
Secure Geo-location Techniques using Trusted Hyper-visor

 i
S. Rostantis

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

MASTER STUDIES

TELECOMMUNICATION SYSTEMS AND INTERNET TECHOLOGIES

MSc THESIS

Secure Geo-location Techniques using Trusted Hyper-visor

Savvas G. Rostantis

Supervisors Eustathios Hadjiefthymiades, Professor

Anestis Papakotoulas, PhD student

ATHENS

JANUARY 2020

Secure Geo-location Techniques using Trusted Hyper-visor

 ii
S. Rostantis

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ασφαλείς τεχνικές υπολογισμού γεωγραφικής θέσης
χρησιμοποιώντας Hyper-visor.

Σάββας Γ. Ροστάντης

Επιβλέποντες: Ευστάθιος Χατζηευθυμιάδης, Καθηγητής

Ανέστης Παπακοτούλας, Yποψήφιος Διδάκτωρ

ΑΘΗΝΑ

ΙΑΝΟΥΑΡΙΟΣ 2020

Secure Geo-location Techniques using Trusted Hyper-visor

 iii
S. Rostantis

MSc THESIS

Secure Geo-location Techniques using Trusted Hyper-visor

Savvas G. Rostantis

S.N.: M1470

SUPERVISOR: Eustathios Hadjiefthymiades, Professor
Anestis Papakotoulas, PhD student

January 2020

Secure Geo-location Techniques using Trusted Hyper-visor

 iv
S. Rostantis

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ασφαλείς τεχνικές υπολογισμού γεωγραφικής θέσης χρησιμοποιώντας Hyper-visor

Σάββας Γ. Ροστάντης

Α.Μ.: Μ1470

ΕΠΙΒΛΕΠΟΝΤΕΣ: Ευστάθιος Χατζηευθυμιάδης, Καθηγητής
Ανέστης Παπακοτούλας, Yποψήφιος Διδάκτωρ

Ιανουάριος 2020

Secure Geo-location Techniques using Trusted Hyper-visor

 v
S. Rostantis

Secure Geo-location Techniques using Trusted Hyper-visor

 i
S. Rostantis

ABSTRACT

For many, geo-location is a simple process where with the utilization of GPS a person

can be located wherever and whenever is requested. However, even if the utilization of

GPS for geolocation is the most common way and accurate as a system, it is a huge

consumption of energy in order to achieve this process and it lucks on safety

mechanisms and techniques. The purpose of this paper is to present another view of

how we could locate an unknown node position in a system and how a safe

environment could be created for this node. Our main idea was about the creation of a

framework where we could create a three-dimensional field in which an unknown node

could be located and afterwards a safe environment would be created for the new node.

After a research on papers relevant with three-dimensional geo-localization

mechanisms and techniques, alongside with the concept of hypervisors for the creation

of safe environment with the utilization of cryptography, we came to the conclusion of

the creation of a framework which would satisfy those requirements. We created a 3-

Dimentional field of four base nodes stations, where we utilized two localization GPS-

free algorithms for the location of a fifth unknown node alongside with a hypervisor for

the trust environment creation. We utilized a TPM for the cryptography mechanisms and

safety keys creation. In this paper we created a simulation where we compare the

performance of those two geolocation algorithms in terms of accuracy and computation

speed and accuracy, alongside with the hypervisor’s security mechanisms performance

and its ability for data integrity insurance. Except our proposed framework components,

we present also further information that we found in relevant papers, such as a variety

of hypervisors and a variety of localization techniques, for more information for future

work alongside with implementation steps and guidance.

SUBJECT AREA: Geolocation and System’s Security

KEYWORDS: GPS, Hypervisors, TPM, Geolocation, Security, Cryptography,

Triangulation, Multilateration, Tetrahedron, Localization, Trust

Secure Geo-location Techniques using Trusted Hyper-visor

 ii
S. Rostantis

ΠΕΡΙΛΗΨΗ

Για πολλούς, η γεωγραφική θέση είναι μια απλή διαδικασία όπου με τη χρήση του GPS ένα

άτομο μπορεί να εντοπιστεί όπου και όποτε ζητείται. Ωστόσο, ακόμη και αν η χρήση του GPS

για γεωγραφική τοποθέτηση είναι ο πιο συνηθισμένος τρόπος και ταυτόχρονα ακριβής ως

σύστημα, αποτελεί μια τεράστια κατανάλωση ενέργειας για να επιτευχθεί αυτή η διαδικασία και

υστερεί σε μηχανισμούς και τεχνικές ασφαλείας. Σκοπός αυτής της εργασίας είναι να

παρουσιάσουμε μια άλλη όψη για το πώς μπορούμε να εντοπίσουμε μια άγνωστη θέση ενός

κόμβου σε ένα σύστημα και πώς θα μπορούσε να δημιουργηθεί ένα ασφαλές περιβάλλον για

αυτόν τον κόμβο. Βασική μας ιδέα ήταν η δημιουργία ενός μηχανισμού όπου θα μπορούσαμε να

δημιουργήσουμε ένα τρισδιάστατο πεδίο στο οποίο θα μπορούσε να εντοπιστεί άγνωστος

κόμβος και στη συνέχεια θα δημιουργηθεί ένα ασφαλές περιβάλλον για τον νέο κόμβο. Μετά

από μια έρευνα σε δημοσιεύσεις σχετικά με τρισδιάστατους μηχανισμούς και τεχνικές γεω-

εντοπισμού, παράλληλα με την έννοια των hypervisors για τη δημιουργία ασφαλούς

περιβάλλοντος με την αξιοποίηση της κρυπτογραφίας, καταλήξαμε στο συμπέρασμα της

δημιουργίας ενός πλαισίου που θα ικανοποιούσε αυτά απαιτήσεις. Δημιουργήσαμε ένα

τρισδιάστατο πεδίο τεσσάρων σταθμών κόμβων, όπου χρησιμοποιήσαμε δύο αλγορίθμους

εντοπισμού, χωρίς GPS, για τον εντοπισμό της θέση ενός πέμπτου άγνωστου κόμβου

παράλληλα με έναν hypervisor για τη δημιουργία περιβάλλοντος εμπιστοσύνης.

Χρησιμοποιήσαμε ένα TPM για τη δημιουργία κρυπτογραφικών μηχανισμών και κλειδιών

ασφαλείας. Σε αυτή την εργασία δημιουργήσαμε μια προσομοίωση όπου συγκρίνουμε την

απόδοση αυτών των δύο αλγορίθμων γεωγραφικής τοποθέτησης από την άποψη της

ταχύτητας και της ακρίβειας του υπολογισμού, παράλληλα με την απόδοση των μηχανισμών

ασφαλείας του hypervisor και την ικανότητά του για ασφάλιση ακεραιότητας δεδομένων. Εκτός

από τα συστατικά του προτεινόμενου μηχανισμού, παρουσιάζουμε και άλλες πληροφορίες που

βρήκαμε σε σχετικά έγγραφα, όπως μια ποικιλία από hypervisors και μια ποικιλία τεχνικών

εντοπισμού, για περισσότερες πληροφορίες για μελλοντικές εργασίες παράλληλα με τα βήματα

υλοποίησης και εκτέλεσης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Γεο-Εντοπισμός και ασφάλεια συστημάτων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: GPS, Hypervisors, TPM, Γεω-τοποθέτηση, Ασφάλεια,

Κρυπτογραφία, Τριγωνισμός, Multilateration, Τετράεδρο,

Εντοπισμός, Εμπιστοσύνη

Secure Geo-location Techniques using Trusted Hyper-visor

 iii
S. Rostantis

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor doctor Anestis Papakotoulas and professor

Eustathios Xatzieuthimiades of the department of Informatics and Telecommunications

at National and Kapodistrian University of Athens. The door to Prof. Xatzieuthimiades

and PhD student. Papakotoulas office was always open whenever I ran into a trouble

spot or had a question about my research or writing. They consistently allowed this

paper to be my own work but steered me in the right the direction whenever they

thought I needed it. I would also like to thank the experts who were involved in the

validation survey for this research project. Without their passionate participation and

input, the validation survey could not have been successfully conducted. Finally, I must

express my very profound gratitude to my parents and to my friends and girlfriend for

providing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them. Thank you.

Author

Savvas Rostantis

Secure Geo-location Techniques using Trusted Hyper-visor

 iv
S. Rostantis

CONTENTS

ABSTRACT ... I

ACKNOWLEDGEMENTS .. III

LIST OF FIGURES.. VII

LIST OF TABLES ... X

1. INTRODUCTION ... 1

1.1 Motivation and objective .. 1
1.2 Research questions .. 2
1.3 Thesis structure and reading guide .. 3
1.4 Thesis concept .. 4

2. INTRODUCING GEO-LOCATION .. 5

2.1 Overview .. 5
2.2 Why we need Geo-location? .. 6

2.1.1 The History of Geo-location ... 7
2.1.2 Applications .. 9

3. INTRODUCING LOCALIZATION TECHNIQUES ... 12

3.1 Localization techniques classification ... 12
3.1.1 GPS Based Localization .. 12
3.1.2 GPS Free Localization ... 13
3.1.3 Range Base Positioning techniques .. 15
3.1.4 Range Free Positioning techniques ... 18

3.2 Localization Algorithms ... 21
3.2.1 FP-MPP-APIT .. 21
3.2.2 3D-IDCP ... 22
3.2.3 Novel Centroid ... 22
3.2.4 DFPLE .. 23
3.2.5 CPE .. 25
3.2.6 3D DV-Hop ... 26
3.2.7 Enhanced APIT algorithm .. 28
3.2.8 Hybrid 3D Localization Algorithm ... 29
3.2.9 3D-TDOA Fictitious Point Method .. 30
3.2.10 3D-TDOA CHAN Method ... 33
3.2.11 TOA/RSSI Direct Location Method .. 34
3.2.12 Hybrid 3D-TOA/TDOA.. 34
3.2.13 3D-RSSI/TOA Multilateration ... 34
3.2.14 Localization Algorithms Summary .. 35

4. INTRODUCING SECURITY IN GEO-LOCATION... 36

4.1 Attacks in Localization ... 36
4.1.1 Attacks on Nodes ... 37
4.1.2 Attacks on Information ... 39
4.1.3 Denial of Service Attacks (DoS) ... 40
4.1.4 Localization attacks summary .. 42

4.2 Secure Geo-location Schemes .. 42
4.2.1 Location-Dependent data Encryption Algorithm (LDEA) ... 43

Secure Geo-location Techniques using Trusted Hyper-visor

 v
S. Rostantis

4.2.2 Mutual Authentication Insider Node Validation .. 44
4.2.3 TPM Based Geo-location ... 46
4.2.4 Authenticated Location based on DRM ... 47
4.2.5 TOA-ECC Elliptic Curve Cryptography .. 49
4.2.6 Collaborative localization based on Trust model ... 50
4.2.7 Secure DV-Hop Localization algorithm .. 51

4.4 Conclusion ... 52

5. HYPERVISORS AND GEOLOCATION .. 55

5.1 Hypervisors Overview .. 55
5.2 Trust Platform Module .. 57

5.2.1 Introduction on Trust Platform Module ... 57
5.2.2 TPM implementations .. 58

5.3 Trusted Hypervisors ... 60
5.3.1 XMHF- uberXMHF ... 60
5.3.2 Xvisor ... 65
5.3.3 TGVisor .. 68
5.3.4 TrustVisor ... 72
5.3.5 SecVisor ... 77
5.3.6 Lockdown ... 80
5.3.7 Credo.. 84
5.3.8 Hypervisors Summary .. 88

6. PROPOSED SECURE GEO-LOCALIZATION FRAMEWORK 89

6.1 Introduction ... 89
6.2 Framework Overview .. 91

6.2.1 Trust Field Creation .. 91
6.2.2 Node Position Calculation .. 92
6.2.3 Verification ... 94
6.2.4 Node Access .. 95

6.3 Framework Implementation Overview .. 96
6.3.1 Simulation Overview .. 96
6.3.2 Random Movement .. 96
6.3.3 Calculate Metrics .. 98
6.3.4 Calculate Position .. 98

7. PROPOSED FRAMEWORK SIMULATION .. 103

7.1 Framework simulation overview ... 103
7.1.1 Localization algorithms simulation process ... 103
7.1.2 Hypervisor simulation process ... 104
7.1.3 Framework Folder Structure .. 104
7.1.4 Framework Implementation ... 105

7.2 Framework Requirements .. 107
7.2.1 Localization simulation ... 107
7.2.2 Hypervisor simulation ... 107

7.3 Framework Execution ... 107
7.4 Simulation input data .. 108

7.4.1 Field input ... 108
7.4.2 Nodes coordinates input .. 108
7.4.3 Brownian motion input.. 108
7.4.4 Extra parameters input ... 108

Secure Geo-location Techniques using Trusted Hyper-visor

 vi
S. Rostantis

7.5 Simulation output data ... 108
7.5.1 Graphics ... 108
7.5.2 Statistics files ... 110
7.5.3 Summary files .. 110

8. VALIDATION .. 111

8.1 Localization algorithms accuracy performance validation .. 111
8.1.1 3D-RSSI Multilateration ... 111
8.1.2 3D-TOA Multilateration... 112
8.1.3 3D-RSSI/TOA Direct method ... 113
8.1.4 Hybrid 3D-TOA/TDOA.. 115
8.1.5 Chan method .. 116
8.1.7 Performance Summary .. 117

8.2 Localization algorithms time validation .. 118
8.2.1 3D-RSSI Multilateration ... 118
8.2.2 3D-TOA Multilateration... 118
8.2.3 3D-RSSI Direct method ... 118
8.2.4 3D-TOA Direct method... 118
8.2.5 Hybrid 3D-TOA/TDOA.. 119
8.2.6 Chan method .. 119
8.2.7 Performance Summary .. 120

8.3 Summary .. 121

9. CONCLUSION .. 122

10. FUTURE WORK ... 123

APPENDIX A .. 124

Hypervisors Implementation .. 124

APPENDIX B .. 134

Sequencing in Three-Dimensional Grids python .. 134

APPENDIX C .. 136

Intersection points between 3 spheres python.. 136

APPENDIX D .. 137

RANDOM WALK MOBILITY ALGORITHM R ... 137

APPENDIX E .. 138

Way points output example ... 138

ACRONYMS ... 139

REFERENCES .. 141

Secure Geo-location Techniques using Trusted Hyper-visor

 vii
S. Rostantis

LIST OF FIGURES
Figure 1. GPS Battery consumption. ... 2

Figure 2. Proposed framework concept. .. 4

Figure 3. Thesis concept ... 4

Figure 4. GPS Geo-location .. 5

Figure 5. GPS Market Size, from Grand View Research ... 7

Figure 6. GPS Trilateration Model ... 13

Figure 7 .Classification of localization techniques ... 13

Figure 8. Range Based Vs Range Free .. 14

Figure 9. RSSI range performance ... 15

Figure 10. TOA Overview .. 16

Figure 11. TOA Trilateration .. 16

Figure 12. TDOA Trilateration ... 17

Figure 13. AOA Trilateration .. 18

Figure 14. The APIT principle .. 20

Figure 15. Fermat Point in Triangle ... 21

Figure 16. Mid-Perpendicular plane model .. 21

Figure 17. DFPLE Operation ... 25

Figure 18. CPE Algorithm .. 25

Figure 19. Improved CPE algorithm .. 26

Figure 20. PIT diagram .. 28

Figure 21. 3D localization algorithm based on APIT and DV-Hop 29

Figure 22. The invisible node attacks .. 37

Figure 23. The stolen identity attacks .. 38

Figure 24. Wormhole attack .. 39

Figure 25. Selective forwarding ... 40

Figure 26. LDEA Process .. 43

Figure 27. Propagation time estimation process ... 46

Figure 28. TPM Based Localization Framework .. 46

Figure 29. CSLT five sub-processes ... 51

Figure 30. Hypervisor Overview .. 55

Figure 31. Hypervisor types .. 56

Figure 32. Trust Platform Module overview ... 57

Figure 33. XMHF platform architecture ... 61

Figure 34. Porting status of several HyperVisors. ... 63

Figure 35. XMHF Application Benchmarks .. 63

Figure 36. XMHF performance comparison with Xen .. 64

Figure 37. XVisor Architecture Overview ... 66

Figure 38. TGVisor architecture .. 70

Figure 39. TGVisor Attestation Protocol .. 71

Figure 40. TGVisor comparison with other HyperVisors .. 72

Figure 41. TGVisor Javascript performance .. 72

Figure 42. TrustVisor Architecture Overview ... 73

Secure Geo-location Techniques using Trusted Hyper-visor

 viii
S. Rostantis

Figure 43. TrustVisor mode types ... 73

Figure 44. Comparison between TrustVisor and Linux Native. 77

Figure 45. SecVisor VS Xen performance ... 80

Figure 46. Lockdown Overview ... 80

Figure 47. Lockdown protection mechanism ... 82

Figure 48. Credo comparison with Hyper-V .. 85

Figure 49. Credo Performance Evaluation CPU/Memory and Disk 87

Figure 50. Proposed framework high level overview. .. 90

Figure 51. Framework overview .. 91

Figure 52. Trust field representation.. 92

Figure 53. Intersection point calculation .. 93

Figure 54. Verification and access overview. .. 95

Figure 55. Simulation Movement steps ... 96

Figure 56. Unknown node movement.. 96

Figure 57. Geolocation simulation process ... 103

Figure 58. Hypervisor simulation process ... 104

Figure 59. Simulation folder structure.. 105

Figure 60. Python Simulator overview ... 105

Figure 61. Base stations communication process ... 106

Figure 62. Base communication architecture .. 107

Figure 63. TDOA, TOA and RSSI simulated values .. 108

Figure 64. X, Y, Z performance from algorithms ... 109

Figure 65. time performance algorithm .. 109

Figure 66. Unknown node motion ... 109

Figure 67. Statistics files structure... 110

Figure 68. Summary files structure.. 110

Figure 69. X, Y, Z RSSI Mult Alg, PC-Intel_Core_i3-1.7GHz_RAM4GB 111

Figure 70. X, Y, Z RSSI Mult Alg, PC-Intel_Core_i7-2.7GHz_RAM8GB 111

Figure 71. X, Y, Z RSSI Mult Alg, PC-Intel_Core_i7-2.7GHz_RAM16GB 112

Figure 72. X, Y, Z RSSI Mult Alg, Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 112

Figure 73. X, Y, Z TOA Mult Alg, PC-Intel_Core_i3-1.7GHz_RAM4GB 112

Figure 74. X, Y, Z TOA Mult Alg, PC-Intel_Core_i7-2.7GHz_RAM8GB 113

Figure 75. X, Y, Z TOA Mult Alg, PC-Intel_Core_i7-2.7GHz_RAM16GB 113

Figure 76. X, Y, Z TOA Mult Alg, Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB........ 113

Figure 77. X, Y, Z RSSI Direct Alg, PC-Intel_Core_i3-1.7GHz_RAM4GB 114

Figure 78. X, Y, Z RSSI Direct Alg, PC-Intel_Core_i7-2.7GHz_RAM8GB 114

Figure 79. X, Y, Z RSSI Direct Alg, PC-Intel_Core_i7-2.7GHz_RAM16GB 114

Figure 80. X, Y, Z RSSI Direct Alg, Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 114

Figure 81. X, Y, Z Hybrid 3D-TOA/TDOA, PC-Intel_Core_i3-1.7GHz_RAM4GB 115

Figure 82. X, Y, Z Hybrid 3D-TOA/TDOA, PC-Intel_Core_i7-2.7GHz_RAM8GB 115

Figure 83. X, Y, Z Hybrid 3D-TOA/TDOA, PC-Intel_Core_i7-2.7GHz_RAM16GB 115

Figure 84. X, Y, Z Hybrid 3D-TOA/TDOA, Raspberry-Pi3ModelB1.4GHzRAM1GB 116

Figure 85. X, Y, Z Chan Alg, PC-Intel_Core_i3-1.7GHz_RAM4GB 116

file:///C:/Users/srostantis/Desktop/Paper/Savvas_Rostantis_M1470.docx%23_Toc31887822

Secure Geo-location Techniques using Trusted Hyper-visor

 ix
S. Rostantis

Figure 86. X, Y, Z Chan Alg, PC-Intel_Core_i7-2.7GHz_RAM8GB 116

Figure 87. X, Y, Z Chan Alg, PC-Intel_Core_i7-2.7GHz_RAM16GB 117

Figure 88. X, Y, Z Chan Alg, Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB 117

Figure 89. RSSI Multilateration method average execution time 118

Figure 90. TOA Multilateration method average execution time 118

Figure 91. RSSI Direct method average execution time.. 118

Figure 92. TOA Direct method average execution time ... 119

Figure 93. X, Y, Z error statistics TOA/TDOA Alg ... 119

Figure 94. Chan method average execution time .. 119

Figure 95. Total Time Performance summary ... 121

Figure 96. Total Accuracy Error Performance summary ... 121

Figure 97. Random Walk output example ... 135

Secure Geo-location Techniques using Trusted Hyper-visor

 x
S. Rostantis

LIST OF TABLES
Table 1. Thesis Chapter Structure... 3

Table 2. Positioning Technique Summary ... 20

Table 3. Localization Algorithms Summary ... 35

Table 4. Localization attack summary ... 42

Table 5. Secure Localization algorithms VS Localization attacks 53

Table 6. Localization frameworks summary. ... 54

Table 7. XVisor Memory Footprint ... 67

Table 8. Summary of the hypervisors that are presented in this paper. 88

Table 9. Localization algorithms simulated .. 92

Table 10. JSON input data simulation ... 105

Table 11. Nodes Coordinates input ... 108

Table 12. Performance Overview .. 117

Table 13. Execution Time Overview in milli seconds... 120

Table 14. Algorithms Evaluation Summary ... 122

Secure Geo-location Techniques using Trusted Hyper-visor

 xi
S. Rostantis

Secure Geo-location Techniques using Trusted Hyper-visor

 1
S. Rostantis

1. INTRODUCTION
The current research has as its goal to define how geo-location algorithms and

schemes are utilized in order to achieve the location calculation of a node. Also, how to

achieve such geo-location process as secure as possible from attacks. Finally, we

present our proposed scheme for a secure and protected localization environment. In

the current chapter an overview of the context and motivation behind the research will

be given, as well as the adopted research method and approach. Also, an outline of the

overall structure of the thesis will be given.

1.1 Motivation and objective

As a robust process, geo-location enables mobile app developers to identify the

physical and real-world geographic location of various individuals and devices. A mobile

developer can use geo-location to identify the exact latitudinal and longitudinal location

of an internet-connected device through its GPS Location or Geo Tag. They can even

us geo-location to make their mobile apps standout in the crowd and deliver richer user

experience. There are also many reasons why most enterprises nowadays opt for geo-

location-based mobile app development.

Geo-location allows users to share their physical location with your application if they

choose to. Especially useful in social networking, geo tagging, and mapping, but

applicable to any type of application, geo-location enables developers to enhance the

user experience, making content, social graphs and advertisements more relevant to

the location of the user. It is useful to track moving vehicles, such as planes or cars. In

case of emergency, knowing were the location of trapped people in a burning building or

during an earthquake can save a lot of lives. Geo-location can apply to many

applications as we will see in the next chapters.

A system can adopt this geo-location concept to develop a safe environment were a

user can access and utilize the system’s data only if he is inside a specific geographical

scope. Imagine having a system that ensures that your personal data will be safe and

accessed only by you and only in your house. We can have a system that has a specific

geographical scope, where if a node enters this scope, the system can calculate its

geological position and if it is authorized can access the system data. The system will

be also responsible of the security and the data integrity of the user.

The main objective of this paper is to describe a proposed geo-localization framework,

further information is provided at chapters 8-9-10, where it will be capable of:

1. Specify a geographical 3D field.

2. Calculate the position of a node when it enters the geographical fixed field.

3. Verify if the unknown node can access the framework data.

4. Give a safe access and interaction with the framework to the new nodes.

5. Ensuring that the data is full protected from attacks inside the fixed field.

6. Ensuring data integrity and no data leakage.

Secure Geo-location Techniques using Trusted Hyper-visor

 2
S. Rostantis

In order to achieve a framework with the above requirements, we must answer some

specific questions where are presented in the next section.

1.2 Research questions

To reach the objective stated in the previous section, several questions need to be

answered. The main research questions are as follows:

“How can we achieve geo-localization in a 3D space environment with low costs

and high accuracy? “

As we will show in the next chapters there is a variety of algorithms and techniques that

calculates the position of an unknow node in a system. However, there is a tradeoff

between accuracy and energy consumption and hardware size. The more accuracy is

needed the more energy and hardware is necessary in order to have high accuracies

and low computations errors.

“Why to avoid the use of GPS in a geo-location system?”

GPS is expensive because it is a very slow communication channel. You need to

communicate with three or four satellites for an extended duration at 50 bits per second.

Using your GPS is a noticeable battery hog. New mechanisms and frameworks need to

be adopted in order to achieve the position calculation of an unknown node with the

minimal use of GPS in order to consume to the minimum of basic component of the

modern devices. The battery.

Figure 1. GPS Battery consumption.

“How a system can create a safe environment for a user that ensures data

integrity? “

In order to answer this question, we adopted the concept of hypervisors as we will see

on the next chapters. With the utilization of hypervisors, a system can create an

environment (such as a Virtual Machine) where the user can be sure that no other can

access its memory and data except from him.

“How can we ensure that the user’s data in the system will be fully protected? “

Secure Geo-location Techniques using Trusted Hyper-visor

 3
S. Rostantis

In most systems that data between nodes is transmitted there is a variety of attacks that

can harm the user’s data and the system itself. We will see that we can utilize specific

components for protection.

“Is there a system that calculate an unknow node position with low cost,

providing a safe interaction between them and guarantees data protection and

integrity, only inside a specific 3D geographical environment? “

As we will see on chapter 8, we propose a system where satisfies the requirement of

the above question. A system that calculates unknow positions, provides safety and

data integrity for users inside its scope.

1.3 Thesis structure and reading guide

The following table gives an overview of the research structure of this paper. We start

with a short introduction in the geo-location process and application. We continue with a

brief of positioning techniques and algorithms in order to achieve the position calculation

process.

We present the main security problems in geo location systems alongside with some

mechanisms and proposed schemes for protections. The hypervisors concept is then

presented with documentation and implementation of some representative hypervisors.

Finally, our proposed framework is provided and our conclusions. In order to have a

complete idea of our framework in chapters 6-7-8, make sure that you understand the

basic concepts in chapters 2-3-4-5. Appendixes consists only of the implementation of

some representative frameworks from chapter 5 and some source code presentation.

Table 1. Thesis Chapter Structure

Chapter Subsections Overview
1.Introduction 1.1 Context

1.2 Research setting
1.3 Objectives

An introduction of the concept and main objective of the paper and
of its structure.

2.Introducing Geo-
location

2.1 Overview
2.2 Why we need Geo-Location?
2.3 Geo-Location Applications

An introduction of the concept of geo-location and its applications.
Why is so important? Why do we need to know where our position
is in a system?

3.Introducing Positioning
Techniques

3.1 Localization techniques Classification
3.2 Localization Algorithms

An introduction of the basic concept of localization techniques
alongside with some localization schemes and framework.

4.Introducing Security in
Geo-location

4.1 Security in Geo-location Systems
4.2 Attacks in Localization
4.3 Secure Geo-location Schemes

An introduction of the security and attacks in geo-localization
applications alongside with some schemes and frameworks.

5.Hypervisors 5.1 Hypervisors Overview
5.2 XMHF- uberXMHF
5.3 Trust Hypervisor

A presentation of the Hypervisors framework and technology and
some representative applications. How Hypervisors work, how the
ensure security and data protection from attackers and the
evaluation of those.

6. Proposed Secure Geo-
Location Scheme

6.1 Introduction
6.2 Proposed Framework Overview
6.3 Proposed Framework Implementation

Presentation of a proposed framework for a secure localization
environment.

7. Proposed Scheme
Simulation

7.1 Framework Installation
7.2 Framework Execution

Simulation of the proposed framework.

8.Validation 8.1 Localization Algorithm Validation
8.2 Hypervisor Validation

Validation of the proposed framework.

9.Conclusions Conclusion and Future work Conclusions and future work.

Secure Geo-location Techniques using Trusted Hyper-visor

 4
S. Rostantis

1.4 Thesis concept

In order to present our proposed geo-localization framework, we need to understand

first same basic concepts, technologies, mechanisms and algorithms that our

framework is based on. Our proposed framework is a combination of two major

concepts: Geo-Localization process and Security/Safety.

Figure 2. Proposed framework concept.

Firstly, is necessary to understand the basic concept of geo-location and how important

is to modern applications alongside with how an unknown node position can be

calculated in a geo-localization system (Chapter 2-3-4). Finally, is necessary to

understand the concept of security and safety in such systems and how they can be

protected from malicious attacks (Chapter 4-5).

Figure 3. Thesis concept

Proposed
Framework

Geo-
Localization

Optimization

Techniques
Algorithms

Security Safety

Attacks in Geo-
Localization

Hypervisors

Ensure Safety

Geo-
Location

•Understanding the basic concept of the geo-location process alongside with its
importance.

Localizatio
n Proccess

•Understanding how an unknown node position can be calculated in a geo-localization
system.

Safety and
Security

•Understanding how safety can be achived in a geo-localization system.

Hyperviso
rs

•Understanding the basic concept of hypervisors and how they protect systems.

Proposed
Framewor

k

• OBJECTIVE: Proposed Safe Geo-Location Framework with hypervisor utilization.

Secure Geo-location Techniques using Trusted Hyper-visor

 5
S. Rostantis

2. INTRODUCING GEO-LOCATION
In this chapter we present a short overview on how geo-location is achieved in modern

applications and technologies alongside with the basic concept of geo-location and

localization.

2.1 Overview

In its simplest form geo-location, involves the generation of a set of geographic

coordinates and is closely related to the use of positioning systems, but its usefulness is

enhanced by the use of these coordinates to determine a meaningful location, such as

a street address. The word geo-location also refers to the latitude and longitude

coordinates of a specific location. The term and definition have been standardized

by real-time locating system standard ISO/IEC 19762-5:2008 [1]

Figure 4. GPS Geo-location

For either geolocating or positioning, the locating engine often uses radio frequency

(RF) location methods, for example Time Difference Of Arrival (TDOA) for precision.

TDOA systems often use mapping displays or other geographic information system.

More details for those techniques are presented in chapter 3. When satellite navigation

(such as GPS) signals are unavailable, geo-location applications can use information

from cell towers to triangulate the approximate position, a method that is not as

accurate as GPS but has greatly improved in recent years. This is in contrast to earlier

radiolocation technologies, for example Direction Finding where a line of bearing to a

transmitter is achieved as part of the process.

Internet and computer geo-location can be performed by associating a geographic

location with the Internet Protocol (IP) address, MAC address, RFID, hardware

embedded article/production number, embedded software number (such as UUID,

Exif/IPTC/XMP or modern steganography), invoice, Wi-Fi positioning system, device

fingerprint, canvas fingerprinting or device GPS coordinates, or other, perhaps self-

disclosed information. IP address location data can include information such as country,

region, city, postal/zip code,[6] latitude, longitude and time zone.[7] Deeper data sets can

determine other parameters such as domain name, connection speed, ISP, language,

proxies, company name, US DMA/MSA, NAICS codes, and home/business. At times

geo-location can be more deductive, as with crowdsourcing efforts to determine the

position of videos of training camps, combats, and beheadings in Syria by comparing

https://en.wikipedia.org/wiki/Geographic_coordinate_system
https://en.wikipedia.org/wiki/Geographic_coordinate_system
https://en.wikipedia.org/wiki/Positioning_system
https://en.wikipedia.org/wiki/Street_address
https://en.wikipedia.org/wiki/Real-time_locating_system
https://en.wikipedia.org/wiki/Locating_engine
https://en.wikipedia.org/wiki/Radio_navigation
https://en.wikipedia.org/wiki/Radio_navigation
https://en.wikipedia.org/wiki/TDOA
https://en.wikipedia.org/wiki/TDOA
https://en.wikipedia.org/wiki/Geographic_information_system
https://en.wikipedia.org/wiki/Satellite_navigation
https://en.wikipedia.org/wiki/GPS
https://en.wikipedia.org/wiki/Cell_tower
https://en.wikipedia.org/wiki/Radiolocation
https://en.wikipedia.org/wiki/Direction_Finding
https://en.wikipedia.org/wiki/Radio_fix
https://en.wikipedia.org/wiki/Geographic_location
https://en.wikipedia.org/wiki/Geographic_location
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/MAC_address
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://en.wikipedia.org/wiki/Universally_Unique_Identifier
https://en.wikipedia.org/wiki/Exif
https://en.wikipedia.org/wiki/IPTC_Information_Interchange_Model
https://en.wikipedia.org/wiki/Extensible_Metadata_Platform
https://en.wikipedia.org/wiki/Steganography
https://en.wikipedia.org/wiki/Wi-Fi_positioning_system
https://en.wikipedia.org/wiki/Device_fingerprint
https://en.wikipedia.org/wiki/Device_fingerprint
https://en.wikipedia.org/wiki/Canvas_fingerprinting
https://en.wikipedia.org/wiki/GPS
https://en.wikipedia.org/wiki/IP_address_location
https://en.wikipedia.org/wiki/Geolocation#cite_note-:1-6
https://en.wikipedia.org/wiki/Latitude
https://en.wikipedia.org/wiki/Longitude
https://en.wikipedia.org/wiki/Time_zone
https://en.wikipedia.org/wiki/Geolocation#cite_note-:0-7
https://en.wikipedia.org/wiki/Crowdsourcing

Secure Geo-location Techniques using Trusted Hyper-visor

 6
S. Rostantis

features detected in the video with publicly available map databases such as Google

Earth, as practiced by sites such as Bellingcat Some standards and name servers

include:

ISO 166, FIPS, INSEE, Geonames, IATA and ICAO. For geographic locations in the

United States, the American National Standards Institute (ANSI) Codes are often used.

[11] ANSI INCITS 446-2008 is entitled "Identifying Attributes for Named Physical and

Cultural Geographic Features (Except Roads and Highways) of the United States, Its

Territories, Outlying Areas, and Freely Associated Areas, and the Waters of the Same

to the Limit of the Twelve-Mile Statutory Zone".[11] A number of commercial solutions have

been proposed:

• WOEID (Where on Earth IDentifier) is a unique 32-bit reference identifier that
identifies any feature on Earth. [2]

• NAC Locator provides a universal geocoding address for locations on the planet. [3]

2.2 Why we need Geo-location?

Identifying our exact location on earth has been a fascination of mankind since the

Ancient Greeks used the stars to triangulate their position. The importance of knowing

the exact position of o person, house, car, city, hospital etc. in the whole world with

precision is obvious and today, we have a wide-array of location-based services that

have made their way into office buildings and jean pockets everywhere. It is important

because the Geo-location systems help an average person to locate herself precisely

anywhere on the planet without having to be too much technically literate and for free. In

fact, it has been rightly identified as the backbone for several businesses, without which

it will be nearly impossible for the owners to operate it.

Knowing the exact position location can be used for a number of applications and also

can be useful in many emergency situations. It allows you to locate yourself on the high

seas or featureless Saharan desert where there may not be any landmarks to orient

yourself because it does not depend on any terrestrial system (such as its predecessor

LORAN which is space based). It also can assist for rescue of fellow humans in

situations such as natural disasters like earthquakes in a timely manner which was not

possible before.

Localization systems can encourage the innate desire of humans to explore the

unknown lands without the fear of not being able to return since their global position is

calculated. It can quietly help to protect soldiers in times of conflict and in hostile lands

by helping them navigate themselves and by helping others to find them if needed.

Automotive industries utilize geo-location application to provide rout guidance services

to drivers. Internet and cloud application need the exact position of their user in order to

provide their services with high speed and performance. Geo-location data can be

utilized for statistics and demographics researches and applications. Space and aviation

industries use geo-location data for calculate routes. The need of geo-location systems

https://en.wikipedia.org/wiki/Google_Earth
https://en.wikipedia.org/wiki/Google_Earth
https://en.wikipedia.org/wiki/Bellingcat
https://en.wikipedia.org/wiki/ISO_3166
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standards
https://en.wikipedia.org/wiki/INSEE
https://en.wikipedia.org/wiki/Geonames
https://en.wikipedia.org/wiki/IATA
https://en.wikipedia.org/wiki/ICAO
https://en.wikipedia.org/wiki/Geolocation#cite_note-USCB-11
https://en.wikipedia.org/wiki/Geolocation#cite_note-USCB-11
https://en.wikipedia.org/wiki/WOEID

Secure Geo-location Techniques using Trusted Hyper-visor

 7
S. Rostantis

is continuously growing and the majority of applications and industries require the exact

location of their users in order to provide their services with accuracy, high performance

and safety.

Geolocation commonly uses Global Positioning System (GPS) and other related
technologies to assess and specify geographical locations. The global positioning
systems (GPS) market size was estimated at USD 37.9 billion in 2017. It is anticipated
to progress at a CAGR of 18.4% during the forecast period.

Increasing penetration of smart phones along with rising GPS-enabled vehicles is
projected to bolster the growth of the market during the forecast period. Moreover,
surging use of social media across developing countries and a high number of mergers
and acquisitions between component manufacturers and integrators are poised to stoke
the growth of the global positioning systems market.

Figure 5. GPS Market Size, from Grand View Research

2.1.1 The History of Geo-location

With all of the progress made and all of the efficiencies introduced, geo-location’s

history is uniquely fascinating. Let’s take a look at how far we’ve come:

• 2,000+ Years Ago – Ancient Greeks triangulated their geographical location using only the
stars.

• 1933 – Radar is finally on the map, as the U.S Naval Research Laboratory’s Leo Young,
proposed the use of a pulse radar technique to be able to detect aircraft and ships.

• 1940 – The Naval Research Laboratory enabled the first submarine to use radar. It had a
20-mile range.

• 1957 – Sputnik I, the first artificial satellite to go into space, is launched by the Soviet Union.
It was about the size of a beach ball at 58 cm., weighed only 184 pounds, and took about 98
minutes to orbit the Earth on its elliptical path.

• 1973 – The Navstar Global Positioning Satellite (GPS) system is proposed by the Pentagon.

• 1978 – The first 11 Navstar GPS satellites are launched into space.

0

20

40

60

80

100

120

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Global GPS market size (USD Billions)

Road Aviation Marine Location-Based Surveying Others

Secure Geo-location Techniques using Trusted Hyper-visor

 8
S. Rostantis

• 1983 – President Ronald Reagan offers to let all civilian commercial aircraft use the GPS
system to improve air navigation safety. Although, the commercial use of GPS is granted
with “selective availability,” or restricted use.

• 1989 – Magellan becomes the first to sell a hand-held navigation device with the release of
the Magellan NAV 1000.

• 1993 – The U.S. Air Force sends the final Navstar GPS satellite into orbit, completing an
entire network of 24 Global Positioning System (GPS) satellites. Although, they were not yet
fully operational.

• 1995 – The Navstar GPS program reached a fully operational status in April of 1995. The
project cost 10 to 12 billion dollars.

• 1999 – The first commercial use of GPS – a safety phone called the Benefon Esc! – is
released for consumer purchase. It is sold mainly in Europe.

• 2000 – President Bill Clinton lifts “selective availability” on GPS-usage for civilians. This
allows civilians and consumer-facing services to use GPS with the same pinpoint accuracy
as the military.

• 2002 – Nikon introduces their D1H & D1X camera models – the first DSLR cameras to offer
a GPS interface.

• 2004 – Up to 15 percent of U.S. farmers use GPS-controlled tractors and/or combines and
are saving as much as 5 percent in fertilizers and pesticides with the use of precision
guidance systems.

