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Περίληψη

Σε αυτή τη διπλωματική παρουσιάζεται μία αλγεβρική προσέγγιση στις συνελίξεις πραγματικών

και πινακικών συναρτήσεων σε διακριτό χρόνο. Εξετάζονται οι ιδιότητες τους με τη βοήθεια αλ-
γεβρικών δομών, όπως είναι ο δακτύλιος και η ομάδα. Η χρήση αυτών των αλγεβρικών θεωριών
βοηθούν στη συνέχεια της εργασίας μέσω συγκεκριμένων εφαρμογών τους στη θεωρία Πιθαν-

οτήτων, ενώ γίνεται ιδιαίτερη μνεία στον συνελιξιακό αντίστροφο ο οποίος παίζει καταλυτικό
ρόλο στη λύση γενικών μορφών ανανεωτικών και Μαρκοβιανών ανανεωτικών εξισώσεων.
Ουσιαστικά, εφαρμόζεται στην επέκταση της κλασικής ανανεωτικής θεωρίας στην οποία θα

θεωρήσουμε ότι οι μηδενικές χρονικές στιγμές γεγονότων είναι επιτρεπτές, ενώ επεκτείνον-
ται κατάλληλα έννοιες και εργαλεία που χρησιμοποιούνται στην κλασική περίπτωση με έμφαση

στα οριακά θεωρήματα. Το θεωρητικό αυτό πλαίσιο θα μπορούσε να χρησιμοποιηθεί για εφαρ-
μογές σε βιολογογικά συστήματα, αλλά και στη θεωρία αξιοπιστίας, όπου για παράδειγμα ο θερ-
μικός χρόνος είναι πιο κατάλληλος για την περιγραφή της εξέλιξης ενός συστήματος και μπορεί

να θεωρηθεί ως η πλέον κεντρικής σημασίας χρονική συνιστώσα. Επίσης, χρησιμοποιούνται
συνελιξιακές πράξεις για την έκβαση αποτελεσμάτων στην κλασική θεωρία των Μαρκοβιανών

ανανεωτικών αλυσίδων (μ.α.α).
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Chapter 1

DISCRETE TIME CONVOLUTIONS

1. Introduction

In this chapter we introduce the discrete time convolution of real and matrix-valued functions.
They are very helpful mathematical tools, which play an active role in several areas of Probability
theory, like Renewal and Markov Renewal theory. The aim of this chapter is to study the algebraic
properties of this operator and apply them in order to solve many theoretical problems in the rest of
this thesis.

Our motivation originates from the work of Barbu-Limnios [4] in which they introduce discrete
time convolutions for matrix–valued functions in one variable, especially for solving renewal and
Markov renewal equations. A particular role in the theory is played by the left convolutional inverse
of a given matrix valued function and its computation is performed recurrently. In Markov renewal
theory, the convolutional inverse is used to give a form and recurrent way to compute the transition
function of a semi-Markov chain, for the development of the semi-Markov reliability systems and
for the desired statistical analysis in the nonparametric case [4] and [28].

The goal of this thesis is to give a unified approach to discrete time convolutions and extend
their use, notably the convolutional inverse usage. Furthermore, convolutional representations will
supplant the generating functions in the proofs of important results in discrete time renewal theory
(for a further investigation see [4] ) and make more convenient representations such as the form of
the renewal function.

In this chapter, by making links with the theory of Rings, Groups and Algebras over a field, we
exploit the algebraic properties of the convolution product in order to simplify significantly the de-
velopment of the theory and obtain new important results. New representations of the convolutional
inverse help also in this direction.

2. Discrete time convolution product of real functions

In this section we study the convolution product of a specific class of real-valued functions.
We give some algebraic properties of the convolutional operator by paying special attention to
the convolutional inverse of a function. The theoretical development is complemented with some
applications in Probability theory.

Definition 1.1. Let f, g : N −→ R. The function f ∗ g : N −→ R, given by

[f ∗ g](k) :=
k∑
l=0

f(k − l)g(l), n ∈ N,

is said to be the discrete time convolution product of f and g.

We give now some examples, which are necessary to explain the convolution’s operator usage
in probability theory. An important role is played by the unitary function (the function which is
identically one) and we will reserve the symbol 1 for this function.
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Example 1.1. Let X be a nonnegative integer-valued random variable and f , F its associated pmf
and cdf (defined on N). The distribution function F can be written via convolution in the form
F = 1 ∗ f , since

F (k) =

k∑
l=0

f(l) =

k∑
l=0

f(k − l) =

k∑
l=0

f(k − l)1(l) = [f ∗ 1](k) = [1 ∗ f ](k).

This shows that the unitary function 1 corresponds to the summation operator. Another simple
example of compact convolutional representation is given by the reliability function of X , say it F .
We have

F (k) = 1− F (k) = 1(k)− [1 ∗ f ](k)

and consequently F = 1−1 ∗ f . A simpler representation is possible through the properties of the
convolution operator that will be developed in the sequel.

Example 1.2. Let us consider the random variable of the previous example. The expected value
E(X) can be determined by

E(X) =

+∞∑
n=0

nP(X = n) =
+∞∑
n=0

P(X > n) = lim
n→∞

n∑
k=0

P(X > k)

= lim
n→∞

n∑
k=0

F (k) = lim
n→∞

[1 ∗ F ](n).

Consequently, the expected value of a positive and integer-valued random variable is expressed as
the limit of the sequence which results from the convolution product of 1 and F . In the sequel, we
will also examine closer the limiting behaviour of sequences resulting from convolution products.

Example 1.3. Let X,Y be two independent nonnegative integer-valued random variables with pmf
fX and fY respectively. If fX+Y is the pmf of X + Y , then by independence we have directly that

fX+Y (n) =
n∑
l=0

fX(n− l)fY (l) = [fX ∗ fY ](n),

and consequently fX+Y = fX ∗ fY . This is indeed the most famous application of convolution in
probability theory.

Example 1.4. Let X , Y be defined as in Example 1.3 and FX , FY be their corresponding distri-
bution functions. If FX+Y is the distribution function of the sum X + Y , then

FX+Y (n) = P(X + Y ≤ n) =

n∑
l=0

P(X + Y ≤ n|Y = l)P(Y = l)

=
n∑
l=0

P(X ≤ n− l|Y = l)fY (l)

=
n∑
l=0

P(X ≤ n− l)fY (l)

=

n∑
l=0

FX(n− l)fY (l)

= [FX ∗ fY ](n).

The above decomposition shows that FX+Y = FX ∗fY . Similarly, we have that FX+Y = FY ∗fX .
Now, notice that the above decomposition could be obtained directly by using the properties of
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convolution. In particular, by using the results of Examples (1.1) and (1.3) we have that

FX+Y = 1 ∗ fX+Y = 1 ∗ (fX ∗ fY ) = (1 ∗ fX) ∗ fY = FX ∗ fY .

In the third equality we used the associativity of convolution that can be verified easily. Conse-
quently, by using the properties of convolution we get directly that

FX+Y = FX ∗ fY = FY ∗ fX .

The above examples show an interest in a systematic use of properties of the convolution oper-
ator. For this reason, we will mention some of its basic properties.

Proposition 1.1. The discrete time convolution operator is associative, commutative, it possesses
a unique identity element e0 given by

e0(k) =

{
1 if k = 0
0 elsewhere,

(1.1)

and it is also distributive with respect to the addition of functions (componentwise addition).

Proof. The results are easy to prove and we will just show associativity. Let f, g, h : N → R. In
order to show that the discrete time convolution operator is associative we will show that for an
arbitrary k ∈ N we have [f ∗ (g ∗ h)] (k) = [(f ∗ g) ∗ h] (k). Indeed,

[f ∗ (g ∗ h)] (k) =

k∑
l=0

f(k − l)[g ∗ h](l) =

k∑
l=0

f(k − l)
l∑

m=0

g(l −m)h(m)

=

k∑
m=0

(
k∑

l=m

f(k − l)g(l −m)

)
h(m) =

k∑
m=0

(
k−m∑
d=0

f(k −m− d)g(d)

)
h(m)

=

k∑
m=0

[f ∗ g](k −m)h(m) = [(f ∗ g) ∗ h] (k).

It will be beneficial in some cases to identify any function f : N→ R as an infinite dimensional
vector or a formal power series. For this purpose, we will need some algebraic definitions and
properties. First, let us denote by R := RN the set of all real-valued sequences. Therefore, from
Proposition 1.1 we get directly that (R,+, ∗) is a commutative ring with unity, equipped with the
operations of the usual addition between sequences and of the convolution product of sequences.
Obviously, e0 is the multiplicative identity element of this ring and in the following proposition we
show that R is also an integral domain (no zero divisors).

Proposition 1.2. Let f, g ∈ R. Then, we get

f ∗ g = 0 ⇐⇒ f ≡ 0 or g ≡ 0. (1.2)

Proof. If f ≡ 0 or g ≡ 0, then the reverse implication of (1.2) is true. Now, we will show that the
direct implication is also true.

Let us assume that f(n) 6= 0 for some n ∈ N. Then, as a consequence of the Archimedean
property there exists an n0 ∈ N such that n0 = min{l ∈ N : f(l) 6= 0}. All we have to prove is
that

[f ∗ g](n0 + k) = f(n0)g(k), ∀ k ∈ N, (1.3)

since then by the assumption that f ∗ g = 0 and the fact that f(n0) 6= 0, we will get that g ≡ 0.
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We will prove that (1.3) holds by induction. For k = 0, (1.3) is true, since by the definition of
n0, f(l) = 0 for all l < n0 and f(n0) 6= 0. Now, let us assume that (1.3) holds for k = 0, 1, . . . , k0
and consequently g(0) = . . . = g(k0) = 0.

Then,

[f ∗ g](n0 +k0 + 1) =

n0−1∑
l=0

f(l)g(n0 +k0 + 1− l) + f(n0)g(k0 + 1) +

k0∑
l=0

f(n0 +k0 + 1− l)g(l),

and by using the above assumptions we get directly that (1.3) holds for k = k0 + 1. Therefore,
by induction we conclude that (1.3) holds for any k ∈ N. This implies that R is also an integral
domain.

In addition, we denote the set of power series with real coefficients R [[x]] equipped with the
following binary operations

+ : (f(0) + f(1)x+ . . .) + f(0) + f(1)x+ . . . = (f(0) + g(0)) + (f(1) + g(1))x+ . . . ,

• : (f(0) + f(1)x+ . . .) • (g(0) + g(1)x+ . . .) = (f(0)g(0)) + (f(0)g(1) + f(1)g(0))x+ . . . .

It is well that known that R[x] is a commutative ring with identity element given by the constant
polynomial with value one.

Let us also denote by RN the set of infinite dimensional vectors with real coordinates equipped
with the following operators

(+) : (f(0), f(1), f(2), . . .) (+) (g(0), g(1), g(2), . . .) = (f(0) + g(0), f(1) + g(1), . . .)

(•) : (f(0), f(1), f(2), . . .) (•) (g(0), g(1), g(2), . . .) =

(
n∑
l=0

f(n− l)g(l)

)
n∈N

.

It is easy to notice that RN forms a commutative ring with unity. In the following proposition we
show that (R,+, ∗), (R [[x]] , +, •) and

(
RN, (+), (•)

)
are algebraically identical.

Proposition 1.3. The rings (R,+, ∗), (R [[x]] , +, •) and
(
RN, (+), (•)

)
are isomorphic.

For the above proposition, any f ∈ R can be identified as

f ∼= (f(0), f(1), f(2), . . .) ∼= f(0) + f(1)x+ f(2)x2 + . . . . (1.4)

Since convolution of sequences corresponds to multiplication of formal power series, this property
will be used for convenience in some cases. From the above representation, it is now clear that e0
can be written as

e0 ∼= (1, 0, 0, . . .) ∼= 1, (1.5)

where the equality is used here abusively, but without causing confusion, and the specific represen-
tation will depend on the context. The first equality gives a clear interpretation to our notation for
the identity element as the vector which attributes 1 to the first component with index zero and the
second one refers to the corresponding constant polynomial. More generally, we denote by

ei ∼= (0, . . . , 0, 1, 0, . . .)︸ ︷︷ ︸
1 in the i-th index

∼= xi. (1.6)

Notation. For simplicity, we will just suppress • and (•).

Remark 1.1. The function ei clearly corresponds to the pmf of the almost surely constant random
variable X = i. It is clear that

ei ∗ ej ∼= xixj = xi+j ∼= ei+j . (1.7)
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We can also compute the cdf associated to ei. In particular, if we denote by 1i this cdf, then

1i = 1 ∗ ei ∼=

( ∞∑
k=0

xk

)
xi =

∞∑
k=0

xk+i =

∞∑
k=i

xk ∼= (0, . . . , 0, 1, 1, . . .)︸ ︷︷ ︸
1 from the i-th index

. (1.8)

This intuitive notation indicates that 1i corresponds exactly to the sequence that starts with zeros
and has 1 from the i-th index and onwards. Of course we have 1 = 1. Similarly, we have

1i ∗ ej = 1 ∗ ei ∗ ej = 1 ∗ ei+j = 1i+j . (1.9)

The usefulness of the basis elements ei (1.6) can be found in the simplification of the compu-
tations with convolutions. In this way, the use of formal power series can be avoided. In fact, by
using the left and right member of (1.6) we can now rewrite (1.4) in the form

f =
∞∑
k=0

f(k)ek. (1.10)

Then, we have

f ∗ g =

( ∞∑
l=0

f(l)el

)
∗

( ∞∑
m=0

g(m)em

)
=

∞∑
l,m=0

[f(l)g(m)] el ∗ em =
∞∑

l,m=0

f(l)g(m)el+m

=

∞∑
k=0

 ∑
l,m:l+m=k

f(l)g(m)

 ek =

∞∑
k=0

[f ∗ g](k)ek, (1.11)

as expected. Next, we define the convolutional powers (powers in the sense of convolution):

Definition 1.2. Let f : N → R be a function and n ∈ N. The n-fold convolution f (n) : N → R of
the function f is defined recursively by :

f (0) := e0

and
f (n) := f ∗ f (n−1), n ≥ 1.

From the above definition we can get directly that for all n, k ≥ 0,

f (n)(k) :=
∑

k1,k2,...,kn≥0
k1+k2+...kn=k

f(k1)f(k2) . . . f(kn). (1.12)

Remark 1.2. By rearranging the terms of (1.12) we get that for all n, k ≥ 0,

f (n)(k) :=
∑

n0,n1,...,nk≥0
n0+n1+...nk=n

(
n

n0, n1, . . . , nk

)
(f(0))n0(f(1))n1 . . . (f(k))nk .

For the first three terms, for k = 0, 1, 2, we have that for n ≥ k,

f (n)(0) = (f(0))n, (1.13)

f (n)(1) = n(f(0))n−1f(1),

f (n)(2) =
n(n− 1)

2
(f(0))n−2(f(1))2 + n(f(0))n−1f(2).
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It is easy also to see that for all n ≥ k,

f (n)(k) =
n−1∑
l=n−k

(
n

l

)
(f(0))l

∑
n1,...,nk≥0

n1+n2+...nk=n−l

(
n− l

n1, n2, . . . , nk

)
(f(1))n1(f(2))n2 . . . (f(k))nk

=
n−1∑
l=n−k

(
n

l

)
(f(0))lf

(n−l)
+ (k − 1), (1.14)

where f+(k) = f(k + 1), for all k ≥ 0 and therefore f+ corresponds to the translation of f one
unit to the right.

Some useful properties of the convolutional powers are given below.

Proposition 1.4. Let f, g : N → R and c ∈ R be a constant. Then, we get directly the following
relations

(i) (cf) ∗ g = f ∗ (cg) = c(f ∗ g),

(ii) (cf)(n) = cnf (n),

(iii) f (n) ∗ f (m) = f (n+m),

(iv) (f (n))(m) = f (nm),

(v) (f ∗ g)(n) = f (n) ∗ g(n).

Proof.

(i) Using relation (1.4) we can take

(cf) ∗ g ∼= (cf0)g0 + ((cf1)g0 + (cf0)g1) x+ . . .

= f0(cg0) + ((cg1)f0 + (cg0)f1) x+ . . .

= c (f0g0 + (f0g1 + f1g0)x+ . . .) ∼= c(f ∗ g)

and consequently we obtain the desired relations.

(ii) From (i) we have

(c ∗ f)(n) = (cf) ∗ (cf) ∗ · · · ∗ (cf)︸ ︷︷ ︸
n−times

= c f ∗ (cf) ∗ · · · ∗ (cf)︸ ︷︷ ︸
n−times

= cn

f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
n−times

 = cnf (n).

(iii) f (n) ∗ f (m) =

f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
n−times

 ∗
f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸

m−times

 = f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
(n+m)−times

= f (n+m).

(iv) (f (n))(m) = f (n) ∗ f (n) · · · ∗ f (n)︸ ︷︷ ︸
m−times

=

f ∗ f · · · ∗ f︸ ︷︷ ︸
n−times

 ∗ · · · ∗
f ∗ f · · · ∗ f︸ ︷︷ ︸

n−times


︸ ︷︷ ︸

m−times

= f ∗ f · · · ∗ f︸ ︷︷ ︸
nm−times

= f (nm).
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(v) (f ∗ g)(n) = (f ∗ g) ∗ (f ∗ g) · · · ∗ (f ∗ g)︸ ︷︷ ︸
n−times

= f ∗ g ∗ f ∗ g · · · ∗ f ∗ g︸ ︷︷ ︸
n−times

=

f ∗ f · · · ∗ f︸ ︷︷ ︸
n−times

 ∗
g ∗ g · · · ∗ g︸ ︷︷ ︸

n−times

 = f (n) ∗ g(n).

In order to familiarize with the convolutional powers we’ll use the following examples:

Example 1.5. Consider the function of Equation 1.6. Since ei ∗ ej = ei+j , we get easily that

e
(n)
i = ei ∗ ei ∗ . . . ∗ ei︸ ︷︷ ︸

n times

= eni.

In particular, we have that for all n ∈ N

en = e
(n)
1 . (1.15)

This simple functional property is very important in the development of the theory and gives the
possibility to develop a similar calculus as in the case of the generating functions to simplify the
derivation of many results. This can be understood by rewriting (1.11) in the form( ∞∑

k=0

f(k)e
(k)
1

)
∗

( ∞∑
k=0

g(k)e
(k)
1

)
=
∞∑
k=0

[f ∗ g](k)e
(k)
1 .

The above functional identity justifies that the product of the generating functions of two sequences
corresponds to the generating function of their convolution by using the isomorphism in Proposition
1.3.

Now, we give a proposition which gives an interesting interpretation of 1(n).

Proposition 1.5. If
[
n
k

]
denotes the k-combinations of n elements with repetition, then

1
(n) =

[n
·

]
, i.e., 1

(n)(k) =
[n
k

]
, for all k, n ∈ N.

Additionally,

1
(n)
i =

[
n

· − ni

]
, i.e., 1

(n)
i (k) =

[
n

k − ni

]
, for all k, n ∈ N,

where
[
n
k

]
= 0, for k < 0.

Proof. For n = 0, we have that the k − combinations of 0 elements with repetition is one for
k = 0 and is zero otherwise. Therefore, we have[

0

k

]
= e0(k) = 1

(0)(k),

and assume that the above relation also holds for an arbitrary n. Then,

1
(n+1)(k) = [1 ∗ 1(n)](k) =

k∑
l=0

[n
l

]
. (1.16)
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Using Pascal’s triangle and the equality
[
n
l

]
=
(
n+l−1

l

)
we have[

n+ 1

l

]
=

[
n+ 1

l − 1

]
+
[n
l

]
,

and summing over l = 0, . . . k, we obtain[
n+ 1

k

]
=

k∑
l=0

[n
l

]
.

Therefore, we take

1
(n+1)(k) =

[
n+ 1

k

]
,

and consequently by induction we get the desired form.
From Example 1.1 and Proposition 1.4 we get

1
(n)
i = (1 ∗ ei)(n) = 1

(n) ∗ e(n)i = 1
(n) ∗ eni =

[n
·

]
∗ eni =

[
n

· − ni

]
.

Example 1.6. Let (Xn) be a sequence of i.i.d. nonnegative integer-valued random variables with
common pmf and cdf f and F respectively. Set X0 = 0. Also, for any n ∈ N define Sn=

∑n
l=1Xl

with pmf fn and cdf Fn. By using the properties of convolution it is straightforward to show by
induction that the following relations hold :

fn = f (k) ∗ f (n−k) = f (n) 0 ≤ k ≤ n, n ∈ N,
Fn = Fk ∗ f (n−k) = 1 ∗ f (n) 0 ≤ k ≤ n, n ∈ N.

Also, recall from Example 1.1 that the associated reliability function Fn can be written in the form

Fn = 1− Fn = 1− 1 ∗ f (n) = 1 ∗
(
e0 − f (n)

)
.

Since R is a commutative ring with unity then from Proposition A.1 we get directly the New-
ton’s binomial theorem for the discrete time convolution product of functions.

Proposition 1.6 (Binomial expressions). Let f, g : N → R. Then, the n-fold convolution of f + g
is determined by

(f + g)(n) =
n∑
l=0

(n
l

)
f (l) ∗ g(n−l), n ∈ N. (1.17)

By a direct application of the above proposition we have the following corollary which will be
useful in the sequel.

Corollary 1.1. For a function f : N→ R we take

(e0 − f)(n) =
n∑
l=0

(−1)l
(n
l

)
f (l). (1.18)

Example 1.7. Let us consider the sequences e0 and e1 of relation (1.6). Then by applying Example
1.5 in Corollary 1.1 we have

(e0 − e1)(n) =

n∑
l=0

(−1)l
(n
l

)
e
(l)
1 =

n∑
l=0

(−1)l
(n
l

)
el, n ∈ N
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and each term (e0 − e1)(n)(k) can be determined by

(e0 − e1)(n)(k) =
n∑
l=0

(−1)l
(n
l

)
el = (−1)k

(n
k

)
, k ∈ N. (1.19)

A useful property arises when a function f satisfies f(0) = 0. The following result will be used
in the sequel to simplify the computation of the convolutional inverse of a given function in the case
that it exists.

Lemma 1.1. Let f : N −→ R be a function with f(0) = 0. Then, f (n)(k) = 0 for all k, n ∈ N with
k < n.

