, BE = 55.830116584891, CE =  56.800969132575, DE =  20.209981142468 

[ -2.933428126028, -16.52180310888, 16.717485224969] : Distances-> AE = 31.590720229147, BE = 56.359132265832, CE =  59.400026640406, DE =  21.400938701098 

[ -3.233030907304, -16.21198961408, 17.072244905087] : Distances-> AE = 32.131668042807, BE = 56.066747405224, CE =  59.425952861336, DE =  20.985898786779 

[ -8.211052570226, -14.60776864022, 18.067570130518] : Distances-> AE = 36.094943407144, BE = 52.830373305313, CE =  61.452214378376, DE =  20.571610815576 

[ -7.066307283342, -15.24110842872, 16.203182664678] : Distances-> AE = 34.158522869004, BE = 53.247115245307, CE =  60.689473188916, DE =  21.738819042053 

[ -7.215896947749, -19.73667313454, 17.275849294304] : Distances-> AE = 31.708744727779, BE = 57.369913502002, CE =  64.476465543306, DE =  24.566429255419 

[ -6.510211581422, -19.52333330373, 17.108235036611] : Distances-> AE = 31.377901005664, BE = 57.419704000717, CE =  63.861160319091, DE =  24.284583628194 

[ -6.921649413950, -19.21862076507, 16.982969637673] : Distances-> AE = 31.727420309705, BE = 56.951770415875, CE =  63.828693259197, DE =  24.222049751724 

[ -8.608554716747, -19.87745089706, 16.712622340045] : Distances-> AE = 32.101511436801, BE = 56.786140780799, CE =  65.250995017596, DE =  25.412096992472 

[ -9.237954874666, -17.28234388679, 15.501404815222] : Distances-> AE = 33.563139875210, BE = 53.916380743341, CE =  63.368215198322, DE =  24.376802145069 

[ -8.017354464469, -14.73585393614, 14.408447230251] : Distances-> AE = 34.212651020066, BE = 51.885804260165, CE =  60.450138291492, DE =  22.902399036091 

[ -7.773636624478, -13.87057299672, 12.780614015330] : Distances-> AE = 34.088021488307, BE = 50.813211850567, CE =  59.285908051644, DE =  23.437778805082 

[ -7.756594041074, -13.87168749046, 12.810773421726] : Distances-> AE = 34.089606366140, BE = 50.829223755406, CE =  59.282385853693, DE =  23.410638079947 

[ -6.318883068392, -14.81175210539, 13.297957130046] : Distances-> AE = 32.826657466645, BE = 52.399657343502, CE =  59.194510369827, DE =  23.200743946983 

[ -5.847657978464, -15.31094916685, 12.753802494379] : Distances-> AE = 31.989951117649, BE = 52.906306028603, CE =  59.167526355324, DE =  23.791838866006 

[ -4.854403492534, -14.67398669539, 13.818364886816] : Distances-> AE = 32.450076443196, BE = 53.094381238712, CE =  58.322737746319, DE =  22.377140875034 

[ -5.779379780283, -13.77367476000, 12.496636681137] : Distances-> AE = 33.060170752501, BE = 51.564900602668, CE =  57.900471049872, DE =  23.010499223427 

[ -6.789397403698, -13.64930767381, 13.007996080657] : Distances-> AE = 33.844509352077, BE = 51.119488410208, CE =  58.548525034925, DE =  22.828221881584 

[ -6.807716379025, -13.38795293836, 12.618780357379] : Distances-> AE = 33.910676731616, BE = 50.790059041561, CE =  58.279979949621, DE =  22.971484114922 

[ -9.410265048017, -15.63417315707, 15.238292503697] : Distances-> AE = 34.679352147958, BE = 52.331830691756, CE =  62.192059857451, DE =  23.471013331034 

[ -7.967557587745, -15.16523952138, 13.868788797373] : Distances-> AE = 33.644342115803, BE = 52.131283145339, CE =  60.611695182605, DE =  23.530457677631 

[ -6.722832997596, -14.69323988697, 13.073492032766] : Distances-> AE = 33.030311000877, BE = 52.059853910503, CE =  59.304033158753, DE =  23.400736181891 