• 2005 – GIOVE-A, Europe’s first experimental GPS satellite is launched into space, serving
to test critical technologies for the Galileo program, meant to give Europe independence
from the U.S, Russian and Chinese GPS systems. The program is scheduled to be fully
operational in 2020.

• 2005 – Google Maps officially debuts!

• 2005 – Yelp popularizes location-based reviews leveraging geo-location technologies.

• 2006 – After testing equipment, such as the handheld SkyCaddie, and being courted by the
electronic industry for several years, the U.S. Golf Association permits distance-measuring
GPS devices and laser range finders.

• 2006 – Geopointe is founded, revolutionizing the way Salesforce users can visually leverage
their data.

• 2007 – GPS becomes a multi-billion-dollar industry, causing further restrictions to be lifted
on commercial usage by President George W. Bush.

• 2009 – Foursquare launches, helping further popularize geo-location review services.

• 2012 – The U.S Supreme Court rules that warrantless GPS tracking is constitutional.

• 2015 – Facebook begins licensing location-based data from Factual, a geodata platform.
This includes “US Places data,” which includes hotels and restaurants “extended attributes,”
to support Facebook business pages, check-ins, Places search and more.

• 2017 – Match.com reportedly enables users to see which other users they have crossed
real-life paths with.

• 2017 – Facebook fights to represent the primary “digital presence” for local businesses. With
2.5 billion comments being added to Facebook business Pages every month, they are now
competing directly with Google.

https://www.facebook.com/geopointe/

Secure Geo-location Techniques using Trusted Hyper-visor

 9
S. Rostantis

2.1.2 Applications

2.1.2.a Aviation

Most of the modern aircraft use geo-location receivers to provide the pilots and

passenger with real-time aircraft position. They also provide a map of various

destinations depending on where the aircraft operates. This application is also used by

the airline operators to decide which route is the fastest, safest, and most fuel-efficient

among the destinations. They also use the app to track the aircraft and direct the pilot in

the case where there is a change in the weather conditions or any other issue that may

arise.

2.1.2.b Marine

Highly accurate navigation app is needed by boat captains to enable them to navigate

through waters to their destinations. These applications ensure that the channels are

clear and there are no obstacles that can hinder their navigation. They are also required

in the marine departments since they are used to map and position dredging operations

in rivers, sandbars, and wharves to ensure that other boats are aware of how deep they

should get.

2.1.2.c Farming

Farmers have a specific season for planting, weeding, and harvesting, and due to the

repeat in the seasons, they put the geo-location receiver on their tractors and other

farming equipment. This allows them to map their plantations and ensure that they

return to precisely the same time when planting or weeding in the next season. This

strategy is effective especially in seasons when it’s foggy with less visibility since the

machine will still operate since its geo-location and not visual reference guides it. More

so, its high accuracy makes it suitable for use in mapping soil sample locations, and the

farmers can locate the areas that have soils suitable for farming.

2.1.2.d. Science

This is one field that intensively uses the geo-location app especially since there are

numerous departments in the science field, this include physics, biology and earth

science to mention a few. Before the invention of this app, scientists used metal and

plastic bands to tag animals, and they would follow them to various location while

monitoring them. However, since the invention and enhancement of the navigation app,

it has helped scientist to fit the animal with the collars and the app can automatically

record the animal’s movement and the information is transmitted to a through a satellite

to the researcher. This means that they can trace the location of the animals’ movement

without having to relocate them physically. Most of the sciences taught in schools will

have more practical evidence especially since geo-location provides accurate data.

Earth scientist also uses the app to study how landscapes change over time. Or any

geographic area that they may be interested.

2.1.2.e Surveying

Surveying is one of the uses of geo-location that are essential especially since it is used

in mapping and measuring various measures on the earth surface and underwaters. It is

Secure Geo-location Techniques using Trusted Hyper-visor

 10
S. Rostantis

used in determining land boundaries, mapping sea floors, and highlighting the changes

in the shape of structures. The best thing about high accuracy geo-location app is that

the surveyors can set it up over a single point and establish a reference marker. They

can also use it in a moving configuration to map the boundaries of particular features.

With the data obtained from the application, they can easily key in the details into a

software that will help them offer their customers with a detailed chart.

2.1.2.f Military

The US Department of Defense was the first to develop the geo-location GPS app

system, and since then the system has been adopted by numerous military forces

around the world. Other countries have even decided to develop their satellite

navigation networks as a defense mechanism during war times. Today, there has been

a diverse use of the app, and it can be used to map the location of vehicles and other

machinery such as missiles during a war. This is a technique used purposely to protect

the soldiers and also manage resources.

2.1.2.g Financial Services

Financial organizations such as banks use this app to schedule and determine local and

international money transfers. They are also using it to provide audit trails of financial

transactions. More so, since more than 80% of the transactions are made through debit

and credit cards, it has been easier to provide a higher level of timing accuracy. The

geo-location GPS satellite is necessary for the financial field since it allows for data and

time stamps of Electronic Funds Transfers.

2.1.2.h Telecommunications

Telecommunications especially the mobile telephones use this app to provide its users

with accuracy, reliability, and stability of their operations. Although other clocks can

provide this, the geo-location supports the derivation of synchronized time zones with

the help of the satellite signals.

2.1.2.i Heavy Vehicle Guidance

Heavy tack machines used in mining and constructions also use this technology. For

example, in highway construction, the marker pegs and surveyors have been replaced

by the improvised in-cabin vehicle guidance and control systems. This makes the work

easier since the driver only needs to follow the surveyor’s pre-programmed site plan.

2.1.2.j Road Transportation

Majority of users of this technology are taxi services, emergency vehicle location,

commercial fleet management and freight tracking, public transport monitoring,

dispatch, and navigation. Private car owners also use the app, and most of the new car

models come with a factory-fitted GPS.

2.1.2.m Social Activities

Some of the social activities that have incorporated the use of this technology include

cross-country cycling, skiing, hiking skydiving, paragliding, geotagging photographs,

geocaching, geo dashing among others.

Secure Geo-location Techniques using Trusted Hyper-visor

 11
S. Rostantis

2.1.2.n Easy Access to Emergency Roadside Support

In case of an accident or an emergency, you can seek assistance using the pre-

programmed emergency numbers on your smartphone. The best thing about using this

app is that the emergency crew can trace your current location without having to provide

any details.

2.1.2.l Public Safety and Disaster Relief

The best thing about geo-location is that it can be used in any weather or environmental

condition which is the reason why is preferred for use during disaster management. The

emergency vehicles and supplies are tracked using geo-location.

2.1.2.o Can be used by Disabled People

People with special needs are at times left on their one when their caretakers and loved

ones have to work. The geo-location tracker is not only used to track their location, but it

can be of great importance in the case of emergencies.

2.1.2.p Civil engineering applications

Civil engineering works are often done in a complex and unfriendly environment,

making it difficult for personnel to operate efficiently. The ability of geo-location to

provide real-time submeter- and centimeter-level accuracy in a cost-effective manner

has significantly changed the civil engineering industry. Construction firms are using

geo-location in many applications such as road construction,

2.1.2.q Space and Spacecraft

Some near and far term space missions involve formation flying, which requires that the

positions of multiple spacecraft be accurately known relative to a hub spacecraft.

2.1.2.r Security

The location base encryption or Geo-Encryption technique uses GPS technology to

enhance the data security. This concept is developed so that at a particular position and

time, the specific recipient will decrypt the files. The breaching of data due to stolen

laptops are a major problem. This technology will be used to restrict unauthorized user

for any violation. Also, it can assure that data can be secure in specific geological fields

and can be accessed only in the user is inside those specific fields. For instance, files

and data from a specific university can be accessed only inside the university campus.

Secure Geo-location Techniques using Trusted Hyper-visor

 12
S. Rostantis

3. INTRODUCING LOCALIZATION TECHNIQUES
In this chapter we present a short overview on localization technologies and techniques

and how geo-location is achieved in those.

3.1 Localization techniques classification

Many of these applications need location base services. Although GPS is a direct

solution to the localization problem, the high cost, high power consumption, and poor

performance of GPS inside an indoor environment have necessitated the research on

localization algorithms. Over the past few years, the scientific world has observed a lot

of research efforts on this topic. Note that the localization is defined as the

determination of the position of an unknown node, sometimes with the help of nodes

with known position, and at other times using the connectivity information between the

unknown nodes.

Recent studies have investigated the effect of mobility in localization, real world

applications, “Anchor Based” and “Anchor Free” localization methods , “Range Based”

localization algorithm (distance measurement technique to calculate the location of

unknown nodes) and “Range Free” localization algorithm (connectivity rather than

distance) , “Cooperative” (communication exists among all nodes) and “Non-

Cooperative” (unknown nodes communicate only with the anchor nodes) algorithms,

“Centralized” algorithm based localization (aka network-centric positioning) and

“Distributed” algorithm (no central control on the determination of the node’s position

and each node estimates its location based on the locally gathered information - aka

“self-positioning” algorithm

3.1.1 GPS Based Localization

Global Positioning System (GPS) localization has been attracting attention recently in

various areas, including intelligent transportation systems (ITSs), navigation systems,

road tolling, smart parking, and collision avoidance. Although, various approaches for

improving localization accuracy have been reported in the literature, there is still a need

for more efficient and more effective measures that can ascribe some level of accuracy

to the localization process.

The Navigation Satellite Time and Ranging (NAVSTAR) Global Positioning System

(GPS) is a worldwide radio-navigation system created by the U. S. Department of

Defense (DOD) to provide navigation, location, and timing information for military

operations. System testing using a limited number of satellites began in 1978 with the

system being declared fully operational in 1995. The system was declared available for

civilian uses in the 1980s and has seen burgeoning civilian application for navigation

and mapping. GPS is the U.S. implementation of a Global Navigation Satellite System

(GNSS). Increasingly, GPS receivers have the capability to utilize signals from other

GNSS such as the Russian GLONASS or European Galileo systems. SESD has no

limitations on the use of signals from other GNSS.

Secure Geo-location Techniques using Trusted Hyper-visor

 13
S. Rostantis

The accuracy of the basic GPS system is approximately 15m. GPS accuracy can be

affected by a number of factors including the Selective Availability feature, atmospheric

delays, satellite clock and orbit errors, multipath signals, signal strength, and satellite

geometry relative to the user. Wherever the node is on the planet, at least four GPS

satellites are ‘visible’ at any time. Each one transmits information about its position and

the current time at regular intervals. These signals, travelling at the speed of light, are

intercepted by your GPS receiver, which calculates how far away each satellite is based

on how long it took for the messages to arrive. Once it has information on how far away

at least three satellites are, the GPS receiver can pinpoint the location using a process

called trilateration.

Figure 6. GPS Trilateration Model

3.1.2 GPS Free Localization

With a network of thousands of nodes, it is unlikely that the position of each node can

be precisely predetermined [4]. Although GPS based localization schemes can be used

to determine node locations within a few meters, the cost of GPS devices and the non-

availability of GPS signals in confined environments prevent their use in large scale

sensor networks.Below is presented the recent advances on localization techniques in

WSNs by considering a wide variety of factors and categorizing them in terms of data

processing (centralized vs. distributed), transmission range (range free vs. range

based), mobility (static vs. mobile), operating environments (indoor vs. outdoor), node

density (sparse vs. dense), routing, algorithms, etc.

Figure 7 .Classification of localization techniques

3.1.2.a Anchor Based/Centralized

In Centralized algorithms all computation is done in central server. Centralized

algorithms resolve computational limitations of nodes. In these algorithm nodes have to

communicate to BS, unfortunately communication consumes more energy than

computation. In distributed algorithms computation is distributed among sensor nodes.

Secure Geo-location Techniques using Trusted Hyper-visor

 14
S. Rostantis

In these algorithms only Inter node communication is done which consumes less energy

as compared to communication cost in centralized algorithm.

3.1.2.b Anchor Free/Decentralized

The main advantage of a decentralized data fusion system is the lack of dependency of

the whole system on a central processing unit. Also, in such systems, the

malfunctioning of a sensor will not affect the whole estimation, and local estimators with

functioning sensors continue to perform properly. Several general decentralized data

fusion algorithms are presented in [6-8]. In these works, a network of sensors with

several local estimators is considered and several local estimates are produced.

In [7], a decentralized architecture with applications in the navigation of vehicles is

presented. The method is also applicable to the cases where the sensor measurements

are asynchronous. In [8], the localization in a known environment is addressed and

simulation results are provided to show the estimation results in a decentralized

architecture. Recently, developing decentralized algorithms for SLAM with special

application on the navigation of a team of robots has attracted new attentions [9]. In

these works, the estimated landmark positions are transmitted between the robots for

updating the map of the environment.

3.1.2.c Range Based

Range-based estimate location by point-to-point distance measurements [10]. Some

common distance measurement methods are angle of arrival (AoA), time of arrival

(ToA), time difference of arrival (TDoA), acoustic energy, and received signal strength

indicator (RSSI). The first three methods require complex hardware set up while RSSI is

simpler than the others but less accurate. After gathering the information of anchors and

sometimes of other unknown nodes, distances are combined using techniques like

trilateration or particle filter etc.

3.1.2.d Range Free

Range free localization algorithms use connectivity information among the nodes to

determine the positions of unknown nodes [11]. Since the range base methods require

a hardware setup that is both complex and costly, a range free method can be a

possible solution to hardware limitation problems.

Figure 8. Range Based Vs Range Free

Secure Geo-location Techniques using Trusted Hyper-visor

 15
S. Rostantis

3.1.3 Range Base Positioning techniques

3.1.3.a RSSI

The Received Signal Strength Indicator (RSSI) value is part of the data packet

transmitted by all Veris Aerospond sensor units [12]. It is intended as means to obtain a

relative indication of the quality of connection that exists between the sensor unit and

the access point it is connected to on the wireless network. In order for this to be a

useful tool in determining the quality of the connection, there are a few principals that

need to be understood about what the RSSI value means. The RSSI formula is

presented below:

Signal Strength Signal strength is based on a number of factors, including the output

power of the transmitter (the original strength of the signal), the sensitivity of the

receiver (how well the receiving device can hear weak signals), the gain of the antennae

at both ends of the path, and the path loss, or attenuation of the signal as it travels

through the air from the transmitter to the receiver. Signal strength is expressed in units

of decibels (dB). Due to the low power levels and the attenuation of free space, an RSSI

value is expressed as a negative number. The more negative the number, the weaker

the signal strength; conversely the closer the number is to zero, the stronger the signal.

Figure 9. RSSI range performance

Given the received signal power PR (in Watt), the transmitted signal power PT (in Watt),

the receiver’s antenna gain GR, the transmitter’s antenna gain GT , the signal

wavelength λ, the distance d in meters and the signal propagation constant n, the Friis’

equation is defined as

PR = PT
𝐺𝑇∗𝐺𝑅∗𝜆

2

(4∗𝜋)2∗𝑑𝑛
 (1)

Since the RSSI value is expressed in dBm, we have to convert the results of Equation 1

from Watts to dBm using:

P[dBm] = 10 · log10 (P[W] · 103) (2)

and with Equation 2 we can obtain a relation between distance and receive power,

simplified for the case of a 1-meter reference distance as:

RSSI = A − 10 · n · log10 d (3)

Secure Geo-location Techniques using Trusted Hyper-visor

 16
S. Rostantis

where A is the received power in dBm with the two antennas 1 m distant, and n the loss

parameter (or loss exponent) of the specific environment. Hence, the distance d can be

easily calculated as

d = 10
𝐴−𝑅𝑆𝑆𝐼

10∗𝑛

3.1.3.b TOA

Time of Arrival [13] is the simplest and most common ranging technique, most notable

used in the Global Positioning System (GPS). This method is based on knowing the

exact time that a signal was sent from the target, the exact time the signal arrives at a

reference point, and the speed at which the signal travels. Once these are known, the

distance from the reference point can be calculated using the simple equation.

Figure 10. TOA Overview

Using this distance, the set of possible locations of the target can be determined. In two

dimensions, this yields a circle with the equation:

d = c * (tarrival – tsent)

d = √(xref − x)2 + (yref − y)2

where c is the speed of light and (xref, yref) is the known position of the reference point.

Once this set is calculated for enough reference points (at least three for two

dimensional or at least four for three-dimensional), the exact position of the target can

be calculated by finding the intersection.

Figure 11. TOA Trilateration

In this example, the Target (black) is surrounded by three Beacons (red, green, and

blue). At time t1, a signal is sent from Beacon 1 to the Target, which is received at t2.

The distance (d1) between the Target and Beacon 1 is calculated, then the circle of

Secure Geo-location Techniques using Trusted Hyper-visor

 17
S. Rostantis

possible locations is drawn, a. This process is repeated for Beacons 2 and 3, which

yields two more circles, as shown in Figure 3.

3.1.3.c TDOA

Time Difference of Arrival is the second-most popular ranging technique, and it is

somewhat more versatile than ToA [14]. This method does not require the time that the

signal was sent from the target, only the time the signal was received and the speed

that the signal travels. Once the signal is received at two reference points, the

difference in arrival time can be used to calculate the difference in distances between

the target and the two reference points. This difference can be calculated using the

equation:

Δd = c * (Δt)

where c is the speed of light and ∆t is the difference in arrival times at each reference

point. In two dimensions, this leads to the following equation [2]:

Δd = √(x2 − x)2 − (y2 − y)2 − √(x1 − x)2 − (y1 − y)2

where (x1, y1) and (x2, y2) are the known positions of the beacons. Using nonlinear

regression, this equation can be converted to the form of a hyperbola [2]. Once enough

hyperbolas have been calculated, the position of the target can be calculated by finding

the intersection.

Figure 12. TDOA Trilateration

In this example, we have the same setup of a target (black) surrounded by three

beacons (red, green, and blue). A signal is sent from the Target at an unknown time,

which is received by Beacon 2 at t1 and Beacon 3 at t2. The difference in distance (Δd)

is calculated, and the hyperbola of possible locations is drawn, as shown in Figure 5.

This hyperbola will have two branches, which would normally make finding the

intersection more difficult. However, if the approximate location of the target is known

(e.g. through a previously measured location), one of the branches can be discarded. In

this case, the top branch is discarded. This process is repeated with the remaining

Beacon pairs, and the result is shown in Figure 6.

3.1.3.d AOA

AOA is defined as the angle between the propagation direction of an incident wave and

some reference direction, which is known as orientation [14]. Orientation, defined as a

Secure Geo-location Techniques using Trusted Hyper-visor

 18
S. Rostantis

fixed direction against which the AOAs are measured, is represented in degrees in a

clockwise direction from the North. When the orientation is 0◦ or pointing to the North,

the AOA is absolute, otherwise, relative. One common approach to obtain AOA

measurements is to use an antenna array on each sensor node.

Figure 13. AOA Trilateration

3.1.4 Range Free Positioning techniques

3.1.4.a DV hop

The Distance Vector-Hop (DV-Hop) algorithm was proposed as a distributed localization

algorithm based on distance vector between nodes [15]. Rather than estimating the

distance between neighboring wireless nodes by using ranging methods, this algorithm

first calculates the actual distance between every pair of anchor nodes (since the

coordinates of these nodes are known a priori). It then finds hop-distance (i.e., the

number of hops) between every pair of anchors and calculates the average distance per

hop along these paths. These distances are then used for localization of sensor nodes.

Specifically, the localization process while using DV-Hop algorithm consists of the

following three phases:

Step 1: Calculating the minimum hop count between beacon nodes and unknown

nodes. Beacon nodes broadcast information which shows their positions to

neighbouring nodes by using the classical distance vector routing protocol. The

information contains {id,xi,yi,Hi}, where id, (xi,yi), and Hi represent the identifier, the

coordinate, and the hop count of beacon nodes , respectively. Moreover, the initial value

of Hi is set to zero.

The nodes receiving the broadcast information record the localization and hop counts of

beacon nodes as vectors, which are then transmitted to neighbouring nodes (the value

of hop count is incremented by one). When a node receives the same id group, it is

supposed to compare the newly obtained value of Hi with the original value and then

select the minimum value to replace and update the original group; otherwise, the newly

obtained group is abandoned. The position information and minimum hop count of all

beacon nodes are obtained by this communication mode in WSNs.

Step 2. Estimating the average hop distance. The purpose of calculating the average

hop distance and minimum hop count first is to estimate the distance between unknown

Secure Geo-location Techniques using Trusted Hyper-visor

 19
S. Rostantis

nodes and beacon nodes. After acquiring the localization and the hop count of beacon

nodes in the first stage, the average hop distance of whole networks can be computed.

The information is then broadcast to the whole network, or all networks. Furthermore,

most nodes are required to receive the average hop distance from their nearest beacon

nodes. The distances between beacon nodes and unknown nodes can be calculated by

multiplying the average hop distance by the hop count. Here, hdi and h(ij) denote the

average hop distance and the hop distance between a be1acon node and an unknown

node Hi respectively, as shown in the following formula:

ℎ𝑑𝑖 =
∑√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2

∑ ℎ(𝑖𝑗)

The distances between unknown nodes and beacon nodes are calculated using the

following formula:

 di = hdi x Hop,

where ℎ𝑑𝑖 signifies the average hop distance, while Hop is the minimum hop count

between unknown nodes i and beacon nodes.

Step 3. Based on plane geometry, the coordinates of unknown nodes can be acquired

in the case of knowing the coordinates and distances between three beacon nodes.

Suppose that the coordinates of three beacon nodes are

(x1,y1), (x2,y2) and (x3,y3) respectively, and the distances between these three beacon

nodes and an unknown node D are expressed as d1, d2, and d3 separately, then, the

following formula is obtained:

{

(𝑥1 − 𝑥)
2 + (𝑦1 − 𝑦)

2 = 𝑑1
2

(𝑥2 − 𝑥)
2 + (𝑦2 − 𝑦)

2 = 𝑑2
2

(𝑥3 − 𝑥)
2 + (𝑦3 − 𝑦)

2 = 𝑑3
2

Meanwhile, the coordinate of node D can be calculated by using the following formula:

[
𝑥
𝑦] = [

2(𝑥1 − 𝑥3) 2(𝑦1 − 𝑦3)
2(𝑥2 − 𝑥3) 2(𝑦2 − 𝑦3)

]
−1

[
𝑥1
2 − 𝑥3

2 + 𝑦1
2 − 𝑦3

2 + 𝑑3
2 − 𝑑1

2

𝑥2
2 − 𝑥3

2 + 𝑦2
2 − 𝑦3

2 + 𝑑3
2 − 𝑑2

2]

In this way, the coordinates of unknown nodes can be computed.

3.1.4.b APIT

The approximate point in triangle (APIT) is an approach for area estimation [16]. APIT

algorithm requires a small percentage of anchors and employs a novel area-based

approach to perform location estimation by segmentation of the field. Moreover, these

nodes can be equipped with high-powered radio transmitter. The main idea of APIT for

localization of nodes is to consider overlapping triangles. The vertices of these triangles

are anchors.

Secure Geo-location Techniques using Trusted Hyper-visor

 20
S. Rostantis

Bounding triangles are obtained using any group of three reference nodes, rather than

the coverage area of a single node. In the APIT algorithm, the sensor nodes receive

location information from the nearby anchors initially.

Second, the point in triangulation (PIT) test checks whether a sensor node is in a virtual

triangle that is formed by connecting the three anchors from which signals are received.

After the PIT test is done, the APIT algorithm aggregates the results through a grid

SCAN algorithm [45]. The APIT algorithm calculates the CoG (Centre of gravity) of the

intersections of all the overlapped triangles in which the node resides to determine its

location

Figure 14. The APIT principle

In Fig. 9, M is the unknown node, the point A, B, C and D are four anchor nodes which

are received by M, and point 1, 2, 3 and 4 are the neighbor nodes which received by M.

The point A, B, C and D form four triangles, namely △ABC, △ACD, △ABD, and △DBC.

In △ABD, the unknown node M has the neighbor node 3 is away from the vertices A, B

and D of the triangle at the same time compared with the unknown node M. Therefore,

according to the principle of APIT, the unknown node M is judged to be outside of

△ABD. Similarly, the unknown node M is located inside of △ABC, △DBC and outside of

△ACD

Table 2. Positioning Technique Summary

Technique Cost Accuracy Energy efficient Hardware size

GPS High High Less Large

GPS Free Low Medium Medium Small

Centralized Depends High Less Depends

Decentralized Depends Low High Depends

RSSI Low Medium High Small

TOA High Medium Less Large

TDOA Low High High
Less Complex
May be Large

AOA High Low Medium Large

DV hop Low Medium High Small

APIT Medium Medium High Medium

Secure Geo-location Techniques using Trusted Hyper-visor

 21
S. Rostantis

3.2 Localization Algorithms

3.2.1 FP-MPP-APIT

The proposed algorithm is an approximate point in triangulation test (APIT) -based

localization algorithm combining the Fermat point and the mid-perpendicular plane

models, and it is named FP-MPP-APIT [17]. It is a distributed range-free localization

algorithm for three-dimensional WSNs that possesses the advantages of APIT-based

localization algorithms. In geometry, the Fermat point of a triangle, also called

the Torricelli point or Fermat–Torricelli point, is a point such that the total distance from

the three vertices of the triangle to the point is the minimum possible. The Fermat point

of a triangle with largest angle at most 120° is simply its first isogonic center or X(13),

which is constructed as follows: Construct an equilateral triangle on each of two

arbitrarily chosen sides of the given triangle. Draw a line from each new vertex to the

opposite vertex of the original triangle. The two lines intersect at the Fermat point.

Figure 15. Fermat Point in Triangle

This point can divide a triangular pyramid into four sub-triangular pyramids. Thus, the

APIT-3D algorithm can be used to determine in which sub-triangular pyramid the

unknown node M is located. The sub-triangular pyramid that contains the unknown

node is called the available sub-triangular pyramid. The mid-perpendicular plane model

is used to divide the available sub-triangular pyramid.

Figure 16. Mid-Perpendicular plane model

The steps of this algorithm are described below:

a. All beacon nodes broadcast their positions and ID.

b. Each unknown node maintains a counter k and in every received beacon

message the counter adds one and records the message.

c. If the unknown node has more than four constructs a triangular pyramid APIT-3D

algorithm is used to determinate if the node is located in the pyramid.

d. The Fermat point model is adopted to divide the pyramid in four sub-pyramids.

https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Triangle
https://en.wikipedia.org/wiki/Equilateral_triangle
https://en.wikipedia.org/wiki/Vertex_(geometry)

Secure Geo-location Techniques using Trusted Hyper-visor

 22
S. Rostantis

e. The mid-perpendicular plane model is used to divide the available sub-triangular

pyramid into a set of irregularly shaped subplaces.

f. The unknown node is located.

3.2.2 3D-IDCP

Is an improved proposed 3D localization algorithm and a 3D localization model to

improve positioning accuracy and coverage [18]. The proposal utilizes the range base

localization and includes four phases. The concept of Degree of Coplanarity is added

and the best positioning unit based on the Degree of Coplanarity is selected to ensure

positioning accuracy. In addition, the unknown nodes which have been located are

promoted to assistant anchor nodes. Degree of Coplanarity (DCP) represents the

coplanar degree of four anchor nodes in the three-dimensional space. Degree of

Coplanarity (DCP) can be expressed with

DCP = {
0
𝜌

where 0 means that the space is coplanar and 𝜌 else, DCP ∈ (0, 1].

In the three-dimensional plane a positioning unit consists of at least 4 anchor nodes.

DCP is utilized to represent the coplanar degree of the four nodes. The radius ratio of a

tetrahedron us utilized ρ. The DCP ensures that the positioning unit can be selected.

The position of the unknown node can be calculated through quadrilateration. 3D-IDCP

is utilized to promote unknown nodes that are located to assistant nodes. The steps of

this algorithm are described below:

a. Choose the best positioning unit based on the DCP value to locate the unknown

nodes.

b. Promote the unknown node that have been located to beacon nodes and

broadcast their positions.

c. Locate now unknown nodes.

The Quasi-Newton method is used for nonlinear optimization.

3.2.3 Novel Centroid

Bulusu and Heidemann have proposed the centroid localization algorithm, which is a

range-free, proximity-based, coarse-grained localization algorithm [19] [20]. The

algorithm implementation contains three core steps. First, all anchors send their

positions to all sensor nodes within their transmission range. Each unknown node

listens for a fixed time period t and collects all the beacon signals it receives from

various reference points. Second, all unknown sensor nodes calculate their own

positions by a centroid determination from all n positions of the anchors in range. The

centroid localization algorithm, which uses anchor nodes (reference nodes), containing

Secure Geo-location Techniques using Trusted Hyper-visor

 23
S. Rostantis

location information (xi ,yi) , to estimate node position. After receiving these beacons, a

node estimates its location using the following centroid formula:

(𝑥𝑒𝑠𝑡, 𝑦𝑒𝑠𝑡) = (
𝑥1 +⋯+ 𝑥𝑁

𝑁
,
𝑦1 +⋯+ 𝑦𝑁

𝑁
)

The steps of this algorithm are described below:

a. All beacon nodes broadcast their positions. Each Unknown node collects all the

ID nodes and calculates the distance.

b. The unknown node arranges nodes ID by distance order.

c. Make decision based on DCP of tetrahedron

d. Make decision based on VRT

e. Use of Novel Centroid algorithm Zc1 = (GcT*Gc)-1*GcT*hc1)

3.2.4 DFPLE

DFPLE is proposed to minimize the mean error and computational price in estimating

WSNs location [21]. Like CPE, DFPLE is based on a bounding box algorithm to

estimate the candidate of location. DFPLE expands the bound for location estimation

using three cases of beacon node positioning. DFPLE has dynamic number of bound

points. First, some assumptions are required for wireless sensor networks:

a. There are N sensor nodes in the wireless sensor network.

b. Every sensor node has a unique ID.

c. Sensor nodes are deployed randomly.

d. There are M beacon nodes in the network, where 0 < M < N.

e. Each beacon node is equipped with a GPS and, thus, knows its own location.

f. The other (N − M) nodes are normal nodes that are unaware of their positions.

g. The transmission power of a beacon node is modulated by the variable radius

method.

That is, the power level of beacon nodes can be modulated to high power level up to

increase the communication range of beacon nodes to 2r, where r is the transmission

radius of normal nodes. The DFPLE consists of four main phases on its operation:

gathering beacon node location phase, estimating location, refining estimated location

and error estimation. Each step of phases described as follows:

• Gathering Beacon Node Location

To gather information about other beacon nodes within communication range,

beacon nodes must increase power to extend their communication range to 2r. 2.

The beacon nodes gather the ID and location information of neighboring beacon

nodes by exchanging beacon frames.

Secure Geo-location Techniques using Trusted Hyper-visor

 24
S. Rostantis

• Location Estimation

1. Beacon nodes reduce power to their original level.

2. Normal nodes record all neighbors within communication range.

3. Neighboring beacon nodes provide other beacon node locations, which are

collected in Phase I. When the beacon node is beyond the communication

range of normal nodes, the neighboring beacon node that is farthest from the

normal beacon node is considered the beacon node.

4. The location of the normal node must meet one of the following three cases:

▪ a. When the normal node is within communication range of a

beacon node, the location of the beacon node is considered the

most likely solution

▪ b. When the normal node is within communication range of two

beacon nodes, the midpoint of the intersection of their

communication ranges is considered the most likely solution

▪ c. When the normal node is within communication range of three

beacon nodes, the Fermat point of the triangle which is formed by

the intersection of the three circles in which the center of the circles

are the beacon node locations is considered the most likely solution

• Determine FERMAT Point

The FERMAT point is point in PQR that minimizes |FP| + |FQ| + |FR| (Figure 6).

When all angles of △PQR are less than 120°, a unique Fermat point F lies inside

the triangle such that and meet each other at mutual angles of 120°. The Fermat

point is found as follows.

▪ Construct a virtual equilateral triangle associated with each PR, RQ, and

QP, designated PQ`R, RP`Q, and QR`P respectively.

▪ Construct lines PP`, QQ` and RR`. These are straight lines that connect

the vertices of the triangle with the opposite vertices of the drawn virtual

triangles.

▪ Finally, PP`, QQ` and RR` intersect at the Fermat point, for which the sum

of the distances from the point to the vertices of PQR is minimal.

• Refining Estimated Location

PQR needs to be shrunk to reduce the error in the estimated location. When

PQR is constructed from three neighboring beacon nodes, two vertices may

have the same x or y coordinate. Figure 7 presents three constructions of

PQR—cases A, B, and C. Each case is treated with respect to refinement of the

estimated location.

Secure Geo-location Techniques using Trusted Hyper-visor

 25
S. Rostantis

Figure 17. DFPLE Operation

3.2.5 CPE

The convex position estimation (CPE) was proposed by proposed by Doherty et al [22].

The basic idea of the CPE is that if a sensor node can communicate with another

sensor, its position is restricted by the connectivity constraints to be in some region

relative to the other sensors. Many such connectivity or proximity constraints define the

set of feasible sensor position in a WSN.

These constraints can be represented as Linear Matrix Inequalities (LMI-s). Once all the

constraints in the network are expressed in this form, the LMI-s can be combined to

form a single semi definite program. This is soled to produce a bounding region for each

node, which Doherty et al., simplify to be a bounding box. If an unknown node can

communicate with some neighbours anchor nodes, then there are connectivity

constrains between the unknown node and its neighbours anchor nodes.

Since the location of the unknown node must within the overlapping region of the

communication regions of these anchor nodes, the information such as locations and

communication ranges of these nearby anchor nodes can be employed to estimate the

location of the unknown node. The CPE algorithm define the estimative rectangle (ER)

which bounds the overlapping region and regards the center of the rectangle as the

estimative location of the unknown node.

Figure 18. CPE Algorithm

The CPE algorithm is centralized localization scheme since each unknown sensor node

sends the collected connectivity constraints back to a centralized controller. The

centralized controller then estimates the location of every unknown node and flood the

estimative location back to every unknown node. This central method makes the traffic-

load in CPE heavy and the CPE algorithm scale poorly.

There are three main steps in the improved CEP localization algorithm [23]: Getting the

Secure Geo-location Techniques using Trusted Hyper-visor

 26
S. Rostantis

information of the one-hop and two two-hop away neighboring anchor nodes of

unknown nodes, getting the initial estimative location of unknown nodes and refining the

initial location of unknown nodes.In the anchor exchange phase, every sensor node

gathers the location information of anchor nodes, which is one-hop and two-hop away

via anchor nodes two-hop flooding. By using two-hop flooding, every unknown node can

gather the ID and the location information of its one-hop and two-hop neighboring

anchor nodes

After finishing the anchor exchange phase, all the unknown nodes get the ID and the

position of their one-hop and two-hop away anchor nodes. Then each unknown node

computes its estimative rectangle (ER) as in CPE algorithm, and then uses the center of

the estimative rectangle as the estimative location of the unknown nodes.In this phase,

the initial estimative location obtained by utilizing estimative rectangle can be further

refined by the information of neighbours two-hop away anchor nodes. The position the

unknown node N can be calculated as:

𝑃 = 𝑃′ + ∑𝐴𝑖𝐵𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑚

𝑖=1

where P’ the initial estimative location of unknown node N, which is computed by using

CPE method in the former subsection.

Figure 19. Improved CPE algorithm

3.2.6 3D DV-Hop

The DV-Hop localization algorithm as a distance-independent localization algorithm, is

proposed by Dragos Niculescu from University of Lotto, USA [24]. The optimal principle

is that the unknown node first calculates the minimum hop count of the beacon node,

then estimates the average distance per hop, and then multiplies the average hop ratio

by the minimum number of hops, finally obtains the estimated distance between the

unknown node and the beacon node.

The measurement method or the maximum likelihood estimation method can be used to

calculate the coordinates of the unknown node. Similar with the conventional DV-HOP

algorithm, the 3D DV-Hop algorithm is also composed of three phases [24-26]. Firstly,

the typical distance vector exchange protocol is used to obtain all the nodes in the

network to get the number of hops from the beacon nodes.

Secure Geo-location Techniques using Trusted Hyper-visor

 27
S. Rostantis

 In the second stage, after receiving the other beacon node position and the separated

jump distance, the beacon node calculates the network average distance per hop,

which is broadcast as a correction value to the network. And the correction value

(average hop distance) HopSizei of the beacon node (xi, yi, zi) is expressed as follows:

HopSize𝑖 =

∑ √(𝒙𝒊 − 𝒙𝒋) 𝟐 + (𝒚𝒊 − 𝒚𝒋) 𝟐 + (𝒛𝒊 − 𝒛𝒋) 𝟐𝒊≠𝒋

∑ 𝒉𝒊𝒊≠𝒋

Where (xi, yi, zi) (xi, yi, zi), , are the coordinates of the beacon nodes i and j. hi is the hop

count of beacon i and all other beacon nodes. When the unknown node obtains a

Euclidean distance between four or more beacon nodes, it can enter the third stage,

i.e., calculate the node position. In the third stage, the position estimation is usually

performed using a multilateral measurement method or a maximum likelihood

estimation method. Assume that (x,y,z) is the coordinates of an unknown node U, which

measures the distance of the coordinates of the n beacon nodes. The coordinates of the

i-th beacon node are (xi, yi, zi) and the distance from node U to beacon node i is di.

The 3D DV-Hop localization algorithm incorporates the constraints of the hop count and

multiple collinearity thresholds in the general DV-Hop localization algorithm. The

addition of the threshold improves the localization accuracy of the algorithm and

reduces the computational complexity of the localization algorithm. The specific process

of the algorithm is expressed in detail as follows:

1.Calculate the minimum number of hops for the unknown node and the beacon

node within the defined hop count. The unknown node records the minimum number

of hops received by the beacon node, while ignoring the larger number of hops from the

same beacon node. When the unknown node receives the hop count value less than

the threshold three_hops, the node increases the hop value by l and forwards it to the

neighbor node. Otherwise, the packet is discarded

2. Calculate the distance between the unknown node and the beacon node within

the defined hop count. Each beacon node uses the DV-Hop method to estimate the

actual distance per hop based on the location information and the number of hops of the

other beacon nodes. The unknown node records only the average distance per hop for

the first average distance or the number of jumps per hop, so that the unknown node

can receive the average distance per hop from the nearest beacon and calculate the

hop count based on the number of beacon nodes within the hop distance

3. Use the node location method mentioned in the basic principle of node location

to calculate its own position. First, the unknown node will calculate all its beacon

nodes in four groups according to the set of MC, according to the set thre_mc excluded

MC by discarding less than the reference point combinations with less than thre_mc,

and then according to the multilateral measurement method

Secure Geo-location Techniques using Trusted Hyper-visor

 28
S. Rostantis

to calculate the node coordinates, and finally take the average of all the results as the

final position coordinates of the unknown node.

3.2.7 Enhanced APIT algorithm

The localization process of the APIT algorithm can be expressed as follows: The target

node can get the set of beacon nodes which can communicate with it through the

information transmission with the surrounding beacon nodes. Assuming there are n

elements in the set and any three nodes are chosen to form a triangle, a total of Cn
3

triangles can be formed. It is judged that the position of the unknown node is inside the

triangle or outside the triangle, and then the other three nodes are selected to determine

the position of the unknown node until all triangles are exhausted.

Then, the overlapping area of all triangles can be calculated and further the area where

the unknown node is located can be gradually reduced. Finally, the centroid of the

overlapping area can be obtained as the estimated coordinates of the unknown node.

The most important part of the APIT algorithm is to determine whether the unknown

node is inside or outside the triangle. In this regard, the best-point-in-triangle-Φ (PIT)

test algorithm can be used to determine whether the unknown node is inside the

triangle. Figure 2 shows the specific PIT algorithm principle.

Figure 20. PIT diagram

A, B, and C are the three vertices of the triangle, and M is the unknown node that needs

to be confirmed. Let the M point moves in any direction. When the M point is in the

movement process and there is a point with the move to the M point, distances from the

M point to A, B, C are increased or decreased at the same time, thus the point M is

located outside the triangle; otherwise, M is located inside the triangle,

which follows the PIT principle.