Proof. By (1.10) and (1.11), we get that

f1 ∗ . . . ∗ fn =
∞∑

k1,...,kn=0

f1(k1) · · · fn(kn) ek1+...+kn . (1.20)

Consequently,

f (n) =

∞∑
k1,...,kn=0

f(k1) · · · f(kn) ek1+...+kn . (1.21)

Since by assumption f(0) = 0, if at least one of ki is null, then the corresponding coefficient will
be also null. We conclude that

f (n) =
∞∑

k1,...,kn=1

f(k1) · · · f(kn) ek1+...+kn , (1.22)

and consequently the coefficients of ek are null for k < n.

Remark 1.3. As an immediate consequence of the above Lemma we get that for any fixed k, the
sequence f (n)(k) is eventually zero. Additionally, the function which results from the series

∑
n f

(n)

is well defined, since each term is actually a finite sum.

In order to prove the next theorem, we will need a useful identity which is given in the following
lemma (a well known combinatorial identity).

Lemma 1.2. For any k, n ∈ N we have

l+k∑
n=l

(n
l

)
=

(
l + k + 1

l + 1

)
, for any k ∈ N. (1.23)

Proof. We prove it by induction on k.
For k = 0 (1.23), it is obviously true. Let us assume now that (1.23) holds also for an arbitrary

k0 ∈ N. Then, for k = k0 + 1 we have

l+k0+1∑
n=l

(n
l

)
=

l+k0∑
n=l

(
l + k0 + 1

l

)
+
(n
l

)
=

(
l + k0 + 1

l + 1

)
+

(
l + k0 + 1

l

)
,

and by using Pascal’s triangle we get directly

l+k0+1∑
n=l

(n
l

)
=

(
l + (k0 + 1) + 1

l + 1

)
.

Consequently, by induction we conclude (1.23).
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Definition 1.3. Let f : N→ R. If there exists a function g : N→ R such that

f ∗ g = g ∗ f = e0, (1.24)

then g is called the convolutional inverse (inverse of f in the convolution sense) and it is denoted
by f (−1).

The inverse of f does not always exist. For example, for k = 0 we have to solve the equation

[f ∗ g](0) = f(0)g(0) = 1.

If f(0) = 0, then there exists no solution. In the following proposition we give a necessary and
sufficient condition for the existence and uniqueness of the convolutional inverse.

Theorem 1.1. Let f : N → R be a function. The convolutional inverse f (−1) exists if and only if
f(0) 6= 0 and is given by

f (−1) =
1

f(0)

∞∑
n=0

(e0 − f0)(n), (1.25)

where

f0(k) =
f(k)

f(0)
, k ∈ N.

Additionally, each term f (−1)(k) in (1.26) can be represented as a finite sum and is given by

f (−1)(k) =
1

f(0)

k∑
n=0

(e0 − f0)(n)(k), (1.26)

or alternatively,

f (−1)(k) =
1

f(0)

k∑
n=0

(−1)n
(
k + 1

n+ 1

)
f
(n)
0 (k). (1.27)

Proof. First notice that if f(0) = 0, then there is no function g satisfying (1.24) (see the comments
after Definition 1.1). Then, it suffices to prove that the inverse exists for f(0) 6= 0. For this purpose,
without loss of generality we assume that f(0) = 1 and consequently we need to prove that

f (−1) =
∞∑
n=0

(e0 − f)(n). (1.28)

Indeed, in the general case we have f = f(0)f0 and since f0(0) = 1 we get easily that if the result
holds for f (−1)0 , then f (−1) = (1/f(0))f

(−1)
0 . This justifies that from (1.28) we get (1.26). Since

convolution is commutative, in order to prove (1.28) it suffices to prove that the convolution of f
with the righthand member of (1.28) is in fact e0. Indeed, since (e0 − f)(0) = 0 and by Remark
1.3 we have ( ∞∑

n=0

(e0 − f)(n)

)
∗ f =

( ∞∑
n=0

(e0 − f)(n)

)
∗ [e0 − (e0 − f)]

=

∞∑
n=0

(e0 − f)(n) −
∞∑
n=1

(e0 − f)(n)

= (e0 − f)(0) = e0.

Additionally, since (e0 − f)(0) = 0 by Lemma 1.1 we have that (e0 − f)(n)(k) = 0, for all n > k,
and consequently (1.26) holds. Also, using Proposition 1.1 and Lemma 1.2 each f (−1)(k) can be



2.. Discrete time convolution product of real functions 11

written in the following form

f (−1)(k) =

k∑
n=0

(e0 − f0)(n)(k)
(1.6)
=

k∑
n=0

n∑
l=0

(−1)l
(n
l

)
f
(l)
0 (k)

=

k∑
l=0

k∑
n=l

(−1)l
(n
l

)
f
(l)
0 (k) =

k∑
l=0

(−1)lf
(l)
0 (k)

k∑
n=l

(n
l

)
(1.23)

=
k∑
l=0

(−1)l
(
k + 1

l + 1

)
f
(l)
0 (k).

Remark 1.4. Since f = f(0)fu, then by using (1.4), (1.27) can be reformulated as

f (−1)(k) =
1

f(0)

k∑
n=0

(
− 1

f(0)

)n(k + 1

n+ 1

)
f (n)(k). (1.29)

Remark 1.5. Let f ∈ N and n ∈ N. If f has a convolutional inverse then the function
(
f (n)

)(−1)
is also defined because of Remark 1.2 and is equal to

(
f (−1)

)(n)
for any n ∈ N. We denote this

sequence by f (−n). This observation allows us to extend the results of Proposition 1.4 on Z.

Example 1.8. Let us consider the sequence of Example 1.7. We have (e0−e1)(0) = 1. Then, using
the relations (1.19) and (1.27) we take

(e0−e1)(−1)(k) =

k∑
n=0

(−1)n
(
k + 1

n+ 1

)
(−1)k

(n
k

)
=

k∑
n=0

(−1)k−n
(
k + 1

n+ 1

)(n
k

)
= 1, k ∈ N,

and thus we obtain
(e0 − e1)(−1) = 1 or 1

(−1) = e0 − e1.

Let us now consider a nonnegative random variable X with pmf f and cdf F . From Example ??
and the above equation we get directly

f = 1
(−1) ∗ F = (e0 − e1) ∗ F,

and consequently
f = (e0 − e1) ∗ (1− F ),

where F is the associated reliability function.

Remark 1.6. As 1 corresponds to the procedure of formation of partial sums of a sequence, its
inverse e0 − e1 corresponds to the procedure of formation of first order differences.

Remark 1.7. Set R∗ := {f : N→ R| f(0) 6= 0 }. From Proposition 1.1 and Theorem 1.1 we have
that the pair (R∗, ∗) forms an abelian group.

In many cases the form of a function is complex and consequently it is difficult to compute
the convolutional inverse of a function via Equation 1.26, but it is possible to use the following
recurrent way,
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Proposition 1.7. Let f ∈ C∗. Its convolutional inverse can be computed as follows:

f (−1)(k) =



1

f(0)
if k = 0

− 1

f(0)

k−1∑
l=0

f(k − l)f (−1)(l) otherwise.

(1.30)

Proof. In order to prove this form, we’ll use the equation

f ∗ f (−1) = e0.

Since f(0) 6= 0 we have

f(0)f (−1)(0) = 1 =⇒ f (−1)(0) =
1

f(0)
.

Now, for k ∈ N∗, we have

0 = e0(k) = [f ∗ f (−1)](k) =

k∑
l=0

f(k − l)f (−1)(l) = f(0)f (−1)(k) +

k−1∑
l=0

f(k − l)f (−1)(l),

and consequently we get the desired form.

Several functions defined usually for real or complex numbers can be extended for sequences
and similar properties can be derived. We are particularly interested in the exponential function.

Definition 1.4. Let f : N −→ R. The function

exp (f) :=
∞∑
n=0

1

n!
f (n), n ∈ N,

is called the exponential function of f .

Remark 1.8. By Remark 1.3, it is well defined for all f such that f(0) = 0. For that reason the
exponential function of any f : N −→ R with f(0) = 0, is expressed in the form

exp(f)(k) =
k∑

n=0

f (n)(k)

n!
, k ∈ N. (1.31)

In the following proposition we give some properties of the exponential function.

Proposition 1.8. Let f, g : N→ R, n ∈ Z and c ∈ R be a constant. The following properties hold,
whenever exp (f) and exp (g) are both well defined.

exp (0) = e0,

exp (e0) = e · e0,
exp (c · e0) = ec · e0,

exp (f + g) = exp (f) ∗ exp (g),

(exp (f))(n) = exp (nf),

(exp (f))(−1) = exp (−f).

In the following proposition we study the existence and form of the exponential function.
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Proposition 1.9. Let f : N −→ R. Then, the exponential function exp (f) is always well defined
and is given by

exp(f)(k) = ef(0) ·

(
k∑

n=0

f
(n)
+ (k − n)

n!

)
, k ∈ N. (1.32)

Proof. Since any f can be rewritten as f = (f − f(0) · e0) + f(0) · e0, i.e., as a sum of two
functions for which the associated exponential function is well defined (see Remark 1.8). Then,
from Proposition 1.8 we have

exp(f) = exp ((f − f(0) · e0) + f(0) · e0) = exp (f − f(0) · e0) ∗ exp (f(0) · e0)
= ef(0) · exp (f − f(0) · e0) .

Consequently, the exponential function is well defined for any real sequence f and each term
exp(f)(k) can be expressed in the following form

exp(f)(k) = ef(0) ·

(
k∑

n=0

(f − f(0) · e0)(n) (k)

n!

)
, k ∈ N. (1.33)

Furthermore, since (f − f(0) · e0) (0) = 0, we have that the following relation holds for any k, n ∈
N with k ≥ n,

(f − f(0) · e0)(n) (k) =
∑

l1+...+ln=k
l1,...,ln≥1

f(l1) · · · f(ln) =
∑

l1+...+ln=k
l1,...,ln≥1

f+(l1 − 1) · · · f+(ln − 1)

=
∑

l1+...+ln=k−n
f+(l1) · · · f+(ln) = f

(n)
+ (k − n).

Accordingly, from the previous observation and (1.33) we obtain the desired result.

Proposition 1.10. For any f, g : N −→ R we have

exp (f) = exp (g)⇐⇒ f = g.

Proof.

(⇐=) It is direct by definition.

(=⇒) For k = 0, we have

ef(0) = exp (f)(0) = exp (g)(0) = eg(0) =⇒ f(0) = g(0).

Furthermore, since

ef(0)f(1) = exp (f)(1) = exp (g)(1) = eg(0)g(1),

we get directly that f(1) = g(1) or f+(0) = g+(0). In a similar way we take consequentially
that

f(n) = g(n), n ∈ {0, 1, . . . , k − 1}.

and
f+(n) = g+(n), n ∈ {0, 1, . . . , k − 2}. (1.34)
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Since,

exp (f)(k) = exp (g)(k) =⇒

ef(0)

(
f
(1)
+ (k − 1)

1!
+ . . .+

f
(k)
+ (0)

k!

)
= eg(0)

(
g
(1)
+ (k − 1)

1!
+ . . .+

g
(k)
+ (0)

k!

)
=⇒

f
(1)
+ (k − 1)

1!
+ . . .+

f
(k)
+ (0)

k!
=

g
(1)
+ (k − 1)

1!
+ . . .+

g
(k)
+ (0)

k!

(1.34)
=⇒

f+(k) = g+(k),

then we get by induction the desired result.

3. Convolution product of sequences of matrices

In this section we extend the results of the previous sections to the convolution product of matrix
valued functions. We give its relationship with the convolutional product of real valued functions
and we also provide some concrete examples in Probability theory. Also, we give the associated
algebraic properties by paying special attention to the convolutional inverse of a matrix-valued
function.

In order to introduce the convolution product of sequences of matrices we need some definitions.
LetE = {1, 2, . . . , s} be a finite set. We denote byMs := Rs×s the set of all real matrices onE×E
and by Ms(N) the set of all matrix-valued functions defined on N with values in Ms. For A ∈
Ms(N) we writeA := (A(k); k ∈ N), where for fixed k ∈ N, the matrixA(k) = (aij(k))i,j∈E . We
also denote by Is and 0s the identity and the zero matrix on the setMs respectively. The element A
can also be interpreted as a matrix of real valued sequences, so A = (aij)i,j∈E , where aij ∈ R(=
RN). In this sense A ∈ Rs×s, so it corresponds to a matrix with elements in a commutative ring.
This fact will be exploited in the development of the theory.

Definition 1.5. Let A,B ∈Ms(N). The matrix-valued function A ∗B ∈Ms(N), given by

[A ∗B](k) :=

k∑
l=0

A(k − l)B(l), k ∈ N,

with elements

[A ∗B]ij(k) :=
∑
r∈E

k∑
l=0

αir(k − l)βrj(l), i, j ∈ E, k ∈ N,

is said to be the discrete time convolution product of A and B.

Remark 1.9. The Definition 1.5 emphasizes the interpretation of A∗B as the sequence of matrices
which results from the convolution of the sequences of matrices A and B. Nevertheless, it will also
be useful to interpretA∗B as the matrix of sequences which results from the product of the matrices
of sequences A and B. In particular, A ∗B = ([A ∗B]ij)i,j∈E , where

[A ∗B]ij =
∑
r∈E

αir ∗ βrj .

In this way, the convolution of two matrices inMs(N) corresponds to the usual product of matrices
in Rs×s, where the product in R is the convolution of real valued sequences.
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An important role in the rest of theory will be played by the matrix-valued function denoted by
I with constant value Is. In particular,

I = (Is, Is, . . .). (1.35)

Alternatively, in view of Remark 1.9, I can be written as a matrix of sequences in the form

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1.

 . (1.36)

In the following examples we give some applications of the convolution product of matrix-valued
functions in Probability theory.

Example 1.9. Let J be a homogeneous Markov chain, (Xn)n≥1 be a sequence of i.i.d non negative
integer valued random variables and X0 = 0. Let fij , Fij and F ij be the associated conditional
sojourn time pmf, cdf and the survival function of Xn when J goes from a state i to a state j. Let us
also denote by f , F and F the matrix valued functions with elements fij , Fij and F ij respectively.
From the previous comments we get directly that any Fij can be determined by

Fij = 1 ∗ fij =
∑
r∈E

I0ir ∗ frj , i, j ∈ E,

and by Remark 1.9 we get in matrix form

F = I ∗ f.

Therefore, each F ij can be written as

F ij = 1− Fij

and consequently
F = II− I ∗ f,

where II is the matrix valued function whose entries are 1.

Example 1.10. Let us consider a sequence of i.i.d non negative integer valued random variables
(Xn)n≥1 and X0 = 0. Let also Sn =

∑n
l=0Xl, n ∈ N and (Jn)n∈N be a homogeneous Markov

chain with finite state space E := {1, . . . , s} i.e.

P(Jn = j | J0:n−1)
a.s
= P(Jn = j | Jn−1), for all j ∈ E

Furthermore, assume that the pair (J, S) satisfies the following property

P(Jn = j, Sn − Sn−1 = k|J0:(n−2), Jn−1 = i, S0:n−1) = P(Jn = j, Sn − Sn−1 = k|Jn = i).
(1.37)

From this property we have that

P(Jn+1 = j, Sn+1 − Sn = k|J0:(n−2), Jn−1 = i, S0:n−1) = Pi(J2 = j,X2 = k). (1.38)

If we denote by P := (P (k)) and P2 := (P2(k)) the matrix valued functions, where

Pij(k) = P(J1 = j, S1 = k | J0 = i) := Pi(J1 = j, S1 = k),
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and

P2ij (k) = P(J2 = j, S2 = k|J0 = i) := Pi(J2 = j, S2 = k), i, j ∈ E, k, n ∈ N.

Then, by using Example 1.4 and the properties (1.37), (1.38) we get directly

P2ij (k) =
∑
r∈E

k∑
l=0

Pir(l)Prj(k − l) = [P ∗ P ]ij(k) (1.39)

and consequently
P2 = P ∗ P.

Now, if we denote by F1 = (F1(k)) and F2 = (F2(k)) the matrix valued sequences where

F1ij (k) = Pi(J1 = j, S1 ≤ k)

and
F2ij (k) = Pi(J2 = j, S2 ≤ k),

then from Example 1.4 and relation (1.39) we conclude that

F2 = I ∗ P2 = (I ∗ P ) ∗ P = F1 ∗ P.

In the following Proposition we give some algebraic properties of the convolution product of
matrix valued functions, that can be verified easily.

Proposition 1.11. (Properties of the convolution product)[convolution algebra]

(i) Let A,B,C ∈Ms(N) be three matrix-valued functions. Then ∗ is an associative and distribu-
tive binary operation, i.e.

A ∗ (B ∗ C) = (A ∗B) ∗ C,
(A+B) ∗ C = A ∗ C +B ∗ C,
C ∗ (A+B) = C ∗A+ C ∗B.

(ii) The identity element for the convolution product of matrices is the matrix valued function E0

∈Ms(N) which is given in the following form :

E0(k) =

{
Is if k=0
0s otherwise.

or as a matrix of sequences in the form

E0 =


e0 0 . . . 0
0 e0 . . . 0
...

...
. . .

...
0 0 . . . e0


and satisfies

A ∗ E0 = E0 ∗A = A,

for all A ∈ Ms(N).

Remark 1.10. In the general case, the equality A ∗B=B ∗A doesn’t hold true, so the operation ∗
is not commutative. This is a direct consequence of the non-commutativity of the matrix product.
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It will be useful for the rest of the theory to identify any matrix-valued function A ∈ Ms(N)
as a formal power series with matrix coefficients or an infinite dimensional vector of matrices. In
order to do this we will need some definitions and properties of the convolution product. For this
purpose, from Proposition 1.11Ms(N) := RM forms a ring under the binary operations of usual
addition of matrices and convolution product of matrix valued functions. Also, the function E0 is
the corresponding identity element and consequently RM is a noncommutative ring with unity. In
addition, we denote the set of all power series with s×s real matrix coefficients Rs×s [[x]] equipped
with the following binary operators

+ : (A(0) +A(1)x+ . . .) + (B(0) +B(1)x+ . . .) = (A(0) +B(0)) + (A(1) +B(1))x+ . . . ,

• : (A(0) +A(1)x+ . . .) • (B(0) +B(1)x+ . . .) = (A(0)B(0)) + (A(0)B(1) +A(1)B(0))x+ . . . ,

and it forms a non commutative ring with unity given by E0.
For the latter expression we define the set of infinite dimensional vectors of matrices (Rs×s)N

equipped with the following binary operators

(+) : (A(0), A(1), . . .) (+) (B(0), B(1), . . .) = (A(0) +B(0), A(1) +B(1), . . .),

(•) : (A(0), A(1), . . .) (•) (B(0), B(1), . . .) = (A(0)B(0), A(0)B(1) +A(1)B(0), . . .).

Of course
(

(Rs×s)N , (+), (•)
)

forms a non commutative ring with unity denoted by (Is, 0s, . . .). It

can easily be proved that RM, Rs×s [[x]] and Rs×s are isomorphic rings.

Proposition 1.12. The rings (RM,+, ∗), (Rs×s [[x]] ,+, •) and
(

(Rs×s)N , (+), (•)
)

are algebraically
identical.

As a result of the above, we can express any matrix valued function defined on N in the follow-
ing form

A ∼= (A(0), A(1), A(2), . . .) ∼= A(0) +A(1)x+A(2)x2 + . . . , (1.40)

We can represent E0 as
E0
∼= (Is, 0s, 0s, . . . ) ∼= Is. (1.41)

As we can see E0 is interpreted as a vector of matrices which attributes Is to the first component
with index zero and the second one refers to the corresponding constant polynomial with matrix
coefficients. More generally, we denote by

Ei ∼= (0s, . . . , 0s, Is, 0s, . . .)︸ ︷︷ ︸
Is in the i-th index

∼= Is x
i. (1.42)

Remark 1.11. Consider an almost surely random variable X = j and a Markov chain with prob-
ability transition matrix Is. Then, we can represent Ei as the diagonal matrix in which the entries
along the main diagonal are given by P(Jn = i, X = j | Jn−1 = i) = 1.

Ei ∗ Ej ∼=
(
Isx

i
) (
Isx

j
)

= Isx
i+j ∼= Ei+j . (1.43)

We can also compute the conditional cdf associated to Ei. More specifically, if we denote by Ii the
sequence of matrices which starts with 0s and is Is after the i-th index and onwards then

Ii = I∗Ei ∼=

( ∞∑
l=0

Isx
l

)
Isx

i =

( ∞∑
l=0

Isx
l+i

)
=

( ∞∑
l=i

Isx
l

)
∼= (0s, . . . , 0s, Is, Is, . . .)︸ ︷︷ ︸

Is from the i-th index

(1.44)

The obvious relation I0 = (Is, Is, . . . , Is) holds. Similarly, we have

Ii ∗ Ej = I ∗ Ei ∗ Ej = I ∗ Ei+j = Ii+j . (1.45)
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Remark 1.12. It is easy to notice that the basis elements Ei can be represented as a diagonal
matrix of real sequences, i.e,

Ei =


ei 0 . . . 0
0 ei . . . 0
...

...
. . .

...
0 0 . . . ei

 , (1.46)

where ei are the basis elements of (1.5).
Also, in a similar way we obtain

Ii =


1i 0 . . . 0
0 1i . . . 0
...

...
. . .

...
0 0 . . . 1i

 , (1.47)

where 1i are the sequences given by (1.8).

The basis elements Ei (1.42) can be used for the simplification of the computations with con-
volutions avoiding the formal power series with matrix coefficients. In particular, we can use (1.41)
and consequently (1.40) is reformulated as

A =
∞∑
k=0

A(k)Ek. (1.48)

Then, since any convolutional product of E0 with any other matrix valued function is commutative
we have

A ∗B =

( ∞∑
k=0

A(k)Ek

)
∗

( ∞∑
l=0

B(l)El

)
=

( ∞∑
k=0

A(k)Ek

)
∗

( ∞∑
l=0

ElB(l)

)

=
∞∑

k,l=0

A(k) [Ek ∗ El]B(l) =
∞∑

k,l=0

A(k)Ek+lB(l) =
∞∑

k,l=0

[A(k)B(l)]Ek+l

=

∞∑
u=0

 ∑
k,l:k+l=u

A(k)B(l)

Eu =

∞∑
u=0

[A ∗B](u)Eu. (1.49)

Below, we introduce the convolutional powers of a matrix-valued function.