[ -5.853318098042, -17.47807643688, 10.180947461185] : Distances-> AE = 29.363522045354, BE = 54.229896553730, CE =  60.359587904436, DE =  27.065463828035 

[ -6.780783829204, -17.74870978155, 10.340784832722] : Distances-> AE = 29.726191368294, BE = 54.092542150894, CE =  61.153063503399, DE =  27.340089049629 

[ -10.54429840251, -17.40045290905, 13.720079936016] : Distances-> AE = 33.482059659135, BE = 53.043075458394, CE =  63.866138621230, DE =  26.057509234982 

[ -10.63939466325, -17.29566405599, 13.833632412808] : Distances-> AE = 33.657701473164, BE = 52.944142860522, CE =  63.873387438170, DE =  25.955503364464 

[ -10.39633501875, -18.13911368389, 13.448207606599] : Distances-> AE = 32.783580044790, BE = 53.689218981076, CE =  64.265795233924, DE =  26.665953170544 

[ -11.06415834911, -20.09595883895, 14.563396875925] : Distances-> AE = 32.433965993428, BE = 55.500123599748, CE =  66.392489947892, DE =  27.650531236151 

[ -11.42314336957, -19.97983844946, 13.694994445045] : Distances-> AE = 32.362181836097, BE = 55.051219119579, CE =  66.343152856197, DE =  28.205236305616 

[ -9.162960293850, -18.93527464371, 15.098801900094] : Distances-> AE = 32.232212464826, BE = 55.288490185478, CE =  64.469933940185, DE =  25.778870650054 

[ -8.827541078686, -20.22569446024, 12.771617624540] : Distances-> AE = 30.143219459715, BE = 55.982208044487, CE =  64.755791609543, DE =  27.996809767725 

[ -15.18670726571, -16.28999650908, 13.976003642759] : Distances-> AE = 37.307682402560, BE = 50.571989245680, CE =  66.181046895245, DE =  27.436627400197 

[ -14.86539710722, -14.94547378950, 13.853011549237] : Distances-> AE = 37.919957620175, BE = 49.407061720649, CE =  64.999272309274, DE =  26.553200446975 
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ACRONYMS 

AIK Attestation Identity Key 

ALB-DRM Authenticated Location based on DRM 

APIT   Approximate Point In Triangle 

AOA Angle Of Arrival 

AWS Authenticated Weight-based 

CPE Convex Position Estimation 

CPU Central Processing Unit 

CSLT Collaborative Secure Localization Trust  

DB Data Base 

DCP Degree of CoPlanarity 

DFPLE Distributed Fermat-Point Location Estimation 

DLP Discrete Logarithm Problem 

DRTM Dynamic Root of Trust Management 

DV hop Distance Vector 

DoS Denial of Service Attacks 

dB decibel 

ECC Elliptic Curve Cryptography 

FP-MPP-APIT Fermat Point Mid Perpendicular Plane APIT 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

IDCP Improved Degree of CoPlanarity 

IEC International Electrotechnical Commission 

IFP Integer Factorization Problem 

IOMMU IO Memory Management Unit 

IP Instruction Pointer 

ISO International Organization for Standardization   

LDEA Location-Dependent Encryption Algorithm 

https://en.wikipedia.org/wiki/Satellite_navigation
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
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MAINV Mutual Authentication Insider Node Validation 

MMSE Minimum Mean Square Error 

MMU Memory Management Unit 

MPA Multilateral Privacy Algorithm 

MPRSA Mean Power with Rivest-Shamir-Adelman 

µTPM μ(micro)-Trust Platform Module 

NPT Nested Page Table 

OWR One Way Ranging 

PAL Piece of Application Logic 

PCR Platform Configuration Registers 

PPT Protection Page Table 

RAM Random Access Memory 

RF Radio Frequency 

RSA Rivest–Shamir–Adleman 

RSSI Received Signal Strength Indication 

S. DV-HOP  Secure DV-Hop 

TCB Trusted Computing Base 

TD Tolerance Distance 

TDOA Time Difference Of Arrivals 

TGS Trust Geolocation Server 

TOA Time Of Arrival 

TOA-ECC   TOA - Elliptic Curve Cryptography 

TPM Trust Platform Module 

TPMBG TPM Based Geo-location 

TRTM TrustVisor Root of Trust for Measurement 

TWR Two Way Rangin 
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