Enhanced APIT algorithm.

The improved APIT algorithm is similar with the APIT algorithm. First, we need to know

the information of all the beacon nodes around the target node, which includes the

position of the beacon node and the signal strength of the beacon node receiving the

target node.

All beacon nodes that can communicate with the target node form a beacon node set.

We arbitrarily select three beacon nodes to form a triangle to determine whether the

target node is inside or outside the triangle. It is known that the three beacon nodes

Secure Geo-location Techniques using Trusted Hyper-visor

 29
S. Rostantis

receive the signal strength of the target. When there is a point, the signal strength of the

three beacon nodes received by the point is greater than or less than

the signal strength received by the target node, then the target node is outside the

triangle; otherwise, the target node is inside the triangle.

Select all the triangles that contain the target node and divide the triangle into four or six

parts with vertical lines. If the triangle is acute triangle, it can be divided into six small

intervals. And if the triangle is a rectangular triangle or obtuse angle triangle, it can be

divided into four small intervals. By comparing the signal strength by the target node

received by the three beacon nodes, it can determine which subrange the target node is

located. Find the overlapping area of all the cells and find the center of mass position of

the overlapping area, and the center position can be seen as the target node position.

3.2.8 Hybrid 3D Localization Algorithm

A hybrid localization algorithm based on APIT and DV-Hop is proposed by Miaochao

Chen [25]. When the PIT is used to determine whether the unknown node is inside the

triangular region composed of any three beacon nodes, the judgment condition is added

under the original APIT algorithm condition.

The beacon nodes A, B, C and the unknown node M are obtained by the RSSI method,

and then use the triangular cosine theorem to find the angle. If !AMC + !AMB + !BMC =

360 °, M is in the triangle; otherwise, it is judged that the M is outside the triangle.

Figure 21. 3D localization algorithm based on APIT and DV-Hop

Secure Geo-location Techniques using Trusted Hyper-visor

 30
S. Rostantis

In the selection of fine triangles, remove the signal strength of the weak triangle, the

selection principle is that: in the beacon node intensive, set a threshold P, and P is for

the unknown node in the PIT point of all triangles 3 nodes of the signal strength and the

average. In the sparse environment of the beacon node, and the neighbor beacon node

is not less than 3, the DV-Hop algorithm is used to locate. Because it calculates the

minimum hop count of the unknown node and the beacon node by the distance vector

routing method and then calculates the average distance of each hop.

The product of the average distance between each hop and the minimum hop count is

used as the estimated distance between the unknown node and the beacon node.

When there are three beacon nodes, the coordinates of the unknown node are

calculated using the trilateral method or the maximum likelihood estimation method.

With only two neighbors of beacon nodes, the two-point localization method should be

applied for node localization. The two-point localization method can measure the

distance of unknown nodes and two beacon nodes according to RSSI, and then the

coordinates of the unknown node can be obtained according to the coordinates of these

two beacons.

3.2.9 3D-TDOA Fictitious Point Method

TDOA systems are based on difference time measurements between the signal arrival

to different nodes or sensors in a network [26]. These measurements can be converted

to difference of distances by multiplying these times by speed emission of the

radioelectric waves (c). This leads in Euclidean Geometry to the next equation:

Rij = dij = dIi − dIj =

 √(xI − x𝑖)
2 + (yI − yi)

2 + (zI − zi)
2 - √(xI − x𝑖)

2 + (yI − yi)
2 + (zI − zi)

2 + h(0, σ) =

 ctij + h(0, σ)

where dIj is the distance difference between receivers i and j—which is the result of

multiplying the actual time difference of arrival (tij) and adding a white noise, h(0, σ),

that considers atmospheric instabilities and time error measurements.

This noise is related to signal transmission and measurement of times, which cannot be

controlled by TDOA algorithms and so is not considered in this paper. In addition, (xI, yI,

zI) are space coordinates of the vehicle that are being positioned and (xi, yi, zi), xj, yj, zj

are coordinates of the nodes i and j, respectively, which receive the positioning signal.

These equations correspond with hyperboloids that cannot be solved in an analytic

direct process.

Secure Geo-location Techniques using Trusted Hyper-visor

 31
S. Rostantis

Non-linear equations of hyperboloids must be treated in order to address the TDOA

problem resolution. Generally, two main methodologies have been considered: those

based on hyperboloids intersection properties with closed-form solutions, and those

based on numerical methods, which offer a progressive reduction on the error gradient

derivation in successive approximations leading to the final solution. However, both of

them share the qualification that a univocal TDOA problem resolution must use at least

five different sensors.

3.2.9.a Intersection of hyperboloids.

The hyperboloid intersections can always be contained in a plane [27]. This process

increases the freedom to the problem by one degree, since a number of n receivers

generate a number of (n-1) independent hyperboloid equations and (n-2) independent

intersection planes are obtained using this methodology. That means that to solve the

3D TDOA problem linearly, where three planes are needed, we still have to use five

different receivers.

Nevertheless, the fact that the intersection of two different hyperboloids is contained in a

plane makes the process of obtaining this plane equation independent from the original

hyperboloid equations. As consequence, the intersection of two planes (four nodes)

resulting in a line of possible vehicle localizations can be verified in any hyperboloid to

finally get the two solutions that are achieved in TDOA problems with four beacons (i, j,

k, l). This methodology leads to two different solutions that for LPS cannot be discarded

by any assumable criterion.

3.2.9.b Taylor approximation

The other method would be based on applying a Taylor approximation truncated on first

order to linearize the equations and allow a real-time solution to the problem. In this

way, a point with enough proximity to the final solution (x0, y0, z0) from which a process

of sequential iterations will be started is selected. These steps will finally allow the

vehicle localization to be obtained through a matrix where the range differences are

considered as follows:

Rij = ctij = Rij0 +
𝜕𝑅𝑖𝑗

𝜕𝑥
𝛥𝑥 +

𝜕𝑅𝑖𝑗

𝜕𝑦
𝛥𝑦 +

𝜕𝑅𝑖𝑗

𝜕𝑧
 𝛥𝑧

where Rij is the value of the distance difference in the approximation point, and
𝜕𝑅𝑖𝑗

𝜕𝑥
,
𝜕𝑅𝑖𝑗

𝜕𝑦
,
𝜕𝑅𝑖𝑗

𝜕𝑧
 are partial derivatives of the range differences, particularized for the values

of the approximation point. Applying this very same process to the other two nodes k

and l with reference to the node i, Rik and Ril can be estimated. This leads to the

following matrix system:

Secure Geo-location Techniques using Trusted Hyper-visor

 32
S. Rostantis

ΔR =

[

𝜕𝑅𝑖𝑗

𝜕𝑥
𝜕𝑅𝑖𝑙

𝜕𝑥
𝜕𝑅𝑖𝑘

𝜕𝑥

𝜕𝑅𝑖𝑗

𝜕𝑦

𝜕𝑅𝑖𝑙

𝜕𝑦

𝜕𝑅𝑖𝑘

𝜕𝑦

𝜕𝑅𝑖𝑗

𝜕𝑧
𝜕𝑅𝑖𝑙

𝜕𝑧
𝜕𝑅𝑖𝑘

𝜕𝑧]

[
𝛥𝑥

𝛥𝑦

 𝛥𝑧

]

where ΔR is the range differences matrix, H is the partial derivative matrix (commonly

known as visibility matrix) and P is the position variance matrix. Therefore, we can

express the matrix system as follows:

HΔP = ΔR

This equation is usually solved through the least squares method [18], as described

below:

ΔP = (Ht H)−1 Ht ΔR =[
𝛥𝑥

𝛥𝑦

 𝛥𝑧

]

Regarding the resolution of the TDOA problem, four receiving sensors do not always

guarantee the convergence of the method and, if produced, this can affect any of the

two possible solutions (which prevents us from knowing whether the position calculation

is correct). However, in contrast with the former method, the calculation of the position

now guarantees a single solution instead of two possible answers.

3.2.9.c Fictitious Point Method

Of all the methods proposed so far, it is not possible to conclude whether the TDOA [28]

System can be applied to LPS systems with four nodes with enough confidence to

guarantee the correct calculation of the position. Nevertheless, it is possible to affirm

that successive approximation methods do guarantee convergence—if produced—

towards one of the possible of the solutions. This means that if there were any way to

ensure that the convergence occur toward the correct solution, the method would allow

the problem with to be solved with four sensors.

In a scenario where the process is convergent and highly dependent upon the initial

point of the iterations, it is safe to say that when this initial point is close enough to the

solution (i.e., the previous solution of the vehicle), the convergence should always take

place toward the correct solution. To prove this statement, the behavior of any point

located at a plane containing the two possible solutions is going to be proven for the

TDOA problem. The solution has been calculated by applying the successive

approximation method to these initial points.

Secure Geo-location Techniques using Trusted Hyper-visor

 33
S. Rostantis

3.2.10 3D-TDOA CHAN Method

It is a proposed algorithm from Zhang Jian-wu, Yu Cheng-lei, Tang bin and Ji Ying-ying

[65]. Mobile positioning was achieved through detection signal of MS arrival time

difference of two BSs in The TDOA technology, which greatly reduces the time

synchronization requirements. In this algorithm, a hyperbola could be got with the focus

of two BS and the focal length of the distance difference between MS to two BSs. Thus,

it could measure the two-dimensional (2D) coordinates of MS by the intersection of

three hyperbolas

Several typical location algorithms based on TDOA are Fang algorithm, Chan algorithm,

Taylor series expansion method and so on. With high positioning accuracy, the location

technology of TDOA could reduce the system error, and the performance of TDOA is

well in the non line-of-sight (NLOS) environment. However, comparing with TOA, the

algorithm of TDOA is complex. Usually, positioning algorithm is based on two

dimensional coordinates. In Practical application, not only two-dimensional coordinates

of MS should be measured, but also height coordinate should be got. Thus, it is most

important to measure the 3-dimensional coordinates of MS. Especially in the downtown

with numerous high-rise buildings or the fluctuating level of the mountain environment,

this demand even more urgent.

Whether TOA or TDOA wireless location technology, accurate ranging is the first step to

obtain the precise positioning. There are two way of traditional ranging of TOA, one is

Two Way Ranging (TWR), another is One Way Ranging (OWR). TWR: If there is no

common clock between nodes, the time between transmit node and receive node can

be used to estimate the distance between two nodes. As shown in figure 1, node A

sends a packet to node B at T0. After node B receives the packet, it returns a packet to

node A at once. Node A receives the return packet at T1.

The distance between node A and node B may be calculated. OWR: If there is common

clock between nodes, we could use the OWR to measure the distance between two

nodes. Time between two nodes could directly be measured by this method. Node A

sends a packet to node B at T0, and node A receives the packet at T1 . The distance

between node A and node B may be calculated. To unknown node coordinates can be

calculated with the usage of hyperbolas and linear algebra, more information in the

implementation of the algorithm are provided in the next sessions.

Secure Geo-location Techniques using Trusted Hyper-visor

 34
S. Rostantis

3.2.11 TOA/RSSI Direct Location Method

A proposed algorithm from Mohamed Khalaf-Allah [66]. The positioning algorithms

include the analytical method, the least-squares method, Taylor series method, the

approximate maximum likelihood method, two-stage maximum likelihood method and

the genetic algorithm. The described analytical (direct) method has three possibilities for

the solution of x, i.e. one solution, two solutions and no solution, unlike the developed

method, which yields a direct, exact and unique solution. This is due to using exactly

four TOA measurements rather than three TOA measurements and thus any

ambiguities can be resolved. The algorithm is advantageous in terms of implementation

simplicity and computational cost. Therefore, it can be easily implemented in many low-

power and low-cost wireless applications, e.g. 3D sensor networks. It uses four TOA

measurements with four stations to avoid object location ambiguities, which is a

problem associated with using three TOA measurements with three stations. Another

advantage of this direct method is that it needs exactly four TOA measurements to

compute 3D position solutions, where in many situations more than four measurements

are not available or the availability of more than four measurements is not important for

the accuracy requirements of the application at hand. The 3D position algorithm delivers

position solutions that are dependent only on the given measurements and information,

in case the interest is only in a single coordinate, e.g. the vertical component. More

information for the implementation of the algorithm are presented to the next sessions.

3.2.12 Hybrid 3D-TOA/TDOA

A hybrid TOA/TDOA lateration algorithm has been proposed from Yaro Abdulmalik

Shehu, Muazu Musa, Sani Salisu and Abdulrazaq Abdulaziz [67]. Passive

multilateration (MLAT) surveillance system estimate aircraft location in two steps. The

first step involves estimating the time difference of arrival (TDOA) of the signal at

antenna pairs. The second step involves using the estimated TDOA measurements

from the first stage as input to a position estimation (PE) algorithm known as lateration.

2D or 3D aircraft PE depends on the number of antennas deployed. For a 3D aircraft

PE, a minimum of 4 antennas are required. Several techniques for estimating TDOA

have been reported in literatures but the classical approach use in air traffic surveillance

is the TOA approach. TDOA estimation using the TOA approach involves a pair wise

difference of TOA measurements of the signal estimated at each antenna. TOA of the

signal is the time taken for the transmitted signal from the aircraft to be detected at any

of the antennas. More information are presented to the next sections.

3.2.13 3D-RSSI/TOA Multilateration

Secure Geo-location Techniques using Trusted Hyper-visor

 35
S. Rostantis

This method follows the concept of calculating the distances of an unknow node from

three base nodes with the RSSI/TOA method, which those 3 distances represents three

radii of three spheres with centers the coordinates of the base nodes.

3.2.14 Localization Algorithms Summary

Table 3. Localization Algorithms Summary

Name Nodes Publication Simulation and Information

FP-MPP-APIT

4 March 9, 2018
[17]

MATLAB 2014a was utilized as a simulation platform: Space:100m x100m x100m.Total Nodes
:200.Beacon Nodes :20.Range: R=15. The proposed algorithm was compared with PB-APIT-3D,FM-APIT-
3D and DFPLE algorithm and showed that has a smaller localization error. Minimum 5 base nodes

3D-IDCP

5 7 June 2015
[18]

MATLAB 2009a.Three-dimensional area of 100 m × 100 m × 100 m. Communication radius 𝑅 is set 40
meters. Experiments are carried out 50 times. Each time sensor nodes are randomly deployed. The
simulation experiments have verified the effect of the proposed algorithm in positioning accuracy,
positioning coverage, and proportion of bad nodes. Minimum 5 base nodes

Novel Centroid

5 November 2008
[20]

Size of 100 m x 100 m x 100 m. centroid location is robust under the effect of the irregularity of the radio
pattern. The reason is that the centroid algorithm does not depend on hop-count and hopsize that the effect

of degree of irregularity（ DOI） is abated by the aggregation of beaconed information.3.The sensor nodes

have the same maximum radio range R, which is used for normalization only.100 sensor nodes 4. The
simulation results are averaged over 100 network instance. The proposed algorithm can improve location
accuracy than the conventional centroid localization algorithm. Minimum 5 base nodes

DFPLE

5 2011 [21] MATLAB A 2-D square area (5r5r and 10r10r) in which sensor nodes were randomly deployed. 200 nodes
and radio range of 1.5r The DFPLE strategy was compared with the Convex Position Estimation (CPE).
Simulation results demonstrate that the DFPLE algorithm for estimating sensor positions is more accurate
than existing algorithms and improves upon conventional bounding box strategies. Minimum 5 base nodes

CPE
(improved)

5 2015 [22][23] MATLAB, Area of 200m× 200m.The sensor nodes are distributed randomly in this region. Each sensor
node has the same communication range 20m. With the number of sensor nodes is 200 and 300. The
improved CPE localization algorithm outperforms the classic CPE and does not increase the hardware cost
of sensor nodes. Minimum 5 base nodes. Minimum 5 base nodes

3D DV-Hop

5 25 January 2017
[24]

MATLAB .100x100x100 m3 3D space. The obstacle is a cube with the length of 14m, distributed in the
48m<x,y,z<62m2. The total number of nodes is 200, including 50 beacon nodes and 150 unknown nodes.
The communication radius of anchor node is 30m. The proposed algorithm is significantly superior to the
improved DV-Hop localization algorithm and the traditional DV-Hop algorithm. Minimum 5 base nodes

Enhanced
APIT algorithm

5 2015 [25] MATLAB Wireless sensor network coverage: 1000m % 1000m two-dimensional plane.200 sensor nodes,
Radius is 200m, Minimum 5 base nodes

Hybrid 3D
Localization

5 2017 [26] MATLAB 1. Wireless sensor network coverage: 1000m % 1000m two-dimensional plane. 2. The network
layout of 200 sensor nodes, Communication radius is 200m, Simulation results show that the proposed
hybrid algorithm can effectively improve the localization accuracy of beacon.

3D-TDOA
Fictitious

Point

4 2019 Field: 1000 × 400 × 100 m, described with a spatial discretization of 100 m in x coordinate, 50 m in the y
coordinate and 10 m in the z coordinate. Each of the discretization points represents a real solution to the
3D TDOA system of study. Results showed that he four-sensor TDOA problem can be solved with only
four sensors within a confidence interval defined through the convergence radius. Minimum 4 base nodes

3D-RSSI/ TOA
Multilateration

“3” - 4 - Simulation is presented in the section 7 of this paper alongside with information of the implementation of
the algorithm in section 6

3D-TDOA
CHAN

5 2008 [65] Two simulations were performed with a numerical example. The increase of the number of
available BSs, the positioning accuracy of Chan algorithm has some increased in the environment with
Gaussian noise. When the value of NLOS is from 0 to 50, the performance improvement caused by
increasing the number of BSs is not very significant. The reason is that with little value of NLOS, positioning
accuracy is mainly determined by system error. However, with the increasing of the value of NLOS, the
trend of positioning accuracy improvement caused by increasing the number of BSs is great. with the
increase of the height of MS, the positioning accuracy of Chan algorithm has improved.

3D TOA/RSSI
Direct

Location

4 2014 [66] Simulation was performed with a numerical example. Four fixed transmitters were located at (0,0,0),
(10,0,5), (10,10,0) and (0,10,5). The error-free range measurements were respectively 75 , 50 , 75 and 50 ,
where all coordinates and range measurements are in meters.

Hybrid
TOA/TDOA

4 2016 [67] The performance in PE of the developed algorithm is compared with the two fix reference TDOA lateration
using Monte Carlo simulation for some selected aircraft locations and TOA error standard deviation range
of 0 meters to 2 meters. Simulation results shows that the performance comparison between the two
lateration algorithms depends on the location of the aircraft.

Secure Geo-location Techniques using Trusted Hyper-visor

 36
S. Rostantis

4. INTRODUCING SECURITY IN GEO-LOCATION
4.1 Attacks in Localization

Secure localization of unknown nodes in a Wireless Sensor Network (WSN) is an

important research subject. When WSNs are deployed in hostile environments, many

attacks happen, e.g., wormhole, sinkhole and sybil attacks. Two issues about unknown

nodes’ secure localization need to be considered. First, the attackers may disguise as

or attack the unknown and anchor nodes to interfere with localization process. Second,

the attackers may forge, modify or replay localization information to make the estimated

positions incorrect [28].

The location information of the sensor node performs a critical role for numerous

applications in wireless sensor networks (WSNs) such as environment monitoring,

target tracking, and automatic surveillance. It also helps some fundamental techniques

in sensor networks (e.g., geographical routing protocol and topology control) to be

aware of where the messages are located. Driven by those demands, earlier research

efforts have resulted in many localization schemes, with most assuming the sensors are

deployed in a benign scenario. But when the sensor nodes are deployed in malicious

environments, it is prone to different forms of threats and risks. A simple malicious

attack can disturb the accurate position estimating and even make the entire network

functioning improperly. Usually, the localization process can be divided into two steps

information acquisition and position determination.

4.1.1.a Information acquisition

Roughly speaking, existing localization schemes of WSNs are classified into two

categories: range-based schemes and range-free schemes. For range-based

localization schemes, the distance or angle information is measured by RSSI etc. For

range-free localization schemes, the localization is realized based on network

connectivity or other information.

4.1.1.b Position determination

Location determination schemes have two categories: terminal-based schemes and

infrastructure-based schemes. In terminal-based schemes, the unknown node localizes

itself, the position of an unknown node can simply be computed by trilateration etc. In

infrastructure-based schemes, references nodes including trusted neighbor nodes,

mainly anchor nodes to localize the unknown node.

Localization process can be attacked in different ways. Researchers have addressed a

set of known attacks. The known attacks can be divided into two categories: external

and internal attacks. The adversary is external if it is outside the WSN and implements

malicious behaviors without right cryptographic key. Otherwise, the adversary is

internal, in which case the adversary controls one or more fraudulent nodes. The

attacks can also be classified into three categories Attacks on nodes, Attacks on

information and Dos Attacks [29] [30].

Secure Geo-location Techniques using Trusted Hyper-visor

 37
S. Rostantis

4.1.1 Attacks on Nodes

An attacker is an external node which intrudes into the WSN. A compromised node is a

normal node (an unknown or an anchor node) in the WSN compromised by the

attacker. Attacks on nodes are listed as follows:

4.1.1.a Compromise

Node compromise is the most fundamental attack in WSN that leads to other kinds of

attacks. It occurs when an attacker gains control of a node in the WSN. Normally,

compromised nodes can be obtained by the following methods: attackers capture

normal nodes and reprogram them attackers deploy nodes with larger computing

resources such as laptops to attack normal nodes. With compromised node, an attacker

can alter the node to listen information in the WSN, revoke legitimate nodes, input

malicious data, and cause internal attacks, e.g. DoS attack.

4.1.1.b Replication

If an adversary manages to capture a node and extract the authentication/encryption

keys, it can produce many replicas having the same identity (ID) from the captured node

and integrate them into the WSN at chosen locations, which is called the node

replication attack. Since the credentials of replicas are all the clones from the captured

nodes, the replicas can be considered as legitimate members of the network. It is

always assumed that the adversary cannot create new IDs for replicated nodes, since

otherwise the attackers will have to create the corresponding security information (keys,

codes, etc.), which is very difficult and even infeasible in most cases. Once the

adversary replicates one or more sensor nodes, it can execute the malicious operations.

4.1.1.c Impersonation

An impersonation attack is an attack in which an adversary successfully assumes the

identity of one of the legitimate parties in a system or in a communications protocol.

One form of node impersonation attack is the Invisible Node attack, and the other one is

the Stolen Identity attack. The Invisible Node attack: Malicious node M simply stands

between two nodes A and B that are not in direct range. The invisible node M silently

repeats the communication between nodes A and B, which misleadingly assume that

nodes A and B communicate directly. In this way, the malicious node succeeds in

impersonating node A to node B and vice versa.

Figure 22. The invisible node attacks

Secure Geo-location Techniques using Trusted Hyper-visor

 38
S. Rostantis

The Stolen Identity attack: The malicious node M succeeds in stealing all the

authentication credentials from a legitimate node A, such as the certified signature keys.

If the malicious node outraces the legitimate node in updating the stolen credentials,

then the credentials of the legitimate node will not be valid anymore. Thus, only the

malicious node will be able to communicate with node B. This kind of attack is not just a

matter of stealing a nodes identity, but also a matter of abusing the trust relationships

that other parties may have had established with the legitimate node.

Figure 23. The stolen identity attacks

4.1.1.d Sybil attack

In this attack, a single node i.e. a malicious node will appear to be a set of nodes and

will send incorrect information to a node in the network. The incorrect information can

be a variety of things, including position of nodes, signal strengths, making up nodes

that do not exist. Authentication and encryption techniques can prevent an outsider to

launch a Sybil attack on the sensor network. However, an insider cannot be prevented

from participating in the network, but he should only be able to do so using the identities

of the nodes he has compromised. Public key cryptography can prevent such an insider

attack, but it is too expensive to be used in the resource constrained sensor network.

4.1.1.e Wormhole attack

In a wormhole attack, an attacker records a packet or individual bits of a packet at one

location in the network. Then, it tunnels the packet (possibly selectively) to another

location and replays it. The tunnel can be established in different ways, for example,

through an out-of-band channel, packet encapsulation, high-powered transmission,

packet relay and protocol deviations. In localization process, the attack may tunnel

totally different and erroneous localization information.

One node in the network (sender) sends a message to another node in the network

(receiver node). Then the receiving node attempts to send the message to its

neighbours. The neighbouring nodes think the message was sent from the sender node

(which is usually out of range), so they attempt to send the message to the originating

node, but it never arrives since it is too far away.

Secure Geo-location Techniques using Trusted Hyper-visor

 39
S. Rostantis

Figure 24. Wormhole attack

Wormhole attack is a significant threat to wireless sensor networks, because, this sort of

attack does not require compromising a sensor in the network rather, it could be

performed even at the initial phase when the sensors start to discover neighbouring

information. Wormhole attacks are difficult to counter because routing information

supplied by a node is difficult to verify.

4.1.2 Attacks on Information

In the localization systems, unknown nodes always use the localization information of

anchor nodes to localize themselves. The target of malicious nodes is usually to make

localization information incorrect. Attacks on information are listed as follows:

4.1.2.a Forgery

Forgery attack is the malicious node sends misleading information in the localization

systems. For example, in the active system, the malicious node pretends to be an

anchor node to voluntarily send localization information. In the passive system the

malicious node pretends to be an unknown node to be localized.

4.1.2.b Alteration

Alteration attack is the most direct attack. This attack targets the information exchanged

between an unknown and an anchor node. Adversaries may directly alter the

coordinates, time or the number of hops and increase the localization error of unknown

nodes. For example, in Collaborative Collusion [], all malicious node can collaborate

with each other to alter the information they receive or replay.

4.1.2.c Interference

Interference attack is the malicious node interferes with the signal measurements. For

example, in range-based localization systems, malicious nodes may place obstacles

between signal sender and receiver to prolong transmission time

4.1.2.d Replay

Replay attack is the most common or simple attack, especially when the capability and

resources of the adversary are limited. In this attack, the malicious node congests the

information transmission between sender and receiver, then replays the outdated

information. Using the outdated information, the unknown nodes calculate inaccurate

Secure Geo-location Techniques using Trusted Hyper-visor

 40
S. Rostantis

positions. Unlike other attacks, replay attack can destroy the whole network with one

node.

4.1.2.e Selective forwarding

In selective forwarding attack the malicious node behaves like black hole and refuses to

forward sensitive messages and simply drops them, ensuring that they are not

propagated any further.

Figure 25. Selective forwarding

The selective forwarding attack is difficult to detect. First, to avoid raising suspicions, an

adversary selectively drops packets instead of dropping every packet. In addition, there

are many reasons result in packet dropout, e.g., unreliable wireless communications,

sensor nodes go into sleep state to save power.

4.1.3 Denial of Service Attacks (DoS)

4.1.3.a Jamming

Jamming is a DOS attack at physical layer. Jamming interferes with the radio

frequencies that a network’s nodes are using. A jamming source may either be powerful

enough to disrupt the entire network or less powerful and only able to disrupt a smaller

portion of the network

4.1.3.a Tampering

Another DOS attack in physical layer is tampering. By physical access an attacker can

extract sensitive information such as cryptographic keys or other data on the node. A

compromised node creates, which the attacker controls by altering or replacing node.

Vulnerability of this attack is logical. A defence to this attack involves tamper-proofing

the node’s physical package.

4.1.3.b Collisions

Collision is a DOS attack in the data link layer. When two nodes attempt to transmit on

the same frequency simultaneously a collision occurs. A change will likely to occur in

the data portion when packets collide and causing a checksum mismatch at the

receiving end. The packet will then be discarded as invalid. An adversary may

strategically cause collisions in specific packets such as ACK control messages. Error-

correcting codes use to defend against collisions.

Secure Geo-location Techniques using Trusted Hyper-visor

 41
S. Rostantis

4.1.3.c Exhaustion

It is another type of DOS attack in link layer. An attacker can use repeated collisions to

cause resource exhaustion. For example, a native link-layer implementation may

continuously attempt to retransmit the corrupted packets. The energy reserves of the

transmitting node unless these hopeless retransmissions are discovered or prevented.

Applying rate limits to the MAC admission control is a possible solution of exhaustion.

4.1.3.d Unfairness

Unfairness is a weak of a DOS attack in link layer. An attacker may cause unfairness in

a network by using the above link- layer attacks. Instead of preventing access to a

service outright, an attacker can degrade it in order to gain advantage such as causing

other nodes in a real time MAC protocol to miss their transmission deadline.

4.1.3.e Selective Forwarding Attack

Multi-hop mode of communication is commonly preferred in WSN data gathering

protocols. An assumption made in multi-hop networks is that all nodes in the network

will accurately forward received messages. Selective forwarding attack is a situation

when certain nodes do not forward many of the messages they receive. In this attack,

malicious nodes may refuse to forward certain messages and simply drop them,

ensuring that they are not propagated any further.

4.1.3.f Flooding

Flooding attack on localization is the malicious node broadcasts large quantities of

useless data packets to all nodes in its communication range. The common

characteristic of flooding attack is to exhaust the available network communication

bandwidth so that the other nodes cannot communicate with each other. Moreover, the

sender and receiver are busy to send or receive the excessive packets from the

attacker and consume a lot of network resources.

4.1.3.g Desynchronization

Disruption of an existing connection is desynchronization. For example, an attacker may

repeatedly spoof messages to an end host, causing that host to request the

retransmission of missed frames. With proper timing, an attacker may degrade or even

prevent the ability of the end hosts to successfully exchange data. A possible solution to

this type of attack is to require authentication of all packets communicated between

hosts. The authentication method would be secure as an attacker will be unable to send

the spoofed messages to the end hosts.

Secure Geo-location Techniques using Trusted Hyper-visor

 42
S. Rostantis

4.1.4 Localization attacks summary

All the previously mentioned security threats serve one common purpose that is to

compromise the integrity of the network they attack. In the past, focus has not been on

the security of WSNs, but with the various threats arising and the importance of data

confidentiality, security has become a major issue. Although some solutions have

already been proposed, there is no single solution to protect against every threat.

Table 4. Localization attack summary

4.2 Secure Geo-location Schemes

Localization algorithms are an important and challenging topic in Wireless Sensor

Networks (WSNs), especially for the applications requiring the accurate position of the

sensed information. Various algorithms have been proposed to obtain the location of

sensor nodes. However, most of existing location algorithms assumes a non-adversarial

environment.

Attack Name Attack Behavior

Compromise Alter the node to listen information
Replication Node replication

Impersonation Node impersonation

Sybil attack Possessing multiple identities

Wormhole attack Shortening the distance to make a fast routing path

Forgery Sends misleading information

Alteration Alter node coordinates

Interference Interference signal measurements

Replay Replays the outdated information

Flooding Establishing false connections

Selective forwarding Selectively forward packets

Stealing Signal eavesdropping and tampering

Jamming Sending jamming signal in the working frequency
range

Collision Repetition of messages

Exhaustion Sending of unnecessary message

Unfairness Explicitly taking the control of the channel

Dos Attacks Exhaustion of energy of the unknown nodes

Sinkhole Maliciously tamper with routing

Tampering Tampering localization beacons

Insider attack Compromised anchor nodes may provide false
information

Range change attack Changing the range or Angle of Arrival (AoA)

False beacon location attack Compromising a beacon and then he can make the
beacon broadcast false location

False reported location attack Malicious node reports false

Desynchronization Disruption of an existing connection

Secure Geo-location Techniques using Trusted Hyper-visor

 43
S. Rostantis

The position estimation accuracy decreases drastically when some of the sensor nodes

are compromised. In this section we present a variety of localization algorithms that

ensure user's authentication, security and data safety and resists malicious attacks.

Safety in geo localization systems can be achieved in many ways, for instance by using

the coordinates of the unknown node as a verifier, cryptography or by external

frameworks usage such as a TPM. Below we present some representative security

algorithms and schemes in geo localization systems.

4.2.1 Location-Dependent data Encryption Algorithm (LDEA)

This algorithm is proposed by Hsien-Chou Liao, Yun-Hsiang Chao and Chia-Yi Hs [32].

It utilizes the latitude/longitude coordinate as the key for data encryption. When a target

is determined for data encryption the cipher text can only be decrypted at the expected

position.

a) The purpose of LDEA is mainly to incorporate the latitude/longitude coordinate in the

data encryption and thus to restrict the location of data decryption.

b) A toleration distance (TD) is designed to overcome the inaccuracy and inconsistent

problem of GPS receiver.

c) When the target coordinate and TD is given by the sender (information system or

mobile user), an LDEA-key is generated from latitude/longitude coordinate and TD.

The random-key generator issues a session key, called R-key.

d) Then, the final-key for encrypting the plaintext is generated by exclusive-or R-key

with LDEA-key. The final-key can be used for the symmetric encrypt algorithm, such

as DES, AES. KUr and KRr is the public and private keys generated on the receiver

side. KUr is transmitted to the sender first.

e) Then, TD and R-key is transmitted via asymmetric encryption algorithm. When the

receiver gets the TD and R-key, the LDEA-key can be generated from TD and the

coordinate acquired from GPS receiver. The final-key can be generated by

exclusive-or R-key with LDEA-key.

f) If the acquired coordinate is matched with the target coordinate within the range of

TD, the cipher text can be decrypted back to the original plaintext. Otherwise, the

result is indiscriminate and meaningless.

Figure 26. LDEA Process

Secure Geo-location Techniques using Trusted Hyper-visor

 44
S. Rostantis

4.2.2 Mutual Authentication Insider Node Validation

This algorithm is proposed by Gulshan Kumar, Mritunjay Kumar Rai, Hye-jin Kim and

Rahul Saha [33]. The main concept of this algorithm is that the main consideration of

location discovery is a set of special nodes known as anchor nodes, which are resource

privileged having more storage and computational capacity. Using the location of

anchor nodes, other unknown nodes compute their location in different ways.

Therefore, it is critical that malicious anchor nodes need to be prevented from providing

false location information as the unknown nodes completely depend on the anchor

nodes for computing their own location. The proposed algorithm considers only the

anchor nodes, unknown nodes, and Base Station where anchor nodes and unknown

nodes are deployed randomly. The anchors are having a variable range of transmission

with an average transmission range 𝑅avg given as:

Ravg =
∑ 𝜓(|𝑒|)𝑒∈𝛦

𝑚

where 𝑚 is the number of anchor nodes in the network, 𝑒 is an edge between two

nodes, 𝐸 is the set of the edges in the network, and 𝜓(|𝑒|) is the weighing function of a

connection between an anchor node and an unknown node and interpreted as 𝜓(|𝑒|) ∼

|𝑒|𝛼, 2 ≤ 𝛼 ≤ 4. The algorithm starts with an initialization phase that deals with

distribution of certificates by the BS. After the distribution of the certificates, distance

estimation phase starts among the anchor nodes and the unknown nodes. Once the

distances are estimated, the BS is able to localize the unknown nodes applying MMSE

method.

4.2.2.a Initialization Phase.

Base Station (BS) provides the identity for all anchor nodes and unknown nodes as IDaj

and IDui where aj is an anchor node and ui is an unknown node. BS also provides

certificates for each anchor node and unknown node as Certaj and Certui.

4.2.2.b Distance Estimation Phase.

The anchor node aj sends a random nonce κ, along with the certificate Certaj to all the

one-hop neighborhood unknown nodes ui in the range Ravg and starts the timer on.

When the unknown nodes receive the message, verify the certificate using the public

key BSK+ given by BS. As, only legitimate anchor nodes are having the certificate to

provide, by verifying the certificates, the authentication of the anchor nodes can be

proved. Then, the unknown nodes ui response back to the anchor node aj with the same

nonce κ, time duration between of receiving the last bit of message sent by anchor node

and transmitting the first bit of message to the anchor node, given as timeprocu encrypted

with anchor node’s public key Kaj+ along with its own certificate.

𝑎𝑗 → 𝑢𝑖 : 𝜘, Cert𝑢𝑖,
 𝑢𝑖 → 𝑎𝑗: [𝜘, timeproc𝑢] 𝐾𝑎𝑗+ , Cert𝑢𝑖.

Secure Geo-location Techniques using Trusted Hyper-visor

 45
S. Rostantis

When 𝑎𝑗 sends message to 𝑢𝑖, it waits for a bounded time value 𝑡retransmit to retransmit
the message if no response starts arriving to the anchor in that bounded time. This
value is precomputed at the starting of the network deployment assuming all the
favourable conditions of the network environment with a noise effect of Δ𝑡 and given as

𝑡 retransmit = time normal + Δ𝑡,

where time normal is the normal time duration of getting a response back from the
unknown node. When the anchor node receives the response back from the unknown
nodes, it decrypts the message using its own private key 𝐾𝑎𝑗-, verifies the certificate of
the unknown nodes, stops the timer, and calculates the signal propagation time as)
where time prop is the signal propagation time, time𝑗 is the timer interval at the anchor

side, and time proc𝑎 is the time duration between receiving the first bit of the response
and last bit of the response. Once the propagation time is calculated, the estimated
distance between anchor node 𝑎𝑗 and unknown node 𝑢𝑖 is calculated as:

𝑑𝑢𝑖
𝑎𝑗
= 𝑐 ∗ 𝑡𝑖𝑚𝑒𝑝𝑟𝑜𝑝

where 𝑐 is the speed of light. Once the anchor node calculates this estimated distance,
it is then forwarded to the BS encrypted with the public key of BS and along with the
anchor node’s certificate.

𝑎𝑗 → BS: [𝑑𝑢𝑖
𝑎𝑗

]BS𝐾, Cert𝑎𝑗.

After receiving the message from the anchor nodes, BS decrypts the message with is
private key and gets the estimated distances. Finally, it uses Minimum Mean Square
Error (MMSE) to estimate the location of an unknown node (𝑥𝑢𝑖, 𝑦𝑢𝑖). The relative
mobility between an unknown node 𝑢𝑖 and anchor node 𝑎𝑗 at a given time t is given by:

𝑅𝑀𝑡
𝑎,𝑢 = da,ut - da,ut-1

where 𝑅𝑀𝑡
𝑎,𝑢

 is positive if node 𝑢𝑖 is moving away from 𝑎𝑗 and negative if 𝑢𝑖 is coming

closer to 𝑎𝑗.

4.2.2.c Handling Distance Estimation Error.

Distance estimations in a wireless environment are very common to have error due to
the noise or delay in the medium. Assume that the estimation error is 𝜖 ∈ [-𝜖max, 𝜖max],
where 𝜖max is a system parameter and given as 0 ≤ 𝜖max ≤ 1. Therefore, the estimated

distance can be given as:

𝑑𝑢𝑖
𝑎𝑗

 ∈ [true 𝑑𝑢𝑖
𝑎𝑗

 x (1 - εmax), true 𝑑𝑢𝑖
𝑎𝑗

 x (1 + εmax)]

where true 𝒅𝒖𝒊
𝒂𝒋

 is the true distance between 𝑎 𝑗 and 𝑢𝑖 and can be calculated by

applying Euclidean method.

Secure Geo-location Techniques using Trusted Hyper-visor

 46
S. Rostantis

4.2.2.d Simulation Results

The framework was compared with the three recent algorithms: (1) CSLT, (2) MPA and
(3) AWS. The localization ratio is defined as the percentage of successful location
estimation of unknown nodes. The results showed that the proposed algorithm
performed better as compared to others. In the simulation, the ratio of malicious nodes
varied from 5% to 30% with increments of 5%. Simulation results showed that the
relative error percentage of location estimation increases with the increasing number of
malicious nodes. However, the proposed algorithm proved its efficiency in location
estimation accuracy

Figure 27. Propagation time estimation process

4.2.3 TPM Based Geo-location

This algorithm is proposed by Sungjin Parka, Jong-Jin Wona, JaenamYoona, Kyong

HoonKimb and Taisook Hanc [34]. The basic concept of this algorithm is to state the

major problem of cloud services that is that the actual geolocation of cloud tenant

devices can be easily manipulated. In general, an application requests the geolocation

of a device to a GPS device driver.