Definition 1.6. Let A ∈ Ms(N) be a matrix-valued function and n ∈ N. The n-fold convolution of
sequences of matrices A(n) is the matrix-valued function defined by :

A(0) := E0

A(n) := A ∗A(n−1), n ≥ 1

From the above definition we can get directly that for all n, k0,

A(n)(k) :=
∑

k1,...,kn≥0//k1+k2+...+kn=k

A(k1)A(k2) · · ·A(kn). (1.50)

Proposition 1.13 (Binomial expressions). Let A,B ∈ RM with A ∗ B = B ∗ A. Then, the n-fold
convolution of their sum can be determined by

(A+B)(n) =

n∑
l=0

(n
l

)(
A(l) ∗B(n−l)

)
, n ∈ N. (1.51)
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Corollary 1.2. For a function A ∈ RM we have

(E0 −A)(n) =

n∑
l=0

(−1)l
(n
l

)
A(l). (1.52)

Example 1.11. Let A = diag{αi}i∈E ∈ RM. Then, the n-fold convolution powers A(n) are given
by

A(n) = diag
{
α
(n)
i

}
i∈E

. (1.53)

The result follows easily from the fact that if A = diag{ai}i∈E and B = diag{bi}i∈E , then
A ∗B = diag{ai ∗ bi}i∈E .

Example 1.12. Let J and (Xn)n∈N be defined as in Example 1.10. By using the properties of con-
volution product of matrices it is straightforward to show by induction that the following relations
hold:

Pn = Pk ∗ Pn−k = P (n), 0 ≤ k ≤ n, n ∈ N,
Fn = Fk ∗ Pn−k = I ∗ P (n), 0 ≤ k ≤ n, n ∈ N.

Example 1.13. Consider the basis elements Ei of (1.42). Since Ei ∗Ej = Ei+j , we get easily that

E
(n)
i = Ei ∗ Ei ∗ . . . ∗ Ei︸ ︷︷ ︸

n times

= Eni.

Also, using Example 1.53 and Remark 1.12 we get directly

E
(n)
i = diag{e(n)i } = diag{eni} = Eni.

Example 1.14. The n-fold convolutional powers of the matrix-valued function Ii is given by

I(n)i = Ii ∗ · · · ∗ Ii =

1
(n)
i 0 . . . 0
...

. . .
...

0 . . . 1
(n)
i

 ,

where 1(n)i is given by Example 1.5.

Then, from the above we can reformulate (1.49) as

A ∗B =

∞∑
k=0

[A ∗B](k)E
(k)
1 .

In the following Lemma we give a beneficial property when a matrix-valued function A satisfies
A(0) = 0s, which will be used in the sequel in order to simplify the computation of the convolu-
tional inverse of a given matrix-valued function in the case that it exists.

Lemma 1.3. Let A ∈ Ms(N) be a matrix-valued function with A(0) = 0s. Then, A(n)(k) = 0s
for all k, n ∈ N with k < n.

Proof. By (1.48) and (1.49) we get that

A1 ∗ · · · ∗An =
∞∑

k1,...kn=0

A1(k1) · · ·An(kn)Ek1+···+kn . (1.54)
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Consequently,

A(n) =

∞∑
k1,...kn=0

A(k1) · · ·A(kn)Ek1+···+kn . (1.55)

Since by assumption A(0) = 0s, if at least one of ki is null, then the corresponding matrix coeffi-
cient will be also null. We conclude that

A(n) =
∞∑

k1,...kn=1

A(k1) · · ·A(kn)Ek1+···+kn , (1.56)

and consequently the matrix coefficient of Ek are null for k < n.

Remark 1.13. As an immediate consequence of the above lemma we get that for any fixed k, the
matrix valued sequence A(n)(k) is eventually null. Additionally, the matrix valued function which
results from the series

∑
nA

(n) is well defined, since each term is actually a finite sum.

Definition 1.7. Let A ∈Ms(N). If there exists a matrix valued function B ∈Ms(N) such that

A ∗B = E0, (1.57)

then B is called the right convolutional inverse of A (right inverse of A in the convolution sense)
and it is denoted by A(−1)

r . If there exists a matrix valued function C ∈Ms(N) such that

C ∗A = E0, (1.58)

then C is called the left convolutional inverse of A (left inverse of A in the convolution sense) and
it is denoted by A(−1)

l . It is easy to see that if both A(−1)
r and A(−1)

l exist, then they necessarily
coincide. Then, there exists a necessarily unique B ∈Ms(N) such that

A ∗B = B ∗A = E0, (1.59)

it is called the convolutional inverse of A and denoted by A(−1).

The inverse of A does not always exist. For example, denote the matrix-valued function

A(k) = Ck+1, k ∈ N,

where C is a nilpotent matrix of a finite index. For k = 0 we have to solve the equation

[B ∗A](0) = B(0)A(0) = B(0) C = E0(0) = Is.

Since C has been assumed to be nilpotent then it is a singular matrix and consequently there exists
no solution.

Theorem 1.2. LetA ∈Ms(N) be a matrix-valued function. The convolutional inverseA(−1) exists
if and only if A(0) is non-singular and is given by the following relation

A(−1) = (A(0))−1
[ ∞∑
m=0

(E0 −A0))
(m)

]
=

[ ∞∑
m=0

(E0 −A∗0)(m)

]
(A(0))−1 (1.60)

where,

A0(k) = A(k) (A(0))−1 , k ∈ N,
A∗0(k) = (A(0))−1A(k), k ∈ N.
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Additionally, each term A(−1)(k) in (1.61) can be represented as a finite sum and is given by

A(−1)(k) = (A(0))−1
[

k∑
m=0

(E0 −A0)
(m)(k)

]
=

[
k∑

m=0

(E0 −A∗0)(m)(k)

]
(A(0))−1 (1.61)

or

A(−1)(k) = (A(0))−1
[

k∑
m=0

(
k + 1

m+ 1

)
(−1)mA

(m)
0 (k)

]
(1.62)

=

[
k∑

m=0

(
k + 1

m+ 1

)
(−1)mA∗0

(m)(k)

]
(A(0))−1 . (1.63)

Proof. We prove that the middle-side of (1.61) holds. The corresponding for the right-side can be
proven similarly.

First, the comments after Definition 1.7 imply that for a matrix-valued functionA ∈ RM where
A(0) forms a singular matrix, there is no B ∈ RM satisfying (1.59). Then, it suffices to show that
the inverse exists if A(0) is non-singular. To obtain the desired form, without loss of generality we
assume that A(0) = Is and consequently it suffices to prove that

A(−1) =
∞∑
m=0

(E0 −A)(m), (1.64)

because in the general case we have A = A0A(0) and since A0(0) = Is we can easily get that
if the result holds for A(−1)

0 , then A(−1) = (A(0))−1 A
(−1)
0 . In order to prove (1.64) it suffices

to prove that the convolutions between A and the righthand member of (1.64) satisfy the left and
middle side of (1.59). Indeed, sinceE0−A(0) = 0s then the condition of Remark (1.13) is satisfied
and consequently we have( ∞∑

m=0

(E0 −A)(m)

)
∗A =

( ∞∑
m=0

(E0 −A)(m)

)
∗ [E0 − (E0 −A)]

=

∞∑
m=0

(E0 −A)(m) −
∞∑
m=0

(E0 −A)(m+1)

= (E0 −A)(0) = E0.

The middle member of (1.59) is proven similarly. Additionally, since E0 − A(0) = 0s by Lemma
1.3 we have that (E0 − A)(m)(k) = 0s, for all k < m, and consequently (1.60) holds. Also, by
using Corollary 1.2, we can reform (1.60) as

A(−1)(k) =

k∑
m=0

m∑
l=0

(−1)l
(m
l

)
A(l)(k) =

k∑
l=0

k∑
m=l

(−1)l
(m
l

)
A(l)(k)

=

k∑
l=0

(−1)lA(l)(k)

(
k∑

m=l

(m
l

))
=

k∑
m=0

(−1)m
(
k + 1

m+ 1

)
A(m)(k).

Remark 1.14. We denote by R∗M the set of matrix-valued functions which on 0 are non-singular
matrices. From Theorem 1.60, we get that the pair (R∗M, ∗) is a (non-abelian) Group.

Next, we introduce the convolutional extension of the determinant and the adjugate of a given
matrix-valued function in order to give an alternative representation of the convolutional inverse.
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Our motivations arises from N. Limnios and G. Oprisan. ([17]) in which they wrote about the
determinant in the convolutional sense. Here, we extend this idea carefully and we give some
important properties of it and proving the link between the convolutional inverses for real and
matrix sequences.

First, a scalar convolution between a real and a matrix sequence will be useful for the develop-
ment of the theory and is given as follows

Definition 1.8. Let A = (αij) ∈ RM and f ∈ R. The scalar convolution of f and A is given as

f ∗A = (f ∗ αij)i,j∈E = (αij ∗ f)i,j∈E = A ∗ f.

Let A be a 2 × 2 matrix-valued function. The real valued function det(A) is said to be the
convolutional determinant of A given by

det(A) = α11 ∗ α22 − α12 ∗ α21.

This function for a 3× 3 matrix valued function A is defined in a similar way

det(A) =
∑
i∈E

(−1)i+jαij ∗ det (Aij) , for a fixed j ∈ {1, 2, 3},

where det(A)ij is the convolutional determinant of a 2× 2 matrix valued function which is created
by exclunding the i-th row and j-th column entry of A.

In the general case, the convolutional determinant of a s×smatrix-valued functionA is defined
recursively

det(A) =
∑
i∈E

(−1)i+jαij ∗ det (Aij) , for a fixed j ∈ E,

where det(A)ij is the convolutional determninant of the (s− 1)× (s− 1) matrix sequence which
is created by exclunding the i-th row and j-th column entry of A.

Remark 1.15. It is straightforward to notice that the convolutional determinant of A on zero is the
usual determinant of A(0).

In the following definition we introduce the adjugate of a matrix-valued function

Definition 1.9. Let A ∈ RM. The convolutional adjugate A denoted by adj(A is the sequence of
matrices given by

adj(A)ij = (−1)i+jdet (Aji) ,

where det (Aji) is the convolutional determinant of A excluding the j − th row and i− th column.

Some useful properties of det ar given in the following proposition.

Proposition 1.14. For any A,B ∈ RM and f ∈ R we get

det (E0) = e0, (1.65)

det(A ∗B) = det(A) ∗ det(B), (1.66)

det
(
A(n)

)
= det(A)(n), (1.67)

det(f ∗A) = f (s) ∗ det(A). (1.68)

Furthermore, if A has two identical rows, then det(A) ≡ 0.

In the following Theorem we show an alternative form of the convolutional inverse for a given
matrix-valued function.
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Theorem 1.3. Let A ∈ RM. The convolutional inverse A(−1) exists if and only if A(0) is a
nonsingular matrix and is given by

A(−1) = det(A)(−1) ∗ adj(A). (1.69)

Proof. First, it’s direct to show that the desired relation holds if and only if the convolutional inverse
of det(A) exists. From Theorem 1.60 we have that a matrix valued function has a convolutional
inverse if and only if det(A) is a real function which has a convolutional inverse. Indeed, for k = 0
we have that A(0) is nonsingular iff its determinant is zero. The latter means that det (A(0)) 6= 0
and consequently det(A) has a convolutional inverse.

In order to give (1.69) we need to show that

A ∗ adj(A) = det(A) ∗ E0 = adj ∗A. (1.70)

Let i, j ∈ E. If these elements are equal we have

det(A) =
∑
r∈E

Ajr ∗ det(A)jr =
∑
r∈E

(−1)r+jAjr ∗ adj(A)rj . (1.71)

Next, assume i, j be two distinct elements of E and B be a sequence of matrices obtained by
replacing row j of A with row i of A. Then, Proposition 1.14 gives

0 = det(B) =
∑
r∈E

(−1)j+rBjr ∗ det(B)jr =
∑
r∈E

(−1)j+rAir ∗ det(A)jr

=
∑
r∈E

Air ∗ adj(A)jr. (1.72)

Consequently, by combining (1.71) and (1.72) we get directly∑
r∈E

Air ∗ adj(A)jr =

{
det(A) if i=j
0 otherwise

and thus the left-hand member of (1.70) holds.
The ride-side of (1.70) can be proven similarly.

Remark 1.16. Equation (1.69) gives an important relation between the forms of the convolutional
inverses for real and matrix sequences.

In the following proposition we give a recurrent way to compute the convolutional inverse of
a given matrix valued function. The proof is given by Barbu and Limnios (2008) [4] in which
compute the left inverse of a sequence of matrices. Furthermore, we give an alternative way to
compute the convolutional inverse using the corresponding right convolutional inverse.

Proposition 1.15. Let A ∈ R∗M. Its convolutional inverse is computed recursively as follows:

A(−1)(k) =


(A(0))−1 if k=0

(A(0))−1
[
−

k∑
l=1

A(−1)(k − l)A(l)

]
otherwise.

(1.73)

Furthermore, for any k ∈ N∗ the convolutional inverse can be also computed by

A(−1)(k) =

[
−
k−1∑
l=0

A(k − l)A(−1)(l)

]
(A(0))−1 . (1.74)
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Proof. For k=0, we get

A(−1)(0)A(0) = [A(−1) ∗A](0) = E0(0) = Is

Since A(0) is non-singular we get

A(−1)(0) = (A(0))−1 .

For k 6= 0, we have E0(k)= 0s and the convolution of A and A(−1) can be written as

[
A(−1) ∗A

]
(k) = A(−1)(k)A(0) +

k∑
l=1

A(−1)(k − l)A(l)

Since the matrix-valued function A(−1) is the convolutional inverse of A, we have

A(−1)(k)A(0) +

k∑
l=1

A(−1)(k − l)A(l) = 0s

and we obtained the desired form.

Definition 1.10. Let A ∈Ms(N). The matrix valued function

exp(A) :=
∞∑
n=0

1

n!
A(n), n ∈ N,

is called the matrix exponential function of A.

Remark 1.17. Let A ∈ Ms(N) with A(0) = 0s. Then by Remark 1.13, we get directly that the
associated matrix exponential function exp(A) is written as a finite sum and so is well defined.

In the following proposition we give some elementary properties of the matrix exponential
function.

Proposition 1.16. Let A,B ∈ Ms(N), n ∈ Z and C ∈ Ms. The following properties hold,
whenever exp(A), exp(B) are both well defined.

exp (0s) = E0,

exp (E0) = e · E0,

exp (C · E0) = eC · E0,

exp
(
At
)

= exp(A)t,

exp(A+B) = exp(A) ∗ exp(B), for A ∗B = B ∗A,
(exp(A))(n) = exp(nA),

(exp(A))(−1) = exp(−A).

Proposition 1.17. Let A ∈ Ms(N). Then, the matrix exponential function exp (A) is always well
defined and each term exp (A)(k) is given by

exp (A)(k) = eA(0) ·

(
k∑

n=0

A
(n)
+ (k − n)

k!

)
, k ∈ N, (1.75)

where
A+(k) = A(k + 1), k ∈ N.
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Proof. Since A = (A−A(0) · E0) + A(0) · E0, then any A can be expressed as a sum of two
sequences of matrices for which the associated matrix exponential function is well defined (see
Remark 1.17) and their convolution is commutative. Hence, from the previous proposition we have

exp (A) = exp ((A−A(0) · E0) +A(0) · E0) = exp ((A−A(0) · E0) ∗ exp (A(0) · E0)

= eA(0) · (E0 ∗ exp ((A−A(0) · E0)) = eA(0) · exp ((A−A(0) · E0).

Therefore, we obtain that the matrix exponential function is well defined for any sequence of ma-
trices A and each term exp (A)(k) can be written as

exp (A)(k) = eA(0) ·

(
k∑

n=0

(A−A(0) · E0)
(n) (k)

n!

)
, k ∈ N. (1.76)

Additional, since (f − f(0) · e0) (0) = 0, we have that the following relation holds for any k, n ∈
N with k ≥ n,

(A−A(0) · E0)
(n) (k) =

∑
l1+...+ln=k
l1,...,ln≥1

A(l1) · · ·A(ln) =
∑

l1+...+ln=k
l1,...,ln≥1

A+(l1 − 1) · · ·A+(ln − 1)

=
∑

l1+...+ln=k−n
A+(l1) · · ·A+(ln) = A

(n)
+ (k − n).

Consequently, from the previous observation and (1.76) we obtain the desired result.

4. Applications

In this section we give some applications of the convolutional inverse of a given real or matrix-
valued function. We show an equality for a complex sum using the properties of the convolutional
inverse in terms of real sequences.

Example 1.15. We will show the following form

k∑
l=0

(−1)l
(
k + 1

l + 1

)[
l

k

]
=


1 if k = 0,
−1 if k = 1,
0 if k ≥ 2.

From Example 1.8, the unitary function 1 can be determined by

1
(−1) = e0 − e1 ∼= (1,−1, 0, . . .) .

This implies that

1
(−1)(0) = 1, 1

(−1)(1) = −1, 1
(−1)(k) = 0, k ≥ 2. (1.77)

Furthermore, by combining Propositions 1.1 and 1.5 we get directly

1
(−1)(k) =

k∑
l=0

(−1)l
(
k + 1

l + 1

)[
l

k

]
, k ∈ N,

and consequently (1.77) gives the desired result.

Example 1.16. Let us consider a 2× 2 sequence of matrices A ∈Ms(N) with

A =

(
f g
h w

)
.
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Let us assume also that det(A)(0) 6= 0. Then, the convolutional inverse of A exists and is given by

A(−1) = det(A)(−1) ∗ adj(A).

The convolutional determinant of A is the function

det(A) = f ∗ w − g ∗ h,

and the convolutional adjugate is the matrix valued function

adj(A) =

(
w −g
−h f

)
.

Consequently, the sequence of matrices A(−1) is represented by

A(−1) = det(A)(−1) ∗ adj(A)

= (f ∗ w − g ∗ h)(−1) ∗
(

w −g
−h f

)
=

(
(f ∗ w − g ∗ h)(−1) ∗ w −(f ∗ w − g ∗ h)(−1) ∗ g
−(f ∗ w − g ∗ h)(−1) ∗ h (f ∗ w − g ∗ h)(−1) ∗ f

)
.

From the above we get directly that any entry of A(−1) can be written as

A
(−1)
ij (k) =

[( ·∑
n=0

(
− 1

det(A)(0)

)n( ·+ 1

n+ 1

)
(det(A))(n)

)
∗ adj(A)ij

]
(k), k ∈ N.

The following example represents a famous application of convolution in the theory of distribu-
tions. More specifically, we study the distribution of a sum of i.i.d random variables which follow
well known distributions. Furthermore, we obtain the generating function of each random variable
by using the isomorphism between the real sequence and powerseries.

Example 1.17. (i) Let (Xn)n≥1 be an i.i.d sequence such that Xi ∼ Poisson(λi) with pmf

fi(k) =
e−λλk

k!
, k ∈ N.

Then, any fi can be represented as

fi =
∞∑
k=0

e−λiλki
k!

· e(k)1 = e−λi ·
∞∑
k=0

(λi · e1)(k)

k!
= exp (−λi · e0) ∗ exp (λi · e1)

= exp (λi · (e1 − e0))

Let also define the random variable Sn =
∑n

k=0Xk, n ∈ N with pmf f . Then, from Example
1.6 we have

f = (f1 ∗ . . . ∗ fn) = exp (λ1 · (e1 − e0)) ∗ · · · ∗ exp (λn · (e1 − e0))

= exp

− n∑
j=1

λj · (e1 − e0)
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and consequently we get directly that

Sn ∼ Poisson

 n∑
j=1

λj

 .

Furthermore, if we assume also that Xi have the same distribution (i.e λi = λ for any i) then

Sn ∼ Poisson (n · λ) .

(ii) Let us consider an i.i.d sequence (Xn)n≥1 with Xn ∼ Geo(p) for any n ∈ N. Then, the
associated pmf f is given by

f(k) = p(1− p)k, k ∈ N.

Then, f can be rewritten as

f =

∞∑
k=0

p(1− p)k · e(k) = p

∞∑
k=0

((1− p) · e1)(k) = p

∞∑
k=0

(e0 − (e0 − (1− p) · e1))(k)

= p (e0 − (1− p) · e1)(−1) .

Then the sequence (Sn)n≥1 denoted by Sn =
∑n

l=1Xl follows the Negative binomial distri-
bution with size n and parameter p and its pmf f (n) is given by

f (n) = pn · (e0 − (1− p) · e1)(−n) .

(iii) Since any sequence f can be represented as a powereseries then from (i) and (ii) we get
directly that the associated generating functions

exp (λ · (e1 − e0)) ∼= eλ·(x−1), (1.78)

p · (e0 − (1− p) · e1)(−1) ∼=
p

(1− (1− p)x)
, (1.79)

of the Poisson and Geometric distribution respectively.

In the following table we give the pmf and generating function of some well known distribu-
tions which are obtained in a similar way as previously.

List of distributions
Distribution of X pmf generating function
Poisson(λ) exp (λ · (e1 − e0)) eλ·(x−1)

Bernoulli(p) p · e0 + (1− p) · e1 p+ (1− p)x
Binomial(N ,p) (p · e0 + (1− p) · e1)(n) (p+ (1− p)x)n

Geom(p) p · (e0 − (1− p) · e1)(−1) p
(1−(1−p)x)

Negbin(n, p) pn · (e0 − (1− p) · e1)(−n)
(

p
(1−(1−p)x)

)n
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Chapter 2

RENEWAL CHAINS

1. Introduction

In this chapter we study renewal chains. The random system is also allowed to record multiple
renewals at the same time. This implies that, the interarrival time of two successive arrival times are
possible to be null. Our motivation is derived from another project in which we will use systems
with this characteristic.

In classical renewal theory, the interrarival time is assumed to be strictly positive. So, in many
applications, the arrival time describes single events. For example, in a system which counts the
number of an engine’s failures, the arrival time is presented as the time that this engine fails and the
interrarival time represents the engine’s lifetime between two failures.

We use the theory of convolutions in order to give new representations of important quantities
and give alternative proofs. In addition, we generalize well known results of the usual renewal
chain.

The renewal chain is very important for the development of the theory because we will need
it to construct the theory of the Markov renewal chains. More specifically, we can make proper
subsystems in which we can study as renewal chains.

In the next section we introduce the renewal chain, its delayed edition, the counting process and
some other useful quantities. Furthermore, we give a unique solution for the renewal equation. The
final section includes some asymptotic results in terms of renewal chains and the corresponding
results in renewal theory are given as particular cases.

2. Discrete renewal theory

Let (Xn)n≥1 be a sequence of i.i.d nonnegative integer-valued random variables with distribu-
tion F and probability mass function f . The random variable Xn will represent the n-th interarrival
time of an arrival process (Sn)n≥1 corresponding to the realization of a recurrent event. As initial
conditions we take X0 = 0 = S0. Of course, the relation Sn =

∑n
k=0Xk holds for n ∈ N.

Definition 2.1. An arrival time sequence (Sn)n∈N for which the waiting times (Xn)n≥1 form an
i.i.d sequence of nonnegative integer-valued random variables is called a discrete time renewal
chain and every Sn is called a discrete renewal time.

In the rest of theory, we refer to (Sn)n∈N simply as a renewal chain.
In the sequel, we will see many results in which f(0) plays an active role and so with the

assumption that f(0) = 0 we get directly the corresponding results in the classical renewal theory.
Also, we will accept the case that f(0) is different from 1 and consequently the convolutional
inverse of (e0 − f) always exists.

Remark 2.1. If f(0) = 0, then (Sn)n∈N corresponds to a usual renewal chain.

In the following figure we give a possible sample path of a renewal chain.
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FIGURE 2.1: Renewal chain

It corresponds to a realisation, where X0 = 0, X1 = 0, X2 = 2, X3 = X4 = 0, X5 = 1,
X6 = 0 and X7 = 3. Also, for the corresponding renewal chain we have S0 = S1 = 0, S2 = S3 =
S4 = 2,S5 = S6 = 3 and S7 = 6.

In the development of the theory, we will need to determine an important distinction between dif-
ferent types of renewal chains.

Definition 2.2. A renewal chain (Sn)n∈N is called

• recurrent if
P(X1 <∞) = 1,

• transient if
P(X1 <∞) < 1.

In the sequel, we will mainly focus on recurrent renewal chains.

Let us now denote by µ := E(X1) and σ2 := V(X1) if the latter is well defined (µ <∞).

Definition 2.3. A recurrent renewal chain (Sn)n∈N is called

• positive recurrent if
µ <∞,

• null recurrent if
µ =∞.

Definition 2.4. Let (Sn)n∈N be a recurrent renewal chain and

d := max
{
l ∈ N∗ :

∞∑
k=0

f(kl) = 1
}
.

If d > 1, then (Sn) is called periodic with period d or d-periodic, otherwise (d = 1), it is called
aperiodic.

Remark 2.2. Since for a d-periodic renewal chain the probability mass function of X1 is concen-
tracted on the multiples of d, we get directly that

f(k) = 0, for k 6≡ 0 (mod d).

In the development of the theory a fundamental role will be played by the sequence of random
variables (Zn)n∈N, where

Zn =
∞∑
k=0

1{Sk=n}. (2.1)

The r.v Zn corresponds to the number of renewals that take place at time n. We also denote by
u the sequence

u(n) = P(Zn ≥ 1). (2.2)

and we call it renewal probability. Notice that since X0 = 0, we have u(0) = 1.
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Remark 2.3. In case that f(0) = 0, the sequence (Sl)l∈N is strictly increasing and then (Zn) is
such that Zn ∈ {0, 1} and Z0 = 1. In this case, we also have u(n) = P(Zn = 1).

Remark 2.4. From Remark 2.3 we get that each Zn is almost surely zero for any n which is not a
multiple of d. As a consequence of that, we get

u(n) = 0, n 6≡ 0 (mod d).

In order to obtain easily the desired results we will need the sequence (X∗n)n≥1 which is born

by the left-truncated distribution of each (Xn)n≥1 at zero with f(0) 6= 1 i.e. X∗ d
= (X|X > 0).

This implies that, the pmf of each X∗n, denoted by f∗, is given by

f∗(k) = P(Xn = k | Xn > 0) =
f(k)

1− f(0)
, k ∈ N∗. (2.3)

Furthermore, we denote by F∗ and F ∗ the associated cdf and reliability function ofX∗ respectively,
given by

F∗(k) = [1 ∗ f∗] (k) =
F (k)

1− f(0)
, k ∈ N∗, (2.4)

F ∗ = 1− 1 ∗ f∗ =
F

1− f(0)
. (2.5)

We assume also that X∗0 = 0 and S∗n =
∑n

l=0X
∗
l . Then, the sequence (S∗n)n∈N forms a usual

renewal chain with interrarival times with interrarival times (X∗)n∈N and is called the associated
usual renewal chain of (Sn)n∈N. Therefore, by using the sequence (X∗)n∈N, our inference is based
only on the positive values of X rejecting any zero-time event.

Let us also denote by µ∗ = E(X∗1 ) and σ2∗ := V(X∗1 ) if the latter is well defined. Then, we can
obtain directly that

µ∗ =
µ

1− f(0)
,

σ2∗ =
1

1− f(0)

(
σ2 − f(0)

1− f(0)
· µ2∗
)
.

Furthermore, equation (2.3) can be rewritten as

f∗ =
f − f(0) · e0

1− f(0)
,

and consequently we can obtain

f = (1− f(0)) · f∗ + f(0) · e0. (2.6)

Example 2.1. Let us consider the sequence of r.v’s of Example 1.17 (i) and X0 = 0. Then the
sequence (Sn)n∈N forms a renewal chain with f(0) 6= 1 and consequently the associated usual re-
newal chain (S∗n)n∈N with interrarival times (X∗)n∈N is well defined. Furthermore, the associated
pmf f∗ of each X∗n can be determined by

f∗(k) =
e−λ

1− e−λ
λk

k!
, k ∈ N∗.

Furthermore, any S∗n follows a distribution with pmf

f
(n)
∗ (k) =

f (n)(k)

(1− f(0))
=

(
e−λ

1− e−λ

)n
(nλ)k

k!
, k ∈ N∗
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The following proposition gives a relation between f , f∗ and u via convolution.

Proposition 2.1. Let (Sn)n∈N be a renewal chain. If f(0) 6= 1, then the sequence of renewal
probabilities u and the pmf f∗ are linked through

u = (e0 − f∗)(−1). (2.7)

Proof. For n = 0, we get [f ∗ u](0) = f(0) · u(0) = f(0) since u(0) = 1. Then, we take

u(0) = 1− f(0) + f(0) = (1− f(0)) · e0(0) + [f ∗ u](0).

Let n ∈ N∗. Then, by conditioning on the value of the first arrival time S1 we obtain

u(n) = P(Zn ≥ 1) =

n∑
l=0

P(Zn ≥ 1|S1 = l)P(S1 = l) =

n∑
l=0

P(Zn−l ≥ 1)P(S1 = l)

=

n∑
l=0

u(n− l)f(l) = [f ∗ u](n)
e0(n)=0

= (1− f(0)) · e0(n) + [f ∗ u](n)

The above decomposition shows that u can be expressed by

u = (1− f(0)) · e0 + f ∗ u. (2.8)

From (2.8), we get directly:

u ∗ (e0 − f) = (1− f(0)) · e0.

Since the inverse of (e0 − f) exists (f(0) < 1), we have that

u = (1− f(0)) · (e0 − f)(−1) =

(
e0 − f

1− f(0)

)(−1)
(2.6)
= (e0 − f∗)(−1).

Remark 2.5. From Proposition 2.1 we get directly the following representations

f∗ = e0 − u(−1) (2.9)

F∗ = 1− 1 ∗ u(−1) (2.10)

F∗ = 1 ∗ u(−1) (2.11)

µ = lim
n→∞

[
1
(2) ∗ u(−1)

]
(n) (2.12)

Let (L(n))n∈N be the sequence which represents the expectation of Zn.

L(n) = E(Zn), n ∈ N. (2.13)

It will be beneficial for our inference to achieve an expression for (L(n))n∈N from which we can
have an easier way to compute it. For this purpose, a relation between L and u is given in the
following proposition.

Proposition 2.2. Let (Sn)n∈N be a renewal chain. If f(0) 6= 1, then the sequences L and u are
linked through

L =
u

1− f(0)
. (2.14)



2.. Discrete renewal theory 33

Furthermore, L is expressed in the convolutional form

L =
(e0 − f∗)(−1)

1− f(0)
. (2.15)

Proof. The random variable Z0 depends on the zero-time events at time 0 and to the first jump of
the chain (Sn)n∈N. Therefore, we have

P(Z0 = l) = P(X0 = (X1 = · · · = Xl−1 = 0, Xl ≥ 1) = f(0)l−1 (1− f(0)) , l ∈ N∗. (2.16)

Consequently, Z0 follows the geometric distribution on N∗ with parameter p = 1− f(0). Further-
more, we get

E(Z0) =
1

1− f(0)

u(0)=1
=

u(0)

1− f(0)
.

For n ≥ 1, if we have the information that Zn ≥ 1 then this means that at least one renewal takes
place at time n. This is identical to the initial condition that Z0 ≥ 1 and consequently we have

(Zn|Zn ≥ 1)
d
= Z0,

and thus by (2.16) we have

E(Zn|Zn ≥ 1) =
1

1− f(0)
.

Therefore, the sequence L can be determined by

L(n) = E(Zn) = E(Zn|Zn ≥ 1)P(Zn ≥ 1) =
u(n)

1− f(0)

(2.7)
=

(e0 − f∗)(−1)(n)

1− f(0)
.

Remark 2.6. If f(0) = 0, then the relation (2.14) can be reformulated as follows

L(n) = u(n) = P(Zn = 1), n ∈ N.

In the following examples we give some concrete applications.

Example 2.2. Let us consider the renewal chain of Example 2.1. Then, the associated sequences
of renewal probabilities and expected number of renewals are given by

u(n) =

n∑
m=0

(
e−λ

1− e−λ

)m
(mλ)n

n!
,

L(n) =

n∑
m=0

(
e−λ

1− e−λ

)m+1
eλ(mλ)n

n!
,

respectively.

In the following definition, we introduce the notion of renewal equation:

Definition 2.5. Let g : N → R be an unknown function and b : N → R be a known one. The
equation

g = b+ f ∗ g, (2.17)

is called discrete time renewal equation.

The existence of a unique solution is given in the following proposition.
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Proposition 2.3. If f(0) 6= 1, then the renewal equation (2.3) has a unique solution given by

g =
b ∗ u

1− f(0)
. (2.18)

Proof. By using Equations (2.3) and (2.17) we get

g ∗ (e0 − f) = b =⇒ g = b ∗ (e0 − f)(−1).

Then, from Equation (2.7) we get the desired result.

Remark 2.7. If f(0) = 0, we have the unique solution of the usual renewal equation in discrete
time.

We define the following process

N(n) =
n∑
k=0

Zk − 1 =
n∑
k=0

∞∑
l=0

1{Sl=k} − 1 =
∞∑
l=1

1{Sl≤n} = sup{l ∈ N : Sl ≤ n}, (2.19)

which records the number of renewals until the nth period if we exclude the one reffering to S0 = 0.
Since the probability that the interarrival time be zero is positive, we get that P(N(n) = k) for any
k ∈ N. Also, relation (2.19) gives us

P (N(n) ≥ k) = P(Sk ≤ n), k, n ∈ N. (2.20)

The following figure represents the sample path of the counting process, which corresponds to the
renewal chain of Figure 2.1.

FIGURE 2.2: A sample path of counting process

We give here a typical probabilistic proof for the relation between the pmf, cdf and the mean func-
tion of (N(n))n≥0.

Proposition 2.4. For the counting process (N(n))n∈N, we have:
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(i) The sequence of the associated cdfs
(
FN(n)

)
n∈N is given by

FN(n)(k) = 1− Fk+1(n), n, k ∈ N. (2.21)

(ii) The sequence of the associated pmfs
(
fN(n)

)
n∈N is given by

fN(n)(k) = Fk(n)− Fk+1(n), n, k ∈ N. (2.22)

(iii) The mean function is determined by

E (N(n)) =

∞∑
k=1

Fk(n), n ∈ N. (2.23)

Proof. (i) From Equation (2.20) we get directly

FN(n)(k) = P (N(n) ≤ k) = 1− P (N(n) ≥ k + 1) = 1− P(Sk+1 ≤ n) = 1− Fk+1(n).

(ii) First, notice that

{N(n) = k} = {N(n) ≤ k} \ {N(n) ≤ k − 1} , n, k ∈ N.

Consequently, we obtain

fN(n)(k) = FN(n)(k)− FN(n)(k − 1)
(2.21)

= Fk(n)− Fk+1(n).

(iii) Since N(n) is a nonnegative integer valued r.v, we directly get

E (N(n)) =
∞∑
k=0

(
1− FN(n)(k)

) (2.21)
=

∞∑
k=0

Fk+1(n) =
∞∑
k=1

Fk(n)),

or by using the definition of N we can obtain

E (N(n)) = E

( ∞∑
k=1

1{Sk≤n}

)
=
∞∑
k=1

E
(
1{Sk≤n}

)
=
∞∑
k=1

Fk(n).

Definition 2.6. The mean function of N(n) is called the renewal function and is denoted by

M(n) := E (N(n)) , n ∈ N. (2.24)

Also, an other expression of this function can be achieved by the following relation

M = 1 ∗ L− 1 = 1 ∗ (L− e0) = 1 ∗
(

u

1− f(0)
− e0

)
.

3. Delayed renewal chains

In this section we give a generalization of the class of renewal chains. It is referred to a delayed
observation of a random system when it is happened after the beginning. In that case, we wait for
the residual time of the next event and then we make a renewal chain. More precisely, this time is
assumed to be the beginning of this system and we start to observe its evolution.
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Another reason for which we need this model is that in the general case it’s complicated to make
some random systems with multiple events because we can’t have an event at the 0-th period. Let us
first give some definitions and notations. Let (Xn)n≥1 be a sequence of i.i.d random variables and
let also X0 be a nonegative r.v independent of (Xn)n≥1, satisfying P(X0 > 0) > 0. We denote by

(Sn)n∈N, the corresponding sequence of arrival times, that is, Sn =

n∑
k=0

Xk. The chain (S′n)n∈N,

where S′n = Sn − S0, is a renewal chain. Also, notice that

S′n − S′n−1 = (Sn − S0)− (Sn−1 − S0) = Sn − Sn−1 = Xn.

Hence, (Xn)n≥1 is the sequence of the waiting times for the renewal chain (S′n). Furthermore, we
denote by (S∗n)n∈N the associated usual renewal chain of (S

′
n)n∈N.

Definition 2.7. An arrival time sequence (Sn)n∈N for which the waiting times (Xn)n≥1 form an
i.i.d sequence of nonegative integer-valued random variable and X0 is independent of (Xn)n≥1, is
called a delayed renewal chain and every Sn is called a renewal time. The chain (S′n)n∈N is called
the associated renewal chain which is defined after Remark 2.4.

Remark 2.8. A renewal chain Sn is also a delayed renewal chain, assuming that S0 = 0 then we
have S′n = Sn. Therefore, we get directly that the renewal chain is a particular case of the delayed
renewal chain.

In the following figures we present a sample path of a delayed renewal chain with S0 = 1 and
its associated renewal chain respectively.

FIGURE 2.3: Delayed renewal chain.

The first figure corresponds to a realisation, where S0 = 1, S1 = 2, S2 = S3 = 3, S4 = 6,
S5 = 8 and S6 ≥ 8. The latter, corresponds to a realisation which results from the previous one by
subtracting 1 to each Sn.

Next, we give some kinds of delayed renewal chains.

Definition 2.8. A delayed renewal chain (Sn) is called:

1. Periodic with period d > 1 if the associated renewal chain is periodic with period d. Other-
wise, if d = 1 both of them are called periodic.

2. (positive/null) recurrent if this property holds for the associated renewal chain.
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We denote by f0, the probability mass function of X0 and is said to be the initial distribution of
the delayed renewal chain.

Define the following random variables

Zn =

∞∑
l=0

1{Sl=n},

Z ′n =

∞∑
l=0

1{S′l=n}.

As v(n) and u(n) we denote the renewal probabilities P(Zn ≥ 1) and P(Z ′n ≥ 1) respectively.
Since S′0 = 0 we get u(0) = 1.

It’s easy to see that (Z ′n)n∈N is the corresponding sequence of random variables which records
the number of the events for the nth period in terms of the renewal chain (S′n)n∈N).

A useful relation between v and u is given in the following proposition:

Proposition 2.5. If f(0) 6= 1, the sequences of renewal probabilities v and u satisfy

v = f0 ∗ u. (2.25)

Proof. Let n ∈ N. By conditioning on S0, we have

u(n) =

n∑
l=0

P(Zn ≥ 1 | S0 = l)P(S0 = l) =

n∑
l=0

P(Z ′n−l ≥ 1)P(S0 = l) =

n∑
l=0

u(n− l)f0(l).

Denote the following sequence

LD(n) = E(Z
′
n), n ∈ N. (2.26)

This sequence is the expected number of the events at time n in terms of the delayed renewal chain.
Below, we give a relation between LD and the delayed renewal probability v.

LD =
v

1− f(0)
=

f0 ∗ u
1− f(0)

. (2.27)

Proposition 2.6. If f(0) 6= 1, then the sequence of expected renewals L can be determined by

L =
f0 ∗ (e0 − f∗)(−1)

1− f(0)
(2.28)

Proof. In a similar way as in Proposition 2.14 we conclude that

(Z ′n|Z ′n ≥ 1)
d
= Y, n ∈ N,

where Y is the geometric distribution on N∗ with parameter 1− f(0). Consequently, we have

E(Z ′n) = E(Z ′n|Z ′n ≥ 1)P(Z ′n ≥ 1) =
v(n)

1− f(0)

(2.15)
=

[f0 ∗ u](n)

1− f(0)
.

Remark 2.9. From Remark 2.8, we can easily see that if X0
a.s
= 0, then the sequences Z ′n and Zn

are coincise. Consequently, for the renewal probabilities u, v, and the sequences L′, L coincide.
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In the following proposition we give a necessary and sufficient and condition for a positive
recurrent delayed renewal chain to have constant v

Proposition 2.7. Let (Sn)n∈N be a positive recurrent delayed renewal chain with arrival times
(Xn)n∈N and µ := E(X1) ∈ (0,+∞). The following are equivalent

(i) v is a constant,

(ii) v = 1

µ∗
,

(iii) f0 = 1
µ∗

(1− 1 ∗ f) = F∗
µ∗

.

Proof. Since (Sn)n∈N is assumed to be positive recurrent we get directly that v > 0.

(i) =⇒ (ii) Let c > 0 such that v = c · 1. Then, by using relation (2.5) we have:

f0 = v ∗ u(−1) = c · [1 ∗ 1(−1) ∗ F∗] = c · F∗. (2.29)

Since lim
n→∞

[1 ∗ f0] (n) = 1 and lim
n→∞

[
1 ∗ F∗

]
(n) = µ∗, we obtain directly that c = 1

µ∗
.

(ii) =⇒ (iii) The result is direct by equation (2.29)

(iii) =⇒ (ii) Since f0 = F∗
µ∗

, the sequence v can be written as

v = f0 ∗ u =
1

µ∗
·
(
F∗ ∗ F∗

(−1) ∗ 1
)

=

(
1

µ∗

)
· [1 ∗ e0] =

1

µ∗
· 1.

Summarizing the above results, in the following definition we give a particular case of a delayed
renewal chains which satisfies the conditions of Proposition 2.7.

Definition 2.9. Let (Sn)n∈N be a delayed renewal chain with µ = E(X1) < ∞ and v ≡ 1

µ∗
. This

chain is called a stationary renewal chain and its initial distribution defined by f0 = F∗
µ∗

, is called
the stationary distribution of the delayed renewal chain.

4. Asymptotic results

In this section we show some asymptotic results about (delayed or not) renewal chains. We
give the asymptotic behaviour of the counting process N such as the SLLN and the central limit
theorem. We include also the elementary renewal theorem which refers to the limit of the renewal
function M . Furthermore, we study the convergence of the sequence of renewal probabilities and
expected number of renewals.

First, we admit the following assumption The expectation of any interrarival time is finite.

Proposition 2.8. Let (Sn) be a renewal chain. Then,

(i) Sn
a.s−−−→

n→∞
∞,

(ii) if it is also recurrent we have
N(n)

a.s−−−→
n→∞

∞.
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Proof. (i) Since (Xn)n∈N is a sequence of iid random variables with E(X1) = µ > 0, then by
applying the SLLN we get

Sn
n

a.s−−−→
n→∞

µ.

Therefore,

Sn = n
Sn
n

a.s−−−→
n→∞

∞.

(ii) Note that (N(n))n∈N is an increasing sequence and thus its limit exists (finite or infinite). Since
N(n) is integer-valued, if it converges to a finite number it will be an eventually constant sequence.

Let us define the following set

A :=
{

lim
n→∞

N(n) <∞
}

= {N(n) is eventually constant} .

In order to show the desired result, we will need to prove that A has probability zero. Also, this set
can be rewritten in the following form

A = {N(n) is eventually constant} =
∞⋃
l=0

{N(n) is eventually l} =
∞⋃
l=0

lim inf
n
{N(n) = l}.

Additionally, by using the properties of subadditivity and monotonicity of measures we obtain

P(A) = P

(∞⋃
l=0

lim inf
n
{N(n) = l}

)
≤
∞∑
l=0

P
(

lim inf
n
{N(n) = l}

)
≤

∞∑
l=0

lim inf
n

P ({N(n) = l}) =
∞∑
l=0

lim inf
n

(P (Sl ≤ n))− P (Sl+1 ≤ n)) .

We assumed that Sn is recurrent. For that reason we take:

P(Sl ≤ n)− P(Sl+1 ≤ n) −−−→
n→∞

P(Sl < +∞)− P(Sl+1 < +∞) = 0.