In this process, there are many vulnerable points to forge the current geolocation of the

device, which implies that the trusted computing base (TCB) for the trusted geolocation

is too large. (e.g., the GPS device driver, system call tables, libraries for device driver

communication, etc.) Since a large TCB-based system has high probability of

embedding bugs, a secure system should minimize the TCB. The tiny hypervisor

directly obtains the current geolocation from a GPS and computes an evidence value for

the trusted geolocation with the Trusted Platform Module (TPM).

Figure 28. TPM Based Localization Framework

Secure Geo-location Techniques using Trusted Hyper-visor

 47
S. Rostantis

4.2.3.a Proposed Framework

Cloud tenants should install two proposed software, a tiny hypervisor, called TGVisor,

and the Cloud Agent, in their devices. The hypervisor handles the geolocation value and

performs TPM operations required for remote attestation. Locality 1 is assigned to the

untrusted legacy OS and locality 2 to TGVisor. Throughout this locality assignment, the

mobile device’s TPM can be shared by the tiny hypervisor and the untrusted legacy OS.

TGVisor also includes the Crypto Module, a software cryptographic library that

computes the evidence value for the trusted geolocation and creates a RSA session

key. The Cloud Agent serves as a middleware to communicate between the hypervisor

and the Trusted Geolocation Server (TGS), which is a verifier to check the

trustworthiness of the TCB in target systems.

The TGS in the server-side periodically requests a trusted geolocation value and a

remote attestation evidence to a cloud device. In turn, the Cloud Agent passes these

requests to the hypervisor via hypercalls. The hypervisor obtains a geolocation value

from the GPS connected to the tenant device and performs cryptographic operations

inside the hypervisor. The hypervisor returns the results of the cryptographic operations

to the Cloud Agent and the Cloud Agent transfers them to the TGS. The TGS attests the

trustworthiness of the hypervisor and geolocation value with a public RSA session key

and enforces a policy to the Policy DB running in a cloud provider domain. More

information for this framework will be provided in chapter 6.

4.2.3.b Simulation Results

The trusted geolocation for cloud devices is a necessary feature to solve the security

concerns of cloud users about the data location in the cloud. In order to cloud providers

to provide more reliable data location services, TGVisor is presented as a novel trusted

geolocation system for the cloud devices. TGVisor is feasible and practical in the cloud

environment. Compared with other hypervisors based on XMHF, TGVisor was

implement with the small LOC, 2293 LOC, which means that TGVisor maintains the

minimized TCB.

4.2.4 Authenticated Location based on DRM

The idea of authenticated positioning and location utilizing Digital Rights Management

(DRM) concept was proposed by Thomas Mundt [35], after finding a vast variety of

scenarios where location is essential for controlling access to resources for example: A

hard disc containing the blueprint of a nuclear bomb can only be read on the premises

of the lab or TV shows or DVD movies are licensed to a single country only. This trusted

position information is being used to enable access to data or devices protected by

Digital Rights Management (DRM).

4.2.4.a Digital Rights Management (DRM)

Digital rights management (DRM) is a set of access control technologies for restricting

the use of proprietary hardware and copyrighted works. Digital Rights Management

allows the copyright owners of multimedia content to decide under which circumstances

https://en.wikipedia.org/wiki/Access_control
https://en.wikipedia.org/wiki/Copyright

Secure Geo-location Techniques using Trusted Hyper-visor

 48
S. Rostantis

they want to allow users to access documents. Access can be restricted to read, write,

change, update, and other operations. Managed material is secured by cryptographic

methods such as encryption, watermarking, and signing. Encryption can be done by

several algorithms such as RC4 and AES depending on the nature of the digital

material. In order to determine an authenticated position, the following tasks must be

accomplished in the given order:

1) A public key infrastructure (PKI) needs to be established.

2) The position needs to be calculated.

3) The position needs to be authenticated.

4) The DRM module decides whether it grants access to the protected material.

Creating a public key infrastructure: Each node carries a unique private key which

will be used in the authentication process as well as for decryption of secret messages.

The corresponding public key is signed by a Certifying Authority (CA) which belongs to

each closed user group in our system. Traditional certificates such as X.509 can be

used for this purpose.

Position determination: Signal strengths are utilized for positioning. Deriving the

position directly from signal strengths of surrounding APs does not deliver accurate

position information. An adapted method is utilized where uses a propagation model

which is normally being calibrated by several test measurements. This calibrated model

will be used to find the most likely position according to the current measurement of

signal strengths. In order to calibrate the propagation model measurement reports are

considered from nodes with known positions.

These nodes determine the signal strengths to other fixed nodes. The difference

between expected signal strength and real signal strength is used to parameterize the

propagation model. The error between expected and measured attenuation is virtually

distributed over the entire distance between two nodes. By performing this within all

nodes in sight of each node a two-dimensional model will be generated.

Authenticated positioning: As mentioned before all nodes are able to proof their

identity by using a unique certificate which is signed by a CA. In order to proof its own

position a node has to collect several measurement reports from surrounding nodes.

Each measurement report contains the signal strength of the observed node as it is

seen by the node generating the report. All reports are digitally signed using the node’s

private key. Some special nodes called ”level-0-nodes” have a certificate available that

marks them as nodes with a position that is not doubtful.

Their position might have been securely determined by other means such as GPS or

land surveying. The signatures of a CA ensures that only distinguished nodes can claim

to be a ”level-0-node”. Nodes which derive their position from ”level-0-nodes” receive

measurement reports as well as position reports. Both information are signed and

therefore being marked as originated by a ”level-0-node”. All reports from nodes other

than ”level-0-nodes” contain their calculated position (position report) and the signal

Secure Geo-location Techniques using Trusted Hyper-visor

 49
S. Rostantis

strength of the node to which the report is addressed (measurement report). All reports

are signed as usual by the sender. In order to proof the calculated position the sending

node also includes the signed reports which were used to determine its own position.

Following this scheme ensures that every node is able to see and check the paths

which were used to determine its own position back to at least three level-0-nodes”.

4.2.4.b Simulation Results

A prototype on a Linux driven TV satellite receiver with a built-in hard disc was

implemented. The position was determinated and authenticated using a wireless mesh

network. We are supporting a wireless community network with currently about 160

nodes (130 of them are stationary, the remaining are limited mobile. Commercial

wireless routers running on Linux were used as nodes. The results were considered to

be sufficient for the purpose of mesh network based location aware dependent digital

rights management.

4.2.5 TOA-ECC Elliptic Curve Cryptography

Is a public key cryptography scheme for secure localization and authentication between

sensor nodes proposed from V. Vijayalakshmi and Dr. T.G. Palanivelu [36]. The key

exchange between the nodes is done by using ECC key Exchange. A comparison of

this technique is also done with the other asymmetric algorithms like RSA and MPRSA.

The exchange of the key is also done using Diffie-Hellman and then compared to prove

that ECC is the best.

4.2.5.a Algorithm Overview

The primary reason for the attractiveness of ECC over systems such as RSA and DSA

is that the best algorithm known for solving the underlying mathematical problem

(namely, the ECDLP) takes fully exponential time. In contrast, sub exponential-time

algorithms are known for underlying mathematical problems on which RSA and DSA

are based, namely the integer factorization (IFP) and the discrete logarithm (DLP)

problems.

This means that the algorithms for solving the ECDLP become infeasible much more

rapidly as the problem size increases than those algorithms for the IFP and DLP. For

this reason, ECC offers security equivalent to RSA and DSA while using far smaller key

sizes. The attractiveness of ECC will increase relative to other public-key cryptosystems

as computing power improvements force a general increase in the key size. The

benefits of this higher-strength per-bit include:

• Higher speeds and Lower power consumption

• Bandwidth savings

• Storage efficiencies and Smaller Certificates

4.2.5.b Elliptic Curve Encryption and Decryption

To encrypt and send a message Pm to B, A chooses a random positive integer k and

produces the cipher text Cm as given by equation consisting of the pair of points.

Secure Geo-location Techniques using Trusted Hyper-visor

 50
S. Rostantis

Cm= [kG, Pm+kPB] (1)

Note that A has used B’s public key PB. To decrypt the cipher text, B multiples the first

point in the pair by B’s private key nB and subtracts the result from the second point as

shown by equation:

Pm+kPB-nB (kG) =Pm+k (nBG)-nB(kG) = Pm (2)

4.2.5.c ECC key exchange

A key exchange between users A and B can be accomplished as follows:

1. A selects an integer nA less than n. This is A’s private key. A then generates a public

key PA=nA*G; the public key is a point in Eq(a,b).

2. B similarly selects a private key nB and computes a public key PB,

3. The public keys are exchanged between the nodes A and B. A generates the secret

key K=nA*PB. B generates the secret key K=nB*PA.

4.2.5.d Simulation Results

The TOA localization scheme along with ECC for secure localization and authentication

was implemented. This TOA-ECC scheme was compared with the other public key

cryptographic schemes like RSA and MPRSA. A further comparison was done by

implementing both Diffie-Hellmann key exchange and ECC key exchange. The

simulation results clearly indicate that TOA approach of localization along with the

implementation of ECC with ECC key exchange is well suited for Wireless Sensor

Networks.

4.2.6 Collaborative localization based on Trust model

This algorithm is proposed by Guangjie Han, Li Liu 1, Jinfang Jiang, Lei Shu, and Joel

J.P.C. Rodrigues. CSLT [37] was implemented for Underwater Wireless Sensor

Networks (UWSNs). First uses trust model to ensure node safety and avoid the

influence from malicious nodes, which ultimately reduces unknown nodes’ localization

error and enhances localization accuracy. Then, based on the collaboration of sensor

nodes, localization ratio and localization accuracy can be further improved. The

proposed CSLT consists of the following five sub-processes: trust evaluation of anchor

nodes, initial localization of unknown nodes, trust evaluation of reference nodes,

selection of reference node, and secondary localization of unknown node.

4.2.6.a Algorithm Overview

1. Trust evaluation of anchor nodes: In the first sub-process, the trust values of

anchor nodes are calculated based on the main idea of detecting malicious anchor

beacons.

2. Initial localization of unknown nodes: In the second sub-process, the unknown

nodes are localized based on the multilateral localization method by using

positioning reference information from trusty anchor nodes.

3. Trust evaluation of reference nodes: In the third sub-process, is evaluated the

trust value for each successfully localized unknown node.

Secure Geo-location Techniques using Trusted Hyper-visor

 51
S. Rostantis

4. Selection of reference node: Then, the trusty and successfully localized unknown

node can be selected as a reference node in the fourth sub-process.

5. Secondary localization of unknown node: Finally, in the fifth sub-process, two-

hop trusty anchor nodes and reference nodes are used to help localize unknown

nodes.

Figure 29. CSLT five sub-processes

4.2.6.b Simulation Results

The algorithm was implemented using MATLAB. In the experiments, the deployment

area was set to 500m×500m×500m. There are 500 unknown nodes randomly deployed

in the 3D space. The communication range of unknown nodes is set to 100 m. The

performance of CSLT is compared based on the following three metrics:

(1) detect ratio of malicious nodes, (2) localization accuracy, (3) localization ratio, (4)

energy consumption. Simulation results indicate that CSLT can achieve a high detect

ratio of malicious nodes. In addition, the localization security including localization

accuracy and localization ratio is improved in UWSNs. However, there are many

remaining issues that need to be further studied.

4.2.7 Secure DV-Hop Localization algorithm

This algorithm is proposed by Xiaole Liu1, Rui Yang2 and Qingmin Cui [38]. Its basic

idea realizes on transforming the distance to all beacon nodes from hops to meters by

using computer average size of a hop. The advantages of the DV-Hop scheme are that

it does not need any sophisticated hardware for the distance measurement and thus, it

is free from range measurement errors. However, the DV-Hop technique introduces

errors that propagated to the computation of a node’s location.

Secure Geo-location Techniques using Trusted Hyper-visor

 52
S. Rostantis

4.2.7.a Algorithm Overview

The proposed scheme includes four phases.

1. Initialization Phase: Before the sensor nodes deployed, the sink node generates

random keys for each beacon sensor node and applies the hash function to

generate hash chain. The base station will store the hash function and the last key

Rn of each key chain into all sensor nodes as the authentication key of the beacon

node.

2. Hop-count Computation: The goal of this phase is that all sensor nodes get the

minimal hop-count to each beacon node. In this phase all beacon nodes broadcast

its information to its neighbor nodes. Let sensor node B is a beacon node. All sensor

node i will broadcast a message to its neighbors

3. Hop-size and Weighted Computation: In this phase, all beacon nodes will

compute the distance to the beacon nodes and the weight of beacon nodes.

4. Location Estimation: An unknown sensor node can calculate its location when it

has to estimate distance to at least three beacons and weights of the three beacons.

The position of unknown nodes is computed using weighted least square method,

4.2.6.b Simulation Results

DV-Hop was compared with the proposed algorithm. The performance evaluation of the

localization algorithm adopts an average positioning error as an evaluation index, as

following formula:

ei = ∑
√(𝑥𝑖− 𝑥𝑖̅)

2+(𝑦𝑖− 𝑦𝑖̅)
2

𝑟

𝑛
𝑖=𝑁

where n is the total number of sensor nodes in WSNs, N is the number of beacon

nodes, (xi, yi) is the real coordinate of the unknown node i is, (xi, yi) is the evaluated

coordinate, and r is the communication range of sensor nodes.

All the sensor nodes were random placed in a square area with the fixed size of

100m×100m. The radio range was 15 meters. And there are 20% beacon. The results

demonstrate that the proposed algorithm can improve localization accuracy and against

the nodes capture attacks effectively.

4.4 Conclusion

In this chapter we presented a variety of mechanisms where can provide safety and
data protection to a geolocation system. Below we present a summary of which attacks,
that were described in chapter 4.1, can be protected from the secure localization
algorithms that were described above.

Secure Geo-location Techniques using Trusted Hyper-visor

 53
S. Rostantis

Table 5. Secure Localization algorithms VS Localization attacks

The coordinates of the unknown node, certificates, TPM, public keys are some of the

main ingredients for geolocation systems in order to achieve safety and security. In our

proposed system, as it will be described in the next sessions, we decided to follow an

approach utilizing the TPM concept for a safe geolocation system since it can provide a

variety of ways for cryptography and safety algorithms alongside with key generations

and strong encryptions methods. Summary is presented below:

 Secure Localization Algorithms

Attack Name LDEA MAINV TPMBG ALB-
DRM

TOA-
ECC

CSLT S. DV-
HOP

Compromise ✔ ✔ ✔ - - - ✔

Replication - - - - - ✔ -

Impersonation ✔ ✔ ✔ ✔ ✔ ✔ ✔

Sybil attack ✔ ✔ ✔ ✔ ✔ ✔ ✔

Wormhole attack ✔ - - - - - -

Forgery ✔ ✔ ✔ ✔ - ✔ -

Alteration ✔ - ✔ - ✔ - ✔

Interference - - - - - - -

Replay ✔ - ✔ - ✔ - ✔

Flooding ✔ - ✔ - ✔ - ✔

Selective forwarding ✔ - ✔ - ✔ - ✔

Stealing ✔ ✔ ✔ - ✔ ✔ ✔

Jamming - - - - - - -

Collision ✔ - ✔ - ✔ - ✔

Exhaustion - ✔ ✔ - - - -

Unfairness ✔ ✔ ✔ ✔ ✔ ✔ ✔

Dos Attacks ✔ - ✔ - - - ✔

Sinkhole ✔ ✔ ✔ ✔ ✔ ✔ ✔

Tampering ✔ ✔ ✔ - - - ✔

Insider attack ✔ ✔ ✔ ✔ ✔ ✔ ✔

Range change attack ✔ - ✔ - - - -

False beacon location
attack

✔ ✔ ✔ ✔ ✔ ✔ ✔

False reported location
attack

✔ ✔ ✔ ✔ ✔ ✔ ✔

Desynchronization ✔ - ✔ - ✔ - ✔

Secure Geo-location Techniques using Trusted Hyper-visor

 54
S. Rostantis

Table 6. Localization frameworks summary.

Framework
Name

Publication Safety Mechanisms Evaluation

Location-
Dependent data

Encryption
Algorithm

(LDEA)

2008
[32]

1. Toleration Distance
(TD)

2. Latitude/Longitude
3. LDEA-key
4. Random keys

Pros: The secure provided key is truly random. Easy
implementation.
Cons: Is not strong enough as it uses the static location
of mobile node and they are using the static tolerance
distance to overcome the inaccuracy and inconsistent of
GPS receiver.

Mutual
Authentication

and Insider
Node Validation

2017
[33]

1. Node Authentication
2. Certificates

Pros: High efficiency in location estimation accuracy.
Low relative error percentage with the increasing number
of anchor nodes. Detections of malicious attack over
90%. supports mobility of the nodes and therefore it is
suitable for dynamic network environments.
Cons: High complexity and computation overhead

Trust Platform
Module (TPM)

Based
Geo-location

2016
[34]

1. Trust Platform Module
2. Cryptography
3. Cloud Agent

Pros: Is feasible and practical. Provides strong
cryptographical mechanisms and algorithms and has
high performance and low computations errors.
Cons: Is not suitable for indoor positioning since it loses
significant power inside buildings due to GPS and has
computation overhead due to TPM operations.

Authenticated
Location

based on DRM

2005
[35]

1. Public key
2. Node Authentication
3. Digital Rights

Management (DRM)

Pros: Very effective for mesh networks. High
performance for position authentication by a web trust
protocol DRM.
Cons: No measure system to describe expected and
demanded confidence of the indicated position. No upper
limit for the position error depends from the geographical
configuration

TOA-ECC
Elliptic Curve
Cryptography

2008
[36]

1. Public key
2. Elliptic Cryptography

Pros: High performance, very low encryption and
decryption time. Easy implementation. Is well suited for
Wireless Sensor Networks.
Cons: Requires highly accurate synchronization of
sender and receiver clocks due to TOA. High possibility
of computations errors.

Collaborative
Secure

Localization
algorithm based
on Trust model

(CSLT)

2016
[37]

1. Trust model
2. Trusty anchors nodes
3. References node

Pros: High localization accuracy and localization ratio in
UWSNs. High detect ratio of malicious nodes.
Cons: Cannot find each type of malicious nodes with
100%. Not very efficient if many malicious nodes launch
an attack simultaneously. Tested only in MATLAB not to
other platforms.

Secure DV-Hop
Localization for

WSN

2015
[38]

1. DV-Hop concept
2. Random keys

Pros: High effectiveness under different attack and high
performance of localization. High localization accuracy
and strong against localization attacks.
Cons: Applicable only to DV-Hop localization process.
Not scalable to other frameworks.

Secure Geo-location Techniques using Trusted Hyper-visor

 55
S. Rostantis

5. HYPERVISORS AND GEOLOCATION
In this chapter we present a short overview on Hypervisors and how they achieved

security and safety in systems. We present the types of Hypervisor alongside with

information of some representative cases.

5.1 Hypervisors Overview

Hypervisor, also known as a virtual machine monitor, is a process that creates and runs

virtual machines (VMs). A hypervisor allows one host computer to support multiple

guest VMs by virtually sharing its resources, like memory and processing. Generally,

there are two types of hypervisors. Type 1 hypervisors, called “bare metal,” run directly

on the host’s hardware.

Type 2 hypervisors, called “hosted,” run as a software layer on an operating system, like

other computer programs. Hypervisors make it possible to use more of a system’s

available resources, and provide greater IT mobility, since the guest VMs are

independent of the host hardware. This means they can be easily moved between

different servers.

Figure 30. Hypervisor Overview

Hypervisors provide several benefits to the enterprise data center. First, the ability of a

physical host system to run multiple guest VMs can vastly improve the utilization of the

underlying hardware. Where physical (nonvirtualized) servers might only host one

operating system and application, a hypervisor virtualizes the server, allowing the

system to host multiple VM instances -- each running an independent operating

system and application -- on the same physical system using far more of the system's

available compute resources. VMs are also very mobile. The abstraction that takes

place in a hypervisor also makes the VM independent of the underlying hardware.

Traditional software can be tightly coupled to the underlying server hardware, meaning

that moving the application to another server requires time-consuming and error-prone

reinstallation and reconfiguration of the application.

By comparison, a hypervisor makes the underlying hardware details irrelevant to the

VMs. This allows any VMs to be moved or migrated between any local or remote

virtualized servers -- with sufficient computing resources available -- almost at-will with

effectively zero disruption to the VM; a feature often termed live migration. VMs are also

logically isolated from each other -- even though they run on the same physical

machine. In effect, a VM has no native knowledge or dependence on any other VMs. An

https://www.vmware.com/products/vsphere-hypervisor.html
https://searchdatacenter.techtarget.com/definition/data-center
https://whatis.techtarget.com/definition/operating-system-OS
https://whatis.techtarget.com/definition/operating-system-OS
https://searchnetworking.techtarget.com/definition/virtual-server

Secure Geo-location Techniques using Trusted Hyper-visor

 56
S. Rostantis

error, crash or malware attack on one VM does not proliferate to other VMs on the same

or other machines. This makes hypervisor technology extremely secure. Finally, VMs

are easier to protect than traditional applications.

A physical application typically needs to be first quiesced and then backed up using a

time-consuming process that results in substantial downtime for the application. A VM is

essentially little more than code operating in a server's memory space. Snapshot tools

can quickly capture the content of that VM's memory space and save it to disk in

moments -- usually without quiescing the application at all. Each snapshot captures a

point-in-time image of the VM which can be quickly recalled to restore the VM on

demand.

Hypervisors are traditionally implemented as a software layer, but hypervisors can also

be implemented as code embedded in a system's firmware. There are two principal

types of hypervisor. Type 1 hypervisors are deployed directly atop the system's

hardware without any underlying operating systems or other software. These are

called "bare metal" hypervisors and are the most common and popular type of

hypervisor for the enterprise data center. Examples include vSphere or Hyper-V. The

first hypervisors, which IBM developed in the 1960s, were native hypervisors.

These included the test software SIMMON and the CP/CMS operating system (the

predecessor of IBM's z/VM). Modern equivalents include AntsleOs, Xen, XCP-

ng, Oracle VM Server for SPARC, Oracle VM Server for x86, Microsoft Hyper-V, Xbox

One system software, and VMware ESX/ESXi. Type 2 hypervisors run as a software

layer atop a host operating system and are usually called "hosted" hypervisors like

VMware Player or Parallels Desktop. Hosted hypervisors are often found on endpoints

like PCs. VMware Workstation, VMware Player, VirtualBox, Parallels Desktop for

Mac and QEMU are examples of type-2 hypervisors.

Figure 31. Hypervisor types

Hypervisors are important to any system administrator or system operator because

virtualization adds a crucial layer of management and control over the data center and

enterprise environment. Staff members not only need to understand how the respective

hypervisor works, but also how to operate supporting functionality such as VM

configuration, migration and snapshots. The role of a hypervisor is also expanding. For

https://whatis.techtarget.com/definition/quiesce
https://searchdatabackup.techtarget.com/definition/storage-snapshot
https://searchservervirtualization.techtarget.com/definition/bare-metal-hypervisor
https://en.wikipedia.org/wiki/SIMMON
https://en.wikipedia.org/wiki/CP/CMS
https://en.wikipedia.org/wiki/Z/VM
https://en.wikipedia.org/wiki/Xen
https://xcp-ng.org/
https://xcp-ng.org/
https://en.wikipedia.org/wiki/Oracle_VM_Server_for_SPARC
https://en.wikipedia.org/wiki/Oracle_VM_Server_for_x86
https://en.wikipedia.org/wiki/Hyper-V
https://en.wikipedia.org/wiki/Xbox_One_system_software
https://en.wikipedia.org/wiki/Xbox_One_system_software
https://en.wikipedia.org/wiki/VMware_ESX
https://en.wikipedia.org/wiki/VMware_Workstation
https://en.wikipedia.org/wiki/VMware_Player
https://en.wikipedia.org/wiki/VirtualBox
https://en.wikipedia.org/wiki/Parallels_Desktop_for_Mac
https://en.wikipedia.org/wiki/Parallels_Desktop_for_Mac
https://en.wikipedia.org/wiki/QEMU
https://searchnetworking.techtarget.com/definition/system-administrator
https://searchitoperations.techtarget.com/definition/system-operator-sysop

Secure Geo-location Techniques using Trusted Hyper-visor

 57
S. Rostantis

example, storage hypervisors are used to virtualize all of the storage resources in the

environment to create centralized storage pools that administrators can provision --

without having to concern themselves with where the storage was physically located.

Today, storage hypervisors are a key element of software-defined storage. Networks

are also being virtualized with hypervisors, allowing networks and network devices to be

created, changed, managed and destroyed entirely through software without ever

touching physical network devices. As with storage, network virtualization is appearing

in broader software-defined network or software-defined data center platforms.

5.2 Trust Platform Module

In order to the hypervisor to achieve all the security and cryptographical processes can

utilize the usage of a Trust Platform Module (TPM). The TPM is a crypto processor

designed to secure hardware and for the creation and generation of cryptographic keys.

Here we present a short brief about what a TPM is.

5.2.1 Introduction on Trust Platform Module

Trusted Platform Module (TPM, also known as ISO/IEC 11889) is an international

standard for a secure crypto processor, a dedicated microcontroller designed to secure

hardware through integrated cryptographic keys. Trusted Platform Module (TPM) was

conceived by a computer industry consortium called Trusted Computing Group (TCG),

and was standardized by International Organization for Standardization (ISO) and

International Electrotechnical Commission (IEC) in 2009 as ISO/IEC 11889. [39]

TCG continued to revise the TPM specifications. The last revised edition of TPM Main

Specification Version 1.2 was published on March 3, 2011. It consisted of three parts,

based on their purpose.[2] For the second major version of TPM, however, TCG

released TPM Library Specification 2.0, which builds upon the previously

published TPM Main Specification. Its latest edition was released on September 29,

2016, with several errata with the latest one being dated on January 8, 2018.

Figure 32. Trust Platform Module overview

https://searchstorage.techtarget.com/definition/storage-hypervisor
https://searchstorage.techtarget.com/definition/software-defined-storage
https://en.wikipedia.org/wiki/Secure_cryptoprocessor
https://en.wikipedia.org/wiki/Computer_industry
https://en.wikipedia.org/wiki/Trusted_Computing_Group
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.wikipedia.org/wiki/Trusted_Platform_Module#cite_note-TPM_Main_Specs-2
https://en.wikipedia.org/wiki/Errata

Secure Geo-location Techniques using Trusted Hyper-visor

 58
S. Rostantis

Trusted Platform Module provides

• A random number generator

• Facilities for the secure generation of cryptographic keys for limited uses.

• Remote attestation: Creates a nearly unforgeable hash key summary of the
hardware and software configuration. The software in charge of hashing the
configuration data determines the extent of the summary. This allows a third party to
verify that the software has not been changed.

• Binding: Encrypts data using the TPM bind key, a unique RSA key descended from
a storage key.

• Sealing: Similar to binding, but in addition, specifies the TPM state for the data to be
decrypted (unsealed).

Computer programs can use a TPM to authenticate hardware devices, since each TPM

chip has a unique and secret RSA key burned in as it is produced. Pushing the security

down to the hardware level provides more protection than a software-only solution.

5.2.2 TPM implementations

The United States Department of Defense (DoD) specifies that "new computer assets (e.g.,

server, desktop, laptop, thin client, tablet, smartphone, personal digital assistant, mobile

phone) procured to support DoD will include a TPM version 1.2 or higher where

required by DISA STIGs and where such technology is available." DoD anticipates that

TPM is to be used for device identification, authentication, encryption, and device

integrity verification.

5.2.2.a Platform integrity

The primary scope of TPM is to assure the integrity of a platform. In this context,

"integrity" means "behave as intended", and a "platform" is any computer device

regardless of its operating system. It is to ensure that the boot process starts from a

trusted combination of hardware and software, and continues until the operating system

has fully booted and applications are running.

The responsibility of assuring said integrity using TPM is with the firmware and the
operating system. For example, Unified Extensible Firmware Interface (UEFI) can use
TPM to form a root of trust: The TPM contains several Platform Configuration Registers
(PCRs) that allow secure storage and reporting of security relevant metrics. These
metrics can be used to detect changes to previous configurations and decide how to
proceed. Good examples can be found in Linux Unified Key Setup (LUKS), BitLocker
and Private Core vCage memory encryption.

An example of TPM use for platform integrity is the Trusted Execution
Technology (TXT), which creates a chain of trust. It could remotely attest that a
computer is using the specified hardware and software.

5.2.2.b Disk encryption

Full disk encryption utilities, such as dm-crypt and BitLocker, can use this technology to

protect the keys used to encrypt the computer's storage devices and provide

https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Cryptographic_keys
https://en.wikipedia.org/wiki/Remote_attestation
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/RSA_(algorithm)
https://en.wikipedia.org/wiki/Sealed_storage
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/RSA_(algorithm)
https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/Defense_Information_Systems_Agency
https://en.wikipedia.org/wiki/Security_Technical_Implementation_Guide
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Boot_process
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/Root_of_Trust
https://en.wikipedia.org/wiki/Linux_Unified_Key_Setup
https://en.wikipedia.org/wiki/BitLocker
https://en.wikipedia.org/wiki/PrivateCore
https://en.wikipedia.org/wiki/Trusted_Execution_Technology
https://en.wikipedia.org/wiki/Trusted_Execution_Technology
https://en.wikipedia.org/wiki/Full_disk_encryption
https://en.wikipedia.org/wiki/Dm-crypt
https://en.wikipedia.org/wiki/BitLocker

Secure Geo-location Techniques using Trusted Hyper-visor

 59
S. Rostantis

integrity authentication for a trusted boot pathway that includes firmware and boot

sector.

5.2.2.c Password protection

Operating systems often require authentication (involving a password or other means)

to protect keys, data or systems. If the authentication mechanism is implemented in

software only, the access is prone to dictionary attacks. Since TPM is implemented in a

dedicated hardware module, a dictionary attack prevention mechanism was built in,

which effectively protects against guessing or automated dictionary attacks, while still

allowing the user a sufficient and reasonable number of tries. Without this level of

protection, only passwords with high complexity would provide sufficient protection.

5.2.2.d Other uses and concerns

Any application can use a TPM chip for:

• Digital rights management

• Protection and enforcement of software licenses

• Prevention of cheating in online games[13]

Other uses exist, some of which give rise to privacy concerns. The "physical presence"
feature of TPM addresses some of these concerns by requiring BIOS-level confirmation
for operations such as activating, deactivating, clearing or changing ownership of TPM
by someone who is physically present at the console of the machine

Starting in 2006, many new laptops have been sold with a built-in TPM chip. In the
future, this concept could be co-located on an existing motherboard chip in computers,
or any other device where the TPM facilities could be employed, such as a cellphone.
On a PC, either the LPC bus or the SPI bus is used to connect to the TPM chip. TCG
has certified TPM chips manufactured by Infineon technologies, Nuvoton,
and STMicroelectronics, having assigned TPM vendor IDs to Advanced micro devices
,Atmel, Intel ,Broadcom , IBM, Infineon, Lenovo, National Semiconductor, Nationz
Technologies, Nuvoton ,Qualcomm, Rockchip, Standard Microsystems Corporation,
STMicroelectronics, Samsung, Sinosun, Texas Instruments, and Winbond.

There are five different types of TPM 2.0 implementations:

• Discrete TPMs are dedicated chips that implement TPM functionality in their own
tamper resistant semiconductor package. They are theoretically the most secure
type of TPM because the routines implemented in hardware should be more
resistant to bugs versus routines implemented in software, and their packages are
required to implement some tamper resistance.

• Integrated TPMs are part of another chip. While they use hardware that resists
software bugs, they are not required to implement tamper resistance. Intel has
integrated TPMs in some of its chipsets.

https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Boot_sector
https://en.wikipedia.org/wiki/Boot_sector
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Password
https://en.wikipedia.org/wiki/Dictionary_attack
https://en.wikipedia.org/wiki/Digital_rights_management
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Cheating_in_online_games
https://en.wikipedia.org/wiki/Trusted_Platform_Module#cite_note-:2-13
https://en.wikipedia.org/wiki/Privacy
https://en.wikipedia.org/wiki/Laptop
https://en.wikipedia.org/wiki/Motherboard
https://en.wikipedia.org/wiki/Cellphone
https://en.wikipedia.org/wiki/Low_Pin_Count
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Infineon_Technologies
https://en.wikipedia.org/wiki/Nuvoton
https://en.wikipedia.org/wiki/STMicroelectronics
https://en.wikipedia.org/wiki/Advanced_Micro_Devices
https://en.wikipedia.org/wiki/Atmel
https://en.wikipedia.org/wiki/Broadcom
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Lenovo
https://en.wikipedia.org/wiki/National_Semiconductor
https://en.wikipedia.org/wiki/Qualcomm
https://en.wikipedia.org/wiki/Rockchip
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/Samsung
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/Winbond
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Chipset

Secure Geo-location Techniques using Trusted Hyper-visor

 60
S. Rostantis

• Firmware TPMs are software-only solutions that run in a CPU's trusted execution
environment. Since these TPMs are entirely software solutions that run in trusted
execution environments, these TPMs are more likely to be vulnerable to software
bugs. AMD, Intel and Qualcomm have implemented firmware TPMs.

• Software TPMs are software emulators of TPMs that run with no more protection
than a regular program gets within an operating system. They depend entirely on
the environment that they run in, so they provide no more security than what can be
provided by the normal execution environment, and they are vulnerable to their own
software bugs and attacks that are penetrating the normal execution environment.
They are useful for development purposes.

• Virtual TPMs are provided by a hypervisor. Therefore, they rely on the hypervisor to
provide them with an isolated execution environment that is hidden from the
software running inside virtual machines to secure their code from the software in
the virtual machines. They can provide a security level comparable to a firmware
TPM.

5.3 Trusted Hypervisors

5.3.1 XMHF- uberXMHF

5.3.1.a XMHF

XMHF is an eXtensible and Modular Hypervisor Framework that strives to be a

comprehensible and flexible platform for performing hypervisor research and

development. The framework allows others to build custom (security-sensitive)

hypervisor-based solutions (called "hypapps"). The XMHF is capable of running

unmodified legacy multiprocessor capable OSes such as Windows and Linux. The

XMHF core has a TCB of 6018 SLoC, and its performance is comparable. [40]

XMHF is designed to achieve three goals – modular extensibility, automated

verification, and high performance. XMHF includes a core that provides functionality

common to many hypervisor-based security architectures and supports extensions that

augment the core with additional security or functional properties while preserving the

fundamental hypervisor security property of memory integrity (i.e., ensuring that the

hypervisor’s memory is not modified by software running at a lower privilege level).

XMHF advocates a "rich" single-guest execution model where the hypervisor framework

supports only a single-guest and allows the guest direct access to all performance-

critical system devices and device interrupts. XMHF currently runs on recent multicore

x86 hardware virtualized platforms with support for dynamic root of trust and nested (2-

dimensional) paging.

https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Virtual_machines

Secure Geo-location Techniques using Trusted Hyper-visor

 61
S. Rostantis

Figure 33. XMHF platform architecture

5.2.2.b XMHF Framework Overview

XMHF consists of the XMHF core and small supporting libraries that sit directly on top of

the platform hardware. A hypapp extends the XMHF core to implement the desired

(security) functionality. XMHF allows the guest direct access to all performance-critical

system devices and device interrupts resulting in reduced hypervisor complexity,

consequently Trusted Computing Base (TCB), as well as high guest performance. The

high-level design principles behind XMHF are platform independent. The XMHF

implementation currently supports both Intel and AMD x86 hardware virtualized

platforms, and unmodified multi-processor Windows (2003 and XP) and Linux as

guests. However, XMHF design principles apply to other architectures, such as ARM,

as well.

5.2.2.c Hypervisor Properties Required by DRIVE

DRIVE (Designing hypervisors for Rigorous Integrity VErification) is composed of a set

of hypervisor properties and system invariants. The hypervisor properties entail the

invariants, which in turn imply the hypervisor’s memory integrity.

The virtualized system is modeled as a tuple V = (H, G, D, M), where H is the

hypervisor, G represents the guest, D represents devices, and M is the hypervisor

memory containing both hypervisor code and data. Both G and D are controlled by the

attacker. The guest memory is separate from M and irrelevant to memory integrity, from

the model. DRIVE consists of a set of properties about H, system invariants, and a proof

that if H satisfies those properties then the invariants hold on all executions of V. This, in

turn, implies the memory integrity of H in V. DRIVE identifies the following six properties

that restrict the hypervisor design and implementation:

1. Modularity (MOD). Upon hypervisor initialization, control is transferred to a function

init(). When an intercept is triggered, the hardware transfers control to one of the

intercept handlers ih1(), . . .ihk().

Secure Geo-location Techniques using Trusted Hyper-visor

 62
S. Rostantis

2. Atomicity (ATOM). This property ensures the atomicity of initialization and intercept

handling on the CPU(s). It consists of two sub-properties: ATOMinit – at the start of V

’s execution, init() runs completely in a single-threaded environment before any

other code executes; ATOMih – the intercept handlers ih1(), . . . , ihk() always

execute in a single-threaded environment.

3. Memory Access Control Protection (MPROT). H uses a memory access control

mechanism MacM. All MacM related state is stored in M. MacM consists of two

parts:

a. MacMG – for the guest

b. MacMG – for the devices.

4. Correct Initialization (INIT). After H’s initialization, MacM protects M from the guest

and devices. The intercept entry points into H points to the correct intercept handler.

5. Proper Mediation (MED). MacM is active whenever attacker-controlled programs

execute. This implies:

a. Before control is transfered to the guest (G), the CPU is set to execute in

guest mode to ensure that MacMG is active,

b. MacMD is always active.

6. Safe State Updates (SAFEUPD). All updates to system state including M and

control structures of the hardware TCB (e.g., guest execution state and chipset I/O),

by an intercept handler:

a. preserve the protection of M by MacM in guest mode and for all devices;

b. do not modify the intercept entry point into H,

c. do not modify H’s code.

The design and implementation decisions that help make XMHF minimalistic, enable

verification of DRIVE properties on XMHF’s C implementation, and make automated re-

verification in the process of hypapp development possible. XMHF is a Type-1 (or

native, bare metal) hypervisor that runs directly on the host’s hardware to control the

hardware and to manage a guest OS. The guest runs on another (unprivileged) level

above the hypervisor.

The baremetal design allows for a small-TCB and high performance hypervisor code

base. Recall that XMHF consists of the XMHF core and small supporting libraries that

sit directly on top of the platform hardware. A hypapp extends the XMHF core and

leverages the basic hypervisor and platform functionality provided by the core to

implement the desired (security) functionality OSes.

To achieve DRIVE properties, XMHF relies on platform hardware support, which

includes hardware virtualization, two-level Hardware Page Tables (HPT), DMA

protection, and dynamic root of trust (DRT) support. These capabilities are found on

recent Intel and AMD x86 platforms. Similar capabilities are also forthcoming in ARM

processor platforms. While this breaks backward compatibility with older hardware, it

allows XMHF’s design to be much smaller and cleaner while achieving the DRIVE

properties to ensure memory integrity.

Secure Geo-location Techniques using Trusted Hyper-visor

 63
S. Rostantis

5.2.2.d XMHF Framework Evaluation

XMHF’s TCB consists of the XMHF core, the hypapp and supporting libraries used by

the hypapp. The XMHF supporting libraries (totaling around 8K lines of C code)

currently include a tiny C runtime library, a small library of cryptographic functions, a

library with optional utility functions such as hardware page table abstractions and

command line parsing functions, and a small library to perform useful TPM operations.