Therefore, P(A) = 0.

In the sequel, we give some theorems in which we describe the asymptotic behavior of N(n).

Theorem 2.1 (SLLN for counting processes). If (Sn)n∈N is a recurrent renewal chain, then

N(n)

n

a.s−−−→
n→∞

1

µ
.

Proof. From the classical SLLN for the i.i.d sequence of random variables (Xn)n ≥ 1 we have:

Sn
n

a.s−−−→
n→∞

µ.

Hence, the combination of the previous proposition and Theorem B.4 gives

SN(n)

N(n)
,
SN(n)+1

N(n) + 1

a.s−−−→
n→∞

µ.

Also, we have

SN(n) ≤ n < SN(n)+1 =⇒
SN(n)

N(n)
≤ n

N(n)
<
N(n) + 1

N(n)

SN(n)+1

N(n) + 1
.
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As N(n) converges to infinity, we have

N(n) + 1

N(n)

a.s−−−→
n→∞

1

and we get
N(n)

n

a.s−−−→
n→∞

1

µ
.

Remark 2.10. A direct consequence of the above theorem is the following result

SN(n)

n

a.s−−−→
n→∞

1.

Theorem 2.2 (Elementary renewal theorem). For a recurrent renewal chain (Sn)n∈N, we have

M(n)

n

a.s−−−→
n→∞

1

µ
. (2.30)

Proof. In order to prove the desired result, we need to show that the sequence
(
N(n)
n

)
n≥1

is uni-

formly integrable (Definition B.1). Let p := 1− f(0).
From the proof of Proposition 2.14 we take

E
(
Z2
n|Zn ≥ 1

)
=

1 + f(0)

(1− f(0))2
=

2− p
p2

and consequently

E
(
Z2
)

=
2− p
p2
· u.

E

( n∑
l=0

Zl

)2
 =

n∑
l=0

E(Z2
l ) +

∑
k 6=m

E(ZkZm) ≤ 2− p
p2

n∑
l=0

u(l) +
1

2

∑
k 6=m

E(Z2
k + Z2

m)

=
2− p
p2

 n∑
l=0

u(l) +
1

2

∑
k 6=m

{
u(k) + u(m)

}
≤ (2− p)

p2

(
n+ 1 +

(
n+ 1

2

))
=

(2− p)
p2

(
n+ 1 +

n(n+ 1)

2

)
.

The combination of the previous inequality and the relation N(n) =
∑n

l=0 Zl−1<
∑n

l=0 Zl gives
us

E
(
N(n)2

)
< E

( n∑
l=0

Zl

)2
 ≤ (2− p)

p2

(
n+ 1 +

n(n+ 1)

2

)
and consequently the following relation holds

E

((
N(n)

n

)2
)
<

(2− p)
p2

(
n+ 1

n2
+
n(n+ 1)

2n2

)
≤ 3

(
2− p
p2

)
and is independent of n. Hence, we have

sup
n≥1

E

((
N(n)

n

)2
)
≤ 3

(
2− p
p2

)
<∞.
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From Proposition B.1 we have that the sequence
(
N(n)

n

)
n≥1

is uniformly integrable. Combining

this with the SLLN for counting processes and Theorem B.3, we obtain:

lim
n→∞

M(n)

n
=

1

µ
.

Remark 2.11. if f(0) = 0, then we get that N(n)
n ≤ 1 and from the bounded convergence theorem

we get directly the desired convergence.

Theorem 2.3. Let (Sn)n∈N be a positive recurrent renewal chain with µ = E(X1) and 0 <
V(X1) = σ2 <∞. Then, N is described asymptotically by√

nµ3

σ2

(
N(n)

n
− 1

µ

)
d−−−→

n→∞
N (0, 1).

Proof. Let x ∈ R. In order to show the desired result we need to prove the following limiting
relation:

P

(√
nµ3

σ2

(
N(n)

n
− 1

µ

)
≤ x

)
n→∞−−−→ Φ(x),

where Φ is the distribution function of the standard Normal distribution. Then,

P

(√
nµ3

σ2

(
N(n)

n
− 1

µ

)
≤ x

)
= P

(
N(n) ≤ n

µ
+ x

√
nσ2

µ3

)

= P

(
N(n) ≤

[
n

µ
+ x

√
nσ2

µ3

])
,

where [x] is the integer part of the real number x. Set ξn =
[
n
µ + x

√
nσ2

µ3

]
. For large n we have the

following approximations

ξn ∼ n

µ
+ x

√
nσ2

µ3
,

(n− µξn) ∼ −x

√
nσ2

µ
,

σ
√
ξn ∼ σ

√
n

µ
.

Thus, as n→∞ we conclude that
n− ξnµ
σ
√
ξn
∼ −x.

Using the CLT for the sequence (Xn)n≥1 and the symmetry of the Normal distribution we have

P

(√
nµ3

σ2

(
N(n)

n
− 1

µ

)
≤ x

)
= P (N(n) ≤ ξn) = P(Sξn ≥ n)

= P
(
Sξn − ξnµ
σ
√
ξn

≥ n− ξnµ
σ
√
ξn

)
∼ 1− Φ(−x) = Φ(x).
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Remark 2.12. The CLT for counting processes gives us an alternative way to show the correspond-
ing WLLN.

Theorem 2.4 (renewal theorem). Let (Sn)n∈N be a recurrent renewal chain, then:

(i) if it is aperiodic we have:

u(n) −−−→
n→∞

1

µ∗
.

(ii) if it is periodic of period d > 1 we have:

u(dn) −−−→
n→∞

d

µ∗
,

and
u(n) = 0, ∀n ∈ {l ∈ N| l 6≡ 0 (mod d)} .

(i) The first proof is based on the coupling technique. It is a generalization of the proof in [15].
The difference is identified in the possibility of a zero-time event. The latter doesn’t admit
some properties which exist in a system with time jumps such as the positive reucrrence of a
Markov chain. So this problem is solved using different conditions and properties.

Coupling tecnhique. Let (Rn)n∈N be the stationary b-renewal chain associated to the b-
renewal chain (Sn)n∈N, with interarrival times (Yn)n∈N for which we have:

Xn
d
= Yn, n ≥ 1.

Also, we take

P(R0 = n) =
P(X∗1 > n)

µ∗
, n ∈ N.

Define the chain (Un)n∈N which is expressed by

U0 = X0 − Y0 = −Y0

Un = Sn −Rn = Un−1 + (Xn − Yn), n ≥ 1.

Obviously, the chain (Un − U0)n∈N forms a Markov Chain.

As N we describe the first time when the chains (Sn)n∈N and (Rn)n∈N have the same re-
newals, i.e.

N = inf{l ∈ N : Ul = U0}.

As E(X1 − Y1) = 0, we obtain that the Markov Chain (Un − U0)n∈N implies the condition
of Theorem C.2 and consequently is recurrent. This satisfies that

P(N <∞) = 1.

For any n ∈ N, define the following sets

A−n =

N−1⋃
l=0

{Sl = n}, A+
n =

⋃∞
l=N{Sl = n}, An =

∞⋃
l=0

{Sl = n},

B−n =

N−1⋃
l=0

{Rl = n}, B+
n =

⋃∞
l=N{Rl = n}, Bn =

∞⋃
l=0

{Rl = n}.
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Consequently, we get for n ≥N that the rv’s Sn and Rn have the same distribution. Hence,
the events A+

n and B
+
n have equal probabilities.

Therefore,

u(n) = P(Zn ≥ 1) = P(An) = P(A+
n ∪A−n ) = P(A+

n ) + P(A−n )− P(A+
n ∩A−n )

= P(B+
n ) + P(A−n )− P(A+

n ∩A−n ) = P(Bn \B−n ) + P(A−n )− P(A+
n ∩A−n )

= P(Bn)− P(Bn \B+
n ) + P(A−n )− P(A+

n ∩A−n ).

Since (Rn)n∈N is a stationary b-renewal chain then from Definition 2.9 we infer that

P(Bn) = v(n) =
1

µ∗
.

As a result of P(N <∞) = 1 and the recurrence of (Sn)n∈N we have:

P(A−n ) ≤ P(SN ≥ n) −−−→
n→∞

0

and consequently
P(A+

n ∩A−n ) ≤ P(A−n ) −−−→
n→∞

0.

In a similar way we obtain

P(Bn \B+
n ) ≤ P(B−n ) −−−→

n→∞
0.

and thus, we get

lim
n→∞

u(n) =
1

µ∗
.

The following is based on the relation F ∗ ∗ u = 1 and an analogous proof is given by [12].

Convolutional . From F ∗ ∗ u = 1 we have( ∞∑
k=0

F ∗(k)e
(k)
1

)
·

( ∞∑
k=0

u(k)e
(k)
1

)
=

∞∑
k=0

1(k)e
(k)
1 ,

and if we use the isomorphism in Proposition 1.3 we will get that( ∞∑
k=0

F ∗(k)xk

)
·

( ∞∑
k=0

u(k)xk

)
=

∞∑
k=0

xk.

Therefore, for any x ∈ (−1, 1) we can easily obtain that( ∞∑
k=0

F ∗(k)xk

)
·

( ∞∑
k=0

u(k)xk

)
=

1

1− x
=⇒

(1− x) ·

( ∞∑
k=0

u(k)xk

)
=

1
∞∑
k=0

F ∗(k)xk
. (2.31)
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The left-hand member of (2.31) can be rewritten as

(1− x) ·

( ∞∑
k=0

u(k)xk

)
=

∞∑
k=0

u(k)xk −
∞∑
k=0

u(k)xk+1

= u(0) +

∞∑
k=1

u(k)xk −
∞∑
k=1

u(k − 1)xk

= 1 +
∞∑
k=1

(u(k)− u(k − 1))xk.

Since
∑∞

k=0 F ∗(k) = µ <∞, then from Abel’s theorem (Theorem D.1) we have

lim
x→1−

∞∑
k=0

F ∗(k)xk =
∞∑
k=0

F ∗(k) = µ,

and consequently from the above we conclude that

1 +

∞∑
k=1

(u(k)− u(k − 1)) =
1

µ
=⇒

1 + lim
n→∞

[u(n)− u(0)] =
1

µ

u(0)=1
=⇒

lim
n→∞

u(n) =
1

µ
.

(ii) Proof. Define the sequence (X ′n)n∈N as

X ′n =
Xn

d
, n ∈ N.

SinceXn ∈ d ·N then (X ′n)n∈N forms a sequence of i.i.d random variables defined on N with
probability mass function fd and expected values µd given by

fd(k) = P(X ′1 = k) = P(X1 = dk) = f(dk), k ∈ N (2.32)

and

µd = E(X ′1) =
E(X1)

d
=
µ

d
.

Also, define

S′n =

n∑
l=0

X ′l

and obviously we have

S′n =
Sn
d
.

The sequence (S′n)n∈N forms an aperiodic renewal chain with waiting times (X ′n)n≥1 and
mean time µd = µ

d . From (2.32), we have that the corresponding sequence of renewal proba-
bilities ud is given by ud(n) = u(dn). Thus, from (i) we obtain

u(dn) = ud(n) −−−→
n→∞

1− f(0)

µd
=

d
µ

1−f(0)
=

d

µ∗
.
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The difference between the proof with convolutions and this in [12] is that we had already
proven that the genereting function of the reliability function has no zero values on (−1, 1), since
F ∗ ∗ u = 1. The latter arises from the fact that we used convolutional techniques such as the
existence of the convolutional inverse. In [12] the proof starts from (2.8) using generating functions
without convolutional properties and representations. Ultimately, these proofs are crossed in the
end with different starting points.

Remark 2.13. An alternative proof of the elementary renewal theorem is born via renewal theorem.
Indeed, since u converges to µ∗ then its average converges also to µ∗. Consequently,

M(n)

n
=

1

1− f(0)
· [1 ∗ u](n)

n
− 1

n
−−−→
n→∞

1

1− f(0)
· 1

µ∗
=

1

µ
.

In the aperiodic case we obtain similarly that

M(dn)

n
−−−→
n→∞

d

µ
.

The following is a direct consequence of the renewal theorem.

Corollary 2.1. Let (Sn)n∈N be a recurrent renewal chain, then:

(i) if it is aperiodic, we have:

L(n) −−−→
n→∞

1

µ

(ii) if it is aperiodic of period d > 1 we have

L(dn) −−−→
n→∞

d

µ
.

and
L(n) = 0, for all n ∈ {l ∈ N| l 6≡ 0 (mod d)} .

Remark 2.14. If f(0)=0, then we take the usual renewal theorem.

As a result of the renewal theorem, we have the following theorem.

Theorem 2.5 (Key renewal theorem). Let (Sn)n∈N be a recurrent renewal chain and a real se-
quence (f0(n))n∈N with

∑∞
n=0 |f0(n)| <∞ then:

(i) if it is aperiodic we have:

lim
n→∞

[f0 ∗ u](n) −−−→
n→∞

1

µ∗

∞∑
n=0

f0(n) (2.33)

(ii) if it is periodic of period d > 1, then for any positive integer l ∈ [0,d-1], we have:

[f0 ∗ u](l + nd) −−−→
n→∞

d

µ∗
. (2.34)

Proof. (i) From the renewal theorem we get

lim
n→∞

u(n− l) =
1

µ∗
.
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Since u(n) ≤ 1, we get

|f0(l)u(n− l)| ≤ |f0(l)|, ∀ l = 0, . . . , n.

Then
∞∑
l=0

|f0(l)u(n− l)| ≤
∞∑
l=0

|f0(l)| <∞.

Thus, the dominated convergence theorem for sequences (Theorem D.2) gives us:

lim
n→∞

[f0 ∗ u](n) =
∞∑
l=0

lim
n→∞

f0(l)u(n− l) =
1

µ∗

∞∑
l=0

f0(l).

(ii) For any positive integer n we have

[f0 ∗ u](l + nd) =

l+nd∑
k=0

f0(k)u(l + nd− k).

Since Sn is periodic of period d > 1, we have

u(l + nd− k) > 0 =⇒ l ≡ k (mod d).

Therefore,

[f0 ∗ u](l + nd) =
n∑
k=0

f0(l + d(n− k))u(kd)

and in a similar way as (i) we conclude the desired result.

Now, we can give a corresponding renewal theorem for a delayed recurrent renewal chain.

Theorem 2.6. [ Renewal theorem for delayed renewal chains]

Let (Sn)n∈N be a delayed recurrent renewal chain with initial distribution f0. Then

1. In the case of aperiodicity

v(n) −−−→
n→∞

1

µ∗

∞∑
n=0

f0(n) (2.35)

2. In the case of periodicity of period d > 1, we have

v(l + nd) −−−→
n→∞

d

µ∗

∞∑
n=0

f0(l + nd)

for any integer l ∈ [0, d− 1).

Proof. From Proposition 2.5 we have:

v(n) = [f0 ∗ u](n) =
n∑
l=0

f0(l)u(n− l), n ∈ N.

Consequently, both of these results are considered as applications of the key renewal theorem.

The following sequence is a consequence by the combination of Proposition 2.14 and Theorem
2.6. Let (Sn)n∈N be a delayed recurrent renewal chain with initial distribution f0. Then,
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1. in the aperiodic case we have

LD(n) −−−→
n→∞

1

µ

∞∑
n=0

f0(n) (2.36)

2. in the periodic case of period d > 1, we have

LD(l + nd) −−−→
n→∞

d

µ

∞∑
n=0

f0(l + nd) (2.37)

for any integer l ∈ [0, d− 1).

5. Examples

In this section we give some applications. First, We give a usual parametric renewal chain and
its asymptotic results. Furthermore, we show some useful results for two important processes. The
following example summarizes the main results of this chapter for a renewal chain with Poisson
interrarival times and studies the convergence of the sequence of renewal probabilities for different
rates.

Example 2.3. Let (Xn≥1) be a sequence of i.i.d random variables which follow the Poisson distri-
bution with rate λ ∈ (0,∞), pmf

f(k) =
e−λλk

k!
, k ∈ N,

expectation and variance
E(Xn) = V(Xn) = λ, n ∈ N∗.

So the function L is expressed as

L(n) =
u(n)

1− f(0)
=

u(n)

1− e−λ
, n ∈ N.

From the SLLN for counting processes and the elementary renewal theorem we have

N(n)

n
−−−→
n→∞

1

λ
,
M(n)

n
−−−→
n→∞

1

λ

respectively.
Furthermore, Theorem 2.3 gives us

√
n

(
N(n)

n
− 1

λ

)
d−−−→

n→∞
N
(

0,
1

λ2

)
.

From renewal theorem, we have

u(n) −−−→
n→∞

1− e−λ

λ

and consequently

L(n) −−−→
n→∞

1

λ
.

In the following figure we summarize values of renewal probability and function L until time 20 for
different rates
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FIGURE 2.4: Plots of u and L until time 20.

From the above figure we can easily see that the corresponding rate of convergence for the se-
quences u and L decreases as the rate λ increases.

Next, we give the corresponding backward and residual times for a renewal chain and we study
their asymptotic properties which will be used in the sequel.

Example 2.4. Let (Xn)n≥1 be a sequence of i.i.d nonnegative integer valued r.v’s with X0 = 0.
Also, set

Un = n− SN(n), Rn = SN(n)+1 − n.

For an arbitrary x ∈ N, denote the following sequences

px(n) = P(Un ≥ x), gx(n) = P(Rn ≥ x), x ∈ N.

The function gx can be rewritten as

gx(n) = P(Rn > x) =
∞∑
l=0

P(Rn > x|S1 = l)f(l),

where

P(Rn > x|S1 = l) =


0 if l − n < x, l > n
1 if l − n ≥ x, l > n
g(n− l) otherwise.

and we have

gx(n) =
∞∑

l=n+x

f(l) +

n∑
l=0

gx(n− l)f(l) = F (x+ n+ 1) + [gx ∗ f ](n) := Fx(n) + [gx ∗ f ](n).

This relation forms a renewal equation and thus, from Proposition 2.3 we have

gx(n) = [u ∗ Fx](n).

Also, notice that
∞∑
l=0

Fx(l) =
∞∑
l=x

F (l) ≤
∞∑
l=0

F (l) = µ <∞.



5.. Examples 49

Then, the condition of key renewal theorem is satisfied and consequently we have

gx(n) =
1

1− f(0)
[u ∗ Fx](n) −−−→

n→∞

∑∞
l=x+1 F (l)

µ

or

1− gx(n) −−−→
n→∞

∑x
l=0 F (l)

µ
.

Therefore, the sequence of r.v’s (Rn)n∈N converges in law to a random variable with distribution
function

g∞(x) =

∑x
l=0 F (l)

µ
, x ∈ N.

Furthermore, the sequence (Un)n∈N is studied under the following relation

{Un > x} = {n− SN(n) > x} = {SN(n) < n− x} = {N(n) ≤ N(n− x)}
= {N(n) < N(n− x) + 1} = {n < SN(n−x)+1} = {n− x < SN(n−x)+1 − x}
= {x < SN(n−x)+1 − (n− x)} = {Rn−x > x}.

Hence, the limiting distribution of Un is

1− lim
n→∞

px(n) = 1− lim
n→∞

gx(n− x) = 1− lim
m→∞

gx(m) −−−−→
m→∞

∑x
l=0 F (l)

µ
.
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Chapter 3

MARKOV RENEWAL THEORY

1. Introduction

In this chapter we introduce the discrete-time Markov renewal theory and we study its proba-
bilistic properties. We use elements of convolutional theory in order to achieve more convenient
representations for well known sequences and quantities. Furthermore, we give some alternative
proofs for well known theorems in order to avoid classic techniques and methods of renewal theory
such as the Markov renewal theorem. Some famous results of Markov renewal theory are given in
order to make a well organized chapter.

The structure of this chapter is as follows: In the next section we introduce the notion of discrete-
time Markov renewal and semi-Markov chains and obtain the unique solution for the discrete-time
Markov renewal equation. In section 3, we give the associated asymptotic results for this class of
stochastic processes and in the last section we present some concrete examples.

2. Markov Renewal theory

Here, we give the theory of Markov renewal chains. We introduce the semi-Markov kernel, the
Markov -Renewal chain and we give the unique solution for the Markov renewal equation. Also,
we study some kinds of Markov renewal chains and their probabilistic properties.

In order to introduce the Markov renewal chains we will need some definitions. Consider a
random system with finite state space E = {1, . . . , s}. We assume that the system is evolving with
jumps in time and a chain (Jn) records the successively visited states. The interarrival jump times
are recorded by the sequence of strictly positive integer-valued random variables (Xn)n≥1 ∈ N and
X0 = 0. Denote by Sn the sequence of partial sums of (Xn)n∈N, i.e. Sn =

∑n
k=0Xk.

Below, we introduce the notion of semi-Markov kernel.

Definition 3.1. A matrix valued-function q = (qij(k)) ∈ Ms(N) is said to be a discrete time
semi-Markov kernel, if it satisfies the following conditions:

(i) qij(k) ≥ 0 , i, j ∈ E, k ∈ N,

(ii) qij(0) = 0, i, j ∈ E,

(iii)
∑

j∈E
∑∞

k=0 qij(k) = 1, i ∈ E.

In the development of the theory we assume that qii(k) = 0 for any state i because we will
study systems in which the direct transitions are possible only between different states.

Definition 3.2. The chain (J, S) := (Jn, Sn)n∈N is said to be a Markov-renewal chain (MRC) if
for all n ∈ N, i, j ∈ E and k ∈ N it satisfies almost surely

P(Jn+1 = j, Sn+1 − Sn = k|J0:n, S0:n) = P(Jn+1 = j, Sn+1 − Sn = k|Jn).

Furthermore, if the above equation is independent of n, then (J, S) is said to be homogeneous and

qij(k) := P(Jn+1 = j, Sn+1 − Sn = k|Jn = i).
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Remark 3.1. The process (J, S) is a homogeneous Markov chain and its transition matrix is deter-
mined by the semi-Markov kernel.

Remark 3.2. We can also define pij =
∑∞

k=0 qij(k). Then, the matrix p = (pij)i,j∈E is a Markov
transition matrix.

Proposition 3.1. Let (J, S) a MRC and q the associated semi-Markov kernel. Then, the processes
(J, S), (J,X) and J are Markov chains with transition probabilities

P(Jn+1 = j, Sn+1 = sn + k|Jn = i, Sn = sn) = qij(k) (3.1)

P(Jn+1 = j,Xn+1 = k|Jn = i,Xn = k′) = qij(k) (3.2)

P(Jn+1 = j|Jn = i) = pij . (3.3)

The process J is a Markov chain, called the embedded Markov chain associated to the MRC (J, S).
Its associated transition matrix is given by p (Remark 3.2).

Example 3.1. Let us consider a Markov renewal chain (J, S) with associated semi-Markov kernel

q =

(
0 f
g 0

)
,

where f and g are two probability functions with support on N∗. Then, J is a Markov chain and its
transition probabilities are given by the identity matrix I2.

Assumption 3.1. The embedded Markov chain J is irreducible and aperiodic and its stationary
distribution is given by the stochastic vector π∗.

Remark 3.3. For the embedded Markov chain J we denote by µ∗ll and µ∗jl, with l 6= j the mean
recurrence time in state l and the passage time in state l, starting from a state j, respectively.
Furthermore, if Assumption 3.1 holds, then by classical results on Markov chain theory, we have

µ∗jj =
1

π∗j
.

In the development of the theory a fundamental role will be played by the sequence of matrices
E0 − q and in the following proposition we examine the existence and form of its convolutional
inverse.

Proposition 3.2. The convolutional inverse of the matrix-valued function E0− q exists and is given
by

(E0 − q)(−1) =
∑
n≥0

q(n). (3.4)

Proof. Since q(0) is assumed to be the null matrix then [E0−q](0) = Is and consequently the con-
volutional inverse of the sequence of matrices E0 − q exists because of Theorem 1.2. Furthermore,
from Equation (1.60) we get directly that

(E0 − q)(−1) =
∑
n≥0

(E0 − (E0 − q))(l) =
∑
n≥0

q(n).

Example 3.2. A Markov chain with state spaceE = {1, . . . , s} and transition matrix p = (pij)i,j∈E
is a special case of a Markov renewal chain with semi Markov kernel

qij(k) =

{
pijp

k−1
ii , if k ∈ N∗ and i 6= j

0, otherwise.
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In the following proposition we give a useful form for the n-th step transition probabilities(
Pi(Jn = j, Sn = k)

)
i,j∈E, n∈N.

Proposition 3.3. Let (J, S) be a Markov renewal chain. The following relation holds for any
i, j ∈ E and k, n ∈ N.

P(Jn = j, Sn = k|J0 = i) = q
(n)
ij (k). (3.5)

Proof. We show it by induction. For n = 0 we have that the quantity P(Jn = j, Sn = k|J0 = i) is
zero for i 6= j, otherwise is one and thus, from Definition 1.2 we can directly observe that

P(J0 = j, S0 = k|J0 = i) = q
(0)
ij (k).

Furthermore, assume that for an arbitrary n ∈ N the following relation holds

P(Jn = j, Sn = k|J0 = i) = q
(n)
ij (k), k ∈ N.

Therefore,

Pi(Jn+1 = j, Sn+1 = k) =
∑
r∈E

k∑
l=0

Pi(Jn+1 = j, Sn+1 = k|Sn = l, Jn = r)Pi(Sn = l, Jn = r)

=
k∑
l=0

Pi(Jn+1 = j, Sn+1 − Sn = k − l|Sn = l, Jn = r)q
(n)
ir (l)

=
k∑
l=0

qrj(k − l)q(n)ir (l)

= q
(n+1)
ij (k)

and by induction we conclude that the desired form holds.

Remark 3.4. From Proposition 3.3 we get directly that the n-step transition kernel q(n) represents
the n-step transition probability from (i, k′) to (j, k) for the homogeneous Markov Chain (J, S)
since

p(n)
(
(i, k′), (j, k)

)
= q

(n)
ij (k − k′).

Consequently, the n-step transition probabilities of the embedded Markov chain J are determined
by

p
(n)
ij =

∞∑
k=n

q
(n)
ij (k).

Example 3.3. Let us consider the MRC which is defined in Example 3.1. We compute the inverse
of the sequence of matrices E0 − q using the following ways

1. Using Theorem 1.2

2. Using Theorem 1.3.

1. The n-fold convolutions of q are given by

q(n) =



(
0 f (

n+1
2

) ∗ g(
n−1
2

)

f (
n−1
2

) ∗ g(
n+1
2

) 0

)
if n is odd,

(
f (

n
2
) ∗ g(

n
2
) 0

0 f (
n
2
) ∗ g(

n
2
)

)
if n is even.
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Then, from (3.4) we have

(E0−q)(−1)(k) =

k∑
n−0
2 6 |n

(
0 f (

n+1
2

) ∗ g(
n−1
2

)

f (
n−1
2

) ∗ g(
n+1
2

) 0

)
(k)+

k∑
n−0
2|n

(
f (

n
2
) ∗ g(

n
2
) 0

0 f (
n
2
) ∗ g(

n
2
)

)
(k).

2. The convolutional determinant of E0 − q and its inverse are the real sequences

det(E0 − q) = det

(
e0 −f
−g e0

)
= e0 − f ∗ g,

det(E0 − q)(−1) = (e0 − f ∗ g)(−1) =
·∑

l=0

f (l) ∗ g(l).

The associated adjugate matrix function is given by

adj(E0 − q) = adj

(
e0 −f
−g e0

)
=

(
e0 f
g e0

)
.

Consequently, the inverse (E0 − q)(−1) can be also expressed by

(E0 − q)(−1) = (e0 − f ∗ g)(−1) ∗
(
e0 f
g e0

)
.

Therefore, any associated element is given as follows

(E0 − q)(−1)11 = (e0 − f ∗ g)(−1), (E0 − q)(−1)12 = (e0 − f ∗ q)(−1) ∗ f,

(E0 − q)(−1)21 = (e0 − f ∗ g)(−1) ∗ g, (E0 − q)(−1)22 = (e0 − f ∗ q)(−1).

Remark 3.5. Since q(0) is assumed to be null then from Remark (1.3) we take q(n)(k) is also null
for any n, k ∈ N with n > k.

The previous result can be also obtained through the following reasoning: Since in k-time units
we cannot have more than k jumps (almost surely) we directly obtain that q(n)(k) = 0E , n, k ∈ N
with n > k.

Some other quantities of interest related to a specific state of a MRC are given in the following
definition:

Definition 3.3. For all i, j ∈ E and k ∈ N, we introduce:

(i) The cumulated semi-Markov kernel Q = (Q(k)) ∈ME(N),

Q = I ∗ q,

where I ≡ Is,

(ii) the conditional probability mass function of Xn+1, n ∈ N, given by

fij(k) := P(Xn+1 = k | Jn = i, Jn=1 = j),

(iii) the conditional distribution function of Xn+1, given by

Fij = 1 ∗ fij ,

(iv) the sojourn time probability mass function

hi(k) = P(Xn+1 = k|Jn = i),
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(v) the sojourn time cumulative distribution function

Hi = 1 ∗ hi,

(vi) the survival function of state i

H i = 1−Hi = 1− 1 ∗ hi,

(vii) the mean sojourn time of state i

mi = lim
k→∞

[
1 ∗Hi

]
(k).

It’s easy to notice that the conditional probability mass function satisfy the following relation

fij(k) =

{
qij(k)
pij

, if pij > 0,

0, otherwise.

We can also introduce two kinds of semi-Markov kernels for which fij(k) is independent from
i or j. This case is satisfied by a sequence of matrices which satisfy the form qij(k) = pijfi(k)
or qij(k) = pijfj(k). The first form corresponds to a Markov renewal chain in which the sojourn
times depend only on the present visited state and the latter on the next. In the development of the
theory, we use the general form of f .

Example 3.4. Let (Jn, Sn) be a Markov renewal chain, qij(k) = pijfij(k) and hi(k) be the as-
sociated semi-Markov kernel and sojourn time probability mass function. The pair (Jn, Sn+1)
forms also a Markov renewal chain with semi-Markov kernel q∗ij(k) = pijhj(k). Furthermore, the
pair (Jn+1, Sn) is a Markov renewal chain and the form of the semi-Markov kernel is given by
q̃ij(k) = pijhi(k).

Example 3.5. Let us consider again the MRC of Example 3.1. For the associated conditional
distributions we have

f12 = f, f21 = g, h1 = f, h2 = g,

Q12 = F, Q21 = G, H1 = F, H2 = G,

H1 = F , H2 = G ,

where

F = 1 ∗ f, F = 1− F,
G = 1 ∗ g, G = 1−G.

Then, the mean sojourn times of states 1 and 2 are computed by

m1 = lim
n→∞

[
1 ∗ F

]
(n), m2 = lim

n→∞

[
1 ∗G

]
(n).

Define the array of random variables (Rnj)n∈N,j∈E which is described by

Rnj =
n∑
l=0

1{Jl=j,Sl=n}, n ∈ N, j ∈ E. (3.6)

Since S is strictly increasing, clearlyRnj ∈ {0, 1}, and it can be interpreted as an indicator variable
which records if a renewal of type j has occured at time n. The corresponding probabilities starting
from state i, are denoted by uij(n), that is,
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uij(n) = P(Rnj = 1|J0 = i) := Pi(Rnj = 1), n ∈ N, i, j ∈ E, (3.7)

and we refer it as the sequence of Markov renewal probabilities. Notice that since X0 = 0, we have
uii(0) = 1, i ∈ E.

The following proposition gives a relationship between u and q.

Proposition 3.4. The sequence of matrices u and q are linked through

u = (E0 − q)(−1). (3.8)

Proof. From the monotonicity of (Sn)n∈N and the definition of R, the latter is expressed by the
following union of disjoint sets

{Rnj = 1} =
n⋃
l=0

{Jl = j, Sl = n}, i, j ∈ E, n ∈ N.

Thence, the sequence u is given by

uij(n) =
n∑
l=0

Pi (Jl = j, Sl = n) =
n∑
l=0

q
(l)
ij (n),

and the desired result is obtained by Proposition 3.4.

From the above proposition, we can directly obtain that

u = E0 + q ∗ u.

This representation forms a class of equations known as Markov renewal equations.

Definition 3.4. Let L ∈ ME(N) be a known matrix valued function and G ∈ ME(N) be an
unknown. The equation

G = L+ q ∗G (3.9)

is called discrete time Markov renewal equation.

The existence of the unique solution is given in the following proposition.

Proposition 3.5. The solution of the discrete time Markov renewal equation exists, is unique and is
given by

G = u ∗ L. (3.10)

Proof. From Equation (3.9) we have

(E0 − q) ∗G = L =⇒ G = (E0 − q)(−1) ∗ L
(3.8)
= u ∗ L.

Definition 3.5. Let (J, S) be a Markov renewal chain and Ñj(k) be the number of visits of the MC
J to state j until time N(k), up to time k ∈ N given by

Ñj(k) :=

N(k)∑
n=0

1{Jn=j} =

k∑
n=0

1{Jn=j,Sn≤k} =

k∑
n=0

k∑
l=0

1{Jn=j,Sn=l}. (3.11)

The matrix-valued function U = (U(k), k ∈ N) ∈Ms, where

Uij(k) = Ei
(
Ñj(k)

)
, i, j ∈ E, k ∈ N, (3.12)
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is called Markov renewal function.

Proposition 3.6. The matrix valued functions U and u are linked through

U = I ∗ u. (3.13)

Proof. From the linearity of expectation we get directly that

Uij(k) = Ei

(
k∑

n=0

k∑
l=0

1{Jn=j,Sn=l}

)
=

k∑
n=0

k∑
l=0

Ei
(
1{Jn=j,Sn=l}

)
=

k∑
n=0

uij(n). (3.14)

Remark 3.6. Since
u = E0 + q ∗ u,

then from equation (3.13) we get directly that

U = u ∗ I = I ∗ E0 + q ∗ u ∗ I = I+ q ∗ U,

and consequently U is the unique solution of the Markov renewal equation

U = I+ q ∗ U.

Next, we give the notion of a semi-Markov chain and its probabilistic characteristics.

Definition 3.6. Let (J, S) be a Markov renewal chain and

N(k) := sup{n ∈ N : Sn ≤ k},

the counting process of the number of jumps in [0, k]. The chain Z = (Zk)k∈N

Zk = JN(k), k ∈ N,

is said to be a semi-Markov chain associated to the MRC (J, S).

We denote by α=(αi)i∈E the initial distribution of the SMC Z. This is, αi = P(Z0 = i) =
P(J0 = i), i ∈ E.

Definition 3.7. The transition function of the semi-Markov chain Z denoted by P is the matrix
valued function given by

Pij(k) = P(Zk = j|Z0 = i), i, j ∈ E, k ∈ N.

In the following proposition we give an exact form of the transition function P making links
with the Markov renewal equations.

Proposition 3.7. The transition function P of a semi-Markov chain Z is given by

P = u ∗H, (3.15)

where

H =

(
diag{Hj}

)
j∈E

.

Proof. Let i, j ∈ E be two arbitrary elements and k ∈ N. Any Pij(k) can be written as

Pij(k) = P(Zk = j|Z0 = i) = P(Zk = j,X1 > k|J0 = i) + P(Zk = j,X1 ≤ k|J0 = i). (3.16)
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We have also

P(Zk = j,X1 > k|J0 = i) = 1{i=j}P(X1 > k|J0 = i) = 1{i=j}Hi(k) (3.17)

and

P(Zk = j,X1 ≤ k|J0 = i) =
∑
r∈E

k∑
l=0

P(Zk = j,X1 = l, J1 = r|J0 = i)

=
∑
r∈E

k∑
l=0

P(Zk = j|X1 = l, J1 = r, J0 = i)P(X1 = l, J1 = r|J0 = i)

=
∑
r∈E

k∑
l=0

P(Zk−l = j|J0 = r)qir(l)

=
∑
r∈E

k∑
l=0

qir(l)Prj(k − l) =
∑
r∈E

[qir ∗ Prj ] (k). (3.18)

Therefore, by adding (3.17) and (3.18) relation (3.16) becomes

Pij = 1{i=j}Hi +
∑
r∈E

qir ∗ Prj .

This implies that the sequence of matrices P is represented by the Markov renewal equation

P = H + q ∗ P

Consequently, from Proposition 3.5 we conclude that

P = u ∗H.

Example 3.6. Let us consider the two-state Markov renewal chain of Example 3.1. The matrix-
valued functions u and H are given in Examples 3.3 and 3.5 respectively. Then, Z is a two state
semi-Markov chain with transition function

P = u ∗H = (e0 − f ∗ g)(−1) ∗
(
e0 f
g e0

)
∗
(
F 0

0 G

)
= (e0 − f ∗ g)(−1) ∗

(
F f ∗G

g ∗ F G

)
.

Then, each function Pij(k) is given by

P11(k) =
[
(e0 − f ∗ g)(−1) ∗ F

]
(k), P12(k) =

[
(e0 − f ∗ g)(−1) ∗ f ∗G

]
(k),

P21(k) =
[
(e0 − f ∗ g)(−1) ∗ g ∗ F

]
(k), P22(k) =

[
(e0 − f ∗ g)(−1) ∗G

]
(k).

Definition 3.8. For a Semi-Markov chain (Zk)k∈N, the limit distribution π = (πi)i∈E is defined,
when it exists, by πj = limk→∞ Pij(k), for every i, j ∈ E.

Also we can express u in terms of renewal chains embedded in the MRC. To do this, we need
the definitions of successive passage times in a certain state and their distributions.
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Definition 3.9. Let (J, S) be a Markov renewal chain. We denote by
(
Sjn
)
n∈N

the sequence of

succesive passage times in a fixed state j ∈ E, given by

Sj0 = Sm, with m = inf{l ∈ N|Jl = j}

Sjn = Sm, with m = inf{l ∈ N|Jl = j, Sl > Sjn−1}

Definition 3.10. For any states i, j ∈ E we consider:

1. The probability mass function of the recurrence time in state j

gjj(k) := Pj
(
Sj1 = k

)
, (3.19)

2. the cumulative distribution function of the recurrence time in state j,

Gjj := 1 ∗ gjj , (3.20)

3. the survival function of the recurrence time in state j,

Gjj = 1−Gjj ,

4. the mean recurrence of state j for the SMC Z :

µjj := Ej(Sj1) = lim
n→∞

[1 ∗Gjj ](n),

5. the probability mass function of the first hitting time of state j, starting from state i :

gij(k) := Pi
(
Sj0 = k

)
, (3.21)

6. the cumulative distribution function of the first hitting time of state j, starting from state i :

Gij := 1 ∗ gij , (3.22)

7. the survival function of the first hitting time of state j, starting from state i :

Gij := 1−Gij , (3.23)

8. the mean first passage time from state i to state j for the semi-Markov chain Z :

µij := Ei(Sj0) = lim
n→∞

[1 ∗Gij ](n).

From the above definitions, we obtain easily that
(
Sjn
)

, with Sj0 = 0 is a usual renewal chain
which describes the visits of Z in state j and the function gjj is the associated pmf of the interrarival
times. If we assume that J0 = i then Sj0 > 0 and consequently Sjn forms a delayed renewal chain

and the sequence
(
Sjn − Sj0

)
n∈N

is the associated usual renewal chain, with initial distribution gij
and pmf gjj . From this observation, we give a concrete result which gives an expression for u in
terms of Renewal chains.

For this purpose, define the matrix valued functions g = (gij)i,j∈E , ǔ = diag{ujj}j∈E . The
latter has a convolutional inverse since u(0) = Is.

Proposition 3.8. The matrix valued functions u and g satisfy the following relation

g = (u− E0) ∗ ǔ(−1). (3.24)
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Proof. Note that ujj is a sequence of renewal probabilities of the usual renewal chain which records
renewals on j with probability mass function gjj . Therefore, from Proposition 2.1 we have

ujj = e0 + gjj ∗ ujj .

Now, let us consider two distinct states i, j ∈ E. Then, we have a delayed renewal chain which
records the visits on j when the system starts from i with f0 = gij . In this case, uij and ujj are
the sequences of renewal probabilities for the delayed renewal chain and the simple renewal chain
respectively. Therefore, from Proposition 2.5 we obtain

uij = gij ∗ ujj .

Consequently, from the above we have the following matrix form

u = E0 + g ∗ ǔ. (3.25)

From (3.25) we obtain that
g ∗ ǔ = u− E0

and we get directly that (3.24) holds.

From the above proposition and Example 1.35 we get directly the following corollary for the
matrix valued sequences G = (Gij)i,j∈E , G = (Gij)i,j∈E and the matrix µ = (µij)i,j∈E .

Corollary 3.1. The sequences of matrices G, G and the matrix µ are given by

G = (U − I) ∗ ǔ(−1), (3.26)

G = II− (U − I) ∗ ǔ(−1), (3.27)

µ = lim
n→∞

[
I ∗
(
II− (U − I) ∗ ǔ(−1)

)]
(n). (3.28)

Remark 3.7. We derive from relation (3.25) that q can be determined by

q = E0 − (E0 + g ∗ ǔ)(−1).

Remark 3.8. The representations in Proposition 3.8 and Corollary 3.1 can be written differently.
Then, for the recurrence time in a state j we get

gjj = e0 − u(−1)jj , Gjj = 1− 1 ∗ u(−1)jj , (3.29)

Gjj = 1 ∗ u(−1)jj , µjj = lim
n→∞

[
1
(2) ∗ u(−1)jj

]
(n). (3.30)

Furthermore, for the passage time in a state j, starting from a different state i, we have

gij = uij ∗ u(−1)jj , Gij = Uij ∗ u(−1)jj , (3.31)

Gij = 1− Uij ∗ u(−1)jj , µij = lim
n→∞

[
1
(2) − 1 ∗ Uij ∗ u(−1)jj

]
(n). (3.32)

Example 3.7. Let us consider the MRC of Example 3.1. Then, the quantities of Definition 3.10 are
expressed by

g11 = g22 = f ∗ g, g12 = f, g21 = g,

G11 = G22 = F ∗ g = f ∗G, G12 = F, G21 = G,

G11 = 1− F ∗ g, G12 = F , G21 = G.
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In addition, the associated mean passage and recurrence times are determined by

µ11 = µ22 = m1 +m2, µ12 = m1, µ21 = m2.

Definition 3.11. Let (Zk)k∈N be a semi-Markov chain with state space E and (Jn, Sn)n∈N the
associated Markov renewal chain.

1. If Gij(∞) ·Gji(∞) > 0, we say that i and j communicate and we denote this by i↔ j.

2. The SMC is said to be irreducible if all the states communicate with each other.

3. A state i is said to be recurrent if Gii(∞) = 1 and transient if Gii(∞) < 1.

4. A recurrent state i is positive recurrent if µii <∞ and null recurrent µii =∞.

5. A subset of states C is said to be a final set if
∑
i∈C

Pij(k) = 0 for any j ∈ E\C and any

k ∈ N.

6. The SMC (MRC) is said to be ergodic if it is irreducible and positive recurrent.

7. Let d be an element of N with d > 1. A state i ∈ E is said to be d-periodic (aperiodic) if the
distribution gii(◦) is d-periodic (aperiodic).

8. An irreducible SMC is d-periodic, if all states are d-periodic. Otherwise, it is called aperiodic

In order to show that in an irreducible SMC either all states are periodic or none we will need
some definitions. The latter and the proof of this result were given by Çinlar [9]. Let (J, S) be a
Markov renewal chain defined over (Ω,M), where Ω is a set andM the corresponding σ-Algebra.

Consider the sequence of σ-Algebras

Hn ⊂M.

and assume each (Jn, Sn) beHn-measurable. Define the process

N (A)
n = inf{k > N

(A)
n−1 : Jk ∈ A}, n ≥ 1, N

(A)
0 := 0,

where A is a proper nonempty subset of set E. Namely, any NA counts the successive entrance
times in the set A. Its easy to notice that each NA is an Hn stopping time and consequently the
sequence

Ĥn = {Λ ∈M : Λ ∩ {Nn = m} ∈ Hn ∀m ∈ N}

is a filtration. Also, define the Ĥn-measurable chain (Ĵn, Ŝn)n∈N by

J̄n = J
N

(A)
n
, S̄n = S

N
(A)
n
, n ∈ N.

with state space A ∪ N.