From a hypapp’s perspective, the minimum TCB exposed by XMHF comprises the

XMHF core which consists of 6018 SLoC. The figure below shows that the XMHF core

forms 48% of a hypapp’s TCB, on average. This supports the hypothesis that these

hypervisors share a common hypervisor core that is re-used or engineered from scratch

with every new application.

Figure 34. Porting status of several HyperVisors.

It was measured XMHF’s runtime performance using two metrics:

1. guest overhead imposed solely by the framework (i.e., without any hypapp),

2. base overhead imposed by XMHF for a given hypapp.

The platform was an HP Elitebook 8540p with a Quad-Core Intel Core i7 running at 3

GHz, 4 GB RAM, 320GB SATAHDD and an Intel e1000 ethernet controller, using

Ubuntu12.04 LTS as the guest OS running the Linux kernel v3.2.2.For network

benchmarks, it was connected another machine via a1 Gbps Ethernet crossover link

and run the 8540p as a server. It was used XMHF with both 4K and 2MB hardware

page table (HPT) mappings for measurement purposes. Most of the SPEC benchmarks

show less than 3% performance overhead. However, there are four benchmarks with

over 10%, and two more with 20% and 55% overhead. For I/O application benchmarks,

read access to files and network access incurs the highest overhead (40% and 25%

respectively). The rest of the benchmarks show less than 10% overhead.

Figure 35. XMHF Application Benchmarks

Secure Geo-location Techniques using Trusted Hyper-visor

 64
S. Rostantis

XMHF’s performance was compared with the popular Xen (v 4.1.2) hypervisor. Three

hardware virtual machine (HVM) configurations were used for domU, that are identical

in memory and CPU configuration to the native system: HVM domU (xen-domU-hvm),

HVM domU with para virtualized drivers (xen-domU-pvhvm) and HVM domU with pci

passthrough (xen-domU-passthru). dom0 was also used (xendom0) as a candidate for

performance evaluation.

For compute-bound applications XMHF and Xen have similar overheads (around 10%

on average) with the 2MB XMHF HPT configuration performing slightly better. For disk

I/O benchmarks, XMHF, xen-dom0 and xendom U-pvhvm have the lowest overheads

(ranging from 3-20%). Both XMHF and Xen have higher overheads on the disk read

benchmark when compared to other disk benchmarks. For network I/O benchmark,

XMHF has the lowest overhead (20-30%). xen-dom0 and xen-domU-passthru incur a

45% and 60% overhead respectively, while xen-domU-hvm and xen-domU-pvhvm have

more than 85% overhead.

Figure 36. XMHF performance comparison with Xen

5.2.2.e uberXMHF

XMHF is no longer in active development. It is superseded by uberXMHF (uber

eXtensible Micro-Hypervisor Framework). The uber eXtensible Micro-Hypervisor

Framework (uberXMHF) is a compositionally verifiable, extensible, micro-hypervisor

framework for commodity platforms advocating the design and development of a new

class of security-oriented micro hypervisor base applications (“uberapps”).

uberXMHF is designed to achieve three goals: modular extensibility, automated

(compositional) verification, and high performance. uberXMHF includes a core that

provides functionality common to many hypervisor-based security architectures and

supports extensions that augment the core with additional security or functional

properties while preserving the fundamental hypervisor security property of memory

integrity (i.e., ensuring that the hypervisor’s memory is not modified by software running

at a lower privilege level).

Secure Geo-location Techniques using Trusted Hyper-visor

 65
S. Rostantis

uberXMHF advocates a “rich” commodity single-guest execution model (uber-guest)

where the hypervisor framework supports only a single, commodity guest OS and

allows the guest direct access to all performance-critical system devices and device

interrupts. In principle, the uber-guest could also be a traditional hypervisor/VMM.

uberXMHF currently runs on both x86 (Intel and AMD) and ARM (Raspberry PI) multi-

core hardware virtualized platforms with support for nested (2-dimensional) paging. The

framework can run unmodified legacy multiprocessor capable OSes such as Linux and

Windows.

5.3.2 Xvisor

Xvisor is an open-source type-1 hypervisor, which aims at providing a monolithic, light-

weight, portable, and flexible virtualization solution. It provides a high performance and

low memory footprint virtualization solution for ARMv5, ARMv6, ARMv7a, ARMv7a-ve,

ARMv8a, x86_64, and other CPU architectures. In comparison to other ARM

hypervisors, it is one of the few hypervisors providing support for ARM CPUs which do

not have ARM virtualization extensions [41].

The Xvisor source code is highly portable and can be easily ported to most general-

purpose 32-bit or 64-bit architectures as long as they have a paged memory

management unit (PMMU) and a port of the GNU C compiler (GCC). Xvisor primarily

supports Full virtualization hence, supports a wide range of unmodified Guest operating

systems. Paravirtualization is optional for Xvisor and will be supported in an architecture

independent manner (such as VirtIO PCI/MMIO devices) to ensure no-change in Guest

OS for using para virtualization.

It has most features expected from a modern hypervisor, such as: Device tree based

configuration, and high resolution timekeeping, Threading framework, Host device driver

framework, IO device emulation framework, Runtime loadable modules, Pass through

hardware access, Dynamic guest creation/ destruction , Management terminal, Network

virtualization, Input device virtualization, Display device virtualization and many more.

Hypervisors can be categorized into three categories based on Host hardware access,

CPU virtualization, and Guest IO emulation, as follows:

1. Complete Monolithic: Complete monolithic hypervisors (e.g. Xvisor) have one

common software for Host hardware access, CPU virtualization, and Guest IO

emulation.

2. Partially Monolithic: Partially monolithic hypervisors (e.g. KVM) are usually an

extension of the general purpose of monolithic OS (e.g. Linux, FreeBSD,

NetBSD, etc.) to support Host hardware access + CPU virtualization in kernel

and support Guest IO emulation from software running in user-space (e.g.

QEMU).

3. Micro-kernelized: Micro-kernelized hypervisors (e.g. Xen) are usually light-

weight micro-kernels providing basic Host hardware access + CPU virtualization

in kernel and for rest it depends on a Management Guest (e.g. Dom0 of Xen)

http://en.wikipedia.org/wiki/Hypervisor
http://gcc.gnu.org/
http://en.wikipedia.org/wiki/Full_virtualization
http://en.wikipedia.org/wiki/Paravirtualization

Secure Geo-location Techniques using Trusted Hyper-visor

 66
S. Rostantis

which provides complete Host hardware access, Management interface, and

Guest IO emulation.

Xvisor is a complete monolithic hypervisor whereas most open-source hypervisors are

either partially monolithic or micro-kernelized.

Figure 37. XVisor Architecture Overview

5.3.2.a Xvisor Framework Overview

All core components of Xvisor such as: CPU virtualization, guest IO emulation,

background threads, para-virtualization services, management services, and device

drivers run as a single software layer with no prerequisite tool or binary file. The guest

OS runs on what Xvisor implementers call Normal vCPUs, having a privilege less than

Xvisor. Moreover, all background processing for device drivers and management

purposes run on Orphan vCPUs with highest privilege. Guest configuration is

maintained in the form of a tree data structure called device tree [21]. This facilitates

easier manipulation of guest hardware through device tree script (DTS). In other words,

no source code changes are required for creating a customized guest for embedded

systems.

The most important advantage of Xvisor is its single software layer running with highest

privilege, in which all virtualization related services are provided. Unlike KVM, Xvisor’s

context switches are very lightweight (refer to section V) resulting in fast handling of

nested page faults, special instruction traps, host interrupts, and guest IO events.

Furthermore, all device drivers run directly as part of Xvisor with full privilege and

without nested page table (unlike Xen) ensuring no degradation in device driver

performance. In addition, the Xvisor vCPU scheduler is per-CPU and does not do load

balancing for multiprocessor systems.

The multi-processor load balancer is a separate entity in Xvisor, independent of the

vCPU scheduler (unlike KVM and Xen). Both, vCPU scheduler and load balancer are

extensible in Xvisor. Xvisor’s only limitation is its lack of rich board and device driver

support like Linux. To tackle this limitation Xvisor provides Linux compatible headers for

Secure Geo-location Techniques using Trusted Hyper-visor

 67
S. Rostantis

porting device driver frameworks and device drivers from Linux kernel. Albeit not

completely solving the problem, porting efforts are greatly reduced.

5.3.2.b Host Interrupts

Xvisor’s host device drivers generally run as part of Xvisor with highest privilege. Hence,

no scheduling or context switch overhead is incurred for processing host interrupts. A

scheduling overhead only incurs if the host interrupt is routed to guest, which is not

running currently.

5.3.2.c Memory Management

Xvisor ARM pre-allocates contiguous host memory as guest RAM at guest creation

time. It creates a separate three level stage2 translation table for each guest. Xvisor

ARM can create 4KB or 2MB or 1GB translation table entries in stage2. Additionally, it

always creates the biggest possible translation table entry in stage2 based on IPA and

PA alignment. Finally, the guest RAM being flat/contiguous (unlike other hypervisors)

helps cache speculative access, which further improves memory accesses for guests.

5.3.2.e Memory Footprint Comparison

Embedded systems require small memory footprint:

Table 7. XVisor Memory Footprint

5.3.2.f Xvisor Framework Evaluation

The experiments aimed to evaluate the newly proposed embedded hypervisor Xvisor’s

efficiency in comparison to KVM and Xen. Four benchmark applications were tried on

guest Linux running on Cubieboard2 [25]. The Cubieboard2 is an ARM Cortex-A7 dual

core 1GHz board with 1GB RAM. The following hypervisor versions are used in our

experiments:

1. KVM: Latest Linux-3.16-rc3 is used as Host KVM kernel. The guest kernel is Linux-

3.16-rc3.

2. Xen: Latest Xen-4.5-unstable kernel dated 3rdAugust 2014 is used as hypervisor.

The Dom0

kernel is Linux-3.16-rc3 and DomU kernel is also Linux-3.16-rc3.

3. Xvisor: Latest Xvisor-0.2.4+ dated 18th July 2014 is used as hypervisor. The guest

kernel is Linux-3.16-rc3.

Experimental results are obtained with two test vectors. The first runs over a single

core, while the second runs over a dual core. The systems under test (SUTs) are:

1. Host without any hypervisor

2. Xvisor guest

3. KVM guest

Secure Geo-location Techniques using Trusted Hyper-visor

 68
S. Rostantis

4. KVM guest with HugeTLB

5. Xen guest.

In order to ensure that only CPU overhead, memory bandwidth and lock

synchronization latency are taken into consideration, both test vectors have one para

virtualized guest with two vCPUs. Moreover, all hypervisors have the following

optimizations: No maintenance interrupt from generic interrupt controller, Super pages

support for Xen ARM, and Trap-and-yield vCPU on WFE instruction.

The DMIPS obtained on Xvisor guest are around 0.2% higher than KVM guest, 0.19%

higher than KVM guest with HugeTLB, and 0.46% higher than Xen DomU. The

Dhrystone benchmark is small in size and mostly fits in cache at runtime hence memory

access overhead does not affect it. Despite obtaining improvement of 2 DMIPS, this still

improves the overall system performance because 1 DMIPS equals 1757 iterations-per-

second.

Therefore, actual improvement will be thousands of Dhrystone iterations (typically few

million machine cycles). The memory copy results of Xvisor guest are around 18%

higher than KVM guest,1.2% higher than KVM guest with HugeTLB, and 0.67%higher

than Xen DomU. Also, integer read-modify-writer esults of Xvisor guest are around

1.14% higher than KVMguest, 1.2% higher than KVM guest with HugeTLB, and1.64%

higher than Xen DomU.

Results show sustainable memory bandwidth in Xvisor guest are around 0.72%higher

than KVM guest, 1.57% higher than KVM guest with HugeTLB and 1.2% higher than

Xen DomU. Hackbench results show that task dispatch latency on Xvisor guest is

around 12.5% lower than KVM guest, 5.62% lower than KVMguest with HugeTLB and

6.39% lower than Xen DomU.

5.3.3 TGVisor

The major problem with trust geo-location between service providers and cloud tenants

is that the actual geo-location of the cloud tenant device can be easily manipulated. In

the process of geo-location, there are many vulnerable points to forge the current geo-

location of the devices which means that the trusted computing base (TCB) for the

trusted geo-location is too large. Since a large TCB-based system has high probability

of embedding bugs, a secure system should minimize the TCB. [42]

TGVisor is a proposed framework from Sungjin Park, Jae Nam Yoon, Cheoloh Kang,

Kyong Hoon Kimand Taisook Han[]. The main features of TGVisor are a hardware-

assisted tiny hypervisor, the Dynamic Root of Trust Management (DRTM), and the

TPM. With the combination of these components, TGVisor delivers the trusted geo-

location of the mobile cloud devices to the cloud provider.

Secure Geo-location Techniques using Trusted Hyper-visor

 69
S. Rostantis

 It uses the TPM-based remote attestation and the hypervisor-based trusted geo-

location module in order to guarantee its trustworthiness. The key role of TGVisor is to

compute the remote attestation value of the TCB and the current geo-location based on

the TPM. The TGVisor handles the geo-location value and performs TPM operations

required for the remote attestation. The primary goal of the remote attestation is to

guarantee the trustworthiness of TGVisor and the integrity of the current geo-location

value.

5.3.3.a Architecture

The tiny hypervisor assigns the locality 1 to the untrusted legacy OS and the locality 2 to

the tiny hypervisor. Throughout this locality assignment, the mobile device’s TPM can

be shared by the tiny hypervisor and the untrusted legacy OS. The Cloud Agent serves

as a middleware to communicate between the tiny hypervisor and the Trusted Geo-

location Server, which is a verifier to check the trustworthiness of the TCB in the target

system. The TGS in the server-side periodically requests a trusted geo-location value

and a remote attestation result. In turn, the Cloud Agent passes these requests to the

hypervisor via hypercalls.

The hypervisor obtains a geo-location value from the GPS connected to the tenant

devices and performs cryptographic operations based on the TPM. The hypervisor

returns the results of the cryptographic operations to the Cloud Agent which again

transfers them to the TGS. The TGS attests to the trustworthiness of the hypervisor and

the geo-location value and enforces a policy to the Policy DB running in the cloud

provider domain.

In order to ensure the trusted geo-location, all the operations involved in the trusted

geo-location must exist in or be isolated by the hypervisor. They must place in a

separate VM including a secure OS, a TPM library, a TPM driver, and an attestation

application. Since this makes the TCB, the separate VM, larger, it violates the premise

that the minimized TCB is more reliable.

TGVisor includes two key modules to meet the above requirements: the Hypercall

Module and the Trusted Geo-location Module. The Hypercall Module serves as a

gateway for TGVisor to communicate with outer applications such as the Cloud Agent. It

contains functions to process requests from the Cloud Agent, namely hyper_loadkey,

hyper_quote2, and hyper_getgeoloc. The TGM is a set of functions to compute the

trusted geo-location of the mobile device.

The key functions of the TGM can be divided into the secure geo-location reading and

the cryptographic operation. The TGM retrieves the current geo-location of the mobile

cloud device from the actual geo-location sensor like the GPS. Even though the TGM is

totally protected by the hypervisor, a geo-location value derived from the TGM is not

guarded during the transmission to a location server. For the secure transmission, the

TGM performs a cryptographic sign operation with the AIK based on the TPM.

Secure Geo-location Techniques using Trusted Hyper-visor

 70
S. Rostantis

Figure 38. TGVisor architecture

5.3.3.b Attestation protocol

The proposed framework measures the trustworthiness of TGVisor using the integrity of

TGVisor with the SKINIT instruction. Additionally, the TGS must validate that a geo-

location value from the tenant device is intact. The hash function is the most general

way to check the intactness, so TGVisor leverages the hash of the geo-location value

[43]. The trusted geo-location is assured between the TGS and the mobile cloud client

by the attestation protocol described by the following steps:

1. Preparing the attestation protocol where a mobile device launches TGVisor with the

SKINIT instruction, at boot time as a result if attackers attempt to load their own

hypervisors with the SKINIT, PCR17 must be modified and the TGS can detect this

abnormal behavior with the attestation protocol for the trusted geo-location.

2. Establishing a secure session when a cloud user runs a cloud app, throughout this

step, the TGS and the Cloud Agent mutually authenticate each other and share

secrets to be used to protect the communication by Transport Layer Security (TLS).

Even that the Cloud Agent and TGVisor path is not secure because the attestation

value is cryptographically protected by AIK and TPM, TGVisor, attackers cannot

compromise this protocol.

3. Retrieving the trusted geo-location. If the secure session establishment succeeds,

the Cloud Agent logs in the TGS and the TGS starts a periodic attestation(d)

Attestation of the trustworthy evidence where he TGS verifies an AIK certificate of

the mobile device with the Privacy CA certificate.

Secure Geo-location Techniques using Trusted Hyper-visor

 71
S. Rostantis

Figure 39. TGVisor Attestation Protocol

5.3.3.c TGVisor Framework Evaluation

As far as the implementation is concerned the proposed framework consists of four

components: TGVisor, the TGS, the Cloud Agent, and the cloud app server. TGVisor is

implemented based on eXtensible Hypervisor Framework (XMHF). XMHF delivers a

general framework for building a DRTM-based tiny hypervisor. Four components are

implemented:

1. A core

2. A TPM

3. The TGM

4. The Hypercall Module.

The core component features memory allocation, copy data from or to an untrusted OS,

and so on. The TPM component is responsible for all the TPM operations in the

hypervisor such as TPM_Quote2 and TPM_Loadkey2. The TGM acquires a current

geo-location of the mobile cloud device from the GPS module and provides the remote

attestation value which is cryptographically protected by the TPM. The Hypercall

Module features interfaces to the Cloud Agent via hypercalls.

The Cloud Agent is a lightweight program to help communicate with the TGS. The TGS

is a server in the cloud provider domain that periodically attests to the TCB and the geo-

locationof the mobile cloud client. The Cloud Agent and the TGSare written in Node.js.

and an additional hypercall library using C language, because Node.jscannot directly

invoke hypercalls. The cloud app server is a modified Etherpad server. A HP ProBook

6555b notebook is used as a mobile client device which is equipped with an AMD

Turion P520 2.30GHz processor, 4GB of memory, and 160GB of HDD. The host

operating system is the 32-bit version of Ubuntu 12.04.

For the evaluation of the proposed framework several tests were executed in a specific

university area (geofence) where the user cloud device could not access the documents

in the cloud server when it was outside of the geofence, due to illegal geo-location. On

the other hand it could only access the documents when it was located inside the

specific area.

Secure Geo-location Techniques using Trusted Hyper-visor

 72
S. Rostantis

The results indicate that cloud users hardly feel the performance degradation due to

TGVisor. The added lines of code in TGVisor were significant less that other

supervisors e.g. TrustVisor, LockDown, SecVisor etc. as a result to minimize the TCB

operations. Some limitations of the proposed framework are that if the framework is to

be used not only outside but indoors then the TGM need modifications in order to

communicate with an indoor positioning device. Another limitation of the proposed

framework is computation overhead due to TPM operations.

Figure 40. TGVisor comparison with other HyperVisors

Another experiment was the measurement of the performance impact of TGVisor with

SunSpider. Since most cloud applications run in web browsers like Google Chrome,

JavaScript engines are mostly embedded in them. SunSpider 1.0.2. was utilized for the

TGVisor and it was compared with the native Linux system. The range of the

performance impact per item is from 2.9% to 11.8%, and the average performance

degradation is only 8.3% where this indicated that cloud users hardly feel the

performance degradation due to TGVisor.

Figure 41. TGVisor Javascript performance

5.3.4 TrustVisor

A secure hypervisor, called TrustVisor, is proposed from Jonathan M. McCune, Ning

Qu, Yanlin Li, Anupam Datta, Virgil D. Gligor and Adrian Perrig [44] to provide a safe

execution environment for security-sensitive code modules without trusting the OS or

the application that invokes the code module. TrustVisor protects security-sensitive

code and data on untrusted commodity platforms from malware, e.g., kernel-level

0.95 1 1.05 1.1 1.15

Total

access

control flow

date

regexp

Normalized value to native system, lower is better

Secure Geo-location Techniques using Trusted Hyper-visor

 73
S. Rostantis

rootkits. and is designed to protect the integrity and execution of security-sensitive code,

and confidentiality and integrity of the data used by that code.

Figure 42. TrustVisor Architecture Overview

5.3.4.a Memory Protection.

TrustVisor has three basic operating modes, a host mode and two guest mode, legacy

mode and secure mode. TrustVisor memory protections from the perspective of

executing code. (a) In host mode, TrustVisor is executing in response to a trap or

hypercall, and may manipulate the state of a PAL, or the untrusted legacy OS or

applications. (b) In legacy guest mode, TrustVisor isolates PAL state and its own

memory regions from the untrusted legacy code. (c) In secure guest mode, a PAL is

executing, and TrustVisor isolates it from the memory regions of TrustVisor and the

untrusted legacy OS and applications

Figure 43. TrustVisor mode types

5.3.4.b Trusted Computing

A DRTM-like mechanism provides the valuable security properties of a known-good

initial state, memory protection from DMA accesses, and integrity measurement of the

launched code before it executes. The TRTM is realized via the inclusion of a

TrustVisor-managed, software micro TPM (µTPM) instance associated with each PAL.

The µTPM executes on the platform’s primary CPU for high performance while avoiding

the TCB growth required of a full software TPM. The TRTM is instantiated as part of the

PAL registration process and is designed to serve as a “second-layer” dynamic root of

trust, where the PAL code is isolated and measured before it is executed. The

combination of the isolated environment, TRTM, and µTPM offer PALs facilities for fine-

grained remote attestation and long-term protection of sensitive state with a small TCB.

Secure Geo-location Techniques using Trusted Hyper-visor

 74
S. Rostantis

To distinguish between legacy code and PALs, we devise a registration mechanism by

which untrusted applications can register selected code and data as security sensitive.

Registration triggers the sequence of TRTM operations, including allocation of a µTPM

instance and protection of the PAL’s memory pages. Once registered, a PAL can be

invoked multiple times without requiring a new TRTM operation. The µTPM instance

provides PALs with a facility for long-term secret protection and enables remote

attestation that a particular PAL has executed.

TrustVisor enables remote attestation and long-term protected storage for PALs via the

TRTM and µTPM associated with each PAL. TrustVisor is itself instantiated using the

hardware dynamic root of trust mechanism, thereby reducing the TCB for TrustVisor

and PALs executing thereupon, and rooting trust in TrustVisor in the platform’s physical

TPM. Figure 3 shows the relationship of trusted components when multiple PALs are

registered. The shaded areas indicate the trusted components in the TCB for a

particular PAL

5.3.4.c Data Secrecy

For data protection TrustVisor distinguish two intervals during which data protection is

required: residence in volatile storage (RAM) while SSCB is executing, and residence

on non-volatile storage while untrusted code is executing. Volatile storage refers to data

in memory that is protected by TrustVisor and the system’s MMU andDEV. TrustVisor-

internal state is protected by keeping it in the region of memory that is accessible only to

code in host mode. For Non-Volatile Storage TrustVisor utilizes cryptography by the

system’s Trusted Platform Module.

5.3.4.d Memory Protection Mechanisms

TrustVisor must protect its own memory regions while also isolating PALs from each

other, from the legacy OS and itsapplications, and from DMA-capable devices.

TrustVisor uses secure x86 hardware virtualization support to securely bootstrap itself,

as well as to enforce isolation between TrustVisor itself, the legacy OS, and PALs.

TrustVisor programs the system’s IOMMU to prevent access to these pages by DMA-

capable devices.

The life cycle of a PAL, which begins when code is first identified as comprising a PAL

via a registration process is described below. PAL progresses:

PAL Registration. To avoid modifying the legacy OS to support PALs, TrustVisor

implements an application-level hypercall interface for registering PALs (though PALs

can also be components of the OS if desired).

PAL Invocation. Following registration, the untrusted legacy application and OS cannot

read, write, or directly execute the memory containing the PAL that it registered.

However, the functions inside the PAL can still be invoked using what appears to the

developer to be an ordinary function call. TrustVisor then performs the following three

steps before transfering control to the called function inside the PAL:

1. Identify which registered PAL contains the current called sensitive function.

Secure Geo-location Techniques using Trusted Hyper-visor

 75
S. Rostantis

2. Switch from legacy guest mode to secure guest mode, with secure guest mode

configured so that only the pages containing this PAL are accessible.

3. Prepare the secure-mode execution environment for the called sensitive function.

This includes marshaling input parameters into isolated pages available to the PAL and

setting up the PAL’s stack pointer. Passing pointers in and out of a PAL requires

knowing the size of the pointed-to area. (This information is providedas part of the

registration call, when entry-points are enumerated.)

PAL Termination. When a PAL has completed executing and returns to the calling

legacy application, TrustVisor once again gets control. TrustVisor performs the following

two steps before transfering control back to the legacy application:

1. Marshal any returned parameters and make them available to the calling untrusted

application.

2. Switch from secure guest mode to legacy guest mode,in which the pages containing

the PAL are once again inaccessible from guest mode.

PAL Unregistration. Un-registration is normally initiated by the application that

originally registered a particular PAL. However, it can also be initiated by the legacy OS

if a PAL exits due to an error (e.g., a null-pointer exception).

5.3.4.e µTPM Functions

1. The software µTPM interface exports the following TPM-like functions:

2. HV Extend for measuring data,

3. HV GetRand for getting random bytes,

4. HV Seal and HV Unseal for sealing and unsealing data based on measurements

5. HV Quote to attest recorded measurements using digital signatures.

5.3.4.f Attestation and Trust Establishment

Attestation enables a remote entity to establish trust in TrustVisor, and subsequently in

PALs protected by TrustVisor. Building on the two-level integrity measurement

mechanisms also design a two-part attestation mechanism. First, the TPM-based

attestation to demonstrate that a dynamic root of trust was employed to launch

TrustVisor with hardware-enforced isolation. Second, the µTPM-based attestation to

demonstrate that TRTM was employed to launch a particular PAL with TrustVisor-

enforced isolation. Thus, the ultimate root of trust in a system running TrustVisor stems

from TPM-based attestation to the invocation of TrustVisor using hardware DRTM.

TPM-Generated Attestation. An external verifier that receives a TPM-generated

attestation covering the PCRs into which TrustVisor-relevant binaries and data have

been extended conveys the following information to the verifier: A dynamic root of trust

was used to bootstrap the execution of TrustVisor. TrustVisor received control

immediately following the establishment of the dynamic root of trust.

 The precise version of TrustVisor that is executing is identifiable by its measurement in

one of the PCRs. TrustVisor generated an identity key for its µTPM based on the

current TPM AIK. Note that the verifier must learn the identity of the AIK by some

Secure Geo-location Techniques using Trusted Hyper-visor

 76
S. Rostantis

authentic mechanism, such as pre-configuration by an administrator or system owner.

In some cases, trust-on-firstuse may even be reasonable, but we emphasize that the

choice of mechanism is orthogonal to the architecture of TrustVisor. µTPM-Generated

Attestation.

An attestation from TrustVisor consists of an HV Quote operation, along with additional

measurement metadata3 to facilitate the verifier’s making sense out of the values in the

µPCRs. The verifier must first decide to trust TrustVisor based on a TPM attestation. If

TrustVisor is untrusted, then no trusted environment can be constructed using

TrustVisor. A verifier learns the following information as it analyzes the contents of the

µPCRs: µPCR always begins with 20 bytes of zeros extended with the measurement of

the registered PAL.

Thus, the verifier can learn precisely which PAL was registered and invoked during this

session on TrustVisor. The values in the remaining µPCRs and any other values

extended into µPCR [0] are specific to the PAL that executed and will not have been

influenced by TrustVisor. The set of µPCRs selected for inclusion in HV Quote will be

signed by TrustVisor’s µTPM identity key µAIK.

5.3.4.g TrustVisor Framework Evaluation

For the implementation memory protection mechanisms are executed, then trusted

computing mechanisms including the µTPM implementation. To achieve memory

isolation, TrustVisor virtualizes the guest OS’s physical memory using the 2D nested

page table (NPT) hardware feature provided by AMD SVM. The NPTs are maintained

by TrustVisor in host mode, while the guest OS continues to maintain its own page

tables to translate guest virtual addresses to guest physical addresses (i.e., the guest

OS need not be aware that it is virtualized).

At runtime, guest physical addresses are further translated to machine physical

addresses by the CPU using the corresponding NPT. TrustVisor maintains only one set

of NPTs for the guest, which is simply an identity mapping from guest physical

addresses to machine physical addresses. TrustVisor uses 2 MB page granularity in the

NPTs to improve performance by reducing TLB pressure. To protect itself, TrustVisor

sets the NPT permissions such that its physical pages can never be accessed through

the NPT from guest mode.

To protect its physical pages against DMA access by devices, TrustVisor uses the DEV

(Device Exclusion Vector) mechanism, which is a simplified IOMMU (Input Output

Memory Management Unit) provided by AMD SVM. With DEV support, the system’s

memory controller is designed to provide DMA read and write protection for physical

pages on a per-page basis. Application developers must explicitly register and

unregister the PAL(s) for their application (recall §4.2.2).

Both registration and unregistration consist of a hypercall with parameters to describe

the PAL to be registered. These hypercalls are intercepted directly by TrustVisor without

legacy OS awareness using the VMMCALL instruction. Finally, the trust computing

Secure Geo-location Techniques using Trusted Hyper-visor

 77
S. Rostantis

mechanisms are executed: Trust booting where AMD’s SKINIT instruction is used to

create a dynamic root of trust to bootstrap TrustVisor starting from an initially untrusted

system state and then the μTPM implementation.

The experimental platform was a Dell PowerEdge T105 with a Quad-Core AMD

Opteron running at 2.3 GHz. The current implementation of TrustVisor allocated 2 GB of

RAM to the Linux kernel and supports only a uniprocessor guest. Additional cores and

RAM were unused. The server run the 32-bit version of the Fedora Core 6 Linux

distribution for the experiments.

It was evaluated how this implementation maintains a small TCB and compatibility with

unmodified legacy software. Results showed that the TCB was reduced, the total size of

TrustVisor implementation is 7889 lines of C and assembly code and the runtime TCB

was about 6481 lines, which includes 3919 lines of RSA and other libraries. TrustVisor

can support any 32-bit legacy x86 OS image without any modifications. TrustVisor has

an extra overhead due to PALS and μTPM operations.

Figure 44. Comparison between TrustVisor and Linux Native.

5.3.5 SecVisor

SecVisor is a proposed framework from Arvind Seshadri, Mark Luk, Ning Qu and Adrian

Perrig[]where is a tiny hypervisor that uses hardware memory protection and memory

virtualization and ensures code integrity for commodity OS kernels [45]. In particular,

SecVisor ensures that only user-approved code can execute in kernel mode over the

entire system lifetime, as a result to protect the kernel against code injection attacks,

such as kernel rootkits.

5.3.5.a SecVisor Framework Overview

SecVisor uses the IO Memory Management Unit (IOMMU) to protect approved code

from where Direct Memory Access (DMA) writes. Also, SecVisor virtualizes the CPU’s

Memory Management Unit (MMU) and the IOMMU. This ensures that SecVisor can

intercept and check all modifications to MMU and IOMMU state. The SecVisor ensures

0 0.2 0.4 0.6 0.8 1 1.2

socket

reread

bcopy

page fault

mmap

ctxsw

exec

fork

null

Lmbench micro-benchmark (Normilized to native system, Higher is better)

Secure Geo-location Techniques using Trusted Hyper-visor

 78
S. Rostantis

that CPU executes only approved code in kernel mode. Every entry into kernel should

set the CPU’s Instruction Pointer (IP) to an instruction within approved kernel code.

After an entry into kernel mode places the IP within approved code, the IP should

continue to point to approved kernel code until the CPU exits kernel mode. Every exit

from kernel should set the privilege level of the CPU to user mode. SecVisor ensures

that the approved code can be only modified by SecVisor and its TCB.

SecVisor uses page tables as the basis of its hardware memory protections. SecVisor

can keep the page tables in its own address space and allow the kernel to read and

modify them only via “safe” function calls. Also, SecVisor virtualizes physical memory.

Virtualizing physical memory causes the addresses sent on the memory bus to be

different from the physical addresses seen by the kernel. The page table used by

SecVisor to virtualize physical memory is called Protection Page Table. SecVisor sets

the Protection Page Table so that user memory is not executable when the CPU

executes in kernel mode.

On each entry to kernel mode, SecVisor sets execute permissions in the Protection

Page Table so that only approved code will be executable. Then, the CPU will generate

an exception on every attempt to execute unapproved code in kernel mode. When

SecVisor receives such an exception, it terminates the kernel. SecVisor also marks the

approved code pages read-only in the Protection Page Table. This prevents any code

executing on the CPU (except SecVisor) from modifying approved code pages.

SecVisor uses the DMA write protection functionality of the IOMMU to protect approved

code pages from being modified by DMA writes.

SecVisor ensures that all control transfers through which the CPU enters kernel mode

will set the IP to an address within the approved code. This requires SecVisor to find the

target of every possible control transfer to kernel mode is that CPUs only allow kernel

mode entries to transfer control to entry points designated by the kernel. This prevents

user programs from triggering arbitrary control flows in kernel code by entering at

arbitrary points. The kernel informs the CPU of the permitted entry points by writing the

addresses of such entry points (hereafter called the entry pointers) in CPU registers and

data structures like the interrupt vector table (IVT).

Then, SecVisor only has to ensure that all entry pointers point to instructions within

approved code. To find all the entry pointers, it needs to identify all the CPU data

structures that can contain entry pointers. By design, every CPU architecture has a set

of control transfer events that trigger CPU execution privilege changes. Each control

transfer event has an associated entry pointer in some CPU data structure.

The entry list can be created from the architectural specification of the CPU. Next, for

each event in the entry list we find the CPU data structure which holds its entry pointer.

In this manner, we obtain the list of all the CPU data structures which can hold the entry

pointers. SecVisor virtualizes the entry pointers and only permits the kernel to operate

Secure Geo-location Techniques using Trusted Hyper-visor

 79
S. Rostantis

on the virtualized copies. This allows SecVisor to intercept and check all modifications

to the entry pointers.

The virtualization can be performed in two ways. First, SecVisor can provide the kernel

with “safe” function calls through which the kernel can read and modify the entry

pointers. Second, SecVisor can maintain shadow copies of the entry pointers for use by

the CPU and keep the shadow copies synchronized with the kernel’s entry pointers. As

with virtualizing physical memory, the choice between these two alternatives is a trade-

off of performance versus security and portability.

The shadowing method was preferred in this framework because it reduces the size of

SecVisor’s kernel interface and also reduces the number of changes required to port a

kernel to SecVisor. All legitimate methods that exit kernel mode will transfer control to

code in user memory. If on each entry to kernel mode the CPU will start executing

approved code, it is fairly direct to ensure that exits from kernel mode will set the CPU

privilege to user mode. All kernel mode entries will try to execute approved code, which

is part of kernel memory. This will cause the CPU to generate an exception. As part of

handling this exception, SecVisor marks all user memory non-executable. Thus, any

exit to user mode will cause a protection violation, generating a CPU exception.

SecVisor sets the privilege level of the CPU to user mode.

5.3.5.b SecVisor Framework Evaluation

For the evaluation of SecVisor three design goals where considered: small code

size,minimal kernel interface, and ease of porting OS kernels. For the Code size it was

utilized a D.A. Wheeler’s sloc program to count the number of lines of source code

SecVisor prototype, the Kernel interface was consisted of only 2hypercalls. The first

hypercall was used by the kernel to request changes to its code (such as loading and

unloading modules), while the second hypercall was used by the kernel during its

initialization to pass the virtual and guest physical addresses of the shadow table area

and for porting OS kernels three changes to the Linux kernel version 2.6.20 to port it to

SecVisor. First, the decompress_kernel function invokes SecVisor using the skinit

instruction instead of jumping to the decompressed kernel. Second, during its

initialization, the kernel passes the addresses of the shadow table area to

SecVisorusing a hypercall.

Finally, the control flow of the load_module and the free_module function was

changed.The experimental platform was a HP Compaqdc5750 Microtower PC. This PC

uses an AMD Athlon64 X2 dual core CPU running at 2200 MHz and has 2 GB RAM.

SecVisor allocates 1536 MB of RAM to the kernel in the experiments. The PC runs the

i386 version of the Fedora Core 6 Linux distribution. We use the uniprocessor versions

of Linux kernel 2.6.20 and Xen 3.0.4. The lmbench benchmarking suite was used to

measure overheads of different kernel operation.

The results showed SecVisor protects the kernel against a variety of well-known and

unpublished attacks, including code injection through buffer overruns, kernel-level

rootkits, and malicious devices with DMA access but does not prevent against control-

Secure Geo-location Techniques using Trusted Hyper-visor

 80
S. Rostantis

flow attacks, it can be combined with approaches that do provide additional protections.

SecVisor will ensure code integrity and memory protection.

Figure 45. SecVisor VS Xen performance

5.3.6 Lockdown

Red/green systems have been proposed as a mechanism for improving user security

without abandoning the generality that has made computers so successful. They are

based on the observation that users perform security-sensitive transactions infrequently,

and hence enhanced security protections need only be provided on demand for a

limited set of activities [46]. They require virtualizing all of the system resources and

devices that may be shared between the two environments. From a security

perspective, this introduces considerable complexity into the reference monitor

responsible for keeping the two environments separate. In addition, even without

compromising a reference monitor, actively sharing resources by allowing both

environments to run simultaneously exposes side channels that can be used to learn

confidential information. From a performance perspective, the interposition necessary to

virtualize devices adds overhead to both trusted and untrusted applications.

Figure 46. Lockdown Overview

0

0.5

1

1.5

2

2.5

SPECint performance

SecVisor Xen

Secure Geo-location Techniques using Trusted Hyper-visor

 81
S. Rostantis

At a high level, Lockdown splits system execution into two environments, trusted and

untrusted, that execute non-concurrently. This design is based on the belief that the

user has a set of tasks that he wants to run with maximum performance, and that he

has a set of tasks that are security sensitive which he wants to run with maximum

security and which are infrequent and less performance critical. The performance-

sensitive applications run in the untrusted environment with near-native speed, while

security-sensitive applications run in the trusted environment, which is kept pristine and

protected by Lockdown.

The Lockdown architecture is based on two core concepts: (i) hyper-partitioning: system

resources are partitioned as opposed to being virtualized. Among other benefits, this

results in greater performance, since it minimizes resource inter-positioning, and it

eliminates most side-channel attacks possible with virtualization; and (ii) trusted

environment protection: Lockdown limits code execution in the trusted environment to a

small set of trusted applications and ensures that network communication is only

permitted with trusted sites.

5.3.6.a Hyper Partitioning

As far as hyper-partitioning is concerned, Lockdown must isolate the trusted

environment from the untrusted environment. Further, Lockdown must isolate itself from

both environments so that its functionality cannot be deliberately or inadvertently

modified. One way to achieve this isolation is to rely on the platform hardware to

partition resources. This hardware capability facilitates concurrent execution of multiple

partitions without virtualizing devices but not all devices can be share and such platform

support is not widely available. Lockdown partitions the CPU in time by only allowing

one environment to execute at a time. With hyper-partitioning, both the untrusted and

trusted environments use the same set of physical devices and leverages the Advanced

Configuration and Power-management Interface (ACPI) to save and restore device

states while partitioning non-storage devices. Lockdown performs an environment

switch by transitioning the current environment to sleep and waking up the other.

Lockdown uses approved code execution and network protection to ensure that only

trusted code (including device firmware code) can be executed and only trusted sites

can be visited while in the trusted environment, as explained below.

5.3.6.b Approved Code Execution

For non-firmware code, Lockdown uses Nested Page Tables (NPT) to enforce a W ⊕X

policy on physical memory pages used within the trusted environment. Thus, a page

within the trusted environment may be executed or written, but not both. Prior to

converting a page to executable status, Lockdown checks the memory region against a

list of trusted. Execution is permitted only if this check succeeds.