Lemma 3.1. The process (Ĵ , Ŝ) is a Markov renewal chain. Furthermore, if û is the corresponding
Markov renewal probability, then ûij = uij for any i, j ∈ A.

Proof. Since NA is a stopping time then by applying the strong Markov property to the Markov
chain (J, S) we have that (Ĵ , Ŝ) forms a Markov renewal chain.

In addition, we have

∞⋃
l=0

{Jl = j, Sl = n} =

∞⋃
l=0

{Ĵl = j, Ŝl = n}, j ∈ A.
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Hence, from (3.7) we obtain
uij = ûij , i, j ∈ A.

Proposition 3.9.

1. Two communicating states of a MRC are either both periodic or both aperiodic. In the first
case they have the same period.

2. If the embedded Markov chain J is irreducible and the MRC is d-periodic then qij(k) has the
support {αij + rd; r ∈ N}, where αij are nonnegative constants depending on states i and j.

Proof. (i) Let us consider the Markov renewal chain of Lemma 3.1 and set A = {i, j}. The
corresponding semi-Markov kernel q̂ is of form, say

q̂ =

(
C V
B L

)
,

where V,B are accordingly chosen to imply the link about i and j.

Also, by Lemma 3.1 we obtain that the Markov renewal probabilities uij , uii, uji, ujj are the
same whether they are computed from (J, S) or (Ĵ , Ŝ). As a result of Proposition 3.8 we
have that the same holds true for gij , gii, gji, gjj since they are completely determined by the
sequences u. Also, any g can be determined in terms of (Ĵ , Ŝ) by

gii = C + V ∗B + V ∗ L ∗B + V ∗ L ∗ L ∗B + · · · , (3.33)

gjj = L+B ∗ V +B ∗ C ∗ V +B ∗ C ∗ C ∗ V + · · · , (3.34)

gij = V + C ∗ V + C ∗ C ∗ V + C ∗ C ∗ C ∗ V + · · · . (3.35)

Let i be periodic with period d. Then, the function gii is positive over {0, d, 2d, . . . } and from
Equation (3.33) we have that the same holds for C, V ∗B, V ∗L ∗B, · · · . Consequently, the
sequences C, V ∗B and L are d− periodics and thus from Equation (3.34) we infer that the
sequence gjj is also periodic of period d. Hence, j is d− periodic.

(ii) Consider x, y be two elements of N for which the sequence V is positive and set c be a point
such thatB(c) > 0. Then, for z1 = x+c and z2 = y+c, we have [B∗V ](z1), [B∗V ](z2) > 0.
Since i, j are assumed to be d − periodics we have that the support of B ∗ V is a subset of
dN and we have z1, z2 ∈ dN. Therefore, the element |x − y| = |z1 − z2| is a member of
dN. By Equation (3.35) we infer that the support of V is the set αij + dN for some αij ∈ N.
Similarly, gij is supported by the set αji + dN for some αji ∈ N.

Then, by conditioning on the first step we obtain

gij = qij +
∑
r 6=j

qrj ∗ grj , i, j ∈ E.

This relation implies that each (qij)i,j∈E is positive over αij + dN. Obviously, for i = j we
take αij = 0.

Corollary 3.2. Let (J, S) be an irreducible Markov renewal chain. Then either any state is aperi-
odic or else is periodic with period d > 1.

In the following proposition we give a useful link between the mean recurrence times and so-
journ times. This relation will be useful for the sequel and is achieved with the acceptance of
assumption 3.1.
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Proposition 3.10. Let (J, S) be an aperiodic an ergodic Markov renewal chain. The mean recur-
rence time of an arbitrary state j ∈ E is decribed by

µjj =
m

π∗j
, (3.36)

where
m =

∑
i∈E

mi π
∗
i .

Proof. For i, j ∈ E we have

µij = Ei(Sj0) =
∑
r∈E

Ei(Sj0|J1 = r)pir = pijmi +
∑
r 6=j

Ei(Sj0|J1 = r)pir

= pijmi +
∑
r 6=j

(
Er(Sj0) + E(S1)

)
pir = pijmi +

∑
r 6=j

pirµrj + (1− pij)mi

= mi +
∑
r 6=j

pirµrj

and consequently by using the properties of the stationary distribution of the Markov chain J we
get ∑

i∈E
µijπ

∗
i =

∑
i∈E

π∗imi +
∑
i∈E

π∗i
∑
k 6=j

pikµkj

=
∑
i∈E

π∗imi +
∑
k 6=j

(∑
i∈E

π∗i pik

)
=

∑
i∈E

π∗imi +
∑
k∈E

π∗(k)µkj − π∗(j)µjj .

Hence, from the above equality we get the desired form.

Example 3.8. For the embedded Markov chain J of the Example 3.1 the corresponding stationary
distribution is given by the vector (12 ,

1
2) and so if we apply it in (3.36) we get directly the mean

reccurence times which are given in Example 3.7.

3. Asymptotic Results for Markov renewal chains

In this section we study some asymptotic properties of Markov renewal chains. First, we exam-
inate closely the asymptotic behavior of the process (Sn)n∈N, of the number of visits to a certain
state, and the number of transitions between two states. We give also the renewal theorem and the
key renewal theorem for Markov renewal chains. Furthermore, we show the SLLN and CLT for
Markov renewal chains.

In the sequel, we will suppose that the following Assumptions hold.

Assumption 3.2. The semi-Markov chain is irreducible.

Assumption 3.3. The mean sojourn time in any state is finite

mi := Ei(S1) = lim
n→∞

[
1 ∗Hi

]
(n) <∞.

Now, we define the processes which count the number of visits to a certain state and the number
of direct transition between two states, respectively.

Definition 3.12. For all i, j ∈ E, define :
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(i) Ni(k) :=
N(k)−1∑
n=0

1{Jn=i} =
k∑

n=0

1{Jn=i,Sn+1≤k},

(ii) Nij(k) :=
N(k)∑
n=0

1{Jn−1=i,Jn=j} =
k∑

n=1

1{Jn−1=i,Jn=j,Sn+1≤k}.

Proposition 3.11. Let (J, S) be an aperiodic Markov renewal chain. Then, we have

lim
k→∞

Ni(k)

N(k)

a.s
= π∗i (3.37)

lim
k→∞

Nij(k)

N(k)

a.s
= π∗i pij (3.38)

Proof. From the ergodic theorem we get:

1

n

n−1∑
l=0

1{Jl=i}
a.s−−−→

n→∞
π∗i

and
1

n

n∑
l=1

1{Jl−1,Jl=i}
a.s−−−→

n→∞
π∗i pij .

Since N(k)
a.s−−−→
k→∞

∞, then by Theorem B.4 we have

Ni(k)

N(k)
=

1

N(k)

N(k)−1∑
l=0

1{Jl=i}
a.s−−−→
k→∞

π∗i

and
Nij(k)

N(k)
=

1

N(k)

N(k)∑
l=1

1{Jl=i}
a.s−−−→
k→∞

π∗i pij .

Proposition 3.12. For an aperiodic Markov renewal chain we have

lim
k→∞

Ni(k)

k

a.s
=

1

µii
, i ∈ E. (3.39)

Proof. Consider an arbitrary state i ∈ E. Let J0
a.s
= i (Si0

a.s
= 0). Since (Sin)n∈N is a renewal chain

on the event {J = i}, then it’s easy to observe that the process Ñi(k) − 1 is its counting process.
Then, the application of the SLLN for counting processes gives

lim
k→∞

Ñi(k)

k

a.s
=

1

µii
, j ∈ E

and from Remark ??, we conclude the desired result.
The case in which J0 is not necessarily equal to i

(
i.e. P(J0 = i) < 1 and P(Si0 > 0) > 0

)
is

studied in a similar way through the delayed renewal chain (Sin)n∈N and its associated renewal
chain (Sin − Si0)n∈N.

The following results are corollaries from the last two propositions
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Corollary 3.3. Let (J, S) be an aperiodic Markov renewal chain. Then, we have

lim
k→∞

Nij(k)

k

a.s
=

pij
µii
, (3.40)

lim
k→∞

N(k)

k

a.s
=

1

π∗i µii
. (3.41)

Theorem 3.1 (Markov renewal theorem). Let (Jn, Sn)n∈N be a recurrent Markov renewal chain,
then:

(i) if it is aperiodic we have:

lim
n→∞

uij(n) =
1

µjj
.

(ii) if it is periodic of period d> 1 we have:

lim
n→∞

uij(n) =
d

µjj
,

and
uij(n) = 0, ∀ n ∈ {l ∈ N| l 6≡ 0 mod d} .

Proof. (i) [Renewal theory] First, we assume that i = j. In this case, the chain Sjn forms
a renewal chain on the event {J = j} with probability mass function gjj and sequence
of renewal probability ujj(n) . Hence, by applying the renewal theorem for an aperiodic
recurrent renewal chain we have the desired result.

Now, consider i and j be distinct and then the chain Sjn is a delayed renewal chain on the
event {J = j} and Sjn − Sj0 is the associated renewal chain. Furthermore, the sequence gij
is its initial distribution and uij(n) is the corresponding renewal probability. Therefore, the
application of the renewal theorem for a delayed recurrent renewal theorem gives

lim
n→∞

uij(n)
a.s
=

1

µjj

∞∑
l=0

gij(n) =
1

µjj
.

(i) [Convolutional] From Gjj ∗ ujj = 1 we have( ∞∑
k=0

Gjj(k)e
(k)
1

)
·

( ∞∑
k=0

ujj(k)e
(k)
1

)
=
∞∑
k=0

1(k)e
(k)
1 ,

and if we use the isomorphism in Proposition 1.3 we will get that( ∞∑
k=0

Gjj(k)xk

)
·

( ∞∑
k=0

ujj(k)xk

)
=

∞∑
k=0

xk.

Therefore, for any x ∈ (−1, 1) we can easily obtain that( ∞∑
k=0

Gjj(k)xk

)
·

( ∞∑
k=0

ujj(k)xk

)
=

1

1− x
=⇒

(1− x) ·

( ∞∑
k=0

ujj(k)xk

)
=

1
∞∑
k=0

Gjj(k)xk
. (3.42)
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The left-hand member of (2.31) can be rewritten as

(1− x) ·

( ∞∑
k=0

ujj(k)xk

)
=

∞∑
k=0

ujj(k)xk −
∞∑
k=0

ujj(k)xk+1

= ujj(0) +

∞∑
k=1

ujj(k)xk −
∞∑
k=1

ujj(k − 1)xk

= 1 +

∞∑
k=1

(ujj(k)− ujj(k − 1))xk.

Since
∑∞

k=0Gjj(k) = µjj <∞, then from Abel’s theorem (Theorem D.1) we have

lim
x→1−

∞∑
k=0

Gjj(k)xk =
∞∑
k=0

Gjj(k) = µjj ,

and consequently from the above we conclude that

1 +

∞∑
k=1

(ujj(k)− ujj(k − 1)) =
1

µjj
=⇒ 1 + lim

n→∞
[ujj(n)− ujj(0)] =

1

µjj

ujj(0)=1
=⇒ lim

n→∞
ujj(n) =

1

µjj
.

Since gij ∗ ujj = uij , we get directly from Theorem D.2 that

lim
n→∞

uij(n)
a.s
=

1

µjj

∞∑
l=0

gij(n) =
1

µjj
.

(ii) Define the sequence (X ′n)n∈N as

X ′n =
Xn

d
, n ∈ N,

and set

S′n =

n∑
l=0

X ′n.

Then the pair (Jn, S
′
n)n∈N is also a Markov renewal chain with sequence of Markov renewal

probabilities ud which satisfies that ud(n) = u(dn) for any n ∈ N. Furthermore, for the
associated mean recurrence time we obtain that µd = µ

d . Therefore from (i) we have

ujjd(n) −−−→
n→∞

1

µjjd
=

d

µjj
.

For the sequence uij with i 6= j the result is obtained similarly.

In the previous theorem we give again the proof which is presented in Theorem 2.4. We did it
because we want to make the theory of Markov renewal chains less dependent from the techniques
of Renewal theory.

Since Uij = 1 ∗ uij then the following result is a direct consequence of the Markov renewal
theorem

Corollary 3.4 (Elementary Markov renewal theorem). Let (Jn, Sn)n∈N be a recurrent Markov
renewal chain, then:
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(i) if it is aperiodic we have:

lim
n→∞

Uij(n)

n
=

1

µjj
.

(ii) if it is periodic of period d> 1 we have:

lim
n→∞

Uij(dn)

n
=

d

µjj
,

and
Uij(n) = 0, ∀ n ∈ {l ∈ N| l 6≡ 0 mod d} .

Theorem 3.2 (Key Markov renewal theorem). Let (J, S) be an periodic Markov renewal chain.

Also, consider a sequence tj(l) with
∞∑
l=0

|tj(l)| <∞. For any state i, j ∈ E we have

lim
n→∞

[uij ∗ tj ](n)
a.s
=

∑∞
n=0 tj(n)

µjj
. (3.43)

Proof. First, we have

[uij ∗ tj ](n) =
n∑
l=0

uij(n− l)tj(l), n ∈ N.

Since uij(n− l) is a bounded sequence which converges to 1
µJJ

for any l ≤ n, |tj(l)uij(n− l)| <

|tj(l)| and
∞∑
l=0

|tj(l)| < ∞ the conditions of Proposition D.2 are satisfied. For that reason we get

directly the desired result.

AN important application of the key Markov renewal theorem is to obtain the limit distribution
of a semi-Markov chain which satisfies Assumptions 3.2 and 3.3.

Proposition 3.13. Let Z be an aperiodic Markov renewal chain. Then its limit distribution is
determined by

πj =
mj

µjj
. (3.44)

Proof. From Proposition 3.7 we have

Pij = uij ∗Hj .

Furthermore, from Assumption 3.3 we get directly

lim
k→∞

[
1 ∗Hj

]
(k) = mj <∞.

Therefore, we can apply the key Markov renewal theorem and thus we have

lim
k→∞

Pij(k) =
1

µjj
· lim
k→∞

[
1 ∗Hi

]
(k) =

mj

µjj
.

Remark 3.9. By using Proposition 3.10, relation (3.44) can be refrormulated as

πj =
π∗jmj∑
i∈E π

∗
imi

.
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Furthermore, we can compute µjj via Corollary 3.1. This implies that, it is not necessary to find
the stationary distribution of the embedded Markov chain J and we represent the limit distribution
of Z using convolutional forms, i.e

πj = lim
n→∞

[
1 ∗H i

]
(n)[

1(2) ∗ u(−1)jj

]
(n)

.

Example 3.9. Let us consider the MRC of Example 3.1 again. Then, the limit distribution of the
Semi-Markov chain Z is given by

π1 =
m1

m1 +m2
, π2 =

m2

m1 +m2
.

Next, we give the functional SLLN and CLT for Markov renewal chains. The corresponding
results in the continuous-time Markov renewal chains are given in [20]. In order to present these
results we will need some definitions.

Define the function f : E × E × N and the functional

Wf (k) =

N(k)∑
n=1

f(Jn−1, Jn, Xn), k ∈ N. (3.45)

It’s easy to check that (Jn, Jn+1, Xn+1, )n∈N is a Markov chain and its transition probabilities are
given by:

p ((r, s, x), (i, j, k)) = 1{s=i}pijqij(k), r, s, i, j ∈ E, x, k ∈ N. (3.46)

The n-th step transition probabilities can be determined by

p(n) ((r, s, x), (i, j, k)) := P(Jn = i, Jn+1 = j,Xn+1 = k | J0 = r, J1 = s,X1 = x)

= P(Jn+1 = j,Xn+1 = k | Jn = i)P(Jn = i | J0 = r, J1 = s,X1 = x)

= qij(k)P(Jn−1 = i | J1 = s) := qij(k)p
(n−1)
si .

So its stationary distribution, when it exists, is given by

π(i, j, k) = π∗i qij(k), i, j ∈ E, k ∈ N. (3.47)

Also, set the series

Aij =

∞∑
x=0

f(i, j, x)qij(x), Ai =

s∑
j=1

Aij ,

Bij =

∞∑
x=0

f2(i, j, x)qij(x), Bi =
s∑
j=1

Bij .

if they converge. Define the quantities:

πf =

s∑
j=1

Ajπ
∗(j), π(f) = µii

πf
π∗i

σ2i =
∑
i∈E

Biπ
∗
i −

(∑
i∈E

Aiπ
∗
i

)2

+ 2
∑
r∈E

∑
l 6=i

∑
r 6=i

ArlAk
µ∗li + µ∗ik − µ∗lk

µrrµ∗kk
,

, where
µ∗ij = E (inf{l ∈ N : Jl = j} | J0 = i) ,
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is the mean passage time from state i to state j.

σ2f =
σ2i
π∗i µii

. (3.48)

Theorem 3.3. For an aperiodic Markov renewal chain (J, S) we have

lim
n→∞

Wf (n)

n

a.s
= π(f). (3.49)

Proof. From the functional ergodic theorem we get∑n
l=1 f(Jl−1, Jl, Xl)

n

a.s−−−→
n→∞

∑
i,j∈E

∞∑
x=0

π∗i qij(x)f(i, j, x) =
∑
i∈E

π∗i
∑
j∈E

∞∑
x=0

qij(x)f(i, j, x)

=
∑
i∈E

π∗iAi

= πf .

Then, by applying the Gut’s theorem for the process Wf (n) =

N(n)∑
l=1

f(Jl−1, Jl, Xl) we obtain

Wf (n)

n
=
N(n)

n

Wf (n)

N(n)

a.s−−−→
n→∞

πf
π∗i µii

= π(f).

The following theorem is the functional CLT for Markov renewal chains and its proof is deferred
to [20] and is based on convolutional forms.

Theorem 3.4. Let (J, S) be an aperiodic Markov renewal chain. Then, the asymptotic distribution
of Wf is given by

√
n

[
Wf (n)

n
− π(f)

]
d−−−→

n→∞
N
(
0, σ2f

)
,

where σ2f is given in (3.48).

4. Examples

In this section we apply our results in three concrete examples. First, we study the asymptotic
properties such as asymptotic consistency of an important process. Second, we construct a semi-
Markov model and analyze its characteristics which are applied in a numerical result by using
simulated data.

Example 3.10. Here, we give the asymptotic properties of the process Nijx(k)
Ni(k)

whereNijx(k) counts
the number of the transitions from state i to state j when it takes x-time units, until time k denoted
by

Nijx(k) =

N(k)∑
l=1

1{Jl−1=i,Xl=x,Jl=j}.

First, let us consider the function

g(r, s, y) = 1{r=i,s=j,y=x} − qij(x)1{r=i} := f(r, s, x)− qij(x)1{r=i}.
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In order to find the desired asymptotic behaviour of this process we have to compute the associated
quantities Ar, Ars, Br and Brs for all r, s ∈ E.

Ars =

∞∑
l=0

g(r, s, l)qrs(l) =

∞∑
l=0

f(r, s, l)qrs(l)−
∞∑
l=0

1{r=i}qij(x)qrs(l)

= 1{r=i,s=j}qij(x, y)− 1{r=i}qij(x)

∞∑
l,v=0

qis(l) = 1{r=i,s=j}qij(x)− 1{r=i}qij(x)pis

= 1{r=i}qij(x)
(
1{s=j} − pis

)
and consequently

Ar =
∑
s∈E

Ars = 1{r=i}qij(x, y)
∑
s∈E

(
1{s=j} − pis

)
= 0.

Brs =
∞∑
l=0

g2(r, s, l)qij(l)

=
∞∑
l=0

f(r, s, l)qrs(l) +
∞∑

l,v=0

1{r=i}q
2
ij(x)qrs(l)− 2

∞∑
l,v=0

f(r, s, l)qij(x)qrs(l)

= 1{r=i,s=j}qij(x) + q2ij(x)pis − 1{r=i,s=j}q2ij(x)

= 1{r=i}qij(x)
(
1{s=j} + qij(x)pis − 2qij(x)1{s=j}

)
,

and

Br =
∑
s∈E

Brs

= 1{r=i}qij(x)
∑
s∈E

(
1{s=j} + qij(x)pis − 2qij(x)1{s=j}

)
= 1{r=i}qij(x) (1 + qij(x)− 2qij(x))

= 1{r=i}qij(x) (1− qij(x)) .

Therefore, summing up the above results we get

σ2g =
∑
r∈E

Brπ
∗(r) = π∗i qij(x) (1− qij(x)) , πg = 0

and

σ2(g) =
σ2g
µiiπ∗i

=
qij(x) (1− qij(x))

µii
.

Hence, by Theorems 3.3 and 3.4 we can obtain

lim
k→∞

Wg(k)

k
= lim

k→∞

(
Wf (k)

k
−
SN(k)

k
π(f)

)
= 0

and
Wg(k)√

k

d−−−→
k→∞

N
(
0, σ2(g)

)
respectively.

Therefore, some elements about the asymptotic behaviour of Nijx(k)
Ni(k)

are given as follows
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lim
k→∞

Nijx(k)

Ni(k)
= lim

k→∞

k

Ni(k)

(
Wg(k)

k
+
Ni(k)

k
qij(x)

)
= µii

qij(x)

µii
= qij(x).

and
1√
k

(
Nijx(k)

Ni(k)
− qij(x)

)
=
Wg(k)√

k

d−−−→
k→∞

N
(
0, σ2(g)

)
.

Example 3.11. Let us assume a Markov renewal chain (J, S), where the embedded Markov chain
J with state space {1, 2, 3} has the following transition matrix

P =

 0 1 0
0.7 0 0.3
1 0 0

 ,

with sojourn times given by

(X1|J0 = 1, J1 = 2) ∼ Geom

(
1

2

)
+ 1

(X1|J1 = 2, J2 = 3) ∼ DWeibull

(
1

3
, 2

)
(X1|J1 = 2, J2 = 1) ∼ Dweibull

(
1

2
, 3

)
+ 1

(X1|J1 = 3, J2 = 1) ∼ Geom

(
1

3

)
+ 1.

Then, the associated pmfs are given by

f12(k) =
1

2k
· 1{k>0},

f23(k) =

(
1

3(k−1)2
+

1

3k2

)
· 1{k>0},

f21(k) =

(
1

2(k−1)3
+

1

2k3

)
· 1{k>0},

f31(k) =
1

3
·
(

2

3

)k−1
· 1{k>0}, k ∈ N.

Then the semi-Markov kernel is the matrix valued function q given by

q =

 0 f12 0
0.7 · f21 0 0.3 · f23
f31 0 0

 ,

and the sequence E0 − q is expressed by

E0 − q =

 e0 −f12 0
−0.7 · f21 e0 −0.3 · f23
−f31 0 e0

 ,

We can compute the convolutional inverse of E0 − q using 3 different ways
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1. Using Proposition 1.15

2. Using Theorem 1.2

3. Using Theorem 1.3.

Here, we show the third way for mathematical reasons. The first is used only for numerical results.
Thence, the convolutional determinant of E0 − q is the real sequence

det (E0 − q) = det

 e0 −f12 0
−0.7 · f21 e0 −0.3 · f23
−f31 0 e0


= e0 + f12 ∗ det

(
−0.7 · f21 −0.3 · f23
−f31 e0

)
= e0 − 0.3 · (f12 ∗ f21)− 0.7 · (f12 ∗ f23 ∗ f31) ,

and consequently its convolutional inverse is

det (E0 − q)(−1) =
∑
l≥0

[0.3 · (f12 ∗ f21) + 0.7 · (f12 ∗ f23 ∗ f31)](l) := w.

Furthermore, the corresponding adjugate matrix function is the sequence

adj(E0 − q) = adj

 e0 −f12 0
−0.7 · f21 e0 −0.3 · f23
−f31 0 e0


=

 e0 f12 0.7 · (f12 ∗ f23)
0.7 · f21 + 0.3 · (f23 ∗ f31) e0 −0.3 · f23

f31 f12 ∗ f31 e0 − 0.3 · (f12 ∗ f21)

 ,

and hence u is the matrix valued function given by

u = w

 e0 f12 0.7 · (f12 ∗ f23)
0.7 · f21 + 0.3 · (f23 ∗ f31) e0 −0.3 · f23

f31 f12 ∗ f31 e0 − 0.3 · (f12 ∗ f21).


In order to find the transition function of the SMC Z we will need the sequence H . The latter is
given by the elements

H1(k) =
1

2k
,

H2(k) = 0.3 · 1

3k2
+ 0.7 · 1

2k3
,

H3(k) =
2

3
· 1

3k
, k ∈ N.

Therefore, the transition function P is expressed by

P = u ∗H

= w ∗

 e0 f12 0.7 · (f12 ∗ f23)
0.7 · f21 + 0.3 · (f23 ∗ f31) e0 −0.3 · f23

f31 f12 ∗ f31 e0 − 0.3 · (f12 ∗ f21)

 ∗ diag {Hi

}

=

 w ∗H1 w ∗ f12 ∗H2 0.7 · (w ∗ f12 ∗ f23 ∗H3)

w ∗ (0.7 · f21 + 0.3 · (f23 ∗ f31)) ∗H1 w ∗H2 −0.3 ·
(
w ∗ f23 ∗H3

)
w ∗ f31 ∗H1 w ∗ f12 ∗ f31 ∗H2 w ∗ (e0 − 0.3 · (f12 ∗ f21)) ∗H3

 .
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In the following figure we give the evolution of the transition matrix P until the 40-th period.

FIGURE 3.1: Transition probabilities of Z over time

From Figure 3.1 we observe that each of the transition probabilities converge, after time 10, to
some values. This implies that, from this observation we get that Z has a limit distribution. From
the statistical program R we have that the limit distribution of Z is

π = (0.4658548, 0.3245105, 0.2096347). (3.50)

We can also show it using (3.44). In order to do this, we need to compute some useful quantities as
the mean sojourn time, and the limiting behavior of u. For the latter, from the statistical program
R, we have that the function u for a large n will be eventually

u =

0.2329274 0.2329274 0.06987823
0.2329274 0.2329274 0.06987823
0.2329274 0.2329274 0.06987823

 ,

and consequently the mean recurrence time of any state is

µ11 = 0.2329274, µ22 = 0.232974, µ33 = 0.6987823

Furthermore, the mean sojourn times are

m1 = E [X1|J0 = 1, J1 = 2] = 2, (3.51)

m2 = 0.7 · E [X1|J0 = 2, J1 = 1] + 0.3 · E [X1|J0 = 2, J1 = 3] = 1.393183, (3.52)

m3 = E [X1|J0 = 3, J1 = 1] = 3, (3.53)

where the second quantity is computed numerically. By summarizing the above and apply them in
(3.44), we get directly that the limiting distribution of Z is the stochastic vector π with coordinates

π1 = 0.4658548, , π2 = 0.3245105, π3 = 0.2096347 (3.54)

The stationary distribution of J is given by the stochastic vector

π∗ = (π∗1, π
∗
2, π
∗
3) = (0.4347826, 0.4347826, 0.1304348).

Then, we find the mean recurrence times using Proposition 3.36 then we get again the limiting
distrubution which is presented above.
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In the following plot, we add in Figure 3.1 the limiting distrubution of Z for which any coordi-
nate is represented by a red line. We observe that the transition probabilities of Z and the limiting
distrubution coincide, after time 10.

FIGURE 3.2: Transition probabilities of Z over time vs. limiting distrubution

In the following plot we give 6 independent observations of the desired semi-Markov chain for
n = 30 periods via simulated data. This simulation is obtained by the following steps

1. Set X0 = 0 and draw a J0 ∼ α·.

2. Draw a Jm ∼ PJm−1 ·, m ≥ 1.

3. Draw a Xm ∼ fJm−1Jm(·), m ≥ 1.

4. Set Sm = Sm−1 +Xm.

5. If Sm ≥ n, then end.

6. Else, set m←− m+ 1 and go to step 2.

FIGURE 3.3: 6 independent observations of a Semi-Markov chain until time 30
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Appendix A

Algebra

1. Group theory

In this section we give the necessary theory of theory of groups in order to apply it in the theory
of Rings. In order to do this, first we need the definition of semi-group. For the sequel, we denote
by G a non-empty set equipped with a binary operation ∗.

Definition A.1. A pair (G, ∗) is said to be a semi-Group if the operation ∗ is associative, i.e

a ∗ (b ∗ c) = (a ∗ b) ∗ c, ∀ a, b, c ∈ G.

Definition A.2. A set G equipped with a binary operation ∗ is said to be a group if

(i) (G, ∗) is a semi-Group.

(ii) Exists a special element e for which we have,

∀ a ∈ G : a ∗ e = e ∗ a = a,

which is called the idenity element of G.

(iii) For any a ∈ G, there is an element b ∈ G such that

a ∗ b = b ∗ a = a.

The element b is said to be the inverse element of a.

Definition A.3. A group (G, ∗) is said to be an abelian group if ∗ is also commutative, i.e.

a ∗ b = b ∗ a, ∀ a, b ∈ G.

Example A.1. Consider the set of integers Z equipped with the operation of usual multiplication.
The pair (Z, ∗) forms a semi-group but it doesn’t satisfy the conditions of Definition A.2.

Example A.2. The set Z equipped with the operation of usual addition is an abelian group. The
identity element is represented by the zero number. The inverse element of any integer a is expressed
by the number −a.

Example A.3. Let us consider s be a finite natural number and the set G = {A ∈ Rs×s| det(A) 6=
0}. G is a group under multiplication of matrices.

2. Ring Theory

Definition A.4. A nonempty set R is called ring if the binary operations addition + and multipli-
cation ∗ are defined in R and

a) (R,+) is an abelian group.
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b) (R, ∗) is a semi group.

c) Both left and right distributive laws hold in it, i.e. ∀ a, b, c ∈ R

a ∗ (b+ c) = a ∗ b+ a ∗ c (A.1)

(b+ c) ∗ a = b ∗ a+ c ∗ a. (A.2)

Definition A.5. Let R be a ring. R is said to be a commutative ring if for any a, b ∈ R we have

a ∗ b = b ∗ a.

Definition A.6. Let R be a ring in which for any a ∈ R exists an element e ∈ R such that

e ∗ a = a ∗ e = a.

Then, R is said to be a ring with unity and e is called the identity element of R.

Example A.4. Let us consider the set of integers Z. Then, Z is a commutative ring with unity.

Example A.5. The set of all even numbers 2Z={0,±2,±4, . . .} is a commutative ring without
unity, equipped with the binary operations of the usual addition and multiplication.

Definition A.7. Let R be a commutative ring. Then a nonzero element a ∈ R is called zero advisor
if there is a nonzero element b ∈ R such that a ∗ b = 0.

Definition A.8. If a commutative ring R is said to be an integral domain if it has no zero advisors
i.e., for any a, b ∈ R we have

a ∗ b = 0 =⇒ a = 0 or b = 0.

Proposition A.1. Let R be a ring with unity. Then, for any α, β ∈ R with α ∗ β = β ∗ α we have

(α+ β)n =

n∑
l=0

(n
l

)
αn−l ∗ βl. (A.3)

Proof. Obviously, (A.3) holds for n = 0. Now, let us assume that for an arbritrary n ∈ N (A.3) is
true. Then, we have

(α+ β)(n+1) = (α+ β) ∗ (α+ β)(n) = α ∗ (α+ β)(n) + β ∗ (α+ β)(n)

=

n∑
l=0

(n
l

)
α(l+1) ∗ β(n−l) +

n∑
l=0

(n
l

)
α(l) ∗ β(n−l+1)

= α(n+1) + β(n+1) +
n−1∑
l=0

(n
l

)
α(l+1) ∗ β(n−l) +

n∑
l=1

(n
l

)
α(l) ∗ β(n−l+1)

= α(n+1) + β(n+1) +

n∑
l=1

(
n

l − 1

)
α(l) ∗ β(n−l+1) +

n∑
l=1

(n
l

)
α(l) ∗ β(n−l+1)

= α(n+1) + β(n+1) +
n∑
l=1

((
n

l − 1

)
+
(n
l

))
α(l) ∗ β(n+1−l).

Therefore, by using Pascal’s triangle we take

(f + g)(n+1) =

n+1∑
l=0

(
n+ 1

l

)
f (l) ∗ g(n+1−l),

and consequently by the principle of mathematical induction we get the desired form.
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Definition A.9. Let (R,+, ∗) and (R′, (+), (∗)) be two rings. A mapping φ : R→ R′ is said to be
ring homomorphism if for any a, b ∈ R

(i) φ(a+ b) = φ(a)(+)φ(b),

(ii) φ(a ∗ b) = φ(a)(∗)φ(b).

Definition A.10. A ring homomorphism which is an one to one and onto function is said to be an
isomorphism. If φ : R → R′ is such an isomporphism, we call the rings R and R′ isomorphic and
we write R ∼= R′.

Example A.6. Let us consider the function φ : C→M2 given by

φ(a+ bi) =

(
a b
−b a

)
,

is an isomorphism. Then we can identify any complex number as a concrete 2× 2 matrix.
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Appendix B

Probability theory

We give some basic elements of Probability theory which we used in this project. All r.v’s and
r..v’s are defined on an abritrary probability space (Ω,F ,P).

1. Elements of Measure theory

Theorem B.1. Let (Ω,F ,P) be a probability space and An, A ∈ F . Then,

(i) if An ↑ A then P(An) ↑ P(A).

(ii) if An ↓ A then P(An) ↓ P(A).

Theorem B.2 (Dominated convergence theorem).

Let (Xn)n∈N be a sequence of random variables such that lim
n→∞

Xn
a.s
= X and there is a r.v Y with

E(Y ) <∞ such that |Xn| < Y for all n. Then

lim
n→∞

E(Xn) = E(X).

Definition B.1. A sequence of random variables (Xn)n∈N is said to be uniformly integrable if

lim
α→∞

sup
n≥0

E
(
Xn1{Xn≥α}

)
= 0.

Proposition B.1. Let (Xn)n∈N be a sequence of random variables. Assume that for some δ > 0,
we have

sup
n≥0

E
(
|Xn|1+δ

)
<∞.

Then, any Xn is uniformly integrable.

Theorem B.3. Let (Xn)n∈N be an uniformly integrable sequence of random variables. Suppose
that limn→∞Xn = X . Then,

(i) E(X) <∞.

(ii) limn→∞ E(Xn) = E(X).

(iii) limn→∞ E(|Xn −X|) = 0.

2. Stochastic Convergence

Theorem B.4 (Gut’s theorem).

Let (Xn)n∈N be a sequence of random variables and (Nn)n∈N a positive integer-valued stochastic
process. Assume that

lim
n→∞

Xn
a.s
= X & lim

n→∞
Nn

a.s
= ∞.
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Then,
lim
n→∞

XNn

a.s
= X.

Theorem B.5 (Anscombe’s theorem).

Let (Xn)n∈N be a sequence of random variables and (Nn)n∈N a positive integer-valued stochastic
process. Suppose that

1√
n

n∑
l=0

Xl
d−−−→

n→∞
N (0, σ2) &

Nn

n

P−−−→
n→∞

θ ∈ (0,∞).

Then,
1√
Nn

Nn∑
l=0

Xl
d−−−→

n→∞
N (0, σ2).

Theorem B.6 (Continuous mapping theorem).

LetXn be a sequence of r..v’s in Rk, k ≥ 1, and let f : Rk → Rm be a function which is continuous
on a set C ⊂ Rk such that P

(
X ∈ C

)
= 1. Then, the following limits hold

If Xn
a.s/p/d−−−−→
n→∞

X, then f(Xn)
a.s/p/d−−−−→
n→∞

f(X).

Theorem B.7 (Slutsky’s theorem).

Let Xn, Yn be sequences of random elements. Also, suppose that Xn converges in law to a random
variable X and Yn converges in probability to a constant c. Then,

(i) Xn + Yn
d−−−→

n→∞
X + c

(ii) XnYn
d−−−→

n→∞
cX

(iii)
Xn

Yn

d−−−→
n→∞

X

c
, for c, Yn 6= 0.
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Appendix C

Markov chains

1. Introduction

Definition C.1. A sequence X = {Xn}n∈N of random variables is said to be a discrete time Markov
chain, if it satisfies the Markov property, that is, for any n ∈ N, i, j ∈ E and i0:n−1 ∈ En, such
that P

(
X0:n = (i0:n−1, i)

)
> 0, we have

P(Xn+1 = j|Xn = i,X0:n1 = i0:n1) = P (Xn+1 = j|Xn = i). (C.1)

If, additionally, these probabilities do not depend on n, then X is called (time-)homogeneous.

• The conditional probabilities given by C.1, for a time homogeneous Markov Chain X, are
denoted by pij , and we say that pij is the one-step transition probability from state i to state
j. The matrix P = (pij)i,j∈E called the transition matrix of X.

• The vector α = (αi)i∈E with αi = P(X0 = i) is called the initial probability of X.

Proposition C.1. For any n ∈ N, i, j ∈ E, and Bk ⊂ E, k = 0, 1, . . . , n − 1 such that P(Xn =
j,Xn−1 ∈ Bn−1, . . . , X0 ∈ B0) > 0, we have

P(Xn = j|Xn−1 = i, . . . ,X0 ∈ B0) = P(Xn = j|Xn−1 = i). (C.2)

in order to study much better the behavior of a Markov chain we will need the following definition

Definition C.2. Let n ∈ N and i, j ∈ E we denote by

p
(n)
ij = P(Xn = j|X0 = i).

We refer to the conditional probability p(n)ij as the n-step transition probability from i to (state) j.
It corresponds to the probability that X will visit j, starting from i, after n-steps (transitions). For
a xed n ∈ N, these probabilities form the n-step transition matrix of the MC X, that is,

P (n) = (p
(n)
ij )i,j∈E .

where P (1) = P and P (0) = IE .

2. Strong Markov property

Definition C.3. A random variable T , defined on (Ω,F ,P), with values in N ∩ {∞}, is called
a stopping time with respect to the sequence (Xn)n∈N if the occurrence of the event {T = n} is
determined by the past of the chain up to time n, (Xk; k ≤ n)

Definition C.4. The Markov chain (Xn)n∈N is said to have the strong Markov property if, for any
stopping time T , for any integer n ∈ N and state j ∈ E we have

P(Xn+T = j|Xk, k ≤ T )
a.s
= PXT

(Xn = j).
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Proposition C.2. Any Markov chain has the strong Markov property.

3. Stationarity and states classification

Definition C.5. A Markov chain X with initial distribution α is said to be stationary if its marginal
distribution is invariant in time, that is, for any A ⊂ E and n ∈ N

P(Xn ∈ A) = α(A).

Definition C.6. A probability vector π ∈ Rs is said to be a stationary vector of X if

πj =
∑
i∈E

pijπi, j ∈ E.

This property can be written equivalently in matrix form as follows:

π = πP.

A rst obvious property of the stationary distribution is given in the following property.

Proposition C.3. Let X be a Markov chain which admits π as a stationary vector. If the initial
vector α = π, then for any A ⊂ E and n ∈ N:

P(Xn ∈ A) = π(A).

or, in other words, X is a stationary Markov chain with stationary distribution π(◦).

Definition C.7. Let i ∈ E and define

Ti = inf{n ∈ N : Xn = i}

The above random variable is said to be the rst return time on i. If X0 = i with probability 1, then
it is called rst recurrence time.

With the help of the above denition the states are classied as follows:

Definition C.8. A state i ∈ E is said to be

(i) recurrent, if P(Ti <∞|X0 = i) = 1

(ii) transient, if P(Ti <∞|X0 = i) < 1.

Definition C.9. A recurrent state i ∈ E is said to be

(i) Positive recurrent if µ∗iiEi(Ti) <∞.

(ii) Null recurrent if µ∗iiEi(Ti) =∞ .

Also, two useful processes are defined as follows

Definition C.10. Let i, j ∈ E and define

• The time spent by the chain in state i, during the time interval [0, n− 1]

Ni(n) =
n−1∑
l=0

1{Xl=i}
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• The number of direct transitions from i to j, until n-th period.

Nij(n) =

n∑
l=1

1{Xl−1=i,Xl=j}

Definition C.11. (i) we say that the state i ∈ E leads to a state j ∈ E if there exists n ∈ N,
such that p(n)ij > 0. We denote this by i −→ j.

(ii) If both states lead to each other (i −→ j and j −→ i), then we say that i and j communicate,
and we denote this by i←→ j.

Theorem C.1. A state i ∈ E is recurrent if and only if

∞∑
n=0

p
(n)
ii =∞.

and for a transient state j, we have that for all ∈ E,

∞∑
n=0

p
(n)
ij <∞.

Proposition C.4. (i) The relation of communication given in Denition C.11, denes an equiva-
lence relation on the state space E.

(ii) Recurrence and transience are properties of the communication (equivalence) class, or, in
other words, if we qualify a state of a class as recurrent or transient, then this is automatically
transferred to all the states of the same class.

Definition C.12. A Markov chain X is said to be irreducible if all of its states communicate. It is
said to be recurrent or transient if all of its states are recurrent or transient respectively.

For finite Markov chains the following result holds.

Proposition C.5. An irreducible Markov chain X (with finite state space) is necessarily positive
recurrent.

Definition C.13. A recurrent and aperiodic state i ∈ E is called ergodic.

Definition C.14. The Markov chain X is said to be periodic, aperiodic or ergodic, if all its states
are periodic, aperiodic or ergodic respectively.

By the above denitions and Proposition C.5 we have:

Corollary C.1. An irreducible and aperiodic Markov chain X (with nite state space) is necessarily
ergodic.

Let (Xn)n∈N be a sequence of i.i.d integer-valued r.v’s. Also, set Sn =
∑n

l=0Xl for any
n ∈ N. It’s obvious to conclude that (Sn)n∈N forms a Markov chain with state space the set Z. In
the following theorem we give a sufficient condition for its recurrence.

Theorem C.2. Suppose that the Markov chain (Sn)n∈N is irreducible. Also, assume that

E(|Xk|) <∞ & E(Xk) = 0, k ∈ N.

Then the Markov chain (Sn)n∈N is recurrent.



84 Appendix C. Markov chains

4. Asymptotic results

A useful characterization of the stationary distributions of a nite Markov chain X is given via
the limit distributions of X .

Definition C.15. Let X be a MC with transition matrix P and i ∈ E. If

p
(n)
ij = Pnij

a.s−−−→
n→∞

π
(i)
j , i ∈ E.

where π(i) is a probability vector, then π(i) is called limit vector of the chain and the associated
distribution π(i)(◦) is called limit distribution of the chain.

Note that in general a MC can have many limit distributions. The following result holds.

Proposition C.6. If a probability vector π is a limit vector of X, then it is stationary for the MC X .

Proposition C.7. Let i and j be two recurrent states Then,

lim
n→∞

Ni(n)

n
=

1

µ∗ii

lim
n→∞

Nij(n)

n
=

pij
µ∗ii

Theorem C.3 (Law of large numbers for MCs - Birkhoff).

If X is an irreducible MC with stationary vector π, and if f : E → R, then

1

n

n∑
l=1

f(Xl)
a.s−−−→

n→∞
µf = Eπ(X0)

where in the last expression X0 is assumed to follow the stationary distribution π(◦).

Theorem C.4 (CLT for Markov chains).

Let X be an irreducible MC with stationary distribution π and f : E → R. Then, independently of
the initial distribution

1√
n

( n∑
l=1

f(Xl)− nµf
)

d−−−→
n→∞

N (0, σ2f ),

where

µf = Eπ(X0),

σ2f = Vπ(X0) + 2
∞∑
l=0

Covπ
(
f(X0), f(Xl)

)
.
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Appendix D

Real sequences

Theorem D.1 (Abel’s Theorem). Let G(x) =
∑∞

k=0 αkx
k be a powerseries with real coefficients

αk with radius of convergence 1. Suppose that the series
∑∞

k=0 αk converges. Then G(x) is con-
tinuous from the left at x = 1, i.e.

lim
x→1−

G(x) =
∞∑
k=0

αk.

Theorem D.2 (Domitated convergence theorem for sequences).

Let x(n, l) be a double real sequence for which lim
n→∞

x(n, l) exists for any l ∈ N and that |x(n, l)| ≤

y(l) with
∞∑
l=0

y(l) <∞. Then,

lim
n→∞

∞∑
l=0

x(n, l) =

∞∑
l=0

lim
n→∞

x(n, l)

lim
n→∞

n∑
l=0

x(n, l) =

∞∑
l=0

lim
n→∞

x(n, l)
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