Secure Geo-location Techniques using Trusted Hyper-visor

 82
S. Rostantis

Figure 47. Lockdown protection mechanism

5.3.6.c Network Protection

Since users perform many security-sensitive activities online, applications executing in

the trusted environment need to communicate with remote sites via the network.

However, permitting network communication exposes the trusted environment to

external attacks. Remote attackers may exploit flaws in the OS’s network stack, or the

user may inadvertently access a malicious site, or a network-based attacker may

perform SSL-based attacks (e.g., tricking a user into accepting a bogus

certificate).While approved code execution prevents many code-based attacks, the

trusted environment may still be vulnerable to script-based attacks (e.g., Javascript) and

return-oriented programming attacks.

To forestall such attacks, Lockdown restricts the trusted environment to communicate

only with a limited set of trusted sites. It imposes these restrictions by inter posing on all

network traffic to or from the trusted environment. Lockdown uses hardware CPU and

physical memory protections to prevent the trusted environment from seeing or

accessing any physical network devices present in the system.

Network communication is permitted via a proxy network driver that Lockdown installs in

the guest OS. This driver forwards packets to Lockdown, which analyzes the packets

and then forwards them to the physical network interface. The trusted environment can

use a distinct physical network interface or reuse the same interface of the untrusted

environment for network communication (since the environments run non-concurrently).

In both cases the Lockdown hypervisor will need to include the network driver for the

physical interface.

A simpler approach is to perform network access (either wireless or wired) using the

Lockdown Verifier. In this case, the Lockdown hypervisor does not need to contain any

network driver but simply forwards the packets to the verifier. Lockdown uses packet

analysis to determine which network packets are permitted. One approach, with the

argument that any site with sensitive data should be using SSL to protect it in transit,

Secure Geo-location Techniques using Trusted Hyper-visor

 83
S. Rostantis

would be to allow only SSL and DNS network packets to passthrough to trusted sites.

All other packets are dropped.

When an SSL session is initiated, Lockdown determines if the request is a valid SSL

connection request. If it is, Lockdown validates the site’s SSL certificate and checks it

against the list of trusted sites (the creation and maintenance of this list is discussed in

the following section). If any of these checks fail, the packet is dropped. Incoming

packets are permitted only if they belong to an existing SSL session or are in response

to an earlier DNS request. Note that DNS-based attacks are forestalled by SSL

certificate verification. From a technical perspective, supporting other network protocols

such as SSH is also possible.

5.3.6.d Defining Trusted Entities.

To keep the trusted environment safe, Lockdown restricts the software that can execute

and the sites that can be visited. To define what software and sites can be trusted, we

leverage the user’s existing trust in the distributor of Lockdown, i.e., the organization

that provided the user with a copy of Lockdown in the first place. For example, in a

corporation, the IT department would play the role of Lockdown distributor.

For consumers, the role might be played by a trusted company or organization, such as

RedHat, Mozilla, or Microsoft. Lockdown’s key insight is that by agreeing to install

Lockdown, the user is expressing their trust in the Lockdown provider, since Lockdown

will be operating with maximum platform privileges on their computer. Thus, we can also

trust that same organization to vet trusted software and websites. The list of trusted

software can be relatively small: primarily an operating system and a trusted browser.

5.3.6.e Lockdown Framework Evaluation

The implementation is a complete prototype of Lockdown on both AMD and Intel x86

platforms with Windows 2003 Server as the OS in both the trusted and untrusted

environments. It was also developed a prototype using Linux guests. Neither prototype

required changing any code in the OS kernels. Due to space constraints, we focus on

describing our Windows prototype on the AMD platform. This Lockdown prototype

consists of a Lockdown Loader and the Lockdown Runtime. The SKINIT instruction is

used to perform a late-launch operation which ensures that the Lockdown Loader runs

in a hardware-protected environment and that its measurement (cryptographic hash) is

stored in the TPM’s Platform Configuration Register (PCR) 17.

The trusted Lockdown Loader loads the Lockdown Runtime and protects the Lockdown

Runtime’s memory region from DMA reads and writes (using AMD’s Device Exclusion

Vector). It then verifies the integrity of the Lockdown Runtime and extends a

measurement (a cryptographic hash) of the Lockdown Runtime’s code into the TPM’s

PCR 19. The Lockdown Loader then initializes the USB controller on the host for

communication with the Lockdown Verifier, creates the Nested Page Tables for the

trusted and untrusted environments and transfers control to the Lockdown Runtime.

Secure Geo-location Techniques using Trusted Hyper-visor

 84
S. Rostantis

When first launched, the Lockdown Runtime requests a challenge from the Lockdown

Verifier. The Lockdown Runtime launches the environment currently indicated on the

Lockdown Verifier in a hardware virtual machine and informs the Lockdown Verifier

once the environment has been launched, so that the Lockdown Verifier can sound the

attention buzz and light the appropriate LED. The Lockdown Runtime’s role in hyper-

partitioning, and protection of the trusted environment is described below.

To implement hyper-partitioning for non-storage devices under the Windows OS,

Lockdown makes use of the ACPI S4 (hibernate) sleep state. ACPI S3 (standby) would

offer faster switching times, but Windows ACPI implementation only saves and restores

device state during an S4 sleep, and hence we cannot use S3 with Windows without

modifying its source code. Memory and storage device partitioning are described below.

Memory. In our current implementation (on systems with 4 GB of physical memory),

Lockdown reserves 186 MB for itself and 258 MB for the system’s firmware. The rest of

physical memory is available to the trusted or untrusted environment. Storage Devices.

To implement the Trusted Environment, Lockdown uses page level code hashing. Prior

to executing the trusted environment, Lockdown sets its Nested Page Table (NPT)

entries to prevent execution of those pages. When the trusted environment attempts to

execute a page, it causes a fault that returns control to Lockdown. Lockdown computes

a hash of the faulting page and compares it to the hashes in its list of trusted software. If

a match is found, the corresponding NPT entry is updated to allow execution but

prevent writes. If the trusted environment later writes to this page, a write fault will be

generated. Lockdown will re-enable writing but disable execution. Network Protection.

To provide network protection for the trusted environment, an untrusted network was

developed driver for Windows, and an SSL Protocol Analyzer within Lockdown.

Lockdown’s TCB compares favorably with other popular hypervisors and VMMs ,such

as L4Ka-Pistachio, NOVA, VMWare ESXi, Xen + Linux, KVM + Linux + QEMU and

Hyper-V + Windows which tend to be orders of magnitude larger, despite not providing

Lockdown’s protection’s for a trusted environment The implementation and results

indicate that partitioning offers increased security (by reducing the size of the reference

monitor to 10K lines of code and by reducing opportunities for side channels) and

performance (by giving the untrusted environment unfettered access to system devices)

at the cost of slow switching times (on current systems).

5.3.7 Credo

Credo is a Hyper-V based hypervisor [47]. Key components of the Hyper-V architecture

are a microkernel hypervisor and a privileged management partition, called the root

partition. The hypervisor virtualizes core platform resources while the root partition owns

all I/O devices and does I/O virtualization. Hyper-V supports two forms of virtualized I/O

– emulation based I/O, where a guest VM performs memory mapped or port-based I/O

that is intercepted by the hypervisor and forwarded to the root partition and enlightened

Secure Geo-location Techniques using Trusted Hyper-visor

 85
S. Rostantis

I/O, where the root partition and a guest VM communicate over a shared-memory

channel using the vmbus protocol.

Figure 48. Credo comparison with Hyper-V

The Credo threat model does not consider certain types of attacks. In particular the

primary goals of Credo is to provide secrecy and integrity protection of a VM’s

virtualized state from the root partition, establish a small, measurable TCB for a VM as

well as a measure of VM’s trustworthiness, and enable mechanisms to verify this at

runtime and to make sure that the cost of security should be imposed only if security is

required by a VM. Since performance is the key requirement in any cloud computing

environment, any such cost should be low.

5.3.7.a Credo Framework Overview

The Credo architecture provides a way to execute guest virtual machines in a secure

and trustworthy environment without taking a trust dependency on the root partition

using a mechanism similar to DRTM launch. The hypervisor provides a hypercall to

trigger a v(irtual) DRTM event for a guest VM. When this event is triggered (either by the

guest VM or by the root partition on its behalf), the hypervisor suspends the VM, creates

the secure execution environment for the VM using the emancipation procedure, measures

and records the “execution state” of the VM. As the last step, the hypervisor resumes the

execution of the guest VM inside the secure execution environment.

To emancipate a guest VM’s memory, the hypervisor removes root partition’s access

from its page tables for all system memory pages backing a guest VM’s physical

address space. Both reads and writes to these pages are intercepted by the hypervisor

- reads return all 0xFF s, while writes are silently thrown away. After the VM is

emancipated, the hypervisor disallows creation of any new mappings in an emancipated

VMs physical space. This implies that that a guest VM’s address space must be

completely populated before the VM is emancipated.

Secure Geo-location Techniques using Trusted Hyper-visor

 86
S. Rostantis

However, this does not preclude dynamic memory management where the VM can

unemancipate memory pages before returning them to the root partition. Because an

emancipated VM has exclusive control over memory, it must explicitly release control of

the memory pages backing its physical space in order for the resources to be reclaimed

by the root partition after the VM shuts down. This step is accomplished using the

“unemancipate partition” hypercall, which resets the root partition’s access to its original

state for all memory pages backing the guest VM.

It is imperative that the guest VM must explicitly remove any secret information from

pages explicitly before calling the unemancipate partition hypercall in order to maintain

the secrecy and integrity guarantees. A guest VM’s vCPU state may be modified

outside the control of the guest VM as a result of intercepts. These intercepts are either

caused by guest VM itself, e.g., by accessing some virtual resource such as MSR or I/O

port, or by external events, such as a virtual interrupt associated with a virtual device

5.3.7.b Emancipating I/O

In Credo, it is the responsibility of the guest VM to use cryptographic measures for I/O

emancipation as the hypervisor is not involved in the para virtualized I/O path. Making

the guest VM aware of I/O emancipation is compatible with the para virtualized I/O

model. Emancipated para-virtualized I/O from a guest VM involves two steps: first, a

shared memory based channel is established between an emancipated guest VM and

the untrusted root partition; and second, a guest VM uses secrecy and/or integrity

protection techniques to read or write data to or from this shared memory channel. For

the root partition to use shared memory for communication it needs to be able to access

guest memory which is by default protected by memory emancipation.

Credo provides the “unemancipate page” hypercall to selectively remove protection for

the pages used by the shared memory channel. One such channel is created for each

para-virtualized device. Messages sent over the channel may contain pointers to buffers

on data pages that must also be unemancipated. As an optimization, instead of calling

the “unemancipate page” hypercall for every page, the vmbus keeps a pool of

unemancipated pages that are setup at VM startup.

Drivers allocate and free memory pages to and from this pool. The vmbus driver in the

guest VM can grow/shrink this pool on demand as needed. This encryption approach to

emancipating I/O works in a cloud environment since the guest VM mostly requires just

storage and network based I/O to execute in such an environment. In fact, Credo

explicitly disallows any emulation based I/O, and all VM management should be

performed using a network based remote access connection.

5.3.7.c Credo Framework Evaluation

(a) Emancipated VM startup:

In order to build such an “execution image” that is formed from a saved VM state that

forms the captured via VM save operation a bootable RAMDISK is stored on a virtual

IDE disk. Here, the IDE disk is only used by the bootloader on the trusted server. By

Secure Geo-location Techniques using Trusted Hyper-visor

 87
S. Rostantis

disabling the IDE disk driver (disk.sys) from this RAMDISK installation, is ensure that

once Windows finishes booting, the OS does not use the IDE disk with which the VM

started executing.

(b) SDisk:

SDisk is implemented as a filter driver in the virtual storage stack that sits right above

the virtual SCSI driver. It mainly interposes itself on the read/write path, and performs

data encryption/decryption before passing it down to virtual Encryption mechanism used

is AES with 256-bit key as KSD. SCSI driver, which then sends emancipated I/O data

on untrusted vmbus communication channel. SDisk driver stores metadata related to

SDisk on the last 1MB of vhd.

(c) DRTM launch of hypervisor:

TXT architecture puts certain restrictions on the DLME that make it difficult to directly

launch the hypervisor as a DLME. Instead a small Hyper-V aware DLME (HvDLME) that

understands the specifics of Hyper-V hypervisor is used as DLME. It extends Windows

bootloader (winload.exe) to load HvDLME and the actual hypervisor binary in the

memory and perform a small amount of DRTM specific configuration to establish the

required memory mappings, e.g., to allow TPM access. Next, the boot loader launches

HvDLME using DRTM launch as described earlier. As a result of DRTM operation,

PCRs 17 and 18 are set with measurements related to HvDLME.

The PassMark Performance Test benchmark suite [] was used for benchmarking the

performance of various tests inside the guest VM. The benchmark is run in three

scenarios: With stock Hyper-V configuration. With Credo but without the secure

execution environment. This measures the impact of Credo on no security sensitive

VMs. With Credo within the secure execution environment.

This measures the impact of Credo and secure execution environment on security

sensitive VMs. Experimental results show that Credo imposes mostly one-time setup

cost. Credo does not impact performance for virtual machines that do not require the

security benefits when compared to a stock Hyper-V environment, while only imposing

modest cost on emancipated VMs.

Figure 49. Credo Performance Evaluation CPU/Memory and Disk

Secure Geo-location Techniques using Trusted Hyper-visor

 88
S. Rostantis

5.3.8 Hypervisors Summary

In this chapter we presented some representative virtualization frameworks alongside

with their implantation and instruction for execution and configurations. We present the

hypervisor information summary in the table below.

Each row contains the name of each hypervisor followed with the contributors, date of

publication, if the hypervisor uses a TPM, the supported operation systems, if the

framework has been tested by the contributors and if there is the source code available

for downloading.

Table 8. Summary of the hypervisors that are presented in this paper.

Framework
Name

Contributors Date of
publication

TPM
Version

Type OS Evaluation Source
Code

XMHF [40] June 26, 2012 TPM (v1.2) 1 a)Windows
XP
b)Windows
Server 2003
c)Ubuntu
10.04

The
framework
was tested

In Github.
Open
Source in
official site

uberXMHF [41] October 3
2018

TPM (v1.2
or above)

1 a)Ubuntu
16.04
b)Ubuntu
12.04
c)Raspberry
PI 3

The
framework
was tested

In Github.
Open
Source in
official site.

XVisor [42] January 31
2016

No TPM 1 Linux
Raspberry Pi

The
framework
was tested

In Github.
Open
Source in
official site.

TGVisor [43] June 2015 TPM
usage

1 Ubuntu 12.04 The
framework
was tested

Not Found

TrustVisor [44] May 2010 TPM (v1.2
or above)

1 Fedora Core 6
Linux

The
framework
was tested

In Github.

SecVisor [45] October 14
2007

TPM
usage

2 Fedora Core 6
Linux

The
framework
was tested

Not Found

Lockdown [46] July 14, 2009 TPM
usage

1 a) Windows
2003 Server
b) Linux

The
framework
was tested

In Github.

Credo [47] 2011 TPM (v1.2) 1 Windows The
framework
was tested

Not Found

Secure Geo-location Techniques using Trusted Hyper-visor

 89
S. Rostantis

6. PROPOSED SECURE GEO-LOCALIZATION FRAMEWORK
In this chapter we present our proposed Localization framework that ensures a trust

geo-location environment in WSN. The framework is explained with details alongside

with detailed explanation for the way that the proposed framework achieves trust geo-

location. Geographic locations of user devices are widely used to provide rich user

experience in various environments such as proximity-based marketing, travel

information, and cloud computing. Especially, cloud service providers require to utilize

actual cloud user’s locations in location-based cloud services like Amazon GovCloud.

However, it is not trivial to obtain the trusted geo-locations of the user devices because

there are many points for attackers to forge the current geo-locations of the cloud user

devices. WSN may be deployed in hostile environments with sensors operating

unsupervised. Attacks on WSN are presented in section 4. Hence, an adversary can

interrupt the functionality of location-aware applications by exploiting the vulnerabilities

of the localization scheme. To confront those types of attacks we proposed a Secure

Geo-Location framework with the utilization of Hypervisors and TPM.

6.1 Introduction
In this section our proposed secure geolocation framework is presented, with the usage

of a Trust Platform Module (TPM) and a Hypervisor, that ensures a safe geolocation

process for unknown nodes in a specified and trust environment. The basic idea is to

create a geographical environment that is consisted of anchor nodes and where

unknown node can be located and can access a protected and safe system.The basic

concept of the framework is as follows:

First, we specify a geographical field that will be the environment where geolocation and

safety will be provided. This field consists of a base station and three anchor-beacon

nodes that their geological position is calculated and known. Those nodes form a

tetrahedron shape (the base station and the two anchor nodes form the base and one

node is the pick). Each node supports a Hypervisor that can ensure a trustful and safe

environment. In our implementation we use the Trustrvisor (which is implemented over

a uberXMHF), further details are presented below.

The TPM is utilized here to achieve this purpose since it provides all the mechanisms of

 a secure crypto processor designed to secure hardware through integrated

cryptographic keys. When an unknown node enters the specified field, it can easily be

detected from all four nodes. With a localization algorithm, the coordinates of the

unknown node can be calculated (further details of this process will be presented in the

next session) and if the unknown node position is determined as then the access to the

system is granted, otherwise is denied. In the case that is granted the anchor node can

give access to the new node in the system through a Hypervisor (Virtual Machine).

With the hypervisor the node can utilize all the information in the system without data

corruption. Thus, the new node has access to a secure system that protects it from any

malicious attacks, also the system is protected from any possible attempt in data

https://en.wikipedia.org/wiki/Secure_cryptoprocessor

Secure Geo-location Techniques using Trusted Hyper-visor

 90
S. Rostantis

modification, data corruption or any other type of attacks in WNS. Below a diagram is

presented that explain the high-level overview of the basic concept of our framework.

The framework contains four phases:

Figure 50. Proposed framework high level overview.

Trust field creation

A three-dimensional geographical field is formed by three coplanar and static base

nodes on the ground, forming a triangular shape. A fourth node stays on a specific high

position from the ground as a results all four nodes are forming a tetrahedron shape

field. All four nodes have known coordinates that are shared between them and are in a

constant communication.

Node position calculation

When an unknown node enters this specified trust field, it can be detected from all the

base nodes of the system. Then the node’s distance can be estimated using positioning

techniques (e.g. RSSI, DV-HOP etc.) and its position inside the system is calculated

using relevant techniques (e.g. trilateration etc.). Those coordinates are shared between

the base nodes.

Verification phase

4.Node access phase. Node access
can either be denied or granted
where it can access the system's
data throught Hypervisor.

3.Verification phase. Node is
verified whether it can access the
field or not.

2. Node position calculation
phase. A 3D localization algorithm
is executed.

1.Trust field creation phase.
Anchors nodes set up. Field's 3D
boundaries specification.

Encrypted Field
Creation

Trust Field Creation by
Anchor Nodes

Unknown Node
Enter Field

Unknown Node
Position Calculation

Unknown Node Position
Verification

Unknown Node Access
Granted

Unknown Node Access Data
with Hypervisor

Unknown Node Access
Denied

Secure Geo-location Techniques using Trusted Hyper-visor

 91
S. Rostantis

Knowing the node’s specific position compared with the system the base nodes can

estimate if the node is inside or outside of the trust field. Then the system can accept or

reject the node access in the system’s data.

Node access phase

If the node is not rejected from the system, its access is granted. Then the hypervisor

(e.g. Hypervisor) is responsible of creating a safe environment (a guest virtual machine)

for the node, where the node has access to the system’s data and can interact with it.

6.2 Framework Overview

 The framework consists of the following features:

• Four (or five) base nodes, forming a tetrahedron shape A, B, C and D. (E).

• Each node contains a hypervisor.

• Each node contains a TPM for the hypervisor implementation.

• A unknow node X enters the field with a random movement.

Figure 51. Framework overview

6.2.1 Trust Field Creation

In figure 53 we can understand how this specified three-dimensional field can be

represented in a cartesian plane. Nodes A, B, (E) and C are base ground nodes on a

coplanar field. Node D has a known high H from the ground. In the cartesian plane

representation the base nodes form the tetrahedron ABCD with base A, B, (E), C and

pick D. The edges of the tetrahedron represents the distances between the node, that

are also known and constant: d1 is distance between A and B, d2 is distance between B

and C, d3 is distance between A and C, d4 is distance between A and D, d5 is distance

between C and D and d6 is distance between B and D etc. Each base node utilizes a

hypervisor in order to create a safe and secure environment for the new guest nodes:

uberXMHFA for node A, uberXMHFB for node B, uberXMHFC for node C, uberXMHFE

for node E and uberXMHFD for nodeD. In our framework we choose the Trustvisor

hypervisor which is implemented from uberXMHF. Each node contains also a TPM

Secure Geo-location Techniques using Trusted Hyper-visor

 92
S. Rostantis

environment, which is necessary for the Trustvisor hypervisor in order to create a safe

environment. All the system’s geographical data, base node’s coordinates and

distances, are known and shared between all base nodes. All base nodes are in a

constant communication and aware of any change in the system.

Figure 52. Trust field representation.

6.2.2 Node Position Calculation

In order to calculate the coordinates of the unknown node X in the system we utilized

the mechanisms below:

Table 9. Localization algorithms simulated

Algorithm Name Metrics Dimension Base nodes

1.Multilateration RSSI 3 4

2.Multilateration TOA 3 4

3.Direct Location Method RSSI 3 4

4.Direct Location Method TOA 3 4

5.CHAN Algorithm TDOA 3 5

6.Hybrid Algorithm TDOA/ TOA 3 4

6.2.2.a 3D-RSSI/TOA

Finding Distances from center points from 3 spheres

https://stackoverflow.com/questions/1406375/finding-intersection-points-between-3-spheres

Secure Geo-location Techniques using Trusted Hyper-visor

 93
S. Rostantis

In order to calculate the distances D1, D2 and D3 of the unknown node X, we need a

minimum of 3 base nodes in the area. The selected techniques for this calculation are:

RSSI and TOA. All three localization techniques can calculate the distances between

two nodes in a system.

In our framework, the distances D1, D2 and D3 can be calculated by those techniques.

We can use every combination of three base node for the distance calculation. As a

representative case we can have as a reference base nodes A, B and C (or D) and their

distances from unknown node E D1, D2 and D3. The distances represent the radius of

each sphere with centers nodes A, B and C

Finding intersection points between 3 spheres

We assume that the coordinates of the spheres (xA,yA,zA), (xB,yB,zB) and (xC,yC,zC) ,

alongside with the relevant radius D1, D2 and D3 are known. Then we have the

following equations. Three spheres:

EQ1: (xA - x)2 + (y A - y) 2 + (z A - z) 2 = D12

EQ2: (xB - x) 2 + (yB - y) 2 + (zB - z) 2 = D22

EQ3: (xC - x) 2 + (yC - y) 2 + (zC - z) 2 = D32

Figure 53. Intersection point calculation

Intersection computation algorithm

1. Pick one of the equations (EQ2) and subtract it from the other two (EQ1, EQ3). That

will make those other two equations into linear equations in the three unknowns.

2. Use them to find two of the variables (x, y) as linear expressions in the third (z).

These two equations are those of a line in 3-space, which passes through the two

points of intersection of the three spheres.

https://stackoverflow.com/questions/1406375/finding-intersection-points-between-3-spheres

Secure Geo-location Techniques using Trusted Hyper-visor

 94
S. Rostantis

3. Then substitute these into the equation of any of the original spheres (EQ1). This

will give you a quadratic equation in one variable, which you can solve to find the

two roots.

4. These values will allow you to determine the corresponding values of the other two

variables, giving you the coordinates of the two intersection points. Keep the positive

intersection point.

6.2.2.b Direct Location Method

The TOA measurements between the object and the stations are multiplied by the

known signal propagation speed in the media to yield range measurements. Thus, (xi,

yi, zi), i = 1, ... 4 is the known position of station i. From the set of three equations from

the measurements of the distances of the unknown node and the bases nodes, we can

compute three equations expressed in z and y that can be cancelled out using straight

forward algebra to get an explicit expression for x independent of y and z. Thus, we

have one equation for each coordinate x, y and z with known parameters.

6.2.2.c 3D-TDOA CHAN Algorithm

In a localization system, time difference of arrival technique is widely used to estimate

the location of a mobile station. Chan’s method is another non-iterative solution of

achieving optimum performance for arbitrarily placed sensors. Following the derivation

of the formulae for bias and mean-square errors of TDOA estimation under rm, this

paper moves on to the joint estimation of TDOA and time scale. It proposes an iterative

search for the maximization of the cross-ambiguity function (CAF), which is also the

maximum likelihood function for additive Gaussian bandlimited white noise disturbance.

In addition, a quadratic Lagrange interpolator is also proposed to obtain the initial

parameter values for the iterative search, which can increase the chance of converging

to the global minimum solution. It is necessary to time scale a digital sequence by a

noninteger in the maximization process. For an N-point sequence, this operation, which

first interpolates the samples by sinc functions and then resamples, is in the order

O(N/sup 2/). Noting that the magnitude of the sinc function decreases rapidly from its

peak, this paper uses a fast approximation (FA) method that applies only five sinc

coefficients for the interpolation, reducing the computation to O(N).

6.2.2.d Hybrid 3D TOA/TDOA

TDOA measurements when converted to distance results in hyperbolic equations. N

number of TOA measurements will result in N-1 hyperbolic equations. Using this

concept with the proper modifications we can convert four equations using TDOA of 4

base nodes to a simplified linear matrix equation A x = b. The implementation is

presented in the next session.

6.2.3 Verification

After the execution of the algorithm that is described above, the unknown node has its

own coordinates in the system X (xx, yx, zx). Those coordinates are shared between all

Secure Geo-location Techniques using Trusted Hyper-visor

 95
S. Rostantis

the base nodes of the framework. Now we can use any verification criteria we want to

accept or deny the node access in the system.

6.2.4 Node Access

Finally, after the verification phase is executed, the node can either have no access in

the system since it has not the verification criteria necessary or have access to the

system data. In this case, a safe and secure environment is created for the guest node

by the hypervisor, where it can have access to the data system and can interact and

communicate with it without data loses and with secure protection from any attacks.

Figure 54. Verification and access overview.

Secure Geo-location Techniques using Trusted Hyper-visor

 96
S. Rostantis

6.3 Framework Implementation Overview

6.3.1 Simulation Overview

To evaluate the performance and implementation of our proposed framework, we

simulated a random movement of the unknown node E in the field. The implementation

of the movement algorithm is described in the next session, also the source code is

provided in the appendixes. We assume that node X each time unit t has unknow

coordinates:

• X [x(t), y(t), z(t)]

where t ∈ ℕ → t = [Start Movement, End Movement]. The random algorithm that we

utilize to simulate this movement is Brownian motion. We can then utilize one

localization method in order to calculate the distances of E from the bases nodes A, B,

C and X and then calculate the coordinates X [x(t), y(t), z(t)] each time unit t with multi-

lateration. The current distances of E from A, B, C, D is DN(t), N ∈ [A,B,C,D].

Figure 55. Simulation Movement steps

6.3.2 Random Movement

To calculate DN(t) we utilize and compared the performance of the localization

techniques: RSSI, TDOA

Figure 56. Unknown node movement

Random
Movement

(Brownian)

X [x(t), y(t), z(t)]

Calculate metrics at
t

(RSSI, TOA, TDOA)

Calculate Position
with relevant

algorithms

Verify Results

Access with
Hypervisor

Secure Geo-location Techniques using Trusted Hyper-visor

 97
S. Rostantis

Brownian motion

Input in Brownian motion simulation: dimensions (m), the number of the walk step (n),

the density of the field (d), a coefficient (t) and the start position 𝑐̂0.

m: m ∈ ℕ & 0 < m < 4

n: n ∈ ℕ & 0 < n

d: d ∈ ℝ & 0 < d

t: t ∈ ℝ & 0 < t < 1

𝑐̂0: 𝑐̂0 =

[

𝑥1
𝑥2… .
… .
𝑥𝑚]

 & 𝑐0̂ ∈ ℝ
m & x1-m∈ ℝ

Compute the Δt for utilize it as a new coefficient in the algorithm:

Δt =
𝑡

𝑛−1

For every step n the algorithm will produce a new random m dimension position

𝑐̂𝑖= [x1, x2, ……, xm]

❖ ∀ i ∈ {1, 2, ……, n}

➢ Si: Si = √2 ∗ 𝑚 ∗ 𝑑 ∗ 𝑑𝑡 ∗ Xi , where Xi ∼ U(ℝ) & Si ∈ ℝ

➢ ∀ j ∈ {1, 2, ……, m}

• Δxji : Δxji = Xji , where Xji ∼ U(ℝ) & Δxji ∈ ℝ

➢ ‖𝑥‖𝑖: ‖𝑥‖𝑖 = √∑ (𝛥𝜒𝜄
𝑘)2 𝑘=𝑚

𝑘=1 , where ‖𝑥‖𝑖 ∈ ℝ

➢ dx𝑖̂: dx𝑖̂ =

[

𝛥𝜒𝜄

1

𝛥𝜒𝜄
2

… .
… .
𝛥𝜒𝜄

𝑚]

 , where dx𝑖̂ ∈ ℝm

➢ dx𝑖
′̂: dx𝑖

′̂= dx𝑖̂ *
𝑠𝑖

 ‖𝑥‖i
 → dx𝑖

′̂ =

[

 𝛥𝜒𝜄

1 ∗
𝑠𝑖

 ‖𝑥‖i

𝛥𝜒𝜄
2 ∗

𝑠𝑖

 ‖𝑥‖i … .
… .

𝛥𝜒𝜄
𝑚 ∗

𝑠𝑖

 ‖𝑥‖i]

 , where dx𝑖
′̂ ∈ ℝm

➢ 𝑐̂𝑖: 𝑐̂𝑖 = 𝑐̂𝑖−1 + dx𝑖
′̂ , where 𝑐̂𝑖 ∈ ℝm

A new random m dimension position is produced 𝑐̂𝑖. It will produce n random position in

total. This algorithm simulates a m-D random movement of a node in n steps.

Secure Geo-location Techniques using Trusted Hyper-visor

 98
S. Rostantis

6.3.3 Calculate Metrics

6.3.3.a RSSI

As it was presented in chapter 3 [48], the formula for calculating the distances between

two nodes using received signal strength indicator is:

PR = PT.
𝐺𝑇∗𝐺𝑅∗𝜆

2

(4∗𝜋)2∗𝑑𝑛
 (1) ➔

P[dBm] = 10 · log10 (P[W] · 103) (2) ➔

RSSI = − (10 · n · log10 d − A) (3) ➔

d = 10
𝐴−𝑅𝑆𝑆𝐼

10∗𝑛
 (4)

Choosing value for n it depends on the environment. Typical values are: 2 for free

space, 2.7 to 3.5 for urban areas, 3.0 to 5.0 in suburban areas and 1.6 to 1.8 for indoors

when there is line of sight to the router. At maximum Broadcasting Power (+4 dBm) the

RSSI ranges from -26 (a few inches) to -100 (40-50 m distance). Default transmit power

for DD-WRT based routers is 70mW or 18.5dBm [49]

Di= 10
𝐴𝑖−𝑅𝑆𝑆𝐼𝑖
10∗𝑛

 , where i = {1,2,3,4,5}

6.3.3.b TOA

As it was presented in chapter 3, the formula for calculating the distances between two

nodes using Time of Arrival is:

Δdi-x = c * (Δti-x)

Where c is the speed of light in the vacuum and Δt is the time difference between the

start time and the time of arrival between a base node and unknown node X.

6.3.3.c TDOA

As it was presented in chapter 3, the formula for calculating the distances between two

nodes using Time Difference of Arrival is:

Δdi-j-x = c * (Δti-j-x)

Where c is the speed of light in the vacuum and Δt is the time difference between the

start time and the time of arrival between two base nodes and unknown node X. For

example, if we have two base nodes i and j and x is the unknow node then:

Δdi-j-x = c * (Δdi-x - Δdj-x)

6.3.4 Calculate Position

Secure Geo-location Techniques using Trusted Hyper-visor

 99
S. Rostantis

6.3.4.a With Spheres Intersection points for RSSI/TOA Multilateration

Input: x1, x2, x3, y1, y2, y3, z1, z2, z3, r1, r2, r3. Subtract EQ2 from EQ1, move all constants to

right side. Call the right side constant k1 [50]:

k1 = r12 - r22 - x12 + x22 - y12 + y22 - z12 + z22

Left side of EQ1 is of the form a1x + b1y + c1z where a1, b1, and c1 are the coefficients

a1 = 2 * (x2 - x1)

b1 = 2 * (y2 - y1)

c1 = 2 * (z2 - z1)

Subtract EQ2 from EQ3, move all constants to right side, Call the right side k3

k3 = r32 - r22 - x32 + x22 - y32 + y22 - z32 + z22

Left side of EQ3 is of the form a3x + b3y + c3z, where a3, b3, and c3 are the coefficients

a3 = 2 * (x2 - x3)

b3 = 2 * (y2 - y3)

c3 = 2 * (z2 - z3)

The two equations (EQ1, EQ3) are now linear equations in the three unknowns: EQ1: a1x +

b1y + c1z = k1, EQ3: a3x + b3y + c3z = k3. Then find y as a linear expression of z. y = e*z

+ f

IF :

{

 a1 = 0 => {
𝑒 =

−𝑐1

𝑏1

𝑓 =
−𝑐3

𝑏3

a1 ≠ 0 AND a3 = 0 => {
𝑒 =

−𝑐3

𝑏3

𝑓 =
𝑘3

𝑏3

a1 ≠ 0 AND a3 ≠ 0 =>

{

 𝑎31 =

𝑘3

𝑏3

 𝑒 = −
a31 ∗ c1 − c3

a31 ∗ b1 − b3

 𝑓 =
a31 ∗ k1 − k3

a31 ∗ b1 − b3

Then find x as a linear expression of z. x = g*z + h ➔ IF :

{

 b1 = 0 => {
𝑔 =

−𝑐1

𝑎1

ℎ =
−𝑐3

𝑎3

b1 ≠ 0 AND b3 = 0 => {
𝑔 =

−𝑐3

𝑎3

ℎ =
𝑘3

𝑎3

b1 ≠ 0 AND b3 ≠ 0 =>

{

 𝑏31 =

𝑏3

𝑎3

 𝑔 = −
b31 ∗ c1 − c3

b31 ∗ a1 − a3

 ℎ =
b31 ∗ k1 − k3

b31 ∗ a1 − a3

Substitute these into the equation of any of the original spheres (EQ1). This will give you a
quadratic equation in one variable, which you can solve to find the two roots

A = g2 + e2 + 1

Secure Geo-location Techniques using Trusted Hyper-visor

 100
S. Rostantis

B = -x1 * g - y1 * e - 2 * z1 - x1 * g - y1 * e + 2 * g * h + 2 * e * f

C = x12 + y12 + z12 - 2 * x1 * h - 2 * y1 * f + h2 + f2 - r12

Use the quadratic formula to solve to find the two roots.

rootD = √(B2 − 4 ∗ A ∗ C)

z =
−B + rootD

2 ∗ A
 , z_ =

−B− rootD

2 ∗ A

Calculate you the coordinates of the two intersection points.

x = g * z + h, x_ = g * z_ + h

y = e * z + f, y_ = e * z_ + f

Finally, keep the positive solution:

E: Solutions => {
(𝑥 , 𝑦 , 𝑧)

 (_𝑥 , _𝑦 , _𝑧)

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑢𝑙𝑡
⇒ {

(𝑥, 𝑦 , 𝑧)
 (_𝑥, _𝑦 , _𝑧)

 => Solution: E = (x, y, z)

6.3.4.b Direct Location Method for RSSI/TOA

The TOA measurement equation is written as

(x − xi)2 + (y − yi)2 + (z − zi)2 = ri2, i = 1 ,2,3 4

Substituting i = 2, 3, 4 in Eq. above and subtracting each of the three equations from Eq.

above when i = 1, we get three equations of the form:

Aj, i = 2, 3, 4 A j = (r 1 − ri) + (xi − x1) + (yi − y1) + (zi − z1), j = 1, 2, 3

Let

I1 = (z3 - z1)*(x2 - x1)-(z2 - z1)*(x3 - x1), I2 = (z4 - z1)*(x2 - x1)-(z2 - z1)*(x4 - x1)

I3 = (z3 - z1)*A1 - (z2 - z1) * A2, I4 = (z4 - z1)* A1 - (z2 - z1) * A3

I5 = (z3 - z1) * (y2 - y1) - (z2 - z1) * (y3 - y1), I6 = (z4 - z1)*(y2 - y1)-(z2- z1)*(y4 - y1)

I7 = (y3 - y1) *(x2 - x1) - (y2 - y1)*(x3 - x1), I8 = (y4 - y1)*(x2 - x1) - (y2 - y1)*(x4 - x1)

I9 = (y3 - y1) * A1 - (y2 - y1) * A2, I10 = (y4 - y1)* A1 - (y2 - y1)* A3

I11 = (y3 - y1)*(z2 - z1) - (y2 - y1)*(z3 - z1), I12 = (y4 - y1)*(z2 - z1) - (y2 - y1)*(z4 - z1)

Thus, the solution can be calculated as presented below:

x=
𝐈𝟒∗𝐈𝟓 − 𝐈𝟑∗𝐈𝟔

𝐈𝟐∗𝐈𝟓 − 𝐈𝟏∗𝐈𝟔
∗
𝟏

𝟐
 , y=

𝐈𝟒∗𝐈𝟓 − 𝐈𝟑∗𝐈𝟔

𝐈𝟐∗𝐈𝟓 − 𝐈𝟏∗𝐈𝟔
∗
𝟏

𝟐
, z=

𝐈𝟒∗𝐈𝟓 − 𝐈𝟑∗𝐈𝟔

𝐈𝟐∗𝐈𝟓 − 𝐈𝟏∗𝐈𝟔
∗
𝟏

𝟐

6.3.4.c With TDOA CHAN

It is assumption that M BSs are randomly distributed in 3-dimension space. (x, y, z) is

unknown MS position and (Xi, Yi, Zi) is BSi position. Ri is the distance between BSi and MS.

Thus, the distance between MS and BSi is given by:

Secure Geo-location Techniques using Trusted Hyper-visor

 101
S. Rostantis

Ri = (Xi -x)2 + (Yi-y)2 + (Zi-z)2 = Ki – 2*Xi*x – 2*Yi*y -2*Zi*z +R = (c * ti)2, where i=1, 2.., M

Where Ki = Xi2 +Yi2 +Zi2, R = x2+y2+z2, τi the value of TOA, c is the speed of light. Assume

za =[zp
T,R]T is unknown vector, where z =[x, y, z]T .The error vector with TOA noise is that:

ψ = h – Ga za
0 where,

h = [
𝑅1
2 − 𝐾1
…………
𝑅𝑀
2 − 𝐾𝑀

] , 𝐺𝑎 [
−2𝑋𝑀 − 2𝑌𝑀 − 2𝑍𝑀 1

…………
−2𝑋𝑀 − 2𝑌𝑀 − 2𝑍𝑀 1

]

By using WLS method, we use covariance matrix Q of measured value of TOA to replace the

Covariance matrix of error vector ψ. za is given by:

za = argmin{(h-Gaza)TQ-1(h-Gaza)} = (GaTQ-1Ga)-1(GaT Q-1h), where Q=diag(σ12,, σΜ2)

If error of TOA is little, ψ is given by: ψ = 2Bn+n*n ≈ 2𝐵𝑛, where B=diag(R12,, RΜ2), Ri0 is

the actual distance between MS and BSi, n is the measurement error of TOA. Covariance

matrix of error vector ψ is given by: ψ =Ε[ψψT] =4ΒQΒ. In the environment with noise,

Ri = Ri0 + cni, Ga = Ga0 + ΔGa, h = h0 + Δh

It is assumed that za = za0 + Δza, Δza and covariance matrix of Δza are measured by:

Δza = c * (GaT ψGa)-1Gaψ-1Bn, cov(za) = E[Δza ΔzaT] = (GaT ψ-1Ga)-1

za is a zero-mean random variable, thus za can be expressed as:

za,1 = x0 + e1, za,2 = y0 + e2, za,3 = z0 + e3, za,4 = R0 + e4

Where e1, e2, e3, e4 are the error estimates of za. Vector’s error of z a can be expressed as:
ψ’ = h’ – Ga’ za’

h’ =

[

𝑧𝑎,1
2

𝑧𝑎,2
2

𝑧𝑎,3
2

𝑧𝑎,4
2]

, 𝐺𝑎
′ = [

1 0 0
0 1 0
0 0 1
1 1 1

] , 𝑧𝑎
′ = [

𝑥2

𝑦2

𝑧2
]

The covariance matrix of ψ ' also could be defined by: ψ'= E[ψ’ψ’Τ] = 4Β’cov(za)B’. Where

B = diag(x0, y0, z0, 1/2), x0, y0, z0 in B' could be replaced by the value of za. The estimates of

z'a by WLS is given by: z'a = (Ga’ψ’-1G’a)-1(G’aT ψ’-1h’). MS positioning is calculated by:

zp = √𝒛𝒂′ or zp =-√𝒛𝒂′

The plus or minus selection of (x,y,z) in zp should be the same as the sign of (x,y,z) in za .

6.3.4.d With Hybrid TOA/TDOA

The equation for the TOA measurement of the signal at the i-th antenna station transmitted
from an emitter located at x = (x, y, z) is:

τi =
√(x−xi)

2+ (y−yi)
2+ (z−zi)

2

c
 ➔ (τi * c)2 = (x − xi)2 + (y − yi)2 + (z − zi)2 ➔

Secure Geo-location Techniques using Trusted Hyper-visor

 102
S. Rostantis

(τi * c)2 = (x2+y2+z2) – (2xxi+2yyi+2zzi) + (xi
2+ yi

2+ zi
2)

Let

R = (x2+y2+z2) and Ki = (xi2+ yi2+ zi2)➔

Ri2 = R - (2xxi+2yyi+2zzi) + Ki

TDOA measurement between the i-th and the j-th antenna station pair is obtained as:

τij = τi - τj=
√(x−xi)

2+ (y−yi)
2+ (z−zi)

2

c
−
√(x−xi)

2+ (y−yi)
2+ (z−zi)

2

c

We calculate the values τ13, τ14, τ23, τ14 we get to []:

a134 = x × b134 + y × c134 + z × d134

a234 = x × b234 + y × c234 + z × d234

Finally, we get a matrix form Ax = b

A =

[

2(x1 − 𝑥2)2(x3 − 𝑥4) 2(y1 − 𝑦2)2(𝑦3 − 𝑦4) 2(𝑧1 − 𝑧2)2(z3 − 𝑧4)

𝑥31
𝑅13

−
𝑥41
𝑅14

𝑦31
𝑅13

−
𝑦41
𝑅14

𝑧31
𝑅13

−
𝑧41
𝑧14

𝑥32
𝑅23

−
𝑥42
𝑅24

𝑦32
𝑅23

−
𝑦42
𝑅24

𝑥31
𝑅13

−
𝑥31
𝑅13]

b =

[

(𝑅1
2 − 𝑅2

2 − 𝐾1 + 𝐾2)(𝑅3
2 − 𝑅4

2 − 𝐾3 + 𝐾4)

0.5(𝑅1
2 − 𝑅2

2 +
𝐾14

𝑅14
−
𝐾13

𝑅13
)

0.5(𝑅1
2 − 𝑅2

2 +
𝐾24

𝑅24
−

𝐾23

𝑅23
)]

where we solve for x = [x, y, z] T

Secure Geo-location Techniques using Trusted Hyper-visor

 103
S. Rostantis

7. PROPOSED FRAMEWORK SIMULATION
In this chapter we present our proposed Localization framework simulation. We explain

how we installed the relevant components and features necessary for our framework

alongside with our implemented code and scripts. Also, we present how the simulation

works and how we tested it.

7.1 Framework simulation overview

The simulator can be found in [64]. The simulator contains two basic phases. In the first

is the process of calculating all the metrics values (TDOA, TOA, RSSI) of the base

nodes from the unknown and then simulate the algorithms performance. In this phase

we implemented a python project that is responsible for all the above. In the second

phase we implemented a bash script that is responsible for downloading and installing

the hypervisor to a local machine alongside with all the necessary modules and

packets. We explain with details those implementations in the sections below.

7.1.1 Localization algorithms simulation process

The python simulator contains of 6 phases:

1. Browian Motion

In this phase we create a random motion of unknown node X in a 3d field

2. Data creation

Here we create the RSSI, TOA and TDOA values for each position of X.

3. Simulation

This is the phase where the algorithms are executed.

4. Storing

We store the data to files.

5. Graphics

Here we plot all the movements and algorithms traces

6. Statistics

Finally, we evaluate the algorithm’s performances.

More information for the implementation of the script are presented below.

Figure 57. Geolocation simulation process

Browian Motion

• Create random
motion

Data creation

• Create metrics
data

Simulation

• Execute
algorithns

Storing

• Store Data

Graphics

• Overall image
creation

Statistics

• Create statistics
imaged

Secure Geo-location Techniques using Trusted Hyper-visor

 104
S. Rostantis

7.1.2 Hypervisor simulation process

The bash simulator contains of 6 phases:

1. Update

Update and upgrade software of local machine.

2. Download

Download hypervisor from Github.

3. Installation

Install hypervisor to local environment.

4. Configuration

Install all relevant packet and features alongside with any configuration.

5. Verification

Verify that hypervisor is installed properly.

Figure 58. Hypervisor simulation process

7.1.3 Framework Folder Structure

Here we present a short overview of the folder structure in order to understand how the

files and folders are placed. The brown scaled colored boxes represents folders and the

blue scaled boxes files. The green is the executable python file to start the simulation.

The input is given from the JSON file in the folder Input, grey box.

Update

•Update and
Upgrade
Software

Download

•Download
Hypervisor and
packages.

Installation

• Install
Hypervisor

Configuration

• Setup
enviroment

Verification

•Verification of
the installation
and building

Localization_Simulator

Input inputData.json

Source

main.py
data_Creator.py

simulator.py
algorithm_Localization.py

statistics_Collector.py

C++ Files

run.py

Statistics

Experiment_1

1) Statistics 2019-
11-28

13:38:51.368672

n) Statistics 2019-
11-28

13:38:51.368672

Data Raw Data

Figures
Pictures and

Diagrams

Logs Traces logs and data

Summary

RSSI
TDOA
......

X,Y,Z Figures

Info.txt

Experiment_n

Secure Geo-location Techniques using Trusted Hyper-visor

 105
S. Rostantis

Figure 59. Simulation folder structure

7.1.4 Framework Implementation

Our simulator takes as an input a JSON file. This JSON file contains the information that

are present below:

Table 10. JSON input data simulation

Input Explanation Example

X Start position of unknown node "X": [20, -20, 20],

nodes Base nodes coordinates "A": [10, -40, 0]

algorithms Algorithm to execute "RSSI": ["Multilateration"],

transittionPower_dBm Base node transmission power "transittionPower_dBm": 70,

noise Noise coefficient 0 – 5 "noise": 3.5,

Dimensions Dimensions, 3D "Dimensions": 3,

steps Steps of unknow node "steps": 500,

density 3D field density "density": 1000.0

time_Coeff Time coefficient 0-1.0 "time_Coeff": 1.0

totalExperiments Samples per experiment "totalExperiments": 1

showPlots Show plot for each sample "showPlots": "Yes"

PickForCalculation Select pick base node for calculation "PickForCalculation": "Yes"

In the JSON file we can define how many experiments we would like to execute

alongside with how many samples should we consider for each, for a general statistic

evaluation. Each input in the JSON file represent an individual experiment. For each

experiment, a number of samples, that are defined from the input, are executed. Those

sample are individual tests that contains the python simulation process that was

described above in 7.1.1. Then the python simulator generates each experiment with

the relevant sample and for each experiment provides the overall statistics evaluation

that is calculated from its sample. All the necessary information, log files, data that is

utilized, figures etc. are provided and generated in the relevant folders.

Figure 60. Python Simulator overview

Secure Geo-location Techniques using Trusted Hyper-visor

 106
S. Rostantis

Base Stations communication process

In order to compute and evaluate the time performance of the simulator we developed a

C++ application to simulate the environment. The simulation contains the unknown

node X where broadcasts its presents by sending messages in the environment, base

station A, B and C where receives the messages from X and they forward the data to

the Master base station where gathers all the receives metrics from X and computes its

position. The communication time is computed from the first presence of node X until

the last step of the simulation.

Figure 61. Base stations communication process

To simulate this process, we utilized the process/sockets concept. Each base station A,

B and C, the master station and unknown X are individual C++ processes. Each base

station contains of two sockets one to receive messages from X and one to send to

master. Node X contains four sockets for all the stations each to send messages. The

master contains three sockets for the base stations and one for node X to receive

messages. The simulation starts from X which continuously send messages to all BSs

and stops when the termination message is send. The overall communication time is

computed.

X node Sends
signals to A, B, C,

D, Master BSs

A, B, C, D, Master
receives

messages from X

A, B, C, D sends
X's messages to

Master

Master computes
the X possition

Process repeats

 Master

Station

Sckt

M

Sckt

C

Sckt

B

Sckt

A

X

B

Sckt M

Sckt X

A

Sckt M

Sckt X

C

Sckt M

Sckt X

X sends messages which

corresponds to simulated

metrics such as RSSI signal, to

A, B, C, M. Each BSs A, B and

when receives from X

immediately notify the Master.

When the master receives four

messages then can compute

the position of X. To end the

simulation node X sends and

“END” message and the

simulation stops.

Sckt A Sckt B Sckt C Sckt X

Secure Geo-location Techniques using Trusted Hyper-visor

 107
S. Rostantis

Figure 62. Base communication architecture

7.2 Framework Requirements

In our implementation we use python 3.7 for the creation of a python project for the

localization algorithms evaluation. We have implemented the hypervisor’s execution in a

raspberry environment. Below we present the requirements in order to execute the

simulation.

7.2.1 Localization simulation

1. OS: Ubuntu 16.04

2. Python 3.7, Pip 3

3. Python Packages Math, matplotlib, numpy, random, json, scipy, datetime,

mpl_toolkits, urllib3

7.2.2 Hypervisor simulation

In our implementation, our hardware and OS are presented below:

1. OS: A Raspberry PI v3 board. That ensure that the model B or B+ with the

Cortex-A53 quad-core processor

i. Hardware Virtualization extensions: Cortex A53: Hardware Support for

Virtualization

ii. 2nd-level page tables Typically turned on implicitly along with

Virtualization extensions Cortex A53: Second-stage Page Tables

2. TPM: version 2.0

7.3 Framework Execution

In order to start the simulation after the input is provided in Input/inputData.json, the

following command must be executed from command line:

~$ python3.7 run.py

The source code run.py can also be executed with python2. It will start the evaluation of

the packets and features that are installed in the system. If all the necessary packets

are installed, then it will evaluate the input in /Input/. If the input contains plausible and

valid data, then the simulation will start.

All the necessary folders are created, and the simulator is responsible for creating

graphs, pictures and log files for better understanding. Each experiment created is

unique since a time stamp is utilized with the current time to avoid conflicts.

Secure Geo-location Techniques using Trusted Hyper-visor

 108
S. Rostantis

7.4 Simulation input data

7.4.1 Field input

Three dimensions field m = 3, Field density d = 1000

7.4.2 Nodes coordinates input

Table 11. Nodes Coordinates input

Nodes x-Axis y-Axis z-Axis Distances Between Nodes

A B C D E

A 10 -40 0 - 83.2165 80.7774 57.4456 56.5685

B -35 30 0 83.2165 - 75.1664 61.0327 90.1387

C 40 35 0 80.7774 75.1664 - 66.5206 36.4005

D 0 0 40 57.4456 61.0327 66.5206 - 64.0312

E 50 0 0 56.5685 90.1387 36.4005 64.0312 -
X Start (C0) 0 -20 20 30.0000 64.2261 70.8872 28.2842 57.4456

7.4.3 Brownian motion input

Three dimensions m = 3, Field density d = 1000, Number of random walk steps n = 500,

Coefficient t = 0.1.

7.4.4 Extra parameters input

Transmitted power of Base Nodes, 70mW or 18.5dBm, n = 3, average noise coefficient

value, tmD = 3, average transmission time delay value in seconds

7.5 Simulation output data

7.5.1 Graphics

Plotting the graphics of TDOA, TOA and RSSI calculated values from base nodes.

Figure 63. TDOA, TOA and RSSI simulated values

Secure Geo-location Techniques using Trusted Hyper-visor

 109
S. Rostantis

Plotting the graphics of all the algorithm x, y, z values compared to the real values.

Figure 64. X, Y, Z performance from algorithms

Plotting the graphics of all the algorithm time of execution and communication time.

Figure 65. time performance algorithm

Plotting the motion graph of the unknown node alongside with the calculated traces.

Figure 66. Unknown node motion

Secure Geo-location Techniques using Trusted Hyper-visor

 110
S. Rostantis

7.5.2 Statistics files

For each statistic file contains three folders: The Data , where raw data is provided for

the time measurements , the metrics values and the traces, the Figures where the

relevant diagrams and figure are provided and the Logs folder where the output logs of

the simulator is provided.

Figure 67. Statistics files structure

7.5.3 Summary files

In the summary folder a summary is computed from all the statistics samples that are

performed in each experiment. It contained to main parts. The Performance, where it is

evaluated for each algorithm the computation performance (the computed X, Y, Z

values with the real X, Y, Z values) for the error evaluation and the Time performance

where the total execution and communication time is summarized for each algorithm. In

each part relevant figures and diagrams are provided alongside with a text file with

general info. The mean value and standard deviation is provided for each.

Figure 68. Summary files structure

Statistics

Data Raw Data

Figures Diagrams and Figures

Logs
Logs and extra
inforamtions

Summary

Performance

X_Error

Y_Error

Z_Error

Time_Performance

Time Evaluation

Execution

Total

Communication time
info.txt

Secure Geo-location Techniques using Trusted Hyper-visor

 111
S. Rostantis

 8. VALIDATION
For each algorithm we executed one experiment with 100 samples each. Each sample

contained 500 steps of the unknow node which they correspond to individual evaluation

of each algorithm. We created a statistical evaluation for each algorithm, where we

compered the localization error of the calculated coordinates from the real values.

8.1 Localization algorithms accuracy performance validation

We performed the experiments to the environment below for each:

1. PC-Intel_Core_i3-1.7GHz_RAM4GB

2. PC-Intel_Core_i7-2.7GHz_RAM8GB

3. PC-Intel_Core_i7-2.7GHz_RAM16GB

4. Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB

8.1.1 3D-RSSI Multilateration

From a sample of 50000 steps overall, we computed the mean error value for each

coordinate x, y, z alongside with the standard deviation for 3D-RSSI Multilateration. We

execute the simulation for four different environments as presented below.

8.1.1.a 3D-RSSI Multilateration PC-Intel_Core_i3-1.7GHz_RAM4GB

Figure 69. X, Y, Z RSSI Mult Alg, PC-Intel_Core_i3-1.7GHz_RAM4GB

8.1.1.b 3D-RSSI Multilateration PC-Intel_Core_i7-2.7GHz_RAM8GB

Figure 70. X, Y, Z RSSI Mult Alg, PC-Intel_Core_i7-2.7GHz_RAM8GB

Secure Geo-location Techniques using Trusted Hyper-visor

 112
S. Rostantis

8.1.1.c 3D-RSSI Multilateration PC-Intel_Core_i7-2.7GHz_RAM16GB

Figure 71. X, Y, Z RSSI Mult Alg, PC-Intel_Core_i7-2.7GHz_RAM16GB

8.1.1.d 3D-RSSI Multilateration Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB

Figure 72. X, Y, Z RSSI Mult Alg, Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB

8.1.2 3D-TOA Multilateration

From a sample of 50000 steps overall, we computed the mean error value for each

coordinate x, y, z alongside with the standard deviation for 3D-TOA Multilateration. We

execute the simulation for four different environments as presented below.

8.1.2.a 3D-TOA Multilateration PC-Intel_Core_i3-1.7GHz_RAM4GB

Figure 73. X, Y, Z TOA Mult Alg, PC-Intel_Core_i3-1.7GHz_RAM4GB

Secure Geo-location Techniques using Trusted Hyper-visor

 113
S. Rostantis

8.1.2.b 3D- TOA Multilateration PC-Intel_Core_i7-2.7GHz_RAM8GB

Figure 74. X, Y, Z TOA Mult Alg, PC-Intel_Core_i7-2.7GHz_RAM8GB

8.1.2.c 3D- TOA Multilateration PC-Intel_Core_i7-2.7GHz_RAM16GB

Figure 75. X, Y, Z TOA Mult Alg, PC-Intel_Core_i7-2.7GHz_RAM16GB

8.1.2.d 3D- TOA Multilateration Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB

Figure 76. X, Y, Z TOA Mult Alg, Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB

8.1.3 3D-RSSI/TOA Direct method

From a sample of 50000 steps overall, we computed the mean error value for each

coordinate x, y, z alongside with the standard deviation for 3D-RSSI Direct method. We

execute the simulation for four different environments as presented below.

Secure Geo-location Techniques using Trusted Hyper-visor

 114
S. Rostantis

8.1.3.a 3D-RSSI Direct method PC-Intel_Core_i3-1.7GHz_RAM4GB

Figure 77. X, Y, Z RSSI Direct Alg, PC-Intel_Core_i3-1.7GHz_RAM4GB

8.1.3.b 3D-RSSI Direct method PC-Intel_Core_i7-2.7GHz_RAM8GB

Figure 78. X, Y, Z RSSI Direct Alg, PC-Intel_Core_i7-2.7GHz_RAM8GB

8.1.3.c 3D-RSSI Direct method PC-Intel_Core_i7-2.7GHz_RAM16GB

Figure 79. X, Y, Z RSSI Direct Alg, PC-Intel_Core_i7-2.7GHz_RAM16GB

8.1.3.d 3D-RSSI Direct method Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB

Figure 80. X, Y, Z RSSI Direct Alg, Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB

Secure Geo-location Techniques using Trusted Hyper-visor

 115
S. Rostantis

8.1.4 Hybrid 3D-TOA/TDOA

From a sample of 50000 steps overall, we computed the mean error value for each

coordinate x, y, z alongside with the standard deviation for Hybrid 3D-TOA/TDOA. We

execute the simulation for four different environments as presented below.

8.1.4.a Hybrid 3D-TOA/TDOA PC-Intel_Core_i3-1.7GHz_RAM4GB

Figure 81. X, Y, Z Hybrid 3D-TOA/TDOA, PC-Intel_Core_i3-1.7GHz_RAM4GB

8.1.4.b Hybrid 3D-TOA/TDOA PC-Intel_Core_i7-2.7GHz_RAM8GB

Figure 82. X, Y, Z Hybrid 3D-TOA/TDOA, PC-Intel_Core_i7-2.7GHz_RAM8GB

8.1.4.c Hybrid 3D-TOA/TDOA PC-Intel_Core_i7-2.7GHz_RAM16GB

Figure 83. X, Y, Z Hybrid 3D-TOA/TDOA, PC-Intel_Core_i7-2.7GHz_RAM16GB

Secure Geo-location Techniques using Trusted Hyper-visor

 116
S. Rostantis

8.1.4.d Hybrid 3D-TOA/TDOA Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB

Figure 84. X, Y, Z Hybrid 3D-TOA/TDOA, Raspberry-Pi3ModelB1.4GHzRAM1GB

8.1.5 Chan method

From a sample of 50000 steps overall, we computed the mean error value for each

coordinate x, y, z alongside with the standard deviation for Chan. We execute the

simulation for four different environments as presented below.

8.1.5.a Chan PC-Intel_Core_i3-1.7GHz_RAM4GB

Figure 85. X, Y, Z Chan Alg, PC-Intel_Core_i3-1.7GHz_RAM4GB

8.1.5.b Chan PC-Inel_Core_i7-2.7GHz_RAM8GB

Figure 86. X, Y, Z Chan Alg, PC-Intel_Core_i7-2.7GHz_RAM8GB

Secure Geo-location Techniques using Trusted Hyper-visor

 117
S. Rostantis

8.1.5.c Chan PC-Intel_Core_i7-2.7GHz_RAM16GB

Figure 87. X, Y, Z Chan Alg, PC-Intel_Core_i7-2.7GHz_RAM16GB

8.1.5.d Chan Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB

Figure 88. X, Y, Z Chan Alg, Raspberry-Pi_3_Model B+-1.4GHz_RAM1GB

8.1.7 Performance Summary

Table 12. Performance Overview

Algorithm Complexity Accuracy Minimum Nodes Mean Error

3D-RSSI Multilateration O(N) 10-9 meters 4 ~10-10 meters

3D-TOA Multilateration O(N) 10-9 meters 4 ~10-10 meters

3D-TOA Direct O(N) 10-9 meters 4 ~10-10 meters

3D-RSSI Direct O(N) 10-9 meters 4 ~10-10 meters

Hybrid 3D-TOA/TDOA O(N) 1-10 meters 4 ~10 meters

Chan Method O(N) 1-100 meters 5 ~100 meters

Secure Geo-location Techniques using Trusted Hyper-visor

 118
S. Rostantis

8.2 Localization algorithms time validation

We performed time measurements for the same four environments as described above.

8.2.1 3D-RSSI Multilateration

For 50000 steps, we computed the mean execution time for all environments.

Figure 89. RSSI Multilateration method average execution time

8.2.2 3D-TOA Multilateration

For 50000 steps, we computed the mean execution time for all environments.

Figure 90. TOA Multilateration method average execution time

8.2.3 3D-RSSI Direct method

For 50000 steps, we computed the mean execution time for all environments.

Figure 91. RSSI Direct method average execution time

8.2.4 3D-TOA Direct method

Secure Geo-location Techniques using Trusted Hyper-visor

 119
S. Rostantis

For 50000 steps, we computed the mean execution time for all environments.

Figure 92. TOA Direct method average execution time

8.2.5 Hybrid 3D-TOA/TDOA

For 50000 steps, we computed the mean execution time for all environments.

Figure 93. X, Y, Z error statistics TOA/TDOA Alg

8.2.6 Chan method

For 50000 steps, we computed the mean execution time for all environments.

Figure 94. Chan method average execution time

Secure Geo-location Techniques using Trusted Hyper-visor

 120
S. Rostantis

8.2.7 Performance Summary

The overall execution, communication and overall time between all the nodes for all the

executed algorithms is calculated:

Table 13. Execution Time Overview in milli seconds

Algorithm PC-Intel_Core_i3-
1.7GHz_RAM4GB

PC-Intel_Core_i7-
2.7GHz_RAM8GB

PC-Intel_Core_i7-
2.7GHz_RAM16GB

Raspberry-Pi_3_Model B+-
1.4GHz_RAM1GB

Execut
ion

Commu
nication

Total Execut
ion

Commu
nication

Total Execut
ion

Commu
nication

Total Execut
ion

Commu
nication

Total

3D-RSSI
Multilaterati
on

0.04272
55

45.75 45.7927
2

0.05553
4

52.162 52.2178
34

0.06956
4

53.181 53.2505
8408

1.64427
5

96.795 96.9052
75

3D-TOA
Multilaterati
on

0.04272
55

45.75 45.7927
2

0.05553
4

52.162 52.2178
34

0.06956
4

53.181 53.2505
8408

1.64427
5

96.795 96.9052
75

3D-RSSI
Direct

0.04323
8

42.5169 42.5602
38

0.08442 58.115 58.1994
082

0.07788
64

51.689 51.7668
864

0.16672
7158

129.971 130.137
72715

3D-TOA
Direct

0.04323
8

42.5169 42.5602
38

0.08442 58.115 58.1994
082

0.07788
64

51.689 51.7668
864

0.16672
7158

129.971 130.137
72715

Hybrid 3D-
TOA/TDOA

0.18093
05

56.03 56.2109
305

0.20197
2

57.395 57.5969
72

0.18230
722

54.073 54.2553
0722

0.66494
1185

96.165 96.8299
411

Chan
Method

0.95847
8

53.985 54.9434
78

1.15464 70.036 71.5824
15

1.35392
8

67.7959

69.1499
238

5.43830
608

152.096 157.534
6060

The execution time is the calculated time of the algorithm’s execution. The

communication time is the calculated time of all the processes communication for the

data exchange. The total is the sum of the execution and communication time.

Secure Geo-location Techniques using Trusted Hyper-visor

 121
S. Rostantis

8.3 Summary

Total time summary in milli seconds for all algorithms and environments.

Figure 95. Total Time Performance summary

Total performance summary in meters for all algorithms and environments (power of 10)

Figure 96. Total Accuracy Error Performance summary

0

20

40

60

80

100

120

140

160

180

RSSI/TOA Multilateration RSSI/TOA Direct Method Hybrid TDOA/TOA CHAN Method

Total Time Performance

PC_1.9GHZ_RAM4 PCVM_2.7GHZ_RAM8 PCVM_2.7GHZ_RAM16

RASPPI3_1.4GHZ_RAM1 RASPPI3_1.4GHZ_RAM2

-12

-10

-8

-6

-4

-2

0

2

4

RSSI/TOA Multilateration RSSI/TOA Direct Method Hybrid TDOA/TOA CHAN Method

Total Accuracy Error Performance in power of 10

PC_1.9GHZ_RAM4 PCVM_2.7GHZ_RAM8 PCVM_2.7GHZ_RAM16 RASPPI3_1.4GHZ_RAM1

Secure Geo-location Techniques using Trusted Hyper-visor

 122
S. Rostantis

9. CONCLUSION

In this paper, a prototype of Geo-location solution is developed and integrated into the

Raspberry Pi3 platform. We proposed a Geo-location solution for low-power WSNs,

using range-based GPS free state-of-the-art localization techniques in combination of a

secure Hyper-visor. This approach allows to create a safe environment for each

procedure of a node. In our case, we developed the procedure of localization.

Localization is the most important in mobile WSNs. Without securing the topology of a

network, no process can take place.

 A compliance verification algorithm is developed and tested. Some preliminary

results are reported and show the feasibility and the effectiveness of using trusted

hyper-visor and range-based localization techniques. This solution might have a great

impact on security and efficiency of a swarm. Future work includes more experiments,

adding scalability, and the development of further services to be integrated into the

platform.

Table 14. Algorithms Evaluation Summary

Summary 3D-RSSI/TOA
Multilateration

3D-RSSI/TOA Direct
Method

Hybrid 3D-
TOA/TDOA

Chan Method

PCi
3.1.
9G
Hz_
16G

B

PCi
7.2.
7G
Hz_
16G

B

PCi
7.2.
7G
Hz_
16G

B

RPi
3+1.
4G
Hz_
1G
B

PCi
3.1.
9G
Hz_
16G

B

PCi
7.2.
7G
Hz_
16G

B

PCi
7.2.
7G
Hz_
16G

B

RPi
3+1.
4G
Hz_
1G
B

PCi
3.1.
9G
Hz_
16G

B

PCi
7.2.
7G
Hz_
16G

B

PCi
7.2.
7G
Hz_
16G

B

RPi
3+1.
4G
Hz_
1G
B

PCi
3.1.
9G
Hz_
16G

B

PCi
7.2.
7G
Hz_
16G

B

PCi
7.2.
7G
Hz_
16G

B

RPi
3+1.
4G
Hz_
1G
B

Calculated
Error

Performance

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Speed
Performance

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Overall ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Secure Geo-location Techniques using Trusted Hyper-visor

 123
S. Rostantis

10. FUTURE WORK

Our future research goal is the implementation of the hypervisor XVisor in our proposed

secure geo-localization system. Alongside the implementation will follow a series of

security, speed, performance and pressure tests in the hypervisor in order to evaluate

its reaction in several test environments. We will create a simulator for those purposes

to simulate the environments.

 After the evaluation then we can conclude if this hypervisor will satisfy the safe geo-

localization system’s requirements and if it can be utilized as the main factor of security

and data protection in a geo-localization system. Our goal is to develop a secure geo-

localization system with the usage of the most optimized and with high performance

localization algorithm alongside with the utilization of the most secure and with high

performance hypervisor for the creation of safe environments.

Secure Geo-location Techniques using Trusted Hyper-visor

 124
S. Rostantis

APPENDIX A
Hypervisors Implementation

[50] XMHF
Implementation

Requirements:
1. A TPM (v1.2): The BIOS feature is often called something like "embedded security

device"
2. Virtualization extensions

a. AMD: Secure Virtual Machine (SVM) or AMD Virtualization (AMD-V)
b. Intel: Virtualization Technology (VT-x)

3. 2nd-level page tables Typically turned on implicitly along with Virtualization extensions, if
the processor supports it.

a. AMD: Nested Page Tables (NPT)
b. Intel: Extended Page Tables (EPT)

4. Dynamic root of trust.
5. AMD: Late-launch (default with AMD-V)
6. Intel: Trusted Execution Technology (TXT). This feature is implemented partially by a

signed software module, called an SINIT module. Some processors exist that have the
TXT hardware support but do not (yet) have an SINIT module. Look for the

Building

Development Environment
XMHF and its Apps (e.g., TrustVisor) get built in a Linux environment with a recent version of
gcc. XMHF has been verified to build on Ubuntu 10, 11, and 12 series, both 32 and 64-bit.

Build tools
A list of packages must be installed: aptitude, install, pbuilder, texinfo, ruby, build-essential,
autoconfli, btool, gcc-multilib (for 64-bit platforms)

High-level Build Summary
One "drives" the build from `xmhf/xmhf`. The interesting high-level build commands include:

1. cd xmhf/xmhf
2. ./autogen.sh # creates ./configure
3. ./configure # creates Makefile from Makefile.in
4. make # Builds the selected hypapp and the XMHF core
5. make install # Installs both binaries and dev headers and libs
6. make install-dev # Installs just dev headers and libs
7. make test # Runs various automated tests
8. make clean # Deletes all object files
9. make init-late # Explicitly builds the Linux kernel module for a dynamic late

launch

The functioning of make install-dev and make test are hypapp-specific. For example, in
TrustVisor, the primary prerequisite for tee-sdk and PAL development is having successfully run
make install-dev in xmhf/xmhf.

Secure Geo-location Techniques using Trusted Hyper-visor

 125
S. Rostantis

How do I build an XMHF hypapp?
The preferred method for building different hypapps (e.g., TrustVisor, Lockdown) is by
specifying which hypapp to build using `./configure`. The following describes the sequence of
steps for building a XMHF hypapp using the helloworld hypapp as a running example.

Checkout the XMHF project source tree.
1. cd $WORK:
2. git clone git://git.code.sf.net/p/xmhf/xmhf xmhf
3. cd $WORK/xmhf/xmhf //Change working directory to the XMHF source tree root.
4. ./autogen.sh // Generate the `./configure` script.
5. ./configure --with-approot=src/example-hypapps/helloworld --with-apparchive=xmhfapp-

helloworld.a //Configure the XMHF hypapp.
6. Generate/install binaries (default install path is specified with the `--prefix=` flag to

`configure`).
a. make
b. make install
c. make install-dev # optional (hypapp-specific)
d. make test # optional (hypapp-specific)

Installation

Supported guest operating systems
In principle, any guest should be supported so long as it:

• Uses 'normal' 32-bit page tables. PAE is also supported on AMD. 64-bit is not yet
supported.

• Does not use MTRRs. XMHF does not yet virtualize these (on Intel platforms), and an
attempt by the guest to access MTRRs will trap and halt the system.

The following guest OSes are known to work:

• Windows XP

• Windows Server 2003

• Ubuntu 10.04 (with custom kernel to disable MTRRs)

Install XMHF binaries
If you have a .deb, use `dpkg -i` to install it. Otherwise, copy `init-x86.bin` and `hypervisor-
x86.bin.gz` to `/boot`. You will need to install Grub 1, if you haven't already. On most modern
Linux distributions, you will need to downgrade from Grub 2. On Windows machines without a
Linux installation, you will need to install Grub.

Customize Linux Kernels

XMHF currently does not virtualize MTRRs (on Intel Platforms). On Linux, you will need to build
or obtain a kernel with MTRR (`CONFIG_MTRR`) features disabled. Get a 2.6.32.X version, in
this case we used 2.6.32.46. When making a new kernel yourself, do:

• make install //copies vmlinuz-2.6.32.46 into `/boot`

• make modules_install` //places modules in `/lib/modules/2.6.32.46`

• in `/boot`: mkinitramfs -o `initrd.img-2.6.32.46 2.6.32.46`

[53] UberXMHF

Implementation

Currently runs on:

1. Intel x86 32-bit hardware platform (pc-intel-x86_32)

2. Raspberry PI 3 ARMv8 32-bit hardware platform (rpi3-cortex_a53-armv8_32)

Secure Geo-location Techniques using Trusted Hyper-visor

 126
S. Rostantis

3. PC AMD x86 32-bit/Legacy Intel x86 32-bit hardware platforms (pc-legacy-

x86_32)

Hardware Requirements

1. A TPM (v1.2 or above) The BIOS feature is often called something like "embedded
security device"

2. Hardware Virtualization extensions Intel Virtualization Technology (VT-x)
3. Hardware Support for DMA Isolation Intel Virtualization Technology for Directed I/O
4. 2nd-level page tables: Intel Extended Page Tables (EPT)
5. Dynamic root of trust: Intel Trusted Execution Technology (TXT).

Supported OS

1. Ubuntu 16.04 LTS with Linux Kernel 4.4.x,
2. Ubuntu 12.04 LTS with Linux Kernel 3.2.0-27-generic and below

Installation

Make sure your BIOS is up to date, you could ruin your motherboard if your BIOS is

buggy.

Configure target system to boot uberXMHF

You will need to install Grub 1, if you haven't already. On most modern Linux

distributions, you will need to downgrade from Grub 2. The following commands

accomplish the above task on Ubuntu:

1. sudo apt-get purge grub os-prober
2. sudo apt-get purge grub-gfxpayload-lists
3. sudo apt-get install grub
4. sudo update-grub
5. grub-install /dev/sda

And remove lines (if any) from “/boot/grub/menu.lst”:

• title Chainload into GRUB 2

• root b5912383-7f9e-4911-b51d-b14ce8cea70b

• kernel /boot/grub/core.img

Get the correct SINIT module (Intel only)

uberXMHF launches itself with a dynamic root of trust. On Intel platforms, this requires a

signed SINIT module provided by Intel, that matches your platform CPU and chipset.

Adding a Grub entry to boot Linux

You will need to add a Grub entry to `/boot/grub/menu.lst`. To ensure that it doesn't get

clobbered, put it outside the AUTOMAGIC KERNEL LIST. When booting the machine,

first choose the uberXMHF entry, and then choose a normal Linux entry. A grub entry

for uberXMHF looks something like this:

1. title uberXMHF
2. rootnoverify (hd0,1) # should point to /boot

Secure Geo-location Techniques using Trusted Hyper-visor

 127
S. Rostantis

3. kernel /boot/xmhf-x86-vmx-x86pc.bin.gz serial=115200,8n1,0x3f8 # correct serial
address

4. modulenounzip (hd0)+1 # should point to where
grub is installed

5. modulenounzip /boot/4th_gen_i5_i7_SINIT_75.BIN # Intel TXT AC SINIT
module

On Intel it is necessary to append one more line to provide the SINIT Authenticated
Code module, or “ACmod”. This should be the last line. E.g.

• module /i5_i7_DUAL_SINIT_18.BIN

This will boot uberXMHF with debug output going to the specified serial port and then

reload grub.

savedefault for unattended boot

Booting linux involves loading the grub menu twice. The first time you must select the

uberXMHF entry, and the second time you must select an OS entry. You can automate

this by using savedefault:

• default saved

Have your uberXMHF entry what you want as your default OS entry save each-other as

the new default:

• title uberXMHF: savedefault 1

• title Default OS: savedefault 0

Verifying and Building

pc-intel-x86_32

For verification: Execute the following within the `uxmhf/` folder in the root tree of the

sources:

1. Prepare for verification

a. ./bsconfigure.sh
b. ./configure --disable-debug-serial
c. make uxmhf-verifyuobjs-prep

2. Verifying individual uberobjects

a. cd xmhf-uobjs/<uobj-name>
b. make verify
c. cd ../..
d. replace <uobj-name> with the uberobject directory name (e.g.,

`xh_hyperdep`)
3. Performing uberobject composition check: make uxmhf-verifyuobjs-compcheck

4. Verifying all the uberobjects: make uxmhf-verifyuobjs-all

For Building: Execute the following within the `uxmhf/` folder in the roottree of the

sources:

Secure Geo-location Techniques using Trusted Hyper-visor

 128
S. Rostantis

1. Configure the serial debug output

a. ./configure --enable-debug-serial=<your-serial-port-number>
b. replace `<your-serial-port-number>` with the system serial port number. Note: if

you omit the parameter to `--enable-debug-serial` the default port chosen is
`0x3f8` or `COM1`.

2. Building the uberobject binaries and the final hypervisor image: make uxmhf-image

If everything goes well a final hypervisor image `xmhf-x86-vmx-x86pc.bin.gz` will be

generated.

pc-legacy-x86_32

For verification: Use a combination of automated and manual techniques as described

below:

1. OS: Ubuntu 10.10, 32-bit;

2. Verification Tools: CBMC: v4.1 32-bit;

Change working directory to the uberXMHF (pc-legacy-x86_32) source tree root:

1. sudo dpkg -i cbmc_4.1_i386.deb

2. cd ./xmhf

3. ./autogen.sh

4. ./configure --with-approot=hypapps/verify

5. make verifyall or make verify

make verifyall will perform full verification of the uberXMHF (pc-legacy-x86_32) core as

well as the uberapp. Subsequently, you can use make verify to verify the uberapp

assuming there are no further changes to the uberXMHF (pc-legacy-x86_32) core

For Building: A list of packages to install:

• aptitude, install, pbuilder, texinfo, ruby, build-essential, autoconfli, btool,

gcc-multilib (for 64-bit platforms)

Change working directory to the uberXMHF (pc-legacy-x86_32) root directory.

1. cd ./xmhf

2. ./autogen.sh

3. ./configure --with-approot=hypapps/helloworld

4. make

5. make install

6. make install-dev # optional (hypapp-specific)

7. make test # optional (hypapp-specific)

Debugging

XMHF debugging is done primarily via the serial port. Use dmesg | grep ttyS on a Linux
guest OS on the target system to examine the serial ports that the target system
recognizes. For machines without a physical serial port (e.g., laptops), you may
leverage Intel Active Management Technology (AMT) Serial-Over-LAN (SOL) capability.

Secure Geo-location Techniques using Trusted Hyper-visor

 129
S. Rostantis

AMT SOL exposes a serial port to the underlying platform once enabled (typically in the
BIOS).

[58][59][60] TrustVisor

Implementation

The Trusted Execution Environment Software Development Kit. This is a set of tools and APIs
for developing PALs and applications that use them. The current implementation is available in
Github[]. There are all the executable and source files along with the instruction for the
implementation and execution of the uberXMHF hypervisor, and also for XMHF and uxmhf-rpi.

TrustVisor Installation

To run TrustVisor on a given machine, installation is the same as for any other

XMHFapp. See Installing uberXMHF for pc-legacy-x86_32 in the previous sessions.

TrustVisor uses TPM NVRAM to securely store a master secret that is used to derive its

cryptographic keys. For a real deployment of TrustVisor, this would need to be access

controlled to TrustVisor's measurement, so that untrusted software would be unable to

access this storage. [56]

TrustVisor Building

The TrustVisor build is primarily driven from the XMHF build process. When running

`configure`, you will need to set `--with-approot=` to point to the TrustVisor source code.

See Building uberXMHF for pc-legacy-x86_32 in the previous sessions.

TrustVisor Configurations

Disable the infineon driver

Modern Ubuntu has a tendency to load the Infineon-specific v1.1b TPM driver, when it

should be using tpm_tis. Thus, we blacklist tpm_infineon. Don't forget to reboot after

making this change. It is possible to manually remove this driver (`modprobe -r

tpm_infineon`) and `modprobetpm_tis`, if you know what you'redoing. In

“/etc/modprobe.d/blacklist.conf” add:

• blacklist tpm_infineon

Shut down trousers, if it is running

See if trousers is running first, shut down if necessary. It will probably start up again

after the next reboot. You may wish to uninstall it or disable it more permanently if

you're not otherwise using it.

1. /etc/init.d/trousers status
2. /etc/init.d/trousers stop

Install jTpmTools [61]

Install packet with the command below:

• sudo dpkg -i jtpmtools_0.6.deb

Set the tpm device to be accessible by jtss

1. chown jtss:tss /dev/tpm0
2. /etc/init.d/jtss start

Secure Geo-location Techniques using Trusted Hyper-visor

 130
S. Rostantis

3. /etc/init.d/jtss status
4. cat /var/log/jtss/tcs_daemon.log

Take ownership of the TPM

You will need to take ownership of the TPM, and set an owner password. It is important

not to lose the owner password that you set. In TrustVisor's security model it is not

security critical that the owner password is not compromised, so feel free to use a well

known password or empty string if you are not using the TPM for other purposes that

might require a strong TPM owner password.

• jtttake_owner -e ASCII -o 'owner_password'

Define the NV spaces

Define two nv spaces. One stores TrustVisor's master secret. The other stores the root

of a hash chain used for replay protection (see [Memoir])

• jtt nv_definespace \
--index 0x00015213 \
--size 20 \
-o 'owner_password' \
-e ASCII \
-p 11,12 \
-w \
--permission 0x00000000 \
--writelocality 2 \
--readlocality 2

• jtt nv_definespace \
--index 0x00014e56 \
--size 32 \
-o 'owner_password' \
-e ASCII \
-p 11,12 \
-w \
--permission 0x00000000 \
--writelocality 2 \
--readlocality 2

Unload Linux TPM driver

Before running Trustvisor or PAL code that requires access to the NV RAM, we need to

ensure the Linux TPM device driver is indeed removed. Hence, we want to stop all the

drivers that rely on the Linux TPM.

1. /etc/init.d/jtss stop

2. modprobe -r tpm_tis

Secure Geo-location Techniques using Trusted Hyper-visor

 131
S. Rostantis

Installing TEE-SDK

On a machine where you are planning to develop PALs, you will also need to install the

TrustVisor development headers. The tee-sdk currently expects those headers to be

installed in two places. First, install the headers in a ‘normal’ system location. This can

be installed by make install-dev, when you build TrustVisor. If you directly install

TrustVisor binary on your platform without building it, please download and uncompress

the uberXMHF package, go to the xmhf directory and run the following commands:

1. ./autogen.sh

2. ./configure --with-approot=hypapps/trustvisor

3. make install-dev

Second, you will then need to reconfigure to point to the Trustvisor PAL cross-

compilation environment and install the headers again:

1. ./configure --with-approot=hypapps/trustvisor --prefix=$(SYSROOT)/usr

2. make install-dev

Note: $(SYSROOT) depends on your configuration of building TEE-SDK, see below for

more details. The default $(SYSROOT) is /usr/local/i586-tsvc

Downloading and Patching Third Party Libraries

Before installing TEE-SDK, you need to download a few third-party libraries (e.g.,

newlib, openssl), and apply patches to them so that they could be used for PAL

development. Download the:

1. newlib-1.19.0.tar.gz

a. cd ../ports/newlib/newlib-1.19.0

b. patch -p1 < ../newlib-tee-sdk-131021.patch

2. openssl-1.0.0d.tar.gz

a. cd ../ports/openssl/openssl-1.0.0d

b. patch -p1 < ../openssl-tee-sdk-131021.patch

Building and Installing TEE-SDK

After installing TrustVisor headers, downloading and patching third party libraries, go to

TEE-SDK directory and run make to build and install TEE-SDK. If you would like to

override the default paths, specify your overrides as parameters to make:

• make PREFIX=$(PREFIX) HOST=$(HOST) SYSROOT=$(SYSROOT)

• $(PREFIX) specifies where you will install various utilities, libraries, and headers.

The default $(PREFIX) is /usr/local.

• $(HOST) is the host-name to use for PAL code. The default $(HOST) is i586-tsvc.

• $(SYSROOT) points to the path where libraries to be linked against PAL code will be

installed. The default $(SYSROOT) is $(PREFIX)/$(HOST)

Secure Geo-location Techniques using Trusted Hyper-visor

 132
S. Rostantis

Of course, you may install each tee-sdk component individually, either by specifying a

target to make, or by manually performing the steps in the corresponding make recipe.

At the time of this writing, the components installed by make are:

1. toolchain: these are wrappers to utilities such as gcc, with names like i586-tsvc-gcc.

They mostly serve to override the system paths with paths in $(SYSROOT).

2. tz: This implements the TrustZone API for managing and communicating with

services (pals) running the trusted execution environment (trustvisor).

3. newlib: this is an implementation of libc targeted for PALs. Functions that do not

involve IO should work as expected. IO functions currently fail gracefully. The

toolchain i586-tsvc-gcc will link against this library by default, unless -nostdlib is

used.

4. openssl: This is the well-known openssl library, ported for use with pals. It is not

installed by default, but can be installed with make openssl

Using TEE-SDK

Compiling applications

The TEE-SDK installs several libraries to the development machine. There is a front-

end library for applications (tee-sdk-app), a front-end library for services (tee-sdk-svc),

and for each device there are application and service back-end libraries (tee-sdk-app-

devname and tee-sdk-svc-devname). We use pkgconfig to simplify management of

these libraries. The compile time flags needed to link against a package can be

obtained using pkg-config --cflags packagename.

The linking flags can be obtained using pkg-config --libs --static packagename. Note

that we only support static linking for now. If you installed tz to a non-standard location

$tzinstallprefix, you may need to set PKG_CONFIG_LIBDIR to include

$tzinstallprefix/lib/pkgconfig. An application using the tee-sdk to communicate with a

service running in a trusted environment must link against at least one application back-

end. It is also permissable to link against multiple back-ends; a single application can

communicate with services running on multiple devices.

Compiling services (PALs)

You must compile and link using exactly one service back-end package. At the time of

this writing, there is only one anyways: tee-sdk-svc-tv. pkgconfig will automatically pull

in the service front-end tee-sdk-svc as a dependency. Using the compile and link flags

from those packages is important not only to link against the corresponding libraries;

they also reference compiler options to eliminate code-constructs that are unsupported

inside services, and linker options to ensure the necessary layout in the final binary.

Services to be run under TrustVisor need to be compiled somewhat specially. A PAL is

linked together into the same binary with the application that runs it. At run-time, the

application registers the PAL with TrustVisor. Using the raw TrustVisor interfaces for

PAL management, you would need to keep track of which address ranges belong to

Secure Geo-location Techniques using Trusted Hyper-visor

 133
S. Rostantis

PAL code, data, etc., and make sure those sections are page-aligned. Things can get

tricky if you want some code to be accessible to both the PAL code and the application

code, and trickier still if you want to use different implementations for the same function

in PAL and application code (such as linking the PAL against a version of libc that does

not make system calls while linking the regular code with the standard version of libc).

The TEE-SDK has some tools to take care of these details for you. The basic approach

is use partial linking to link all PAL code into a single object file (.o), rewrite all symbols

except for the PAL entry-point in that object file to be private, and then use a linker

script to link this object file with the regular application while mapping the code and data

of the PAL to special page-aligned sections. The TrustVisor back-end provides

simplified functions for registering a PAL that has been built and linked this way.

The TEE-SDK includes pkg-config files that specify the necessary compilation and link

flags, and Makefile snippets that can be included in your own Makefiles to automate

most of the process. Pointing your makefile at those makefile snippets and\or pkg-config

files (rather than copying and modifying a monolithic Makefile with these things hard-

coded) will help keep your pal up to date as the build process evolves. See

examples/newlib/Makefile for a good starting point of a Makefile that dynamically

incorporates the TEE-SDK-provided Makefile snippets and pkg-config files.

Compiling and running the test example

After installation in tz, you should be able to compile and run the test example in

../examples/test. Remember to set the PKG_CONFIG_LIBDIR environment variable if

you installed to a non-system directory.

Loading and unloading services

Services are loaded and unloaded through the TrustZone service manager. The

TrustVisor back-end provides some convenience functions for an application to load an

unload a single PAL:

Secure Geo-location Techniques using Trusted Hyper-visor

 134
S. Rostantis

APPENDIX B
Sequencing in Three-Dimensional Grids python

The sequencing and computation of the transition matrix for the bordered symmetric

random walk.

import matplotlib as mpl

import matplotlib.pyplot as plt

import random

import math

import numpy as np

from mpl_toolkits.mplot3d import Axes3D, art3d

from urllib3.connectionpool import xrange

def nodeDistancesCalculation (p1, p2):

 dist = math.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2 + (p2[2] - p1[2])**2)

 return dist

def pointInsideTetrahedron (v1,v2,v3,v4,p):

 def tetraCoord_Dorian(A, B, C, D):

 v1 = B - A;v2 = C - A; v3 = D - A

 mat = np.array((v1, v2, v3)).T

 M1 = np.linalg.inv(mat)

 return (M1)

M1=tetraCoord_Dorian(v1,v2,v3,v4)

 newp = M1.dot(p-v1)

 return (np.all(newp>=0) and np.all(newp <=1) and np.sum(newp)<=1)

def brownian_motion_simulation (xyz,cur):

 m = 3; n = 500; d = 1000.0;t = 1.0

dt = t / float(n - 1)

 for j in range(1, n):

 s = np.sqrt(2.0 * m * d * dt) * np.random.randn(1)

 dx = np.random.randn(m)

 norm_dx = np.sqrt (np.sum(dx ** 2))

 for i in range (0, m):

 dx[i] = s * dx[i] / norm_dx

 cur[0] += dx[0]

 cur[1] += dx[1]

 if cur[2] + dx[2] > 0:

 cur[2] += dx[2]

 else:

 cur[2] += abs(dx[2])

 p = np.array(cur[:])

 xyz.append(cur[:])

mpl.rcParams['legend.fontsize'] = 10

fig = plt.figure()

ax = fig.gca(projection='3d')

xyz = []

cur = [0,-20, 20]

Secure Geo-location Techniques using Trusted Hyper-visor

 135
S. Rostantis

A = np.array ([10, -40, 0])

B = np.array ([-30, 30, 0])

C = np.array ([30, 30, 0])

D = np.array ([0, 0, 30])

brownian_motion_simulation(xyz,cur)

x, y, z = zip (*xyz)

file = open("TraceOutput.txt","w")

header = " A = " + str(A) + "\n B = " + str (B) + "\n C = " + str (C) + "\n D = " + str (C) + "\n\n"

file.write(header)

file.write("Node E Trace Log: \n\n")

for i in range(0 , len(x)):

 inputFile = "[" + str (x[i]). ljust (10)[:15] + ", " + str (y[i]). ljust (10)[:15] + ", " + str (z[i]). ljust

(10) [:15] + "] :\t\t Distances-> AE = " + str (nodeDistancesCalculation(A,[x[i],y[i],z[i]])). ljust (10)[:15] +

", BE = " + str (nodeDistancesCalculation (B,[x[i],y[i],z[i]])). ljust (10)[:15] + ", CE = "+ str

(nodeDistancesCalculation (C,[x[i],y[i],z[i]])). ljust (10)[:15]+ ", DE = " + str

(nodeDistancesCalculation(D,[x[i],y[i],z[i]])).ljust (10)[:15] + "\n"

file.write(inputFile)

ax.plot(x, y, z,'C3', label='E node movement')

ax.scatter(cur[0], cur[1], cur[2],'C7',label="End")

ax.scatter(x[0], y[0], z[0],'C3',label="Start")

v = np.array([A, B, C, C ,D])

ax.scatter3D(v[:, 0], v[:, 1], v[:, 2])

verts = [[v[0],v[1],v[4]], [v[0],v[3],v[4]],[v[2],v[1],v[4]], [v[2],v[3],v[4]], [v[0],v[1],v[2],v[3]]]

ax.add_collection3d(Poly3DCollection(verts, facecolors='cyan', linewidths=1, edgecolors='r', alpha=.25))

ax.scatter(x[-1], y[-1], z[-1], c='b', marker='o')

ax.legend()

plt.show()

Figure 97. Random Walk output example

Secure Geo-location Techniques using Trusted Hyper-visor

 136
S. Rostantis

APPENDIX C
Intersection points between 3 spheres python

function intersect3spheres (x1, x2, x3, y1, y2, y3, z1, z2, z3, r1, r2, r3) {

 var a1, b1, c1, k1, a3, b3, c3, k3, a31, b31, e, f, g, h, A, B, C, x, y, z, x_, y_, z_, rootD;

 k1 = r1 * r1 - r2 * r2 - x1 * x1 + x2 * x2 - y1 * y1 + y2 * y2 - z1 * z1 + z2 * z2;

 a1 = 2 * (x2 - x1);

 b1 = 2 * (y2 - y1);

 c1 = 2 * (z2 - z1);

 k3 = r3 * r3 - r2 * r2 - x3 * x3 + x2 * x2 - y3 * y3 + y2 * y2 - z3 * z3 + z2 * z2;

 a3 = 2 * (x2 - x3);

 b3 = 2 * (y2 - y3);

 c3 = 2 * (z2 - z3);

 if (a1 === 0) {

 e = -c1 / b1;

 f = k1 / b1;

 } else if (a3 === 0) {

 e = -c3 / b3;

 f = k3 / b3;

 } else {

 a31 = a3 / a1;

 e = - ((a31 * c1 - c3) / (a31 * b1 - b3));

 f = (a31 * k1 - k3) / (a31 * b1 - b3);

 }

 if (b1 === 0) {

 g = -c1 / a1;

 h = k1 / a1;

 } else if (b3 === 0) {

 g = -c3 / a3;

 h = k3 / a3;

 } else {

 b31 = b3 / b1;

 g = - ((b31 * c1 - c3) / (b31 * a1 - a3));

 h = (b31 * k1 - k3) / (b31 * a1 - a3);

 }

 A = g * g + e * e + 1;

 B = -x1 * g - y1 * e - 2 * z1 - x1 * g - y1 * e + 2 * g * h + 2 * e * f;

 C = x1 * x1 + y1 * y1 + z1 * z1 - 2 * x1 * h - 2 * y1 * f + h * h + f * f - r1 * r1;

 rootD = Math.sqrt(B * B - 4 * A * C);

 z = (-B + rootD) / (2 * A);

 z_ = (-B - rootD) / (2 * A);

 x = g * z + h;

 x_ = g * z_ + h;

 y = e * z + f;

 y_ = e * z_ + f;

 return [x, y, z, x_, y_, z_];

}

https://stackoverflow.com/questions/1406375/finding-intersection-points-between-3-spheres

Secure Geo-location Techniques using Trusted Hyper-visor

 137
S. Rostantis

APPENDIX D
Random walk mobility with R
 caculateTransitionMatrix3d = function (width , depth , height) {

w = width d = depth h = height

numberOfStates = w∗d∗h

P = matrix (0, nrow = numberOfStates, ncol = numberOfStates)

nodePoints = matrix (0 , nrow = numberOfStates , n col = 3)

nodeNumber = 0

for (z in 1: h) {for (y in 1: d) {for (x in 1: w) {

nodeNumber = nodeNumber + 1

nodePoints [nodeNumber ,] = c (x , y , z)

}}}

calculateNeighbourNodes = function (x , y , z) {

neighbourNodes = matrix (nrow = 0 , n col = 3)

if (x > 1) neighbourNodes = rbind (neighbourNodes , c (x−1 , y , z))

if (x < w) neighbourNodes = rbind (neighbourNodes , c (x+1 , y , z))

if (y > 1) neighbourNodes = rbind (neighbourNodes , c (x , y−1 , z))

if (y < d) neighbourNodes = rbind (neighbourNodes , c (x , y+1 , z))

if (z > 1) neighbourNodes = rbind (neighbourNodes , c (x , y , z−1))

if (z < h) neighbourNodes = rbind (neighbourNodes , c (x , y , z+1))

return (neighbourNodes)

}

neighbourNodes = list()

nodeDegrees = c ()

nodeNumber = 0

for (z in 1: h) {for (y in 1: d) {for (x in 1: w) {

nodeNumber = nodeNumber + 1

neighbourNodes [[nodeNumber]] =calculateNeighbourNodes (x,y ,z)

nodeDegrees[[nodeNumber]]=nrow(neighbourNodes [[nodeNumber]])

}}}

nodeTransformation = function (x, y, z) {return (x + w ∗ (y−1) + w ∗ d ∗ (z −1))}

transformedNeighbourNodes = list ()

nodeNumber = 0

for (z in 1: h) {for (y in 1: d) {for (x in 1: w) {res = c ()

nodeNumber = nodeNumber + 1

for (i in 1: nrow (neighbourNodes [[nodeNumber]])) {

value1 = neighbourNodes [[nodeNumber]] [i , 1]

value2 = neighbourNodes [[nodeNumber]] [i , 2]

value3 = neighbourNodes [[nodeNumber]] [i , 3]

res = c (res, nodeTransformation (value1,value2 , value3))

}

TransformedNeighbourNodes [[nodeNumber]] = res

}}}

for (nodeNumber in 1 : numberOfStates) {

 P [nodeNumber , transformedNeighbourNodes [[nodeNumber]]] = 1 / nodeDegrees[

nodeNumber]

}

return (P)

}

Secure Geo-location Techniques using Trusted Hyper-visor

 138
S. Rostantis

APPENDIX E
Way points output example
 [-1.762666719825, -22.60864158980, 18.895749148212] :Distances-> AE = 28.246575218699, BE = 62.626396164657, CE = 64.292966201223, DE = 25.249991197641

[-1.435704363900, -20.07952591316, 18.227263374445] : Distances-> AE = 29.322921959861, BE = 60.465783969079, CE = 61.874029727047, DE = 23.320504616597

[-1.635140021379, -19.78191325741, 18.451133156449] : Distances-> AE = 29.742088521229, BE = 60.193425587293, CE = 61.801822679420, DE = 22.964627155337

[-2.170852646725, -16.56715680376, 19.083690396634] : Distances-> AE = 32.579365149776, BE = 57.507814898071, CE = 59.729817444538, DE = 19.958684854737

[-0.911234804309, -14.79329197055, 16.260585835480] : Distances-> AE = 31.919270454529, BE = 55.830116584891, CE = 56.800969132575, DE = 20.209981142468

[-2.933428126028, -16.52180310888, 16.717485224969] : Distances-> AE = 31.590720229147, BE = 56.359132265832, CE = 59.400026640406, DE = 21.400938701098

[-3.233030907304, -16.21198961408, 17.072244905087] : Distances-> AE = 32.131668042807, BE = 56.066747405224, CE = 59.425952861336, DE = 20.985898786779

[-8.211052570226, -14.60776864022, 18.067570130518] : Distances-> AE = 36.094943407144, BE = 52.830373305313, CE = 61.452214378376, DE = 20.571610815576

[-7.066307283342, -15.24110842872, 16.203182664678] : Distances-> AE = 34.158522869004, BE = 53.247115245307, CE = 60.689473188916, DE = 21.738819042053

[-7.215896947749, -19.73667313454, 17.275849294304] : Distances-> AE = 31.708744727779, BE = 57.369913502002, CE = 64.476465543306, DE = 24.566429255419

[-6.510211581422, -19.52333330373, 17.108235036611] : Distances-> AE = 31.377901005664, BE = 57.419704000717, CE = 63.861160319091, DE = 24.284583628194

[-6.921649413950, -19.21862076507, 16.982969637673] : Distances-> AE = 31.727420309705, BE = 56.951770415875, CE = 63.828693259197, DE = 24.222049751724

[-8.608554716747, -19.87745089706, 16.712622340045] : Distances-> AE = 32.101511436801, BE = 56.786140780799, CE = 65.250995017596, DE = 25.412096992472

[-9.237954874666, -17.28234388679, 15.501404815222] : Distances-> AE = 33.563139875210, BE = 53.916380743341, CE = 63.368215198322, DE = 24.376802145069

[-8.017354464469, -14.73585393614, 14.408447230251] : Distances-> AE = 34.212651020066, BE = 51.885804260165, CE = 60.450138291492, DE = 22.902399036091

[-7.773636624478, -13.87057299672, 12.780614015330] : Distances-> AE = 34.088021488307, BE = 50.813211850567, CE = 59.285908051644, DE = 23.437778805082

[-7.756594041074, -13.87168749046, 12.810773421726] : Distances-> AE = 34.089606366140, BE = 50.829223755406, CE = 59.282385853693, DE = 23.410638079947

[-6.318883068392, -14.81175210539, 13.297957130046] : Distances-> AE = 32.826657466645, BE = 52.399657343502, CE = 59.194510369827, DE = 23.200743946983

[-5.847657978464, -15.31094916685, 12.753802494379] : Distances-> AE = 31.989951117649, BE = 52.906306028603, CE = 59.167526355324, DE = 23.791838866006

[-4.854403492534, -14.67398669539, 13.818364886816] : Distances-> AE = 32.450076443196, BE = 53.094381238712, CE = 58.322737746319, DE = 22.377140875034

[-5.779379780283, -13.77367476000, 12.496636681137] : Distances-> AE = 33.060170752501, BE = 51.564900602668, CE = 57.900471049872, DE = 23.010499223427

[-6.789397403698, -13.64930767381, 13.007996080657] : Distances-> AE = 33.844509352077, BE = 51.119488410208, CE = 58.548525034925, DE = 22.828221881584

[-6.807716379025, -13.38795293836, 12.618780357379] : Distances-> AE = 33.910676731616, BE = 50.790059041561, CE = 58.279979949621, DE = 22.971484114922

[-9.410265048017, -15.63417315707, 15.238292503697] : Distances-> AE = 34.679352147958, BE = 52.331830691756, CE = 62.192059857451, DE = 23.471013331034

[-7.967557587745, -15.16523952138, 13.868788797373] : Distances-> AE = 33.644342115803, BE = 52.131283145339, CE = 60.611695182605, DE = 23.530457677631

[-6.722832997596, -14.69323988697, 13.073492032766] : Distances-> AE = 33.030311000877, BE = 52.059853910503, CE = 59.304033158753, DE = 23.400736181891

[-5.853318098042, -17.47807643688, 10.180947461185] : Distances-> AE = 29.363522045354, BE = 54.229896553730, CE = 60.359587904436, DE = 27.065463828035

[-6.780783829204, -17.74870978155, 10.340784832722] : Distances-> AE = 29.726191368294, BE = 54.092542150894, CE = 61.153063503399, DE = 27.340089049629

[-10.54429840251, -17.40045290905, 13.720079936016] : Distances-> AE = 33.482059659135, BE = 53.043075458394, CE = 63.866138621230, DE = 26.057509234982

[-10.63939466325, -17.29566405599, 13.833632412808] : Distances-> AE = 33.657701473164, BE = 52.944142860522, CE = 63.873387438170, DE = 25.955503364464

[-10.39633501875, -18.13911368389, 13.448207606599] : Distances-> AE = 32.783580044790, BE = 53.689218981076, CE = 64.265795233924, DE = 26.665953170544

[-11.06415834911, -20.09595883895, 14.563396875925] : Distances-> AE = 32.433965993428, BE = 55.500123599748, CE = 66.392489947892, DE = 27.650531236151

[-11.42314336957, -19.97983844946, 13.694994445045] : Distances-> AE = 32.362181836097, BE = 55.051219119579, CE = 66.343152856197, DE = 28.205236305616

[-9.162960293850, -18.93527464371, 15.098801900094] : Distances-> AE = 32.232212464826, BE = 55.288490185478, CE = 64.469933940185, DE = 25.778870650054

[-8.827541078686, -20.22569446024, 12.771617624540] : Distances-> AE = 30.143219459715, BE = 55.982208044487, CE = 64.755791609543, DE = 27.996809767725

[-15.18670726571, -16.28999650908, 13.976003642759] : Distances-> AE = 37.307682402560, BE = 50.571989245680, CE = 66.181046895245, DE = 27.436627400197

[-14.86539710722, -14.94547378950, 13.853011549237] : Distances-> AE = 37.919957620175, BE = 49.407061720649, CE = 64.999272309274, DE = 26.553200446975

Secure Geo-location Techniques using Trusted Hyper-visor

 139
S. Rostantis

ACRONYMS

AIK Attestation Identity Key

ALB-DRM Authenticated Location based on DRM

APIT Approximate Point In Triangle

AOA Angle Of Arrival

AWS Authenticated Weight-based

CPE Convex Position Estimation

CPU Central Processing Unit

CSLT Collaborative Secure Localization Trust

DB Data Base

DCP Degree of CoPlanarity

DFPLE Distributed Fermat-Point Location Estimation

DLP Discrete Logarithm Problem

DRTM Dynamic Root of Trust Management

DV hop Distance Vector

DoS Denial of Service Attacks

dB decibel

ECC Elliptic Curve Cryptography

FP-MPP-APIT Fermat Point Mid Perpendicular Plane APIT

GNSS Global Navigation Satellite System

GPS Global Positioning System

IDCP Improved Degree of CoPlanarity

IEC International Electrotechnical Commission

IFP Integer Factorization Problem

IOMMU IO Memory Management Unit

IP Instruction Pointer

ISO International Organization for Standardization

LDEA Location-Dependent Encryption Algorithm

https://en.wikipedia.org/wiki/Satellite_navigation
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.wikipedia.org/wiki/International_Organization_for_Standardization

Secure Geo-location Techniques using Trusted Hyper-visor

 140
S. Rostantis

MAINV Mutual Authentication Insider Node Validation

MMSE Minimum Mean Square Error

MMU Memory Management Unit

MPA Multilateral Privacy Algorithm

MPRSA Mean Power with Rivest-Shamir-Adelman

µTPM μ(micro)-Trust Platform Module

NPT Nested Page Table

OWR One Way Ranging

PAL Piece of Application Logic

PCR Platform Configuration Registers

PPT Protection Page Table

RAM Random Access Memory

RF Radio Frequency

RSA Rivest–Shamir–Adleman

RSSI Received Signal Strength Indication

S. DV-HOP Secure DV-Hop

TCB Trusted Computing Base

TD Tolerance Distance

TDOA Time Difference Of Arrivals

TGS Trust Geolocation Server

TOA Time Of Arrival

TOA-ECC TOA - Elliptic Curve Cryptography

TPM Trust Platform Module

TPMBG TPM Based Geo-location

TRTM TrustVisor Root of Trust for Measurement

TWR Two Way Rangin

Secure Geo-location Techniques using Trusted Hyper-visor

 141
S. Rostantis

REFERENCES
[1] Geo-location Introduction. https://en.wikipedia.org/wiki/Geo-location

[2] Where On Earth Identifier: https://en.wikipedia.org/wiki/WOEID

[3] Natural Area Code: https://en.wikipedia.org/wiki/Natural_Area_Code

[4]”GPS-Free Localization Algorithm for Wireless Sensor Networks” Lei Wang, Qingzheng Xu

[5]”A Decentralized Architecture for Simultaneous Localization and Mapping” Ehsan Asadi and

Mohammad Bozorg

[6] N.A. Carlson, “Federated filter for computer-efficient, near-optimal GPS integration.” IEEE Position

Location and Navigation Symposium (PLANS), pp. 306-314, 1996.

[7] S. Grime, and H. F. Durrant-Whyte, “Data fusion in decentralized sensor networks.” Control

Engineering Practice, vol. 2, pp. 849-863,1994.

[8] E. Nebot, M. Bozorg, and H. Durrant-Whyte, “Decentralized Architecture for Asynchronous Sensors,”

Autonomous Robots, pp.147-164, 1999.

[9] E. Nettelton, S. Thrun, H. Durrant-Whyte, and S. Sukkarieh, “Decentralized SLAM with low-bandwidth

communication for teams of vehicles.” 4th International Conferences on Field and Service Robotics,

Japan, 2003.

[10] “Range-free and range-based localization of wireless sensor networks” Xiao,Qingjun, 2011

[11] “Range Free Localization Techniques in Wireless Sensor Networks: A Review”, Santar Pal Singh

S.C.Sharma 2015

[12] Veris White Paper “VerisAerospond Wireless Sensors: Received Signal Strength Indicator (RSSI)”

[13] ECE Senior Capstone Project 2017 Tech Notes “Finding Location with Time of Arrival and Time

Difference of Arrival Techniques”

[14] “Angle of Arrival Localization for Wireless Sensor Networks” Rong Peng and Mihail L. Sichitiu

Department of Electrical and Computer Engineering

[15] “Analysis of DV-Hop Localization Algorithm in Wireless Sensor Networks” Mehak Khurana, Ashish

Payal 2011

[16] “Improved APIT localization algorithm in wireless sensor networks”, Shubhankar Jain Akanksha

Singh ; Amanpreet Kaur ; Shikha Jain 2017

[17] “New Wireless Sensor Network Localization Algorithm for Outdoor Adventure”, XUEJIAN ZHAO,

XINHUI ZHANG, ZHIXIN SUN AND PAN WANG. 2018

[18] “An Improved 3D Localization Algorithm for the Wireless Sensor Network” Yan Xu 2015

[19] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low cost outdoor localization for very small

devices”, IEEE Personal CommunicationsMagazine, 7(5):28–34, October 2000.

[20] “Novel Centroid Localization Algorithm for Three-Dimensional Wireless Sensor Networks” Hongyang

Chen, Pei Huang, Marcelo Martins, H.C. So 2008

[21] “Estimation of Distributed Fermat-Point Location for Wireless Sensor Networking” Po-Hsian Huang

1,*, Jiann-Liang Chen 2 , Yanuarius Teofilus Larosa 2 and Tsui-Lien Chiang 2011

https://en.wikipedia.org/wiki/Geo-location
https://en.wikipedia.org/wiki/WOEID
https://en.wikipedia.org/wiki/Natural_Area_Code
http://ira.lib.polyu.edu.hk/browse?type=author&value=Xiao%2C+Qingjun&value_lang=en_US

Secure Geo-location Techniques using Trusted Hyper-visor

 142
S. Rostantis

[22] L. Doherty, K. S. J. Pister, and L. E. Gaoui, “Convex Position Estimation in Wireless Sensor

Networks”, Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications

Societies, vol.3, (2001) April, pp. 1655-1633.

[23] “An Improved CPE Localization Algorithm for Wireless Sensor Networks” Jianmin Zhang, Hua Li and

Jian Li 2015

[24] “A Hybrid DV-Hop Algorithm Using RSSI for Localization in Large-Scale Wireless Sensor Networks”

Omar Cheikhrouhou , Ghulam M. Bhatti and Roobaea Alroobaea

[25] “An Enhanced Hybrid 3D Localization Algorithm Based on APIT and DV-Hop”, Lianjun Yi, Miaochao

Chen 2017

[26] “Time Difference of Arrival (TDoA) Localization Combining Weighted Least Squares and Firefly

Algorithm” Peng Wu, Shaojing Su, Zhen Zuo *, Xiaojun Guo, Bei Sun,Xudong Wen 2019

[27] Bucher, R.; Misra, D. A Synthesizable VHDL Model of the Exact Solution for Three-dimensional

Hyperbolic Positioning System. VLSI Desgin 2002, 15, 507–520. [CrossRef]

[28] 3D Tdoa Problem Solution with Four Receiving Nodes, Javier Díez-González, Rubén Álvarez, Lidia

Sánchez-González, Laura Fernández-Robles, Hilde Pérez, Manuel Castejón-Limas 2019

[29]“Classification of Attacks in Wireless Sensor Networks”, Mohamed-Lamine Messai 2014

[30] “Secure Localization and Location Verification in Wireless Sensor Networks: A Survey” Yingpei Zeng

· Jiannong Cao Jue Hong · Shigeng Zhang · Li Xie 2015

[31] “3D Tdoa Problem Solution with Four Receiving Nodes”, Javier Díez-González, Rubén Álvarez, Lidia

Sánchez-González, Laura Fernández-Robles, Hilde Pérez and Manuel Castejón-Limas

[32] “A New Data Encryption Algorithm Based on the Location of Mobile Users” Hsien- Chou Liao and

Yun -Hsiang Chao 2008

[33] “A Secure Localization Approach Using Mutual Authentication and Insider Node Validation in

Wireless Sensor Networks” Gulshan Kumar, Mritunjay Kumar Rai, Hye-jin Kim and Rahul Saha 2017

[34] “A tiny hypervisor-based trusted geolocation framework with minimized TPM operations” Sungjin

Parka,c, Jong-Jin Wona Jaenam Yoona, Kyong Hoon Kimb, Taisook Hanc 2016

[35] “Location Dependent Digital Rights Management” Thomas Mundt 2005.

[36] “Secure Localization Using Elliptic Curve Cryptography in Wireless Sensor Networks” V.

Vijayalakshmi and Dr. T.G. Palanivelu 2008

[37] “A Collaborative Secure Localization Algorithm Based on Trust Model in Underwater Wireless Sensor

Networks Guangjie Han 1,2,*, Li Liu 1,†, Jinfang Jiang 1,†, Lei Shu 3,† and Joel J.P.C. Rodrigues 2016

[38] “An Efficient Secure DV-Hop Localization for Wireless Sensor Network” Xiaole Liu, Rui Yang,

Qingmin CuiPublished 2015

[39] Trusted Platform Module:] https://en.wikipedia.org/wiki/Trusted_Platform_Module

[40] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune, James Newsome and Anupam Datta

“Design, Implementation and Verification of an eXtensible and Modular Hypervisor Framework”

[41] Anup Patel,MaiDaftedar,MohmadShalan ,M. Watheq El-Kharashi. Bangalore, India .Cairo, Egypt

“Embedded Hypervisor Xvisor: A comparative analysis”

https://en.wikipedia.org/wiki/Trusted_Platform_Module

Secure Geo-location Techniques using Trusted Hyper-visor

 143
S. Rostantis

[42] Sungjin Park, Jae Nam Yoon, Cheoloh Kang, Kyong Hoon Kim and TaisookHan . “TGVisor: A Tiny

Hypervisor-Based Trusted Geo-location Framework for Mobile Cloud Clients” . 2015 3rd IEEE

International Conference on Mobile Cloud Computing, Services, and Engineering

[43] Jonathan M. McCune, Ning Qu, YanlinLi ,Anupam Datta, Virgil D. Gligor, Adrian Perrig .”

TrustVisor:Efficient TCB Reduction and Attestation” March 9, 2009 CMU-CyLab-09-003.

[44] “TrustVisor: Efficient TCB Reduction and Attestation” Jonathan M. McCune 2010

[45] Arvind Seshadri, Mark Luk, Ning Qu, Adrian Perrig. “SecVisor: A Tiny Hypervisor to Provide Lifetime

Kernel Code Integrity for Commodity OSes”CyLab/CMU Pittsburgh, PA, USA

[46] Amit Vasudevan, Bryan Parno, Ning Qu, Virgil D. Gligor and Adrian Perrig. “Lockdown: Towards a

Safe and Practical Architecture for Security Applications on Commodity Platforms”CyLab/Carnegie Mellon

University, Microsoft Research, Google Inc.

[47] Himanshu Raj, David Robinson, Talha Bin Tariq, Paul England, Stefan Saroiu, Alec Wolman. “Credo:

Trusted Computing for Guest VMs with a Commodity Hypervisor”. Microsoft Research

[48] “Experimental analysis of RSSI-based indoor localization with IEEE 802.15.4” Emanuele Goldoni,

Alberto Savioli

[49] RSSI values and components https://appelsiini.net/2017/trilateration-with-n-points/

[50] “Reliable computation of the points of intersection of n spheres in IRn” I.D. Coope . 2000

[51] uberxmhfArtifact/Documentation and official webpage: https://uberxmhf.org/

[52] uberxmhfArtifact/Documentation and forum: https://forums.uberspark.org/

[53] GitHub XMHF implementation: https://github.com/anbangr/trustvisor-dev/tree/master/xmhf

[54] GitHub uberXMHF implementation: https://github.com/hypcode/uberxmhf/

[55] GitHub XVisor implementation: https://github.com/xvisor/xvisor

[56] Xvisor Artifact/Documentation and official webpage: http://xhypervisor.org/

[57] Anup Patel , Mai Daftedar,Shalan, M. Watheq El-Kharash. “Embedded Hypervisor Xvisor: A

comparative analysis”

[58] TrustVistor Implementation: https://uberxmhf.org/docs/pc-legacy-x86_32/uberapp-trustvisor.html

[59] GitHub TrustVistor Implementation: https://github.com/anbangr/trustvisor-dev/tree/master/trustvisor

[60] [downgrading GRUB for Ubuntu https://ubuntuforums.org/showthread.php?t=1298932 and

[downgrading GRUB for Debian https://forums.debian.net/viewtopic.php?f=17&t=50132)

[61] Install jTpmTools https://sourceforge.net/projects/trustedjava/files/jTPM%20Tools/

[62] Lockdown Implementation: https://uberxmhf.org/docs/pc-legacy-x86_32/uberapp-lockdown.html

[63] GitHub Lockdown implementation: https://github.com/anbangr/trustvisor-dev/tree/master/lockdown

[64] Simulation Source code: https://github.com/SavvasR1991/Safe-Geolocalization-

Project/tree/master/Localization-Simulator

[65] Chan Location Algorithm Application in 3-Dimension Space Location, Zhang Jian-wu, Yu Cheng-lei,

Tang bin, Ji Ying-ying School of Communication Engineering, Hangzhou Dianzi University. 2008

https://appelsiini.net/2017/trilateration-with-n-points/
https://uberxmhf.org/
https://forums.uberspark.org/
https://github.com/anbangr/trustvisor-dev/tree/master/xmhf
https://github.com/hypcode/uberxmhf/
https://github.com/xvisor/xvisor
http://xhypervisor.org/
https://uberxmhf.org/docs/pc-legacy-x86_32/uberapp-trustvisor.html
https://github.com/anbangr/trustvisor-dev/tree/master/trustvisor
https://ubuntuforums.org/showthread.php?t=1298932
https://forums.debian.net/viewtopic.php?f=17&t=50132
https://sourceforge.net/projects/trustedjava/files/jTPM%20Tools/
https://uberxmhf.org/docs/pc-legacy-x86_32/uberapp-lockdown.html
https://github.com/anbangr/trustvisor-dev/tree/master/lockdown
https://github.com/SavvasR1991/Safe-Geolocalization-Project/tree/master/Localization-Simulator
https://github.com/SavvasR1991/Safe-Geolocalization-Project/tree/master/Localization-Simulator

Secure Geo-location Techniques using Trusted Hyper-visor

 144
S. Rostantis

[66] “Time of Arrival (TOA)-Based Direct Location Method”, Mohamed Khalaf-Allah, Umm Al-Qura

University P.O. Box 715, Makkah, 21955, SAUDI ARABIA

[67] 3D Position Estimation Performance Evaluation of a Hybrid Two Reference TOA/TDOA

Multilateration System Using Minimum Configuration, Yaro Abdulmalik Shehu 2016

